

OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA DEPARTMENT OF CHEMISTRY

B.Sc. Degree (Chemistry) Examination (Part III) CHM 303: Quantum Chemistry 2023/2024 Harmattan Semester Examination

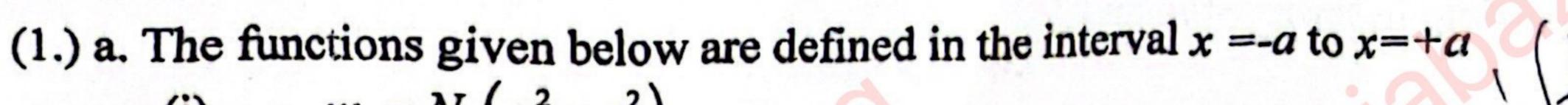
Time Allowed: 2 Hrs

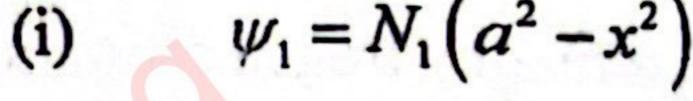
Date: 6th March, 2025

Instruction: Answer ALL Questions

Useful constants: $m_p = 1.673 \times 10^{-27}$ kg, $m_e = 9.110 \times 10^{-31}$ kg, $h = 1.055 \times 10^{-34}$ J s, electric charge (e) = 1.602 × 10⁻¹⁹ C, ε_0 = 8.854 × 10⁻¹²J⁻¹C²m⁻¹, π = 3.143, h = 6.626 × 10⁻³⁴ J.s, c = 3.0 × 10⁸ m s⁻¹, RH = 1.097×10^7 m⁻¹, 1 Hartree = 4.360×10^{-18} J, 1 Hartree = 27.212 eV, $a_0 = 5.292 \times 10^{-11}$ m.

SECTION A

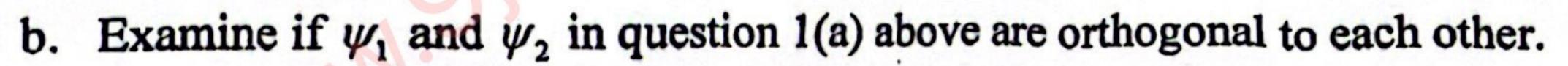




(i)
$$\psi_1 = N_1 (a^2 - x^2)$$

(ii) $\psi_2 = N_2 x (a^2 - x^2)$

Find the value of the normalization constants, N₁ and N₂



(i.)
$$\left[\frac{d}{dr}, \frac{1}{r}\right]$$

(i.)
$$\left[\frac{d}{dr}, \frac{1}{r}\right]$$
 (ii.) $\left[\frac{d}{dx}, x^2\right]$

- d. Find the results of operation of: $L_z = -i\hbar \frac{\sigma}{\partial \phi}$ on $\Phi = Ae^{im\phi}$ and $\Phi = A\sin m\phi$; and state if they are eigenfunctions. What is the eigenvalue in each case? [20 mks]
- (2.) a. Calculate the wavenumber frequencies in cm⁻¹ of an emission resulting from a transition between $N_2 = 3$ and $N_1 = 2$ for He⁺, assuming that $R_{He^+} = 4R_H$. What name is given to this frequency range?
 - b. For a particle in a one-dimensional box for which the wavefunction is given as

$$\psi_n(x) = \left(\frac{2}{a}\right)^{1/2} \sin \frac{n\pi x}{a} \qquad 0 \le x \le a$$

Show that the
$$\sigma^2 = \langle E^2 \rangle - \langle E \rangle^2 = 0$$

Show that the
$$\sigma^2 = \langle E^2 \rangle - \langle E \rangle^2 = 0$$
 [Use: $\int \sin^2 bx dx = \frac{x}{2} - \frac{1}{4b} \sin(2bx)$]

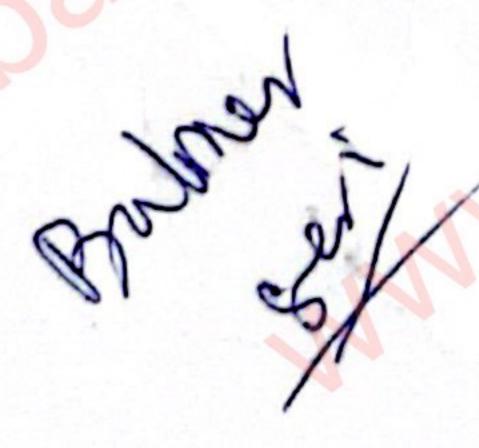
c. State any consequence(s) of the expression above as it relates to the energy of the particle in a onedimensional box. [15 mks]

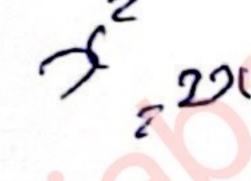
SECTION B

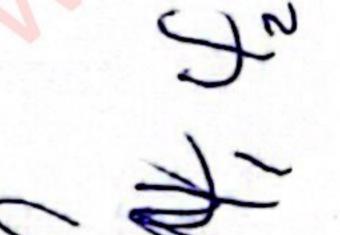
(3.) a. The total energy of quantum harmonic oscillator can be expressed as:

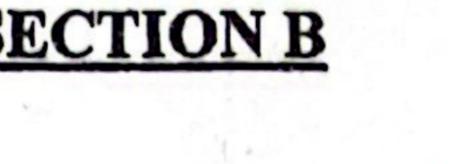
$$E_n = \left(n + \frac{1}{2}\right)h\nu$$

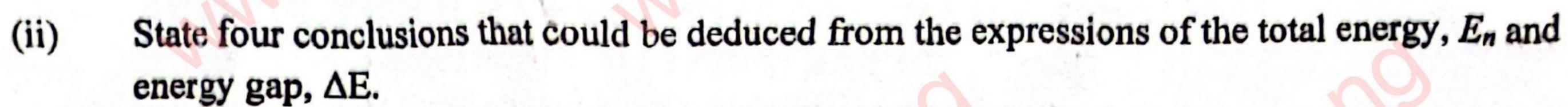
Define all the terms in the expression for the E_n and derive the expression for the energy gap (i) (ΔE) between successive vibrational states in the oscillator.











- (iii) The H-F bond in HF molecule has a force constant of 966 Nm⁻¹. If H-F bond length is 0.917 Å and the bond behaves as a classical harmonic oscillator with classical energy, E_{cl}, calculate the vibrational frequency of a particular (different) quantum harmonic oscillator whose energy gap, ΔE has a value that is equivalent to the E_{cl} of H-F. (h = 6.626 x 10⁻³⁴ Js, 1 Å = 10⁻¹⁰ m).
- (b) Given that the Hamiltonian for a particle rotating on a ring is $\widehat{H} = -\frac{\hbar^2}{2I}\frac{d^2}{d\phi^2}$. If the wavefunction for the particle is $\psi = \frac{1}{\sqrt{2\pi}}e^{im\phi}$ (where $i^2 = -1$, and $m = 0, \pm 1, \pm 2,...$), show that the Hamiltonian and wavefunction of the particle obey the eigen value equation $\widehat{H}\psi = E\psi$. Hence, write the expression for the energy of the particle in terms of m and I.
- (4.) a. In an attempt to determine the ground state energy of an electron in a hydrogen atom, a theorist started with a trial function of the form $e^{-\alpha r}$ and derived that $\int_0^\infty \phi(r) \mathcal{H} \phi(r) dr = \frac{\pi \hbar^2}{2m\alpha} \frac{e^2}{4\epsilon_0 \alpha^2}$; and $\int_0^\infty \phi(r) \phi(r) dr = \frac{\pi}{\alpha^3}$.
 - (i) Write the expression for the variational integral $E = \frac{\int_0^\infty \phi(r) \Re \phi(r) dr}{\int_0^\infty \phi(r) \phi(r) dr}$.

M.

- (ii) Determine the value of α for which $\frac{dE}{d\alpha} = 0$, that is, the tightest bound, and hence
- (iii) Show that the ground state energy (E₀) of the hydrogen atom is $\frac{me^4}{8\epsilon_0^2h^2}$.
- b. The normalized unperturbed (v=0) harmonic oscillator wave function is $\psi = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha \frac{x^2}{2}}$, while a perturbed Hamiltonian for the system is $\hat{H} = \hat{H}^0 + \hat{H}' = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}kx^2 + \gamma x^3 + \frac{b}{4}x^4$.
 - (i) Which term(s) from the H is/are the perturbation potential term(s)?
 - (ii) Determine the perturbation correction to the energy.

[Hint:
$$\int_{-\infty}^{+\infty} x^3 e^{-zx^2} dx = 0$$
; $\int_{-\infty}^{+\infty} x^4 e^{-zx^2} dx = \frac{3}{4} \left(\frac{\pi}{z^5}\right)^{1/2}$] (10 marks)

c. Given the ground electron configurations of oxygen and chlorine atoms as $1s^22s^22p^4$ and $1s^22s^22p^63s^23p^5$, respectively. Derive the atomic term symbols for the level of the oxygen and chlorine atoms.

5/mal

2 m

12 - e 2n - (+20- e) 2 - (+20- e) 2 - (+20- e) 2 - (+20- e)

A Comment of the second of the

外外