

Department of Chemistry OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, NIGERIA BSc. CHEMISTRY DEGREE 2022/2023 RAIN SEMESTER EXAMINATION

TIME ALL	OWED: 2 HOURS	AND 30 MINUTES		E: JULY 2024 STION TYPE 4
Instructions:				
	rite your surname and i	nitials and shade appropri	iately.	
	the first term of the second s	nd shade. 4. Shade the		
		orrect option horizontally		
Name	***************************************	Dept	Reg No	***********
1 The molerity of a co	ncentrated UCI numb	ased for laboratory use is	annrovimately 12.1 N	M. What volume of. 2
this reagent should be			approximatory 12.11	1 Nan CO
(A) 4.30 mL	(B) 8.26 mL	(C) 12.26 mL	(D) 15.20 mL	219NO3 + Na2CO
				-> Ag CD3
		eaction of AgNO3 with 2	.33 g of Na ₂ CO ₃ ? [Fo	rmula mass g/mol:
Ag2CO3 (275.7); AgN			~	
(A) 7.47 g	(B) 10.20 g	(Q) 6.06 g	(D) 10.00 g	
3 A 2.00 g sample of	limestone was dissolv	ed in hydrochloric acid ar	nd all the calcium pre	sent in the sample
was converted to Ca2	tag). Excess ammonium	m oxalate solution, (NH4)	2C2O4(aq), was added	to the solution to
		ate, CaC ₂ O _{4(s)} . The precip		
		centage by mass of calciu		
(A) 50.3%	(B) 38.1%	(C) 76.2%	(C) 42.5%	
4 What is the nKa va	The state of the s	has a pH transition range	of 4 to 6?	(a) +(NH+)262
-A-1 x 10 ⁻⁵	B. 1 x 10 ⁻³	C. 1x10 ⁵	D. 0.5 x10 ¹	-> Cac - 0.+
			39	-> CaC204+:
5. A titration curve is	the plot of:			
(i) the concentration o	the state of the s		pH or potential of the	e electrode against
reagent volume		n of analyte against time		
(iv) pAg versus volum				
A. All of the above	B. I, II, and III only	E. I and II only	D. I, II and IV of	nly
6. In the titration of a s	trong acid with a stron	g base, at the pre-equival	ence stage, the conce	entration of the acid
is computed from:	Long add the same	8 0		
A. its starting concentr	ration and the amount	of base added	B. the hydroxon	ium ions calculated
from the ionic product		_	rom the analytical c	
excess base used		D. None of the optio		
			CN	
7. What is the pH of t	the resulting solution f	rom the titration of 50.0	mL of 0.0500 M H	Cl with 26.0 mL of
0.1000 M NaOH solut	tion?			(Civ, + Cave)
A. 3.87	B. 11.12	C. 7.40	D. 13.87	V, + V2
8. In redox titration, the	ne following are used a	s reductants:		
(i) borohydride (BH4')		(iii) Ascorbic acid	(iv) Stannous	(Sn^{2+})
A. I, III and IV only	B. I, II and III only	,	D. II, III and IV on	

14C1 + NaOH -> NaC1+4.0

A. KSCN in the presence	of Fe3+as indicator		in the presence of F	
indicator			KOH in the presence of Fe	
What is the concentration α_Y (pH 2) = 2.6x10 ⁻¹⁴ , α_Y	tion of free Fe^{3+} in a so $A^{4-}(pH 8) = 4.2 \times 10^{-3}$).	lution of 0.10 M FeY at (a) p	oH 2.0, (b) pH 8.07 (K=1.3×10 ²⁵ ,	
A. 5.4x10 ⁻⁷ and 1.4x10 ⁻¹² and 1.4x10 ⁻¹²	2.64.645	B. 5.4x10 ⁷ and 1.4x10 ¹² C.	5.4x10 ⁻⁷ and 1.4x10 ¹² D. 5.4x10 ⁷	
11. Write an appropriate (A)-Ag ⁺ NO ₃ (aq) + Cl [*] (aq) (C) Ag ⁺ NO ₃ (s) + Cl [*] (aq)	AgCl(s) + NO	(aq) (B) AgClaq) + Cl'(ac	and chloride ion in solution. AgCl(s) + NO ₃ (aq) Cl(s) — AgCl(s) + NO ₃ (aq)	
12. What is the molarity $Ag = 108$, $N = 14$, $O = 16$		epared by dissolving 17g of	AgNO _{3(s)} in 100 cm ³ of water? [
(A) 5.2 mol/dm ³	(B) 0.10 mol/dm ³	(C) 3.4 mol/dm ³	(D)1.0 mol/dm ³	
13. Consider the precipitate Ca(OH) _{2(aq)} + HC ₂ H ₃ O _{2(ac)} Which of the following of	$\rightarrow Ca(C_2H_3O_2)_{2(aq)} +$	H ₂ O ₍₁₎ et ionic equation for the react	tion? O. 179 y Imol Agnos y 10	M 2
(A) $2OH^{-}_{(aq)} + H^{+}_{(aq)} \rightarrow 31$	H ₂ O ₍₁₎	(B) OH-(aq)+ 4H+(aq)	→ 2H ₂ O ₍₁₎	
(e) $2OH^{-}_{(aq)} + 2H^{+}_{(aq)} \rightarrow 2$	2H ₂ O ₍₁₎	(D) $2OH^{-}_{(aq)} + 3H^{+}_{(a}$	$\rightarrow 2H_2O_0$	
AgCl. What was the cond (A) 4327.50 ppm 15. 50.0 mL of a solution 0.0500 molL-1 solution of	entration of the Cl in p (B) 2163.75 ppm in containing an unknown of silver nitrate. The pre- ocyanate (NaSCN). The	opm? (AM of Cl = 35.5 g/mo (C) 1442.50 ppm own concentration of chlorid cipitate is filtered, and the filt the average titre volume after	(D) 1219.10 ppm 250L the ions is added to 50.00 mL of trate is titrated with 0.0200 molL-3 repeated experiments is 25.00	1
16. Which of the following (i) The appearance of execution (iii) The disappearance of execution (iii) The disappearance of the following (iiii) The disappearance of the following (iiiii) The disappearance of the following (iiiiii) The disappearance of the following (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	cess titrant	t the endpoint of precipitatio (ii) The concentration		14
(A) (i) and (iii)	(B) (i) and (ii)	(e) (ii) and (iii)	(D) (i), (ii) and (iii) ML	10
17. Argentometric titrati (A) Silver chromate Which of the following	(B) Potassium chron		ate (B) Silver nitrate 18.	
(ii) The reaction results (iii) Precipitation reaction	in the formation of an i	lutions containing soluble sainsoluble salt. aid in determining the identitive erges from the solution. (C) (i), (ii) and (iv)		
in argentometric titratio	n?	s based on colour indicators endpoint in Mohr's titration.	can be used to identify endpoints	
(1 + AgN03		2	1. 22 x10 mol	

necu

(iii) Adsorption of a co	loured indicator on the preded complex at the endpo			formation
(A) (i), (ii) and (iii)	(B) (i), (ii) and (iv)	(C) (ii), (iii) and (iv)	(D) All of the above	
20. Find the molarity a (A) 12.1 M, 16.1 m	and molality of 37.0 wt % (B) 36.4 M, 32.2 m	HCl (density = 1.19 g/ml (C) 42.3 M, 80.8		m
(i) Precision reflects he reproducible measurer (ii) Accuracy is define to each other, (iii) It is possible for p	nents are, even if they are d as 'the quality of being recision measurements n	correct about Precision and is to a known or accepted a far from the accepted value exact' and refers to how of the result of a manufacture.	value, while accuracy reduce. lue. lose two or more measure	ements are
a standard. (A) All of the above	(B (ii) and (iii)	the result of a measurem (C) (iii) and (iv)		ii) and (iii)
(i) Operational/Person (iii) Instrument (A) (i) and (iv)	tal and Reagent errors (B) (ii) and (iii) (C) (i)	ifest due to slight variation (iv) Error of me	thod i), (iii) and (iv)	
deviation = 0.17 perce	ent. What will be the range	ge of values for the Pb conscionation confidence level with (n-40) 8.00 - 8.54 %	tent of the alloy at 95%	
(I) measuring the volume analyte (II) the the colour change of a (IV) sufficiently low s	ume of a solution of known induct formed is filter in indicator is apparent to	propriately volumetric me own concentration that is red and washed free of co the eye is called the equiv- o that no significant loss of	needed to react complete entaminants (III) the point valent point	at which
and washing A. I and II only	B. I, II and III only	C. I only	D. I, II, and IV only	7.9997 - 8.
	wing are not volumetric (II) Volhard method method. B. I, II and III only	methods of analysis? (III) microscop C. I, III and IV only		
	ion: $Ag^+ + Cl^- = A$			
		concentration of Ag+ + C		pitated?
(A) $Ag^+ > Cl^-$	(B) $Ag^+ \leq Cl^-$	$(C)'Ag^+ = C1^-$	(D) $Ag^{\dagger} \ge Cl^{-}$	
27. Complexometric to cation with the except		e been applied in the de	termination of virtually	every metal
(A) Mg and Ca ions	(B) alkali metal ions	(C) trivalent cations	(D) multivalent cations	
28. Which of the followa. reference elec		of the potentiometric ele	ctroanalytical method	

b. indicator electrode

	auxiliary electrode
d.	salt bridge
29. Thes	e are among the desired characteristics of an ideal reference electrode except
	known or fixed potential, Eref
b. c	constant response (even when there is a net current in the cell)
_C. S	sensitivity to composition of the solution under study
d. c	beys Nernst Equation
30. The f	following are types of indicator electrodes except
	Metallic Indicator Electrodes
	Membrane Indicator Electrodes
	on-selective Electrode (field effect transistor) ISFET
	Von-metallic indicator electrode
	electrodes of the first kind are not very popular because
A N	Metallic indicator electrodes are not very selective
b. N	Many metal electrodes cannot be used in neutral or basic solutions
c. E	Easily oxidized, can be used only when analyte solutions are deaerated to remove oxygen
d. C	Certain hard metals (Fe, Cr, Co, Ni) do not provide reproducible potentials
32 The fo	ollowing are true of ion-selective electrodes, except
/ 1	responds absolutely to only one target ion in the solution without any interference by the presence
	f other ions in the test solution.
	he operation of ISE devices does not depend on redox processes.
	he key feature of an ISE is a thin selective membrane across which only the target ion can migrate.
	on-selective membranes are usually made of hydrophobic organic polymer impregnated with
10	onophore
33. Whic	h of the following is not correct about ionophore
	t is a polydentate binding agent
	t assists the target ion to transport across the membrane in an ion-selective electrode
	Calcimycin as Ca ²⁺ ionophore and valinomycin as K ⁺ ionophore
	t contains a low concentration of the target ion
d. 1	t contains a low concentration of the target fon
34. pH el	ectrode as an example of an ion-selective electrode has the following limitations, except
	The alkaline error
h F	Errors in low ionic strength solutions
	High junction potential
	Error in the pH of the standard buffer
35. When	never current flows, the following factors act to decrease the output voltage of a galvanic cell or to
	the applied voltage needed for electrolysis, except
21	ohmic potential
	the concentration of ions in the solution
	concentration polarization
	Kinetic polarization
u. ı	This polarization
36 Which	ch of the following is not correct about the coulometry method of analysis?

standardization is not usually necessary

b. Current is applied from an external source forcing a nonspontaneous chemical reaction to take place

a. It is an electrochemical method based on the measurement of the quantity of electricity

needed to convert the analyte quantitatively to a different oxidation state

a. variation b. the depart	in the current during elect	00% current efficiency	rror, except:	
water, transferre	ed to a 1000-ml, volumetri	of tetrachloropicolinic acid, Coc flask, and diluted to volume. A colution at a spongy silver cathode asferred for this reduction reaction. C. 0.02	An exhaustive controlled-poter requires 5.374 C of charge. W	tial Vhat 7 C)
A. Do no	not touch or smell any chen of touch your face, eyes, or ays hold chemical containe	bout your operation in the lab? nical in the laboratory without ar r mouth while in the laboratory or rs away from your body bottle before using its content.		
A. When liquid to B. Liquid to wall is C. A conyou can be Be Be for a second control of the cont	on reading the liquid level in a avoid the error of parallal aid should drain evenly down reduced by draining the but mmon burette error is cause a dislodge the bubble by sho	vn the wall of a burette, the tend	ency of liquid to stick to the good ble often found beneath the values	lass
(A) Silver nitra	ard and Mohr methods, the te and potassium chromate cyanate and silver nitrate		ium sulphate and silver nitrate romate and silver nitrate	(e)
	ors used in the Mohr and Vacor and Phenolphthalein (C) Fluore		and Ferric ammonium sul (D) Eosin and methyl orange	
	M AgNO ₃ . The excess Ag ⁺	was converted to AsO ₄ ³ and provide was then titrated with 4.75 mL of C. 0.2919	of 0.04321 M KSCN. Calculate	
	32CO3 (275.7); AgNO3 (169	ed from the reaction of AgNO ₃ (9); Na ₂ CO ₃ (106.0)]. 2) 6.06 g (D) 0.006	249N03+N02C03-	nula >Aggo 3 - 2N
an unknown coindicator. The	oncentration of chloride ior	lution of silver nitrate is added to as. Some amount of potassium marked by the formation of silv	chromate is added and used as er chromate ions according to	s an the
reaction: 2Ag ⁺ (aq)+	CrO ₄ ² ·(aq)	Ag ₂ CrO _{4(s)}	AS 043-+3AgN03	
		6.0 69 x 1003	Ag + KSCN 4.05ml	+310

d. It is faster and more convenient than gravimetric measurements

g/mol). (A) 25.0%	(B) 50.2 %	(C) 100.0%	(D) 112.4%	
	ard deviation or error man	gin in the weight of these	vitamin C tablets: 0.11 g,	0.12 g,
and 0.10 g.	(B) 0.20	(C) 0.05	(D) 0.10	
(A) 0.01		17		
48. From question 47 aldissolved in 10 cm ³ of v	vater is 0.09 g?	0.09		when
(A) 163.62%	(B) 81.81%	(C) 41.00%	(D) 20.52%	
using Mohr's method. (A)-Silver chromate, ReKSCN	- 10. 1	Cr ₂ O ₄ (B) Potassium this	ed during the precipitation ties ocyanate, Red-brown preci D) Silver nitrate, Red-l	pitate,
precipitate, AgNO ₃				
50. State the function of(A) Complexometric age(C) Precipitating agent	BaCl ₂ in the gravimetric ent	determination of sulphate? (B) Hydrating agent (D) Drying agent		
was 35.225g. The prevai			led from a 25-mL pipet, the f the water delivered by the D. 224.68 mL	
52. A standard solution with a temperature of concentration of the solution @ 10°C and 0.99570 g/s A. 0.0502M	30°C. and its concentrate tion with the prevailing sur	pared at 10 °C was re-station was found to be 0. mmer temperature? (densired)	andardized before use in su 0498 M. What is the ex- ty of the solution is 0.99976 D. 0.0520 M	immer pected Og/mL O.
g/mol, O = 16 g/mol) A. Dissolve 652 B. Dissolve 625 C. Dissolve 625	a volumetric flask to prepare .5 mg K ₂ SO ₄ salt in 250 m .5 mg K ₂ SO ₄ salt in 250 m .5 mg K ₂ SO ₄ salt in distilled .5 mg K ₂ SO ₄ salt in distilled	L distilled water L distilled water ed water to make 250 mL		S=32 0.85 = 0.0498 0.99570
25°C at the time of predissolved in a volume of	eparation. How many gran	ns of the solid KNO3 (de a 1.00 M solution at 20°C	the lab (and water) temperatensity = 2.109 g/mL) shown of the shown of	ild be mole,
A. 25.2210 g	B. 25.2794 g	C. 25.2749 g	D. 25.2207 g	0-
		6	0.9982000	Cas . 9970+77

	55. The true volume of contained in the flask a	_				would be
1	A. 24.9397 g	B. 25.1335			D. 24.9039 g	
	56. The pH of a buffer	solution is 3.09. Wha	t is the activity of H	in the buffer?	PH=	
1/	A. 1.23×10^4	B. 8.12 × 10 ⁻⁴	C. 1.23×10^4	D. 8.13 >	10-4	
	57. Which of the follow I. Saturated reference to evaporation.	_		he [Ag ⁺] does not	change with los	s of liquid
	II. A good reference el III. The half cell reacti	on at the silver/silver	reference electrode			JOINS
	IV. Calomel reference	AgCl (s) + e- === electrode with 1 M K			•	La S. Charles Hanne
	A. I & II only	B. III & IV	C. II only	D. III on	ly	
	58. A solution of pot percentage change in it g/mL @ 27 °C & 0.99 A0.39%	ts molarity when the la	ab temperature dropp		sity of water =	
	A0.3970	D0.1770	Je. 0.19%	D. 0.397	•	0.9989460
	59. Calculate the conc sample is 0.854 at an i		,	a pH of 6.25 if th	e activity coeffi	cient of the
	A. 4.80 × 10-7 M	B. 2.25 × 1	_	× 10 ⁻⁷ M	D. $5.62 \times 10^{-7} N$	1
	60. Calculate the conc sample is 0.854 at an i	entration of H ⁺ for a vionic strength of 0.025	ater sample that has	a pH of 3.25 if the	he activity coeff	
	A. 5.62 × 104M	B. 1.78 × 1	03 M C. 6.58	3 × 10 ⁻⁴ M	D. $2.08 \times 10^3 \mathrm{M}$	0.1774
	61. A cyanide ion sele was immersed in a star potential reading when A0.258 V	indered colution of 0 00	ersed in a 0.003M so	olution of NaCN	s-0.230 V. Wha	he electrode it will be the
		Ext	yleneo'iaminetetraa	cetic acid (EDTA	.)?	heir in min man
	62. Which of the follow (i) It is an aminocarbox	ving is true about L.	fullydeprotonat	2-		three binding
	sites (A) All of the above	(iv) can donate six pa (B) (i), & (ii) only	airs of electrons	only (i)	& (iv) only	
			(C) (ii) & (iv,	J. H.P.	nd complex, in	which EDTA
	63. Which of the followard forms a cage-like structed (A) form an unstable constable constable (C) The actual number	ture around the metal isompound (B)	on? all metal-EDTA con	aplexes have a	rtoichiomet istoichiometra (D) Optron	as A and C.
	64. Which of the follow (A) 8-hydroxyquinoline (C) Dimethylglyoxime	and Cupferron	(B) Cupferron ar		a.	
	65. Glycine (Gly) is an	example of:				
	(A) Monodentate ligand (C) Hexadentate ligand			ntate ligand ntate ligand		
			7			
			7			

66. A chelate is produced when a metal ion coordinates with two or more donor groups of a single ligand to form: (ii) three or four-membered heterocyclic ring (iii) (i) five- or six-membered heterocyclic ring (iv) three or five-membered heterocyclic ring. four or six-membered heterocyclic ring (D) (i), (ii) & (iii) only (C) (i) only (A) (iv) only (B) (i) & (ii) only 67. Fraction (α) of the most basic form of EDTA (Y4-) is defined by the H+ concentration and acid-base equilibrium constants. Calculate the molar concentration of Y4- in a 0.0200 M BDTA solution buffered to a pH of 4.00. (Note: the value of α_Y^4 for EDTA at 20 °C and pH 4 = 3.0 × 10-9). $(2)'6.0 \times 10^{-11} \text{ M}$ (D) $60.0 \times 10^{-11} \text{ M}$ $(A) 6.0 \times 10^{-3} M$ (B) $60.0 \times 10^{-3} M$ 68. If the equilibrium concentration of Ni²⁺ in a solution with an analytical NiY²⁻ concentration of 0.0150M at pH 8.0 is 2.9 x10-9 M. Calculate Kf (D) 3.1×10^{-18} $(A) 42.0 \times 10^{-17}$ (C) 3.1×10^{18} (B) 42.0×10^{17} of = des 69. The name of the complex formed from the reaction below is: (B) Copper phthalocyanine (A) Chlorophyllin (C) Copper(II) glycinate (D)Copper(II) acetylacetonate. 70. Which of the following is/are correct about a complexometric titration? (i) The technique involves titrating metal ions with a complexing or chelating agent (Ligand). (ii) Ligands can be any electron-donating entity, which can bind to the metal ion and produce a complex ion. (iii)The number of electrovalent bonds a cation tends to form with electron donors is its coordination number. (v) The species formed as a (iv) Typical values for coordination numbers are two, four, and six. result of coordination can only be electrically positive. (D) (ii), (iii) & (iv) (B) (i), (ii) & (iii) (A) All of the above (C) (i), (ii) & (iv) 71. Calculate the pAg of the solution during the titration of 50.00 mL of 0.0500 M NaCl with 0.1000 M AgNO3

Nacl + AgNO3

D. 10.25

NZCV

TYPE 4

after the addition of 24.50 mL of AgNO₃ [K_{sp} (AgCl) = 1.82 × 10⁻¹⁰].

B. 4.87

A. 6.57