8JABAz

Want more booke?
Vigit 9jabaz.ng and download for free!!




A OBAFEMI AWOLOWO UNIVERSITY
< ILE-IFE, NIGERIA.
[FACULTY OF TECHNOLOGY |
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INTRODUCTORY LECTURE NOTES|

‘CSC 201: Computer Programming I
3 Units
Harmattan Semester, 2023-2024 Session

THIS DOCUMENT IS NOT FOR SALE !

ODEJOBI, Qdétinji A.
Room 109, Computer Buildings,

oodejobi @ oauife.edu.ng

November, 2024




Contents

1 Introduction to Computer programming 1
1.1 The mental activity of Isird (Computing) . . . . . . .. ... .. ... 1
™M1 TASKI . % NS . ... Ql Y cimn w0 ) - 2

.2 Agency of coOmputiman-N = s : m s s s w5 s wQ s sp s m s 5 ¢ 555 5 g PEPPE & & 2
1.2.1 Humanlanguage . . . . . . .. ... ... 4

1.2.2  Distinctions between Human and Programming languages . . . . . . ... ... 5

1.2.3 Language and computing process . . . . . . . . . . ..o 6

1.24: Phetoolsof laniguage . . . . B o . v v vvvn v v S v e e 8

1.2.5 Examples of Polarity and Logic expressed through structure . . . . . . .. ... 8

1.3 Whatis “Acomputer”™? . . . . ... ... 9
1.4, History of Modern ComputersN-® « = « ¢ = s 56 s w5 Qi Pe s w3 ms 5w« 0 B 10
Ibd]l TASK2 . ... ONTw:+o:om:mo ANl coswisnsoifft RN 14

1.5 The Computer System . . . . . . . . . o e 14
1.6 Computer hardware configuration . . . . . . .. ... ... .. ... ... 15
1.6.1 Input-Outputdevices . . . . . . . . . .. i it 16

1.6.2. Central\BrocessingUnit . : = : Wi = ¢ 56 0 5 0 5 s g ¢ Que Ts = 5 16

1.63 Memory devices . . . . . . . ... 17

L6 A AMemMOry Metric : o« + » Wl o s 5w s @ s 54 & 5 gmpOgad & ¢ © 5 w8 s 18

1.7 CompuleSoftware . u : w5 s & Ngdv s 9 s sics o - o N & ¢ b s 6660 i 20
L7 4l ) SYstem SOftWare: « o « wow s % ¢ wos s wow s wor vga NeD s 59 3 w6 w5 3 @5 g 20

1.72 Application softwafle: . = s s & : 55 s w53 57 8Qa Yo a5 555 w5 55 ¢ v N 21

1.8 What is Computer Programming? . . . . . . ... ... ... ... L 22
1:81 Operand: DATCR s s wc 1w :5905 9:RaeVew s mesmes o og NV & @ 23

1.82 OperatioMOPErator : ... . « . o o o Pov e s o v v s imw s o A w Yo oo e 23

1.9 Foundation of Computer Programming Language . . . . . ... .. ... ........ 24
1.9.1 Familiarly with Programming Language . . . . . . ... ... ... ... .... 25

1.9.2  Python Instruction format and structure . . . . . ... ... ... .. ...... 25

1.9.3 A PyflionIdentifiers s « s m o s v o smasmsnws s @@rg s o 68 s 555 8 26

194 PythonReservedwords . . . . . . .. .. ... .. 26

1.9.5 Python Variable and Constant identifiers . . . . . . ... ... ... ... .... 26

1.9%6 PythonStatemenfS Ol - « o« oo s ar s R v oo b wi v oo o« g Qe 27

1.9.7 Familiarly with Programming Process . . . . . . ... ... ... ... ..... 28

1410 Algorithm . : « @@ INNF ¢ s 5556+ 55 qgmNET s o 1 a5 555 55 pmaNe T & 28
1.11 Computer program development process . . . . . . . . . . . .. oot 29,
1111 TASKA: s sosneimasn %P s vanmiussnesQadmsmess 31

1.12 Case examplel'FindAverage . . . . AN« ¢« o v ov v v v vt vt b e 32
113 TASKE Nool : 5 :mw:maipe o Yoo i ST 0B I BOg HE I B4 A 865 @ 35
1:14 TARMER : iz s vt 80 BeNR i aRs6R s 68 oo oQ Nt e Gl 6E 8 &8 e 36
115 AppetdiX A. ; & « s v+ vag NG ¢+ w0 s w5 ws wwm GaPNTe o nws pw e s 38



List of Tables

1.1

1.3
14
1.5
1.6
1.7
1.8

Evolution of Computer technology . . . . . . ... . ... ... ... .. ..., 11
Computer memory metric . . . . . . . . .. ... 19
Python Reserved or Keyfwords . . - : ¢« : « « ZWNT v o ¢ 2 65 0 5 5 5« ome &3 27
Python Operators . . . . ... . .. ... ... ... ... 27
Python code for the Flowchart in Figure 1.14 . . . . ... ... ... ... ...... 34
Python code for the Flowchart in Figure 1.15 . . . . ... ... ... ... ... .... 35
Python code for flexible Average computation . . . . . . . ... ... L. 35
Another Python code for flexible Average computation . . . . . .. ... ... ... .. 36



List of Figures

1.1

169,
3
1.4
15
1.6
1.7
1.8
1.9
1.10
1.11
1.12
I.18
1.14
1.15
1.16
1.17

Human communicating with Self (using L) and with Others using habitual language

(W7, OIS, U1 TR YR 4. O e Y B
Human instructing machine using Programming language (L) . . . . .. ... ... .. 4
Human communicating through machine using Instrument of Language (L) . . . . . . . 4
Information communicated with human language . . . . . ... ... ... ... .... 5
Tools of humandanBuase . . . . . . v . o s = ¢ om0 oo s o o NN - oo 8
Definition:offCOmputer . « : : » v - 5 QB % v s sm e s v - VPP Do v o s 10
Ayo an example manual computing tool used in game playing . . . ... ... ... .. 10
Plate of IBM 370 machine at the University of Ife Computer Centre . . . . . . ... .. 12
Evolution of Mobile computing and communication devices . . . . .. ... ... ... 13
Date stamp history of Computer programming language . . . . . .. . . ... ... ... 14
Steuctire: oLACOMPUtEE: qf: Yoo v v 5w s 55 5 © e @ 5 5@ 5 25 55 1 e’ 15
Fundamentals of Data and Instruction . . . . .. ... ... .. ............. 23
EIGWEhATt:SYMbOIS, & N s = wis v w0 wm 5 00 NEN e 6 o s w0 5 mw om oggds o 30
Design for'the Avérage Program ; : w : s« s s Yo e s s s s o5 5 56w 325\ ¢ 6 & @ 33
Design for the Average Program . . . . . . ... ... ... o L 34
Python Programming language operators . . . . . . . . . . . .. .. ... 38
Precedence of operator in Python programming language . . . . .. .. ... ... ... 38



CSC201: LECTURE NOTE 1

Introduction to Computer programming

The Lectures in this aspect of the course is concerned with foundation and fundamental
principles of Computer Programming. The abstraction and definitions of the terms
(words) used in computer programming will be discussed. This is with the view to
exposing students to language and process of modern computing. Familiarity with
computing terms and how the terms are used to construct valid expression is essential
to the effective understanding of this course.

We will also discuss the history of modern computers as well as the evolution of
the languages used to program them.

The process of computer program development will also be explained and demon-
strated with examples using the Python programming language.

1.1 The mental activity of i_sirt) (Computing)

Ero (Mental activity) is innate to individual human. Ero (Mental activity) is con-
ducted with Human language. Instances of state in human mental activity find ex-
pression through an Instrument of language. Humans inform each other by sharing
state of their individual mental activity through an Habitual Instrument of Human
Language.

The mental activity of computing is reduced into a process to facilitate its lan-
guage expression. A process comprises differentiable instances of state. The Alafo
(Interval) between a pair of state is called is7 (a transition). Therefore, a process can be
viewed as comprising instances of state and transition.

|Pr0cess = state + transition \

Modern humans have created special languages, such as Mathematics, for giving
expression to their mental activity. Languages have also being created for instructing
machines to carry out a formally prescribed process. The languages for instructing
computing machines are called Computer programming language. A computer pro-
gramming language is used to instruct the machine on:

6



(i.) What action to perform (Operation or Function); (This corresponds to transi-
tion)

(ii.) The identity of the items on which the action in (i.) above will be performed
(Data or Operand) (This corresponds to state)

Therefore, a computing instruction comprises Operation and Operand.

‘Instruction = Operation and Operand

A computing process is executed by a computing agency.

1.1.1 TASK1

Get and install Python environment into your MOBILE PHONE.

If you are using Android based Phone Install Python Android (Pydroid 3)
from Google Playstore into your mobile phone or other mobile device.

If you are using Apple based Phone Install Python Coding IDE from Apple
Store into your mobile phone or other mobile device.

1.2 Agency of computing

Isiro (Computing) is a process (ildngin). The Yoribd word Isiro (Computing) translates
into English as (I-si-ero): “The act of giving expression to instances of state in human
mental activity”. It also transcribes as: i_sz’+Ero‘ (“The transition in mental activity”).
Ilanon (A process) is the language rendering of the state and transition ascribed to hu-
man mental activity. Therefore, a process comprises Two (2) aspects: () State and (i)
Transition. The instances of state and transition in a process are expressed through an
instrument of language. Therefore, a process is the aspect of human mental activity
prescribed and expressed using a language.

Humans are biological agencies. The computer is a machine. A machine is a ma-
terial agency. The computing machine is a tool for material rendering of an efficiently
and precisely expressed process. The Computer programmer is a human or group of
humans that instruct the computing machine on how to carry out a process. There are
Two (2) fundamental differences between biological (e.g. humans) and material (e.g.
computer machine) agencies:

(i.) Faculty of language and
(ii.) Sensory organs.

“Sensory organs” and “Faculty of language” are inherent in biological agencies.
There is neither sensory organ nor faculty of language in a material agency. As depicted
in Figure 1.1 an individual human communicates with himself/herself through his/her

7



own faculty of language (Ede-ori). However, an individual can share his/her own men-
tal state with other humans using an habitual instrument of language (Ipédé). Such
language includes: (i) Yoribd, (ii) Hausa, (iii) Igbo, (iv) Tiv, (v) English and so forth.
Humans also use specialised language such as Mathematics to communicate amongst
each other.

Figure 1.1: Human communicating with Self (using L) and with Others using habitual language (L)

A material agency (machine) is created by human as a tool for achieving a pre-
scribed task or process. The purpose of material agency (machines) is determined by
its human designer and/or users. Human also create specialised instrument of language
to instruct a machine. As depicted in Figure 1.2, the programming language L, is used
by humans to instruct computing machines. The language L; is used when human
communicate with each other through a computing machine.

It is also the case that humans can communicate with each other by using a com-
puting machine as depicted in Figure 1.3. This is called computer mediated communi-
cation.



Figure 1.2: Human instructing machine using Programming language (L)

Al "M« "Bl
W ! ' 6

L /3

o

L

0

Figure 1.3: Human communicating through machine using Instrument of Language (L)

1.2.1 Human language

Humans use their habitual instruments of language to render, formulate and give mate-
rial expression to instances of mental state.

An instrument of language is used to “give expression to” and/or “elicit Asamo
(Information) from”:

(a.) Or_é (Speech)
(b.) Ise (Action)
(c.) Aroko (Message)

Asamo (A piece of information) can connote:

9



(i.) An explanation.
(ii.) A piece of advice,
(iii.) A warning and
(iv.) An instruction,

A;am_o‘ (information) will be Agan (ineffable) in the absence of an instrument of
language. The information in a message is accessible to the habitual users of the lan-
guage in which it is expressed.

y 2
£ &
& Selld

— o
) =
™ o
14
9]
o
o)
8
=

|

Figure 1.4: Information communicated with human language

For example, different messages will be elicited from the expression Y = A + B
by :

(i.) A Mathematician,
(ii.) A Physics,
(iii.) A Genetics

(iv.) In Computing .

1.2.2 Distinctions between Human and Programming languages

The operation of a Computing machine is to the extent of the instructions written by its
human programmer. The instruction to achieve a problem-solving process is expressed
using a “Computer programming language”. “Computer programming language” dif-
fers from human written language in the following aspects:

(i.) “Computer programming languages are prescribed and specifically designed to
communicate with machines. The expression of Computer instructions may NOT
conform to the grammar of Witten human language, including that of Mathemat-
ical. For example, (a) \z =1+ 1} (b) ]z + + 1, and (¢) are valid computer
instruction. But they do NOT conform to the grammar of human written lan-

guage.

10



(ii.) Computer machines do NOT learn “A programming language” before they ex-
ecute its instructions. Human must learn a language before they can use it to
communicate or effect action.

(iii.) Computer machines do NOT process the symbols in the instruction of “Program-
ming languages”; they process a material rendering of the instruction. A com-
puter manipulates prescribed signals rendered to the extent that technology per-
mits. Such technology include Mechanical, Electrical (through Diode Valve and
Transistors), Electro-magnetic, Electronic, Micro-electronic, and Nano-electronics.
Symbols are directly manipulated by humans when processing an expression.

(iv.) The capacity to determine whether there is a mistake in an instruction or program
TRANSCENDS a Computer machine. However, a computer can be programmed
to report errors in the invalid expression of an instruction.

In this course, therefore, you should NEVER confuse a material agency (ma-
chine), no matter its sophistication, with biological agency (human).

1.2.3 Language and computing process

Fundamentally, computing is human mental activity. The process ascribed to aspects
of the human mental activity of computing is expressible through a Language of sym-
bols. The process expressed through a language of symbols can further be reduced into
a Computer Programming Language. The instructions in a programming language are
used to influence the state and transition of computer hardware components. A com-
puter program is a sequence of instructions that describe a process from its “Beginning
to its “End.

“Programming Language are created by mimicking the Written human language.
For example, the OPERAND (OR DATA) in computer instruction mimics the NOUN
in written human language. Also, the OPERATOR in computer instruction mimics
the VERB in written human language. Other aspects of the written human language
mimicked in “Computer programming language” are discussed in Section 1.9. How-
ever, there are fundamental distinctions between the “Written human language” and
“Computer programming language”.

However, you should NOT confuse the written human language for computer pro-
gramming language. For example, only prescribed strings of symbols can be used to
label the identity ascribed to the state (NOUN) and transition (VERB) in computer in-
struction. In written human language, a VERB is word ascribed to the motion (action)
of an instance or agency. The metaphor of VERB in computer programming language
is the operator (e.g. Addition, Subtraction, Multiplication) used to manipulate data.
The manipulation of data results in the transition of computer states. Whereas Verb and
Noun are part-of-speech in the grammar of written language, Operator and Operand
are strings of symbols in the syntax of a computer programming language.

gl



For example, give the following formulation:

Item 1 [HUMAN EXPRESSION = ACTOR + ACTION|

Item 2 | WRITTEN HUMAN LANGUAGE SENTENCE = NOUN + VERB|

Item 3 [COMPUTER LANGUAGE INSTRUCTION = OPERAND + OPERATOR |

Item 1 above is accessible through human sensory experience alone. An Action and
its Actor are inextricably intertwined and inseparable. Special training is not
required for an habitual users of a language to elicit the message in its expression.

Item 2 is located in a prescribed instrument of language. In that prescription, an Action is
identified as a Verb and its Actor is identified as a Noun. A Noun and its Verb are
separated and individually expressed in a sentence. Special training is required
to elicit the message in a written human language expression.

Item 3 is comprises strings of symbols ascribed to the Manipulation (Operation) of Operand
(Data) in a computer register or memory. The instruction in the message is target-
ted at a material agency (machine) NOT humans.

In this course, therefore, you should NEVER confuse Computer Program-
ming Language (E.g. Python, Java, Fortran), no matter its sophistication, for
Human Written Language (E.g. Yorubd, Hausa, Igho, English).

Two or more humans can communicate with each other to the extent of their famil-
iarity with an habitual human instrument of language. Familiarity with human language
is acquired through training and interaction with the habitual users of the language.

Familiarity with programming language is acquired through a careful study of:

(i.) Its Alphabet (Admissible set of symbol)
(ii.) Construction of valid terms using (i.)
(iii.) Construction of valid expression using (ii.)
(iv.) Construction and combination of sequence of instruction using (ii.) and (iii)

(v.) Prescribed standard, convention and process for using (iv) into to write the in-
structions for a program

(vi.) Constant practises with computer programming problem-solving activities.

The more programs you write in a Programming Language, the more your famil-
iarity and competency with its use in computing problem-solving activities.

12



1.2.4 The tools of language

There are there (3) tools in human language. These are:

(a.) Thun (Structure): It is used to to hold the terms that are ascribe and/or assign to
the identities of instances of state and transition. Structure is the medium through
which terms (terminal) in an instruction is expressed. A structure and the terms
are used to bring intangible (mental) instance within the ambit of human sensory
organs (E.g. eyes, finger, hear, etc). Indeed, the terms of an expression are in the
Structure of its instrument of language.

(b) it_o’ka (Polarity): It is used to locate and/or arrange the terms into an expression.
The individual terms in an expression can be pointed at by virtue of the language
tool of Polarity. Indeed, the location occupied by each term is by virtue of the
polarity ascribed to it in the structure of its expression.

(c.) Arét_o’ (Logic): It is used to formulate the recursion ascribed to a temporal (mental)
instance of state. Logic can neither be seen nor pointed at in the structure of
an expression. Indeed, logic is everywhere present and nowhere located in an
expression.

[ Tigka ] | (Language)

Figure 1.5: Tools of human language

Polarity and Logic manifests through the terms in a structure. In the absences of
structure, polarity and logic cannot be expressed. Whereas polarity is used to arrange
terms into a structure, logic is used to ascribe mental state to the expression in the
structure. Mental state is situated in its human agency.

1.2.5 Examples of Polarity and Logic expressed through structure

IfY =3and X =4

In Polarity operation
() Y+Y =33
(i) X +X =44

13



(iii.) Y+ X = 34

(iv) X +Y =43

(v) Y2 —4=2

Note that NO New Symbols is introduced in the Polarity operation. Every term in

a polarity expression can be pointed at in its structure. Operations are realised through
“Concatenation” (Asz’npg‘) or “Extraction” (ifdyp) only. Note that NO New Symbol is
produce outside of the ones in the input in Polarity operation. Only the symbols in the
input appear in the output. The polarity of every terms is within the ambit of sensory
experience. Logic is not required for processing polarity expression.

In Logical operation

IfY =3and X =4

(L) Y+Y=6
(i) X +X =8
(i)Y +X=7
(v) X+Y =7
(v)Y2-4=5

Note that the symbols that are NOT in the input appear in the output of logical
operation. Therefore, the logical operation is NOT in the terms. The operation is in the
logic formulated into the terms. The logical content of a term cannot be pointed at in
its structure. The logical contents of terms are intangible instances in human mental
state.

1.3 Whatis “A computer”?

Computer is a device with the capacity to accept data and instructions,
process the data using the instruction and produce output in the format
specified in the instruction.

Based on the above definition, the computer can be viewed as depicted in Figure
1.6.
A computing machine is, therefore, expected to have component for:

1. Accepting data and instruction.

2. Processing data following the instruction.

14



ATA
PROCESS OUTRUT >

[NSTRUCTION

Figure 1.6: Definition of Computer

3. Produce the output of the processed data according to the instruction.

A material agency (machine) or tool that has the capacity to carry out the tasks
listed above is a computer. Indeed modern computers have the capacity listed above,
but they are unlike other machines. What sets the modern computer apart from all the
machines before it is Language. Humans have created a language with which to give
instruction to modern computers. The language is created by imitating written human
languages. The language is called Computer Programming Language.

1.4 History of Modern Computers

The history computer evolves with technology. In the Manual era, material objects
are physically manipulated by humans to assist or support isiro (a computing) process.
Fingers, Stones, pebbles, animal bones, pieces of wood and bamboo, etc. are used to
support memory and organisation during a computing process. Specialised tools such
as the Abacus, Slide-rule, Opdn-Ayo (Ayo game board See Figure 1.7), lleke Onka
(Counting beads), Okiin Adika (Counting ropes) and Apdsd (Loom for cloth weaving)
were developed and used during the manual era. The character of the manual era is
that, humans physically and directly manipulate the materials used in the computing
process. The main problem with the manual era is that its computation process is labour
intensive and therefore, prone to error on the grounds of human mistakes. nonetheless,
creativity is most effectively expressed through manual process.

Figure 1.7: Ayo an example manual computing tool used in game playing

5



Table 1.1:

Evolution of Computer technology

Ser.| Technology Era Strength Limitation

No.

1. | Manual tool (Stone, Pebbles, | Effective for expressing cre- | Labour intensive and prone to
Stick) ativity. errors and mistakes

2. | Mechanical (Metal, skin and | Reduced the amount of man- | Frequent faults and machine
wood) ual labour breakdown

3. | Vacuum and Cathode-ray | Machine able to work au- | Frequent fault and very high

Tube

tomatically. Fast operation.

maintenance cost.

Machine level programming
through valves and switches
is possible.

Occupy less space. Low level
programming through sym-
bols is possible.
Less energy use.
size.

Effective high level Program-

4. | Diode devices High Maintenance cost

5. | Transistor Reduced | Difficult High level program-
ming

Low interconnectivity

6. | Integrated circuit

ming.
7. | Micro electronics High interconnectivity and | Low versatility and commu-
cheaper nication speed

Seamless interaction and ver-
satile applications

8. | Nano electronic Frequent evolution

The manual era is followed by the mechanical era. During this era, metals such as
iron, copper and sliver were refined and used to fabricate devices that automatically give
expression to the state and transition in a computing process. This is the beginning of
the Machine era. A machine (Ero) is a material agency that is capable of working “by
itself” (that is autonomously). Example of machines in the Mechanical Era include,
() Pascal calculator, (7i) Leibniz calculator and (i7i) Charles Babbage’s Difference
Engine. The main problem with the Mechanical era is that its computation process is
unreliable as machines broke down frequently. This makes the output of computations
prone to error. The Mechanical era is followed by the Vacuum and Cathode-ray Tube
era. The Vacuum and Cathode-ray Tube technology makes it possible to store and
manipulate the electrical signals used to represent instances in the state of a computing
process. This technology culminated in faster and more accurate material realisation
of the computing process. Example of machines in this era include Harvard Mark I
and IBM SSEC machines. This Vacuum and Cathode-ray Tube era is followed by
the Diode device era. The major problem of the Vacuum and Cathode-ray Tube is
the heat generated during computing process. Computer memory devices are realised
using mercury delay. The tube and mercury technology consumes substantial energy
as well. This problem was reduced by the Diode device era. The Diode technology
makes it possible to create cooler and more accurate computing machine. Example of
machine in the Diode device era include ENIAC and EDVAC.

16



The Diode device era is followed by Transistor Era. During the Transistor
Era, circuits that implement basic logical operation such as AND, OR and NOT were
fabricated as a single ship. This way, the computing machine during this era consumes
less electricity. Magnetic cores and index register where incorporated into computing
machines. Example of machines in this era include: Honeywell 800, UNIVAC, IBM
7000 Series.

Transistor Era is followed by the Integrated Circuit Era. During this era, elec-
trical resistors, capacitors and transistors, are integrated as a silicon ship. The sil-
icon ships are use manufacture computing machine components. The microproces-
sor emerges during this era. The microprocessor is a device capable of automatically
carrying out arithmetic and logical operation. This makes it possible to manufacture
Calculator-on-a-chip devices. Example of machines in this era include Honeywell 6000
and the IBM 360/370 series. The disused chassis of IBM 370 machine used at the Uni-
versity of Ife Computer Centre is depicted in Figure 1.8.

PESALELL 0070000 0 "
.0 0.0 9 )
RSO ORRIX LD

&
1.0.8 () i

OOV OISt |
LX

Figure 1.8: Plate of IBM 370 machine at the University of Ife Computer Centre

From about 1975 onwards, Large Scale Integrated Circuit have emerged with
more advancement in technology. The number of electronic components and part that
can be integrated into a single ship has increased tremendously. The modern Nano-
technology era makes it possible to put millions of circuit into a material ship that is
about the size of human index-finger nail.

As a summary, you should note the following in respect of computer technology:

1. The hardware of computer machines evolved with technology;

Y7



2. The performance of computing machines improve with advancement in technol-
ogy;
. The cost of computing machines reduce with advancement in technology;

. The size of computing machines reduce with advancement in technology;

. The reliability of computing machines increase with advancement in technology;

[©) WY T SN OV}

. The function and versatility of computing machines increase with advancement in
technology;

Figure 1.9: Evolution of Mobile computing and communication devices

Figure 1.9 (Top) depicts the evolution of Laptop computing machines within a 25
year period. It also depicts (Bottom) the evolution of mobile hand-held devices within
a 40 year period. Figure 1.10 is a date-stamp listing of the evolution of Computer
programming languages between the year 1950 and 2010. Despite the evolution of
computer technology, however, the logic of computing process remains unchanged.
This implies that the logic of addition, multiplication, division, searching, sorting,
and so forth, remain unchanged. This is so even when better technique have been
advanced to achieve computing operation. Therefore, a consistent definition of com-
puting machines should NOT be grounded in technology.

T8



ActionScript

FLOW-MATIC Prolog MATLAB JavaScript m Go
Plankalkil || Autocode LISP | | BASIC || Pascal ||| sQL [ | C+ Perl || Python ||| PHP Groovy Rust
|1JllllllllllAlll\lllALlllllllllllllllllll]llll el TSR A VO Sl A M. R, (S
|I||l||||l|I||l||1||||||l|ll||I\II|IIII|F||||IIIIII|I|IIIIIII|IIII|||I|III|'
1940 so !t foeol b ol s P tassd P20 | Taomo
Short Code || FORTRAN PL/I E Ada m Java E| Closure | Dart
ALGOL || | Simula Smalltalk Objective-C Ruby Scratch Kotlin
COBOL Haskell || Visual Basic Scala
Figure 1.10: Date stamp history of Computer programming language
14.1 TASK2

ment on

this.

You are expected to read more about the history of computer in standard
textbooks and on the internet. You may be required to submit an assign-

1.5 The Computer System

The computer system is composed of Tangible (physical) and Intangible (non-physical)
aspects. The physical aspect are all the thing that you can physically touch, feel and
move. The Physical aspect of a computer are collectively called the Computer Hard-
ware. Examples of computer hardware include: the mouse, monitor or screen, key-
board, input-output devices such as printer and scanner as well as memory devices

such as your Flash Disk.

The Non-physical aspect are the intangible state and activity of the computer. You
cannot see or touch this aspect but you can know that they are in operation through the
activities of the physical aspect. The intangible aspects of the computer are collectively
called Computer Software. Examples of computer software are: Operating System

To



Software such as Microsoft Windows, UNIX, Android; Application Program Soft-
ware such as Microsoft Excel, Power-point as well as the Apps running on your mobile
phones.

If we use human as a metaphor or analogy, the physical body, i.e. head, legs,
hands, eyes, etc. are the hardware. Human mental activity are the software. Though
you cannot see human mental activity, but you could see the physical activities through
his/her action. However, human physical activities are the manifestation of human
mental activity. Hence, human mental and physical aspects work in harmony in hu-
man activities. Similarly, the hardware and software must work in harmony before the
computer can function properly.

The next section introduces you to the hardware components of the computer. The
components discussed here are necessary for understanding how the computer program
works. There are other hardware components of the computer which you do not really
need to know much about before you can write a program. For example, the computer
motherboard and power supply unit.

1.6 Computer hardware configuration

The structure of computer hardware is depicted in Figure 1.11. The structure comprises
parts that are connected and configured to work together during the computer operation.
In the figure, the dotted arrow head line is control signal and the full arrow lines are
the data lines.

Arithmetic &
Logic Unit
‘(ALU

A4

Input device >

Control Main Memory

Unit(CQ )"

Output device : r Mass Memory
Memory
\Dritaitace Elements(ME) Memory devices

Central Processing
Unit (CPU)

Figure 1.11: Structure of a Computer

Hardware are physical devices constituting the parts that facilitates a computer
program execution.

20



1.6.1 Input-Output devices

The input component is also called the input device. Examples include Keyboard,
mouse, touch screen, pen and so on. The ability to use the Keyboard and Mouse is
central to computer programming.

1.6.2 Central Processing Unit

The Processing component comprises a number of other components that facilitate
the execution of a programme. The Computer Process Unit comprises three (3) other
subcomponents:

lMemory Element (ME) ‘

This is the place where the computer stores results of ongoing operation. The memory
element are inside the processor. They are also called register. Each of the register
inside a process severs a specified purpose. An example is the Accumulator Regis-
ter, which stores the results of an ongoing arithmetic operation. Another example is
the processor Status Register, which stores the status of an ongoing operation, such
as when “an overflow” or “negative” result is generated. The Memory element can be
likened to a scratch pad that you use while solving mathematics problem: a place where
rough work is written. The content of the Memory Element or register is lost imme-
diately power is switched off from the computer. This is why the Memory Element of
register is called a Volatile Memory.

Control Unit (CU)

The Control Unit determines the operation of all the other hardware component of the
computer. However, the activity of the Control Unit is determined by the Computer
Software. The Control Unit (CU) will, for example, determine when the input device
must read data, when the output device must write output and when data and instruction
are transmitted between devices. The CU reads program instructions from the computer
memory and interprets (decodes) the instructions. It then uses the interpreted instruc-
tion to determine what is to be done. To achieve the tasks specified in the instructions,
the CU generates a series of control signals to the other parts of the computer hardware.
When everything seems to be working well but nothing is working, the control unit is
probably faulty.

Control units in advanced computers may change the order of some instructions
so as to improve performance.

21



lArithmetic and logic unit (ALU) |

The ALU carries out arithmetic and logical operation. It arithmetic operations include:
Addition (+) and Multiplication (x). Its logical operations are those that evaluate to
True or False. Examples includes Greater Than (>), Less than (<). Most computer in-
structions are realised through these simple operations. It turns out that by performing
these simple operations, a computer can be programmed to achieved complex tasks.
This is done by breaking the complex tasks into simple steps that are realised through
the operation of the Arithmetic and Logical Unit. Therefore, modern computers can
be programmed to perform a well-defined task; although it will take more time to do
so if its ALU does not directly support the operations in the task. An ALU may also
compare numbers and return boolean (true or false) value depending on whether one is
equal to, greater than or less than the other (“is 64 greater than 657”). Logic operations
also include boolean logic: AND, OR, XOR and NOT. These can be useful both for cre-
ating complicated conditional statements processing boolean logic. Modern computers
(e.g. Superscalar machines) contain multiple ALUs so that they can process several
instructions at the same time. Graphics processors and computers with SIMD (Single
Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data) features
often provide ALUs that can perform arithmetic on vectors and matrices.

Memory elements (ME), Arithmetic and Logical Unit (ALU) and Control Unit
(CU) are together called the Central Processing Unit (CPU) of the computer.

[CPU=ME + ALU + CU |

The computer’s capacity to carry out small to large scale processes, its CPU must
be supported by Memory Devices.

1.6.3 Memory devices

Memory Devices are the hardware components of a computer in which
data and instruction are stored.

There are two categories of memory devices: (i) Main memory and (ii) Mass
memory. These are discussed in the following subsection.

l Main memory devices |

The Main memory is the memory device in which the computer stores the data and
instruction in the currently running program. The computer store temporary result of
operation in this memory. When a program is executing, its data and instructions are
store in the Main memory. The main memory is a Random Access Memory (RAM).
This implies that the computer can access data in the memory at any location of the
memory without delay and in any order. Main memory is usually smaller in size than

22



the Mass memory. It is also more expensive than the mass memory. A major weakness
of the Main memory is that when electric power is lost, its contents will be lost as well.
This is why it is called Volatile memory. The Main memory is also called Primary
memory or Core memory. The data and instruction that we wish to retrieve latter are
stored in the Mass memory. This is discussed as follows.

‘ Mass memory devices |

The Mass memory is the memory device in which the computer stores data and in-
struction that can be retrieved latter. When a program is NOT executing, its data and
instructions are store in the Mass memory. The mass memory is a Sequential Access
Memory (SAM). This implies that the computer can access data in the memory in the
sequence or order they are store in the memory. Mass memory is usually much larger in
size than the Main memory. The Mass memory is also cheaper than the Main memory.
A major strength of the Mass memory is that when electric power is lost, its contents
are retained. This is why it is called Non-Volatile memory. A major weakness of Mass
memory is that it is slower than the Main memory. The Mass memory is also called
Secondary memory or Peripheral memory. There are other memory devices, such
as the Read only Memory (ROM) and Programmable Read only Memory (PROM). In
these memory devices, specialised data and instructions are stored. For example, the
data and instruction that the computer requires for its intrinsic operations are kept in
these specialised memory devices. Examples of such specialise data and instruction
are those that the computer system use during “start-up” and “Booting”. The computer
timing data is also stored in Specialised memory devices. This class of memory are
usually of interest to “Embedded” or “Real-time” system programming.

1.6.4 Memory metric

Computer memory devices are of various sizes. The different sizes of computer mem-
ory are reckoned using a metric based on the number of cells that makes up a unit of
data. The Bit (Binary Digit) is the smallest data element in modern digital computing
machines. The Bit is stored in a Cell. Therefore, a cell holds a Binary digit (Bit) dur-
ing computer operation. Each cell holds either Zero @ or One |1 | at an instance in
the computer operation. Four (4) cells, each of them holding a bit, e.g. mm
makes a Nibble. A unit of data in modern computer is a Byte. A computer Byte
comprises Two (2) Nibbles or Eight (8) Bits, e.g. |0|1[{0[1]0|1[0|1| The number of
unit data comprising the entire storage space in a memory device is reckoned in Bytes
as depicted and described in Table 1.2. A Byte can hold one character, E.g. the letter
‘R’, the digit ‘5°, etc. Memory metric is, therefore, a rough estimate of the number
of characters that can be stored into a memory device. If the number of character in
your notebook is up to Ten thousand (10, 000), then you will need a memory of about
Ten Kilobyte (10KB) to store it. This is estimated as 10 x 20 Bytes, where 2!° Bytes

23




corresponds to about One thousand (1,000) characters.

Table 1.2: Computer memory metric

Ser. Name Description

No.

1. Bit A status of the computer cell. It can be Zero (0) or One(1); @ and |I|

2, Nibble Four bits. [0] 1]0] 1]

3 Byte Eight(8) Bits or Two (2) Nibble [0]1]o]1]0]1]0]1]

4. Word The number of bytes that a machine can process at one instance of its
operation. It is the number of lines in the data bus of the computer.

S, Kilobyte (KB) | A Kilobyte is computed as 2'° (1024) Bytes.

6. Megabyte (MB) | One Megabyte is computed as 22° (1,048,576) Bytes.

7 . Gigabyte (GB) | A Gigabyte is a computed as 23 (1,073,741,824) Bytes.

8. Terabyte (TB) A Terabyte is computed as 2%° (1,099,511,627,776) Bytes.

9. Petabyte (PB) A Petabyte is computer as 2°° (1,125,899,906,842,624) Bytes.

10. Exabyte (EB) An Exabyte is computed 260 (1,152,921,504,606,846,976) Bytes.

24




1.7 Computer Software

The intangible aspect of the computer system are called “Computer Software”. Com-
puter Software often comprises several “Computer Programs”. If a program, or set of
programs, fails, the computer hardware may not function properly. The human who
writes program for controlling a computer is called a Computer Programmer. The
humans or group of humans involved in the Specification, Design, Programming (Cod-
ing) and Evaluation (Testing) of software are also called Software Developer. Every
programming for problem-solving involves familiarity with every aspects of software
development. The job of a computer programmer (software developer) is to design
and implement a set of programs that will make the computer to do what a user
wants. Usually the user is a human being. The user can also be another computer.
For the programmer to achieve this task he/she must first understand the problem that
the user wants to use the computer to solve. The programmer must also understand
the capability of the computer as well as how to instruct the computer to perform the
specified task. In this course you will learn how to instruct a computer using the
Python programming language.

A software comprises a set of programs that work together during the
execution of a process.

Computer software are of Two (2) categories:

(1) System software.

(i) Application software

These are explained in the following Subsection.

1.7.1 System software

System software is specifically developed by computer manufactures to make the com-
puter ready for use by other programs and users.

System software is a set of programs that are used to create the environment
for other software to run efficiently on the hardware of a computing machine.

System software performs the following tasks:

1. Create the environment for other programs to run. [Run is the terminology used
for “a process executing on a computing machine”]

2. Manage the computer resources (disks, memory, printers, etc. ) for effective use.
E.g, Data Zipping (Compress data into smaller memory size)

25



3. Provide data about the status of the hardware and related computer component
[E.g. time].

4. Provide prompts (message) that can help the user in computer usage.
5. Provide interfaces that suit users fancy and appeal;

6. Respire or reclaim unused computer resources such as memory. System Software
that reclaims memory are call “Garbage Collector”.

A very important System program is the Operating system. Examples of operat-
ing systems include:

1. UNIX
2. LINUX
3. Ubuntu
4. Solaris
5. Mac OS
6. Windows XP
7. Android OS

Other examples of system programs includes: Editor, Linker, Loader. System
programs are usually written by System programmers. System programs are commis-
sioned by specialised Computer vendors, organisation or Business interests. Aspects
of system programs are usually written using Low Level Language called Assembly
Language.

1.7.2 Application software

An Application Package (Apps) is a collection or suit of software intended for solving
problems in a particular user environment. Each of the set of programs in an Applica-
tion software is for achieving specific user task. For example, a set of program can be
written for assisting with all the work done in the office. The work may include doc-
ument typing and processing also called word processing. Keeping a “table of inven-
tory” also called spreadsheet. Other program may be written for “drawing of graphics”
and/or “Architectural Design”. Some others may also be written for music compilation
and processing. An example of Application Package is Microsoft Office. This pack-
age comprises () MS Word (for word processing) (ii) Excel (For spreadsheet) (7i)
MS FrontPage (For graphic design) (iv) MS Publisher (For publishing works), (v) Ms
PowerPoint (For making presentation slides), etc. Another examples is OpenOffice. It
comprises similar applications like Microsoft Office. Other examples of Application
packages include:

26



1. In Mathematics, Science and Engineering [Octave, Matlab, Mathematical and
Maple]

. In Internet browsing [Google Chrome, Safari, Firefox]

. In Graphics design and Architecture [AutoCard, Adobe Photoshop, CorelDraw]
. Online meeting [Skype, Hangouts, Google Meet, Zoom, and Whatsapp]

. Banking [Oracle, TEMENOS, CorePlus, Bankware]

AN L AW

. There are many Application programs (Apps) on modern mobile devices.

As you are already aware, there are Application programs (Apps) on your Mo-
bile Phone for doing all sort of tasks from banking, to playing games, searching for
location, and so forth. These Apps cannot run except there is a System program e.g
Android, already running on the hardware of your Computer or Phone. Application
programs are written by Application programmers. Substantial parts of Application
programmers are written using High Level Programming languages such as Python,
Java, C++, Pascal, FORTRAN.

1.8 What is Computer Programming?

Computers will do what humans instruct. The instructions for computers are written in
a Programming Language. Computer will NOT do what they are NOT programmed to
do. To ask a computer to perform a task, you have to give it Two (2) things:

1. The data on which the computer will perform the task.
2. The set of instruction on how to manipulate the data.

After applying this instruction to the data the computer produces an output. This
means that all what you want the computer to do must be reduced into data and in-
structions. While following the instruction, the computer will be manipulating the
data. If we adequately describe our instruction and accurately specify our data, then
the output that the computer generates will be what we want.

The art of composing the sequence of instructions for controlling computer
system operation is called programming.

The outcome of a computer programming activity is a program.

A program is a sequence of instructions which when executed by a computer,
the output corresponding to an input data will be produced.

An instruction is a unit of message or command that influences the operation of a
computer. An instruction is composed of Two (2) parts:

27



1. Operand (Data)
2. Operation (Operator)
[INSTRUCTION = OPERAND + OPERATION |

[INSTRUCTION = DATA + OPERATOR |
An analysis of the instruction:

| ADD Two (2) data items identified with the names X and Y and Store the output in Z
is as depicted in Figure 1.12.

Instruction —®
Computer > Output
Data "
Example
( ADD two numbers Z=X+Y)
ADD "
Computer — 7=90
X=3.0,Y=6.0 —*

Figure 1.12: Fundamentals of Data and Instruction

1.8.1 Operand: Data

Names are used to identity the entity or item or element that the computer will manip-
ulate during a process. Individual item or entity is a datum. Instances of datum are
called Data (The plural of DATUM is DATA).

A name or identified that can contain only one value when a program is running
is called Constant name. An example of Constant name definition is Pi = 3.147. A
name or identifier that can contain different datum when a program is running is called
Variable name. An example of Variable name definition is Radius = 7.5. A con-
stant or variable name can be occupied by different datum or data include: Numerical
(Number), Literal (Text) or Logical (True/False).

Several data item can also be identified with One name. This is done in the defini-
tion of: () List, (i¢) Array, (i¢7) Dictionary and (7v) Tuple

1.8.2 Operation: Operator

Operators prescribes the manipulation that will be performed on operands (Data, datum
variable). This include Arithmetic operation on constants such as Addition and Mul-
tiplication; Algebraic operation on variables such as Subtraction and Division. It also

28



includes; Logical operation Negation and Inversion; Input-Output operation such as
input and print.

1.9 Foundation of Computer Programming Language

The process of programming can be viewed as the process involved when two (2) hu-
man individuals communicate through Writing Letter. The two (2) individual are
communicating using the written form of their habitual instrument of language. Their
habitual instrument of language is Human Language. In this case, however, the Pro-
grammer is communicating with a machine using a computer Programming Lan-
guage. Indeed the Program writing process is grounded in the metaphor of Letter
writing.
These are the attributes of the Letter Writing process

1. The message in a letter is written in a Human Language { e.g. Yorubd, Igbo,
Hausa, English, etc. }.

2. The symbols in the message are drawn from the alphabet of the Human Language.

3. There is a format of presentation to which the text (narrative) in the letter conforms
{e.g. formal and informal letter }.

4. There is an opening (beginning) and a closing (ending) statement.

5. There are sequence of words, phrases, sentences and paragraphs between the
Opening and Closing statement. Each of the words, phrases, sentences and para-
graphs expresses aspects of the message in the letter. Each word, phrase, sentence
and/or paragraph is composed using the symbols drawn from the alphabet.

6. The message in the letter conveys information from the Writer (Sender) to the
Reader(Receiver).

Note that a letter is written by humans and the instruction or message in it will be
read by another human being.

In the same manner a computer program is written by human being (a Program-
mer) but the primary target or audience of the instructions or messages a machine (the
computer). A program:

1. A computer instruction is written in a Programming Language { e.g. Python,
FORTAN, JAVA, C++, VisualBasic, etc. }.

2. The symbols for composing an instruction are drawn from the alphabet of the
computer language.

3. There is format to which admissible instruction must conform {e.g. this is called
the Syntax or Format of instruction }.

29



4. A program has an opening and closing statement

5. There are sequence of instruction, functions and sub-programs between the Open-
ing and Closing statements.

6. The program conveys the writer (programmer’s) instructions to the computer (re-
ceiver).

The following subsections, and indeed, other aspects of this course will explicate
the above analogy.

To compose an effective computer program, it is important to be familiar with the
Programming Language and Programming Process. Familiarly with Programming
Language includes:

1.9.1 Familiarly with Programming Language

Familiarly with a computer Programming Language involves:

1. Identifying the assignment and use of symbols in alphabet of the programming
language. This include special or reserved symbols and strings.

2. Understand how to compose the string of symbols for naming data or operand.
3. Understand how to use data and operators to compose valid instructions.

4. Understand the admissible use of instruction individually and collectively.

1.9.2 Python Instruction format and structure

During this course, the format and structure of the instruction for following Python
statements and expressions will be explained with examples. You will also be intro-
duced to other formats and structures that are used in the Python Object Oriented Pro-
gramming Language. In addition, you will learn the techniques for using the format
and instruction in programming. Some of the instruction and statement formats and
structures that would be consider include:

1. Data formatting.
. Input and output statements.
. Decision, Control and Conditional Statements.

2

3

4. Loops and Looping.
5. Array data structures.
6

. Routings and Functions: Modular Programming (Breaking a complex program-
ming problem into Function of smaller problems).

30



7. File processing.

8. Object Oriented Programming (Definition and use of Class of Object)
NOTE THAT
(a.) Python is CASE sensitive. Therefore Ade and ade are NOT Equal.

(b.) Python is space sensitive. Space must be used as prescribed by the syntax of an
instruction for example in the: (¢) if (i) for and (zii) while instruction.

1.9.3 Python Identifiers

The variables in a Python program can be likened to the nominal part-of-speech in
human written language. The nominal part-of-speech is a NOUN. The “Noun” is a
class of strings, each of which is used to identify an instance or agency. Variable can
hold one constant at an instance during a computer operation. Therefore, the content
of a variable can change during the execution of a process. The constants in a Python
program can be liken to the words in human written language. The “word” is a string of
symbols used to identify a datum, data, or agency (i.e. Function or Object). Constants
do NOT change during the execution of a computer program. An example of a constant
identification is Pi = 22/7 or Pi = 3.147. When the value to be stored changes then
it is given a variable name, for example Sum or Average. Variable names correspond to
the identity of a memory location in a computer system. In the case of a constant, the
exact value of the constant, e.g. “Ade”, “1234”, and “Lagos” is stated. In the expression
, the string NAME is a variable while the string “Ade” is “an instance
of constant” that can occupy its content. Also in the expression , the identifier
Y is a variable while the number /0 is a constant. The number 10 can also be called a
constant string of Two (2) digits, that is 1 and 0.

1.9.4 Python Reserved words

There are certain names that have special function in the Python programming lan-
guage. These names are called Reserved words or Key words. Reserved words
CANNOT be used to name a variable or constant. Thirty-Tree (33) Python Reserved
words are listed in Table 1.3. Selected Python operator are listed in Table 1.4 and details
of their uses and precedence is provided in the Appendix A in Section 1.15.

1.9.5 Python Variable and Constant identifiers

Name is used to ascribe identity to an instance. The name of a constant or variable is
composed through that concatenation of letters and digits. The composition is similar
to how words are composed from written language alphabet. A string corresponding to
a valid Python name is constructed using the following set of rules:

3



Table 1.3: Python Reserved or Key words

true elif try return | def in raise
and else while | lambda | del is from
as except | with nonlocal| break import | finally
assert | finally | yield | None continue| if

class | global | pass not false for

Table 1.4: Python Operators

+ ¥ - % ki 4 <<

Add Multiply | Subtract | Remainder| Power Floor Di- | Shift left
vision

b2 & | L= = D= g

Shift Bitwise Bitwise Less or | Greater Greater Not

right ADD OR Equal orequal | Equal

k= / =4

Logical Divide Equal

not Equal logical

. A variable or constant name can only be composed using the Python set of sym-
bols. This includes upper case letters {A, B, C, ..Z}, lower case letters {a, b, c,
..z} and digits {0,1,2,3,4,5,6,7,8,9}.

. Variable or constant names are case-sensitive. This implies that Number, number
and NUMBER are three (3) different names.

. A variable or constant name CANNOT be any of the Python keywords.

. A name must contain not more than Thirty-one (31) characters. This implies that
the length of a name should not be more than 31 characters.

. A number should not start a name. For example, the variable Sname is wrong but
Name5 is correct.

. A special character (except the underscore, __), should not be used in forming
a name. For example, the variable Fn*ame is wrong but the name Fn__ame is
correct.

1.9.6 Python Statements

A Python statement is an instruction, which when executed, will influence the com-
puter operation. A statement is similar to a sentence in human languages. Each of the
statement in a program is also called a code. Various Python statement and how they
are used are discussed in your Laboratory and Tutorial Manual. Nonetheless, note that
Python program state is SPACING SENSITIVE. This implies that SPACE can influence
how a sequence of instructions are Executed.

32



1.9.7 Familiarly with Programming Process
Familiarly with Programming Process includes:
(i) How to design the algorithm of a programming process
(i) How to reduce the algorithm into program code or instruction.
(iii) How to create the digital version (the computer text) for the instruction composed
in (ii)

(iv) How to compile the digital version in (iii) into computer native language.

(v) How to identify and remove errors and mistakes from your code.

(vi) How to document your code for future use and improvement.

Familiarly with Programming Process is briefly discussed in the following sec-
tions.

1.10 Algorithm

The origin of the term Algorithm was traced to a 9" century Arabic scholar called Abu
Ja’far Muhammed Ibn Musa Al-Khowarizm. An algorithm is a sequence of formal
instruction describing the solution to a computing problem. An algorithm describes
the solution one problem only. This implies that when an algorithm is written for a
problem it cannot be used to solve a different problem.

The following are the features of an algorithm:

1. [Terminal:] There is exactly one ENTRY (START) and one EXIT (END) points
in the algorithm. These are called the terminals of the algorithm.

2. [Finite process:] The steps in the algorithm must be finite. The number of steps
from when the input is applied and an output is generated must be totally count-
able. A step corresponds to an instruction.

3. [Effective:] The algorithm must produce the total output corresponding to the
input data.

4. [Soundness:] The algorithm must produce the same output for an input no matter
the number of times the input is applied.

5. [Practical:] An algorithm must be executable on a computer system.

6. [Halt:] It is desirable that the program implemented using an algorithm releases
all computer resources (memory, register, data bus, processor) immediately after
its termination.

33



The instruction in an algorithm and how they are structured follows a standard set
of rules. An algorithm intended for a program is design before it is reduced into codes
(set of instruction) and implemented on a computer. Algorithm designs are primarily
intended for use among programmers during the programming process. An algorithm
is, therefore, an important aspect of computer programming just as the Plan is important
in Building a house.

There are two (2) popular tools for designing an algorithm. These are: (i) Pseudo-
code and (ii) Flowchart. A pseudo-code uses instructions written out in long-hand as
well as mathematical statements to express an algorithm. This is done in a fashion
similar to human written language discussed above. Pseudo-code are usually not very
explicit as their interpretation often require an understanding of the rule for writing the
pseudo-code expressions.

In the flowchart approach to algorithm design, however, Geometric images are
used to represent instructions. Familiarity with only a few geometric images or symbols
is required for flowchart algorithm design. We will be using the flowchart more often
in this course. Some important flowchart symbols are shown in Figure 1.13. We will
discuss them further during our lecture.

1.11 Computer program development process

To develop a program for the solution a problem using the Python programming Lan-
guage, you need to follow some steps.

Step 1: Understand the problem: It is good to always start your programming by
giving the problem it solves a NAME. The first step in computer problem solving
is to understand the problem. To do this, you need to take a simple case exam-
ple and solve the problem manually. This will allow you to better understand the
mental activity involved in problem-solving process. The outcome of this process
is a PROGRAM SPECIFICATION DOCUMENT containing a description of
the solution process.

Step 2: Identify Input and Output: It this step the Input data are listed with their
data types and sample values. Also, the expected outputs are listed and described.
The goal of this step is to assign identifiers to each variable and constant in the
Input and Output of the problem-solving process. The outcome of this step is a
DATA DICTIONARY of the program.

Step 3: Formulate the process: The individual manipulation operations required for
transforming the input data to its corresponding output data are listed. This will
include: what calculations are required and how they will be invoked. You may
need to consider a number of alternative solution methods at this stage before
settling for the most appropriate for the problem at hand. The outcome of this

34



Ser. No. |Geometric Object Name Function Uses

1. Oval Terminal START
STOP

=)

Parallelogram | Interface READ
WRITE

Rectangle Process STATEMENTS

Rhombus Query IF THEN

Double Edge | Routine SUBROUTINE
Rectangular FUNCTION SUB-
PROGRAM

Multi-exit Multiple CASE
Polygon option
Selection

6 Three partition |Repetition LOOP
€ > polygon

8. 1 Arrow line Direction CONTROL FLOW

9 Circle Connection INSTRUCTION
LABEL

Figure 1.13: Flowchart Symbols

process is a PROCESS DICTIONARY. This comprises a list of the methods,
functions and routines that will be execute on the input to produce the final output.

Step 4: Solution Algorithm Design: Formulate an algorithm to realise the Steps 2
and 3. This is the program design. To achieve this, you need to use design tool
such as Flowchart symbols and/or Pseudo-code to construct the sequence of steps
in the problem-solving into a unified process. It may be the case that the solution
will be implemented by breaking a bigger problem into smaller ones. Each of the
smaller problems is then implemented as a module. The outcome of this step is
the SOLUTION DESIGN. The design is the basis for all other future activity that

35



concerns problem-solution process.

Step 5:Implement the Design: In this stage of the problem-solving, you need to con-
vert the algorithm designed in Step 4 into a computer program. Here you will
reduced the Flowchart or Pseudo-code into Python instructions. The tasks here
includes:

(i) Creating the source file. Here you type the program (from paper) into a com-
puter Text Editor.

(i) Compiling the program. The program text will be applied to Python Compiler
software which will check it for Syntax error. If there are syntax errors (or
warning in your program) you will need to correct it in your source file. If no
error is found, the system will generate the object or executable file.

(iii) Repeat steps (i) and (ii) until your program is running as desired.
The outcome of step is a RUNNING PROGRAM.

Step 6: Program Testing and Documentation Run the program with the Input data
you used in Step 1. This is to confirm that the output you computer manually is
also what the computer generates. Thereafter, select a number of example input
data that you already familiar with their outputs. If the output produce by your
program is not correct, you need to go back to the design [Step 4] of the solution.
If the incorrect result persists, then you move to Step 3, and so forth. The outcome
of this step is a PROGRAM TESTING AND DOCUMENTATION. The document
produced in this step will contains a description of how you carried out steps 1 to
Step 5 as well as how the outcome of the testing of your program. The document
can also contain your views and comments on the extent of the application of the
program.

1.11.1 TASK3

Type and run the following three (3) codes into the Python environment that you in-
stalled on your mobile phone. Explain your observations after running the programs.
(HINT: See Subsection 1.2.5).

y = input(“Enter a digit”)

x = input(“Enter another digit”)
print (y+x)

print (x+y)

CODE 1

36



y = input(“Enter a digit”)

x = input(“Enter another digit”)
CODE 2| ¥ = M)

X = int(x)

print (y+x)

print (x+y)

n = input(“‘Please enter a number”)
y =n+n

CODE 3| x = int(n) + int(n)

print(“The polarity sum is ”, y)
print(“The logical sum is ”, x)

1.12 Case example: FindAverage

We will demonstrate the software development process discussed in Section 1.11 by
developing a program to find the average of Five (5) numbers.

Understand the problem: The name of the program is FindAverage. The task of
finding the average of Five (5) numbers involves: (i) Finding the Sum by adding
the numbers together and (¢7) Dividing the Sum by 5. We will assume that the
numbers are of type Real. Type Real are numbers with factional part. For example,
5 is an Integer because it has no fractional part, but 5.0 is a Real number because
it has a fractional part; even when the fractional part is zero.

The command float is used to convert an input into a real number in Python.
Therefore, an input data is converted to real number by applying the float com-
mand to it.

The command int is used to convert an input into a integer number in Python.
Therefore, an input data is converted to integer number by applying the int com-
mand to it.

If we assume that the numbers we wish to find the Average are:
5.0
« 8.0
¢ 7.0
* 9.0
240
We will

1. Sum the numbers, i.e. 5.0 + 8.0 + 7.0 + 9.0 + 24.0 = 53.0

37



2. Divide the Sum by 5, i.e. 2 =10.6

Identify the input and output: The input to the problem are the five numbers: let us
label them using the variables:
Numberl, Number2, Number3, Numberd, Numberb
The output from the program is the average: let us label it with the variable name:
Average.

Formulate the process: The process require for computing the output from the input
are as follows:

Sum = Numberl + Number2 + Number3 + Numberd + Numberh
and
Sum
A = ——
verage 50
Design the solution algorithm: The solution algorithm is represented by the flowchart
in Figure 1.14.

Read Number1
Read Number2
Read Number3
Read Number4
Read Number5

Sum = Number1 + Number2 +
Number3 + Number4 + Number5

l

Average = Sum/5.0

Figure 1.14: Design for the Average Program

Implement the solution: To implement the design, create the source file by typing the
following program code into the Python editor.

Run the program as instructed in the CSC201 Laboratory and tutorial manual.

38



Table 1.5: Python code for the Flowchart in Figure 1.14

Numberl = float (input ("Enter Numberl: "))

Number2 = float (input ("Enter Number2: "))

Number3 = float (input ("Enter Number3: "))

Number4 = float (input ("Enter Numberd4: "))

Number5 = float (input ("Enter Number5: "))

Sum = Numberl + Number2 + Number3 + Number4 + Number5
Average = Sum/5

print ("Average of the numbers is :", Avegrage)

Test the Program: Run the program using the data used in Step 1 and see your output.
Now run the program again with at least Three (3) other set of input of your choice.

i

Sum = 0.0
NextNumber = 0.0
Average =0.0
Item =0

Read NextNumber

Sum = Sum+ NextNumber
Item = Item +1

Yes

‘ Average = Sum/5.0 ‘

Write Average

4

Figure 1.15: Design for the Average Program

The program in Table 1.5 will work only when the number of input is Five (5).
What this implies is that even if you want to find the Average of Three (3) numbers,

39



Table 1.6: Python code for the Flowchart in Figure 1.15

item = 5

Sum = 0.0

for n in range(item):
NextNumber = float (input ("Enter the next number : "))
Sum = Sum + NextNumber

Average = Sum / item

print ("Average of ", item, " numbers is :", Average)

the program will not work. Also, the instruction to read every number is in the code.
Most often, programs are designed to be more flexible. The flowchart in Figure 1.15 is
the design for a program that can read a specified number of input data and output their
average. The Python code for the flowchart design in Figure 1.15 is in Table 1.6.

The Python program codes in Table 1.5 and Table 1.6 will work only when the
number of input is Five (5). What this implies is that even if you want to find the
Average of Three (3) numbers, the program will NOT work. Most often, programs
are designed to be more flexible. To improve the flexibility of the program, it will be
designed to be able to handle various number of input data.

1.13 TASK 4

The Python code to find the average for any number of input data is in Table 1.7.
You are to carry our the Program development Steps above in respect of the code.

Table 1.7: Python code for flexible Average computation

item = 0
Sum = 0.0
item = input ("Enter number of items to average: ")
item = int (items)
while n < item :
NextNumber = float (input ("Enter next number : "))

Sum = Sum + NextNumber
n=mn+1
Average = Sum / item
print ("Average of ", item, " numbers is :", Average)

40



Table 1.8: Another Python code for flexible Average computation

item = 0
Sum = 0.0
item = input ("Enter number of items to average: ")
item = int (items)
for n in range (item):
NextNumber = float (input ("Enter next number : "))
Sum = Sum + NextNumber
Average = Sum / item
print ("Average of ", item, " numbers is :", Average)
1.14 TASKS

Using the Python environment installed on ON YOUR MOBILE PHONE, carry out

the following tasks:

1. Enter and run the following code. Explain your observation about the code.

i = input (“ Enter the number of times for looping”)
i=int(i)
for k in range (0,i)

print (‘' Loop”, k)

2. Enter and run the following code and explain what it is doing. Replace “Odetunji”
with your own name, rerun the program and explain its output. Replace the line
y = “Odetunji” with y = input (“What is your name”) rerun the program and

explain its output.

k=0
y = “Odetunji”
for i in range(len(y))
x = yli]
k=k+1
print(x)
print (“The number of letters in your name is ”, k)

3. Modify the code in 2. above such that it can read any name and print the number

of letters in it.

4. Enter and run the following code on your phone. Draw a flowchart to explain what

the code is doing.

A1



Numl = input (“ Please enter first number )
Num?2 = input (“ Please enter second number )
Numl1 = int(Numl)
Num?2 = int(Num?2)
if Numl > Numl:

print (“First number is greater than the second”)
elif Num2 > Numl:

print (“Second number is greater than the first”)
else:

print (“The numbers you entered are equal’)

5. Modify the code in 3. above such that it can read any name and print the number
of vowel letters in it. For example your program should output 5 for the name
“Odetunji”. Hint: You need to use the Python if statement here.

6. Write an encryption program which reads a string comprising lower-case letter
in the English language alphabet. Your program will then encode the string by
replacing each letter with its corresponding alphabetic position. The following
replacement will be used in the encryption a = 1,b = 2,¢ = 3,d = 4,e =
5,...z = 26. For example your program should output 145 for the string “ade”.
Hint: You need to use the Python if statement here. You may also consider
Python list data structure, that is Letters = [a, b, c d, ..]

42



1.15 Appendix A

Operator | Operator Name Operator Function E le and Explanation
x=4;y=5;

+ Addition Add two/more values ¥
=DXx+y=29
x=10;y=4;

- Subtraction | Subtract two/more values v
=>X-y=>6
x=4;y=5;

b Multiplication | Multiply two/more values X
=>x*y=>20

s Divide twovalues, and [x=10;y=4;
/ Division
produce the n =>x[y=>2.25
Gives the remainder after
TR L [x=14y=4;
% Modulus one value is divided with
=>x%y=>2
other
Gives the exponential [x=3;y=4;
+H Exponential P v
values SRy =B
Gives the integer value on
=T 2 x=18;y=4;

I Floor Division | dividing one value with
=>x//y=>3

other

Figure 1.16: Python Programming language operators

Python Operator Precedence

Precedence |Operator Sign Operator Name
Highest ** Exponentiation
b Unary positive, unary
X X negative, bitwise negation
* Multiplication, division, floor,
il % division, modulus
+,- Addition, subtraction
<L, >> Left-shift, right-shift
& Bitwise AND
A Bitwise XOR
| Bitwise OR
. (€ ison, identit
>_’ |S, is not omparison, identity
not Boolean NOT
l and Boolean AND
Lowest or Boolean OR

Figure 1.17: Precedence of operator in Python programming language

43




CSC 201

ALGORITHMS AND FLOWCHARTS

44



INTRODUCTION

* The term algorithm originally referred to any computation performed
via a set of rules applied to numbers written in decimal form.

* The word is derived from the phonetic pronunciation of the last name
of Abu Ja'far Mohammed ibn Musa al-Khowarizmi, who was an Arabic
mathematician who invented a set of rules for performing the four
basic arithmetic operations (addition, subtraction, multiplication and
division) on decimal numbers.

45



INTRODUCTION CONTD

* An algorithm is a representation of a solution to a problem. If a
problem can be defined as a difference between a desired situation
and the current situation in which one is, then a problem solution is a
procedure, or method, for transforming the current situation to the
desired one.

* We solve many such trivial problems every day without even thinking
about it, for example making breakfast, travelling to the workplace
etc. But the solution to such problems requires little intellectual effort
and is relatively unimportant.

46



INTRODUCTION CONTD

* However, the solution of a more interesting problem of more
importance usually involves stating the problem in an understandable
form and communicating the solution to others.

* In the case where a computer is part of the means of solving the
problem, a procedure, explicitly stating the steps leading to the
solution, must be transmitted to the computer.

* This concept of problem solution and communication makes the
study of algorithms important to computer science

47



INTRODUCTION CONTD

* Throughout history, man has thought of ever more elegant ways of reducing the
amount of labour needed to do things.

* A computer has immense potential for saving time/energy, as most
(computational) tasks that are repetitive or can be generalised can be done by a
computer.

* For a computer to perform a desired task, a method for carrying out some
sequence of events, resulting in accomplishing the task, must somehow be
described to the computer.

* The algorithm can be described on many levels because the algorithm is just the
procedure of steps to take and get the result. The language used to describe an
algorithm to other people will be quite diffgrent from that which is used by the
computer, however the actual algori will in essence be the same.



PROCEDURE

* A procedure is a finite sequence of well-defined instructions, each of which can be
mechanically carried out in a finite amount of time.

* The procedure must break up the problem solution into parts that the recipient
party can understand and execute.

* In the case of a computer, the problem solution is usually in the form of a program
that encompasses the algorithm and explains to the computer a clearly
defined procedure for achieving the solution.

* The procedure must consist of smaller steps each of which the computers
understand. There may be no ambiguities in the translation of the procedure into
the necessary action to be taken.

* A program is then just a specific realisation of an algorithm, which may be
executed on a physical device

49



* A computer is essentially a physical device designed to carry out a
collection of primitive actions.

* A procedure is a sequence of instructions written in terms of which
evoke a proper operation.

* To make effective use of an algorithm on a computer one must not
only find and understand a solution to the problem but also convey
the algorithm to the computer, giving the correct sequence of
understood commands that represent the same algorithm.

50



Algorithm

* An algorithm is a set of procedures for solving a problem. it is a finite
sequence of unambiguous instructions for solving a problem, i.e., for
obtaining a required output for any legitimate input in a finite amount of
time.

* An algorithm is procedure consisting of a finite set of unambiguous rules
(instructions) which specify a finite sequence of operations that provides
the solution to a problem, or to a specific class of problems for any
allowable set of input quantities (if there are inputs).

* In other word, an algorithm is a step-by-step procedure to solve a given
problem

*Since an algorithm is just the solution steps for a problem, it can be
represented by ordinary English expressions.

51



Characteristics of Algorithms

* An algorithm must have a beginning and an end

* The non- ambiguity requirement for each step of an algorithm cannot be
compromised.

* The range of inputs for which an algorithm works has to be specified
carefully

* The same algorithm can be represented in several different ways
* Several algorithms for solving the same problem may exist

* Algorithms for the same problem can be based on very different ideas and
can solve the problem with dramatically different speeds

* [t must terminate at a reasonable period of time.

52



* An algorithm is a step-by-step description of a procedure. Writing an
algorithm allows you to think about the logic of a program without
worrying about the syntax of the programming language.

* You can think of an algorithm as being like a recipe:
Put 1 tablespoon of oil in a frying pan.

i.
ii.
iii.
iv.
V.
Vi.
vii.

Heat the oil on the stove at low temperature.
Break three eggs into a bowl.

Beat the eggs with a whisk.

Add cheese.

Add seasonings.

Add the egg mixture to the frying pan.

Cook on both sides.

53



ALGORITHM DESIGN

* An algorithm can be written by using pseudocode and flowcharts

* While writing algorithms we will use following symbol for different operations:
‘+’ for Addition

‘-’ for Subtraction

“*’ for Multiplication

‘/’ for Division and

‘ <— ' for assignment. For example A «— X*3 means A will have a value of X*3.

54



Writing Algorithms Using Pseudocode

* pseudocode is like code but different. In fact, pseudocode is a description of the
program flow, written in the language you speak. When you write pseudocode, you
usually keep the sentences short and to the point.

* Pseudocode is one of the tools that can be used to write a preliminary plan that can be
developed into a computer program. Pseudocode is a generic way of describing an
algorithm without use of any specific programming language syntax. It is, as the name
suggests, pseudo code —it cannot be executed on a real computer, but it models and
resembles real programming code, and is written at roughly the same level of detail.

* Example: Problem: Design an algorithm to find the average of two numbers.

Solution:
1. Start
2. Get the first number
3. Get the second number
4. Add the two numbers together
5. Show the result
6. Stop

55



* Problem 1: Find the area of a Circle of radius r.
Inputs to the algorithm:
Radius r of the Circle.
Expected output:
Area of the Circle

e Algorithm:
Stepl: Read\input the Radius r of the Circle
Step2: Area = PI*r*r // calculation of area
Step3: Print Area

56



Problem2: Write an algorithm to read two
numbers and find their sum.

* Inputs to the algorithm:
First num1.
Second num?2.

* Expected output:
Sum of the two numbers.

¢ Algorithm:
Stepl: Start
Step2: Read\input the first num1.
Step3: Read\input the second num2.
Step4: Sum =numl1+num?2 // calculation of sum
Step5: Print Sum
Step6: End

57



Problem 3: Convert temperature Fahrenheit to
Celsius

* Inputs to the algorithm:
Temperature in Fahrenheit

* Expected output:
Temperature in Celsius

¢ Algorithm:
Stepl: Start
Step 2: Read Temperature in Fahrenheit F
Step 3: C=5/9*(F32)
Step 4: Print Temperature in Celsius: C
Step5: End

58



Writing Algorithms Using Flowcharts

* A flowchart is a graphical representation of an algorithm.

*You can draw a flowchart on paper or using a flowcharting tool such as
Microsoft Visio. There are even flowcharting objects available in Microsoft
Office.

* When you draw a flowchart, you should use industry-standard shapes to
represent each step in the process. You usually draw the flow from top to
bottom or from left to right. Arrows connect the shapes to define the flow.

59



FLOWCHART SYMBOLS

* There are 6 basic symbols commonly used in flowcharting of assembly
language programs:
0 Terminal
0 Process
0 input/output
0 Decision
0 Connector and
0 Predefined Process.

* This is not a complete list of all the possible flowcharting symbols, it is the
ones used most often in the structure of programming language

60



Symbol

1 Dol @HDM

Name

Flow line

Terminal

Input/Output

Processing

Decision

Off page

Connector

Predefined

Annotation

Meaning

Used to connect symbols and indicate
the flow of logic.

Used to represent the beginning
(start) or the end (end) of a task.

Used for input and output operations,
such as reading and printing. The data
to be read or printed are described
inside.

Used for arithmetic and data-
manipulation operations. The
instructions arc listed inside the
symbol.

Used for any logic or comparison
operations. Unlike the input/output
and processing symbols, which have
one entry and one exit flow line, the
decision symbol has one entry and
two exit paths. The path chosen
depends on whether the answer to a
Qquestion is “yes” or “no”.

Used to indicate that the flowchart
continues to a second page.

Used to join different flow lines

Used to represent a group of
statements that perform one
processing task.

Used to provide additional

informatio ut another flowchart
symbol.



General Rules for flowcharting (1)

All boxes of the flowchart are connected with Arrows. (Not lines)
Flowchart symbols have an entry point on the top of the symbol
with no other entry points.

The exit point for all flowchart symbols is on the bottom except for
the Decision symbol.

The Decision symbol has two exit points; these can be on the sides
or the bottom and one side.

Generally a flowchart will flow from top to bottom. However, an
upward flow can be shown as long as it does not exceed 3 symbols.
Connectors are used to connect breaks in the flowchart. Examples
are:

e From one page to another page.

e From the bottom of the page to tI@Zop of the same page.

e An upward flow of more than 3 symbols



General Rules for flowcharting (2)

. Subroutines and Interrupt programs have their own and independent
flowcharts.

. All flow charts start with a Terminal or Predefined Process (for interrupt
programs or subroutines) symbol.

. All flowcharts end with a terminal or a contentious loop

63



Flowchart :

( Start )
/ Display “Hello Everybody...” /

End

Dry Run :

Hello Everybodly...
64



flowchart for going to the market to purchase a pen.




----------------
v
fit No YW= -] Flowchart to add

EXAMPLE

v two(2) numbers
Read th i
&= /D] and display the
number (A) resu It

Add the two
)\ YR

(C=A+B)

v

Show the
2 M SN A
(display C)

---------- g6 T



Input “Enter first number:” - a

l

Input “Enter first number:” - a

Print “Sum is :”,Sum

6

N



Example 2: Write an algorithm to find the sum of
two numbers.

Start FLOWCHART
* Pseudocode:
*Step 1 — Start W
*Step 2 —Input A
*Step 3 —Input B Read
*Step 4 —Calculate C=A+B B
*Step 5 —Output C
* Step 6 — Stop C=A+B Print C

68



Example 3: Write an algorithm to find the difference and the
division of two numbers and display the results.

* Pseudocode: FLOWCHART

Step 1: Start

Step 2: Input N1
Step 3: Input N2
Step 4: D=N1-N2
Step 5: V=N1/N2
Step 6: Output D
Step 7: Output V
Step 8: Stop

V=NI/N2 —7/Print DHPrint v
69



design an algorithm for finding the average of
six numbers, and the sum of the numbers

e Start

Get the sum

Average =sum /6 M

Output the average
Stop

Average = sum/6

70




flowchart to calculate the average of two
numbers.

Average =
(num1+num?2)/2

Print Average




input three numbers from the keyboard, ADD
and output the result.

* variables: sum, numberl, number2, number3 of type integer
Accept numberl, number2, number3
Sum = numberl + number2 + number3
Print sum
End program

72



Input numbers from the user and check whether
it is even or odd

Input “Enter a number :” = num

Print “Even”

Print “Odd”

End

73



Example 4. Design an algorithm and the corresponding flowchart for adding the

test scores as given below:
26,49, 98, 87,62, 75

*  a) Algorithm

Start

Sum=0

. Get the first testscore
Add first testscore to sum
Get the second testscore
Add to sum

Get the third testscore

Add to sum

© W NP VAW

Get the Forth testscore
10. Add to sum

11. Get the fifth testscore
12. Add to sum

13. Get the sixth testscore
14. Add to sum

15. Output the sum

16. Stop

Get first testscore

Add First testscore
To sum

et second testscore

Add second testscore

74

Get third restseore

Add third testscore
to sum

Add fifth testscore to sum

Add sixth testscore to
sum




Calculate Profit and Loss

Read Cost

No

Calculate Loss as
Cost - Income

Calculate Profit as
Income - Cost

| Print Loss | | Print Profit

p=rac




compute the volume of a sphere. Use the formula:
V = (4/3) *pi*r® where pi is equal to 3.1416
approximately.

Algorithm Flowchart
1. Start Start

2. Readr

3. vol=(4/3) *pr*r*r*r l

4. Prnt or display vol

5. Stop

vol = (4/3) *pi*r*r*r

]

‘Write vol — -

7 6 Stop



converts the input Celsius degree into its
equivalent Fahrenheit degree. Use the formula:

F =(9/5) *C+32.

Algorithm

1
2
3
4.
S.
6.

. Start
. Initialize F=0, C=0
. Read C

Fh=(18*C)+32

. Print or display Fh
. Stop

Flowchart

Start

!

C=0, F=0

Fh=(1.8*C) + 32
}

Write Fh — -
}

Stop

77



converts the input dollar to its peso exchange rate
equivalent. Assume that the present exchange
rate is 51.50 pesos against the dollar. Then display
the peso equivalent

Algorithm Flowchart

1. Start

2. Read dollar Start

3. peso=dollar * 51.50 l

4. Print or display peso

5. Stop Read dollar
peso = dollar * 51.50

‘Write peso —> -

78 1

Stop



converts an input inch(es) into its equivalent
centimeters. Take note that one inch is equivalent

to 2.54cms.

Algorithm

1. Start

2. Read inch
B
4
5

cm =254 *inch

. Print or display cm
5. Stop

Flowchart

Start




exchanges the value of two variables: x andy. The
output must be: the value of variable y will
become the value of variable x, and vice versa.

Algorithm Flowchart
1. Start
2. Readx y Start
3. Declare third variable. z l
z=x
=y Read =y
y=z
4. Print or display x. y l
5. Stop .
x=y
Y=z

Write x, y — _
80  +

Stop



to find the circumference of a circle. Use the
formula: C=21Tr, where T is approximately
equivalent 3.1416.

Algorithm Flowchart
1. Start
2. Readr Start
3. Calculate circumference by
the equation: l
Circum = 2*p1¥*r Read r

4.

5

Print Circum
Stop

}

Circum = 2*pi*r

v
Circum
8 1 Stop



takes as input the purchase price of an item (P), its expected
number of years of service (Y) and its expected salvage value
(S). Then outputs the yearly depreciation for the item (D). Use

the formula: D=(P-S) Y.

Algorithm

1. Start
2. ReadP

3. ReadS

4. Read Y

5. D=(PS)*Y

6. Print or display D
7. Stop

Flowchart

Start

]

Read P

}

Read S

|

Read Y

!

D=(P-S)*Y




Swapping of 2 variables without using
temporary (or 3™ variable).

Algorithm Flowchart
1. Start
2. Readxandy start
3. x=x+y
y=x-y l
X=xX-y Read x.y
4. Prnt or display x. v
5. Stop l
X=x1Yy
Yy=x-¥
E=X%Y



Determine the most economical quantity to be stocked for each product that a
manufacturing company has in its inventory: This quantity, called economic order
quantity (EOQ) is calculated as follows: EOQ=2rs/1 where: R= total yearly
production requirement S=set up cost per order I=inventory carrying cost per unit.

Algorithm Flowchart

1. Start

2. ReadR Start

3. Read$S

4. Readl o l

6. Print EOQ E

7. Stop l
Read S
Read I
EOQ=(2*R*S)1

Write EOQ —>

84 .

Stop



Write a program to compute the radius of a circle.
Derive your formula from the given equation:
A=TTr?, then display the output.

Algorithm Flowchart

1. Start
2. Readr Start
3. Calculate radius by

the equation:

1 = sqrt(A/p1) Read A ;
& ‘Waikhy —
5. Stop l
1 = sqrt(A/p1)

|
\\'rIe r — -
8 5 Stop



Find Perimeter Of Circle using Radius( pi =
3,14)

86



Solve Quadratic Equation az® +bz+c=0

87



CSC 201

CONTROL STRUCTURES OR LOGICAL STRUCTURES

88



CONTROL STRUCTURES OR LOGICAL
Contﬁl-[tBUeCaI B\gﬁo specify flow of control in programs. Any algorithm or program can be more

clear and understood if they use self-contained modules called as logic or control structures. It basically analyzes
and chooses in which direction a program flows based on certain parameters or conditions. There are three
basic types of logic, or flow of control, known as:

The key to better algorithm design and thus to programming lies in limiting the controlstructure to only three
constructs.

The sequence/sequential structure
Decision Structure or Selection Structure/conditional structure
Repetition or Iteration/looping Structure

The sequence structure

The first ty_Pe of control structures is called the sequence structure. This structure is the most elementary
structure. The sequence structure is a case where the steps in an algorithm are constructed in such a way that,
no condition step is required. The sequence structure is the logical equivalent of a straight line.

Sequential logic as the name suggests follows a serial or sequential flow in which the flow depends on the series
of instructions given to the computer. Unless new instructions are given, the modules are executed in the
obvious sequence.

89



Sequence

For example, suppose you are required to design an algorithm
for finding the average of six numbers, and the sum of the

numbers is given. The pseudocode will be as follows: M

Start

Get the sum
Average =sum /6 Average = sum/6
Output the average
Stop

The corresponding flowchart will appear as follows: W

90



e LJTULIDIVIL JLTLULLMIT VI JCICULULIVIT

Structure

® The decision structure or mostly commonly known as a selection structure, is case where
in the algorithm, one has to make a choice of two alternatives by making decision
depending on a given condition.

« Selection Logic simply involves a number of conditions or parameters which decides one
out of several written modules.

* Selection structures are also called case selection structures when there are two or more
alternatives to choose from.

* The selection requires the following
0 Choose alternative actions as a result of testing a logical condition
0 Produce code to test a sequence of logical tests

* The decision or selection structure can be implemented using

0 IF statement
0 Else statement
[ CASE statement 91



Using if statement

From this structure, we have the following

If condition is true then
Do Task-A

else

Do task B

In this case, if condition is false, nothing happens. Otherwise Task-A is
executed.

92



Making Choices....

* There are many occasions where a program is required to take alternative
actions.

* For example, there are occasions where we need to take action according
to the user choice.

* All computer languages provide a means of selection. Usually it is in the
form of If statement and our pseudo-code is no exception to this.

* We will use the if statement together with logical operators to test for
true or false as shown below.
Ifa=b
print “a =b”

* The action is only taken when the test is true.

93



The logical operators used in our pseudo-code are

= is equal to

> is greater than

<is less than

>=is greater than or equal
<=is less than or equal
<>is not equal to

94



Compound Logical Operators

* There are many occasions when we need to extend the conditions that are
to be tested. Often there are conditions to be linked.

* In everyday language we say things like If | had the time and the money |
would go on holiday. The and means that both conditions must be true
before we take an action.

* We might also say | am happy to go to the theatre or the cinema. The
logical link this time is or .

* Conditions in if statements are linked in the same way. Conditions linked
with and only result in an action when all conditions are true. For example,
if a>b and a > c then display “a is the largest”.

* Conditions linked with an or lead to an action when either or both are true.

95



Selection Example:

* The following shows how the selection control structure is used in a program
where a user chooses the options for multiplying the numbers or adding them or subtracting.

 Use variables: choice, of the type character
ans, numberl, number2, of ty)oe integer
display “choose one o[f the following
display “m for multiply”
display “a for add”
display “s for subtract”
accept choice
display “input two numbers you want to use”
accept numberl, number2

if choice = m then ans = number1 * number2
if choice = a then ans = number1 + number2
if choice = s then ans = numberl - number2
display ans

96



Example 2

* The program is to input a examination mark and test it for the award of a
grade. The mark is a whole number between 1 and 100. Grades are
awarded according to the following criteria:

>= 80 Distinction

>= 60 Merit

>= 40 Pass

<40 fail

* The pseudo-code is
Use variables: mark of type integer
If mark >= 80 display “distinction”
If mark >= 60 and mark < 80 display “merit”
If mark >= 40 and mark < 60 display “pass”
If mark < 40 display “fail”
97



Using else statement

* This structure can be illustrated in a flowchart as follows:

In pseudocode form we get

If condition is true

Then do task A

else

Do Task-B
In this example, the condition is evaluated, if the condition is true
i Task-A is evaluated and if it is false, then Task-B is executed.

98



Using else statement

* An if statement on its own is often not the best way of solving problems.
A more elegant set of conditions can be created by adding an else
statement to the if statement. The else statement is used to deal with

situations as shown in the following examples.
* The else statement provides a neat way of dealing with alternative

condition
Example : A person is paid at top for category 1 work otherwise pay is at

normal rate.
If the work is category 1
pay-rate is top

Else
pay-rate is normal

99



using case statement

* Repeating the if ... else statements a number of times can be somewhat
confusing. An alternative method provided in a number of languages is to
use a selector determined by the alternative conditions that are needed.
In our pseudo-code, this will called a case statement.

100



Example: The following program segment outputs a message to the monitor screen
describing the insurance available according to a category input by the user.

Using else statement

Use variables: category of type character
Display “input category”

Accept category

If category =U

Display “insurance is not available”

Else

If category = A then

Display “insurance is double”

Else

If category = B then

Display “insurance is normal”

Else

If category = M then

Display “insurance is medically dependent”
Else

Display “entry invalid”

Using case statement

Use variables: category of type character
Display “input category”

Accept category

DO case of category

CASE category =U

Display “insurance not available”

CASE category =A

Display “insurance is double”

CASE category =B

Display “insurance is normal”

CASE category =M

Display “insurance is medically dependent”
OTHERWISE

Display “entry is invalid”

ENDCASE

Note: wl&ﬂ of using the word otherwise, one can use else.



Repetition or Iteration Structure

* A third structure causes the certain steps to be repeated. Any program
instruction that repeats some statement or sequence of statements a

number of times is called an iteration or a loop. The commands used to
create iterations or loops

*The commands used to create iterations or loops are all based on logical
tests.

The Repetition structure can be implemented
using:

® Repeat Until Loop

¢ The While Loop

¢ The For Loop

102



The Repeat Until loop.

The syntax is

REPEAT

A statement or block of statements
UNTIL a true condition

* Example : A program segment repeatedly asks for entry of a number in the range 1
to 100 until a valid number is entered.

REPEAT

DISPLAY “Enter a number between 1 and 100”
ACCEPT number

UNTIL number < 1 OR number > 100

103



Example 2. A survey has been carried out to discover the most popular sport. The
results will be typed into the computer for analysis. Write a program to accomplish this.

* REPEAT
DISPLAY “Type in the letter chosen or Q to finish”
DISPLAY “A: Athletics”
DISPLAY “S: Swimming”
DISPLAY “F: Football”
DISPLAY “B: Badminton”
DISPLAY “Enter data”
ACCEPT letter
If letter = ‘A’ then
Athletics = athletics + 1
If letter = 'S’ then
Swimming = Swimming + 1
If letter ="F’ then
Football = Football + 1
If letter = ‘B’ then
Badminton = Badminton + 1
UNTIL letter = ‘Q’
DISPLAY “Athletics scored”, athletics, “votes”
DISPLAY “Swimming scored”, swimming, “votes”
DISPLAY “Football scored”, football, “votes”
DISPLAY “Badminton scored”, Badminton, “votes”

104



The WHILE loop

The second type of iteration we will look at is the while iteration. This type of
conditional loop tests for terminating condition at the beginning of the loop. In
this case no action is performed at all if the first test causes the terminating
condition to evaluate as false.

The syntax is:

WHILE (a condition is true)
A statement or block of statements
ENDWHILE

* Example 11: A program segment to print out each character typed at a keyboard
until the character 'q’ is entered.

* WHILE letter <> ‘q’
ACCEPT letter
DISPLAY “The character you typed is”, letter
ENDWHILE

105



Example 2: Write an algorithm that will output the square root of any number input
until the number input is zero.

In some cases, a variable has to be initialised before execution of the loop as
shown in the following example.

* Use variable: number of type real
DISPLAY “Type in a number or zero to stop”
ACCEPT number
WHILE number <> 0
Square = number * number
DISPLAY “The square of the number is”, square
DISPLAY “Type in a number or zero to stop”
ACCEPT number
ENDWHILE

106



The FOR Loop

The third type of iteration, which we shall use when the number of
iterations is known in advance, is a for loop.

* This, in its simplest form, uses an initialisation of the variable as a starting
point, a stop condition depending on the value of the variable. The variable
is incremented on each iteration until it reaches the required value.

* The pseudo-code syntax will be:
FOR (starting state, stopping condition, increment)
Statements
ENDFOR

107



e Example 1.
FOR(n=1,n<=4,n+1)
DISPLAY “loop”, n
ENDFOR

* The fragment of code will produce the output
Loop 1
Loop 2
Loop 3
Loop 4

* In the example, n is usually referred as the loop variable, or counting variable, or
index of the loop. The loop variable can be used in any statement of the loop. The
variable should not be assigned a new value within the loop, which may change
the behaviour of the loop.

108



Example 2: Write an algorithm to calculate
the sum and average of a series of numbers.

The pseudo-code solution is:

Use variables: n, count of the type integer

Sum, number, average of the tye real

DISPLAY “How many numbers do you want to input”
ACCEPT count

SUM =0

FOR(n=1,n<=count,n+1)

DISPLAY “Input the number from your list”
ACCEPT number

SUM = sum + number

ENDFOR

Average = sum / count

DISPLAY “The sum of the numbers is “, sum

109



% &, python’

Introduction to Programming with Python

110



Introduction to Python

* Python is a high-level programming language
* Open source and community driven

* “Batteries Included”
* a standard distribution includes many modules

* Dynamic typed
* Source can be compiled or run just-in-time

* Similar to perl, tcl, ruby

1M



Features of Python
Python is a high-level, interpreted, interactive and object
oriented-scripting language. Python was designed to be highly readable
which uses English keywords frequently where as other languages use
unctuation and it has fewer syntactical constructions than other
anguages.

*Python is Interpreted: This means that it is processed at runtime by the
interpreter and you do not need to compile your program before executing
it. This is similar to PERL and PHP.

* Python is Interactive: This means that you can actually sit at a Python
prompt and interact with the interpreter directly to write your programs.

. P\()thon is Object-Oriented: This means that Python supports
Object-Oriented style or technique of programming that encapsulates
code within objects.

*Python is Beginner's Language: Python is a great language for the
beginner programmers and supports the development of a wide range of
applications, from simple text processing to WWW browsers to games.

112



* Python's feature highlights include:

¢ Easy-to-learn: Python has relatively few keywords, simple structure, and a clearly defined syntax.
This allows the student to pick up the language in a relatively short perlod of time.

* Easy-to-read: Python code is much more clearly defined and visible to the eyes.
e Easy-to-maintain: Python's success is that its source code is fairly easy-to-maintain.

* A broad standard library: One of Python's greatest strengths is the bulk of the library is very
portable and cross-platform compatible on UNIX, Windows, and Macintosh.

* Interactive Mode: Support for an interactive mode in which you can enter results from a terminal
right to the language, allowing interactive testing and debugging of snippets of code.

* Portable: Python can run on a wide variety of hardware platforms and has the same interface on
all platforms.

* Extendable: You can add low-level modules to the Python interpreter. These modules enable
programmers to add to or customize their tools to be more efficient.

* Databases: Python provides interfaces to all major commercial databases.

* GUI Programming: Python supports GUI applications that can be created and ported to many
system calls, libraries, and windows systems, such as Windows MFC, Macintosh, and the X
Window system of Unix.

* Scalable: Python provides a better structure and support for large programs than shell scripting.

113



Apart from the above mentioned features, Python has a big list of good features, few

are listed below:

* Support for functional and structured programming methods as well as OOP.

* It can be used as a scripting language or can be compiled to byte-code for building
large applications.

* Very high-level dynamic data types and supports dynamic type checking.

* Supports automatic garbage collection.

* It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus”
and has nothing to do with nasty reptiles. Making references to Monty Python skits in
documentation is not only allowed, it is encouraged!

Python 3 is available for Windows, Mac OS and most of the flavors of Linux operating
system. Even though Python 2 is available for many other OSs, Python 3 support either
has not been made available for them or has been dropped.

114



Assignment 1:

DOWNLOAD PYTHON INTERPRETER
Installing Python Programming Language

Getting Python on Windows platform:
Binaries of latest version of Python 3 are available on Python Official Website.

For versions 3.0 to 3.4.x, Windows XP is acceptable. In order to install Python 3.5 to 3.8- minimum OS
requirements are Windows 7 with SP1. Python 3.9+ cannot be used on Windows 7 or earlier.

Python 3.11 is the newest major release of the Python programming language:

The most up-to-date and current source code, binaries, documentation, news, etc., is available on the
official website of Python. You can download Python documentation from the site. The documentationis
available in HTML, PDF and PostScript formats.

Python Official Website: http://www.python.org/Python Official Website: http://www.python.or;

.

You can create and run python codes on your mobile devices. There are so many python 3 interpreter
and IDE available on Google and IOS play store. For example, Pydroid 3 on Android phone.

* -Understand the following:
i. Local Environment Setup
iil. Running Python 1 1 5



First Python Program

eInteractive Mode Programming
Invoking the interpreter without passing a script file as a parameter brings up the
following prompt-

$ python

Python 3.3.2 (default, Dec 10 2013, 11:35:01)

[GCC 4.6.3] on Linux

Type "help"”, “copyright", "credits", or "license" for more information.
>>>

on Windows:

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on
win32

Type "copyright”, "credits” or "license()" for more information.

>>>

Type the following text at the Python prompt and press Enter-

>>> print ("Hello, Python!")

116



Program Elements

* [dentifiers:
» Variables:
* Reserved words

117



Python Identifiers

» A Python identifier is a name used to identify a variable,
function, class, module or other object. An identifier starts
with a letter Ato Z or a to z or an underscore ( _ ) followed
by zero or more letters, underscores and digits (0 to 9).

* Must begin with letter or underscore, followed by any number
of letters, digits, underscores

118 0



Rules for writing identifiers

+ |dentifiers can be a combination of letters in lowercase (a to z) or uppercase
(A to Z) or digits (0 to 9) or an underscore _.

Valid examples: Names like myClass, var_1 and print_this_to_screen,

+ An identifier cannot start with a digit.
1variable is invalid, but variable1 is perfectly fine.
+  Keywords cannot be used as identifiers.
>>> global = 1
File "<interactive input>", line 1
global =1

A

SyntaxError: invalid syntax

119



Rules for writing identifiers

We cannot use special symbols like !, @, #, $, % etc. in
our identifier.
>>>a@ =0
File "<interactive input>", line 1

a@ =0
A

SyntaxError: invalid syntax

Identifier can be of any length.

120 i



Case-sensitivity

» Python is a case-sensitive language. This means,
Variable and variable are not the same.

* Thus, Manpower and manpower are two different
identifiers in Python.

121



Variables
 Variables:
—Do not need to be declared

— A variable is created when a value is assigned to it:
Examples: num = 3

—Can’t be used in an expression unless it has a value

—Error message: Name Error — means no value is
associated with this name

122



Variables

* In many programming languages, variables
are statically typed. That means a variable is  >ss yar=235
initially declared to have a specific data type, >>> print(var)
and any value assigned to it during its 23.5
lifetime must always have that type.

>>> var = "Now I'm a string
>>> print(var)

» Variables in Python are not subject to this Now I'm a string

restriction. In Python, a variable may be
assigned a value of one type and then later
re-assigned a value of a different type:

» Variable names don’t have static types — values (or objects) do
A variable name has the type of the value it currentlxlrieé;nces



Variables contain references to data values

Variables actually contain

references to values (similar A = A=A*2 A
to pointers).

This makes it possible to
assign different object types
to the same variable

A="“cat’

Python handles memory management automatically. It will create new objects and store
them in memory; it will also execute garbage collection algorithms to reclaim any
inaccessible memory locations.

Python does not implement reference semantics for simple variables; if A= 10 and B =
A, A=A+ 1 does not change the value of B

124 "



Reserved Words

The following list shows the Python keywords. These are reserved
words and you cannot use them as constants or variables or any
other identifier names. All the Python keywords contain lowercase
letters only.

125 8



Reserved words

and exec Not
as finally or
assert for pass
break from print
class global raise
continue if return
def import try
del in while
elif is with
else lambda yield
except

126
LIESa S



Lines and Indentation

» Python does not use braces ({}) to indicate blocks of code for class and
function definitions or flow control. Blocks of code are denoted by line
indentation, which is rigidly enforced.

« The number of spaces in the indentation is variable, but all statements within
the block must be indented the same amount. For example-

if True:
print ("True")
else:

print ("False")

However, the following block generates an error-

if True:
print ("Answer")
print (“True")
else:

print *(Answer")

print ("False")

Thus, in Python all the continuous lines indented witﬂ ﬂgsame number of spaces would
form a block.



Multi-Line Statements
 Statements in Python typically end with a new line.
Python, however, allows the use of the line continuation
character (\) to denote that the line should continue. For

example

total = item_one + \

item_two + \

item_three

* The statements contained within the [], {}, or () brackets
do not need to use the line continuation character. For

example

days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

1
|

28 19



Quotation in Python

* Python accepts single ('), double (") and triple ("' or """)
quotes to denote string literals, as long as the same type
of quote starts and ends the string.

» The triple quotes are used to span the string across
multiple lines. For example, all the following are legal

word = 'word'
sentence = "This is a sentence."”
paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

129 20



Comments in Python

* A hash sign (#) that is not inside a string literal is the
beginning of a comment. All characters after the #, up to
the end of the physical line, are part of the comment and
the

* Python interpreter ignores them.

# First comment

print ("Hello, Python!") # second comment

This produces the following result-

Hello, Python!

130 2



* You can type a comment on the same line after a
statement or expression

name = "Madisetti" # This is again comment

* Python does not have multiple-line commenting feature.
You have to comment each line individually as follows-

# This is a comment.
# This is a comment, too.
# This is a comment, too.

# I said that already.

157



Using Blank Lines

* Alline containing only whitespace, possibly with a

comment, is known as a blank line and Python totally
ignores it.

* In an interactive interpreter session, you must enter an
empty physical line to terminate a multiline statement.

132

23



Interesting Features
* White space does indicate meaning

—Instead of curly brackets or begin-end pairs,
whitespace is used for block delimiters.

—Indent statements in a block, un-indent at end of
block.

* Statements are terminated by <Enter>
* No variable declarations
* Dynamic typing

133

24



Python Basics

DR. B.O. AKINYEMI

134



Interactive Input statements
The input function is a simple way for your program to get information from
people using your program. The basic structure is:
variable = input(“string”)
variable name = input(message to user)
Here is an example:
>>>name = input('"Enter your name: ')

input() reads input from the keyboard as a string;

The input function’s job is to ask the user to type something in and to capture
what the user types. The part in quotes is the prompt that the user sees. Itis

called a string and it will appear to the program’s user exactly as it appears in
the code itself.

135



Input statements- numeric data

+ To get numeric data use a cast :
>>> number = int(input("enter an integer: "))
enter an integer: 87
>>> number
87

+ If types don’t match (e.g., if you type 4.5 and try to cast it as an integer) you
will get an error:

* Multiple inputs:
>>> x, y = int(input(“enter an integer: ")),
float(input("enter a float: "))
enter an integer: 3
enter a float: 4.5
>>> print("x is", x,"yis ", y)
xis3 yis 4.5 136



Input statements- eval() function

* Instead of the cast you can use the eval( ) function and Python
choose the correct types:

>>> x, y = eval (input ("Enter two numbers: "))

Enter two numbers: 3.7, 98

>>> x, y

(3.7, 98)

137



Output Statements

+ Statement syntax: (EBNF notation)
print ({expression,})
where the final comma in the list is optional
» Examples:
>>>print() # prints a blank line
>>>print(3, y, z + 10) # go to new line
>>>print('result: ', z, end="" ")# no newline
» Output items are automatically separated by a single space.
>>>name = input('Enter your name: ')

>>>print('Hello, ', name)

138



Exercise 1

temp = eval(input ('Enter a temperature in Celsius: "))

print ('In Fahrenheit, that is', 9/5+temp+32)

Let’s examine how the program does what it does. The first line asks the user to enter a tempera-
ture. The input function’s job is to ask the user to type something in and to capture what the user
types. The part in quotes is the prompt that the user sees. It is called a string and it will appear to
the program’s user exactly as it appears in the code itself. The eval function is something we use
here, but it won't be clear exactly why until later. So for now, just remember that we use it when
we're getting numerical input.

We need to give a name to the value that the user enters so that the program can remember it and
use it in the second line. The name we use is temp and we use the equals sign to assign the user’s
value to temp.

The second line uses the print function to print out the conversion. The part in quotes is another
string and will appear to your program’s user exactly as it appears in quotes here. The second

argument to the print function is the calculation. Python will do the calculation and print out the

numerical result.
139 6



Assignment Statements

It calculates the value of the expression to the right of the equal sign and assigns

that value to the variable named on the left of the equal sign.

Syntax: variable = expression
Example
D=2*A*B, Test=4>=8

A variable’s type is determined by the type of the value assigned to it.
Multiple assignment —var{, var} = expr{, expr)

>>> X,y = 4’ 7
>>> X

4

>>>y

7

>>>X, Y =Y, X
>>> X

7
>>>y

4
140



Expression, Operators and Operands

Expression can be any valid combination of constants, variables, parentheses and arithmetic and
logical operators. Tables 1.1 and 1.2 respectively described arithmetic and relational operators.

The operators indicate what action or operation to perform. The operands
indicate what items to apply the action to.

Table 1.2 Arithmetic Operators Table 1.2 Relational Operators
il Addition = Equal to (
= Subtraction /= Not equal to
> Greater than
* Multiplication
>= Greater than or equal to
/ Division
& Less than
= 2 o
Exponentiation <= Less than or equal to

Logical operators are words (and, or, not) not symbols



Precedence Rule

A set of formation rules is used to establish the interpretation
of an arithmetic expression that contains two or more
operators. This rule determines the order in which the
operands are to be combined unless the order is changed by
the use of parentheses. The precedence of the arithmetic
operators is as follows:

_Operateor| Erecedence
kel Highest
* and / Intermediate
+ and - Lowest




Expressions

» An expression calculates a value
* Arithmetic operators: +, -, *, /, ** (exponentiation)

» Add, subtract, multiply, divide work just as they do in
other C-style languages (BEDMAS)

* OR---A common mnemonic to remember this rule is
PEMDAS, or Please Excuse My Dear Aunt Sally.

» Spaces in an expression are not significant

» Parentheses override normal precedence
143 1



Expressions
* Mixed type (integer and float) expressions are converted to
floats:

>>>4%20/6
1.3333333333333333

» Mixed type (real and imaginary) conversions:

>>>x=5+13j
>>>y=3.2
>>>Z:x+y
>>>7
(8.2+137))

 Explicit casts are also supported:
>>>y=4999 >>>x=8
>>> int(y) >>> float(x)

4 8.0 144



1. ifx=2.0, a=2.0 and b=4.0. What is the value of y if:
y = a*x+b**2/x ?
i. 8.0
i. 12.0
iii. 16.0
iv. 32.0
V. 64.0

2. If x=1.5,i=3, and j=2. What is the value of y if:

y =2*X +ilj
i. 3.0
ii. 3.5
i. 4.0
iv. 4.5
v. 50

145



3. If x=4.5, y=3.0, and w=1.5, What is the value of z if: z = x+w/y+1
i. 1.5

i. 3.0

ii. 4.5

iv. 6.0

v. not determined due to a Syntax error

4. if x=1.0, y=2.0 and w=3.0. What is the value of z if:
z=2.0(x(y+3.0)+w)
i. 12.0

i. 16.0

iii. 18.0

iv. 22.0

v. not determined due to a syntax error

146



5. Ify =c/d + a*x**2-5
Which operation is performed first by the computer?
i/
i. +
iii. *
iv. **

6. Which of the following set of integers are incorrect
i) 1,234 ii)-345 iii)0 iv)12.0 v)--3

a) None of the above

b) All of the above

c) i,ii,v

d) i,iv,v

147



Exercise

A program that computes the average of two numbers that the user enters:

num1 = eval(input('Enter the first number: "))
numz2 = eval(input('"Enter the second number: "))
print('The average of the numbers you entered is', (num1+numz2)/2)

* For this program we need to get two numbers from the user. There are ways to
do that in one line, but for now we’ll keep things simple. We get the numbers one
at a time and give each number its own name.

» The only other thing to note is the parentheses in the average calculation. This is
because of the order of operations. All multiplications and divisions are
performed before any additions and subtractions, so we have to use parentheses
to get Python to do the addition first.

148 "



Points to Understand the Code

Case: Case matters. To Python, print, Print, and PRINT are all different things.
For now, stick with lowercase as most Python statements are in lowercase.
Spaces: Spaces matter at the beginning of lines, but not elsewhere. (Indentation
matters to meaning the code). For example, the code below will not work.
temp = eval(input('Enter a temperature in Celsius: "))
print('In Fahrenheit, that is', 9/5*temp+32)
— Block structure indicated by indentation
The first assignment to a variable creates it
— Dynamic typing: no declarations, names don'’t have types, objects do
Assignment uses = and comparison uses ==
For numbers + - */ % are as expected.
— Use of + for string concatenation.
— Use of % for string formatting (like p;lirﬁfé'n C)



PYTHON DATA TYPES

DR. B.O. AKINYEMI

150



Python data types

*Python data types are divided in two categories,
mutable data types and immutable data types.

*Immutable Data types in Python — cannot be
changed
1. Numeric
2. String
3. Tuple
*Mutable Data types in Python
1. List
2. Dictionary
3. Set 151



Basic Data Types

* Numeric types: integer, floats, complex

* A literal with a decimal point is a float; otherwise an
integer

* Complex numbers use “4” or “J” to designate the
imaginary part: X =5 + 2j

* type() returns the type of any data value:

int() float()
152



>>> type(15)
<class 'int'>
>>> type (3.)
<class 'float'>
>>> x = 34.8
>>> type (x)
<class 'float'>

Data Types

>>> 15 * 13
(-1+03)

>>> s =3 + 1j

>>> type(s)

<class 'complex'>
>>> x = "learning”
>>> type (x)

<class 'str'>

153



Numeric Data Type in Python

*Integer — In Python 3, there is no upper bound on
the integer number which means we can have the
value as large as our system memory allows.

# Integer number

num = 100

print(num)

print("Data Type of variable num is", type(num))

* Output:
100

Data Type of variable num isjsglass ‘int’>



Data Types in Python

* Python Numbers
* Python List

* Python Tuple

» Python Strings

* Python Set

* Python Dictionary

155



Basic Datatypes

* Integers (default for numbers)
z=5/2 # Answer 2, integer division
* Floats
x = 3.456
+ Strings
« Canuse”..." or’..." to specify, "foo" == 'foo’
» Unmatched can occur within the string
“John’s” or ‘John said “foo!”.’
* Use triple double-quotes for multi-line strings or

strings than contain both * and “ inside of them:
“““a‘bHCHHU

156



* Long — Long data type is deprecated in Python 3 because there is no need for it, since the
integer has no upper limit, there is no point in having a data type that allows larger upper
limit than integers.

* Float — Values with decimal points are the float values, there is no need to specify the data
type in Python. It is automatically inferred based on the value we are assigning to a

variable. For example here fnum is a float data type.
# float number
fnum = 34.45
print(fnum)
print("Data Type of variable fnum is", type(fnum))

157



Complex Number
*Numbers with real and imaginary parts are known as
complex numbers.
# complex number
cnum = 3 + 4
print(cnum)
print("Data Type of variable cnum is", type(cnum))

*Qutput:
(3+4])

Data Type of variable cnum is <class 'complex's>



Binary, Octal and Hexadecimal numbers

* In Python we can print decimal equivalent of binary, octal and hexadecimal
numbers using the prefixes.

*Ob(zero + ‘b’) and 0B(zero + ‘B’) — Binary Number

*0o(zero + ‘0’) and 00(zero + ‘O’) — Octal Number

* 0x(zero + ‘x’) and 0X(zero + ‘X’) — Hexadecimal Number
# integer equivalent of binary number 101

num = 0b101
print(num)

# integer equivalent of Octal number 32
num2 = 0032
print(num?2)

# integer equivalent of Hexadecimal number FF
num3 = OxFF
print(num3)

159



Python Data Type — String

*String is a sequence of characters in Python. The data type of String
in Python is called “str”.

*Strings in Python are either enclosed with single quotes or double
quotes.

*# Python program to print strings and type

s ="This is a String"
s2 ='This is also a String'

This is a String

# displaying string s and its type <class 'str's
print(s) This is also a String
print(type(s)) ok

# displaying string s2 and its type
print(s2)
print(type(s2)) 160



Python Data Type — Tuple
* Tuple is immutable data type in Python which means it cannot be changed. It is
an ordered collection of elements enclosed in round brackets and separated by
commas
# tuple of integers
t1=(1,2,3,4,5)
# prints entire tuple

print(t1) (1, 2, 3, 4, 5)
hi
# tuple of strings hello
t2 = ("hi", "hello", "bye") bye
# loop through tuple elements 45
for sin t2:
print (s)

# tuple of mixed type elements
t3 = (2, "Lucy", 45, "Steve")
print(t3[2]) 161



Python Data Type — List

* List is similar to tuple, it is also an ordered collection of elements, however list
is a mutable data type which means it can be changed unlike tuple which is an
immutable data type. A list is enclosed with square brackets and elements are
separated by commas.

# list of integers
lis1=(1,2,3,4,5)
# prints entire list

print(lis1)
# list of stri o Eheh
ist of strings
lis2 = ("Applg", "Orange", "Banana") Apple
# loop through tuple elements Orange
for x in lis2: Banana
print (x) Element at index 3 is: BeginnersBook

# List of mixed type elements
lis3 = (20, "Chaitanya", 15, "BeginnersBook")
print("Element at index 3 is:",lis3[3])

162



. Dictli)oxgg(i)snc\ glzltetc?clio?gﬂgy_an]d)\};ﬁtt,lleoplz}?rsrx dictionary doesn’t allow
duplicate keys but the values can be duplicate. It is an ordered, indexed and
mutable collection of elements.

*The keys in a dictionary doesn’t necessarily to be a single data type,

* # Dictionary example

dict = {1:"Chaitanya","lastname":"Singh", "age":31}

# prints the value where key value is 1

print(dict[1])

# prints the value where key value is "lastname"

print(dict["lastname"])

# prints the value where key value is "age"

print(dict["age"]) Chaitanya
Singh

31




Python Data Type — Set

* A set is an unordered and unindexed collection of items. This means when we
print the elements of a set they will appear in the random order and we cannot
access the elements of set based on indexes because it is unindexed.

* Elements of set are separated by commas and enclosed in curly braces.
* Set Example

myset = {"hi", 2, "bye", "Hello World"}

# loop through set

for a in myset: Hello World
print(a) 2
# checking whether 2 exists in myset hi
print(2 in myset) ?ﬁse
yradding new elehigx {"Hello World", 2, 99, 'hi’, 'bye'}
myset.add(99)

print(myset)
164



Python Programming Examples

DR. B.O. AKINYEMI

165



Python program to print Hello World

# This prints Hello World on the output screen
print(‘Hello World')

*Qutput:
Hello World

166



Getting Input from User in Python
*input() function is used in Python to get user input.

*Get String input from user
# Python Program - Get String Input from User
str = input("Enter any string: ")
print(str)

*Output:
Enter any string: AKINYEMI

AKINYEMI
167



Get Integer Input from user

# Python Program - Get Integer Input from User
num = int(input("Enter an Integer: "))
print(num)

*Output:

Enter an Integer : 10
10

168



Get Float Input from user

# Python Program - Get Float Input from User
num = float(input("Enter a float value: "))
print(num)

*Output:
Enter a float value: 25.5
25.5

169



Python Program to Add Two Numbers

*hardcoded values in the source code:
# two float values
vall = 100.99
val2 =76.15
# Adding the two given numbers
sum = float(vall) + float(val2)
# Displaying the addition result

print("The sum of given numbers is: ", sum)

¢ Output:
The sum of given numbersis: 177.14 170



* Adding the numbers entered by User
# Getting the values of two numbers from user
vall = float(input("Enter first number: "))
val2 = float(input("Enter second number: "))
# Adding the numbers

sum =vall + val2

# Displaying the result

print("The sum of input numbers is: ", sum)

Output:

Enter first number: 10

Enter second number: 35.2 171
The sum of input numbers is: 45.2



Using built-in functions

*Note: The reason we used the float() function over the input()
function is because the input() function receives the value as
String, so to convert it into a float number we must use the
float() function

*|f integer numbers:
vall = int (input("Enter first number: "))
The int() function converts the given string into an integer number

*|f Binary
vall = bin (input("Enter first number: "))
The bin() function converts the given string into a binary number
172



Program for adding two binary numbers
# decimal value 1

numl ='00001'
# decimal value 17
num?2 = '10001'

# sum - decimal value 18
# binary value 10010
sum = bin(int(hum1,2) + int(hum2,2))
print(sum)
* Conversion of the string(which is a binary value) into an integer number so

we are passing the base value as 2 (binary numbers have base 2, decimals
have base value 10).

*Once the strings are converted into an integer values then we are adding

them and the result is converted back}tg@Binary number using the bin()
function



Python Program for simple interest

*Simple interest formula is given by:
Simple Interest = (P x T x R)/100
Where,

P is the principle amount

T is the time and

R is the rate

# Python program to find simple interest
SI=(P*R*T)/100
# Print the resultant value of SI
print("simple interest is", SI)

174



Python Program for Program to find area of a
circle

*Area of a circle can simply be evaluated
using following formula.
Area = pi * r2
where r is radius of circle

# Python program to find Area of a circle
Pl =3.142
Area= Pl * (r*r)
print("Area is”, Area));

175



Python Program for compound interest

* Formula to calculate compound interest annually is given by:

Compound Interest = P(1 + R/100)"
Where,

P is principle amount
R is the rate and
T is the time span

# Python program to find compound interest for given values.

Cl = principle * (pow((1 + rate / 100), time))
print("Compound interest is", Cl)

176



Python in-Built Math Functions

*Evaluating some complex mathematical operations like
trigonometric operations, logarithmic operations, etc.

*The math module is the standard module in Python, and it
is always available to work with complex scientific
calculations.

* If we want to use mathematical functions under the math
module, first, you have to import the module using import
math statement in your program. After that, you can call
any method of that module.

*The math module does not support the complex data
types. For that, you can use the cmath module for the
complex counterpart. 177



Examples: PI

# calculating Pl
import math
print('The value of PI:', math.pi)

Output: The value of PI: 3.141592653589

178



Python Power Function

pow(x,y,z)
The pow() method returns the value of x to power of y (xY).

X Anumber, the base

# calculating power

y Anumber, the exponent

import math
. 7 Optional. A number, the
print(math.pow(2, 3)) modulus
Output:
8.0

179



Python Math Trigonometric Functions

*All the trigonometric functions are available in python math
module, so you can easily calculate them using sin(), cos(),
tan(), acos(), asin(), atan% etc functions.

*Also ,you can convert angles from degree to radian and radian
to degree. The given angle is : 1.570796326794896!

# Trig functions
import math
anglelnDegree = 90 :
anglelnRadian = math.radians(anglelnDegree)
print('The given angle is :', anglelnRadian)
print('sin(x) is :', math.sin(anglelnRadian))
print('cos(x) is :', math.cos(anglelnRadian))
print('tan(x) is :', math.tan(anglelfge’dian))




Class Exercises

1. Write a Python program which accepts the radius of a circle from the
user and compute the area.

from math import pi
r = float(input ("Input the radius of the circle : "))

print ("The area of the circle with radius " + str(r) + " is: " + str(pi *
r**2))

181



2. Write a Python program that will accept the base and height of a
triangle and compute the area.

b = int(input("Input the base : "))
h = int(input("Input the height : "))
area =b*h/2

print("area =", area)

182



3. Write a Python program which accepts the user's first and last name
and print them in reverse order with a space between them.

fname = input("Input your First Name : ")
Iname = input("Input your Last Name : ")

print ("Hello " + Iname + " " + fname)

183



ASSIGNMENT

Write a python program that calculates the factorial of a number

Write a python program that computes the real roots of a quadratic
equation.

184



Python Lecture
Functions and Modules

CSC 201
WEEK 6 LECTURE

185



Modular Programming

Modular programming is the process of subdividing a
computer program into separate sub-programs.

A module is a separate software component. It can often be
used in a variety of applications and functions with other
components of the system. Similar functions are grouped in
the same unit of programming code and separate functions
are developed as separate units of code so that the code can
be reused by other applications.

186



Advantages of Modular
Programming

Less code has to be written.

A single procedure can be developed for reuse, eliminating
the need to retype the code many times.

Programs can be designed more easily because a small team
deals with only a small part of the entire code.

Modular programming allows many programmers to
collaborate on the same application.

The code is stored across multiple files.
Code is short, simple and easy to understand.

Errors can easily be identified, as they are localized to a
subroutine or function.

The same code can be used in many applications.
The scoping of variables can ed8l§ be controlled.



Functions

* A function is a device that groups a set of statements so they
can be run more than once in a program( a packaged
procedure invoked by name).

* Functions are also the most basic program structure python
provides for maximizing code reuse.

* Functions could also be called subroutines and procedures in
other programming environments.

188



Why do we need functions?

Maximizing code reuse and minimizing redundancy: because
a function allows us to code an operation in a single place and
use in many places. Hence reduce code redundancy in our
programs and thereby reduce maintenance effort.

Procedural decomposition-Functions provide a tool for
splitting systems into pieces that have well defined roles i.e it
allows to debug the parts one at a time and then assemble
them into a working whole.

Well designed functions are often useful for many programs,
i.e once you write and debug one you can reuse it.

Makes program easy to read and debug.

Reduce size of code by eliminating repetitive code ( i.e later if
you make a change ,you only have to make it in one place.

189



Defining Functions in Python

Functions in python are defined using the def statement
Function blocks begin with the keyword def followed by the
function name and parentheses ().

Any input parameters or arguments should be placed within
these parentheses.

You can also define parameters inside these parentheses.

The code block within every function starts with a colon : and is
indented.

The statement return [expression] exits a function, optionally
passing back an expression to the caller. A return statement with
no arguments is the same as return None.

190



The def statement creates a function object and assigns it to a
name

def functionname( (parameters)argl, arg2, arg3,.......... ,argN):
Statements
Function bodies often contain a return statement:
def functionname(argl,arg2,......,argN):
return [expression]
Note: Two types of functions are available in python: built in

such as dir(), len() or abs() and user defined functions.

191



def fun()......ccoovvvneeeee.

fun ()
fun.attr=value

e.g def times(x,y):
return x*y

times(2,4)
returns 8
x=times(3.14,4)
x=12.56

and

>>> times(‘Ni’,4)
NiNiNiNi

............ # Create function object

# Call object
# Attach attributes

# Create and assign function
# Body executed when called

# Arguments in parentheses

# Save the result object

192



Functions types

always available for usage
those contained in external modules
programmer defined

We also have built in functions

>>>type(32) >>>|nt (-2.3)
-<type ‘int’> -2
>>>float (32)

32.0

>>>int(‘Hello’)
ValuekError, Invalid literal for Int(): Hello

>>> int (3.99999)
3

193



The following function takes a string as input parameter and
prints it on a standard screen

Function definition is here
def printme(str):
“This prints a passed string into this function”
print (str)
return
Now you can call printme function
printme(“ This is first call to the user defined function!”)
printme(“ Again second call to the same function”)
When the above is executed it produces the following result
This is first call to the user defined function!
Again second call to the same function

194



Local and Global scope

Variables that are defined inside a function body have a local
scope and those defined outside the function body have a

global scope

#Global Scope

x=99

def func(y):

#Local Scope

Z=x+y

return z

e.g func(1)
result=100

# x and func assigned in module: global
#vy and z assigned in function: local

# x is global

# func in module:

195



Global xis global because it is assigned at the top level of the
module file

Local y, z: y and z are local to the function (and exist only
while the function runs) because they are both assigned
values in the function definition

z by virtue of the statement
y because arguments are always passed by assignment

196



Example2
total=0 # this is a global variable
# Function definition is here
def sum(argl,arg2):
# Add both parameters and return them.
total=argl+arg2; # Here total is local variable
print(“Inside the function local total:”,total)
return total
# Now you can now call sum function
sum(10,20)
print(“ Outside the function global total):”, total)
Result
Inside the function local total:30

Outside the function global total:0
197



Categories of Functions
Fruitful functions- functions that yield results e.g math functions
Other functions that do not return a value are called void

functions.
The return keyword is used to return value no return returns

None
e.g def print-twice(bruce):
print bruce
print bruce

198



>>> print_twice(‘Spam’)

Spam

Spam
>>>print_twice(17)

17

17
>>>n=][1,2,3,4,5]
>>> def stats(x):

mx = max(x)

mn = min(x)

In = len(x)

sm = sum(x)

199



return mx, mn, In, sm
>>> mx, mn, In, sm = stats(n)
>>> print stats(n)
(5,1, 5, 15)
>>>
>>> print mx, mn, In, sm
51515
Function arguments
single arguments
multiple arguments

200



Pass by Reference vs Value

All parameters (arguments) in the python language are

passed by reference. It means that if you change what a
parameter refers to within a function, the change also reflects
back in the calling function.
Passing by reference means the called functions' parameter
will be the same as the callers' passed argument (not
the value, but the identity - the variable itself). Pass by
value means the called functions' parameter will be a copy of
the callers' passed argument. ... Java only supports pass by
value.

201



def changeme(mylist):
“This changes a passed list into this function”
print(“ Values inside the function before change:”, mylist)
mylist[2]=50
print(“ Values inside the function after change:”, mylist)
return
if you now call changeme function
mylist=[10,20,30]
changeme(mylist)
print(“Values outside the function”, mylist)
Values inside the function before change:[10,20,30]
Values inside the function after change:[10,20,50]
Values outside the function[10,20,50]

202



Definitions

A method: Is a piece of code that is called by name that is
associated with an object. In most respects it is identical to a
function except for two key differences

It is implicitly passed for the object for which it is called

It is able to operate on data that is contained within the class
Pass by Value- Means copying the value from the argument
variable into the parameter variable i.e Parameters are the
placeholders for arguments.

Pass by Reference -means creating a new reference to variable
value that refers to the argument variable and putting that in the
parameter variable.

Parameter-A parameter is the variable which is part of the
method’s signature(method declaration)

Argument-An argument is an expression used when calling the

203

method



Python Modules

A module allows you to logically organize your python code.
Grouping related code into a module makes the code easier to
understand and use.

A module is a file consisting of python code. A module can define
function, classes and variables .A module can also include
runnable code.

What are modules for?

Python modules are used to organize Python code. For example,
database related code is placed inside a database module,
security code in a security module etc.

Smaller Python scripts can have one module. But larger programs
are split into several modules.

Modules are grouped together to form packages.



Modules names

A module name is the file name with the .py extension.

When we have a file called empty.py, empty is the
modulename.

The __name__ is a variable that holds the name of the module
being referenced.

The current module, the module being executed (called also the
main module) and it has a special name:'__main__". With this
name it can be referenced from the Python code.

205



Example of a simple module support.py
def print_fun(par):
print “Hello:”, par
return
You can use any python source file as a module by executing an
import statement in some other python source file
The syntax is
import modulel[,module2],.....moduleN]
For example # import module support
import support
#Now you can call defined function
support.print_func(“zara”
When the above code is executed it produces the following
Results. Hello: zara

206



Python’s from statement lets you import specific attributes
from a module into the current namespace

The from......import has the following syntax
from modname import namel[,name2],......nameN]]
e.g to import the function Fibonacci from the module fib
#fibonacci numbers module
def fib(n): #return Fibonacci series up to n
result=[]
a,b=0,1
while b<n:
result.append(b)
a,b=b, a+b
return result

207



>> from fib import fib

>>fib(100)

[1,1,2,3,5,8,13,21,34,55,89]

Hence this statement does not import the entire module fib into
the current namespace; it just introduces the item Fibonacci
from the module fib into the global symbol table of the importing
module.

The from import* statement

It is also possible to import the names from a module into the
current namespace by using

from modname import*

This provides an easy way to import all the items from a module
into the current namespace; however this statement should be
used sparingly.

208



Frequently used modules

sys Information about Python itself (path, etc.)

os Operating system functions

os.path Portable pathname tools

shutil Utilities for copying files and directory trees

cmp Utilities for comparing files and directories

glob Finds files matching wildcard pattern

re Regular expression string matching

time Time and date handling

datetime Fast implementation of date and time handling
doctest, unittest Modules that facilitate unit test

209



pdb Debugger

hotshot Code profiling

pickle, cpickle, marshal, shelve Used to save objects and code to
files

getopt, optparse Utilities to handle shell-level argument parsing

math, cmath Math functions (real and complex)faster for scalars

random Random generators (likewise)

gzip read and write gzipped files

struct Functions to pack and unpack binary data structures

StringlO, cStringlO String-like objects that can be read and written
as files (e.g., in-memory files)

types Names for all the standard Python type

210



The main difference between a module and a package is that a
package is a collection of modules AND it has an __init__.py file.
myMath/
__init__.py

adv/
__init_.py

sqrt.py

add.py

subtract.py

multiply.py

divide.py

21



CSC
201

FLOW CONTROL

Dr. F. O Asahiah
Department of Computer Science and Engineering

Obafemi Awolowo University, Ile-Ife.

212



Flow Control (Introduction)

*Programming:

i. accomplishing tasks

ii. with instructions to computer

iii.Communicated in a programming language
*Tasks often involves

a) Execution of sequence of instructions

b) Repetition of actions

c)Decisions on next steps of actions

d) Often a mixture of (a) - (c)

213

CSC
201



CSC
201

What is Flow Control?

* Fundamental component of all programming
languages
* Python
* Java
* Javascript
* eflfg

» Enable us to dictate the flow of execution within a program.
* What statement (or set of statements) is executed ?
* How many times should a statement or set of statements be executed?
» What happens next after the execution of current statement(s)?

214



CSC
201

Importance of Control Statements

» Control statements:
* specific keywords
+ used within control structures
* to modify the flow of execution

* Importance

+ Flexibility: dictate how program behaves based on certain conditions or
occurrence of specific events.

 Decision Making: execute different code blocks under varying
circumstances

» Code Efficiency: creating dynamic and responsive programs.

215



CSC
201
Flow Control Statements in Python

*Different programming languages
* have different details and implementations
* most of them accomplish all the flow control found
in Python

*In Python, flow control is of threetypes:
a) Conditional statements

b) lterative statements.
c) Transfer statements

216



CSC
201

Types of Flow Control in Python

Y A 4 Y

Conditional Transfer Iterative
Statements Statements Statements
l l v
1.if 1. break 1. for
2. 1f —else 2. continue 2. while
3. if-elif-else 3. pass
4. nested if-else

217



Fourth type of Control

*Error Handling
* Not normally treated under control structure
* Affects also the execution of statements
*Will be treated separately in this course

218



CSC
201

Type 1: Conditional Control

* Conditional Control or Conditional structure:

* use of conditional keywords with variables in
various arrangement

* to facilitate selection of block of codes to
executed based on

* whether certain condition(s) is/are true or false
* Also know as selection control
* Opposite to sequential control

* The common conditional/selection constructs
are:
e If
e If-else
e If-elif-else (pronounced.2#§Flse—if—else)
* Nested if



CSC
201

Conditional: If Statement

* This is the simplest form of conditional
statement.

* It checks a condition and execute the associated
block if the condition is true

* Otherwise, it skips that associated block of code

e Syntax?
* if <condition>:
# code block to execute if condition is true
* where
» Keyword: if
* <condition>: that which can logically evaluate to True or False
 # code block to execute if condition is true: what to execute if <condition> is

True 220



If Statement flowchart

Test
Condition
l True
| Body of if |

v

CSC
201



Examples for if conditional

number = 6
if number > 5
# Calculate square
print(number * number)
print('Next lines of code')

222

CSC
201



CSC
201

Examples for if conditional

cand_age = int(input("supply the age of intending candidate"))
if cand_age < 18

# Print candidate status

print("person not qualified to for admission")
print(‘Processing of admission will progress')

223



Examples of Conditional if

* Example 3

letter = "t"

1t letter in 'Python':
print("Yes")

* Note that:

* A colon is always at the end of the condition
* The code block may be one line or several lines
e The code block is identified by the indentation.

224



CSC
201

Conditional: If-else Statement

* This is the second form of conditional statement.

* checks the condition and executes block associated with the if
construct if condition evaluate to True

* Otherwise, it executes an alternate block of code associate
with the else construct.

* It can only execute only one of the blocks. Either the first or
the second.
Syntax:
* if <condition>: . o
# first code block to execute if condition is true

else:
# second code block to execute if condition is false
* where
» Keywords: if, else
* <condition>: that which can logically evaluate to True or False

« # first code block to execute if condition is true: what to execute if <condition> is True
 #second code block to execute if conditionésfglse: what to execute if <condition> is

False 2



If-else Statement flowchart

l True

Test
Condition

False

Body of if | | Body of else I

Y

4

Fig. Flowchar?ogﬁlse

CSC
201



CSC
201

Example 1 for if-else

* Checking if password is correct

password = input('Enter password ')

if password == "PYnative@#29"
print("Correct password") # firs 00

else:

print("Incorrect Password") # secc

227



Example 2 for if-else

* Comparing hecking if password is correct
x = 10
if x > 15:
print("x is greater than 15")
else:
print("x is not greater than 15")

228

CSC
201



CSC
201

Conditional: If-elif-else Statement

* This is the third form of conditional statement.
* checks the conditionl and executes block associated with the if construct if condition2 evaluate

to True
¢ Otherwise, check condition2 and executes block associated with the elif construct if condition2

evaluate to True
* Otherwise, it executes an alternate block of code associate with the else construct.

e It can only execute only one of the blocks. Either the first or the second.

* Note:
* as many elif as needed is allowed between the starting if and the closing else.
* Each elif has a condition that must be tested.

* Syntax:

<condition >
# first code block to execute if condition is true

ebif <condition?

# second code block to execute if condition2 is true

elif <condition_m>
# m code block to execute if condition_m is true
eloe:
# m+1 code block to execute if all previous conditions are false

229



CSC
201

If-elif-else continued

* where
» Keywords: i, else
* <condition>: that which can logically evaluate to True or False

* # first code block to execute if condition is true: what to execute if
<condition> is True

 #second code block to execute if condition is false: what to execute if
<condition> is False

230



If-elif-else example

e Example to compare

a = 33
b = 33
if b > a:

print("b is greater than a")
elif a ==

print("a and b are equal")
else:

print("a is greater than b")

231

CSC

201



CSC
201

Nested If

*Nested if occurs when an if control is put
inside another if control . The second if
control becomes part of the code block for the
first first if control structure.

232



CSC
201

Examples

temperature = 30

weather = "sunny"

if temperature > 25:
if weather == "sunny":
print ("It's a perfect day for the beach!")
elif weather == "cloudy":
print ("It's warm but might be a bit gloomy.")
else:
print ("Stay hydrated, it's hot outside!")
else:

if weather

"rainyY€
print("It's cool and rainy, a good day to stay indoors.")
else:

print ("It's a bit chilly, dress warmly!")

233



if score >= 9

grade = 'A'

if score »= 95:

comment =

"Excellent!"
else:

comment = "Very Good!"
elif score >= 80:

comment = "Good Job!"
else:

comment = "Well Done!"
grade = 'C'

comment = "Keep Trying!"

print (£"Grade: (grade}, Comment:

{comment}")

Example 2: Nested If

234

CSC
201



8JABAz

Want more booke?
Vigit 9jabaz.ng and download for free!!

235




