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CHM 304 – Thermodynamics (Revised) 
First law of thermodynamics 
Introduction 
Scope of thermodynamics, system and surrounding/universe, states and state functions. 
Thermodynamic variables. 
Expansion or pdv work. Relationships between ΔE, ΔH and q. Common thermodynamics 
problems – partial derivatives of heat capacities (Cp and Cv) and relationships heat capacities of 
gas, liquid and solid. Thermochemistry – temperature dependence of enthalpy, Kirchoff’s law. 
Application of first law of thermodynamics to (a) ideal gases (b) real gases. 
 
Second law of Thermodynamics 
Introduction 
Need to study the second law. Mathematical statement of second law – Carnot cycle, Carnot 
theorem. Entropy of a system – Isothermal, adiabatic, isobaric and isochoric changes and 
calculations. Entropy of irreversible processes, carnot refrigerator. 
Free Energy function, Pressure and temperature coefficients of free energy (ΔG) and equilibrium 
constant, ΔG and ΔH relationship, Variation of equilibrium constant, K, with temperature, ΔG and 
maximum work, ΔG and electrical work, Clapeyron, Classius-Clapeyron, Gibbs-Helmholtz 
equation equations. 
 
Third law of Thermodynamics - Entropy at absolute zero temperature and total entropy of 
phase changes 
Application of Thermodynamic concepts to mixtures and solutions; Entropy, enthalpy, and free 
energy of mixing, Open system and Chemical potential, Chemical potential of ideal gas mixture 
or solution, Fugacity function, Partial molar quantities – Gibbs-Duhem equation, Phase rule and 
phase diagrams, Ideal binary mixtures – Rauolt’s and Henry’s laws, Solubility and Pressure, 
Solubility and temperature, Solutions of involatile solutes – The colligative properties, Colligative 
properties of electrolytes 
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The First Law of Thermodynamics  

There are several word statements of the first law of thermodynamics:  

          Energy is conserved.  

          (Which is another way of saying that energy cannot be created or destroyed. You can 
change its form, but you cannot create it or destroy it.)  

          It is impossible to make a perpetual motion machine of the first kind.  

(A perpetual motion machine of the first kind is a system that gives energy to the surroundings, 
but produces no change in the system itself and no other change to the surroundings. This 
statement implies that there is a perpetual motion machine of the second kind. We will find out 
about a perpetual motion machine of the second kind when we meet the second law of 
thermodynamics.)  

The mathematical statement of the first law is phrased in terms of a process. Given any change or 
process,  

          initial state → final state  

          ΔU = Ufinal − Uinitial ,  

or  

          state 1 → state 2  

          ΔU = U2 − U1 .  

(Initial and final states must both be at equilibrium.)  

Then the first law of thermodynamics says that  

          ΔU = q + w.  

The first law of thermodynamics is a law of observation. No one has ever observed a situation 
where energy is not conserved so we elevate this observation to the status of a law. The real 
justification of this comes when the things we derive using the first law turn out to be true - that 
is, verified by experiment.  

(Actually there are situations were energy is not conserved. We now know that in processes 
where the nuclear structure of matter is altered mass can be converted into energy and vice versa. 
This is a consequence of special relativity were it is found that matter has a "rest energy," mc2, 
where m is the mass to be converted to energy and c is the speed of light. As a consequence of 
nuclear energy we should say that,  
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          Energy + the energy equivalent of mass is conserved.  

Then the first law would be written,  

          ΔU = q + w + Δmc2.  

For chemical processes the change in energy due to changes in mass is negligible - though not 
zero - so we can ignore it.)  

The first law can be written in differential form,  

          dU = dq + dw  

Which is called the differential form of the first law.  

(Actually, this is the differential form of the first law for a closed system, that is, for a system in 
which no material moves in or out of the system. Later we will write the differential form of the 
first law for an open system, where material can move in or out of the system.)  

Note: Some writers like to use a special symbol for the d in dq and dw to indicate that these 
differentials are not in the same mathematical class as, for example, dU. We will not use this 
notation. As soon as we have learned what the difficulty is with the present d you will be 
expected just to remember that the d in dq and dw is different than the d in dU.  

 
pV Work  

We have seen that the expression for work must be obtained from physics. The expression for 
mechanical work, force times distance, is given by,  

, 
or, for a finite change,  

 
We would now like to apply these expressions for mechanical work to the case where work is 
accomplished by the expansion or contraction of a system under an external pressure.  

Let us consider a cylinder of cross-sectional area A fitted with a piston. The apparatus is arranged 
so that the piston encloses a sample at pressure pint, and the piston is attached to a mechanism 
which will maintain an external pressure, pext, in the apparatus. We will assume that pint ≥ pext.  

It turns out that it is easier to calculate the work done on the surroundings, w'.  (Recall that w' = 
−w.)  In this case,  

dw' = fdx.                (1) 
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The piston is released to move a distance dx. Since pressure is force per unit area, the force 
against which the piston moves is pext A. So the work, dw' is  
dw' = fdx = pext Adx.                (2) 
But Adx is a differential volume swept out by the piston in the expansion. Call the differential 
volume Adx = dV. Then  
dw' = fdx = pext Adx = pext dV.                (3) 
Going back to work done on the system, dw, we find,  
dw = − dw' = −pext dV.                (4) 

 
Reversible and Irreversible Processes  

A reversible process is one that can be halted at any stage and reversed. In a reversible process 
the system is at equilibrium at every stage of the process. An irreversible process is one where 
these conditions are not fulfilled.  

If pint > pext in an expansion process then the process is irreversible because the system does not 
remain at equilibrium at every stage of the process. (There will be turbulence and temperature 
gradients, for example.)  For irreversible processes, pV work must be calculated using  

dw = − pextdV.                (5) 
On the other hand, if pint = pext then the process can be carried out reversibly. Also, there is then 
no need to distinguish between external pressure and internal pressure so that  
pint =  pext =  p 
and there is only one pressure defined for the system. In this case, which will account for the 
majority of problems that we deal with,  
dw = − pdV,                (6) 
and  

                (7) 

 
Example Calculations  

First example: A reversible expansion with dp = 0. That is, a process at constant pressure.  

We write our expression for reversible work done on the system,  

               (7) 
If pressure is constant then the p can be brought outside the integral to give,  
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                (8, a, b, c, d) 
(The answer will come out in Latm and should be converted to J using 1 Latm = 101.325 J.  

Second example: An isothermal reversible expansion. That is, dT = 0. We use the same starting 
place  

                (7) 
but this time pressure is not constant and will change as V changes,  

                (9) 
In order to do the integration we must know how pressure varies with volume. We can obtain 
this information from the equation of state. If our substance is a gas we can get an approximate 
value of the expansion work using the ideal gas equation of state, where  

                (10) 
Substituting the ideal gas expression for pressure into Equation (7) we get  

                (11) 
This time T is constant so that we can bring the nRT outside the integral to get.  

                (12) 
Which integrates to give  

                (13a, b) 
The next best approximation would be to approximate the volume dependence of the pressure 
using the van der Waals equation of state.  

 
We will leave it as an exercise for the reader to calculate the expansion work for a van der Waals 
gas.  
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A better approximation yet could be obtained using the virial expansion to give the volume 
dependence of pressure,  

 

 
The General Case  

Suppose we go from p1V1 to p2V2 by some general path. The reversible work is still represented 
by Equation (7),  

                (7) 
The path from p1V1 to p2V2 can be represented by a curve on a p-V diagram.  

 

The integral in Equation (7) can be represented by the area under the curve which goes from p1V1 
to p2V2, so that the work becomes,  

w = − area. 
Notice that there are many possible curves which would connect the points p1V1 and p2V2 and 
each curve would have a different area and give a different value for w. We conclude that w 
depends on the path, unlike ΔU which only depends on the initial and final states. We call 
variables like U, p, V, T, and so on, state variables because ΔU, Δp, ΔV, ΔT, and so on, do not 
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depend on the path, but only on the initial and final states of the system. A quantity like w which 
does depend on path is not a state variable. We will never write w with a Δ in front of it.  
We will soon see that q is also path dependent.  
 
Heat and Heat Capacity  

If we add heat to a sample of material, often the temperature will increase. (If we are at the 
temperature of a phase change, for example ice in water, the temperature will not change it will 
just melt some of the ice.) Away from a phase change adding heat will always give an increase in 
temperature. The amount of the temperature increase depends on how much heat was added, the 
size of the sample, the original temperature of the sample, and on how the heat was added. The 
two obvious choices on how to add the heat are to add it holding volume constant or to add it 
holding pressure constant. (There may be other choices, but they will not concern us.)  

Let's assume for the moment that we are going to add heat to our sample holding volume 
constant, that is, dV = 0. Let qV be the heat added1 (the subscript, V, indicates that the heat is 

being added at constant V). Also, let ΔT  be the temperature change. The ratio, , depends on 
the material, the amount of material, and the temperature. In the limit where qV goes to zero (so 
that ΔT also goes to zero) this ratio becomes a derivative,  

 .               (1) 
We have given this derivative the symbol, CV, and we call it the "heat capacity at constant 
volume. Usually one quotes the "molar heat capacity,"  

.               (2) 
We can rearrange Equation 1 as follows,  

.               (3) 
Then we can integrate this equation to find the heat involved in a finite change at constant 
volume,  

               (4) 
If CV is approximately constant over the temperature range then CV comes out of the integral and 
the heat at constant volume becomes,  

.               (5) 
Let us now go through the same sequence of steps except holding pressure constant instead of 
volume. Our initial definition of the heat capacity at constant pressure, Cp becomes,  

.               (6) 
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The analogous molar heat capacity is,  

.               (7) 
Equation (6) rearranges to,  

,               (8) 
which integrates to give,  

 .               (9) 
When Cp is approximately constant the integral in Equation (9) becomes  

.               (10) 
Very frequently the temperature range is large enough that Cp cannot be regarded as constant. In 
these cases the heat capacity is fit to a polynomial (or similar function) in T. For example, some 
tables give the heat capacity as,  

,               (11) 
where α , β , and γ are constants given in the table. With this temperature-dependent heat 
capacity the heat at constant pressure would integrate as follows,  

 .               (12a, b) 

 
Occasionally one finds a different form for the temperature dependent heat capacity in the 
literature,  

 .               (13) 

 
When you do calculations with temperature dependent heat capacities you must check to see 
which form is being used for Cp.  

1. We are using the convention that q will always designate heat absorbed by the system. q can 
be positive or negative and the sign indicates which way heat is flowing. If q is positive then heat 
was indeed absorbed by the system. On the other hand, if q is negative it means that the system 
gave up heat to the surroundings.  

Energy, the First Law, and Enthalpy  
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We have agreed that work, potential energy, kinetic energy, and heat are all forms of energy. 
Historically, it was not obvious that heat belonged in this list. But beginning with the 
experiments of Count Rumford of the Holy Roman Empire, and later the experiments of Joule, it 
became clear that heat, too, was just another form (or manifestation) of energy.  

Recall that we defined the internal energy, U, as the total energy of the system.  (Although the 
existence of atoms and molecules is not relevant to thermodynamics, we said that the internal 
energy is the sum of all the kinetic and potential energies of all the particles in the system.  This 
statement is outside the realm of thermodynamics, but it is useful for us to gain an intuitive "feel" 
for what the internal energy is.)  

Recall also that energies are always measured relative to some origin of energy.  The origin is 
irrelevent to thermodynamics because we will always calculate changes in U and not absolute 
values of U.  That is, we calculate  

 .               (1) 
In words, this equation reads, "the change in the internal energy is equal to the final internal 
energy minus the initial internal energy." This equation also reminds us that U is a "state 
function." That is, the change in U does not depend on how the change was done (in other words, 
on the path), but depends only on the initial and final states.  

Recall that the first law of thermodynamics in equation form for a finite change, is given by,  

.               (2) 
Equation (2) tells something else of importance.  We know that U is a state function and that ΔU 
is independent of path.  However, w is not a state function so that w depends on path.  Yet the 
sum of w and q is path independent.  The only way this can happen is if q is also path 
dependent.  We now see that we are dealing with two path-dependent quantities, q and w.  

For a differential change we write the first law in differential form,  

 .               (3) 
The w in Equation (2) or the dw in Equation (3)3 includes all types of work, work done in 
expansion and contraction, electrical work, work done in creating new surface area, and so on. 
Much of the work that we deal with in thermodynamics will be work done in expansion and 
contraction of the system, or pV work. Recall that the expression for pV work is,  
 .               (4) 
If we want to include both pV work and other types of work we can write the first law as,  

.               (5) 
Let's now confine ourselves to systems where there is only pV work. In this case the first law can 
be written,  

.               (6) 
Suppose we now regard U as a function of T and V. That is, U = U(T,V). Then, for dU we can 
write,  

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



10 
 

 .               (7) 
For a process at constant V (dV = 0) Equations (6) and (7) become,  

               (8) 
and  

.               (9) 
We know, from our discussion on heat and heat capacity , that the differential heat at constant 
volume can also be written as,  

                   (10) 
so,  

 .               (11) 
Comparing Equations (9) and (11), and recognizing that the change dUV is the same in both 
cases, we see that,  

 .                (12) 
We shall regard Equation (12) as the formal thermodynamic definition of the heat capacity at 
constant volume. This new definition is more satisfactory than our previous temporary definition,  

 .               (13) 
Equation (12) is a better definition of the heat capacity because it is usually more satisfactory to 
define thermodynamics quantities in terms of state functions, like U, T, V, p, and so on, rather 
than on things like q and w which depend on path.  

One other comment, we can integrate Equation (8), at constant volume, to get,  

 .               (14) 
In words, for any process at constant volume the heat, q, is the same as the change in the internal 
energy, ΔU.  
   

Enthalpy  

It turns out that V is not the most convenient variable to work with or to hold constant. It is much 
easier to control the pressure, p, on a system than it is to control the volume of the system, 
especially if the system is a solid or a liquid. What we need is a new function, with units of 
energy, which contains all the information that is contained in U but which can be controlled by 
controlling the pressure. Such a function can be defined (created) by a Legendre transformation. 
There are particular criteria which must be met in making a Legendre transformation, but in our 
case here these criteria are met. (A full discussion of the mathematical properties of Legendre 
transformations is beyond the scope of this discussion. There are more details given in the 
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Appendices to Alberty and Silby.) In our case we will define a new quantity, H, called the 
enthalpy, which has units of energy, as follows,  

 .               (15) 
We can show that H is a natural function of p (in the same sense that U is a natural function of V) 
as follows,  

 .               (16a, b, c) 
One of the great utilities of the enthalpy is that it allows us to use a state function, H, to describe 
the heat involved in processes at constant pressure rather than the heat, q, which is not a state 
function. To see this, let's go through the same process with dH that we did with dU above. Let's 
regard H as a function of T and p (for now). Then we can write,  

 .               (17) 
Consider a process at constant pressure (dp = 0). From Equation (16c) we conclude that.  

                (18) 
and from Equation (17) we get,  

 .               (19) 
We know, from our discussion on heat and heat capacity , that the differential heat at constant 
pressure can also be written as,  

                (20) 
so,  

 .               (21) 
Comparing Equations (19) and (21), and recognizing that the change dHp is the same in both 
cases, we see that,  

 .               (22) 
We shall regard Equation (22) as the formal thermodynamic definition of the heat capacity at 
constant pressure. Again, this definition is much more satisfactory than our previous temporary 
definition,  

 ,               (23) 
since it defines the heat capacity in terms of the state function, H, rather than in terms of q which 
is not a state function.  

Just as we integrated equation (8), we can integrate Equation (21), at constant pressure, to get,  
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 .               (24) 
In words, for any process at constant pressure the heat, q, is the same as the change in enthalpy, 
ΔH. This equation contains no approximations. It is valid for all process at constant pressure. 
Equation (24) is vastly more useful than its counterpart at constant volume because we carry out 
our chemistry at constant pressure much more often than we do at constant volume.  

People sometimes ask, "What is the meaning of H?" Unfortunately, there is no simple, intuitive 
physical description of enthalpy like there is for the internal energy. (Recall that the internal 
energy is the sum of all kinetic and potential energies of all the particles in the system). The 
nearest thing we can come to as a description of H is the one above where ΔH is the heat (gain or 
loss) in a constant pressure process. For this reason the enthalpy is ocassionally referred to as the 
"heat content."  

Reminder: Nuclear energy was unknown to the original formulators of thermodynamics. We 
now know that matter can be converted into energy and vice versa. The "energy equivalent of 
matter" is given by the famous Einstein formula, E = mc2, where m is the mass of the matter and 
c is the velocity of light. Since the velocity of light is very large, about 3 x 108 m/s, a small 
amount of mass is equivalent to a very large amount of energy. Strictly speaking, the statement, 
"energy is conserved," should be replaced by the statement, "energy plus the energy equivalent 
of mass is conserved." That is, energy + mc2 is conserved. The conversion of mass to energy or 
energy to mass in chemical reactions is so small that it is virtually never observed in chemical 
problems. So, for chemical thermodynamics, the simpler statement that energy is conserved is 
sufficient.  

The Joule Expansion  

Much of the early progress in thermodynamics was made in the study of the properties of gases. 
One of the early questions was whether or not gases cool on expansion. (Our intuition might tell 
us that they would, but is our intuition correct?)  

Joule designed an experiment to find out whether or not gases cool on expansion and if so how 
much.  

The Joule apparatus consisted of two glass bulbs connected by a stopcock. One bulb was filled 
with gas at some p and T. The other bulb was evacuated. The entire apparatus was insulated so 
that q = 0. That is, the experiment would be adiabatic.  

The stopcock was opened to allow the gas to expand into the adjoining bulb. Since the gas was 
expanding against zero pressure no work was done, w = 0. With both q = 0 and w = 0 it is clear 
that,  

ΔU = q + w = 0. 
The process is at constant internal energy.  

Clearly, ΔV ≠ 0 because the gas expanded to fill both bulbs. The question was, did T change? ΔT 
was measured to be zero, no temperature change.  
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(It turns out that the Joule experiment was sufficiently crude that it could not detect the 
difference between an ideal gas and a real gas so that the conclusions we will draw from this 
experiments only apply to an ideal gas.)  

In effect, Joule was trying to measure the derivative,  

 
and the result was that,  

                (1) 
This particular derivative is not all that instructive, with U being held constant. We can use our 
version of Euler's chain relation to obtain information that is more instructive.  

                (2a, b, c) 
We know that CV for gases is neither zero nor infinity, so we must conclude that,  

                (3) 
This is an important and useful result. It says that the internal energy of an ideal gas is not a 
function of T and V, but of T only. That is, in equation form,  
for an ideal gas U = U(T).                (4) 
For real gases, and most approximations to real gases, like the van der Waals equation of state,  

 
However, this quantity is quite small, even for real gases. We will have occasion to calculate it 
for the van der Waals equation of state later on.  

This result extends to the enthalpy of an ideal gas.  

H = U + pV = U(T) + nRT = H(T).                (5) 
Thus, for an ideal gas both U and H are functions of T only.  

Then all of the following derivatives are zero:  
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                (6a, b, c, d) 
We will now use some of these results to discuss that adiabatic expansion of an ideal gas.  
   

Adiabatic Expansion of an Ideal Gas  

The definition of an adiabatic expansion, for now, is dq = 0. That is, no heat goes in or out of the 
system. However, dw ≠ 0. As the gas expands it does work on the surroundings. Since the gas is 
cut off from any heat bath it cannot draw heat from any source to convert into work. The work 
must come from the internal energy of the gas so that the internal energy decreases. Since the 
internal energy of an ideal gas in only dependent on T that means that the temperature of the gas 
must decrease.  

From the first law with only pV work we have  

                (7a, b) 
because dq = 0 for an adiabatic process.  

Regarding U as a function of T and V. That is, U = U(T,V), we get  

                (8a, b) 
because of the definition of CV and because our gas is an ideal gas so that the second derivative 
vanishes (Equation (6a)) .  

The dU 's in Equations (7) and (8) must be equal so that  

                (9a, b) 
Rearranging Equation (9b) we get  
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                (10) 
By the same token, using enthalpy, we find  

                (11a, b) 
and  

                (12a, b) 
From which we deduce that  

                (13) 
Comparing Equations (10) and (13) we see that  

                (14a, b, c) 
Where we have written Cp/CV = γ .  

If we regard Cp and CV as constant then Equation (14c) can be integrated to give,  

                (15a, b, c, d, e) 
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Equation (15e) is the equation for the adiabatic expansion of an ideal gas.  You have probably 
seen it before.  
   

Adiabatic Work - Ideal Gas  

We can use Equation (15e) as the equation for an adiabatic path on a pV diagram.  

                (16a, b, c) 
where p1 and V1 refer to some arbitrary constant point on the path. Equation (16b) gives p as a 
function of V along the adiabatic line.  We have added Equation (16c) just to emphasize the point 
that p1 and V1 refer to some fixed (constant) point on the adiabatic expansion curve. With this 
expression for p the work can be easily calculated,  

                (17a, b, c, d) 
The constant is easily found from the knowledge of one point on the adiabatic line (path).  
   

The Joule-Thompson Expansion  

It soon became apparent that the result of the Joule expansion experiment was not valid for real 
gases. A more accurate experiment, slightly different, was carried out by Joule and J. J. 
Thompson to further elucidate the properties on real gases under expansion.  

A sample of a gas, initially at p1, V1, and T1 was forced through a porous plug at constant 
pressure, p1. The gas came out of the other side of the plug at p2, V2, and T2. The apparatus was 
insulated so that q = 0. The work has two terms, the work done on the system to force the gas 
through the plug and the work done by the system on the surroundings as it came out the other 
side of the plug.  

The total work is  
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                (18a, b) 
Since q = 0, the change in internal energy of the gas is,  

                (19a, b, c) 
This process, unlike the Joule expansion, is not at constant internal energy.  

The enthalpy, however, is given by,  

                (20a, b, c) 
So the Joule Thompson experiment is a process at constant enthalpy. In the experiment they 
could select a value for Δp, and then measure ΔT. The ratio of these two quantities is an 
approximation to a derivative,  

                (21) 
μJT is called the "coefficient of the Joule-Thompson effect." This coefficient is not zero for a real 
gas (or for realistic equations of state like the van der Waals equation of state), but we will now 
show that it is zero for an ideal gas. Applying the Euler chain rule to Equation (21) we obtain,  

                (22a, b) 
The numerator in Equation (22b) is zero for an ideal gas, but not necessarily zero for a real gas.  

The coefficient of the Joule-Thompson effect is important in the liquefaction of gases because it 
tells whether a gas cools or heats on expansion. It turns out that this coefficient is a decreasing 
function of temperature and it passes through zero at the Joule-Thompson inversion temperature, 
TI. In an expansion dp < 0. Whether dT is positive or negative depends on the sign of 
μJT.  Looking at the definition of μJT,  
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, 
we see that if μJT is positive then dT is negative upon expansion so that the gas cools. On the 
other hand, if  μJT is negative, then dT is positive so that the gas warms upon expansion. In order 
to liquefy a gas by a Joule-Thompson expansion the gas must first be cooled to below the J-T 
inversion temperature. Some inversion temperatures are:  

     He         40 K  

     N2         621 K  

     O2         764 K  

     Ne         231 K  

We see that N2 and O2 will cool upon expansion at room temperature, but He and Ne will warm 
upon expansion at room temperature.  

The "Thermodynamic Equation of State"  

We have seen that the results of the Joule expansion (valid for ideal gases) demonstrated 
experimentally that for an ideal gas,  

                (1) 
It would be advantageous to be able to calculate this quantity from an equation of state or other 
pVT data. There is an equation which we will prove later, but which we introduce now because it 
is so useful, called the "thermodynamic equation of state, which will allow us to do this. It allows 
us to calculate the derivative in Equation (1) from an equation of state.  

The equation is,  

                (2) 
This equation will be proved easily once we have the second law of thermodynamics. For now 
we will just accept it conditionally until it can be proved. Notice that the right- hand side 
contains nothing but pVT data. We can see that the equation is at least plausible by checking that 
it does give zero for an ideal gas.  

For an ideal gas,  

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



19 
 

 
so  

 
Then,  

 
We can also check to see what our thermodynamic equation of state would give for a van der 
Waals gas. For the van der Waals gas we find,  

 
so  

 
and  

 
We know that a is small and n2/V 2 will be small except at very high pressures (densities).  
(The above result can be understood based on what is going on in the gas. When a gas expands at 
constant temperature it absorbs heat from the surroundings and does work on the surroundings. If 
the gas is ideal the heat and work exactly balance so that there is no change in the internal energy 
of the gas. In a van der Waals gas - and real gases - the expansion must also overcome the 
intermolecular forces so part of the heat absorbed from the surroundings goes to overcoming the 
intermolecular forces. The a term in the van der Waals equation of state accounts for 
intermolecular forces. If you calculate the work in expanding a van der Waals gas you will see 
that that the part of the work that is proportional to a is positive so that this work was done on the 
system - it raised the internal energy of the system.) 
In most cases  

 
is still pretty small, even for a van der Waals gas.  
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There is a companion to Equation (2),  

                (3) 
This equation can be derived (without the second law) from Equation (2) so that if Equation (2) 
is correct, so is Equation (3).  

We will leave it to the reader to show that Equation (3) gives zero for an ideal gas. Applying this 
equation to the van der Waals gas is a little more involved and not particularly enlightening.  

Relationship Between Cp and CV  

Cp and CV are related to each other and their difference can be calculated from an equation of 
state. We wish to prove that  

                (8d) 
Let's begin with the definitions of Cp and H,  

               (4a, b, c) 
The second term in (4c) is in an acceptable form, but the first term is not. (The wrong variable is 
being held constant.) To deal with the first term regard U as U = U(T,V). Then,  

                (5) 
Now divide Equation (5) by dT and hold p constant. (Your calculus teacher won't like this, but 
you can prove that the result is correct and that this procedure will always work.) We obtain,  

                (6) 
Now we substitute Equation (6) for the appropriate term in Equation (4c) to get,  
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               (7,a b) 
But  

                (2) 
Substituting Equation (2) in for (∂U/∂T)V in Equation (7b) gives  

                (8a, b, c, d) 
Which is the desired result. We will let the reader show, using Euler's chain relation and the 
definitions of α and κ , that this relation can be rewritten as  

                (9) 
The second term on the right of Equation (9) is necessarily positive because κ is always positive. 
α can be negative (water near 0oC), but it appears here as the square. Thus Cp > CV. For solids 
and liquids the second term on the right of Equation (9) is usually small. For gases it can be 
large. For an ideal gas we found earlier that α = 1/T and κ = 1/p so that  

 
Thermochemistry  

Thermochemistry is the subject that deals with the heats involved in chemical reactions. A 
typical chemical reaction might have a form similar to the following hypothetical chemical 
reaction:  

a A + b B → c C + d D.                (1) 
(In Equation (1) the upper case letters stand for elements or compounds and the lower case letters 
stand for small whole numbers which balance the reaction. You would read this as saying, "a 
moles of A reacts with b moles of B to give c moles of C and d moles of D.")  
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A chemical reaction is a process just like any other thermodynamic process. It has an initial state 
(the reactants) and a final state (the products). We can calculate the changes in internal energy, 
enthalpy, and so on for the reaction. For example,  

ΔU = U products− U reactants 
and  
ΔH = H products− H reactants. 
One thing is sometimes not made very clear. "Reactants" and "products" in these equations 
means that the reactants and products are separated, isolated, and pure. Furthermore, the 
reactants and products are all at the same temperature and pressure. So, for example, the ΔH 
above is the enthalpy of c moles of C (isolated and pure in its own container at temperature, T, 
and pressure, p) plus the enthalpy of d moles of D (isolated and pure in its own container at 
temperature, T, and pressure, p) minus the enthalpy of a moles of A (isolated and pure in its own 
container at temperature, T, and pressure, p) minus the enthalpy of b moles of B (isolated and 
pure in its own container at temperature, T, and pressure, p).  

From time to time we will add a superscript o to H or U to indicate that reactants and products are 
in their "standard states." That is, they are in their most stable state at T and p. For example, the 
standard state of water at 25oC and 1 atm pressure is liquid water.  

If our reaction takes place at constant V, as in a bomb calorimeter, dV =0 and  

ΔUV = qV. 
If the reaction takes place at constant p, as in open to atmospheric pressure, dp = 0 and  
ΔHp = qp. 
If ΔHp < 0 we say that the reaction is exothermic. That is, the system gave heat to the 
surroundings. On the other hand, if ΔHp > 0 we say that the reaction is endothermic. The system 
absorbed heat from the surroundings.  

From the definition of enthalpy we find that  

ΔH = ΔU + Δ (pV),                (2) 
where  
Δ (pV) = (pV) products − (pV) reactants. 
For liquids and solids Δ(pV) is quite small.  Δ(pV) is not necessarily small for gases, but we can 
get a reasonable estimate for this quantity by approximating the gases as ideal. Then  
Δ (pV)gas ≈ (pV)gas products − (pV)gas reactants ≈ n gas products RT − n gas reactants RT = RTΔ n gas, 
where Δn gas is the difference in the number of moles of gaseous products and reactants. Using 
this approximation we get  
ΔH = ΔU + RTΔ n gas.                (3) 
However, we have to be careful how we understand this equation because the conditions of the 
reaction must be the same on both sides of the equation. Since ΔH is the heat we measure if the 
reaction is run and constant pressure (ΔHp = qp) and ΔU is the heat we measure if the reaction is 
run at constant volume (ΔUV = qV), it is tempting (and common) to write Equation (3) as  
qp = qV + RTΔ n gas.                (4) 
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However, Equation (4) cannot be rigorously true since the q's refer to different conditions, one at 
constant p and one at constant V. We can get an indication whether or not Equation (4) is a good 
approximation with the following example:  

Consider the reaction.  

2 C(s) + O2(g) → 2 CO(g),                (5) 
run at dV = 0.  
Δ (pV) ≈ Δ (pV)gas ≈ RTΔ n gas = RT. 
The heat measured is qV. Now let us find a way to measure qp Consider the following two steps  
2 C(s) + O2(g)         →         2 CO(g)         →         2 CO(g)                (6)  
   p1, V1, T,              qV           p2, V1, T,        ΔH2            p1, V2, T. 

 
The first step is the constant volume reaction we had before with ΔUV = qV. Notice that the 
pressure increases. The second step takes the product of the constant volume reaction and 
reduces the pressure back to the original pressure. We call the heat for this step ΔH2. So it is 
rigorously true that  

ΔHp = ΔHV + ΔH2 = qV + RT + ΔH2.                (7) 
However, the ΔH2 term is the enthalpy for the expansion of a gas at constant temperature. If the 
gas is ideal this term is zero. For real gases this term would be very small, so we make a 
negligible error is neglecting it. So to pretty good approximation we can use the equation,  
qp = qV + RTΔ n gas.                (4) 

 
Hess' Law  

Hess' law states that if you add or subtract chemical reaction equations you can (must) add or 
subtract their corresponding ΔH's or ΔU's to get ΔH or ΔU for the overall reaction. For example, 
if we add the reaction  

a A + b B → c C + d D.      ΔH1, ΔU1 
to the reaction  
e E + f F → g G + h H      ΔH2, ΔU2 
to get  
a A + b B + e E + f F  →   c C + d D + g G + h H, 
Then, for the overall reaction  
ΔH = ΔH1 + ΔH2 and ΔU = ΔU1 + ΔU2. 
The great utility of Hess' law is that we don't have to tabulate ΔH for every possible reaction. We 
can get ΔH for a particular reaction by adding and subtracting ΔH's for a much smaller set of 
reactions, called formation reactions. We define ΔfH o for a compound to be the enthalpy of the 
reaction:  

     pure, isolated elements, in their standard (most stable) states  
                                                               → one mole of compound in its standard state.  
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For example, the heat of formation of liquid water is defined as ΔH o for the reaction,  

H2(g) + 1/2 O2(g) → H2O(l). 
By definition, then, the heat of formation for an element in its most stable state is zero.  

To obtain ΔH o for the hypothetical reaction, Equation (1), we add and subtract the appropriate 
heats of formations,  

ΔrH o = cΔfHC
o + d ΔfHD

o− a ΔfHA
o− b ΔfHB

o.                (8) 
For example, ΔH o for the reaction,  
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l), (9) 
is given by  

 
(We don't always write out explicitly that the coefficients which balance the reaction have units, 
but we have done so here to make it clear that these numbers have units. This will become an 
issue later.)  
   

ΔH at Other Temperatures  

Tables of heats of formation usually give data for reactions at 25oC. We frequently need to know 
the heat of a reaction at a temperature other than 25oC. If we know the heat capacities at constant 
pressure we can calculate the heat of reaction at a temperature other than 25oC. We use the 
following chain of reasoning. We know that,  

               (10a, b, c) 
where ΔCp

o is defined for our hypothetical chemical reaction, Equation (1) as,  

                (11) 
Prepare Equation 10c for integration as  
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                (12) 
and integrate,  

                (13) 
For very accurate work we will have to use the temperature dependent heat capacities in 
Equations (11) and (13), but more often than not we can regard the heat capacities as 
approximately constant over the temperature range, so that Equation (13) becomes,  

                (14) 
As an example, let's calculate the heat of reaction for the reaction in Equation (9) at 95oC.  

ΔCp
o for the reaction in Equation (9) is given by,  

                (15) 
Then, Equation (14) gives,  

                (16) 
(Note: There is another way to do this problem. Calculate ΔH o for cooling the reactants down to 
25oC, calculate ΔH o for the reaction at 25oC, calculate ΔH o for heating the products back up to 
95oC, and then add them up. Since H is a state function ΔH is independent of path. This method 
will also work if one of the components of the reaction has a phase change somewhere in the 
temperature range.  

For example, if we let the new temperature be over 100oC we would have to account for the 
vaporization of the liquid water product. This is not hard to do, but requires some extra steps, 
including also the use of the heat capacity of water vapor. If the upper temperature in this 
problem is above 100oC we carry out the reaction in several steps:  

Step 1 - Cool the reactants from the upper temperature to 25oC,  
Step 2 - Run the reaction at 25oC,  
Step 3 - Heat the product CO2 from 25oC to the upper temperature,  
Step 4 - Heat the liquid water from 25oC to 100oC,  
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Step 5 - Vaporize the water at 100oC,  
Step 6 - Heat the water vapor from 100oC to the upper temperature. 
The heat of reaction at the upper temperature is the sum of the ΔH's for all six steps. Again we 
have taken advantage of the fact that ΔH is independent of path.)  
   
   

Δ H as Making and Breaking Chemical Bonds  

Breaking a chemical bond is an endothermic process. That is, you must put energy into the 
system to break the bond.  

Forming a chemical bond is an exothermic process. The energy released in forming the bond 
goes into the surroundings.  

We can make an estimate of the ΔH for a chemical reaction by adding the bond energies of all 
the bonds broken and subtracting the bond energies of all the bonds formed.  

ΔH ≈ BE bonds broken − BE bonds formed. 
Let's try it on the gas phase reaction,  
N2 + 3 H2 → 2 NH3. 
(There are tables of bond energies in physical chemistry texts and in data handbooks. From the 
tables we find the following bond energies:  
N−N      945 kJ  
H−H      436 kJ  
N−H      388 kJ. 
In the reaction we break 1 N−N bond and 3 H−H bonds. We form 6 N− H bonds. The 
approximate ΔH is then,  
ΔH ≈ 1 × 945 + 3 × 436 − 6 × 388 =  − 75 kJ. 
This can be compared to the actual value of − 92 kJ. The method is not super accurate, but it 
gives a ball-park answer and might be useful in cases where other data are not available. Further, 
however it demonstrates graphically that the heat of a reaction is related to the making and 
breaking of chemical bonds.  
   
   

Heats of Formation of Ions in Water Solution  

When you look in a table of heats of formation you find values listed for ions in water solutions. 
That is, you will find an entry for species such as Na+(aq). It is fair to ask where these numbers 
come from. We know that in equilibrium chemistry it is impossible to prepare Na+(aq) ions in 
solution all by themselves. It is possible to prepare a solution that has both Na+(aq) and Cl− (aq) 
ions, but not a solution that has only ions of one charge.  
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The heats of formation of solutions of soluble ionic compounds can be measured. That is, we can 
measure the heat of formation of HCl(aq). The heat of formation of HCl(aq) is defined as ΔH o 
for the reaction,  

1/2 H2(g) + 1/2 Cl2(g) → HCl(aq). (17) 
Since ionic compounds in solution are completely dissociated, it must be true that  

                (18) 
We cannot know the heat of formation of either of the ions in solution, but we do know their 
sum.  

By convention we arbitrarily set the heat of formation of the H+(aq) ion equal to zero. That is,  

                (19) 
Then the heats of formation of all other aqueous ions can be determined relative to the heat of 
formation of the H+(aq) ion. As a start, we see that  

           (20a, b, c) 
This convention allows us to build up a table of heats of formation of aqueous ions.  

For example, from the measured value of the heat of formation of NaCl(aq) and the knowledge 
that  

                (21) 
we find that  

                (22a, b) 
Continuing these procedures we can define the heats of formations of other aqueous ions,  

               (23a, b, c) 
We now have enough data in our table to calculate the heat of formation of aqueous NaBr 
without measuring it.,  

                (24a, b) 
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If the heat of formation of H+(aq) were set to some value other than zero, it would have cancelled 
out of Equation (24b). In this manner an entire table of heats of formation of aqueous ions can be 
built with all values relative to the heat of formation of the H+(aq) ion. 
Exact and Inexact Differentials  

A Mathematical Digression  

We have mentioned, from time to time, that the quantities, U, H, and so on, are state functions, 
but that q and w are not state functions. This has various consequences. One consequence is that 
we can write things like ΔU and ΔH, but we never write q or w with a Δ in front them. A more 
important consequence is that in a process ΔU and ΔH are independent of path. That is, ΔU and 
ΔH depend only on the initial and final states. However, q and w do depend on the path one takes 
to get from the initial to the final state.  

Another consequence is that the differentials, dU and dH are mathematically different, in some 
sense, from dq and dw. Some writers write dq and dw with a line through the d to indicate this 
difference. We have not chosen to use such a specialized notation, but expect that we all will be 
able to just remember that dU and dH are mathematically different, in some sense, than dq and 
dw.  

We must now consider in detail the nature of this difference.  

Let's think, for the moment, in terms of functions of the variables x and y and consider the 
differential,  

                (1) 
We ask the question, does there exist a function, f = f(x,y) such that,  

           (2) 
In other words, does a function f(x,y) exist such that,  

                (3a, b) 
Euler's test provides a way to see whether such a function, f(x,y) exists. Euler's test is based on 
the fact that for "nice" functions (and all of our functions are "nice") the mixed second 
derivatives must be equal. That is,  

                (4) 
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(On the left-hand side we take the derivative with respect to y first and then take the derivative of 
the result with respect to x, and vice versa on the right-hand side.  

Let's try Euler's test on our differential, df. If f exists then the Equations (3a) and (3b) are correct. 
Use Equations (3a, b) to obtain the proposed second derivatives,  

               (5a, b) 
The mixed second derivatives are equal. So we conclude that there exists a function, f(x,y) 
(actually x2y3) such that Equations (1) and (2) are equal.  

The differential df, in Equation (1), is called an "exact differential" for the very reason that a 
function, f, exists such that Equation (2) can be used to calculate it.  

Now, let's consider the differential,  

                (6) 
Is dg an exact differential? Use Euler's test to find out. If dg is exact then the coefficients of dx 
and dy are the respective partial derivatives of g. Euler's test would then compare  

                (7) 
These are not equal so that the putative second partial derivatives are not equal to each other. The 
differential, dg, is not exact and there does not exist a function, g(x,y), such that dg gives 
Equation (6).  

Both of the differentials, df and dg can be integrated from, say, x1, y1 to x2, y2. The integral,  

                (8) 
depends only on the initial and final points because df is exact and the function f exists.  

The differential dg can be integrated, but there is no equivalent to Equation (8) for the integral of 
dg because there is no function, g(x,y) which gives Equation (6). The integral of dg would have 
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to be carried out along some path and we would find that the value of the integral depends on the 
path as well as on the initial and final points.  

So, what is the purpose of all this? We are getting ready to present the second law of 
thermodynamics. One of the consequences of the second law will be the demonstration that for a 
reversible process dq/T is exact.  dqrev is not exact, but dqrev/T is exact. That means that dqrev/T is 
the differential of some new function (a state function) whose integral is independent of path. We 
will call the new state function, S, and name it the "entropy."  

The absolute temperature, T, is called an "integrating denominator" for dqrev. That is, when we 
divide the inexact differential, dqrev, by T  the resulting differential becomes exact. Notice that 
the inexact differential, dg above, has an integrating denominator. The variable, x, is an 
integrating denominator for dg. You can see this by noticing that dg/x = df.  

Second Law of Thermodynamics - Introduction  

Word Statements of Second Law  

When we introduced the first law of thermodynamics we claimed that it is a statement of 
repeated observation elevated to the status of a law. No one has ever been able to make a 
machine that produces work out of nothing (a perpetual motion machine of the first kind), so we 
assume that no such machine can be made.  

We then write this statement in mathematical language and begin deriving the consequences of 
the statement. Ultimately, the validation of the law comes from the experimental verification of 
the consequences.  

The second law of thermodynamics is also a statement of repeated observation (or perhaps better 
yet, a statement of some things that have never been observed).  

Here are two things that have never been observed:  

1. Heat has never been observed to move spontaneously from a cold body to a hot body.  
2. Heat has never been observed to be converted entirely into work with no other result. 
So the second law, in words, is just the statement that these two things are impossible. that is:  
1. It is impossible for heat to move spontaneously from a cold body to a hot body with no other 
result.  
2. It is impossible to convert heat quantitatively into work with no other result. 
The latter statement is sometimes phrased: "It is impossible to make a perpetual motion machine 
of the second kind."  
(A perpetual motion machine of the second kind is a machine that converts heat into work 
without doing anything else. Imagine an ocean liner that scoops up liquid water out of the ocean, 
pulls the heat out of the water and uses it to power the ship, and dumps the left-over ice cubes 
out the back of the ship.  
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Note that a perpetual motion machine of the second kind would not violate the first law. Energy 
would be conserved because any heat extracted would be converted into work.)  

The second law is why automobiles have radiators. Someone might ask why we throw away all 
that energy that dissipates from the radiator. Why not capture the energy and use it do decrease 
our gas mileage? The answer is that if you don't dissipate the heat the engine burns up, as you 
would quickly find out if you bypassed the radiator with a hose or if you drained the coolant 
from the radiator. 

In order to convert these word statements into mathematical statements we can use we will have 
to develop some apparatus.  

First we define the "heat engine." A heat engine is a cyclic process that absorbs heat from a heat 
bath and converts it into work. We shall see that in the cyclic process the engine also dissipates 
some heat to a heat bath at a lower temperature.  

A crucial feature of the heat engine is that it returns to its original state after each cycle. That 
means that for each cycle of the engine itself, ΔH = 0, ΔU = 0, ΔT = 0, and so on. Presumably, 
less heat is given back at the lower temperature than was absorbed at the upper temperature so 
that the difference can be used to supply work to the surroundings. (Otherwise we wouldn't have 
much of an engine.)  

If you run the engine backwards by providing an external power source you get a heat pump (or 
a refrigerator), that is, a machine that absorbs heat from a lower temperature heat bath and gives 
it back to a heat bath at a higher temperature. But it takes work to do this.  

Our procedure will be as follows:  

1. Define and characterize a particular heat engine, the Carnot Cycle. The Carnot cycle is a heat 
engine operating between two heat baths, one at an upper temperature, which we shall call TU 
and the other at a lower temperature, TL. The Carnot cycle uses the expansion and compression 
of an ideal gas to convert heat into work.  

2. Define the efficiency, e, of a Carnot cycle.  

3. Assume that we can find a heat engine, operating between the same two temperatures, which 
has efficiency greater than a Carnot cycle efficiency and then show that this violates both of the 
word statements of the second law given above. This leads to the conclusion that no heat engine 
or cycle can have an efficiency greater than the efficiency of a Carnot cycle.  

4. The conclusion that no cycle can have an efficiency greater than a Carnot cycle will lead us to 
the further conclusion that the integral of dqrev/T is independent of path. Therefore, the 
differential dqrev/T must be exact, which means that it is the differential of some state function 
which we will call, S. That is, dqrev/T = dS.  
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5. Another cycle can have an efficiency less than the efficiency of a Carnot cycle. This will lead 
us to the conclusion that dq/T might be less than dS if there is some irreversibility in the process. 
Putting the two possibilities together we will conclude that, dq/T ≤ dS. This is the mathematical 
statement of the second law of thermodynamics. 

One further comment. We have seen processes where heat is converted into work before. The 
isothermal reversible expansion  

 

 
of an ideal gas is such a process.  Recall that the work is the negative of the area under the curve. 
However, this is not a cyclic process. A change has taken place: the volume has increased and 
the pressure has decreased. In order to get more work out of the system you would have to 
expand the gas even further. This is not a process in which heat was converted into work and 
nothing else happened. 

Heat Engines and the Carnot Cycle 

A heat engine is a cyclic process that absorbs heat and does work on the surroundings. "Cyclic" 
means that the system returns to its initial state at the end of each cycle so that there is no 
permanent change in the system. The only cycle we will work with in this course is the Carnot 
Cycle which is shown below on a p-V diagram. 
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The curves labeled TU and TL are isotherms. TU is the temperature of the upper temperature heat 
bath (reservoir) and TL is the temperature of the lower temperature heat bath. The two steep 
curves, BC and DA, are adiabatic curves. The cycle begins at the point A. The system undergoes 
an isothermal expansion at temperature, TU , to point B. In this isothermal expansion the system 
absorbs heat from the upper heat bath (qU > 0) and does work on the surroundings (recall that w 
is defined as work done on the system so wAB < 0). The system is then isolated from the heat 
bath and is expanded adiabatically to the point C. There is no heat in this adiabatic expansion, 
but the work for this step is also negative (wBC < 0). At point C the system is placed in contact 
with a heat bath at TL and undergoes an isothermal compression to point D. For this segment of 
the cycle qL < 0 and wCD > 0 because the surroundings are now doing work on the system and 
heat is being dissipated to the heat bath at TL. At point D the system is again isolated from the 
heat baths and compressed adiabatically to point A. In this adiabatic compression the heat, of 
course, is zero and the work is positive (wDA > 0)  

We can analyze the Carnot cycle as follows: The heat, q, for the whole cycle is 

(1)              q = qAB + qCD,,  

and the work for the entire cycle is, 

(2)              w = wAB + wBC + wCD + wDA . 

Since the initial state of the cycle is the same as the final state we know that the change in U, the 
internal energy, is zero. (That's part of the first law, because the first law says that U is a state 
function, which means that the value of U for any state of the system does not depend on how the 
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system got to that state, only on what the state actually is.) The first law of thermodynamics then 
tells us that 

(3)              , 

from which we see that 

(4)              . 

Notice that when the Carnot cycle is operating as a heat engine (going around clockwise), w < 0, 
so that -w > 0 and q > 0. 

As we have said, the Carnot cycle is a heat engine. That means that we want it to absorb heat and 
convert that heat energy into work. We certainly should care about how much work we get out 
for the heat we absorb. Thus we will define the efficiency, e, of a cycle as  

(5)              ,  

which, when combined with Equations 1 and 4 gives 

(6)               

In order to conform to the usual notation we note that the A→ B segment of the cycle is at the 
temperature of the upper heat bath, TU, and the segment C→ D is at the temperature of the lower 
heat bath, TL. Thus equation 6 becomes 

(7)               

The A→ B and C→ D segments are an isothermal expansion of an ideal gas at TU and an 
isothermal compression at TL, respectively. For isothermal expansions and compressions of ideal 
gases, . Thus we can write 

(8)               

and 

(9)               
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Let's plug these heats into Equation 7, (right hand side) to get, 

(10)              . 

The nR cancels leaving, 

(11)              . 

If we are looking for an expression for efficiency in terms of temperatures Equation 11 won't do 
the job because of all the volumes in the equation. However, there is another set of relations 
between the volumes from the fact that the paths B→ C and D→ A are adiabatic and we know 
the volume relationships for adiabatic processes in an ideal gas. Recall that for an adiabatic 
expansion of an ideal gas we had the expression (using the temperatures, pressures, and volumes 
appropriate to our Carnot cycle here) 

(12)               

for the B→ C segment of the cycle and a similar equation for the D→ A segment. (Recall that γ 
is the "heat capacity ratio," Cp/CV.) Let us eliminate the pressures from Equation 12 by inserting 
the value of pressure from the ideal gas equation of state, remembering that at points A and B the 
temperature is TU and at points C and D the temperature is TL. 

(13)              . 

Cancel nR from both sides and combine the volumes to get, 

(14)               

From which we obtain 

(15)               

Note that there is an equivalent expression for the D→ A leg of the cycle, 
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(16)              . 

From these two last equations we conclude that 

(17)              , 

or 

(18)               

or, on rearranging, 

(19)              . 

We now apply this result to Equation 11 to get, 

(20)              . 

The two logarithms are the negatives of each other so we conclude that, 

(21)               

.  

Notice that the highest efficiencies are obtained with a low temperature for the heat bath at TL 
and that you could only obtain unit efficiency if the lower heat bath were at absolute zero. Since, 
in most cases, TL is constrained by the surroundings engineers try to use the highest feasible 
operating temperature, TU . Real heat engines, of course, are not Carnot cycles, but the second 
law of thermodynamics requires that no heat engine operating between TU and TL can have an 
efficiency greater than a Carnot cycle efficiency. So the Carnot cycle provides an idealized upper 
limit to the efficiency of heat engines. Even though the Carnot cycle is idealized the general 
principles of heat engines remain the same. If your lower temperature, TL, is constrained (by 
design or operating considerations) you can increase the efficiency of your heat engine by 
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increasing TU. If your upper temperature, TU, is constrained you can increase the efficiency by 
lowering TL. 

You may have noticed that all of our temperatures are ideal gas temperatures. That is,they are 
measured on the ideal gas temperature scale. It is possible, and desirable to use the Carnot cycle 
to define a "thermodynamic temperature scale." We will not do this here. Suffice it to say that by 
choosing a suitable reference temperature you can make the two scales identical. 

Second Law of Thermodynamics - Two Cycles  

We have seen that the Carnot cycle, a reversible heat engine with an ideal gas working fluid, has 
an efficiency,  

                (1) 
Is this the best we can do? Does there exist another cycle which has an efficiency greater than the 
efficiency of the Carnot cycle? We will now show that if such a cycle exists, with an efficiency 
greater than a Carnot cycle, then both of our word statements of the second law will be violated. 
That is, if a cycle (a heat engine working between the two heat reservoirs at TU and TL) exists 
with an efficiency greater than the efficiency of a Carnot cycle, then we can see heat 
spontaneously moving from a low temperature to a higher temperature with no other effect, and 
we will be able to convert heat quantitatively into work with no other effect.  

Let us call the cycle with higher efficiency the "better" cycle and just say about it that it has an 
efficiency, e', which is greater than e.  

 
We will set up the two cycles such that the "better" cycle drives the Carnot cycle. That is, the 
"better" cycle will be operated as a heat engine and it will drive the Carnot cycle which then 
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operates as a heat pump. We know that ΔU = 0 for each cycle independently and for the sum of 
the two cycles. Then,  

                (2) 
or  

                (3) 
We can adjust each cycle to alter the various q's and w's by changing where the adiabatic curves 
intersect the isotherms. Changing the positions of the adiabatic lines changes the area enclosed 
by the cycle and also changes the heats absorbed and released on the isothermal lines.  

As we have said, in both of our two experiments the "better" cycle runs clockwise - as an engine, 
and the Carnot cycle runs counterclockwise as a heat pump. The engine drives the heat pump. 
Some or all of the work produced by the "better" cycle is used to run the (Carnot cycle) heat 
pump.  
   

Experiment 1  

Adjust the parameters of the two cycles such that w' + w = 0. That is, the work produced by the 
"better" cycle is entirely used up to drive the Carnot heat pump. This also means that there is no 
net work either on the system or on the surroundings. Then,  

w = − w' , 
which we can use in the expressions for the efficiencies,  

                (4a, b) 
In Equation 4b use the fact that w = − w' on the left-hand-side. For the right-hand-side, use the 
fact that qU is negative and move the negative side to the denominator so that both numerator and 
denominator are positive on the right. Then,  

                (4a, b, c) 
In Equation (4c) w is positive so we can divide both sides by w without affecting the inequality.  

                (5,a b) 
since both q'U and − qU are positive. Then,  
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                (6) 
If you were to stand back and take a look at the overall effect of this experiment, including both 
cycles, you would see that, according to Equation (6), heat is being released into the heat bath at 
the upper temperature. This is heat that must have been absorbed from the heat bath at the lower 
temperature because of the first law and as indicated in Equation (3). However, we also know 
that there is no net work being done on the two systems. The work of the "better" cycle is 
entirely used up driving the Carnot cycle. It appears, looking at the overall effect, that heat is 
spontaneously disappearing from the lower temperature heat bath and appearing in the upper 
temperature heat bath and there is no other effect. This violates our first word statement of the 
second law.  
   

Experiment 2  

This time adjust the parameters of the experiment so that heat given to the lower temperature 
heat bath by the "better" cycle is exactly balanced by the heat absorbed at the lower temperature 
by the Carnot cycle. That is, set  

                (7) 
This time we find that  

                (8a, b, c, d) 
Invert (8d) to get  

                (9a,b) 
Recall that, by construction of Experiment 2, we have from Equation (7),  

                (10) 
Equation (9b) becomes  
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               (11a, b, c) 
The net effect is that heat has been absorbed at the upper temperature and work has been done on 
the surroundings, but there was no net heat transferred to the lower temperature heat bath. This 
violates the second word statement of the second law. If we regard the two cycles as one large 
heat engine, then that engine has no "radiator." It would be nice if such an arrangement would 
work, and from time to time people propose schemes which are designed to make it work, but it 
appears that nature does not allow it.  
   

Conclusion  

The initial assumption that we can find another cycle, with an efficiency, e', better than the 
Carnot cycle efficiency, leads to a contradiction of both word statements of the second law. We 
are forced to conclude that no cycle can have an efficiency greater than the efficiency of a Carnot 
cycle. That is  

.           (12) 

Equation (12) is useful and has a number of interesting and important consequences, but it does 
not yet provide us with the most significant result of the second law. On the next page we will 
use Equation (12) to define a new state function, S, called "entropy," and write the second law in 
a mathematical form which will give us enormous new calculating power. 

The Second Law of Thermodynamics - The Equation  

We have seen that there are two word statements of the second law of thermodynamics. Both 
statements are just statements of universal observation. That is, no one has ever observed a 
violation of these statements and no one expects that a violation ever will be observed. As we did 
with the first law, we elevate these statements to the status of a "law" and assume that they are 
universally valid. Then we derive the consequences of this law, which can be checked out by 
experiment. So far, within the domain of its validity, no one has ever observed a violation of the 
second law, and its consequences are consistent with experimental observation.  

Recall that the word statements of the second law are:  

1. Heat does not move spontaneously from a cold body to a hot body with no other effect.  

2. You can not convert heat quantitatively into work with no other effect. 
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The first statement is pretty obvious. Heat flows from hot bodies to cold bodies not the other way 
around. It would be very startling if all of the heat in your pencil spontaneously flowed into the 
eraser end so that the eraser melted and caught fire. The second statement is probably not so 
obvious unless you are an engineer, but it is one of the reasons that automobiles have radiators. 
In practice it means that you can't convert heat into work without dissipating some of the heat 
into a heat bath at a lower temperature than your heat source.  

We demonstrated on the previous page that both of these statements lead to the conclusion that 
no heat engine can have an efficiency greater than a Carnot cycle.  

(Recall that the efficiency of a cycle operating as a heat engine between two heat baths, one at an 
upper temperature, TU, and the other at a lower temperature, TL, can be written in several ways. 
For the Carnot cycle we can write,  

.                (1) 
Likewise, for some other cycle, which we will indicate by putting a prime on the heats and work 
- still operating between TU and TL - we can write,  

.                (2) 
We are now considering the cycles to be operating as heat engines (as opposed to refrigerators, 
or heat pumps) - going around the cycle clockwise, so that w and w' are negative, qU and q'U are 
positive, and qL and q'L are negative. (We will need to know the signs of these quantities in order 
to carry out the algebra of inequality signs.)  

Since we know from the second law that no cycle can have an efficiency greater than a Carnot 
cycle, we can write,  

                (3) 
(We might ask what circumstances might cause the efficiency of an engine to decrease. The most 
obvious answer is that irreversibility, for example, friction, would cause the efficiency to go 
down. If there is any irreversibility in the cycle its efficiency will be degraded.)  

Using our various expressions for the efficiency, Equations 1 and 2, we can rewrite equation 3 as  

,                (4) 
or,  

.                (5) 
Multiply both sides of Equation 5 by − 1, which reverses the inequality,  
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.                (6) 
In Equation 6 we have purposely associated the minus sign with the q'L which makes both the 
numerators and denominators of both sides positive. With all quantities in this equation positive 
we can cross-multiply at will without worrying about the direction of the inequality. Cross-
multiplying we get  

,                (7) 
or  

.                (8) 
The equal sign holds when the cycle is fully reversible and "greater than" sign holds if there is 
any irreversibility in the cycle. In the case where the cycle is fully reversibly, then,  

.                (9) 
This latter equation makes it look like,  

.                (10) 
(Recall that two of the "legs" of the cycle were adiabatic so that there is no reversible heat on 
those legs.) We can generalize Equation 10 to an arbitrary closed path in p, V space by noting 
that we can fill an arbitrary closed path with a large number of small Carnot cycles (an infinite 
number in the limit of small cycles).  
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When we sum over all the cycles inside the heavy line the inside "lines" of the cycles (for 
example the blue filled Carnot cycle in the center) will cancel because each inside line is 
traversed once clockwise and once counterclockwise. Therefore, only the outside lines (the 
heavy lines) remain. If we index the (small) cycles making up the complete cycle, by an index, k, 
where k ranges over all the cells inside the heavy line, this gives,  

.                (11) 
In the limit where we approximate our arbitrary closed path by making the isotherms and 
adiabatic lines closer and closer together to create an infinite number of cycles, the summation in 
Equation 11 becomes,  

.                (12) 
The equal sign holds when the entire path is reversibly,  

.                (13) 
This equation says that the integral of reversible heat over temperature around a closed path is 
zero. Equation 13 is independent of the shape of the path - as long as it is a closed loop - which 
implies that,  
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                (14) 
is the differential of a state function. We will call this state function entropy and give it the 
symbol, S. Equation 14 becomes  

                (15) 
Combining Equations (12), (13), and (15) we get,  

                (16) 
Since the closed path is arbitrary, Equation (16) must be valid for any possible closed path. The 
only way this can be true is if the equation is true in its differential form. That is,  

                (17) 
which can be rewritten as simply  

                (18) 
or, the best way to remember it,  

                (19) 
with the understanding that the equal sign holds when the process is reversible and the greater-
than sign holds when the process is irreversible.  

Equation (19) is the second law of thermodynamics in equation form. Equation (18) would work 
just as well, but most of us would prefer (19) because it is in the form of a definition of dS.  

Second Law Applications - Equilibrium and Entropy Changes  

Fundamental Definition of Equilibrium  

The second law of thermodynamics in equation form is,  

                (1) 
where the = sign holds when the process is reversible and the > holds when it is irreversible. Our 
first application of the second law will be to provide a thermodynamic definition of equilibrium. 
We indicated very early in the course that at equilibrium none of the variables was changing in 
time. (Of course, a system in a steady state has to be excluded from this definition.) Another 
possible definition of equilibrium was that all the variables have the values they would have at 
time equals infinity. Neither of these "definitions" provides an equation we can use to discuss 
equilibrium systems carefully.  
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The second law provides us with a definition of equilibrium that we can use to derive 
equilibrium properties of thermodynamic systems. Consider a closed isolated system. In a closed 
isolated system dq = 0 and dV = 0 which implies that dU = 0. (Actually, we should really say that 
dw for all forms of work are zero, but for the time being we will only consider pV work.)  

Under the conditions of constant U and V the second law, Equation 1, becomes  

                (2) 
This may look simple, but it is a very profound statement. It says that in a closed isolated system 
(a system which us not being disturbed from the outside) any spontaneous change must increase 
the entropy.  
In a closed, isolated system the entropy seeks a maximum. 

 
If you plot the entropy of a closed isolated system against some system variable any spontaneous 
change in the system must take the system to higher entropy. If the system is not in equilibrium 
then  

 
but if the system is at equilibrium any spontaneous change in the system must leave the entropy 
unchanged,  

 
Equation 2 is the origin of the somewhat arrogant statement that you may have heard, "The 
entropy of the universe is increasing." If you regard the universe as a closed isolated system then 
the statement is probably true, even though it is difficult to take such broad statements 
concerning the nature of the universe seriously.  
   

Combined First and Second Laws  

The first thing we must do is incorporate our new-found equation for the second law into what 
we already know. Going back to the first law, with pV work only, recall that we can write  

                (3) 
If we restrict our attention to reversible processes this becomes,  

                (4) 
but we know from the second law that  
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                (5) 
Merging Equations 4 and 5 we arrive at what is called the combined first and second laws,  

                (6) 
(Later on, when we want to include work other than pV work, we will add it in to Equation 6,  

                (7) 
but for now we will just stick with pV work.)  

Equation 6 implies that the natural variables of internal energy, U, are S and V. In previous 
calculations we have regarded U and a function of T and V or of T and p, but nature - in the form 
of the first and second laws of thermodynamics - gives us U as a function of S and V.  

Divide Equation 6 by dT and hold V constant:  

                (8a, b) 
Equation 8b provides us with a way to calculate entropy changes for a certain class of processes, 
namely processes at constant volume. Set up Equation 8b for integration,  

                (9) 
and calculate the entropy change for a constant volume process as,  

                (10) 
Continuing to incorporate the second law into our set of thermodynamic tools, recall that  

                (11a, b, c, d) 
(Note that equation 11d implies that the natural variables of H are S and p.) 
 
This time let's divide Equation 11d by dT and hold p constant,  

                (12a, b) 
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We can use Equation 12b to calculate entropy changes for processes at constant pressure. Set up 
Equation 12b for integration,  

                (13) 
and integrate,  

                (14) 
What about processes at constant T? We can calculate the entropy change for a process at 
constant temperature by rearranging Equation 5 for integration,  

                (15) 
The finite entropy change is,  

                (16) 
If we now restrict consideration to processes at constant T Equation 16 becomes,  

               (17) 

 
Example Calculation  

Calculate the entropy change in heating 1.00 mol of Al from 300 K to 500 K at constant 
pressure. The constant pressure heat capacity of Al is given to good approximation by,  

 
The calculation is  
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Another Example - An irreversible Process  

Often we must calculate entropy changes for irreversibly processes. We don't know how to 
calculate entropy changes for irreversible processes, but it doesn't matter. Entropy is a state 
function so ΔS is independent of path. All we have to do is imagine a reversible path which will 
effect the same change and calculate the entropy change for the reversibly path.  

Suppose we start with a 100. g block of Cu at 500 K and a 100. g block of Cu at 300 K. Bring the 
two blocks into thermal contact and heat will flow from the hotter block to the cooler block until 
they reach the same temperature. This is definitely an irreversible process. However, let's 
imagine that we can reversibly cool the hot Cu block down to the final temperature and 
reversibly warm the cold Cu block up to the final temperature. We can calculate the entropy 
change for both of these processes from Equation (14). The total entropy change is just the sum 
of the two individual entropy changes. Note that we expect the entropy for this process to be 
positive because the process is spontaneous and the two Cu-block system can be regarded as 
isolated.  

We need the following data:  

 

 
First we must find the final temperature. We do this by recognizing that the heat lost by one Cu 
block is gained by the other Cu block. This is called "heat balance."  

 

This is easily solved to obtain Tfin = 400 K. Then  
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Second Law Applications - Equilibrium and Entropy Changes  

Entropy of Mixing (Ideal Gases)  

Visualize that we have a container divided into two compartments. In one compartment we have 
n1 moles of an ideal gas, gas 1, at pressure, p and temperature, T. In the other compartment we 
have n2 moles of another ideal gas, gas 2, at the same p and T. 

 

If we remove the partition the gases will begin to diffuse into each other and the system will 
eventually reach the state where both gases are uniformly distributed throughout the container. 
This is clearly an irreversibly process so that we would expect that the entropy would increase.  

To calculate the entropy change we must find a reversible path to carry out the process, even if 
the path is fictitious. Imagine that we can devise a process that will expand one gas reversibly 
and isothermally, but leave the other gas undisturbed. We know how to calculate the change in 
entropy for the reversible isothermal expansion of an ideal gas.  

Recall that dU = 0 for the isothermal expansion of an ideal gas. Then,  

                (1) 
So,  
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                (2a, b, c) 
for an ideal gas. So, for gas number 1 in our fictitious isothermal expansion we have,  

                (3a) 
and for gas number 2,  

                (3b) 
The total entropy change is the sum of these two individual entropy changes,  

                (4) 
Equation 4 could be used for calculations, but it is not in the form that we will see in other 
contexts. To obtain the usual form factor the R out of Equation 4 and invert the argument of the 
logarithms,  

                (5) 
Since we are doing a calculation for ideal gases, notice that the argument of the first logarithm in 
Equation 5 can be written,  

                (6) 
where X1 is the mole fraction of component 1. There is an equivalent expression for the argument 
of the second logarithm. The entropy of mixing becomes,  

                (7) 
Equation 7 is also suitable for calculations, but it is not yet in the standard form. To obtain the 
standard form write the total number of moles n1 + n2 as n and multiply and divide equation 7 by 
n. The result is  

                (8) 
Equation 8 is the same form that we will find when we derive an expression for the entropy of 
mixing ideal solutions and it is the same form that Shannon found for the "entropy of a message" 
in his famous series of papers on information theory.  
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If the two gases were not at the same initial pressure you would have to introduce some extra 
steps. Expand or compress one of the gases to bring it to the pressure of the other gas, mix the 
gases, and then compress or expand the mixture to bring it to the correct final volume and 
pressure.  

If the two gases are not at the same temperature and pressure it is more complicated. You must 
find the final temperature using heat balance, reversibly cool and heat the two gases respectively 
to the same temperature, expand or contract on of the gases, mix them, and then expand or 
contract the mixture to the appropriate volume.  

Equation 8 can easily be extended to more than two gases,  

                (9) 
Example - The molar entropy of dry air  

The composition of dry air is approximately 78% N2, 21% O2, and 1% Ar by volume (which is 
the same as mole percent). What is the molar entropy of mixing of air?  

 

What Does Entropy Measure?  

Entropy measures disorder.  

If we look at the processes we have seen which have positive entropy changes we can see that in 
each case an increase in entropy is associated with an increase in disorder.  

An isothermal expansion gives the molecules more room to move around in, the molecules are 
less localized.  

Increasing the temperature increases the average speeds of the molecules. The molecules are said 
to be more disordered in "velocity space" (or momentum space).  

Mixing gases (or liquids) intersperses the molecules among each other increasing the disorder.  

Phase changes, such as going from a solid to a liquid or a gas, or from a liquid to a gas, increase 
the entropy because gases are more disordered than solids or liquids and liquids are more 
disordered than solids. 

For example, the entropy of fusion of 1.00 mol of ice at 273.15 (heat of fusion is 6.008 kJ/mol) is  
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Vaporization of liquids has a large positive entropy of vaporization because gases are greatly 
disordered compared to liquids. A typical value is obtained from the vaporization of benzene at 
its boiling point. The heat of vaporization is 30.8 kJ at the boiling point, 353.1K. The entropy of 
vaporization is  

 

It is interesting that the entropy of vaporization of many substances at their boiling points is close 
to about 86 J/K. (Water and helium are exceptions.) This phenomenon is called "Trouton's rule." 
It is easily understood on the basis of entropy being a measure of disorder. The vaporization 
process essentially "creates" a mole of disordered molecules (the gas) from a mole of highly 
ordered molecules (the solid or liquid). The gases are all at one atmosphere pressure because we 
are at their normal boiling point. 

Some Tools of Thermodynamics  

Some Miscellaneous Relationships  

Recall that the combined first and second laws give the relationship  

                (1) 
This implies that U is a function of S and V. Sometimes we call S and V the "natural variables" of 
U. Regarding U = U(S,V) we can write  

                (2) 
Comparing Equations 1 and 2 it is clear that  

                (3a) 
and  

                (3b) 
These two equations can be regarded as thermodynamic definitions of T and p.  

Likewise, from the definition of enthalpy we wrote before that  

                (4) 
Equation 4 implies that enthalpy is a natural function of S and p. Regarding H = H(S,p) we can 
write  
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                (5) 
From Equations 4 and 5 it is clear that  

                (6a) 
and  

               (6b) 
Equations 6a and 6b give us another thermodynamic definition of T and a thermodynamic 
definition of V (which is curious since we have always regarded V as a purely mechanical 
variable).  
   
   

Helmholtz and Gibbs Free Energy  

When we made the transformation from U to H by the Legendre transformation,  

                (7) 
we remarked that V was not the most convenient independent variable. In the laboratory it is 
usually much easier to control pressure than it is to control V. Since both U and H are natural 
functions of entropy, it is fair to ask how convenient it is to have S as a variable. The answer is 
that it is not at all convenient to control entropy or to have entropy as an independent variable. 
We do not have a meter that reads entropy and we do not know how to hold entropy constant as 
we change some other variable. (Recall that we can control temperature, pressure, and volume.) 
So we make some more Legendre transformations.  

(We will not give an extensive discussion of Legendre transformations here, but we should point 
out that they are not arbitrary. You can't just pick any two variables you wish and put them 
together to make a Legendre transformation. We could make the Legendre transformation from 
U to H by adding the pV term to U only because V is related to p and U through Equation 3b. 
Using this as a guide it would seem reasonable to use Equation 3a to change the variable S to T 
in the function U, and use Equation 6a to change the variable S to T in the function H. Let's try 
it.)  

Define the Helmholtz free energy, A, as  

                (8) 
Then,  
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                (9a, b, c) 
Equation 9c tells us that the Helmholtz free energy is a natural function of T and V. That is, A = 
A(T,V). T and V are much more convenient variables than S and V. Regarding A = A(T,V) we see 
that  

                (10) 
Now compare Equation 10 with Equation 9c to see that,  

                (11a) 
and  

                (11b) 
Equation 11a gives us a thermodynamic definition of entropy and 11b gives another 
thermodynamic definition of pressure.  

We now have a function of T and V, but we didn't much like V as an independent variable before 
so why should we like it any better now? Let's use the relationship 6a to define the Gibbs free 
energy, G, as,  

                (12) 
Actually, we can use any one of the three equivalent definitions,  

               (13a, b, c) 
Any one of Equations 13a, b, or c will give us the correct natural variables of G. Use Equation 
12.  

                (14a, c, c) 
From Equation 14c we see that the natural variables of G are temperature and pressure. Write  

                (15) 
Comparing Equation 15 with Equation 14c we find that.  
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                (16a) 
and  

           (16b) 
Equation 16a gives us another thermodynamic definition of entropy and 16b another definition 
of volume.  
   

Meaning of A and G  

What do A and G mean and what are they good for? We said after the introduction of the first 
law (which introduced the internal energy, U) that we would be introducing three more functions 
that have units of energy. We now know that these functions are H, A, and G. At the time we said 
that only U has a simple physical meaning - the sum of all the kinetic and potential energies of 
all the particles. There is no simple physical explanation for enthalpy and the two free energies. 
The best we can do is tell how they are used.  

1) Most simple-minded.  

Set  

                (17) 
Then, using the definition of Helmholtz free energy as we have done above we find that,  

                (18) 
For any process at constant temperature we have,  

                (19) 
That is, for a constant temperature process the Helmholtz free energy gives all the reversible 
work. For this reason the Helmholtz free energy is sometimes called the "work function." When 
a physicist says "free energy" without indicating Helmholtz or Gibbs, he usually means 
Helmholtz free energy.  

Similarly, we can write,  

                (20) 
For a process at constant temperature and pressure we get,  

                (21) 
That is, for a process at constant temperature and pressure the change in Gibbs free energy gives 
all the reversible work except the pV work. This work might include electrical work, work 
creating surface area, and so on. Chemists do most of their reactions on the bench top at constant 
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pressure. When a chemist says "free energy" she almost always means Gibbs free energy unless 
she specifically states otherwise.  

2) More useful - two new criteria for equilibrium  

Recall that the second law of thermodynamics,  

                (22) 
gives us the fundamental criterion for equilibrium. That is, in a closed isolated system entropy 
seeks a maximum,  

                (23) 
Although this is the fundamental definition of equilibrium it is not the most useful definition 
because we do not often work with closed isolated systems. More often we work with systems at 
constant temperature and either constant volume or constant pressure. We can use the second 
law, Equation 22, and our new functions A and G to find criteria for equilibrium under these 
conditions.  

Rewrite the second law, Equation 22 as follows:  

                (24) 
or  

                (25) 
Now, going back to the original form of the first law with only pV work,  

                (26) 
and making the transformation to Helmholtz free energy we get,  

                (27a, b, c) 
For a process at constant temperature and volume we have,  

                (28) 
We conclude that for a process at constant temperature and volume the Helmholtz free energy 
seeks a minimum. Any spontaneous process in a system at constant T and V must decrease the 
Helmholtz free energy (if the system is away from equilibrium) or leave the Helmholtz free 
energy unchanged (if the system is at equilibrium).  

By the same token, we can use the Gibbs free energy to discuss processes at constant 
temperature and pressure,  

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



57 
 

               (29a, b, c) 
from which we conclude that for a process at constant T and p,  

                (30) 
That is, at constant T and p the Gibbs free energy seeks a minimum. Any spontaneous process in 
a system at constant T and p must decrease the Gibbs free energy (if the system is away from 
equilibrium) or leave the Gibbs free energy unchanged (if the system is at equilibrium).  
   

Maxwell's Equations  

We now have the tools to derive some very useful relationships between thermodynamics 
variables. Maxwell's equations are based on the same principle as was Euler's test for exact 
differentials, namely that mixed second derivatives of "nice" functions must be equal. Applying 
this principle to our two new free energy functions we find,  

               (31) 
but we already know the first derivatives of A from Equations 11a and 11b. So,  

                (32a, b, c) 
We obtain another similar equation from the Gibbs free energy,  

                (33) 
which becomes, using Equations 16a and 16b,  
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                (34a, b, c) 
There are two more Maxwell's equations from dU and dH, but these are not as useful as the ones 
just derived. We will leave it to the reader to find the Maxwell's equations from dU and dH.  
   

First Application of a Maxwell's Equation  

As our first application of a Maxwell's equation we will derive the so-called thermodynamic 
equation of state which we stated without proof earlier. Write the combined first and second 
laws,  

                (1) 
Divide Equation 1 by dV and hold T constant to get,  

                (35) 
Using the Maxwell's Equation, Equation 32c, to substitute for the entropy derivative we obtain,  

               (36) 
Equation 36 is the equation that was written down without proof at the time we were discussing 
the Joule expansion.  

The other version of thermodynamic equation of state, based on H instead of U, will be left as an 
exercise for the reader.  
   
   

Summary  

We now have four interesting and useful derivatives of entropy,  
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There are two other derivatives of entropy which might prove useful,  

                (37) 

The other derivative,  will be left to the reader. 

 

Adiabatic Compressibility  

The speed of sound in a gas depends on the "springiness" of the gas. That is, it depends on how 
the volume of the gas responds to changes in pressure. We have already seen one measure of this 
response, called the isothermal compressibility,  

                (1) 
Equation one gives a parameter that determines how the gas responds to changes in pressure if 
the temperature remains constant.  

Sir Isaac Newton assumed that the speed of sound was an isothermal process and used the 
parameter defined by Equation 1 to calculate the speed of sound in a gas. His answer did not 
agree with experiment.  

It turns out that sound transmission in a gas is an adiabatic process rather than an isothermal 
process. The sound wave causes oscillations in pressure but the oscillations are fast enough that 
heat can not move from compressed regions to rarified regions in order to keep the temperature 
constant. Before the heat can be conducted away from the compressed regions the compression 
has moved on so that sound propagation is adiabatic.  

We define the adiabatic compressibility as,  
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                (2) 
We can calculate the adiabatic compressibility in terms of quantities that we already know (using 
the Euler cyclic rule twice, once the normal way and once in reverse).  

                (3a, b, c) 
where we have used Euler's cyclic relation to go from Equation 3a to 3b and the chain rule in the 
denominator and numerator of 3b to go to 3c.  

We already know that  

                (4a) 
and  

                (4b) 
so  
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                (5a, b) 
In Equation 5b we can use Euler's cyclic rule in reverse to write  

                (6a,b) 
Since Cp > CV The isothermal compressibility is always greater than the adiabatic 
compressibility.  

For a monatomic ideal gas, where Cp = 5nR/2 and CV = 3nR/2 we see that  

                (7) 

 
Adiabatic Gas Expansion Revisited  

Early in the course we derived the equation for the adiabatic expansion of an ideal gas,  

          (8a, b) 
where,  

                (9) 
You may recall that the derivation was sort of "round-about." Here we would like to use some of 
our new thermodynamics tools to provide a much more direct derivation.  
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The goal is to discover how the pressure changes with volume if entropy is held constant. That 
is, we would like to find the derivative,  

 
Then we can integrate this derivative to find an expression for p as a function of V. First, let's 
find the derivative. Notice that this derivative is just the reciprocal of the derivative in Equation 2 
so most of the work has already been done. Using the same procedures we used above we fin 
that,  

                (10a, b, c, d, e, f) 
Equation 10f is a general thermodynamic relationship. It contains no approximations. To proceed 
further we must decide what material we want to consider. The equation we were trying to derive 
was based on the ideal gas for which  

                (11a, b) 
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So,  

                (12) 
Set up Equation 12 for integration, (don't forget to put all the p stuff on one side and all the V 
stuff on the other)  

                (13) 
and integrate between p1, V1 and p2, V2,  

                (14) 
where we have made the approximations that γ is independent of volume and factored it out of 
the integral. Equation 14 integrates to  

                (15a, b, c) 
from which we conclude that  

                (16) 
or  

                (8b) 

 
Just for the record, we add that the correct formula for the speed of sound is  

               (17) 

where ρ is the density of the gas (in kg/m3). 

Gibbs Free Energy and Chemical Reactions  

We have seen that the Gibbs free energy, G, seeks a minimum at constant T and p. The question 
now is does this have anything to do with chemical reactions. We define the change in Gibbs free 
energy for a chemical reaction as,  
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                (1) 
It is understood in Equation 1 that both the reactants and the products are pure, isolated, in their 
standard states, and at the same temperature and pressure.  

When we first introduced heats of reaction we said that it is not feasible to tabulate the ΔH o for 
every possible reaction. Instead, we tabulate heats of formation for compounds and use Hess' law 
to find the heat of a reaction involving those compounds.  

In the same manner we define the Gibbs free energy of formation for a compound as ΔG o for the 
reaction:  

    pure isolated elements in their standard states →  

                                                                    one mole of pure compound in its standard state.  

For example, ΔfG o for CO2(g) at 25o and 1 atm is defined to be the ΔG for the reaction:  

C(s, graphite) + 2 O2(g) → CO2(g). 
Then, using Hess' law, the ΔrG o for some arbitrary reaction, say  
a A + b B → c C + d D,                (2) 
is  
ΔrG o = c ΔfGC

 o + d ΔfGD
 o   −   a ΔfGA

 o  −   b ΔfGB
 o.                (3) 

Rarely one might want to run a reaction at constant volume and, therefore, would need the 
change in the Helmholtz free energy. We can obtain ΔrAo using the same approximations we 
used to obtain ΔU from ΔH. That is, from  

 
we see that,  

 
Using, as before, the approximation that the change in the pV product for liquids and solids is 
small and the approximation that the gases are ideal, we obtain the equation,  

                (4) 

Processes at Constant Temperature  

Knowing that G = H − TS, and that reactions are constant temperature process, we can relate the 
Gibbs free energy of a reaction to the enthalpy of a reaction. That is,  

               (5a, b, c) 
We have written a subscript, T, in Equation 5c to indicate that the equation is only valid at 
constant T, but it is unusual to include the T. Usually we see  
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                (6) 
and it is left to the reader to understand that the equation is only valid at constant T.  
   
   

The "Driving Force" of a Chemical Reaction  

Recall that at constant T and p the Gibbs free energy seeks a minimum. That means that we can 
use ΔrG o to tell whether or not a reaction will proceed spontaneously as written:  

If ΔrG o > 0 then the reaction will not go as written (the reverse reaction will go)  

if ΔrG o < 0 then the reaction will go as written. 

Sometimes people say that ΔrG o is a measure of the "driving force" of a chemical reaction. 
Although the use of the word "force" is probably not appropriate, the statement conveys the 
correct idea that ΔrG o tells us whether or not a given reaction will really run spontaneously. (You 
can probably write and balance a large number of reactions, but just because you can write and 
balance a reaction is no guarantee that it will run.)  

We see from Equation 6 that the "driving force" of a chemical reaction has two components:  

ΔH is the drive toward stability. When ΔH < 0 the products are more stable than the reactants 
(and vice versa).  

ΔS is the drive toward disorder. When ΔS > 0 the products are more disordered than the 
reactants.  

(The negative sign in front of the TΔ S shows that a positive ΔS makes a negative contribution to 
ΔG which tends to drive the reaction in the forward direction.)  

Note that increasing T increases the influence of ΔS on the reaction "driving force." 

For a chemical reaction ΔH and ΔS are independent of each other. that is, you can not calculate 
one from the other. You can have situations where both are positive, both are negative, or one is 
positive and the other negative. Notice that if ΔH and ΔS have the same sign they are working 
against each other. You can make the entropy win by increasing the temperature or you can 
make the enthalpy win by decreasing the temperature.  

We will show later that ΔrG o is related to the equilibrium constant for the reaction ( as you might 
expect).  
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(36) 
where If is the mole freezing-poib-depressin 
constant given by 

- ( 4 2 ) 
AfusH 

Where Afurf is the enthalpy of fusion of the solvent. 
A p p l i c a t i o n   o f   f r e e z i n g - p o r n t   d e p r e s s i o n   p h e n o m e n o m 
The freezing porst depressim phenomenon has 

many examples in everyday life and in biological 
systems. 

(1) Salts, such as sodium chlorde (Nacl) and Celcium 
chlon'de (Cacts) ave used to melt ice on roads 
and sidewalks. Ice on winter roads and sidewaks 
melts readily when sprinkled with salt. This method of thaning depresses the freezing-point of water. 

cii The arsance compound ethylene slycol (CH,(OH)CHz(OH)) is the common automobile antifreeze. It is also emploped to de-ice amplanes. 
Example 8 

For a solution of 45:209 of Sucrose (C12Hzz0,,) in 316.09 of water, Calentate (a) the boiling port 0.51 Kmet'kg and 1,86 Kmotkg, respectvely 
port. Ky and If for water, 

solntim 

9) The molality of the solution is siven by 
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Class Notes/Jottings 
With Questions 
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- CO Appitation of thermodynamic concept to mixture and solutio 
(4) Entoy Entaly and fiee energy of mising. 
(w Open system and chenieal potential 
Us Chanied potential of cdeal gas musture or solution 

tugarty function. 
(l1) Darttal molar quantities - Gibhs Duhem equation 3 
(1n) G o Phase rule and phase Dagram 

deal bomary mixtures- Raocts and tenny's twus. 
(x) solubility and Pressure 
(X) So lubitty and temperature 
X Solutions of nolatle solutes - The Colligatuo properties 
Na Colligatio propertios of dlectrolyte = 

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



Ideal Solution. 
Propotio 

Intendeniar lateractions d e thesane forall molecte 

@ Molecules have finte Volune Independest of compositio. 
Anix VI, p=0 

C The solvent follous Ravolt's law & the salutte. 
fallous Herry' law . 

* The activity coefficient for all Speces is Unity 
Y = ) 

o All mixturs are miscible lie they mix at all concestrates 
a n d tempesture. 

© Mixng Is daven by à postive entropy change upun 
mixing= mix 5º) T,p > 0. 

However lin genend Soltion lo the liquid please a e 
non-ides. Nor-Idel solutions de Called real Sotution 

Partin o l a r Quantities. The patial maler volume to the abange ls Volunt Upon additor of component 2 tu cumperest l boldag all 
other Verables l i e P T and moles of I constart. Unke, 
Ical soldes, Hace at adder Read Sultan 
Nolenes are not ADDITIVE 
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Vnl,- 

W= V Cn,: n2) 

dộ (Qu) pa *(ăn), mon pin Notè. Cont. 

Cu= Vidn, + Vadnz 
fir a vifin + To fàn 

V- Vin, + Ve T2 

V 2 =   V - จ ก V1 = V- V212 
п, 

Slope e (aä.) T, e,na 
= V2 

1 = ( A V 

i e l o t r i g , D n ä = - 
Fg i i 
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Mi = Ni° + RTh P 
I b a r 

Where pis patid pressue it component iln the 
m i x t u r e . 

WiO = Stnded Chuical patutin of, Componen 
1 when to standed patial pressure is 

1bbara: 
Sy stem 

Mi = NGi + NG3 = Gi 
The Sinderd chanical 

02/05|2025 

G = G + RTIP 
I b a r 

G = N ° 

1b ur. 

- - * * 

G = h . + 6012 
Art. You an subatuk Gi In ton to of 
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Real: G= Gi + RTh fbar = My RTl Fba 

Nes Pi+Pa=P Only If there is no Change la 
Volume as a result of mixing', the is: Amix V=0 
This cusdition tolds for ldent solons 

Lihae; P,= Xup and Pa= Xap 
X y d e a r e t h e mole fractons of I and 2 

respertively. Lthe stundend chemial potestl WoIs the sane 
In the pure state and Is the mixtur 

2 0 = 그 3 117 1 1 D 2 2 1 
n . + 1 7 2 

2 し ュ ＝ ロ ス 
n. + 0 2 

= 12 
⻔ - 
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П - х,П, П2= Хап. 
S u s t i t a r t ~ 』   1 s t o   e g u a t u a k e 

D , R T I n z ， + 「 a R T し で っ 、 

D R T I X 、 1 の ⼊ り → メ ス ト ス ン 

Whee we have the chane to Gibb's free oresy wit Tempering 
Gfp → = - S 

丁 
From..-d 

2AmxG) =- AmixS = MR (x|1x, + X2l1x) 

Cdat 7054 

ow for Enthaly; 
A G = AH -TAS 

DnG = AmixH - TAnixS 

AmxHo AmieG+ TAmeS 
= O Ling? Because molecles of 

d   P r d i a n o t ( 7 t e r a 2 7 u th m a l h y s o n o h e r t a 
e s v l t o f m i x n y 

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz



compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz

compile
d by 9jabaz


