

OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA

DEPARTMENT OF CHEMISTRY

B.Sc. Degree (Chemistry) Examination (Part III)

CHIM 303: Quantum Chemistry

2023/2024 Mid-Semester Test (Part B)

Time Allowed: 45 Minutes

Attempt ALL Questions

Date: 23rd January, 2025

- 1. The classical energy of a harmonic oscillator of amplitude x, was found to have a value equivalent to the energy spacing of its quantum mechanical treatment.
 - (a) Express the quantum vibrational frequency, ν of the oscillator in terms of k, x_0 and h. Where kis the force constant and h is the Planck's constant.
 - If the force constant is 200 Nm⁻¹ and the quantum mechanical energy spacing is one-hv unit, (b) find the value of x_0 .
- 2. The wave function for the 1st excited state of a harmonic oscillator is $\psi(x) = Axe^{-\alpha x^2}$, where A and α are constants.
 - Show that the normalization constant, A is $\left(\frac{32\alpha^3}{\pi}\right)^{\frac{1}{4}}$ [Use: $\int_0^\infty x^2 e^{-\alpha x^2} dx = \frac{1}{4} \left(\frac{\pi}{\alpha^3}\right)^{\frac{1}{2}}$] (a)
- Express the second derivative, $\frac{d^2}{dx^2}$ of ψ in terms of ∞ , x and ψ . 2 = 3 2 (c)
 - By comparing the equivalent terms in 2(b) above and those of the Schrodinger wave equation:

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} \left(E - \frac{1}{2}m\omega^2 x^2 \right) \psi = 0$$

Show that:
$$\alpha = \frac{m\omega}{2\hbar}$$

and
$$E = \frac{3}{2}\hbar\omega$$

$$d^2 = m^2 w^2 - 2 d \propto$$