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Useful Constants and 
Conversion Factors 

Quoted to a useful number of significant figures. 

Speed of light in vacuum 
Electron charge magnitude 
Planck's constant 

Boltzmann's constant 

Avogadro's number 
Coulomb's law constant 

Electron rest mass 
Proton rest mass 
Neutron rest mass 
Atomic mass unit (C 12  = 12) 

c = 2.998 x 108  m/sec 
e = 1.602 x 1 0 = 19 coul 
h = 6.626 x 10 -34  joule-sec 
h = h/27c = 1.055 x  10 -34  joule-sec  

= 0.6582 x 10 -15  eV-sec 
k = 1.381 x 10 -23  joule/°K 

= 8.617 x 10 -5  eV/°K 
No  = 6.023 x 1023/mole 
1 /47rE0  = 8.988 x 109  nt -m2/coul2  

me  = 9.109 x 10 -31  kg = 0.5110 MeV/c2 
 mp  = 1.672 x 10 -27  kg = 938.3 MeV/c2  

m„ = 1.675 x 10 -Z7  kg = 939.6 MeV/c 2 
 u = 1.661 x 10-27  kg = 931.5 MeV/c 2  

Bohr magneton 
Nuclear magneton 
Bohr radius 
Bohr energy 

Electron Compton wavelength 
Fine-structure constant 
kT at room temperature 

ub = eh/2me  = 9.27 x  10 -24  amp-m2  (or  joule/tesla) 
µn  = eh/2m, = 5.05 x 10 -27  amp-m2  (or joule/tesla) 
ao  = 47c€0h2/mee2  = 5.29 x 10 -11  m  = 0.529 A  
E 1  = — mee4/(4rcE0)22h2  = —2.17  x  10 -18  

joule = —13.6 eV 
Ac = h/m ec = 2.43 x  10 -12  m = 0.0243 A  
a = e2 /4nE 0hc = 7.30 x 10 -3  1/137 
k300°K = 0.0258 eV ^ 1/40 eV 

1eV= 1.602 x 10 -19  joule 
1 A=10 -10 m 

i joule = 6.242 x 10 18 eV 
1F=10 -15 m 	 l barn (bn)= 10-28m2 
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PREFACE TO THE 
SECOND EDITION 

The many developments that have occurred in the physics of quantum systems since 
the publication of the first edition of this book—particularly in the field of elementary 
particles—have made apparent the need for a second edition. In preparing it, we 
solicited suggestions from the instructors that we knew to be using the book in their 
courses (and also from some that we knew were not, in order to determine their 
objections to the book). The wide acceptance of the first edition made it possible 
for us to obtain a broad sampling of thought concerning ways to make the second 
edition more useful. We were not able to act on all the suggestions that were re-
ceived, because some were in conflict with others or were impossible to carry out 
for technical reasons. But we certainly did respond to the general consensus of these 
suggestions. 

Many users of the first edition felt that new topics, typically more sophisticated 
aspects of quantum mechanics such as perturbation theory, should be added to the 
book. Yet others said that the level of the first edition was well suited to the course 
they teach and that it should not be changed. We decided to try to satisfy both 
groups by adding material to the new edition in the form of new appendices, but to 
do it in such a way as to maintain the decoupling of the appendices and the text 
that characterized the original edition. The more advanced appendices are well inte-
grated in the text but it is a one-way, not two-way, integration. A student reading 
one of these appendices will find numerous references to places in the text where the 
development is motivated and where its results are used. On the other hand, a student 
who does not read the appendix because he is in a lower level course will not be 
frustrated by many references in the text to material contained in an appendix he 
does not use. Instead, he will find only one or two brief parenthetical statements in 
the text advising him of the existence of an optional appendix that has a bearing on 
the subject dealt with in the text. 

The appendices in the second edition that are new or are significantly changed are: 
Appendix A, The Special Theory of Relativity (a number of worked-out examples 
added and an important calculation simplified); Appendix D, Fourier Integral De-
scription of a Wave Group (new); Appendix G, Numerical Solution of the Time-
Independent Schroedinger Equation for a Square Well Potential (completely rewritten 
to include a universal program in BASIC for solving second-order differential equa-
tions on microcomputers); Appendix J, Time-Independent Perturbation Theory (new); 
Appendix K, Time-Dependent Perturbation Theory (new); Appendix L, The Born 
Approximation (new); Appendix N, Series Solutions of the Angular and Radial 
Equations for a One-Electron Atom (new); Appendix Q, Crystallography (new); 
Appendix R, Gauge Invariance in Classical and Quantum Mechanical Electromag-
netism (new). Problem sets have been added to the ends of many of the appendices, 
both old and new. In particular, Appendix A now contains a brief but comprehensive 
set of problems for use by instructors who begin their "modern physics" course 
with a treatment of relativity. 

v 
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A large number of small changes and additions have been made to the text to 

improve and update it. There are also several quite substantial pieces of new mate-
rial, including: the new Section 13-8 on electron-positron annihilation in solids; the 
additions to Section 16-6 on the Mössbauer effect; the extensive modernization of 
the last half of the introduction to elementary particles in Chapter 17; and the en-
tirely new Chapter 18 treating the developments that have occurred in particle phy-
sics since the first edition was written. 

We were very fortunate to have secured the services of Professor David Caldwell 
of the University of California, Santa Barbara, to write the new material in Chapters 
17 and 18, as well as Appendix R. Only a person who has been totally immersed in 
research in particle physics could have done what had to be done to produce a brief 
but understandable treatment of what has happened in that field in recent years. 
Furthermore, since Caldwell is a colleague of the senior author, it was easy to have 
the interaction required to be sure that this new material was closely integrated into 
the earlier parts of the book, both in style and in content. Prepublication reviews 
have made it clear that Caldwell's material is a very strong addition to the book. 

Professor Richard Christman, of the U.S. Coast Guard Academy, wrote the new 
material in Section 13-8, Section 16-6, and Appendix Q, receiving significant input 
from the authors. We are very pleased with the results. 

The answers to selected problems, found in Appendix S, were prepared by Profes-
sor Edward Derringh, of the Wentworth Institute of Technology. He also edited the 
new additions to the problem sets and prepared a manual giving detailed solutions 
to most of the problems. The solutions manual is available to instructors from the 
publisher. 

It is a pleasure to express our deep appreciation to the people mentioned above. 
We also thank Frank T. Avignone, III, University of South Carolina; Edward Cecil, 
Colorado School of Mines; L. Edward Millet, California State University, Chico; 
and James T. Tough, The Ohio State University, for their very useful prepublication 
reviews. 

The following people offered suggestions or comments which helped in the develop-
ment of the second edition: Alan H. Barrett, Massachusetts Institute of Technology; 
Richard H. Behrman, Swarthmore College; George F. Bertsch, Michigan State Uni-
versity; Richard N. Boyd, The Ohio State University; Philip A. Casabella, Rensselaer 
Polytechnic Institute; C. Dewey Cooper, University of Georgia; James E. Draper, 
University of California at Davis; Arnold Engler, Carnegie-Mellon University; A. T. 
Fromhold, Jr., Auburn University; Ross Garrett, University of Auckland; Russell 
Hobbie, University of Minnesota; Bei-Lok Hu, University of Maryland; Hillard Hun-
tington, Rensselaer Polytechnic Institute; Mario Iona, University of Denver; Ronald 
G. Johnson, Trent University; A. L. Laskar, Clemson University; Charles W. Leming, 
Henderson State University; Luc Leplae, University of Wisconsin-Milwaukee; Ralph 
D. Meeker, Illinois Benedictine College; Roger N. Metz, Colby College; Ichiro Miya-
gawa, University of Alabama; J. A. Moore, Brock University; John J. O'Dwyer, State 
University of New York at Oswego; Douglas M. Potter, Rutgers State University; 
Russell A. Schaffer, Lehigh University; John W. Watson, Kent State University; and 
Robert White, University of Auckland. We appreciate their contribution. 

Santa Barbara, California 
	

Robert Eisberg 
Troy, New York 
	

Robert Resnick 



PREFACE TO THE 
FIRST EDITION 

The basic purpose of this book is to present clear and valid treatments of the prop-
erties of almost all of the important quantum systems from the point of view of 
elementary quantum mechanics. Only as much quantum mechanics is developed as is 
required to accomplish the purpose. Thus we have chosen to emphasize the applica-
tions of the theory more than the theory itself. In so doing we hope that the book 
will be well adapted to the attitudes of contemporary students in a terminal course 
on the phenomena of quantum physics. As students obtain an insight into the tre-
mendous explanatory power of quantum mechanics, they should be motivated to 
learn more about the theory. Hence we hope that the book will be equally well 
adapted to a course that is to be followed by a more advanced course in formal 
quantum mechanics. 

The book is intended primarily to be used in a one year course for students who 
have been through substantial treatments of elementary differential and integral cal-
culus and of calculus level elementary classical physics. But it can also be used in 
shorter courses. Chapters 1 through 4 introduce the various phenomena of early 
quantum physics and develop the essential ideas of the old quantum theory. These 
chapters can be gone through fairly rapidly, particularly for students who have had 
some prior exposure to quantum physics. The basic core of quantum mechanics, and 
its application to one- and two-electron atoms, is contained in Chapters 5 through 
8 and the first four sections of Chapter 9. This core can be covered well in appre-
ciably less than half a year. Thus the instructor can construct a variety of shorter 
courses by adding to the core material from the chapters covering the essentially 
independent topics: multielectron atoms and molecules, quantum statistics and solids, 
nuclei and particles. 

Instructors who require a similar but more extensive and higher level treatment 
of quantum mechanics, and who can accept a much more restricted coverage of the 
applications of the theory, may want to use Fundamentals of Modern Physics by 
Robert Eisberg (John Wiley & Sons, 1961), instead of this book. For instructors requir-
ing a more comprehensive treatment of special relativity than is given in Appendix A, 
but similar in level and pedagogic style to this book, we recommend using in addition 
Introduction to Special Relativity by Robert Resnick (John Wiley & Sons, 1968). 

Successive preliminary editions of this book were developed by us through a pro-
cedure involving intensive classroom testing in our home institutions and four other 
schools. Robert Eisberg then completed the writing by significantly revising and 
extending the last preliminary edition. He is consequently the senior author of this 
book. Robert Resnick has taken the lead in developing and revising the last prelimi-
nary edition so as to prepare the manuscript for a modern physics counterpart at a 
somewhat lower level. He will consequently be that book's senior author. 

The pedagogic features of the book, some of which are not usually found in books 
at this level, were proven in the classroom testing to be very suçcessful. These fea-
tures are: detailed outlines at the beginning of each chapter, numerous worked out 
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examples in each chapter, optional sections in the chapters and optional appendices, 
summary sections and tables, sets of questions at the end of each chapter, and long 
and varied sets of thoroughly tested problems at the end of each chapter, with subsets 
of answers at the end of the book. The writing is careful and expansive. Hence we 
believe that the book is well suited to self-learning and to self-paced courses. 

We have employed the MKS (or SI) system of units, but not slavishly so. Where 
general practice in a particular field involves the use of alternative units, they are 
used here. 

It is a pleasure to express our appreciation to Drs. Harriet Forster, Russell Hobbie, 
Stuart Meyer, Gerhard Salinger, and Paul Yergin for constructive reviews, to Dr. 
David Swedlow for assistance with the evaluation and solutions of the problems, to 
Dr. Benjamin Chi for assistance with the figures, to Mr. Donald Deneck for editorial 
and other assistance, and to Mrs. Cassie Young and Mrs. Carolyn Clemente for 
typing and other secretarial services. 

Santa Barbara, California 
	

Robert Eisberg 
Troy, New York 
	

Robert Resnick 
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1-1 INTRODUCTION 

At a meeting of the German Physical Society on Dec. 14, 1900, Max Planck read his 
paper, "On the Theory of the Energy Distribution Law of the Normal Spectrum." 
This paper, which first attracted little attention, was the start of a revolution in phys-
ics. The date of its presentation is considered to be the birthday of quantum physics, 
although it was not until a quarter of a century later that modern quantum mechan-
ics, the basis of our present understanding, was developed by Schroedinger and 
others. Many paths converged on this understanding, each showing another aspect 
of the breakdown of classical physics. In this and the following three chapters we 
shall examine the major milestones, of what is now called the old quantum theory, that 
led to modern quantum mechanics. The experimental phenomena which we shall 
discuss in connection with the old quantum theory span all the disciplines of classical 
physics: mechanics, thermodynamics, statistical mechanics, and electromagnetism. 
Their repeated contradiction of classical laws, and the resolution of these conflicts on 
the basis of quantum ideas, will show us the need for quantum mechanics. And our 
study of the old quantum theory will allow us to more easily obtain a deeper under-
standing of quantum mechanics when we begin to consider it in the fifth chapter. 

As is true of relativity (which is treated briefly in Appendix A), quantum physics 
represents a generalization of classical physics that includes the classical laws as spe-
cial cases. Just as relativity extends the range of application of physical laws to the 
region of high velocities, so quantum physics extends that range to the region of small 
dimensions. And just as a universal constant of fundamental significance, the velocity 
of light c, characterizes relativity, so a universal constant of fundamental significance, 
now called Planck's constant h, characterizes quantum physics. It was while trying to 
explain the observed properties of thermal radiation that Planck introduced this con-
stant in his 1900 paper. Let us now begin to examine thermal radiation ourselves. We 
shall be led thereby to Planck's constant and the extremely significant related 
quantum concept of the discreteness of energy. We shall also find that thermal radia-
tion has considerable importance and contemporary relevance in its own right. For 
instance, the phenomenon has recently helped astrophysicists decide among compet-
ing theories of the origin of the universe. Another example is given by the rapidly 
developing technology of solar heating, which depends on the thermal radiation 
received by the earth from the sun. 

1-2 THERMAL RADIATION 

The radiation emitted by a body as a result of its temperature is called thermal 

radiation. All bodies emit such radiation to their surroundings and absorb such radia-
tion from them. If a body is at first hotter than its surroundings, it will cool off be-
cause its rate of emitting energy exceeds its rate of absorbing energy. When thermal 
euilibxium_is reached the rates of emission and absorption are equal. 

Matter in a condensed state (i.e., solid or liquid) emits a continuous spectrum of 
radiation. The details of the spectrum are almost independent of the particular mate-
rial of which a body is composed, but they depend strongly on the temperature. At 
ordinary temperatures most bodies are visible to us not by their emitted light but by 
the light they reflect. If no light shines on them we cannot see them. At very high 
temperatures, however, bodies are self-luminous. We can see them glow in a darkened 
room; but even at temperatures as high as several thousand degrees Kelvin well over 
90% of the emitted thermal radiation is invisible to us, being in the infrared part of 
the electromagnetic spectrum. Therefore, self-luminous bodies are quite hot. 

Consider, for example, heating an iron poker to higher and higher temperatures 
in a fire, periodically withdrawing the poker from the fire long enough to observe its 
properties. When the poker is still at a relatively low temperature it radiates heat, but 
it is not visibly hot. With increasing temperature the amount of radiation that the 
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poker emits increases very rapidly and visible effects are noted. The poker assumes a 
dull red color, then a bright red color, and, at very high temperatures, an intense 
blue-white color. That is, with increasing temperature the body emits more thermal 
radiation and the frequency of the most intense radiation becomes higher. 

The relation between the temperature of a body and the frequency spectrum of the 
emitted radiation is used in a device called an optical pyrometer. This is essentially a 
rudimentary spectrometer that allows the operator to estimate the temperature of a 
hot body, such as a star, by observing the color, or frequency composition, of the 
thermal radiation that it emits. There is a continuous spectrum of radiation emitted, 
the eye seeing chiefly the color corresponding to the most intense emission in the 
visible region. Familiar examples of objects which emit visible radiation include hot 
coals, lamp filaments, and the sun. 

Generally speaking, the detailed form of the spectrum of the thermal radiation 
emitted by a hot body depends somewhat upon the composition of the body. How-
ever, experiment shows that there is one class of hot bodies that emits thermal spectra 
of a universal character. These are called blackbodies, that is, bodies that have sur-
faces which absorb all the thermal radiation incident upon them. The name is ap-
propriate because such bodies do not reflect light and appear black when their tem-
peratures are low enough that they are not self-luminous. One example of a (nearly) 
blackbody would be any object coated with a diffuse layer of black pigment, such as 
lamp black or bismuth black. Another, quite different, example will be described 
shôrtly._ Independent of the details of their composition, it is found that all black-
bodies at the same temperature emit thermal radiation with the same spectrum. This 
general fact can be understood on the basis of classical arguments involving thermo-
dynamic equilibrium. The specific form of the spectrum, however, cannot be obtained 
from thermodynamic arguments alone. The universal properties of the radiation 
emitted by blackbodies make them of particular theoretical interest and physicists 
sought to explain the specific features of their spectrum. 

The spectral distribution of blackbody radiation is specified by the quantity R T(v), 
called the spectral radiancy, which is defined so that R T (v) dv is equal to the energy 
emitted per unit time in radiation of frequency in the interval y  to y + dv from a unit 
area of the surface at absolute temperature T. The earliest accurate measurements of 
this quantity were made by Lummer and Pringsheim in 1899. They used an instru-
ment essentially similar to the prism spectrometers used in measuring optical spectra, 
except that special materials were required for the lenses, prisms, etc., so that they 
would be transparent to the relatively low frequency thermal radiation. The experi-
mentally observed dependence of R T(v) on y and T is shown in Figure 1-1. 

Distribution functions, of which spectral radiancy is an example, are very common in physics. 
For example, the Maxwellian speed distribution function (which looks rather like one of the 
curves in Figure 1-1) tells us how the molecules in a gas at a fixed pressure and temperature 
are distributed according to their speed. Another distribution function that the student has 
probably already seen is the one (which has the form of a decreasing exponential) specifying 
the times of decay of radioactive nuclei in a sample containing nuclei of a given species, and 
he has certainly seen a distribution function for the grades received on a physics exam. 

The spectral radiancy distribution function of Figure 1-1 for a blackbody of a given area 
and a particular temperature, say 1000°K, shows us that: (1) there is very little power radiated 
in a frequency interval of fixed size dv if that interval is at a frequency v which is very small 
compared to 10 14  Hz. The power is zero for v equal to zero. (2) The power radiated in the 
interval dv increases rapidly as v increases from very small values. (3) It maximizes for a 
value of v ^z 1.1 x 10 14  Hz. That is, the radiated power is most intense at that frequency. 
(4) Above ^, 1.1 x 10 14  Hz the radiated power drops slowly but continuously as v increases. 
It is zero again when v approaches infinitely large values. 

The two distribution functions for the higher values of temperature, 1500°K and 2000°K, 
displayed in the figure show us that (5) the frequency at which the radiated power is most 
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Figure 1 -1 The spectral radiancy of a blackbody radiator as a function of the frequency 
of radiation, shown for temperatures of the radiator of 1000 ° K, 1500° K, and 2000 ° K. Note 
that the frequency at which the maximum radiancy occurs (dashed line) increases linearly 
with increasing temperature, and that the total power emitted per square meter of the 
radiator (area under curve) increases very rapidly with temperature. 

intense increases with increasing temperature. Inspection will verify that this frequency in-
creases linearly with temperature. (6) The total power radiated in all frequencies increases with 
increasing temperature, and it does so more rapidly than linearly. The total power radiated 
at a particular temperature is given simply by the area under the curve for that temperature, 

f ô R T (v) dv, since R T (v) dv is the power radiated in the frequency interval from v to v + dv. 

The integral of the spectral radiancy R T(v) over all y— is the total energy emitted 
per unit time per unit area from a blackbody at temperature T. It is called the 
radiancy RT. That is 

co  

RT = J R T (v) dv 	 (1-1) 

o 

As we have seen in the preceding discussion of Figure 1-1, RT increases rapidly with 
increasing temperature. In fact, this result is called Stefan's law, and it was first stated 
in 1879 in the form of an empirical equation 

RT = aT4 	 (1-2) 
where 

a = 5.67 x 10 -S  W/m2 -°K4  
is called the Stefan-Boltzmann constant. Figure 1-1 also shows us that the spectrum 
shifts toward higher frequencies as T increases. This result is called Wien's displace- 

ment law 
Vmax G  T 	 (1-3a) 

where vmax  is the frequency v at which R T (v) has its maximum value for a partic-
ular T. As T increases, Vmax  is displaced toward higher frequencies. All these results 
are in agreement with the familiar experiences discussed earlier, namely that the 
amount of thermal radiation emitted increases rapidly (the poker radiates much more 
heat energy at higher temperatures), and the principal frequency of the radiation 
becomes higher (the poker changes color from dull red to blue-white), with increasing 
temperature. 



Figure 1-2 A cavity in a body connected by a small 
hole to the outside. Radiation incident on the hole is 
completely absorbed after successive reflections on 
the inner surface of the cavity. The hole absorbs like 
a blackbody. In the reverse process, in which radiation 
leaving the hole is built up of contributions emitted 
from the inner surface, the hole emits like a blackbody. 

Another example of a blackbody, which we shall see to be particularly important, 
can be found by considering an object containing a cavity which is connected to the 
outside by a small hole, as in Figure 1-2. Radiation incident upon the hole from 
the outside enters the cavity and is reflected back and forth by the walls of the 
cavity, eventually being absorbed on these walls. If the area of the hole is very small 
compared to the area of the inner surface of the cavity, a negligible amount of the 
incident radiation will be reflected back through the hole. Essentially all the radia-
tion incident upon the hole is absorbed; therefore, the hole must have the properties of 
the surface of a blackbody. Most blackbodies used in laboratory experiments are 
constructed along these lines. 

Now assume that the walls of the cavity are uniformly heated to a temperature 
T. Then the walls will emit thermal radiation which will fill the cavity. The small 
fraction of this radiation incident from the inside upon the hole will pass through 
the hole. Thus the hole will act as an emitter of thermal radiation. Since the hole 
must have the properties of the surface of a blackbody, the radiation emitted by 
the hole must have a blackbody spectrum; but since the hole is merely sampling 
the thermal radiation present inside the cavity, it is clear that the radiation in 
the cavity must also have a blackbody spectrum. In fact, it will have a blackbody 
spectrum characteristic of the temperature T on the walls, since this is the only 
temperature defined for the system. The spectrum emitted by the hole in the cavity 
is specified in terms of the energy flux R T(v). It is more useful, however, to specify 
the spectrum of radiation inside the cavity, called cavity radiation, in terms of an 
energy density, p T (v), which is defined as the energy contained in a  unit  volume 
of the cavity at temperature T in the frequency interval y  to y + dv. It is evident 
that these quantities are proportional to one another; that is 

PT(v) cc R T (v) 	 (1 -4) 

Hence, the radiation inside a cavity whose walls are at temperature T has the 
same character as the radiation emitted by the surface of a blackbody at temper-
ature T. It is convenient experimentally to produce a blackbody spectrum by means 
of a cavity in a heated body with a hole to the outside, and it is convenient in theo-
retical work to study blackbody radiation by analyzing the cavity radiation because 
it is possible to apply very general arguments to predict the properties of cavity 
radiation. 

Example 1-1. (a) Since Av = c, the constant velocity of light, Wien's displacement law (1-3a) 

can also be put in the form 
2max T = const 	 (1-3b) 

where Amax  is the wavelength at which the spectral radiancy has its maximum value for a 

particular temperature T. The experimentally determined value of Wien's constant is 2.898 x 

10 -3  m-°K. If we assume that stellar surfaces behave like blackbodies we can get a good 

estimate of their temperature by measuring Amax.  For the sun Amax = 5100 A, whereas for the 

North Star Amax = 3500 A. Find the surface temperature of these stars. (One angstrom = 
1A =10 -10  m.)  
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► For the sun, T = 2.898 x 10 -3  m-°K/5100 x 10 -1° m = 5700°K. For the North Star, 
T = 2.898 x 10 -3  m-°K/3500 x 10 -1° m = 8300°K. 

At 5700°K the sun's surface is near the temperature at which the greatest part of its radia-
tion lies within the visible region of the spectrum. This suggests that over the ages of human 
evolution our eyes have adapted to the sun to become most sensitive to those wavelengths 
which it radiates most intensely. • 

(b) Using Stefan's law, (1-2), and the temperatures just obtained, determine the power ra-
diated from 1 cm 2  of stellar surface. 
■For the sun 

RT = (TT'  = 5.67 x 10
-8 

 W/m2-°K4  x (5700°K)4  
= 5.90 x 107  W/m 2  ^ 6000 W/cm2  

For the North Star 
RT = 6T4  = 5.67 x 10 -8  W/m2  K. x (8300°K)4  

= 2.71 x 108  W/m 2  ^ 27,000 W/cm 2  

Example 1 -2. Assume we have two small opaque bodies a large distance from one another 
supported by fine threads in a large evacuated enclosure whose walls are opaque and kept at 
a constant temperature. In such a case the bodies and walls can exchange energy only by means 
of radiation. Let e represent the rate of emission of radiant energy by a body and let a repre-
sent the rate of absorption of radiant energy by a body. Show that at equilibrium 

Q. 	 ei = e2= 1 
t 	 a i  a2 

(1-5) 

O 
This relation, (1-5), is known as Kirchhoff's law for radiation. 
■The equilibrium state is one of constant temperature throughout the enclosed system, and 
in that state the emission rate necessarily equals the absorption rate for each body. Hence 

e l  = a l 	and 	e2  = a2  
Therefore 

e1 =1—e2 
al 	a2  

If one body, say body 2, is a blackbody, then a 2  > a l  because a blackbody is a better ab-
sorber than a non-blackbody. Hence, it follows from (1-5) that e 2  > e 1 . The observed fact that 
good absorbers are also good emitters is thus predicted by Kirchhoff's law. 4 

1-3 CLASSICAL THEORY OF CAVITY RADIATION 

Shortly after the turn of the present century, Rayleigh, and also Jeans, made a calcu-
lation of the energy density of cavity (or blackbody) radiation that points up a serious 
conflict between classical physics and experimental results. This calculation is similar 
to calculations that arise in considering many other phenomena (e.g., specific heats 
of solids) to be treated later. We present the details here, but as an aid in guiding us 
through the calculations we first outline their general procedure. 

Consider a cavity with metallic walls heated uniformly to temperature T. The walls 
emit electromagnetic radiation in the thermal range of frequencies. We know that 
this happens, basically, because of the accelerated motions of the electrons in the 
metallic walls that arise from thermal agitation (see Appendix B). However, it is not 
necessary to study the behavior of the electrons in the walls of the cavity in detail. 
Instead, attention is focused on the behavior of the electromagnetic waves in the in-
terior of the cavity. Rayleigh and Jeans proceeded as follows. First, classical electro-
magnetic theory is used to show that the radiation inside the cavity must exist in 
the form of standing waves with nodes at the metallic surfaces. By using geometrical 
arguments, a count is made of the number of such standing waves in the frequency 
interval v to v + dv, in order to determine how the number depends on v. Then a 



result of classical kinetic theory is used to calculate the average total energy of these 
waves when the system is in thermal equilibrium. The average total energy depends, 
in the classical theory, only on the temperature T. The number of standing waves in 
the frequency interval times the average energy of the waves, divided by the volume 
of the cavity, gives the average energy content per unit volume in the frequency in-
terval y  to y + dv. This is the required quantity, the energy density p T (v). Let us now do 
it ourselves. 

We assume for simplicity that the metallic-walled cavity filled with electromagnetic 
radiation is in the form of a cube of edge length a, as shown in Figure 1-3. Then 
the radiation reflecting back and forth between the walls can be analyzed into three 
components along the three mutually perpendicular directions defined by the edges 
of the cavity. Since the opposing walls are parallel to each other, the three compo-
nents of the radiation do not mix, and we may treat them separately. Consider first 
the x component and the metallic wall at x = O. All the radiation of this component 
which is incident upon the wall is reflected by it, and the incident and reflected waves 
combine to form a standing wave. Now, since electromagnetic radiation is a trans-
verse vibration with the electric field vector E perpendicular to the propagation direc-
tion, and since the propagation direction for this component is perpendicular to the 
wall in question, its electric field vector E is parallel to the wall. A metallic wall 
cannot, however, support an electric field parallel to the surface, since charges can 
always flow in such a way as to neutralize the electric field. Therefore, E for this 
component must always be zero at the wall. That is, the standing wave associated 
with the x-component of the radiation must have a node (zero amplitude) at x = O. 
The standing wave must also have a node at x = a because there can be no parallel 
electric field in the corresponding wall. Furthermore, similar conditions apply to the 
other two components; the standing wave associated with the y component must have 
nodes at y = 0 and y = a, and the standing wave associated with the z component 
must have nodes at z = 0 and z = a. These conditions put a limitation on the possible 
wavelengths, and therefore on the possible frequencies, of the electromagnetic radia-
tion in the cavity. 

Figure 1 -3 A metallic walled cubical cavity filled with electromagnetic radiation, showing 
three noninterfering components of that radiation bouncing back and forth between the 
walls and forming standing waves with nodes at each wall. 
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Now we shall consider the question of counting the number of standing waves 

with nodes on the surfaces of the cavity, whose wavelengths lie in the interval 2 to 
2 + d2 corresponding to the frequency interval v to v + dv. To focus attention on 
the ideas involved in the calculation, we shall first treat the x component alone; that 
is, we shall consider the simplified, but artificial, case of a "one-dimensional cavity" 
of length a. After we have worked through this case, we shall see that the procedure 
for generalizing to a real three-dimensional cavity is obvious. 

The electric field for one-dimensional electromagnetic standing waves can be de-
scribed mathematically by the function 

E(x,t) = E0  sin (2irx/2) sin (2irvt) 	 (1-6) 
where 2 is the wavelength of the wave, v is its frequency, and E 0  is its maximum 
amplitude. The first two quantities are related by the equation 

v = c/2 	 (1-7) 

where c is the propagation velocity of electromagnetic waves. Equation (1-6) repre-
sents a wave whose amplitude has the sinusoidal space variation sin (2irx/A) and 
which is oscillating in time sinusoidally with frequency v like a simple harmonic 
oscillator. Since the , amplitude is obviously zero, at all times t, for positions satisfying 
the relation 

2x/A = 0, 1, 2, 3, ... 	 (1-8) 

the wave has fixed nodes; that is, it is a standing wave. In order to satisfy the re-
quirement that the waves have nodes at both ends of the one-dimensional cavity, we 
choose the origin of the x axis to be at one end of the cavity (x = 0) and then require 
that at the other end (x = a) 

2x//1, = n 	 forx = a (1-9) 
where 

n = 1,2,3,4,... 
This condition determines a set of allowed values of the wavelength A. For these 

allowed values, the amplitude patterns of the standing waves have the appearance 
shown in Figure 1-4. These patterns may be recognized as the standing wave patterns 
for vibrations of a string fixed at both ends, a real physical system which also satisfies 
(1-6). In our case the patterns represent electromagnetic standing waves. 

It is convenient to continue the discussion in terms of the allowed frequencies 
instead of the allowed wavelengths. These frequencies are v = c/ A, where 2a/1 = n. 
That is 

v = cn/2a 	 n = 1, 2, 3, 4, ... (1-10) 

We can represent these allowed values of frequency in terms of a diagram consisting 
of an axis on which we plot a point at every integral value of n. On such a diagram, 
the value of the allowed frequency v corresponding to a particular value of n is, by 
(1-10), equal to c/2a times the distance d from the origin to the appropriate point, or 
the distance d is 2a/c times the frequency v. These relations are shown in Figure 1-5. 
Such a diagram is useful in calculating the number of allowed values in frequency 

n =1 

Figure 1 -4 The amplitude patterns of standing waves in a one-dimensional cavity with 
walls at x = 0 and x = a, for the first three values of the index n. 



fly  

^ 	 d=(2a/c) (v+dv) 	 

d=(2a/c) v  

0 1 2 3 4••• 	 n  

Figure 1 -5 The allowed values of the index n, which determines the allowed values of the  
frequency, in a one-dimensional cavity of length a.  

range v to v + dv, which we call N(v) dv. To evaluate this quantity we simply count 
the number of points on the n axis which fall between two limits which are con-
structed so as to correspond to the frequencies v and v + dv, respectively. Since the 
points are distributed uniformly along the n axis, it is apparent that the number of 
points falling between the two limits will be proportional to dv but will not depend 
on v. In fact, it is easy to see that N(v) dv = (2a/c) dv. However, we must multiply 
this by an additional factor of 2 since, for each of the allowed frequencies, there are 
actually two independent waves corresponding to the two possible states of polariza-
tion of electromagnetic waves. Thus we have 

N(v)dv = 4a  dv 	 (1-11) 

This completes the calculation of the number of allowed standing waves for the arti-
ficial case of a one-dimensional cavity. 

The above calculation makes apparent the procedures for extending the calcula-
tion to the real case of a three-dimensional cavity. This extension is indicated in 
Figure 1-6. Here the set of points uniformly distributed at integral values along a 
single n axis is replaced by a uniform three-dimensional array of points whose three 
coordinates occur at integral valuès along each of three mutually perpendicular n 

 axes. Each point of the array corresponds to a particular allowed three-dimensional 

nx  

Figure 1-6 The allowed frequencies in a three-dimensional cavity in the form of a cube  
of edge length a are determined by three indices nx , ny, nZ , which can each assume only  
integral values. For clarity, only a few of the very many points corresponding to sets of  

these indices are shown.  
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standing wave. The integral values of nx , ny , and nz  specified by each point give the 
number of nodes of the x, y, and z components, respectively, of the three-dimensional 
wave. The procedure is equivalent to analyzing a three-dimensional wave (i.e., one 
propagated in an arbitrary direction) into three one-dimensional component waves. 
Here the number of allowed frequencies in the frequency interval v to v + dv is equal 
to the number of points contained between shells of radii corresponding to fre-
quencies v and v + dv, respectively. This will be proportional to the volume contained 
between these two shells, since the points are uniformly distributed. Thus it is ap-
parent that N(v) dv will be proportional to v 2  dv, the first factor, v 2, being proportional 
to the area of the shells and the second factor, dv, being the distance between them. 
In the following example we shall work out the details and find 

N(v) dv = 87c3V v 2  dv 	 (1-12) 

where V = a3 , the volume of the cavity. 

Example 1 -3. Derive (1-12), which gives the number of allowed electromagnetic standing 
waves in each frequency interval for the case of a three-dimensional cavity in the form of a 
metallic-walled cube of edge length a. 
No-Consider radiation of wavelength 2 and frequency y = c/2, propagating in the direction de- 
fined by the three angles a, f, y, as shown in Figure 1-7. The radiation must be a standing 
wave since all three of its components are standing waves. We have indicated the locations 

ci of some of the fixed nodes of this standing wave by a set of planes perpendicular to the propa- 

Û gation direction a, 13, y. The distance between these nodal planes of the radiation is just .A/2, 
where 2 is its wavelength. We have also indicated the locations at the three axes of the nodes 
of the three components. The distances between these nodes are 

2x/2 = 2/2cos a 
Ay/2 = 2/2cos fl 	 (1-13) 
.1z/2 = i/2cos y 

Let us write expressions for the magnitudes at the three axes of the electric fields of the three 
components. They are 

E(x,t) = E0x  sin (2irx/Ax) sin (27rvt) 

E(y,t) = Eon, sin (27ry/2 y) sin (27rvt) 

E(z,t) = E0  sin  (271z1 A z) sin (2irvt) 

z 

Xx/2  > c Xx/2 

Figure 1 -7 The nodal planes of a standing wave propagating in a certain direction in a 
cubical cavity. 



The expression for the x component represents a wave with a maximum amplitude E ox, with  
a space variation sin (2nx/1 ), and which is oscillating with frequency v. As sin (27 -cx/1x) is zero  
for 2x/1x  = 0, 1, 2, 3, ... , the wave is a standing wave of wavelength 2x  because it has fixed 
nodes separated by the distance Ax = 1x/2. The expressions for the y and z components repre-
sent standing waves of maximum amplitudes E0  and Eoz  and wavelengths A y  and A Z , but all 
three component standing waves oscillate with the frequency y  of the radiation. Note that 
these expressions automatically satisfy the requirement that the x component have a node at 
x = 0, the y component have a node at y = 0, and the z component have a node at z = 0. To 
make them also satisfy the requirement that the x component have a node at x = a, the y com-
ponent have a node at y = a, and the z component have a node at z = a, set 

2x/Ax  = nx 	 for x = a  

2y/23,= ny 	 for y = a  

2z/A Z = nZ 	 for z = a  

where nx  = 1, 2, 3, ... ; ny  = 1, 2, 3, ... ; nZ  = 1, 2, 3, .... Using (1-13), these conditions become  

(2a/2) cos a = nx 	(2a/A) cos /3 = ny 	(2a/A) cos y = nZ  
Squaring both sides of these equations and adding, we obtain  

(2a/2) 2 (cos 2  a + cos 2  f3 + cos2 y) =  nx2  + ny  + nZ  
but the angles a, 13, y have the property  

cos 2  a + cos 2  /3 + cos 2  y = 1  

Thus  
2a/A = V nx ny  + nz  

where nx, ny , take on all possible integral values. This equation describes the limitation on  

the possible wavelengths of the electromagnetic radiation contained in the cavity.  

We again continue the discussion in terms of the allowed frequencies instead of the allowed  

wavelengths. They are  

v — C

, =2a vn x +nÿ + 2 
 (1-14a) 

Now we shall count the number of allowed frequencies in a given frequency interval by 
constructing a uniform cubic lattice in one oct ant of a rectangular coordinate system in such 
a way that the three coordinates of each point of the lattice are equal to a possible set of the 
three integers n x , ny , nZ  (see Figure 1-6). By construction, each lattice point corresponds to an  
allowed frequency. Furthermore, N(v)dv, the number of allowed frequencies between y and 

 v + dv, is equal to N(r) dr, the number of points contained between concentric shells of radii r  
and r + dr, where  

r = ^nx + nÿ +nz  
From (1-14a), this is  

r 2a  = 	v 	 (1-14b)  
c 

Since N(r) dr is equal to the volume enclosed by the shells times the density of lattice points,  
and since, by construction, the density is one, N(r) dr is simply  

2 
N(r) dr = 8 4zcr2  dr = 

rcr2 dr 	
(1-15)  

Setting this equal to N(v)dv, and evaluating r2  dr from (1-14b), we have  
3 

N(v) dv = 2 
C2a^ 

v2  dv  

This completes the calculation except that we must multiply these results by a factor of 2  
because, for each of the allowed frequencies we have enumerated, there are actually two inde-
pendent waves corresponding to the two possible states of polarization of electromagnetic ra-
diation. Thus we have derived (1-12). It can be shown that N(v) is independent of the assumed  
shape of the cavity and depends only on its volume. •  
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Note that there is a very significant difference between the results obtained for the 

case of a real three-dimensional cavity and the results we obtained earlier for the 
artificial case of a one-dimensional cavity. The factor of y 2  found in (1-12), but not in 
(1-11), will be seen to play a fundamental role in the arguments that follow. This factor 
arises, basically, because we live in a three-dimensional world—the power of  y  being 
one less than the dimensionality. Although Planck, in ultimately resolving the serious 
discrepancies between classical theory and experiment, had to question certain points 
which had been considered to be obviously true, neither he nor others working on the 
problem questioned (1-12). It was, and remains, generally agreed that (1-12) is valid. 

We now have a count of the number of standing waves. The next step in the Ray-
leigh-Jeans classical theory of blackbody radiation is the evaluation of the average 
total energy contained in each standing wave of frequency v. According to classical 
physics, the energy of some particular wave can have any value from zero to infinity, 
the actual value being proportional to the square of the magnitude of its amplitude 
constant E 0 . However, for a system containing a large number of physical entities of 
the same kind which are in thermal equilibrium with each other at temperature T, 
classical physics makes a very definite prediction about the average values of the 
energies of the entities. This applies to our case since the multitude of standing waves, 
which constitute the thermal radiation inside the cavity, are entities of the same kind 
which are in thermal equilibrium with each other at the temperature T of the walls 
of the cavity. Thermal equilibrium is ensured by the fact that the walls of any real 
cavity will always absorb and reradiate, in different frequencies and directions, a small 
amount of the radiation incident upon them and, therefore, the different standing 
waves can gradually exchange energy as required to maintain equilibrium. 

The prediction comes from classical kinetic theory, and it is called the law of equi-
partition of energy. This law states that for a system of gas molecules in thermal-
equilibrium at temperature T, the average kinetic energy of a molecule per degree of 
freedom is kT/2, where k = 1.38 x 10 -23  joule/°K is called Boltzmann's constant. The 
law actually applies to any classical system containing, in equilibrium, a large number 
of entities of the same kind For the case at hand the entities are standing waves 
which have one degree of freedom, their electric field amplitudes. Therefore, on the 
average their kinetic energies all have the same value, k T/2. However, each sinusoi-
dally oscillating standing wave has a total energy which is twice its average kinetic 
energy. This is a common property of physical systems which have a single degree 
of freedom that execute simple harmonic oscillations in time; familiar cases are a 
pendulum or a coil spring. Thus each standing wave in the cavity has, according to 
the classical equipartition law, an average total energy 

= kT 	 (1-16) 
The most important point to note is that the average total energy g is predicted 
to have the same value for all standing waves in the cavity, independent of their 
frequencies._ 

The energy per unit volume in the frequency interval y to y + dv of the blackbody 
spectrum of a cavity at temperature T is just the product of the average energy per 
standing wave times the number of standing waves in the frequency interval, divided 
by the volume of the cavity. From (1-15) and (1-16) we therefore finally obtain/the 
result 

8nv 2kT 
p T (v) dv = 

 c
3  dv (1-17) 

This the Rayleigh-Jeans formula for blackbody radiation. 
In. Figure 1-8 we compare the predictions of this equation with-experimental data. 

The discrepancy is apparent. In the limit of low frequencies, the classical spectrum 
approaches the experimental results, but, as the frequency becomes large, the theo-
retical prediction goes to infinity! Experiment shows that the energy density always 
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Figure 1-8 The Rayleigh-Jeans prediction (dashed line) compared with the experimental  
results (solid line) for the energy density of a blackbody cavity, showing the serious dis-
crepancy called the ultraviolet catastrophe.  

remains finite, as it obviously must, and, in fact, that the energy density goes to zero 
at very high frequencies. The grossly unrealistic behavior of the prediction of classical 
theory at high frequencies is known in physics a,s the "ultraviolet catastrophe." This 
term is suggestive of the importance of the failure of the theory. 

1 -4 PLANCK'S THEORY OF CAVITY RADIATION  

In trying to resolve the discrepancy between theory and experiment, Planck was led 
to consider the possibility of a violation of the law of equipartition of energy on which 
the theory was based. From Figure 1-8 it is clear that the law gives satisfactory results 
for small frequencies. Thus we can assume 

	

v  , o  kT 	 (1-18)  

that is, the average total energy approaches kT as the frequency approaches zero. The 
discrepancy at high frequencies could be eliminated if there is, for some reason, a 
cutoff, so that 

I v.^ - 0 	 (1-19)  

that is, if the average total energy approaches zero as the frequency approaches in-
finity In other words, Planck realized that, in the circumstances that prevail for the 
case of blackbody radiation, the average energy of the standing waves is a function of 
frequency 1(v) having the properties indicated by (1-18) and (1-19). This is in contrast 
to the law of equipartition of energy which assigns to the average energy I a value 
independent of frequency. 

Let us look at the origin of the equipartition law. It arises, basically, from a more 
comprehensive result of classical statistical mechanics called the Boltzmann distribu-
tion. (Arguments leading to the Boltzmann distribution are given in Appendix C for 
students not already familiar with it.) Here we shall use a special form of the Boltzmann 
distribution 

e - g/kT  
P(e) 	

kT  
(1-20)  

in which p(e)de is the probability of finding a given entity of a system with energy  

in the interval between g and g + de, when the number of energy states for the  

entity in that interval is independent of  e. The system is supposed to contain a large  
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number of entities of the same kind in thermal equilibrium at temperature T, and k  
represents Boltzmann's constant. The energies of the entities in the system we are  

considering, a set of simple harmonic oscillating standing waves in thermal equilib-
rium in a blackbody cavity, are governed by (1-20).  

The Boltzmann distribution function is intimately related to Maxwell's distribution func-
tion for the energy of a molecule in a system of molecules in thermal equilibrium. In fact,  

the exponential in the Boltzmann distribution is responsible for the exponential factor in the  

Maxwell distribution. The factor of g1/2 that some students may know is also present in the  

Maxwell distribution results from the circumstance that the number of energy states for a  

molecule in the interval C to C + de is not independent of C but instead increases in proportion  
to 6.112.  

The Boltzmann dist ribution function provides complete information about the 
energies of the entities in our system, including, of course, the average value g of the 
energies. The latter quantity can be obtained from P(C) by using (1-20) to evaluate 
the integrals in the ratio 

0 )  

(1-21)  

o 

The integrand in the numerator is the energy, C, weighted by the probability that the  

entity will be found with this energy. By integrating over all possible energies, the  

average value of the energy is obtained. The denominator is the probability of finding  

the entity with any energy and so should have the value one; it does. The integral in  

the numerator can be evaluated, and the result is just the law of equipartition of  

energy  
= kT 	 (1-22)  

Instead of actually carrying through the evaluation here, it will be better, for the  

purpose of arguments to follow, to look at the graphical presentation of P(C) and I  
shown in the top half of Figure 1-9. There P(C) is plotted as a function of C. Its . 

maximum value, 1/kT, occurs at C = 0, and the value of P(C) decreases smoothly  
with increasing C to approach zero as C —* oo. That is, the result that would most  

probably be found in a measurement of C is zero. But the average I of the results  
that would be found in a number of measurements of C is greater than zero, as is  
shown on the abscissa of the top figure, since many measurements of C will lead to  
values greater than zero. The bottom half of Figure 1-9 indicates the evaluation of I  
from P(C).  

Planck's great contribution  came  when he realized that he could obtain the re-
quired cutoff, indicated in (1-19), if he modified the calculation leading from P(4') to  

by treating the energy C as if it were a discrete variable instead of as the continuous  
variable that it definitely is from the point of view of classical physics. Quantitatively,  
this can be done by rewriting (1-21) in terms of a sum instead of an integral. We  

shall soon see that this is not too hard to do, but it will be much more instructive  

for us to study the graphical presentation in Figure 1-10 first.  

Planck assumed that the energy C could take on only certain discrete values, rather  

than any value, and that the discrete values of the energy were uniformly distributed;  

that is, he took  

. 
(' 

^ 	 J p(e)de  
..  U  

f eP(e) de  
g = ° 	 

C = 0, AC, 2AC, 3AC, 4AC, ... 	 (1-23)  
as the set of allowed values of the energy. Here AC is the uniform interval between  



kT 

kT  

Figure 1-9 Top: A plot of the Boltzmann probability distribution P(C) = e -e'kT /kT. The aver-
age value of the energy 6' for this distribution is A T  = kT, which is the classical law of 
equipartition of energy. To calculate this value of er, we integrate CP(C) from zero to 
infinity. This is just the quantity that is being averaged, C, multiplied by the relative prob-
ability P(C) that the value of C will be found in a measurement of the energy. Bottom: A 
plot of CP(C). The area under this curve gives the value of e. 

successive allowed values of the energy. The top part of Figure 1-10 illustrates an 
evaluation of e from P(C), for a case in which AC « kT. In this case the result 
obtained is e ^ kT. That is, a value essentially equal to the classical result is obtained 
here since the discreteness AC is very small compared to the energy range kT in 
which P()) changes by a significant amount; it makes no essential difference in this 
case whether C is continuous or discrete. The middle part of Figure 1-10 illustrates 
the case in which AC kT. Here we find I < kT, because most of the entities have 
energy C = 0 since P(C) has a rather small value at the first allowed nonzero value 
M so C = 0 dominates the calculation of the average value of 4' and a smaller result 
is obtained. The effect of the discreteness is seen most clearly, however, in the lower 
part of Figure 1-10, which illustrates a case in which AC » kT. In this case the prob-
ability of finding an entity with any of the allowed energy values greater than zero is 
negligible, since P(C) is extremely small for all these values, and the result obtained 
is l « kT. 

Recapitulating, Planck discovered that he could obtain I kT when the difference 
in adjacent energies M is small, and I ^ 0 when AC is large. Since he needed to 
obtain the first result for small values of the frequency y,  and the second result for 
large values of v, he clearly needed to make AC an increasing function of v. Numerical 
work showed him that he could take the simplest possible relation between AC and 
y having this property. That is, he assumed these quantities to be proportional 

AC cc v 	 (1-24) 
Written as an equation instead of a proportionality, this is 

AC = by 	 (1-25) 
where h is the proportionality constant. 

Further numerical work allowed Planck to determine the value of the constant h 
by finding the value which produced the best fit of his theory with the experimental 
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Figure 1-10 Top: If the energy e is not a continuous variable but is instead restricted to  
discrete values 0, M, 2A4 , 3& , ... , as indicated by the ticks on theee axis of the figure, the  

integral used to calculate the average value I must be replaced by a summation. The  
average value is thus a sum of areas of rectangles, each of width M, and with heights  

given by the allowed values of é times P(s) at the beginning of each interval. In this  
figure M « kT, and the allowed energies being closely spaced the area of all the rectangles  

differs but little from the area under the smooth curve. Thus the average value g is nearly  
equal to kT, the value found in Figure 1-9. Middle: A6 kT, and g has a smaller value than  
it has in the case of the top figure. Bottom: tg» kT, and g is further reduced. In all three  
figures the rectangles show the contribution to the total area of eP(e) for each allowed  
energy. The rectangle for e = 0 of course is always of zero height. This will make a large  

effect on the total area if the widths of the rectangles are large.  

data. The value he obtained was very close to the currently accepted value  

h = 6.63 x 10 -34  joule-sec  

This very famous constant is now called Planck's constant.  
The formula Planck obtained for I by evaluating the summation analogous to  

the integral in (1-21), and that we shall obtain in Example 1-4, is  

1(v) = envIkTV 
 — 1 	

(1-26)  

Since e"vikr  —* 1 + hv/kT for  hv/kT -* 0, we see that e(v) -* kT in this limit as predicted  
by (1-18). In the limit by/kT —> oo ,  e

n°IkT  0 ,  and I(v) 0, in agreement with the 
prediction of (1-19). 

The formula which he then immediately obtained for the energy density in the 
blackbody spectrum, using his result for I(v) rather than the classical value 1 = kT, 
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is  2 
PT(v)dv = gc3 ehv/ hv — 

 dv 	 (1 -27)  

This is Planck's blackbody spectrum. Figure 1-11 shows a comparison of this result  
of Planck's theory (expressed in terms of wavelength) with experimental results for a  

temperature T = 1595°K. The experimental results are in complete agreement with  

Planck's formula at all temperatures.  
We should remember that Planck did not alter the Boltzmann distribution. "All"  

he did was to treat the energy of the electromagnetic standing waves, oscillating  

sinusoidally in time, as a discrete instead of a continuous quantity.  

Example 1-4. Derive Planck's expression for the average energy I and also his blackbody  

spectrum.  
► The quantity I is evaluated from the ratio of sums 

e-
- n =0  

oo  

E P(e)  
n=0  

analogous to the ratio of integrals in (1-21). Sums must be used because with Planck's postulate 
the energy becomes a discrete variable that takes on only the values e = 0, hv, 2hv, 3hv, ... .  

That is, e = nhv where n = 0, 1, 2, 3, .... Evaluating the Boltzmann distribution P(s)=  
e  eikT/kT,  we have 
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This, in turn, can be evaluated most easily by noting that  

d °° 	°° 	d 
—a —  S' e —nœ  — E a — e-na  

n=0 da 
w  
E  e

- n.  
n=0  

d 
—a — ln E  e

-na = 	n — v  

da n=0  
co  

L 
e —na 

n0  

CO  

E  nae- na  

— n=0  
co  

L 
 e- na  

n= 0  

Figure 1-11 Planck's energy density prediction (solid line) compared to the experimental  

results (circles) for the energy density of a blackbody. The data were reported by Coblentz  

in 1916 and apply to a temperature of 1595 ° K. The author remarked in his paper that after  

drawing the spectral energy curves resulting from his measurements, "owing to eye fatigue  

it was impossible for months thereafter to give attention to the reduction of the data." The  

data, when finally reduced, led to a value for Planck's constant of 6.57 x 10 -34  joule-sec.  
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CO  
T  

so that  
d 	 d  

= kT( -a — ln E e - "")= -hv 	ln ^ e'
\\ da  n=0 	 da n= 0  

Now  
co  

E e  n"= 1 + e -  œ+e - 2a +e  3a + . ..  

n=0  
= 1+X+X2 +X 3 + •  where X = e - "  

(1- X) - 1 = 1+ X +X2 +X3 + ••  

= -hv —
d 
a ln(1- e - ") -i  

(1 - e ") 	i ( 1 )( 1  - e-")-2e-"  

hve - " 	hv 	hv  

1 - e -"  e" -  1  eh`'/kT —  1  

We have derived (1-26) for the average energy of an electromagnetic standing wave of fre- 
quency v. Multiplying this by (1-12), the number N(v) dv of waves having this frequency derived  

in Example 1-3, we immediately obtain the Planck blackbody spectrum, (1-27). 	•  
d.. 
Ç 	Example 1 -5. It is convenient in analyzing experimental results, as in Figure 1-11, to  

O 	express the Planck blackbody spectrum in terms of wavelength 2 rather than frequency v. Ob- 
tain p T (2), the wavelength form of Planck's spectrum, from p T (v), the frequency form of the  
spectrum. The quantity p T (2) is defined from the equality p T (2) d2 = - pT (v) dv. The minus sign  
indicates that, though p T (.1) and p T (v) are both positive, and dv have opposite signs. (An  

increase in frequency gives rise to a corresponding decrease in wavelength.)  

■ From the relation v = c/). we have dv = - (c/22 ) d1, or dv/d.l = -(02), so that  

dv 	c 
PT(2) = -PT(i') dA  = Pr(v)  .2 

but  

so  

0  

3 

0.5 	 1.0 
	

15  

X (104  A)  

Figure 1 -12 Planck's energy density of blackbody radiation at various temperatures as a  

function of wavelength. Note that the wavelength at which the curve is a maximum de-
creases as the temperature increases.  
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If now we set v = c/ A in (1-27) for p T (v) we obtain  

PT(' )d2 = 	

 

	

87thc 	d^ 	
(1-28) /15 ehcRicT _ 1  

In Figure 1-12 we show p T (1) versus 2 for several different temperatures. The trend from "red  
heat" to "white heat" to "blue heat" radiation with rising temperatures becomes clear as the  
distribution of radiant energy with wavelength is studied for increasing temperatures. 	4 

Stefan's law, (1-2), and Wien's displacement law, (1-3), can be derived from the  

Planck formula. By fitting them to the experimental results we can determine values  

of the constants h and k. Stefan's law is obtained by integrating Planck's law over  

the entire spectrum of wavelengths. The radiancy is found to be proportional to the  

fourth power of the temperature, the proportionality constant 2ir 5 k4/15c2h 3  being  
identified with a-, Stefan's constant, which has the experimentally determined value  

5.67 x 10- 8  W/m2-°K4. Wien's displacement law is obtained by setting dp(2)/d l = O.  
We find 2max  T = 0.2014hc/k and identify the right-hand side of the equation with 
Wien's experimentally determined constant 2.898 x 10' 3  m-°K. Using these two  
measured values and assuming a value for the speed of light c, we can calculate the  
values of h and k. Indeed, this was done by Planck, his values agreeing very well with  

those obtained subsequently by other methods.  

1-5 THE USE OF PLANCK'S RADIATION LAW IN THERMOMETRY  

The radiation emitted from a hot body can be used to measure its temperature. If total  
radiation is used, then, from the Stefan-Boltzmann law, we know that the energies emitted by  
two sources are in the ratio of the fourth power of the temperature. However, it is difficult to  
measure total radiation from most sources so that we measure instead the radiancy over a  
finite wavelength band. Here we use the Planck radiation law which gives the radiancy as a  
function of temperature and wavelength. For monochromatic radiation of wavelength 2 the  
ratio of the spectral intensities emitted by sources at T2 °K and T 1  °K is given from Planck's  
law as  

ehci.lkT1 
—  1  

ehci lTz —  1  
If T1  is taken as a standard reference temperature, then T2 can be determined relative to the  
standard from this expression by measuring the ratio experimentally. This procedure is used  
in the International Practical Temperature Scale, where the normal melting point of gold is  
taken as the standard fixed point, 1068°C. That is, the primary standard optical pyrometer is  
arranged to compare the spectral radiancy from a blackbody at an unknown temperature  
T > 1068°C with a blackbody at the gold point. Procedures must be adopted, and the theory  
developed, to allow for the practical circumstances that most sources are not blackbodies and  
that a finite spectral band is used instead of monochromatic radiation.  

Most optical pyrometers use the eye as a detector and call for a large spectral bandwidth so  
that there will be enough energy for the eye to see. The simplest and most accurate type of  
instrument used above the gold point is the disappearing filament optical pyrometer (see Fig-
ure 1-13). The source whose temperature is to be measured is imaged on the filament of the  

Objective 
	

Pyrometer 
	

Microscope 
lens 
	

lamp 

Source of • 
radiation 

Figure 1 -13 Schematic diagram of an optical pyrometer.  
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pyrometer lamp, and the current in the lamp is varied until the filament seems to disappear 
into the background of the source image. Careful calibration and precision potentiometers 
insure accurate measurement of temperature. 

A particularly interesting example in the general category of thermometry using blackbody 
radiation was discovered by Dicke, Penzias, and Wilson in the 1950s. Using a radio telescope 
operating in the several millimeter to several centimeter wavelength range, they found that a 
blackbody spectrum of electromagnetic radiation, with a characteristic temperature of about 
3°K, is impinging on the earth with equal intensity from all directions. The uniformity in 
direction indicates that the radiation fills the universe uniformly. Astrophysicists consider these 
measurements as strong evidence in favor of the so-called big-bang theory, in which the universe 
was in the form of a very dense, and hot, fireball of particles and radiation around 10 1°  years 
ago. Due to subsequent expansion and the resulting Doppler shift, the temperature of the 
radiation would be expected to drop by now to something like the observed value of 3°K. 

1-6 PLANCK'S POSTULATE AND ITS IMPLICATIONS 

Planck's contribution can be stated as a postulate, as follows: 
Any physical entity with one degree of freedom whose "coordinate" is a sinusoidal 

function of time (i.e., executes simple harmonic oscillations) can possess only total 
energies 6' which satisfy the relation 

e = nhv 	 n=0, 1,2,3,.,.. 
where v is the frequency of the oscillation, and h is a universal constant. 

The word coordinate is used in its general sense to mean any quantity which 
describes the instantaneous condition of the enity. Examples are the length of a coil 
spring, the angular position of a pendulum bob, and the amplitude of a wave. All 
these examples happen also to be sinusoidal functions of time. 

An energy-level diagram, as shown in Figure 1-14, provides a convenient way of 
illustrating the behavior of an entity governed by this postulate, and it is also useful 
in contrasting this behavior with what would be expected on the basis of classical 
physics. In such a diagram we indicate each of the possible energy states of the entity ( 

 with a horizontal line. The distance from the line to the zero energy line is propor-
tional to the total energy to which it corresponds. Since the entity may have any 
energy from zero to infinity according to classical physics, the classical energy-level 
diagram consists of a continuum of lines extending from zero up. However, the entity 
executing simple harmonic oscillations can have only one of the discrete total energies 
e = 0, hv, 2hv, 3hv ... if it obeys Planck's postulate. This is indicated by the discrete 
set of lines in its energy-level diagram. The energy of the entity obeying Planck's 
postulate is said to be quantized, the allowed energy states are called quantum states, 
and the integer n is called the quantum number. 

It may have occurred to the student that there are physical systems whose behavior 
seems to be obviously in disagreement with Planck's postulate. For instance, an ordi- 
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Figure 1-14 Left: The allowed energies in a classical system, oscillating sinusoidally with 
frequency y,  are continuously distributed. Right: The allowed energies according to 
Planck's postulate are discretely distributed since they can only assume the values nhv. 
We say that the energy is quantized, n being the quantum number of an allowed quantum 
state. 



nary pendulum executes simple harmonic oscillations, and yet this system certainly 
appears to be capable of possessing a continuous range of energies. Before we accept 
this argument, however, we should make some simple numerical calculations con-
cerning such a system. 

Example 1-6. A pendulum consisting of a 0.01 kg mass is suspended from a string 0.1 m 
in length. Let the amplitude of its oscillation be such that the string in its extreme positions 
makes an  angle of 0.1 rad with the vertical. The energy of the pendulum decreases due, for 
instance, to frictional effects. Is the energy decrease observed to be continuous or dis-
continuous? 
► The oscillation frequency of the pendulum is 

1 	g 	1 	9.8 m/sec 2 	/ 
V 2x l 27-c 	0.1 m 	

= 1.6 sec 

The energy of the pendulum is its maximum potential energy 
mgh = mgl(1 — cos 9) = 0.01 kg x 9.8 m/sec t  x 0.1 m x (1 — cos 0.1) 

= 5 x 10 -  5  joule 
The energy of the pendulum is quantized so that changes in energy take place in discontinuous 
jumps of magnitude AE = hv, but 

AE = hv = 6.63 x 10 -34  joule-sec x 1.6/sec = 10 -33  joule 
whereas E = 5 x 10 -5  joule. Therefore, LE/E = 2 x 10-29.  Hence, to measure the discrete-
ness in the energy decrease we need to measure the energy to better than two parts in 10 29 . It is 
apparent that even the most sensitive experimental equipment is totally incapable of this energy 
resolution. • 

We conclude that experiments involving an ordinary pendulum cannot determine 
whether Planck's postulate is valid or not. The same is true of experiments on all 
other macroscopic mechanical systems. The smallness of h makes the graininess in the 
energy too fine to be distinguished from an energy continuum. Indeed, h might as well 
be zero for classical systems and, in fact, one way to reduce quantum formulas to 
their classical limits would be to let h —* 0 in these formulas. Only where we con-
sider systems in which v is so large and/or e is so small that AS = hv is of the order 
of 8 are we in a position to test Planck's postulate. One example is, of course, the 
high-frequency standing waves in blackbody radiation. Many other examples will be 
considered in following chapters. 

1-7 A BIT OF QUANTUM HISTORY 

In its original form, Planck's postulate was not so far reaching as it is in the form we have 
given. Planck's initial work was done by treating, in detail, the behavior of the electrons in the 
walls of the blackbody and their coupling to the electromagnetic radiation within the cavity. 
This coupling leads to the same factor v 2  we obtained in (1-12) from the more general arguments 
due to Rayleigh and Jeans. Through this coupling, Planck related the energy in a particular 
frequency component of the blackbody radiation to the energy of an electron in the wall oscil-
lating sinusoidally at the same frequency, and he postulated only that the energy of the 
oscillating particle is quantized. It was not until later that Planck accepted the idea that the 
oscillating electromagnetic waves were themselves quantized, and the postulate was broadened 
to include any entity whose single coordinate oscillates sinusoidally. 

At first Planck was unsure whether his introduction of the constant h was only a mathemat-
ical device or a matter of deep physical significance. In a letter to R. W. Wood, Planck called 
his limited postulate "an act of desperation." "I knew," he wrote, "that the problem (of the 
equilibrium of matter and radiation) is of fundamental significance for physics; I knew the 
formula that reproduces the energy distribution in the normal spectrum; a theoretical interpre-
tation had to be found at any cost, no matter how high." For more than a decade Planck 
tried to fit the quantum idea into classical theory. With each attempt he appeared to retreat 
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from his original boldness, but always he generated new ideas and techniques that quantum 
theory later adopted. What appears to have finally convinced him of the correctness and deep 
significance of his quantum hypothesis was its support of the definiteness of the statistical 
concept of entropy and the third law of thermodynamics. 

It was during this period of doubt that Planck was editor of the German research journal 
Annalen der Physik. In 1905 he received Einstein's first relativity paper and stoutly defended 
Einstein's work. Thereafter he became one of young Einstein's patrons in scientific circles, but 
he resisted for some time the very ideas on the quantum theory of radiation advanced by 
Einstein that subsequently confirmed and extended Planck's own work. Einstein, whose deep 
insight into electromagnetism and statistical mechanics was perhaps unequalled by anyone at 
the time, saw as a result of Planck's work the need for a sweeping change in classical statistics 
and electromagnetism. He advanced predictions and interpretations of many physical phe-
nomena which were later strikingly confirmed by experiment. In the next chapter we turn to 
one of these phenomena and follow another road on the way to quantum mechanics. 

QUESTIONS 

1. Does a blackbody always appear black? Explain the term blackbody. 
2. Pockets formed by coals in a coal fire seem brighter than the coals themselves. Is the tem-

perature in such pockets appreciably higher than the surface temperature of an exposed 
glowing coal? 

3. If we look into a cavity whose walls are kept at a constant temperature no details of the 
interior are visible. Explain. 

4. The relation RT = 6T4  is exact for blackbodies and holds for all temperatures. Why is 
this relation not used as the basis of a definition of temperature at, for instance, 100°C? 

5. A piece of metal glows with a bright red color at 1100°K. At this temperature, however, 
a piece of quartz does not glow at all. Explain. (Hint: Quartz is transparent to visible 
light.) 

6. Make a list of distribution functions commonly used in the social sciences (e.g., distribu-
tion of families with respect to income). In each case, state whether the variable whose 
distribution is described is discrete or continuous. 

7. In (1-4) relating spectral radiancy and energy density, what dimensions would a propor-
tionality constant need to have? 

8. What is the origin of the ultraviolet catastrophe? 
9. The law of equipartition of energy requires that the specific heat of gases be independent 

of the temperature, in disagreement with experiment. Here we have seen that it leads to 
the Rayleigh-Jeans radiation law, also in disagreement with experiment. How can you 
relate these two failures of the equipartition law? 

10. Compare the definitions and dimensions of spectral radiancy R T(v), radiancy RT, and 
energy density p T(v). 

11. Why is optical pyrometry commonly used above the gold point and not below it? What 
objects typically have their temperatures measured in this way? 

12. Are there quantized quantities in classical physics? Is energy quantized in classical 
physics? 

13. Does it make sense to speak of charge quantization in physics? How is this different from 
energy quantization? 

14. Elementary particles seem to have a discrete set of rest masses. Can this be regarded as 
quantization of mass? 

15. In many classical systems the allowed frequencies are quantized. Name some of the sys-
tems. Is energy quantized there too? 

16. Show that Planck's constant has the dimensions of angular momentum. Does this neces-
sarily suggest that angular momentum is a quantized quantity? 

17. For quantum effects to be everyday phenomena in our lives, what would be the minimum 
order of magnitude of h? 
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18. What, if anything, does the 3°K universal blackbody radiation tell us about the tempera-
ture of outer space? 

19. Does Planck's theory suggest quantized atomic energy states? 

20. Discuss the remarkable fact that discreteness in energy was first found in analyzing a con-
tinuous spectrum emitted by interacting atoms in a solid, rather than in analyzing a dis-
crete spectrum such as is emitted by an isolated atom in a gas. 

PROBLEMS 

1. At what wavelength does a cavity at 6000°K radiate most per unit wavelength? 
2. Show that the proportionality constant in (1-4) is 4/c. That is, show that the relation 

between spectral radiancy R T(v) and energy density p T(v) is R T(v) dv = (c/4)p T(v) dv. 

3. Consider two cavities of arbitrary shape and material, each at the same temperature T, 
connected by a narrow tube in which can be placed color filters (assumed ideal) which 
will allow only radiation of a specified frequency y  to pass through. (a) Suppose at a cer-
tain frequency v', p T (v') dv for cavity 1 was greater than pr(v') dv for cavity 2. A color 
filter which passes only the frequency y' is placed in the connecting tube. Discuss what 
will happen in terms of energy flow. (b) What will happen to their respective temperatures? 
(c) Show that this would violate the second law of thermodynamics; hence prove that all 
blackbodies at the same temperature must emit thermal radiation with the same spectrum 
independent of the details of their composition. 

4. A cavity radiator at 6000°K has a hole 10.0 mm in diameter drilled in its wall. Find the 
power radiated through the hole in the range 5500-5510 A. (Hint: See Problem2.) 

5. (a) Assuming the surface temperature of the sun to be 5700°K, use Stefan's law, (1-2), 
to determine the rest mass lost per second to radiation by the sun. Take the sun's diameter 
to be 1.4 x 109  m. (b) What fraction of the sun's rest mass is lost each year from elec-
tromagnetic radiation? Take the sun's rest mass to be 2.0 x 10 3°  kg. 

6. In a thermonuclear explosion the temperature in the fireball is momentarily 10 7  °K. Find 
the wavelength at which the radiation emitted is a maximum. 

7. At a given temperature, Amax = 6500 A for a blackbody cavity. What will Amax  be if the 
temperature of the cavity walls is increased so that the rate of emission of spectral radia-
tion is doubled? 

8. At what wavelength does the human body emit its maximum temperature radiation? List 
assumptions you make in arriving at an answer. 

9. Assuming that Amax  is in the near infrared for red heat and in the near ultraviolet for 
blue heat, approximately what temperature in Wien's displacement law corresponds to 
red heat? To blue heat? 

10. The average rate of solar radiation incident per unit area on the earth is 0.485 cal/cm 2
-min (or 338 W/m2). (a) Explain the consistency of this number with the solar constant 

(the solar energy falling per unit time at normal incidence on a unit area) whose value is 
1.94 cal/cm 2 -min (or 1353 W/m 2). (b) Consider the earth to be a blackbody radiating 
energy into space at this same rate. What surface temperature would the earth have under 
these circumstances? 

11. Attached to the roof of a house are three solar panels, each 1 m x 2 m. Assume the equiv-
alent of 4 hrs of normally incident sunlight each day, and that all the incident light is 
absorbed and converted to heat. How many gallons of water can be heated from 40°C 
to 120°C each day? 

12. Show that the Rayleigh-Jeans radiation law, (1-17), is not consistent with the Wien dis-
placement law vmax  cc T, (1-3a), or AmaxT = const, (1-3b). 

13. We obtain vmax  in the blackbody spectrum by setting dp T(v)/dv = 0 and Amax  by setting 
dp T(2)/dA = 0. Why is it not possible to get from A max T = const to vmax = const x T 
simply by using Amax = C/Vmax? That is, why is it wrong to assume that vmaxAmax = c, 
where c is the speed of light? 

14. Consider the following numbers: 2, 3, 3, 4, 1, 2, 2, 1, 0 representing the number of hits 
garnered by each member of the Baltimore Orioles in a recent outing. (a) Calculate 
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directly the average number of hits per man. (b) Let x be a variable signifying the number  
of hits obtained by a man, and let f(x) be the number of times the number x appears.  
Show that the average number of hits per man can be written as  

4  
xf(x)  

o 
= 4  

o 
f(x)  

(c) Let p(x) be the probability of the number x being attained. Show that x is given by  
4  

= E xp(x)  
o 

15. Consider the function  

f(x)= 10(10 —x)2  

f(x) = 0  

(a) From  

— co  

find the average value of x. (b) Suppose the variable x were discrete rather than contin-
uous. Assume Ax = 1 so that x takes on only integral values 0, 1, 2, ... , 10. Compute  x 
and compare to the result of part (a). (Hint: It may be easier to compute the appropriate  
sum directly rather than working with general summation formulas.) (c) Compute z for  
Ax = 5, i.e. x = 0, 5, 10. Compare to the result of part (a). (d) Draw analogies between the  
results obtained in this problem and the discussion of Section 1-4. Be sure you understand  
the roles played by g, M, and P(s).  

16. Using the relations P(s) = e-67k T/kT and f â P(g) dg = 1, evaluate the integral of (1-21)  
to deduce (1-22), 1 = kT.  

17. Use the relation R T(v) dv = (c/4)p T(v) dv between spectral radiancy and energy density,  
together with Planck's radiation law, to derive Stefan's law. That is, show that  

co  
( 27 h v 3  dv 

J 2 by/kT 

0 
where o = 27z 5 k4/15c 2h3 .  

OD  
3 	̂4 

Hint: q dq  —  
eq —1 	15  

0 

18. Derive the Wien displacement law, AmaxT = 0.2014 he/k, by solving the equation 
dp(A)/dA = 0. (Hint: Set he/AkT = x and show that the equation quoted leads to e - x +  
x/5 = 1. Then show that x = 4.965 is the solution.) 

19. To verify experimentally that the 3°K universal background radiation accurately fits a 
blackbody spectrum, it is decided to measure R T(A) from a wavelength below /1,max  where 
its value is 0.2RT(Amax)  to a wavelength above Amax  where its value is again 0.2RT(2max). 
Over what range of wavelength must the measurements be made? 

20. Show that, at the wavelength Amax,  where p T(2) has its maximum 

PT(2max) = 1707t(kT)5/(hc)4  

0 < x < 10  

all other x  

RT = 
c e 	— 

	= QT4  
1  
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21. Use the result of the preceding problem to find the two wavelengths at which p T ()) has  
a value one-half the value at Amax.  Give answers in terms of Amax.  

22. A tungsten sphere 2.30 cm in diameter is heated to 2000°C. At this temperature tungsten  

radiates only about 30% of the energy radiated by a blackbody of the same size and tem-
perature. (a) Calculate the temperature of a perfectly black spherical body of the same  

size that radiates at the same rate as the tungsten sphere. (b) Calculate the diameter of  

a perfectly black spherical body at the same temperature as the tungsten sphere that  

radiates at the same rate.  

23. (a) Show that about 25% of the radiant energy in a cavity is contained within wave-
lengths zero and Amax;  i.e., show that  

(Hint: he/)maxkT = 4.965; hence Wien's approximation is fairly accurate in evaluating the  

integral in the numerator above.) (b) By what percent does Wien's approximation used  

over the entire wavelength range overestimate or underestimate the integrated energy  

density?  
24. Find the temperature of a cavity having a radiant energy density at 2000 A that is 3.82  

times the energy density at 4000 A.  
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2-1 INTRODUCTION  

In this chapter we shall examine processes in which radiation interacts with matter.  

Three processes (the photoelectric effect, the Compton effect, and pair production)  

involve the scattering or absorption of radiation in matter. Two processes (brems-
strahlung and pair annihilation) involve the production of radiation. In each case  

we shall obtain experimental evidence that radiation is particlelike in its interaction  

with matter, as distinguished from the wavelike nature of radiation when it propa-
gates. In the following chapter we shall study a generalization of this result, due to  

de Broglie, which leads directly into quantum mechanics. Some of the material of  

these two chapters may be a review of topics the student has already come across  

in studying elementary physics.  

2-2 THE PHOTOELECTRIC EFFECT  

It was in 1886 and 1887 that Heinrich Hertz performed the experiments that first  

confirmed the existence of electromagnetic waves and Maxwell's electromagnetic  

theory of light propagation. It is one of those fascinating and paradoxical facts in  

the history of science that in the course of his experiments Hertz noted the effect  

that Einstein later used to contradict other aspects of the classical electromagnetic  

theory. Hertz discovered that an electric discharge between two electrodes occurs  

more readily when ultraviolet light falls on one of the electrodes. Lenard, following  

up some experiments of Hallwachs, showed soon after that the ultraviolet light  

facilitates the discharge by causing electrons to be emitted from the cathode surface.  

The ejection of electrons from a surface by the action of light is called the photo-
electric effect. It is the phenomenon underlying the operation of the solar cells being  

developed to convert thermal energy received from the sun directly into electrical  

energy.  
Figure 2-1 shows an apparatus used to study the photoelectric effect. A glass  

envelope encloses the apparatus in an evacuated space. Monochromatic light, in-
cident through a quartz window, falls on the metal plate A and liberates electrons,  

Figure 2-1 An apparatus used to study the photoelectric effect. The potential difference  

V can be varied continuously in magnitude, and also reversed in sign by the switching  

arrangement. If the same metal is used to make plate A and cup B then the potential  
difference between them equals the value of V measured with a voltmeter between the  
points indicated in the figure. But if this is not the case then the measured value of V must  
be corrected by adding to it the contact potential acting between the two metals in order  
to obtain the quantity of interest—the potential difference between A and B. The phenom-
enon of contact potential is explained in Chapter 11.  
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Figure 2-2 Graphs of current i as a function of 
potential difference V from data taken with the 
apparatus of Figure 2-1. The applied potential dif-
ference V is called positive when the cup B in 
Figure 2-1 is positive with respect to the photo-
electric surface A. In curve b the incident light 
intensity has been reduced to one-half that of curve 
a. The stopping potential Vo  is independent of light 
intensity, but the saturation currents l a  and ib  are 
directly proportional to it. 

called photoelectrons. The electrons can be detected as a current if they are attracted 
to the metal cup B by means of a potential difference V applied between A and B. 
The sensitive ammeter G serves to measure this photoelectric current. 

Curve a of Figure 2-2 is a plot of the photoelectric current, in an apparatus like 
that of Figure 2-1, as a function of the potential difference V. If V is made large 
enough, the photoelectric current reaches a certain limiting (saturation) value at 
which all photoelectrons ejected from A are collected by cup B. 

If V is reversed in sign, the photoelectric current does not immediately drop to 
zero, which suggests that the electrons are emitted from A with kinetic energy. Some 
will reach cup B in spite of the fact that the electric field opposes their motion. How-
ever, if this reversed potential difference is made large enough, a value Vo  called 
the stopping potential is reached at which the photoelectric current does drop to zero. 
This potential difference V0 , multiplied by electron charge, measures the kinetic 
energy Kmax  of the fastest ejected photoelectron. That is 

Kmax = eVo 	 (2-1) 
The quantity Kmax  turns out experimentally to be independent of the intensity of the 
light, as is shown by curve b in Figure 2-2 in which the light intensity has been 
reduced to one-half the value used in obtaining curve a. 

Figure 2-3 shows the stopping potential Vo  as a function of the frequency of the 
light incident on sodium. Note that there is a definite cutoff frequency v o , below 
which no photoelectric effect occurs. These data were taken in 1914 by Millikan 
whose painstaking work on the photoelectric effect won him the Nobel prize in 1923. 
Because the photoelectric effect for visible or near-visible light is largely a surface 
phenomenon, it is necessary in the experiments to avoid oxide films, grease, or other 
surface contaminants. 

There are three major features of the photoelectric effect that cannot be explained 
in terms of the classical wave theory of light: 

1. Wave theory requires that the oscillating electric vector E of the light wave 
increase in amplitude as the intensity of the light beam is increased. Since the force 
applied to the electron is eE, this suggests that the kinetic energy of the photo- 

4 	 8 
	

12 
Frequency (10 14/sec)  

Figure 2-3 The stopping potential at various 
frequencies for sodium. The points show 
Millikan's data, except that the correction 
mentioned in the caption to Figure 2-1 has 
been recalculated using a recent measure-
ment of the contact potential. The cutoff fre-
quency vo  is 5.6 x 10 14  Hz. 



electrons should also increase as the light beam is made more intense. However, 
Figure 2-2 shows that Kmax,  which equals eV0 , is independent of the light intensity. 
This has been tested over a range of intensities of 10'. 

2. According to the wave theory the photoelectric effect should occur for any fre-
quency of the light, provided only that the light is intense enough to give the energy 
needed to eject the photoelectrons. However, Figure 2-3 shows that there exists, for 
each surface, a characteristic cutoff frequency v 0 . For frequencies less than v0 , the 
photoelectric effect does not occur, no matter how intense the illumination. 

3. If the energy acquired by a photoelectron is absorbed from the wave incident 
on the metal plate, the "effective target area" for an electron in the metal is limited, 
and probably not much more than that of a circle having about an atomic diameter. 
In the classical theory the light energy is uniformly distributed over the wave front. 
Thus, if the light is feeble enough, there should be a measurable time lag, which we 
shall estimate in Example 2-1, between the time when light starts to impinge on the 
surface and the ejection of the photoelectron. During this interval the electron should 
be absorbing energy from the beam until it has accumulated enough to escape. 
However, no detectable time lag has ever been measured. This disagreement is partic-
ularly striking when the photoelectric substance is a gas; under these circumstances 
collective absorption mechanisms can be ruled out and the energy of the emitted 
photoelectron must certainly be soaked out of the light beam by a single atom or 
molecule. 

Example 2-1. A potassium plate is placed 1 m from a feeble light source whose power is 
1 W = 1 joule/sec. Assume that an ejected photoelectron may collect its energy from a circular 
area of the plate whose radius r is, say, one atomic radius: r ^ 1 x 10 -10  m. The energy re-
quired to remove an electron through the potassium surface is about 2.1 eV = 3.4 x 10 -19 
joule. (One electron volt = 1 eV = 1.60 x 10 -19  joule is the energy gained by an electron, of 
charge 1.60 x 10 -19  coul, in falling through a potential drop of 1 V.) How long would it take 
for such a target to absorb this much energy from the light source? Assume the light energy 
to be spread uniformly over the wave front. 
•The target area is 7cr 2  = it x 10 -20  m2 . The area of a 1 m sphere centered on the source is 
4741 m)2  = 47c m 2. Thus if the source radiates uniformly in all directions (i.e., if the energy is 
uniformly distributed over spherical wave fronts spreading out from the source, in agreement 
with classical theory) the rate R at which energy falls on the target is given by 

7c x 10 -20 m2  
R = 1 joule/sec x 	

47t m2 	
= 2.5 x 10 -21  joule/sec 

Assuming that all this power is absorbed, we may calculate the time required for the electron 
to acquire enough energy to escape; we find 

3.4 x 10 -19  joule 
	102  t = 	 = 1.4 x 10 sec ^ 2 min 

2.5 x 10 -21  joule/sec 

Of course, we could modify the preceding picture to reduce the calculated time by assuming 
a larger effective target area. The most favorable assumption, that energy is transferred by a 
resonance process from light wave to electron, leads to a target area of /1 2 , where /1, is the wave-
length of the light, but we would still obtain a finite time lag which is well within our ability 
to measure experimentally. (For ultraviolet light of ) = 100 A, for example, t ^ 10 -2  sec.) 
However, no time lag has been detected under any circumstances, the early experiments setting 
an upper limit of 10 -9  sec on any such possible delay! • 

2-3 EINSTEIN'S QUANTUM THEORY OF THE 
PHOTOELECTRIC EFFECT 

In 1905 Einstein called into question the classical theory of light, proposed a new 
theory, and cited the photoelectric effect as one application that could test which 
theory was correct. This was many years before Millikan's work, but Einstein was in-
fluenced by Lenard's experiment. As we have mentioned, Planck originally restricted 
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his concept of energy quantization to the radiating electron in the walls of a black-
body cavity. Planck believed that electromagnetic energy, once radiated, spreads 
through space like water waves spread through water. Einstein proposed instead that 
radiant energy is quantized into concentrated bundles which later came to be called 
photons. 

Einstein argued that the well-known optical experiments on interference and dif-
fraction of electromagnetic radiation had been performed only in situations involving 
very large numbers of photons. These experiments yield results which are averages of 
the behaviors of the individual photons. The presence of the photons is not apparent 
in them any more than the presence of individual droplets of water is apparent in a 
fine spray from a garden hose, if the number of droplets is very high. Of course the 
interference and diffraction experiments definitely show that photons do not travel 
from where they are emitted to where they are absorbed in the simple ways that 
classical particles, like water droplets, do. They travel like classical waves, in the sense 
that calculations based on the way such waves propagate (and in particular the way 
two component waves reinforce or nullify each other depending on their relative 
phases) correctly explain measurements of the average way photons travel. 

Einstein focused his attention not on the familiar wavelike way radiation propa-
gates, but on what he first realized is the particlelike way it is emitted and absorbed. 
He reasoned that Planck's requirement that the energy content of the electromagnetic 
waves of frequency v in a radiant source (e.g., an ultraviolet light source in a photo-
electric experiment) can only be 0, or hv, or 2hv, ... , or nhv,... implies that in the 
process of going from energy state nhv to energy state (n — 1)hv the source would 
emit a discrete burst of electromagnetic energy of energy content hv. 

Einstein assumed that such a bundle of energy is initially localized in a small volume 
of space, and that it remains localized as it moves away from the source with velocity c. 
He assumed that the energy content E of the bundle, or photon, is related to its fre-
quency v by the equation 

E = hv 	 (2-2) 
He also assumed that in the photoelectric process one photon is completely absorbed by 
one electron in the photocathode. 

When the electron is emitted from the surface of the metal, its kinetic energy will 
be 

K = by — w 	 (2-3) 
where hv is the energy of the absorbed incident photon and w is the work required 
to remove the electron from the metal. This work is needed to overcome the attrac-
tive fields of the atoms in the surface and losses of kinetic energy due to internal 
collisions of the electron. Some electrons are bound more tightly than others; some 
lose energy in collisions on the way out. In the case of loosest binding and no in-
ternal losses, the photoelectron will emerge with the maximum kinetic energy, Kmax. 
Hence 

Kmax = hv — wo 	 (2-4) 
where wo , a characteristic energy of the metal called the work function, is the mini-
mum energy needed by an electron to pass through the metal surface and escape the 
attractive forces that normally bind the electron to the metal. 

Consider now how Einstein's photon hypothesis meets the three objections raised 
against the wave theory interpretation of the photoelectric effect. As for objection 1 
(the lack of dependence of Kmax  on the intensity of illumination), there is complete 
agreement of the photon theory with experiment. Doubling the light intensity merely 
doubles the number of photons and thus doubles the photoelectric current; it does 
not change the energy hv of the individual photons or the nature of the individual 
photoelectric process described by (2-3). 



Objection 2 (the existence of a cutoff frequency) is removed at once by (2-4). If 
K.  equals zero we have 

hvo  = wo 	 (2-5) 

which asserts that a photon of frequency v o  has just enough energy to eject the photo-
electrons and none extra to appear as kinetic energy. If the frequency is reduced 
below vo , the individual photons, no matter how many of them there are (that is, 
no matter how intense the illumination), will not have enough energy individually to 
eject photoelectrons. 

Objection 3 (the absence of a time lag) is eliminated in the photon theory because 
the required energy is supplied in concentrated bundles. It is not spread uniformly 
over a large area, as we assumed in Example 2-1, which is based on the assumption 
that the classical wave theory is true. If there is any illumination at all incident 
on the cathode, then there will be at least one photon that hits it; this photon will 
be immediately absorbed, by some atom, leading to the immediate emission of a 
photoelectron. 

Let us rewrite Einstein's photoelectric equation, (2-4), by substituting e Vo  for K.  
from (2-1). This yields 

hv w o  
Vo  =--- 

e 	e 

Thus Einstein's theory predicts a linear relationship between the stopping potential 
Vo  and the frequency v, in complete agreement with experimental results as shown in 
Figure 2-3. The slope of the experimental curve in the figure should be hie or, using 
data from the figure 

h 	2.1V-0.1V 
	 = 4.0 x 10 -15  V-sec 

e 	11.0 x 10 14/sec — 6.0 x 10 14/sec 

We can find h by multiplying this ratio by the electronic charge e. Thus h = 4.0 x 
10 -15  V-sec x 1.6 x 10 -19  coul = 6.4 x 10 -34  joule-sec. From a much more careful 
analysis of these and other data, including data taken with lithium surfaces, Millikan 
found the value h = 6.57 x 10 -34  joule-sec, with an accuracy of about 0.5%. This 
early measurement was in good agreement with the value of h derived from Planck's 
radiation formula. The numerical agreement in two determinations of h, using com-
pletely different phenomena and theories, is striking A modern value of h, deduced 
from diverse experiments, is 

h = 6.6262 x 10 -34  joule-sec 
To quote Millikan: "The photoelectric effect ... furnishes a proof which is quite independent 

of the facts of blackbody radiation of the correctness of the fundamental assumption of the 
quantum theory, namely, the assumption of a discontinuous or explosive emission of the en-
ergy absorbed by the electronic constituents of atoms from ... waves. It materializes, so to 
speak, the quantity h discovered by Planck through the study of blackbody radiation and gives 
us a confidence inspired by no other type of phenomenon that the primary physical concep-
tion underlying Planck's work corresponds to reality." 

Example 2-2. Deduce the work function for sodium from Figure 2-3. 
► The intersection of the straight line in Figure 2-3 with the horizontal axis is the cutoff 
frequency, v o  = 5.6 x 1014/sec. Substituting this into (2-5) gives us 

wo  = hvo  = 6.63 x 10 -34  joule-sec x 5.6 x 10 14/sec 
l eV 

= 3.7  x 10 -19 joule  x 	19 1.60 x 10 	joule 

= 2.3 eV 
The same value is obtained from Figure 2-3 as the magnitude of the intercept of the extended 
line with the vertical axis. 
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Example 2-3. At what rate per unit area do photons strike the metal plate in Example 2-1? 
Assume that the light is monochromatic, of wavelength 5890 A (yellow light). 
► The rate per unit area at which energy falls on a metal plate 1 m from a 1-W light source 
(see Example 2-1) is 

1 joule/sec 	2 	2 R = 

	

	= 8.0 x 10 joule/m 2-sec 
44741 m) 2  

= 5.0 x  10 17  eV/m2-sec 

Each photon has an energy of 

E=hv=
he 6.63 x 10 -34  joule-sec x 3.00 x 10 8  m/sec 
— = 	  

5.89 x 10 -7  m 
= 3.4 x 10 -19  joule 
= 2.1 eV 

Thus the rate R at which photons strike a ùnit area of the plate is 

1 	2 	1 photon 	17 photon 
R = 5.0 x 10 eV/m2-sec x 	= 2.4 x 10 	 

2.1 eV 	 m2-sec 

The photoelectric effect is just able to occur because the photon energy just equals the 2.1 eV 
work function for the potassium surface (see Example 2-1). Note that if the wavelength is 
slightly increased (that is, if v is slightly decreased) the photoelectric effect will not occur, no 
matter how large the rate R might be. 

This example suggests that the intensity of light I can be regarded as the product of N, the 
number of photons per unit area per unit time, and hv, the energy of a single photon. We see 
that even at the relatively low intensity here (^ 10 -1  W/m2) the number N is extremely large 
(^ 10 17  photons/m 2-sec) so that the energy of any one photon is very small. This accounts for 
the extreme fineness of the granularity of radiation and suggests why ordinarily it is difficult to 
detect at all. It is analogous to detecting the atomic structure of bulk matter which for most 
purposes can be regarded as continuous, the discreteness being revealed only under special 
circumstances. • 

In 1921 Einstein received the Nobel Prize for predicting theoretically the law of the photo-
electric effect. Before Millikan's complete experimental validation of this law in 1914, Einstein 
was recommended to membership in the Prussian Academy of Sciences by Planck and others. 
Their early negative attitude toward the photon hypothesis is revealed in their signed affidavit, 

 praising Einstein, in which they wrote: "Summing up, we may say that there is hardly one 
among the great problems, in which modern physics is so rich, to which Einstein has not made 
an important contribution. That he may have sometimes missed the target in his speculations, 
as, for example, in his hypothesis of light quanta (photons), cannot really be held too much 
against him, for it is not possible to introduce fundamentally new ideas, even in the most exact 
sciences, without occasionally taking a risk." 

Today the photon hypothesis is used throughout the electromagnetic spectrum, 
not only in the light region (see Figure 2-4). A microwave cavity, for example, can be 
said to contain-photons. At )L = 10 cm, a typical microwave wavelength, the photon 
energy can be computed as above to be 1.20 x 10 -5  eV. This energy is much too low 
to eject photoelectrons from metal surfaces. For x rays, or for energetic y rays such 
as are emitted from radioactive nuclei, the photon energy may be 10 6  eV or higher. 
Such photons can eject electrons bound deep in heavy atoms by energies of the order 
of 10 5  eV. The photons in the visible region of the electromagnetic spectrum are not 
energetic enough to do this, the photoelectrons which they eject being the so-called 
conduction electrons which are bound to the metal by energies of only a few electron 
volts. 
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Figure 2 -4 The electromagnetic spectrum, showing wavelength, frequency, and energy 
per photon on a logarithmic scale. 

Notice that the photons are absorbed in the photoelectric process. This requires 
the electrons to be bound to atoms, or solids, for a truly free electron cannot absorb 
a photon and conserve both total relativistic energy and momentum in the process. 
We must have a bound electron, therefore, the binding forces serving to transmit 
momentum to the atom or solid. Due to the large mass of an atom, or solid, com-
pared to the electron, the system can absorb a large amount of momentum without 
acquiring a significant amount of energy. Our photoelectric energy equation remains 
valid, the effect being possible only because there is a heavy recoiling particle in ad-
dition to an ejected electron. The photoelectric effect is one important way in which 
photons, of energy up to and including x-ray energies, are absorbed by matter. At 
higher energies other photon absorption processes, soon to be discussed, become 
more important. 
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Finally, it should be emphasized here that in the Einstein picture a photon of fre-

quency v has exactly the energy hv; it does not have energies that are integral multiples 
of hv. Of course, there can be n photons of frequency v so that the energy at that fre-
quency can be nhv. In treating blackbody cavity radiation in the Einstein picture, we 
deal with a "photon gas," because the radiant energy is localized in space in bundles 
rather than extended through space in standing waves. Years after the Planck deduc-
tion of the cavity radiation formula, Bose and Einstein derived the same formula on 
the basis of a photon gas. 

2-4 THE COMPTON EFFECT 

The corpuscular (particlelike) nature of radiation received dramatic confirmation in 
1923 from the experiments of Compton. He allowed a beam of x rays of sharply 
defined wavelength 2 to fall on a graphite target, as shown in Figure 2-5. For various 
angles of scattering, he measured the intensity of the scattered x rays as a function of 
their wavelength. Figure 2-6 shows his experimental results. We see that, although 
the incident beam consists essentially of a single wavelength 2, the scattered x rays 
have intensity peaks at two wavelengths; one of them is the same as the incident 
wavelength, the other, A', being larger by an amount A2. This so-called Compton shift 
AA _ A' — 2 varies with the angle at which the scattered x rays are observed. 

The presence of scattered wavelength 2' cannot be understood if the incident x 
radiation is regarded as a classical electromagnetic wave. In the classical model the 
oscillating electric field vector in the incident wave of frequency v acts on the free 
electrons in the scattering target and sets them oscillating at that same frequency. 
These oscillating electrons, like charges surging back and forth in a small radio trans-
mitting antenna, radiate electromagnetic waves that again have this same frequency 
v. Hence, in the classical picture the scattered wave should have the same frequency 
v and the same wavelength 2 as the incident wave. 

Compton (and independently Debye) interpreted his experimental results by pos-
tulating that the incoming x-ray beam was not a wave of frequency v but a collec-
tion of photons, each of energy E = hv, and that these photons collided with free 
electrons in the scattering target as in a collision between billiard balls. In this view, 
the "recoil" photons emerging from the target make up the scattered radiation. Since 
the incident photon transfers some of its energy to the electron with which it col-
lides, the scattered photon must have a lower energy E'; it must therefore have a 

x-ray 
source 

Lead 
collimating 	 Detector 

slits 

Figure 2-5 Compton's experimental arrangement. Monochromatic x rays of wavelength 
/I. fall on a graphite scatterer. The distribution of intensity with wavelength is measured 
for x rays scattered at any scattering angle O. The scattered wavelengths are measured 
by observing Bragg reflections from a crystal (see Figure 3-3). Their intensities are mea-
sured by a detector such as an ionization chamber. 
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Figure 2-6 Compton's experimental results. The solid  

vertical line on the left corresponds to the wavelength A,  

that on the right to A'. Results are shown for four differ-
ent angles of scattering 0. Note that the Compton shift, 
AA = — A, for 0 = 90°, agrees well with the theoretical  

prediction h/m oc = 0.0243 A.  

lower frequency y' = E'lh, which implies a longer wavelength 2' = c/v'. This point of  
view accounts qualitatively for the wavelength shift, 02 = A' — 2. Notice that in the  
interaction the x rays are regarded as particles, not as waves, and that, as distin-
guished from their behavior in the photoelectric process, the x-ray photons are scat-
tered rather than absorbed. Let us now analyze a single photon-electron collision  

quantitatively.  
For x radiation of frequency v, the energy of a photon in the incident beam is  

E= hv  

Taking the idea of a photon as a localized bundle of energy quite literally, we shall  

consider it to be a particle of energy E and momentum p. Such a particle must,  
however, have certain quite specialized properties. Consider the equation (see Appen-
dix A) giving the total relativistic energy of a particle in terms of its rest mass m o  
and its velocity y  

E = moc2/,I 1 
— v2/c2  

Since the velocity of a photon equals c, and since its energy content E = by is finite,  
it is apparent that the rest mass of a photon must be zero. Thus a photon can be  

considered to be a particle of zero rest mass, and of total relativisitic energy E which  
is entirely kinetic. The momentum of a photon can be evaluated from the general re-
lation between the total relativistic energy E, momentum p, and rest mass m o . This is  

E2  = c 2p2  + (m0 c 2) 2 
	

(2-6)  
For a photon the second term on the right is zero, and we have  

p = E/c = by/c 
	 (2-7)  
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or  

p = h/.1, 	 (2-8)  

where A. = c/v is the wavelength of the electromagnetic radiation that the photon  

comprises. It is quite interesting to note that Maxwell's classical wave theory of  

electromagnetic radiation also leads to an equation p = E/c, with p representing the  
momentum content per unit volume of radiation and E representing its energy  

content per unit volume.  
Now the frequency y  of the scattered radiation was observed to be independent of  

the material in the foil. This implies that the scattering does not involve entire atoms.  

Compton assumed that the scattering was due to collisions between the photon and  

an individual electron in the target. He also assumed that the electrons participating  

in this scattering process are free and initially stationary. Some a priori justification  
of these assumptions can be found from considering the fact that the energy of an  

x-ray photon is several orders of magnitude greater than the energy of an ultraviolet  

photon, and from our discussion of the photoelectric effect it is apparent that the  

energy of an ultraviolet photon is comparable to the minimum energy with which  

an electron is bound in a metal.  
Consider, then, a collision between a photon and a free stationary electron, as in  

Figure 2-7. In the diagram on the left, a photon of total relativistic energy E 0  and  
momentum po  is incident on a stationary electron of rest mass energy m oc 2 . In the  
diagram on the right, the photon is scattered at an angle B and moves off with total 

 N relativistic energy E 1  and momentum p i , while the electron recoils at an angle  9  
ci with kinetic energy K and momentum p. Compton applied the conservation of  

momentum and total relativistic energy to this collision problem. Relativistic equa-
tions were used since the photon always moves at relativistic velocities, and the 
recoiling electron does too under most circumstances. 

Momentum conservation requires 

po= pi cos O+p cos 9  
and  

p l  sin 0=p sin 9p  
Squaring these equations, we obtain 

(po — pi cos 0) 2 =p2 cos 2 (p  

and  
pi sin2 B = p2 sin2 cp 

   

Photon  
E0,P0  

V ^ 
X  

  

Electron  
K,p  

   

Before 
	 After  

Figure 2-7 Compton's interpretation. A photon of wavelength 2 is incident on a free  

electron at rest. On collision, the photon is scattered at an angle B with increased wave-
length 2', while the electron moves o ff  at angle 'p.  



Adding, we find 

pô + pi — 2popi cos 0 = p2 
Conservation of total relativistic energy requires 

E0  + moc2  = E1  + K + moc2  

(2-9) 

 

Thus 
Eo —E 1  =K 

According to (2-7), this is 

c(po — Pi) = K 

Writing K + moc2  for E in (2-6), that equation becomes 
(K + moc 2)2  = c2p2  + (moc 2)2  

which simplifies to 
K 2  + 2Kmoc2 = c 2p2 

or 
K2/c2  + 2Kmo  = p2 

Evaluating p2  from (2-9) and K from (2-10), we have 

(Po — p1) 2  + 2moc(po — Pi) = pô + pi — 2PoPi cos 0 
which reduces to 

moc(po — Pi) = pop1(1  — cos 0) 

or 
1 	1 	1 

— 	(1 — cos 0) 
Pi Po  moc 

(2-10) 
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Multiplying through by h, and applying (2-8), we obtain the Compton equation 

AA= 21 — io=Ac( 1—  cos 0) 	 (2-11) 
where 

2c  = h/moc = 2.43 x 10 -12  m = 0.0243 A 	 (2-12) 

is the so-called Compton wavelength. 
Notice that A),, the Compton shift, depends only on the scattering angle 0, and not 

on the initial wavelength A.  Equation (2-11) predicts the experimentally observed 
Compton shifts of Figure 2-6 to within the experimental limits of accuracy. In (2-11) 
we see that Ail varies from zero (for 0 = 0, corresponding to a "grazing" collision 
with the incident photon being scarcely deflected) to 2h/m oc = 0.049 A (for 0 = 180°, 
corresponding to a "head-on" collision, the incident photon being reversed in direc-
tion). Figure 2-8 is a plot of A). versus 0. 

Subsequent experiments (by Compton, Simon, Wilson, Bothe, Geiger, and Blass) 
detected the recoil electron in the process, showed that it appeared simultaneously 
with the scattered x ray, and confirmed quantitatively the predicted electron energy 
and direction of scattering. 

The presence of the peak in Figure 2-6 for which the photon wavelength does not 
change on scattering must still be explained. We have assumed heretofore that the 
electron with which the photon collides is free. Even though the electron is initially 
bound, this assumption is justifiable if the kinetic energy acquired by the electron in 
the collision is much larger than its binding energy. If the electron is particularly 
strongly bound to an atom in the target, however, or if the incident photon energy 
is very small, there is some chance that the electron will not be ejected from the atom. 
In this case, the collision can be regarded as taking place between the photon and 
the whole atom. The ionic core, to which the electron is bound in the scattering 
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Figure 2-8 Compton's result AA _ (him oc)(1 — cos 9).  

target, recoils as a whole during the collision. Then the mass M of the atom is the  

characteristic mass for the process, and it must be substituted in the Compton shift  

equations for the electron mass m o. Since M » m o  (M ^ 22,000m0  for carbon, for  
instance), the Compton shift for collisions with tightly bound electrons is seen, from  

(2-11) and (2-12), to be immeasurably small (one millionth of an angstrom for carbon),  

so that the scattered photon is essentially unmodified in wavelength. To summarize,  

some photons are scattered from electrons which are freed by the collision; these pho-
tons are modified in wavelength. Other photons are scattered from electrons which  

remain bound during the collision; these photons are not modified in wavelength.  

The process that scatters photons without changing their wavelength is called  

Rayleigh scattering, after the physicist who developed a classical theory of the  

scattering of electromagnetic radiation by atoms around the year 1900. He considered  

a beam of electromagnetic waves whose oscillating electric field interacts with the  

charges of the atomic electrons in the target. This interaction produces forces on  

the electrons which cause oscillating accelerations. As a result of the accelerations,  

the electrons will radiate electromagnetic waves of the same frequency, and in phase  

with, the incident waves. (See Appendix B.) Thus the atomic electrons absorb energy  
from the incident beam of x rays and scatter it in all directions, without modifying  

the wavelength. Although this classical explanation of Rayleigh scattering is different  

from the quantum explanation presented in the preceding paragraph, both explain  

the same feature observed in the measurements. Thus Rayleigh scattering is a case  

where classical and quantum results merge.  
It is interesting to ask in what region of the electromagnetic spectrum Rayleigh  

scattering will be the dominant process, and in what region Compton scattering will  

dominate. If the incident radiation is in the visible, microwave, or radio part of the  

spectrum, then % is extremely large compared to the Compton shift A2, independent  

of whether an electron or an atomic mass is used in evaluating the Compton wave-
length of (2-12). Thus the scattered radiation in this region of the spectrum will in  

all circumstances have a wavelength which is the same as the wavelength of the  

incident radiation within experimental accuracy. So, as 2 —> co the quantum results  

merge with the classical results, and Rayleigh scattering dominates. Moving into the  

x-ray region of the spectrum, Compton scattering starts to become important, partic-
ularly for scattering targets of low atomic number where the atomic electrons are  

not very tightly bound, and the wavelength shift in scattering from an electron which  

^ 
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is freed in the process becomes easily measurable. In the y-ray region where I -4 0, 
the photon energy becomes so large, that an electron is always freed in a collision, 
and Compton scattering dominates. 

It is in the short wavelength region that the classical results fail to explain the 
scattering of radiation, just as in the ultraviolet catastrophe of classical physics where 
predictions concerning the radiation in a cavity diverged radically from experimental 
results at short wavelengths. These circumstances are due to the size of Planck's con-
stant h. At long wavelengths the frequency y  is small, and since h is also small the 
granularity in electromagnetic energy, hv, is so small as to be virtually indistin-
guishable from the continuum of classical physics. But at sufficiently short wave-
lengths, where y is large enough, hv is no longer small enough to be negligible and 
quantum effects abound. 

Example 2-4. Consider an x-ray beam, with = 1.00 A, and also a y-ray beam from a Cs 137 

 sample, with A = 1.88 x 10 -2  A. If the radiation scattered from free electrons is viewed at 90° 
to the incident beam: (a) What is the Compton wavelength shift in each case? (b) What 
kinetic energy is given to a recoiling electron in each case? (c) What percentage of the incident 
photon energy is lost in the collision in each case? 
► (a) The Compton shift, with 0 = 90°, is 

h 	 6.63 x 10 -34  joule-sec 
AA = 	(1 - cos 0) = 	 x (1 - cos 90°) 31  

moc 	 9.11 x 10 	kg x 3.00 x 108  m/sec 

= 2.43 x 10 -12  m = 0.0243 A 

This result is independent of the incident wavelength, the same for the y rays as the x rays. 
(b) Equation (2-10) can be written as 

he/.l = he/l' + K 

Then, since 2' = 2 + AA., we have 

hc/A = hc/(2 + AA) + K 

so that K = he A),/2O. + AA). 
For the x-ray beam, with 2 = 1.00 A, we have 

6.63 x 10 -34  joule-sec x 3.00 x 10 8  m/sec x 2.43 x 10 -12  m 	 1 K = 

	

	 = 4.73 x 10 	joule 
1.00 x 10 lo  m x (1.00 + 0.024) x 10 lo  m 

= 295 eV = 0.295 keV 

For the y-ray beam, with 2 = 1.88 x 10 -2  A, we have 

6.63 x 10 -34  joule-sec x 3.00 x 108  m/sec x 2.43 x 10 -12  m 	 l4 
K = 

	

	 = 5.98 x 10 	joule 
1.88 x 10 la m x (0.0188 + 0.0243) x 10 -1°  m 

= 378 keV. 

(c) The incident x-ray photon energy is 
he 6.63 x 10 -34  joule-sec x 3.00 x 108  m/sec 	 1 s 

E=hv=-_ 	 =1.99=10 joule 
2 	 1.00 x 10 -1Ô m 

= 12.4 keV 
The energy lost by the photon equals that gained by the electron, or 0.295 keV, so the 
percentage loss in energy is 

x 100% = 2.4% 
12.4 keV 

The incident y-ray photon energy is 
he 6.63 x 10 -34  joule-sec x 3.00 x 10 8  m/sec 

E = hv = = 	  
1.88x10 -i2 m 

= 660 keV 

0.295 keV 

= 1.06 x 10 -13  joule 
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The energy lost by the photon equals that gained by the electron, or 378 keV, so that the  

percentage loss in energy is  
378 keV  
660 keV x 100% = 57%  

Hence, the more energetic photons (which have small wavelengths) experience a larger percent  
loss in energy in Compton scattering. This corresponds to the fact that the photons of smaller  
wavelengths experience a larger percent increase in wavelength on being scattered. This be-
comes clear from the expression for fractional loss in energy, given simply by  

K hcA2/2(2 + Ail) 	A2  
hc/.l 	A  +  4^ 

From this it can be shown that at 2 = 5500 A, corresponding to visible photons, the per- 
centage loss (for 0 = 90°) is less than one-thousandth of 1%, whereas at 2 = 1.25 x 10 -2  A,  
corresponding to 1 MeV y-ray photons, the percentage loss (for 8 = 90°) is 67%. 	1 

2-5 THE DUAL NATURE OF ELECTROMAGNETIC RADIATION  

In his paper, "A Quantum Theory of the Scattering of X-rays by Light Elements,"  

Compton wrote: "The present theory depends essentially upon the assumption that  

each electron which is effective in the scattering scatters a complete quantum  

(photon). It involves also the hypothesis that the quanta of radiation are received  

from definite directions and are scattered in definite directions. The experimental  

support of the theory indicates very convincingly that a radiation quantum carries  

with it directed momentum as well as energy."  

The need for a photon, or localized particle, interpretation of processes dealing  

with the interaction between radiation and matter is clear, but at the same time we  

need a wave theory of radiation to understand interference and diffraction phenom-
ena. The idea that radiation is neither purely a wave phenomenon nor merely a  

stream of particles must therefore be taken seriously. Whatever radiation is, it be-
haves wavelike under some circumstances and particlelike under other circumstances.  

Indeed, the situation is revealed most forcefully in Compton's experimental work  

where (a) a crystal spectrometer is used to measure x-ray wavelengths, the measure-
ment being interpreted by a wave theory of diffraction and (b) the scattering affects  

the wavelength in a way that can be understood only by treating the x rays as  

particles. It is in the very expressions E = by and p = h/2 that the wave attributes  

(v and A,) and the particle attributes (E and p) are combined.  
Although many physicists felt at first very uncomfortable when contemplating the  

"split personality" of electromagnetic radiation, the broader point of view provided  

by the development of quantum mechanics has caused the contemporary attitude to  

be quite different. The duality evident in the wave-particle nature of radiation is no  

longer considered at all unusual because it is now known to be a general charac-
teristic of all physical entities. We shall see that electrons and protons, for example,  

have exactly the same dual nature as photons. We shall also see that it is possible  

to reconcile the existence of the wave aspects with the existence of the particle  

aspects, for any of these entities, with the aid of quantum mechanics.  

2-6 PHOTONS AND X-RAY PRODUCTION  

X rays, so named by their discoverer Roentgen because their nature was then un-
known, are radiations in the electromagnetic spectrum of wavelength less than about  

1.0 A. They show the typical transverse wave behavior of polarization, interference,  

and diffraction that is found in light and all other electromagnetic radiation. X rays  

are produced in the target of an x-ray tube, illustrated in Figure 2-9, when a beam  

of energetic electrons, accelerated through a potential difference of thousands of volts,  
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Figure 2-9 An x-ray tube. Electrons are emitted thermally from the heated cathode C 
and are accelerated toward the anode target A by the applied potential V. X rays are 
emitted from the target when electrons are stopped by striking it. 

is stopped upon striking the target. According to classical physics (see Appendix B), 
the deceleration of the electrons, brought to rest in the target material, results in 
the emission of a continuous spectrum of electromagnetic radiation. 

Figure 2-10 shows, for four different values of the incident electron energy, how 
the x rays emerging from a tungsten target are distributed in wavelength. (In addition 
to the continuous x-ray spectrum shown in the figure, x-ray lines characteristic of 
the target material are emitted. We shall discuss the lines in Chapter 9.) The most 
notable feature of these smooth curves is that, for a given electron energy, there 
exists a well-defined minimum wavelength Amin;  for 40 keV electrons, for instance, 
Amin is 0.311 A. Although the shape of the continuous x-ray distribution spectrum 
depends slightly on the choice of target material as well as on the electron accel-
erating potential V, the value of Amin  depends only on V, being the same for all 
target materials. Classical electromagnetic theory cannot account for this fact, there 
being no reason why waves whose wavelength is less than a certain critical value 
should not emerge from the target. 

A ready explanation appears, however, if we regard the x rays as photons. Figure 
2-11 shows the elementary process that, on the photon view, is responsible for the 
continuous x-ray spectrum of Figure 2-10. An electron of initial kinetic energy K is 

10 

Re
la

tiv
e  

in
te

ns
ity

  

	

Il 	
20 keV 

0.2 	0.4 	0.6 	0.8 	10 a 
Wavelength (A) 

Figure 2-10 The continuous x-ray spectrum emitted from a tungsten target for four differ-
ent values of eV, the incident electron energy. 
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•  
Target  
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Bremsstrahlung  
photon  

K 

Electron  

Figure 2-11 The bremsstrahlung process responsible for the production of x rays in the  
continuous spectrum.  

decelerated during an encounter with a heavy target nucleus, the energy it loses  

appearing in the form of radiation as an x-ray photon. The electron interacts with  

the charged nucleus via the Coulomb field, transferring momentum to the nucleus.  

The accompanying deceleration of the electron leads to photon emission. The target  

nucleus is so massive that the energy it acquires during the collision can safely be  

neglected. If K' is the kinetic energy of the electron after the encounter, then the  

energy of the photon is  
by=K — K'  

and the photon wavelength follows from  

he/A = K — K' 	 (2-13)  
Electrons in the incident beam can lose different amounts of energy in such en-

counters and typically a single electron will be brought to rest only after many  

encounters. The x rays thus produced by many electrons make up the continuous  

spectrum of Figure 2-10 and are very many discrete photons whose wavelengths vary  

from Amin  to A — co, corresponding to the different energy losses in the individual 
encounters. The shortest wavelength photon would be emitted when an electron loses 
all its kinetic energy in one deceleration process; here K' = 0 so that K = he/Amin.  
Since K equals eV, the energy acquired by the electron in being accelerated through 
the potential difference V applied to the x-ray tube, we have 

eV = he/ Amin  
or  

Amin = he/eV 	 (2-14)  
Thus the minimum wavelength cutoff represents the complete conversion of the 
electron's kinetic energy to x radiation. Equation (2-14) shows clearly that if h 	0 
then Amin 	0, which is the prediction of classical theory. This shows that the very  

existence of a minimum wavelength is a quantum phenomenon.  

The continuous x radiation of Figure 2-10 is often called bremsstrahlung, from the  
German brems (= braking, i.e., decelerating) + strahlung (= radiation). The brems-
strahlung process occurs not only in x-ray tubes but wherever fast electrons collide  

with matter, as in cosmic rays, in the van Allen radiation belts which surround  

the earth, and in the stopping of electrons emerging from accelerators or radioactive  

nuclei. The bremsstrahlung process can be considered as an inverse photoelectric  

effect: in the photoelectric effect, a photon is absorbed, its energy and momentum  

going to an electron and a recoiling nucleus; in the bremsstrahlung process, a photon  

is created, its energy and momentum coming from a colliding electron and nucleus.  

We deal with the creation of photons in the bremsstrahlung process, rather than  

with their absorption or scattering by matter.  

^ 

^ 

^ 

Example 2-5. Determine Planck's constant h from the fact that the minimum x-ray wavelength  

produced by 40.0 keV electrons is 3.11 x 10 -11  m.  



■ From (2-14), we have  
h 

 

C 	 (D n 
1.60 x  10 -19  coul x 4.00 x 104  V x 3.11 x 10 -11  m 	 iv 

3.00 x 108  m/sec 

= 6.64 x 10 34  joule-sec 
This agrees well with the value of h deduced from the photoelectric effect and the Compton 
effect. 

Measurement of V, Amin,  and c provides one of the most accurate methods for evaluating 
the ratio h/e. Bearden, Johnson, and Watts at the Johns Hopkins University found in 1951, 
using this procedure, h/e = 1.37028 x 10 -15  joule-sec/coul. This ratio is combined with many 
other measured combinations of physical constants, the assembly of data being analyzed by 
elaborate statistical methods to find the "best" value for the various physical constants. The 
best values change (but usually only within the a priori estimates of accuracy) and become in-
creasingly precise as new experimental data and higher precision methods are used. 

2-7 PAIR PRODUCTION AND PAIR ANNIHILATION 

In addition to the photoelectric and Compton effects there is another process whereby 
photons lose their energy in interactions with matter, namely the process of pair 
production. Pair production is also an excellent example of the conversion of radiant 
energy into rest mass energy as well as into kinetic energy. In this process, illustrated 
schematically in Figure 2-12, a high energy photon loses all of its energy hv in an 
encounter with a nucleus, creating an electron and a positron (the pair) and endowing 
them with kinetic energies. A positron is a particle which is identical in all of its prop-
erties with an electron, except that the sign of its charge (and of its magnetic moment) 
is opposite to that of an electron; a positron is a positively charged electron. In pair 
production the energy taken by the recoil of the nucleus is negligible because it is so 
massive, and thus the balance of total relativistic energy in the process is simply 

hv = E_ + E+  = (moc2  + K _ ) + (m oc2  + K+) = K_ + K+  + 2m0c 2  (2-15) 

In this expression E _ and E +  are the total relativistic energies, and K _ and K +  are 
the kinetic energies of the electron and positron, respectively. Both particles have the 
same rest mass energy m oc 2 . The positron is produced with a slightly larger kinetic 
energy than the electron because the Coulomb interaction of the pair with the posi-
tively charged nucleus leads to an acceleration of the positron and a deceleration of 
the electron. 

In analyzing this process here we ignore the details of the interaction itself, con-
sidering only the situation before and after the interaction. Our guiding principles 
are the conservation of total relativistic energy, conservation of momentum, and con-
servation of charge. From these conservation laws, it is not difficult to show that a 
photon cannot simply disappear in empty space, creating a pair as it vanishes. The 
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Figure 2-12 The pair production process. 
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presence of the massive nucleus (which can absorb momentum without appreciably  

affecting the energy balance) is necessary to allow both energy and momentum to  

be conserved in the process. Charge is automatically conserved, the photon having  

no charge and the created pair of particles having no net charge. From (2-15) we see  

that the minimum, or threshold, energy needed by a photon to create a pair is 2m 0c2  
or 1.02 MeV (1 MeV = 10 6  eV), which is a wavelength of 0.012 A. If the wavelength  
is shorter than this, corresponding to an energy greater than the threshold value, the  

photon endows the pair with kinetic energy as well as rest mass energy. The pair  

production phenomenon is a high-energy one, the photons being in the very short  

x-ray or y-ray regions of the electromagnetic spectrum (see Figure 2-4), where their  

energies by are equal to or greater than 2m oc2. As we shall see in the next section,  

experimental results demonstrate that the absorption of photons in interaction with  

matter occurs principally by the photoelectric process at low energies, by the Comp-
ton effect at medium energies, and by pair production at high energies.  

Electron-positron pairs are produced in nature by cosmic-ray photons and in the  

laboratory by bremsstrahlung photons from particle accelerators. Other particle  

pairs, such as proton and antiproton, can be produced as well if the initiating photon  

has sufficient energy. Because the electron and positron have the smallest rest mass  

of known particles, the threshold energy of their production is the smallest. Experi-
ment verifies the quantum picture of the pair production process. There is no satis-
factory explanation whatever of this phenomenon in classical theory.  

Example 2-6. Analysis of a bubble chamber photograph (as in Figure 2-13) reveals the cre-
ation of an electron-positron pair as photons pass through matter. The electron and positron  

tracks have opposite curvatures in the uniform magnetic field B of 0.20 weber/m 2, their radii  
r each being 2.5 x 10 -2  m. What was the energy and the wavelength of the pair producing  

photon?  
•The momentum p of the electron is given by  

p = eBr = 1.6 x 10 - 19  cowl x 2.0 x 10 -1  weber/m 2  x 2.5 x 10 -2  m  

= 8.0 x 10 -22  kg-m/sec  
Its total relativistic energy E_ is given by  

E2 =  c2p2  + (moc2)2  
Since moc 2  = 0.51 MeV, and pc = 8.0 x 10 -22  kg-m/sec x 3.0 x 10 8  m/sec = 2.4 x 10 -13  

joule = 1.5 MeV, we have E2 = (1.5 MeV) 2  + (0.51 MeV) 2  and E_ = 1.6 MeV.  
The positron's total relativistic energy had the same value since its track had the same  

radius, so the energy of the photon was  

hv=E_+E + = 3.2 MeV  

The photon's wavelength follows from  
E =hv=hc/ d%  

or  
he 6.6 x 10 -34  joule-sec x 3.0 x 108  m/sec 13  ^,_—_ 	 — 3.9 x 10 	m= 0.0039 A 	t 
E 	3.2 x 10 6  eV x 1.6 x 10 -19  joule/eV  

Closely related to pair production is the inverse process called pair annihilation.  

An electron and a positron, which are essentially at rest near one another, unite and  
are annihilated. Matter disappears and in its place we get radiant energy. Since the  
initial momentum of the system is zero and momentum must be conserved in the  
process, we cannot have only one photon created because a single photon cannot  
have zero momentum. The most probable process is the creation of two photons  
moving with equal momenta in opposite directions. Less probable, but possible, is  
the creation of three photons.  

In the two-photon process illustrated by Figure 2-14, momentum conservation  

gives 0 = p i  + p2  or p i  = —p2  so that the photon momenta are oppositely directed  
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Figure 2-13 Electron pair production, as seen in a bubble chamber. The electron and 
positron tracks are the two spirals meeting at the point where the production took place 
in the liquid filling of the chamber. The student can determine which of the two spirals 
belongs to the positron by knowing that the long tracks are primarily positively charged 
deuterons which are incident from the left. (Courtesy of C. R. Sun, State University of 
New York at Albany) 

but equal in magnitude. Hence, p l  = p2  or hv 1/c = hv 2/c and y 1  = y2  = v. Total rel-
ativistic energy conservation then requires that m oc2  + moc 2  = hv + hv, the positron 
and electron having no initial kinetic energy and the photon energies being the same. 
Hence, hv = moc2  = 0.51 MeV, corresponding to a photon wavelength of 0.024 A. If 
the initial pair had some kinetic energy then the photon energy would exceed 0.51 
MeV and its wavelength could be less than 0.024 A. 

Positrons are created in the pair production process. On passing through matter 
a positron loses energy in successive collisions until it combines with an electron to 
form a bound system called positronium. The positronium "atom' is short lived, 
decaying into photons within about 10 -10  sec of its formation. The electron and 
positron presumably move about their common center of mass in a kind of death 
dance before mutual annihilation. 

Example 2-7. (a) Assume that Figure 2-14 represents the annihilation process in a reference 
frame S, the electron-positron pair being at rest there and the two annihilation photons mov-
ing along the x axis. Find the wavelength 2 of these photons in terms of m0 , the rest mass of 
an electron or positron. 

• • +e —e 
Before 

Figure 2-14 

P2 	 Pi 

"P2 	 hv1 

After 

Pair annihilation producing two photons. 
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c +v 
—v 

•We saw that p 1  = p2 and hv 1  = hv 2 . Each photon has the same energy, the same frequency, 
and the same wavelength. We can drop the subscripts then and from the relation by = moc 2  
and p = E/c we obtain 

p=E/c=hv/c=moc 2/c=moc 

p = 
so that 

.1 = hip =h/mo c 

Hence, in the rest frame of the positronium atom each photon has the same wavelength, 2 = 
h/m oc. 	 • 

(b) Now consider the same annihilation event to be observed in frame S', moving relative 
to S with a velocity v to the left. What wavelength does this (moving) observer record for the 
annihilation photons? 
► Here, the pair has initial total relativistic energy 2mc 2 , where m is relativistic mass, rather 
than merely the rest mass energy 2m 0c 2, so that conservation of energy in the annihilation 
process gives us 

2mc = plc + p'2c 

Also, the pair now moves with velocity v along the positive x' axis so that its initial momentum 
is 2mv, rather than zero as before. Conservation of momentum now gives us 

2mv =p'1 — p'2  

the photons moving in opposite directions also the x' axis. Let us combine these two  expres- 
sions. We multiply the second by c and add it to the first, obtaining, since m = m o/N/1 — v 2/c 2  

pi =m(c+ v)— 	
m o(c + v)  —mcc  

	

v 2/c 2 	

But p'1  = h/21, so that 

   

    

h_ h c—v 	c—v 
p'1 moc c+v 	c+ v 

In a similar manner, by subtracting the second equation from the first, we obtain 
h — h /c+v — c+ v 

212  	'Vf 	 

	

P2 moc c — v 	c— v 

 

The photons do not have the same wavelength, but they are Doppler shifted from the wave-
length 2 they had in the rest frame of the source (the positronium atom). If an observer is 
situated on the x' axis so that the source moves toward him, he will receive photon 1, having 
a frequency higher than the "rest" frequency. If an observer is situated on the x' axis so that 
the source moves away from him, he will receive photon 2, having a frequency lower than the 
rest frequency. This Example is actually a derivation of the longitudinal Doppler shift formula 
of relativity theory. • 

The first experimental evidence for the pair production process, and the existence of posi-
trons, was obtained in 1933 by Anderson during an investigation of the cosmic radiation. This 
radiation consists of a flux of very high energy photons and charged particles incident upon 
the earth from extra-terrestrial sources. Anderson was using a cloud chamber containing a 
thin lead plate, with the entire apparatus in a magnetic field. Upon exposing this apparatus 
to the cosmic radiation, it was found that very infrequently a pair of charged particles was 
ejected from some point in the lead plate. These events were assumed to be the result of the 
interaction of a photon in the lead because no charged particle was seen to strike the point of 
ejection, whereas a photon, being uncharged, could strike the point of ejection without being 
seen. The two charged particles ejected in these events were bent in opposite directions by the 
magnetic field. Therefore their charges were of opposite sign. From other considerations it 
could be shown that the magnitudes of these charges were equal to one electronic charge and 
that the masses of the particles were approximately equal to one electronic mass. 

But we also have the relation 



The discovery of the pair production process explained the origin of a discrepancy between  

the then current theory of x-ray attenuation and the measured attenuation coefficients of sev-
eral materials for 2.6 MeV x rays (y rays obtained from a radioactive source). As the theory  

originally did not include pair production, the predicted attenuation was too small; with the  

inclusion of the pair production process, good agreement is now obtained between experiment  

and theory. However, the real importance of Anderson's discovery was in the beautiful con-
firmation which it provided for Dirac's relativistic quantum mechanical theory of the electron.  

The Dirac theory leads to the prediction that the allowed values of total relativistic energy  

E for a free electron are  
E  = ± Vc2p2 +  (moc2)2  

where mo  is the electron rest mass. These are simply the solutions for E of (2-6), but the solu-
tion with the minus sign corresponds to a negative total relativistic energy—a concept as  

foreign to relativistic mechanics as a negative total energy is to classical mechanics. Instead  

of just throwing away the negative part on the grounds that it is not physically realistic, Dirac  

pursued the consequences of the entire equation. In doing this he was led to some very inter-
esting conclusions. Consider Figure 2-15, which is an energy-level diagram representing (2-17).  

If the indicated continuum of negative energy levels exists, all free electrons of positive energy  

should be able to make transitions into these levels, accompanied by the emission of photons  
of the appropriate energies. This obviously disagrees with experiment because free electrons  

are not generally observed to emit spontaneously photons of energy hv > 2m0c2 . However,  
Dirac pointed out that this difficulty can be removed by assuming that all the negative energy  

levels are normally filled at all points in space. According to this assumption, a vacuum consists 
of a sea of electrons in negative energy levels. This does not disagree with experiment. For  

instance, the negative charge could not be detected, as it is assumed to be uniformly distributed  

and therefore exerts no force on a charged body. Similar considerations will demonstrate that  

all the "usual" properties of a sea of negative energy electrons are such that its presence would  

not be apparent in any of the usual experiments. However, Dirac's theory of the vacuum is  

not completely vacuous because it predicts certain new properties which can be tested by  

experiment.  
The energy-level diagram for a free electron suggests the possibility of exciting an electron  

in a negative energy level by the absorption of a photon. Since all the negative energy levels  

are assumed to be fully occupied, the electron must be excited to one of the unoccupied posi-
tive energy levels. The minimum photon energy required for this process is obviously hv =  

2moc 2, and the process results in the production of an electron in a positive energy level plus  

a hole in a negative energy level. We can demonstrate that a hole in a negative electron energy  

level has all the mechanical and electrical properties of a positron of positive energy. For in-
stance, there is a positive charge  +e associated with the absence of an electron of negative  

charge — e. Consequently, this is the pair production process observed experimentally by  

Anderson three years after its theoretical prediction by Dirac.  

^ 

Higher + levels, corresponding to p> 0 

+moc2 	 

0—  

—mo c2 	 

   

Lowest + level, corresponding to p = 0 

Highest — level, corresponding to p = 0 

Lower — levels, corresponding to p > 0 
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Figure 2 -15 The energy levels of a free electron according to Dirac.  
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2-8 CROSS SECTIONS FOR PHOTON ABSORPTION 
AND SCATTERING 

Consider a parallel beam of photons passing through a slab of matter, as in Figure 
2-16. The photons can interact with the atoms in the slab by four different processes: 
photoelectric, pair production, Rayleigh, and Compton. The first two absorb photons 
completely, while the last two only scatter them, but all the processes remove photons 
from the parallel beam. The question of what the chances of these processes happen-
ing are, in a given set of circumstances, is one of considerable theoretical and practical 
significance. For instance, it is very important to a medical physicist designing the 
shielding for an x-ray machine, or a nuclear engineer designing the shielding for a 
reactor. The answer to the question is expressed in terms of quantities called cross 
sections. We first meet cross sections here in connection with photons, but we shall 
encounter them again in other connections elsewhere in this book. 

The probability that a photon of a given energy will be, for example, absorbed by 
the photoelectric process in passing an atom of the slab is specified by the value of 
the photoelectric cross section 6pE . This measure of the likelihood of the photoelectric 
process occurring is defined so that the number NpE of photoelectric absorptions 
occurring is 

NpE = apEIn 	 (2-18) 
when a beam containing I photons is incident on a slab containing n atoms per unit 
area. It is assumed here that the slab is thin enough that the probability of a given 
photon being absorbed in passing through the slab is much smaller than one. 

The definition of (2-18), which is a prototype of the definitions of all cross sections, 
is sufficiently important to warrant careful physical interpretation. First note that 
the number NpE of absorptions should certainly increase in proportion to the number 
I of photons incident on the slab. Furthermore, it the slab is thin in the sense specified 
previously the atoms in the slab will not appreciably "shadow" each other, as far as 
the incident photons are concerned. Then the number NpE of absorptions should 
also increase in proportion to the number n of target atoms per unit area of the slab. 
Thus we should have 

NpE Cc In 

If we write this proportionality as an equality, calling the proportionality constant 
6pE , we obtain the defining equation for that cross section. Thus we see that the cross 
section, which has a value depending on both the energy of the photon and the type 
of atom, measures how effective such atoms are in absorbing those photons by the 
photoelectric effect. Since the quantities NpE and I in (2-18) are dimensionless, while 
n has the dimensions of (area) -1 , it is clear that 6p E  must have the dimensions of 
(area). Thus it is reasonable to use the name cross section for 613E. It is often given 

Figure 2-16 A beam of photons passing through a slab. 



10
-19  

Lead  

^\\  o / 
\ 	 ^ 

^PE\\ 

\\u^ 

\ % 
N.\ 

 
\ 6pR 	

NN 
 

108  

a geometrical interpretation by imagining that a circle of area 6pE  is centered on  
each atom in the slab in the plane of the slab, with the property that any photon  

entering the circular area is absorbed by the atom through the photoelectric effect.  

This geometrical interpretation is convenient for visualization and even for calcula-
tion, but it definitely should not be taken to be literally true. A cross section is really  

just a way of expressing numerically the probability that a certain type of atom will  

cause a photon of a given energy to undergo a particular process. The definitions  

and interpretations of the cross sections for the other absorption or scattering pro-
cesses are completely analogous to those for the example we have considered.  

Figure 2-17 shows the measured scattering (as), photoelectric (ape), pair production 
(6pR), and total (a) cross sections for a lead atom as a function of the photon energy  

hv. The scattering cross section specifies the probability of scattering occurring by  

either the Rayleigh or the Compton process. For lead, which has a high atomic num-
ber and thus tightly bound atomic electrons, Rayleigh scattering dominates Compton  

scattering when the photon energy is below about  hv = 105  eV. The sharp breaks in  
the photoelectric cross section occur at the binding energies of the different electrons  

in the lead atom; when hv drops below the binding energy of a particular electron a  

photoelectric process involving it is no longer energetically possible. The pair pro-
duction cross section rises very rapidly from zero when hv exceeds the threshold  

energy 2moc2  ^ 106  eV required to materialize a pair. The total cross section a in  

Figure 2-17 is the sum of the scattering, photoelectric, and pair production cross sec-
tions. This quantity specifies the probability that a photon will make any kind of  

interaction with the atom. We see from the figure that the energy ranges in which  

each of the three processes makes the most important contribution to a are approxi-
mately, for lead:  

Photoelectric effect:  hv < 5 x 105  eV  
Scattering: 	5 x 10 5  eV < hv < 5 x 10 6  eV  
Pair production: 	5 x 106  eV < by  
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Figure 2-17 The scattering, photoelectric, pair production, and total cross sections for a  

lead atom.  
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Because these processes have probabilities with different dependences on atomic 
number, the energy ranges in which they dominate are quite different for atoms of 
low atomic number. The energy ranges are approximately, for aluminum: 

Photoelectric effect:  hv < 5 x 104  eV 
Scattering: 	5 x 104  eV < hv < 1 x 10' eV 
Pair production: 	1 x 10' eV < hv 

E$ample 2-8. Evaluate, in terms of the total cross section a, the attenuation of a parallel 
beam of x rays in passing through a thick slab of matter. 
■ Referring to Figure 2-16, I(0) photons are in the beam as it is incident on the front face of 
the slab of thickness t, which contains p atoms per cm 3 . Assume, for simplicity, that the area 
of the slab is 1 cm 2 . Because of scattering and absorption processes, the parallel beam contains 
a smaller number I(x) of photons after penetrating x cm into the slab. Consider a thin lamina 
of the slab, of width dx located at x. The number of atoms per cm 2  in the lamina is p times 
its volume dx, or p dx. The number of beam photons that will be scattered or absorbed in the 
lamina is specified by the total cross section a, in a definition analogous to (2-18). It is 
6I(x)p dx. Thus the number of beam photons emerging from the lamina, I(x + dx), which 
equals the number incident minus the number removed, is 

I(x + dx) = 1(x) — aI(x)pdx 

or 

dI(x) - I(x + dx) — I(x) = —6I(x)pdx 

We find 1(t), the number of beam photons emerging from the rear face of the slab, by solving 
for dI(x)/I(x) and then integrating over x 

dI(x) 

I(x) 	
—apdx 

t 	 t 

 fJI(1(x) x)
=-6pdx 

0 	 0 

In I(x)]ô = —ap t 

In 
1(0) 

 = apt 

I(t) 
= e - apt 

I(0) 

	

I(t) = I(0)e - °pt 	 (2-19) 

The intensity of the beam, as measured by the number I of photons it contains, decreases 
exponentially as the thickness t of the slab increases. The quantity 6p, which is called the at-
tenuation coefficient, has the dimensions (cm i ) and is the reciprocal of the thickness of slab 
required to attenuate the beam intensity by a factor of e. This thickness is called the attenua-
tion length A. That is 

A = 1/6p 	 (2-20) 
Of course, the attenuation coefficient has the same dependence on photon energy as the total 
cross section. Figure 2-18 shows measured attenuation coefficients of lead, tin, and aluminum 
for photons of relatively high energy. 	 • 

This section summarizes many of the practical aspects of the electromagnetic radia-
tion emission and absorption phenomena we have studied in the present chapter. 
But the fundamental aspects of these phenomena are better summarized by saying 
that they show electromagnetic radiation to be quantized into particles of energy 
called photons. It should also be emphasized that the phenomena of interference and 
diffraction show photons do not travel through a system from where they are emitted 
to where they are absorbed in the simple way that classical particles do. Instead, 
photons act as if they were guided by classical waves because photons travel through 
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a system such as a diffraction apparatus in a way that is best described by the way  

that classical waves would propagate through the apparatus.  

QUESTIONS  

1. In the photoelectric experiments, the current (number of electrons emitted per unit time)  

is proportional to the intensity of light. Can this result alone be used to distinguish  

between the classical and quantum theories?  

2. In Figure 2-2 why does the photoelectric current not rise vertically to its maximum  

(saturation) value when the applied potential difference is slightly more positive than  

V0?  
3. Why is it that even for incident radiation that is monochromatic, photoelectrons are  

emitted with a spread of velocities?  

4. The existence of a cutoff frequency in the photoelectric effect is often regarded as the  

most potent objection to a wave theory. Explain.  
5. Why are photoelectric measurements very sensitive to the nature of the photoelectric  

surface?  
6. Do the results of photoelectric experiments invalidate Young's interference experiment?  

7. Can you use the device of letting h -* 0 to obtain classical results from quantum results  

in the case of the photoelectric effect? Explain.  

8. Assume that the emission of photons from a source of radiation is random in direction.  

Would you expect the intensity (or energy density) to vary inversely as the square of the  

distance from the source in the photon theory as it does in the wave theory?  

9. Does a photon of energy E have mass? If so, evaluate it.  
10. Why, in Compton scattering, would you expect A/I to be independent of the materials  

of which the scatterer is composed?  

11. Would you expect to observe the Compton effect more readily with scattering targets  

composed of atoms with high atomic number or those composed of atoms with low  
atomic number? Explain.  

12. Do you observe a Compton effect with visible light? Why?  

13. Would you expect a definite minimum wavelength in the emitted radiation for a given  

value of the energy of an electron incident on the target of an x-ray tube from the  

classical electromagnetic theory of the process?  

14. Does a television tube emit x rays? Explain.  

15. What effect(s) does decreasing the voltage across an x-ray tube have on the resulting  

x-ray spectrum?  
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16. Discuss the bremsstrahlung process as the inverse of the Compton process. Of the photo-
electric process. 

17. Describe several methods that can be used to determine experimentally the value of 
Planck's constant h. 

18. From what factors would you expect to judge whether a photon will lose its energy in 
interactions with matter by the photoelectric process, the Compton process, or the pair 
production process? 

19. Can you think of experimental evidence contradicting the idea that vacuum is a sea of 
electrons in negative energy states? 

20. Can electron-positron annihilation occur with the creation of one photon if a nearby 
nucleus is available for recoil momentum? 

21. Explain how pair annihilation with the creation of three photons is possible. Is it possible 
in principle to create even more than three photons in a single annihilation process? 

22. What would be the inverse of the process in which two photons are created in electron-
positron annihilation? Can it occur? Is it likely to occur? 

23. What is wrong with taking the geometrical interpretation of a cross section as literally 
true? 

PROBLEMS 

1. (a) The energy required to remove an electron from sodium is 2.3 eV. Does sodium show 
a photoelectric effect for yellow light, with 1 = 5890 A? (b) What is the cutoff wave-
length for photoelectric emission from sodium? 

2. Light of a wavelength 2000 A falls on an aluminum surface. In aluminum 4.2 eV are 
required to remove an electron. What is the kinetic energy of (a) the fastest and (b) the 
slowest emitted photoelectrons? (c) What is the stopping potential? (d) What is the 
cutoff wavelength for aluminum? (e) If the intensity of the incident light is 2.0 W/m 2, what 
is the average number of photons per unit time per unit area that strike the surface? 

3. The work function for a clean lithium surface is 2.3 eV. Make a rough plot of the 
stopping potential Vo  versus the frequency of the incident light for such a surface, indi-
cating its important features. 

4. The stopping potential for photoelectrons emitted from a surface illuminated by light of 
wavelength 2 = 4910 A is 0.71 V. When the incident wavelength is changed the stopping 
potential is found to be 1.43 V. What is the new wavelength? 

5. In a photoelectric experiment in which monochromatic light and a sodium photocathode 
are used, we find a stopping potential of 1.85 V for 2 = 3000 A and of 0.82 V for 2 _ 
4000 A. From these data determine (a) a value for Planck's constant, (b) the work func-
tion of sodium in electron volts, and (c) the threshold wavelength for sodium. 

6. Consider light shining on a photographic plate. The light will be recorded if it dissociates 
an AgBr molecule in the plate. The minimum energy to dissociate this molecule is of the 
order of 10 -19  joule. Evaluate the cutoff wavelength greater than which light will not 
be recorded. 

7. The relativistic expression for kinetic energy should be used for the electron in the 
photoelectric effect when v/c > 0.1, if errors greater than about 1% are to be avoided. 
For photoelectrons ejected from an aluminum surface (w o  = 4.2 eV) what is the smallest 
wavelength of an incident photon for which the classical expression may be used? 

8. X rays with 2 = 0.71 A eject photoelectrons from a gold foil. The electrons form circular 
paths of radius r in a region of magnetic induction B. Experiment shows that rB = 
1.88 x 10 -4  tesla-m. Find (a) the maximum kinetic energy of the photoelectrons and 
(b) the work done in removing the electron from the gold foil. 

9. (a) Show that a free electron cannot absorb a photon and conserve both energy and 
momentum in the process. Hence, the photoelectric process requires a bound electron. 
(b) In the Compton effect, however, the electron can be free. Explain. 
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10. Under ideal conditions the normal human eye will record a visual sensation at 5500 A  
if as few as 100 photons are absorbed per second. What power level does this correspond  

to?  
11. An ultraviolet lightbulb, emitting at 4000 A, and an infrared lightbulb, emitting at 7000 A,  

each are rated at 40 W. (a) Which bulb radiates photons at the greater rate, and (b) how  

many more photons does it produce each second over the other bulb?  

12. Solar radiation falls on the earth at a rate of 1.94 cal/cm 2 -min on a surface normal to  
the incoming rays. Assuming an average wavelength of 5500 A, how many photons per  
cm2 -min is this?  

13. What are the frequency, wavelength, and momentum of a photon whose energy equals  

the rest mass energy of an electron?  

14. In the photon picture of radiation, show that if beams of radiation of two different  

wavelengths are to have the same intensity (or energy density) then the numbers of the  

photons per unit cross-sectional area per sec in the beams are in the same ratio as the  

wavelengths.  
15. Derive the relation  

cotg =(1 + m  c 2
J

tanrp 
o  

between the direction of motion of the scattered photon and the recoil electron in the  

Compton effect.  

16. Derive a relation between the kinetic energy K of the recoil electron and the energy E  
of the incident photon in the Compton effect. One form of the relation is  

^2hv^ 2 0 
s in — K _ 	1110C

2 2  
E 

 1+ (

2hv  1 
sin  0  

moc2 	2  

(Hint: See Example 2-4.)  

17. Photons of wavelength 0.024 A are incident on free electrons. (a) Find the wavelength 
of a photon which is scattered 30° from the incident direction and the kinetic energy 
imparted to the recoil electron. (b) Do the same if the scattering angle is 120°. (Hint: 
See Example 2-4.) 

18. An x-ray photon of initial energy 1.0 x 10 5  eV traveling in the +x direction is incident 
on a free electron at rest. The photon is scattered at right angles into the + y direction. 
Find the components of momentum of the recoiling electron. 

19. (a) Show that AE/E, the fractional change in photon energy in the Compton effect, 
equals (hv'/m oc 2)(1 — cos 0). (b) Plot AE/E versus 0 and interpret the curve physically. 

20. What fractional increase in wavelength leads to a 75% loss of photon energy in a Comp-
ton collision? 

21. Through what angle must a 0.20 MeV photon be scattered by a free electron so that it 
loses 10% of its energy? 

22. What is the maximum possible kinetic energy of a recoiling Compton electron in terms 
of the incident photon energy by and the electron's rest energy m oc 2?  

23. Determine the maximum wavelength shift in the Compton scattering of photons from 
protons.  

24. (a) Show that the short wavelength cutoff in the x-ray continuous spectrum is given by 
Amin = 12.4 A/V, where V is applied voltage in kilovolts. (b) If the voltage across an 
x-ray tube is 186 kV what is Amin?  

25. (a) What is the minimum voltage across an x-ray tube that will produce an x ray having 
the Compton wavelength? A wavelength of 1 A? (b) What is the minimum voltage needed 
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across an x-ray tube if the subsequent bremsstrahlung radiation is to be capable of pair 
production? 

26. A 20 KeV electron emits two bremsstrahlung photons as it is being brought to rest in 
two successive decelerations. The wavelength of the second photon is 1.30 A longer than 
the wavelength of the first. (a) What was the energy of the electron after the first decelera-
tion, and (b) what are the wavelengths of the photons? 

27. A y ray creates an electron-positron pair. Show directly that, without the presence of a 
third body to take up some of the momentum, energy and momentum cannot both be 
conserved. (Hint: Set the energies equal and show that this leads to unequal momenta 
before and after the interaction.) 

28. A y ray can produce an electron-positron pair in the neighborhood of an electron at rest 
as well as a nucleus. Show that in this case the threshold energy is 4m 0c 2 . (Hint: Do not 
ignore the recoil of the original electron, but assume that all three particles move off 
together.) 

29. A particular pair is produced such that the positron is at rest and the electron has a 
kinetic energy of 1.0 MeV moving in the direction of flight of the pair-producing photon. 
(a) Neglecting the energy transferred to the nucleus of the nearby atom, find the energy 
of the incident photon. (b) What percentage of the photon's momentum is transferred 
to the nucleus? 

30. Assume that an electron-positron pair is formed by a photon having the threshold en-
ergy for the process. (a) Calculate the momentum transferred to the nucleus in the 
process. (b) Assume the nucleus to be that of a lead atom and compute the kinetic 
energy of the recoil nucleus. Are we justified in neglecting this energy compared to the 
threshold energy assumed above? 

31. An electron-positron pair at rest annihilate, creating two photons. At what speed must 
an observer move along the line of the photons in order that the wavelength of one 
photon be twice that of the other? 

32. Show that the results of Example 2-8, expressed in terms of p and t, are valid independent 
of the assumed area of the slab. 

33. Show that the attenuation length A is just equal to the average distance a photon will 
travel before being scattered or absorbed. 

34. Use the data of Figure 2-17 to calculate the thickness of a lead slab which will attenuate 
a beam of 10 keV x rays by a factor of 100. 
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3-1 MATTER WAVES 

Maurice de Broglie was a French experimental physicist who, from the outset, had 
supported Compton's view of the particle nature of radiation. His experiments and 
discussions impressed his brother Louis so much with the philosophic problems of 
physics at the time that Louis changed his career from history to physics. In his 
doctoral thesis, presented in 1924 to the Faculty of Science at the University of Paris, 
Louis de Broglie proposed the existence of matter waves. The thoroughness and 
originality of his thesis was recognized at once but, because of the apparent lack of 
experimental evidence, de Broglie's ideas were not considered to have any physical 
reality. It was Albert Einstein who recognized their importance and validity and in 
turn called them to the attention of other physicists. Five years later de Broglie 
won the Nobel Prize in physics, his ideas having been dramatically confirmed by 
experiment. 

The hypothesis of de Broglie was that the dual, that is wave-particle, behavior of 
radiation applies equally well to matter. Just as a photon has a light wave associated 
with it that governs its motion, so a material particle (e.g., an electron) has an asso-
ciated matter wave that governs its motion. Since the universe is composed entirely 
of matter and radiation, de Broglie's suggestion is essentially a statement about a 
grand symmetry of nature. Indeed, he proposed that the wave aspects of matter are 
related to its particle aspects in exactly the same quantitative way that is the case 
for radiation. According to de Broglie, for matter and for radiation alike the total 
energy E of an entity is related to the frequency y  of the wave associated with its 
motion by the equation 

E = by 	 (3-la) 
and the momentum p of the entity is related to the wavelength 2 of the associated 
wave by the equation 

p = h/2 	 (3-1b) 

Here the particle concepts, energy E and momentum p, are connected through 
Planck's constant h to the wave concepts, frequency y and wavelength A. Equation 
(3-1b), in the following form, is called the de Broglie relation 

2 = h/p 	 (3-2) 
It predicts the de Broglie wavelength 2 of a matter wave associated with the motion 
of a material particle having a momentum p. 

Example 3 -1. (a) What is the de Broglie wavelength of a baseball moving at a speed v = 
10 m/sec? 
• Assume in = 1.0 kg. From (3-2) 

h 	h 	6.6 x 10 -34  joule-sec 	 gs 	 2s A= - _—_ 	= 6.6 x 10 -  m=6.6 x 10 A 
p my 	1.0 kg x 10 m/sec 

(b) What is the de Broglie wavelength of an electron whose kinetic energy is 100 eV? 
• Here 

h 	h 	 6.6 x 10 -34  joule-sec 

P V2 mK (2 x 9.1 x 10 -31  kg x 100 eV x 1.6 x 10 -19  joule/eV) 1 / 2  

6.6 x 10 -34  joule-sec 	 10 	 = 1.2 x 10 	m = 1.2 A 
5.4 x 10 -24  kg-m/sec 

The wave nature of light propagation is not revealed by experiments in geometrical 
optics, for the important dimensions of the apparatus used there are very large 
compared to the wavelength of light. If a represents a characteristic dimension of an 
optical apparatus (e.g., the width of a lens, mirror, or slit) and 2 is the wavelength of 
the light passing through the apparatus, we are in the domain of geometrical optics 



when 2/a -+ 0. The reason is that the diffraction effects in any apparatus are always 
confined to angles of about 9 = 2/a, so diffraction effects are completely negligible 
when 1/a -i 0. Note that geometrical optics involves ray propagation, which is similar 
to the trajectory motion of classical particles. 

However, when the characteristic dimension a of an optical apparatus becomes 
comparable to, or smaller than, the wavelength 2 of the light going through it, we are 
in the domain of physical optics. In this case, where 2/a $ 1, the diffraction angle 
0 = 2/a is large enough that diffraction effects are easily observed and the wave 
nature of light propagation becomes apparent. To observe wavelike aspects in the 
motion of matter, therefore, we need systems with apertures or obstacles of suitably 
small dimensions. The finest scale systems of apertures available to experimentalists 
at the time of de Broglie made use of the spacing between adjacent planes of atoms 
in a solid, where a 1 A. (Now systems are available involving nuclear dimensions 
of ^ 10 -4  A.) Considering the de Broglie wavelengths evaluated in Example 3-1, we 
see that we cannot expect to detect any evidence of wavelike motion for a baseball, 
where 2/a 10 -25  for a ^ 1 A; but for a material particle of very much smaller mass 
than a baseball, the momentum p is reduced, and the de Broglie wavelength A = h/p 
is increased sufficiently for diffraction effects to be observable. Using apparatus with 
characteristic dimensions a = 1 A, wavelike aspects in the motion of the 2 = 1.2 A 
electron of Example 3-1 should be very apparent. 

Elsasser pointed out, in 1926, that the wave nature of matter might be tested in 
the same way that the wave nature of x rays was first tested, namely by allowing a 
beam of electrons of appropriate energy to fall on a crystalline solid. The atoms of 
the crystal serve as a three-dimensional array of diffracting centers for the electron 
wave, and so they should strongly scatter electrons in certain characteristic directions, 
just as for x-ray diffraction. This idea was confirmed in experiments by Davisson 
and Germer in the United States and by Thomson in Scotland. 

Figure 3-1 shows schematically the apparatus of Davisson and Germer. Electrons 
from a heated filament are accelerated through a potential difference V and emerge 
from the "electron gun" G with kinetic energy eV. This electron beam falls at normal 
incidence on a single crystal of nickel at C. The detector D is set at a particular angle 
9 and readings of the intensity of the scattered beam are taken at various values of the 
accelerating potential V. Figure 3-2, for example, shows that a strong scattered 
electron beam is detected at 9 = 50° for V = 54 V. The existence of this peak in the 
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Figure 3-1 The apparatus of Davisson and Germer. Electrons from filament F are 
accelerated by a variable potential difference V. After scattering from crystal C they are 
collected by detector D. 
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Figure 3 -2 Left: The collector current in detector D of Figure 3-1 as a function of the 
kinetic energy of the incident electrons, showing a diffraction maximum. The angle 0 in 
Figure 3-1 is adjusted to 50 ° . If an appreciably smaller or larger value is used, the dif-
fraction maximum disappears. Right: The current as a function of detector angle for 
the fixed value of electron kinetic energy 54 eV. 

electron scattering pattern demonstrates qualitatively the validity of de Broglie's pos- 
tulate because it can only be explained as a constructive interference of waves scattered 
by the periodic arrangement of the atoms into planes of the crystal. The phenomenon 
is precisely analogous to the well-known "Bragg reflections" which occur in the 
scattering of x rays from the atomic planes of a crystal. It cannot be understood on 
the basis of classical particle motion, but only on the basis of wave motion. Classical 
particles cannot exhibit interference, but waves can! The interference involved here 
is not between waves associated with one electron and waves associated with another. 
Instead, it is an interference between different parts of the wave associated with a 
single electron that have been scattered from various regions of the crystal. This 
can be demonstrated by using an electron beam of such low intensity that the elec-
trons go through the apparatus one at a time, and by showing that the pattern of 
the scattered electrons remains the same. 

Figure 3-3 shows the origin of a Bragg reflection, obeying the Bragg relation 
derived in the caption to that figure 

n2.= 2 d sin ce 	 (3-3) 
For the conditions of Figure 3-3 the effective interplanar spacing d can be shown 
by x-ray scattering from the same crystal to be 0.91 A. Since B = 50°, it follows that 
cp = 90° — 50°/2 = 65°. The wavelength calculated from (3-3), assuming n = 1, is 

A= 2 d  sin cp= 2 x 0.91 A x sin 65° = 1.65 A 
The de Broglie wavelength for 54 eV electrons, calculated from (3-2), is 

= h/p = 6.6 x 10' 34  j oule-sec/4.0 x 10 - 24  kg-m/sec = 1.65 A 
This impressive agreement gives quantitative confirmation of de Broglie's relation 
between A, p, and h. 

The breadth of the observed peak in Figure 3-2 is easily understood, also, for 
low-energy electrons cannot penetrate deeply into the crystal, so that only a small 
number of atomic planes contribute to the diffracted wave. Hence, the diffraction 
maximum is not sharp. Indeed, all the experimental results were in excellent qualita-
tive and quantitative agreement with the de Broglie prediction, and they provided 
convincing evidence that material particles move according to the laws of wave 
motion. 

In 1927, G. P. Thomson showed the diffraction of electron beams passing through 
thin films and independently confirmed the de Broglie relation 2 = h/p in detail. 
Whereas the Davisson-Germer experiment is like Laue's in x-ray diffraction (reflec-
tion from the regular array of atomic planes in a large single crystal), Thomson's 
experiment is similar to the Debye-Hull-Scherrer method of powder diffraction of x 
rays (transmission through an aggregrate of very small crystals oriented at random). 
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Figure 3-3 Top: The strong diffracted 
beam at 9 = 50°  and V = 54 V arises from 
wavelike scattering from the family of 
atomic planes shown, which have a sep-
aration distance d = 0.91 A. The Bragg an-
gle is cp = 65° . For simplicity, refraction of 
the scattered wave as it leaves the crystal 
surface is not indicated. Bottom: Deriva-
tion of the Bragg relation, showing only 
two atomic planes and two rays of the in-
cident and scattered beams. If an integral 
number of wavelengths n t just fit into the 
distance 21 from incident to scattered 
wave fronts measured along the lower 
ray, then the contributions along the two 
rays to the scattered wave front will be in 
phase and a diffraction maximum will be 
obtained at the angle go. Since lid = 
cos(90°  — (p) = sin cp, we have 21= 2d sin cp, 
and so we obtain the Bragg relation nil = 
2d sin cp. The "first order" diffraction maxi-
mum (n = 1) is usually most intense. 
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Thomson used higher-energy electrons, which are much more penetrating, so that 
many hundred atomic planes contribute to the diffracted wave. The resulting dif-
fraction pattern has a sharp structure. In Figure 3-4 we show, for comparison, an 
x-ray diffraction pattern and an electron diffraction pattern from polycrystalline 
substances (substances in which a large number of microscopic crystals are oriented 
at random). 

It is of interest that J. J. Thomson, who in 1897 discovered the electron (which he charac-
terized as a particle with a definite charge-to-mass ratio) and was awarded the Nobel Prize 
in 1906, was the father of G. P. Thomson, who in 1927 experimentally discovered electron 
diffraction and was awarded the Nobel Prize (with Davisson) in 1937. Max Jammer writes of 
this, "One may feel inclined to say that Thomson, the father, was awarded the Nobel Prize 
for having shown that the electron is a particle, and Thomson, the son, for having shown 
that the electron is a wave." 

Not only electrons but all material objects, charged or uncharged, show wavelike 
characteristics in their motion under the conditions of physical optics. For example, 
Estermann, Stern, and Frisch performed quantitative experiments on the diffraction 
of molecular beams of hydrogen and atomic beams of helium from a lithium fluoride 
crystal; and Fermi, Marshall, and Zinn showed interference and diffraction phenom-
ena for slow neutrons. In Figure 3-5 we show a neutron diffraction pattern for a 
sodium chloride crystal. Even an interferometer operating with electron beams has 
been constructed. The existence of matter waves is well established. 

It is instructive to note that we had to go to relatively long de Broglie wavelengths 
to find experimental evidence for the wave nature of matter. For both large and small 
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Figure 3-4 Top: The experimental arrangement for Debye-Scherrer di ffraction of x rays 
or electrons by a polycrystalline material. Bottom left: Debye-Scherrer pattern of x-ray 
diffraction by zirconium oxide crystals. Bottom right: Debye-Scherrer pattern of electron 
diffraction by gold crystals. 

wavelengths, both matter and radiation have both particle and wave aspects. The 
particle aspects are emphasized when their emission or absorption is studied, and the 
wave aspects are emphasized when their behavior in moving through a system is 
studied. But the wave aspects of their motion become more difficult to observe as 
their wavelengths become shorter. Once again we see the central role played by 
Planck's constant h. If h were zero then in A = h/p we would obtain A = 0 in all cir-
cumstances. All material particles would then always have a wavelength smaller 
than any characteristic dimension, and diffraction effects could never be observed. 
Although the value of h is definitely not zero, it is small. It is the smallness of h that 
obscures the existence of matter waves in the macroscopic world, for we must have 
very small momenta to obtain measurable wavelengths. For ordinary macroscopic 
particles the mass is so large that the momentum is always sufficiently large to make 
the de Broglie wavelength small enough to be beyond the range of experimental 
detection, and classical mechanics reigns supreme. In the microscopic world the 
masses of material particles are so small that their momenta are small even when 
their velocities are quite high. Thus their de Broglie wavelengths are large enough to 
be comparable to characteristic dimensions of systems of interest, such as atoms, and 
the wavelike properties are experimentally observable in their motion. But we should 
not forget that in their interaction, for instance when they are detected, their particle-
like properties dominate even when their wavelengths are large. 

Example 3-2. In the experiments with helium atoms referred to earlier, a beam of atoms 
of nearly uniform speed of 1.635 x 10 5  cm/sec was obtained by allowing helium gas to escape 



a) 
1

 

 

S
3A

b'
M

 1:i
3

1
1

`d
W

 

Figure 3-5 Top: Laue pattern of x-ray diffraction by a single sodium choride crystal. 
Bottom: Laue pattern of diffraction of neutrons from a nuclear reactor by a single sodium 

choride crystal. 



N  
^ 

D
E

 B
R

O
G

LI
E
'S

 P
O

S
T

U
LA

T
E

 
through a small hole in its enclosing vessel into an evacuated chamber and then through  

narrow slits in parallel rotating circular disks of small separation (a mechanical velocity selec-
tor). A strongly diffracted beam of helium atoms was observed to emerge from the lithium  

fluoride crystal surface upon which the atoms were incident. The diffracted beam was detected  

with a highly sensitive pressure gage. The usual crystal diffraction analysis of the experimental  

results indicated a wavelength of 0.600 x 10 -8  cm. How does this agree with the calculated  

de Broglie wavelength?  
The mass of a helium atom is  

M 	4.00 g/mole 
m = 	= 	 = 6.65 x 10 -27  kg  

No 6.02 x 1023  atom/mole  

According to the de Broglie equation the wavelength then is  

h 	h 	6.63 x 10 -34  joule-sec  
ci p my 6.65 x 10 -27  kg x 1.635 x 10 3  m/sec  
L  
U  

This result, 1.5% greater than the value measured by crystal diffraction, is well within the  
limits of error of the experiment. 	 4 

Experiments like the one considered in Example 3-2 are very difficult since the intensities  
obtainable in atomic beams are quite low. Neutron diffraction experiments, using crystals of  
known lattice spacing, give confirmation of the existence of matter waves and precise con-
firmation of de Broglie's equation. The precision is due to the fact that the supply of neutrons  
from nuclear reactors is copious. Indeed, neutron diffraction is now an important method of  
studying crystal structure. Certain crystals, such as hydrogenous organic ones, are particularly  
well suited to neutron diffraction analysis, since neutrons are strongly scattered by hydrogen  
atoms whereas x rays are very weakly scattered by them. X rays interact chiefly with electrons  
in the atom, and electrons interact with the nuclear charge of the atom as well as the atomic  
electrons by electromagnetic forces, so that their interaction with hydrogen atoms is weak  
because the charge is small. Neutrons interact principally with the nucleus of the atom by  
nuclear forces, however, and the interaction is strong.  

3-2 THE WAVE-PARTICLE DUALITY  

In classical physics energy is transported either by waves or by particles. Classical  

physicists observed water waves carrying energy over the water surface or bullets  

transferring energy from gun to target. From such experiences they built a wave  

model for certain macroscopic phenomena and a particle model for other macro-
scopic phenomena, and they quite naturally extended these models into visually less  

accessible regions. Thus they explained sound propagation in terms of a wave model  

and pressures of gases in terms of a particle model (kinetic theory). Their successes  

conditioned them to expect that all entities are either particles or waves. Indeed, these  

successes extended into the early twentieth century with applications of Maxwell's  

wave theory to radiation and the discovery of elementary particles of matter, such  

as the neutron and positron.  

Hence, classical physicists were quite unprepared to find that to understand radia-
tion they needed to invoke a particle model in some situations, as in the Compton  

effect, and a wave model in other situations, as in the diffraction of x rays. Perhaps  

more striking is the fact that this same wave-particle duality applies to matter as well  

as to radiation. The charge-to-mass ratio of the electron and its ionization trail in  

matter (a sequence of localized collisions) suggest a particle model, but electron  

diffraction suggests a wave model. Physicists now know that they are compelled to  

use both models for the same entity. It is very important to note, however, that in  

any given measurement only one model applies—both models are not used under the  
same circumstances. When the entity is detected by some kind of interaction, it acts  

= 0.609  x 10 -10 m  

= 0.609 x 10  -8  cm  



like a particle in the sense that it is localized; when it is moving it acts like a wave in 
the sense that interference phenomena are observed, and, of course, a wave is ex-
tended, not localized. 

Neils Bohr summarized the situation in his principle of complementarity. The wave 
and particle models are complementary; if a measurement proves the wave character 
of radiation or matter, then it is impossible to prove the particle character in the 
same measurement, and conversely. Which model we use is determined by the nature 
of the measurement. Furthermore, our understanding of radiation, or of matter, is 
incomplete unless we take into account measurements which reveal the wave aspects 
and also those that reveal the particle aspects. Hence, radiation and matter are not 
simply waves nor simply particles. A more general and, to the classical mind, a more 
complicated model is needed to describe their behavior, even though in extreme 
situations a simple wave model or a simple particle model may apply. 

The link between wave model and particle model is provided by a probability 
interpretation of the wave-particle duality. In the case of radiation it was Einstein 
who united the wave and particle theories; subsequently Max Born applied a similar 
argument to unite wave and particle theories of matter.  

In the wave picture the intensity of radiation, I, is proportional to 6' 2 , where 6' 2  is 
the average value over one cycle of the square of the electric field strength of the 
wave. (I is the average value of the so-called Poynting vector and we use the symbol 
g instead of E for electric field to avoid confusion with the total energy E.) In the 
photon, or particle, picture the intensity of radiation is written as I = Nhv where N 

is the average number of photons per unit time crossing unit area perpendicular to 
the direction of propagation. It was Einstein who suggested that g2, which in electro-
magnetic theory is proportional to the radiant energy in a unit volume, could be 
interpreted as a measure of the average number of photons per unit volume. 

Recall that Einstein introduced a granularity to radiation, abandoning the con-
tinuum interpretation of Maxwell. This leads to a statistical view of intensity. In this 
view, a point source of radiation emits photons randomly in all directions. The aver-
age number of photons crossing a unit area will decrease with increasing distance 
from source to area. This is due to the fact that the photons spread over a sphere 
of larger area the farther they are from the source. Since the area of a sphere is pro-
portional to the square of its radius, we obtain, on the average, an inverse square law 
of intensity just as in the wave picture. In the wave picture we imagine that spherical 
waves spread out from the source, the intensity dropping inversely as the square of 
the distance from the source. Here, these waves, whose strength can be measured by 
g2, can be regarded as guiding waves for the photons; the waves themselves have 
no energy—there are only photons—but they are a construct whose intensity mea-
sures the average number of photons per unit volume. 

We use the word "average" because the emission processes are statistical in nature. 
We do not specify exactly how many photons cross unit area in unit time, only their 
average number; the exact number can fluctuate in time and space, just as in kinetic 
theory of gases there are fluctuations about an average value from many quantities. 
We can say quite definitely, however, that the probability of having a photon cross 
unit area 3 m from the source is exactly one-ninth the probability that a photon will 
cross unit area 1 m from the source. In the formula I = Nhv, therefore, N is an aver-
age value and is a measure of the probability of finding a photon crossing unit area 
in unit time. If we equate the wave expression to the particle expression we have 

I = (1/poc)& 2  = hvN 

so that e2 is proportional to N. Einstein's interpretation of e2 as a probability mea- 
sure of photon density then becomes clear. We expect that, as in kinetic theory, fluc- 
tuations about an average will become more noticeable at low intensities than at 
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high intensities, so that the granular quantum phenomena contradict the continuum 
classical view more dramatically there. 

In analogy to Einstein's view of radiation, Max Born proposed a similar uniting 
of the wave-particle duality for matter. This came several years after Schroedinger 
developed his generalization of de Broglie's postulate, called quantum mechanics. 
We shall examine Schroedinger's theory quantitatively in later chapters. Here we 
wish merely to use Born's idea in a qualitative way to set the stage conceptually for 
the subsequent detailed analysis. 

Let us associate more than just a wavelength and frequency with matter waves. 
We do this by introducing a function representing the de Broglie wave, called the 
wave function 'P. For particles moving in the x direction with a precise value of linear 
momentum and energy, for example, the wave function can be written as a simple 
sinusoidal function of amplitude A, such as 

This is analogous to 

&(x,t) = A sin 27t ( — vt) 	 (3-4b) 

for the electric field of a sinusoidal electromagnetic wave of wavelength 2, and fre-
quency y,  moving in the positive x direction. The quantity 'F 2  will play a role for 
matter waves analogous to that played by )2  for waves of radiation. That quantity, 
the average of the square of the wave function of matter waves, is a measure of the 
probability of finding a particle in unit volume at a given place and time. Just as g 
is a function of space and time, so is W; and, as we shall see later, just as g satisfies 
a wave equation, so does 'P (Schroedinger's equation). The quantity g is a (radiation) 
wave associated with a photon, and 'P is a (matter) wave associated with a material 
particle. 

As Born says: "According to this view, the whole course of events is determined 
by the laws of probability; to a state in space there corresponds a definite probability, 
which is given by the de Broglie wave associated with the state. A mechanical pro-
cess is therefore accompanied by a wave process, the guiding wave, described by 
Schroedinger's equation, the significance of which is that it gives the probability of 
a definite course of the mechanical process. If, for example, the amplitude of the 
guiding wave is zero at a certain point in space, this means that the probability of 
finding the electron at this point is vanishingly small." 

Just as in the Einstein view of radiation we do not specify the exact location of a 
photon at a given time, but specify instead by g2  the probability of finding a photon 
at a certain location at a given time, so here in Born's view we do not specify the 
exact location of a particle at a given time, but specify instead by 'P 2  the probability 
of finding a particle at a certain location at a given time. Just as we are accustomed 
to adding wave functions (g 1  + g2  = g) for two superposed electromagnetic waves 
whose resultant intensity is given by g2, so we shall add wave functions for two 
superposed matter waves (Y' 1  + W2 = 'P) whose resultant intensity is given by 'P2 . 
That is, a principle of superposition applies to matter as well as to radiation. This is 
in accordance with the striking experimental fact that matter exhibits interference 
and diffraction properties, a fact that simply cannot be understood on the basis of 
ideas in classical mechanics. Because waves can be superposed either constructively 
(in phase) or destructively (out of phase), two waves can combine either to yield a 
resultant wave of large intensity or to cancel, but two classical particles of matter 
cannot combine in such a way as to cancel. 

The student might accept the logic of this fusion of wave and particle concepts 
but nevertheless ask whether a probabilistic or statistical interpretation is necessary. 

ci.  

v 	 'Y(x,t) = A sin 27c (j,x  — vt 	 (3-4a) 



It was Heisenberg and Bohr who, in 1927, first showed how essential the concept of 
probability is to the union of wave and particle descriptions of matter and radiation. 
We investigate these matters in succeeding sections. 

3-3 THE UNCERTAINTY PRINCIPLE 

The use of probability considerations is not foreign to classical physics. Classical sta-
tistical mechanics makes use of probability theory, for example. However, in classi-
cal physics the basic laws (such as Newton's laws) are deterministic, and statistical 
analysis is simply a practical device for treating very complicated systems. According 
to Heisenberg and Bohr, however, the probabilistic view is the fundamental one in 
quantum physics and determinism must be discarded. Let us see how this conclusion 
is reached. 

In classical mechanics the equations of motion of a system with given forces can 
be solved to give us the position and momentum of a particle at all values of the 
time. All we need to know are the precise position and momentum of the particle at 
some value of the time t = 0 (the initial conditions) and the future motion is deter-
mined exactly. This mechanics has been used with great success in the macroscopic 
world, for example in astronomy, to predict the subsequent motions of objects in 
terms of their initial motions. Note, however, that in the process of making obser-
vations the observer interacts with the system. An example from contemporary as-
tronomy is the precise measurement of the position of the moon by bouncing radar 
from it. The motion of the moon is disturbed by the measurement, but due to the 
very large mass of the moon the disturbance can be ignored. On a somewhat smaller 
scale, as in a very well-designed macroscopic experiment on earth, such disturbances 
are also usually small, or at least controllable, and they can be taken into account 
accurately ahead of time by suitable calculations. Hence, it was naturally assumed 
by classical physicists that in the realm of microscopic systems the position and mo-
mentum of an object, such as a electron, could be determined precisely by observa-
tions in a similar way. Heisenberg and Bohr questioned this assumption. 

The situation is somewhat similar to that existing at the birth of relativity theory. 
Physicists spoke of length intervals and time intervals, i.e., space and time, without 
asking critically how one actually measures them. For example, they spoke of the 
simultaneity of two separated events without even asking how one would physically 
go about establishing simultaneity. In fact, Einstein showed that simultaneity was 
not an absolute concept at all, as had been assumed previously, but that two sepa-
rated events that are simultaneous to one observer occur at different times to another 
observer moving with respect to the first. Simultaneity is a relative concept Similarly 
then, we must ask ourselves how we actually measure position and momentum. 

Can we determine by actual experiment at the same instant both the position and 
momentum of matter or radiation? The answer given by quantum theory is: not more 
accurately than is allowed by the Heisenberg uncertainty principle. There are two 
parts to this principle, also called the indeterminacy principle. The first has to do 
with the simultaneous measurement of position and momentum. It states that experi-
ment cannot simultaneously determine the exact value of a component of momentum, 
px  say, of a particle and also the exact value of its corresponding coordinate, x. 
Instead, our precision of measurement is inherently limited by the measurement 
process itself such that 

ApxAx >_ h/2 	 (3-5) 
where the momentum px  is known to within an uncertainty of Apx  and the position 
x at the same time to within an uncertainty Ax. Here h (read h-bar) is a shorthand 
symbol for h/2n, where h is Planck's constant. That is 

h - h/2n 
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There are corresponding relations for other components of momentum, namely 
Ap yAy > h/2 and Ap,Az > h/2, and for angular momentum as well. It is important 
to realize that this principle has nothing to do with improvements in instrumentation 
leading to better simultaneous determinations of px  and x. Rather the principle says 
that even with ideal instruments we can never in principle do better than Ap xAx > 
h/2. Note also that the product of uncertainties is involved, so that, for example, the 
more we modify an experiment to improve our measure of px , the more we give up 
ability to determine x accurately. If px  is known exactly we know nothing at all 
about x (i.e., if Ap x  = 0, Ax = co). Hence, the restriction is not on the accuracy to 
which x or px  can be measured, but on the product Ap xAx in a simultaneous measure-
ment of both. 

The second part of the uncertainty principle has to do with the measurement of 
the energy E and the time t required for the measurements, as for example, the time 
interval At during which a photon of energy spread AE is emitted from an atom. In 
this case 

AEAt > h/2 	 (3-6) 

where AE is the uncertainty in our knowledge of the energy E of a system and At 
the time interval characteristic of the rate of change in the system. 

Heisenberg's relations will be shown later to follow from the de Broglie postulate 
plus simple properties common to all waves. Because the de Broglie postulate is 
verified by the experiments we have already discussed, it is fair to say that the un-
certainty principle is grounded in experiment. We shall also consider soon the con-
sistency of the principle with other experiments. Notice first, however, that it is 
Planck's constant h that again distinguishes the quantum results from the classical 
ones. If h, or h, in (3-5) and (3-6) were zero, there would be no basic limitation on 
our measurement at all, which is the classical view. Again it is the smallness of h that 
takes the principle out of the range of our ordinary experiences. This is analogous 
to the smallness of the ratio v/c in macroscopic situations taking relativity out of 
the range of ordinary experience. In principle, therefore, classical physics is of limited 
validity and in the microscopic domain it will lead to contradictions with experi-
mental results. For if we cannot determine x and p simultaneously, then we cannot 
specify the initial conditions of motion exactly; therefore, we cannot precisely deter-
mine the future behavior of a system. Instead of making deterministic predictions, 
we can only state the possible results of an observation, giving the relative proba-
bilities of their occurrence. Indeed, since the act of observing a system disturbs it in 
a manner that is not completely predictable, the observation changes the previous 
motion of the system to a new state of motion which cannot be completely known. 

Let us now illustrate the physical origin of the uncertainty principle. With the in-
sight thereby gained we shall better appreciate a more formal proof given in the fol-
lowing section. First, we use a thought experiment due to Bohr to verify (3-5). Let us 
say that we wish to measure as accurately as possible the position of a "point" par-
ticle, like an electron. For greatest precision we use a microscope to view the electron, 
as in Figure 3-6. To see the electron we must illuminate it, for it is actually the light 
photon scattered by the electron that the observer sees. At this stage, even before 
any calculations are made, we can see the uncertainty principle emerge. The very act 
of observing the electron disturbs it. The moment we illuminate the electron, it recoils 
because of the Compton effect, in a way that we shall soon find cannot be completely 
determined. If we don't illuminate the electron, however, we don't see (detect) it. 
Hence the uncertainty principle refers to the measuring process itself, and it expresses 
the fact that there is always an undetermined interaction between observer and ob-
served; there is nothing we can do to avoid the interaction or to allow for it ahead 
of time. In the case at hand we can try to reduce the disturbance to the electron as 
much as possible by using a very weak source of light. The very weakest we can get 
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Figure 3-6 Bohr's microscope thought experiment. Top: The apparatus. Middle: The 
scattering of an illuminating photon by the electron. Bottom: The diffraction pattern image  
of the electron seen by the observer. 

is to assume that we can see the electron if only one scattered photon enters the ob-
jective lens of the microscope. The magnitude of the momentum of the photon is  

p = h/A. But the photon may have been scattered anywhere within the angular range  
20' subtended by the objective lens at the electron. This is why the interaction cannot  

be allowed for. Hence, we find that the x component of the momentum of the photon  

can vary from + p sin 0' to —  p sin 0' and is uncertain after the scattering by an  

amount  

Apx  = 2p sin 0' = (2h/2) sin 0'  

Conservation of momentum then requires that the electron receive a recoil momen-
tum in the x direction that is equal in magnitude to the x momentum change in the  

photon and, therefore, the x momentum of the electron is uncertain by this same  

amount. Notice that to reduce Ap x  we can use light of longer wavelength, or use a  
microscope with an objective lens subtending a smaller angle.  

What about the location along x of the electron? Recall that a microscope's image  

of a point object is not a point, but a diffraction pattern; the image of the electron  
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is "fuzzy." The resolving power of a microscope determines the ultimate accuracy to  
which the electron can be located. If we take the width of the central diffraction  
maximum as a measure of the uncertainty in x, a well-known expression for the  
resolving power of a microscope gives  

Ax = 2/sin 9'  

(Note that, since sin 0 ^ 0, this is an example of the general relation a ^ 2/0 between  
the characteristic dimension in a diffraction apparatus, the wavelength of the dif-
fracted waves, and the diffraction angle.) The one scattered photon at our disposal  
must have originated then somewhere within this range from the axis of the micro-
scope, so the uncertainty in the electron's location is Ax. (We cannot be sure exactly  
where any one photon originates even though in a large number of repetitions of  
the experiment the photons forming the total image will produce the diffraction pat-
tern shown in the figure.) Notice that to reduce Ax we can use light of shorter wave-
length, or a microscope with an objective lens subtending a larger angle.  

If now we take the product of the uncertainties we find  

Ap xAx = I 
2h

sin e'^ (sin 	B') — 2h  (3-7)  

in reasonable agreement with the ultimate limit h/2 set by the uncertainty principle.  
We cannot simultaneously make Apx  and Ax as small as we wish, for the procedure  
that makes one small makes the other large. For instance, if we use light of short  
wavelength (e.g., y rays) to reduce Ax by obtaining better resolution, we increase the  
Compton recoil and increase Ap x, and conversely. Indeed, the wavelength 2 and the  
angle B' subtended by the objective lens do not even appear in the result. In practice  
an experiment might do much worse than (3-7) suggests, for that result represents  
the very ideal possible. We arrive at it, however, from genuinely measurable physical  
phenomena, namely the Compton effect and the resolving power of a lens.  

There really should be no mystery in the student's mind about our result. It is a  
direct result of quantization of radiation. We had to have at least one photon illu-
minating the electron, or else no illumination at all; and even one photon carries a  
momentum of magnitude p = h/.1. It is this single scattered photon that provides the  
necessary interaction between the microscope and the electron. This interaction dis-
turbs the particle in a way that cannot be exactly predicted or controlled. As a result,  
the coordinates and momentum of the particle cannot be completely known after  
the measurement. If classical physics were valid, then since radiation is regarded there  
as continuous rather than granular, we could reduce the illumination to arbitrarily  
small levels and deliver arbitrarily small momentum while using arbitrarily small  
wavelengths for "perfect" resolution. In principle there would be no simultaneous  
lower limit to resolution or momentum recoil and there would be no uncertainty  
principle. But we cannot do this; the single photon is indivisible. Again we see, from  
ApxAx >_  h/2, that Planck's constant is a measure of the minimum uncontrollable  
disturbance that distinguishes quantum physics from classical physics.  

Now let us consider (3-6) relating energy and time uncertainties. For the case of  
a free particle we can obtain (3-6) from (3-5), which relates position and momen-
tum, as follows. Consider an electron moving along the x axis whose energy we can  
write as E = p!/2m. If px  is uncertain by Apr, then the uncertainty in E is given by  
AE = (pxlm)Ap x  = vxAp x . Here vx  can be interpreted as the recoil velocity along x of  
the electron which is illuminated with light in a position measurement. If the time  
interval required for the measurement is At, then the uncertainty in its x position is  
Ax = vxAt. Combining At = Ax/vx  and AE = vxAp x , we obtain AEAt = Ap xAx. But  
ApxAx >_  h/2. Hence  

AEA t > h/2  



Ax > 47rOp —  4rc x 2.7 x 10 -32  kg-m/sec  
=2 x 10 -3 m=0.2cm  

h6.6  x 10 - 34  joule-sec  

Example 3-3. The speed of a bullet (m = 50 g) and the speed of an electron (m = 9.1 x 10 -28  g)  
are measured to be the same, namely 300 m/sec, with an uncertainty of 0.01%. With what  
fundamental accuracy could we have located the position of each, if the position is measured  
simultaneously with the speed in the same experiment?  
•For the electron  

p = my = 9.1 x 10 -31  kg x 300 m/sec = 2.7 x 10 -28  kg-m/sec  
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and  

so that  
Op = mOv = 0.0001 x 2.7 x 10 -28  kg-m/sec = 2.7 x 10 -32  kg-m/sec  

For the bullet  

and  

so that  

p = my = 0.05 kg x 300 m/sec = 15 kg-m/sec  

Ap = 0.0001 x 15 kg-m/sec = 1.5 x  10 -3  kg-m/sec  

^x 	
h _ 6.6 x 10 -34  joule-sec 	 = 3 x 10 -32  m  

4nAp 47r x 1.5 x 10 -3  kg-m/sec  
Hence, for macroscopic objects such as bullets the uncertainty principle sets no practical limit  
to our measuring procedure, Ax in this example being about 10 -17  times the diameter of a  
nucleus; but, for microscopic objects such as electrons, there are practical limits, Ax in this  
example being about 10' times the diameter of an atom.  1 

3-4 PROPERTIES OF MATTER WAVES  

In this section we shall derive the uncertainty principle relations by combining the  
de Broglie-Einstein relations, p = h/2 and E = hv, with simple mathematical prop-
erties that are universal to all waves. We begin a development of these properties  
by calling attention to an apparent paradox.  

The velocity of propagation w of a wave with wavelength and frequency 2 and y  
is given by the familiar relation, which we shall verify later  

w 2v 	 (3-8)  

Let us evaluate w for a de Broglie wave associated with a particle of momentum p . 
and total energy E. We obtain  

hE E  
w=2v=--=— 

ph p  

Now assume the particle is moving at nonrelativistic velocity y in a region of zero  

potential energy. (The validity of our conclusions will not be limited by these assump-
tions.) Evaluating p and E in terms of y and the mass m of the particle, we find  

E mv 2/2 y 
w = 

p = 
	my 

= 2 	 (3-9)  

This result seems disturbing because it appears that the matter wave would not be  

able to keep up with the particle whose motion it controls. However, there is really  

no difficulty, as the following argument shows.  

Imagine that a particle is moving along the x axis under the in fluence of no force  
because its potential energy has the constant value zero. Moving along that axis is  

also its associated matter wave. Assume, for the sake of this thought experiment, that  

we have distributed along the axis a set of (hypothetical) instruments which are capable  

of measuring the amplitude of the matter wave. At some time, say t = 0, we record  
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4'(x, t) 
	

t =0  

Figure 3 -7 A de Broglie wave for a particle. 

the readings of these instruments. The results of the experiment can be presented as 
a plot of the instantaneous values of the wave, which we designate by the symbol 
`If(x,t), as a function of x at a fixed time t = O. It is not necessary to know much about 
matter waves at present to realize that the plot must look qualitatively like the one 
shown in Figure 3-7. The amplitude of the matter wave must be modulated in such 
a way that its value is nonzero only over some finite region of space in the vicinity 
of the particle. This is necessary because the matter wave must somehow be asso-
ciated in space with the particle whose motion it controls. The matter wave is in the 
form of a group of waves and, as time passes, the group surely must move along the 
x axis with the same velocity as the particle. 

The student may recall, from his study of classical wave motion, that for such a 
moving group of waves it is necessary to distinguish between the velocity g of the 
group and the quite different velocity w of the individual oscillations of the waves. 
This is encouraging, but of course we must prove that g is equal to the velocity of 
the particle. To do this, we develop a relation between g and the quantities v and 2 
comparable to the relation of (3-8) between w and these two quantities. 

We start by considering the simplest type of wave motion, a sinusoidal wave of 
frequency v and wavelength 2, which is of constant unit amplitude from — co to  

+ co, but which is moving with uniform velocity in the direction of increasing x. Such  
a wave can be represented mathematically by the function  

x 
T(x,t) = sin 2n 	— vt)  (3-10a)  

or, in a more convenient form  
'P(x,t) = sin 2n(Kx — vt) 	where K - 1/ (3-10b)  

That this does represent the wave just described can be seen from the following  

considerations:  
1. Holding x fixed at any value, we see that the function oscillates in time  

sinusoidally with frequency v and amplitude one.  
2. Holding t fixed, we see that the function has a sinusoidal dependence on x, with  

wavelength 2 or reciprocal wavelength K.  
3. The zeros of the function, which correspond to the nodes of the wave it rep-

resents, are found at positions x„ for which  
2n(Kx„ — vt) = 1rn 	 n = 0, +1, + 2, .. .  

Or  

n 	v 
x = 	+— t 

„  2K K  

Thus these nodes, and in fact all points on the wave, are moving in the direction of  

increasing x with velocity  
w = dx„/dt  



which is equal to  
W = V/K  

Note that this is identical with (3-8) since K = 1/ A.  
Next we discuss the case in which the amplitude of the waves is modulated to  

form a group. We can obtain mathematically one group of waves moving in the  

direction of increasing x, similar to the group of matter waves pictured in Figure  

3-7, by adding together an infinitely large number of waves of the form of (3-10b),  

each with infinitesimally differing frequencies v and reciprocal wavelengths K. (We  
shall soon explain how this happens.) The mathematical techniques become a little  

involved, however, and for our purposes it will suffice to consider what happens  

when we add together only two such waves. Thus we take  

	

'P(x,t) = P 1(x,t) + W 2(x,t) 	 (3-11)  
where  

'Y 1(x,t) = sin 27r[Kx — vt]  

and  
'P2(x,t) = sin 27r[(K + dK)x —  (v + dv)t]  

Now  
sin A + sin B = 2 cos [(A — B)/2] sin [(A + B)/2]  

Applying this to the case at hand, we have  

CdK 	dv 	[(2K + dK) 	(2v + dv) 
W(x,t) = 2 cos 27r 2  x — 2  t sin 2^rL 	2 	x 	2 	t  

Since dv « 2v and dK « 2K, this is 

k(x,t) = 2 cos 27r 
 (-e   

x — —
dv 

t I sin 2ir(Kx —  vt) 	 (3-12)  

A plot of 'V(x,t) as a function of x for a fixed value  of t. = 0 is shown in Figure 
3-8. The second term of'F(x,t) is a wave of the same form as (3-10b), but this wave 
is modulated by the first term so that the oscillations of 'P(x,t) fall within an en-
velope of periodically varying amplitude. Two waves of slightly different frequency 
and reciprocal wavelength alternately interfere and reinforce in such a way as to 
produce a succession of groups. These groups, and the individual waves which they 
contain, are both moving in the direction of increasing x. The velocity w of the 
individual waves can be evaluated by considering the second term of 1(x,t), and the 
velocity g of the groups can be evaluated from the first term. Proceeding as in 
consideration 3, we find again 

V  
W = —  

K  
(3-13a) 
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Figure 3-8 The sum of two sinusoidal waves of slightly different frequencies and recip-
rocal wavelengths K.  



N 
ti  

D
E

 B
R

O
G

LI
E

'S
 P

O
S

TU
LA

T
E

 
and also the new result 

dv/2 _ dv 
= g 

dK/2 dK 	
(3-13b) 

It can be shown that, for an infinitely large number of waves that combine to form 
one moving group, the dependence of the wave velocity w, and the group velocity g, 
on v, K, and dv/dK is exactly the same as for the simple case we have considered. 
Equations (3-13a) and (3-13b) have general validity. 

Finally we are in a position to calculate the group velocity g of the group of matter 
waves associated with the moving particle. From the Einstein and de Broglie rela-
tions, we have 

CM 

Q„ 	SO 

L 
U 

v = E/h 	and 	K = VA= p/h 

dv = dE/h 	and 	dK = dp/h 

Thus the group velocity is 
g = dv/dK = dE/dp 

Setting 
z 

E = 2 an d p = my 

we obtain 

dE_ my dv _ 

dp mdv 
	— v 

which gives us the satisfying result that 
g=v 

The velocity of the group of matter waves is just equal to the velocity of the particle 
whose motion they govern, and de Broglie's postulate is internally consistent. The 
same conclusion is obtained when relativistic expressions for E and p are used in 
evaluating dE/dp. 

Now we shall derive the uncertainty relations by combining the de Broglie-Einstein 
relations, p = h/2 and E = hv, with properties of groups of waves. First consider a 
simple limiting case. Let 2 be the wavelength of a de Broglie wave associated with 
a particle. We can picture a definite (monochromatic) wavelength in terms of a single 
sinusoidal wave extending over all values of x, i.e., an infinitely long unmodulated 
wave like 

= A sin 2ir(Kx — vt) 
or 

= A cos 27r(Kx — vt) 

If the wavelength has the definite value 2 there is no uncertainty AA and the associated 
particle momentum p = h/2 is also definite so Ap x  = O. In such a wave the amplitude 
has the constant value A everywhere; it is the same over the entire infinite range of 
x. Therefore, the probability of finding the particle, which Born tells us is to be related 
to the amplitude of the wave, is not concentrated in a particular range of x. In other 
words, the location of the particle is completely unknown. The particle can be any-
where, so that Ax = c . Analogous statements are that since E = hv, and since the 
frequency is definite, then AE = O. But to be sure that the amplitude of the wave is 
perfectly constant in time we must observe the wave for an infinite time, so that 
At = co. For this simple case we satisfy Ap xAx > h/2, and AEAt > h/2, in the limits 
Ap x = O, Ax = co, and AE = O, At = co. 



In order to have a wave whose amplitude varies with x or t, we must superpose 
several monochromatic waves of different wavelengths or frequencies. For two such 
waves superposed we obtain the familiar phenomenon of beats, as we have seen 
earlier in this section, with the amplitude being modulated in a regular way through-
out space or time. If we wish to construct a wave having a finite extent in space (a 
single group with a definite beginning and end), then we must superpose sinusoidal 
waves having a continuous spectrum of wavelengths with a range A2. The amplitude 
of such a group will be zero everywhere outside a region of extent Ax. 

To help visualize this, consider first a case in which we superpose a finite number 
of sinusoidal waves of slightly different wavelengths ), or reciprocal wavelengths K. 
Figure 3-9 shows seven component sinusoidal waves 111K = A, cos 2n(Kx — vt), at 
time t = O. Their reciprocal wavelengths K = 1/). take on integral values from K = 9 
to K = 15. The amplitude of each is given by A K , with Al2 = 1 , A13 = A11 = 1/2, 
A 14  = A 10  = 1/3, and A15 = A9 = 1/4, as shown in the figure. All the waves are in 
phase at x = 0 where they are centered (this is why cosines are used), but they get 
out of phase with one another proceeding in either direction from that point. As a 
result, their sum 'P = T9 + • • • +'Y15 oscillates with maximum amplitude at x = 0, 
but its oscillations die out with increasing or decreasing x as the phase relations of 
the component waves get scrambled. The superposition thus contains a group whose 
extent in space Ax has a value that can be read from the figure to be slightly larger 
than 1/12, if we adopt the usual convention and measure from maximum amplitude 
to half-maximum amplitude. With an analogous convention, the range of reciprocal 
wavelengths used to compose the group, AK, has a value of 1. Note that the approxi-
mate value of the product AxAK equals 1/12. Indicated on the right edge of the 
figure is the presence of an auxiliary group, of the same shape as the central group. 
Auxiliary groups are formed at uniformly spaced intervals along the positive and 
negative x axis. They occur because, with only a finite number of component waves, 
there are points on the axis separated from x = 0 by a distance which is exactly some 
different integral number of wavelengths for each component. At these points the 
components are in phase again, and so the group is repeated. If the number of com-
ponent waves spanning a fixed range AK of reciprocal wavelengths is doubled, the 
width of the central group will be essentially unchanged but the distances separating 
it from the auxiliary groups will be doubled. 

If we combine an infinitely large number of sinusoidal component waves, each with 
infinitesimally different reciprocal wavelength drawn from the same range K = 9 to 
15, we obtain a central group quite similar to the one shown in Figure 3-9, but the 
auxiliary groups will not be present. The reason is that in such a case there is no 
length of the x axis into which an exactly integral number of wavelengths fits for 
every one of the infinite number of components. The components are all in phase at 
and near x = 0, and so they combine constructively to form the group. Proceeding 
away from this point, in either direction, the component waves begin to get out of 
phase with each other because their wavelengths or reciprocal wavelengths differ. 
Beyond certain points the phases of the infinite number of components become com-
pletely random, and so the component waves sum up to zero. Furthermore, they 
never again get back into phase. Thus the components form one group of restricted 
length Ax. It is clear that the larger the range of reciprocal wavelengths AK from 
which the components are drawn, the smaller the length Ax of the group; the reason 
is simply that if the wavelengths cover a bigger span the phases will become random 
in a shorter distance. In fact, Ax is just inversely proportional to AK. The exact value 
of the proportionality constant depends on the relative amplitudes of the component 
waves, as does the exact shape of the group that they form. 

The mathematics used in carrying out the procedure just described involves the 
so-called Fourier integral. Appendix D applies the Fourier integral to a simple case, 
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Figure 3-9 Showing, at t = 0, the superposition of seven cosine waves "K = A K  cos  
2zc(Kx — vt) with uniformly spaced reciprocal wavelengths drawn from the range K = 9  
to K = 15. Their amplitudes A K  maximize at the value Al2 = 1 for the wave whose K  
lies in the center of the range, and they decrease symmetrically through the values  
1/2, 1/3, and 1/4 for the other waves as their K approach the ends of the range. The sum  

= EK 111 K  of these waves consists of a group centered on x = 0, plus repeating groups  
of the same shape periodically spaced along the x axis in both directions from x = O.  
With Ax defined as the maximum amplitude to half-maximum amplitude width of  tP, 
and AK defined as the range of reciprocal wavelengths of the components of `P from  
maximum amplitude to half-maximum amplitude, we have Ax 1/12, AK 1, and  
AXAK ^ 1/12.  

obtaining numerical results that are similar to the results we obtained from the con-
struction in Figure 3-9. Furthermore, the Fourier integral can be used to prove the 
following relation 

AxAK >—  1/47r 	 (3-14)  
This relation states that the optimum job that can be done in composing a group of  



(half-width at half-maximum amplitude) length Ax from components with reciprocal 
wavelengths covering a (half-width at half-maximum amplitude) range of AK yields 
Ax = 1/4nAK, or AxAK = 1/4n. Generally a somewhat larger value of this product 
is obtained. 

A group of waves traveling through space of limited extent passes any given point 
of observation in a limited time. If At is the duration of the group, or pulse, of waves 
then it necessarily must be composed from component sinusoidals whose frequencies 
span a range Av, where 

AtAv >_ 1/4n 	 (3-15) 

Thus the frequency of the group is spread over the range Av if its duration covers the 
range At, just as its reciprocal wavelength is uncertain to within AK if its width is Ax. 
Equation (3-15) is also obtained from a Fourier integral. It and (3-14) are different ex-
pressions of the same property; but the frequency-time relation, or at least some of its 
implications, may be more familiar to the student, as the following example shows. 

Example 3-4. The signal from a television station contains pulses of full-width At — 10 - 6  sec. 
Explain why it is not feasible to transmit television in the AM broadcasting band. 
•The full-width range of frequencies in the signal is, from (3-15), Av -. 1/10 -6  sec = 
106  sec -  = 106  Hz. Thus the entire broadcast band (v -= 0.5 x 10 6  Hz to v ^ 1.5 x 10 6  Hz) 
would be able to accommodate only a single television "channel." There would also be serious 
difficulties in building transmitters and receivers with such a very large fractional bandpass. 
At the frequencies used in television transmission (v ^ 10 8  Hz) many channels fit into a rea-
sonable portion of the spectrum, and the bandpass requirements are nominal. 	• 

Equations (3-14) and (3-15) are universal properties of all waves. If we apply them 
to matter waves by combining them with the de Broglie-Einstein relations, we im-
mediately obtain the Heisenberg uncertainty relations. That is, if in 

AxAK = AxA(1/A) >_ 1/4it 
we set p = h/2 or 1/A = p/h, we obtain 

AxA(p/h) _ (1/h)AxAp > 1/4n 
or 

ApAx >_ h/2 	 (3-16) 
And if in 

AtAv > 1/4n 
we set E = hv or v = E/h, we obtain 

AtA(E/h) = (1/h)AtAE > 1/4n 
or 

AEAt >_ h/2 	 (3-17) 
These results agree with our original statements of the relations in (3-5) and (3-6). 

To summarize, we have seen that physical measurement necessarily involves inter-
action between the observer and the system being observed. Matter and radiation 
are the entities available to us for such measurements. The relations p = h/A and 
E = hv apply to matter and to radiation, being the expression of the wave-particle 
duality. When we combine these relations with the properties universal to all waves 
we obtain the uncertainty relations. Hence, the uncertainty principle is a necessary 
consequence of this duality, that is, of the de Broglie-Einstein relations, and the 
uncertainty principle itself is the basis for the Heisenberg-Bohr contention that 
probability is fundamental to quantum physics. 

Example 3 -5. An atom can radiate at any time after it is excited. It is found that in a typical 
case the average excited atom has a life-time of about 10 -8  sec. That is, during this period it 
emits a photon and is deexcited. 
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(a) What is the minimum uncertainty Av in the frequency of the photon? 
► From (3-15) we have 

AVAt >_ 1/4n 

or 

Av >_ 1/4xAt 
With At = 10 -8  sec we obtain Av > 8 x 10 6  sec -1 . 

(b) Most photons from sodium atoms are in two spectral lines at about A = 5890 A. What 
is the fractional width of either line, Av/v? 
• For 2 = 5890 A, we obtain v = c//1, = 3 x 10 1°  cm-sec -1/5890 x 10 -8  cm = 5.1 x 10 14 

 sec-1 . Hence Av/v = 8 x 10 6  sec -1/5.1 x 10 14  sec -1  = 1.6 x 10 -8or about two parts in 100 
million. 

This is the so-called natural width of the spectral line. The line is much broader in practice 
because of the Doppler broadening and pressure broadening due to the motions and collisions 
of atoms in the source. • 

(c) Calculate the uncertainty AE in the energy of the excited state of the atom. 
• The energy of the excited state is not precisely measurable because only a finite time is 
available to make the measurement. That is, the atom does not stay in an excited state for an 
indefinite time but decays to its lowest energy state, emitting a photon in the process. The 
spread in energy of the photon equals the spread in energy of the excited state of the atom in 
accordance with the energy conservation principle. From (3-17), with At equal to the mean 
life-time of the excited state, we have 

AE > 
h/4n — h _ 6.63 x 10 -34  joule-sec 
At 	47tAt 	4ir x 10 -8  sec 

4.14 x 10 -15  eV-sec 
4n x 10 -8  sec 

This agrees, of course, with the value obtained from part (a) by multiplying the uncertainty in 
photon frequency Av by h to obtain AE = hAy. 

The energy spread of an excited state is usually called the width of the state. 	• 
(d) From the previous results determine, to within an accuracy AE, the energy E of the 

excited state of a sodium atom, relative to its lowest energy state, that emits a photon whose 
wavelength is centered at 5890 A. 
► We have Av/v = hAv/hv = AE/E. Hence, E = AE/(Av/v) = 3.3 x 10 -8  eV/1.6 x 10 -8  = 
2.1 eV, in which we have used the results of the calculations in parts (b) and (c). 	• 

Example 3-6. A measurement is made on the y coordinate of an electron, which is a member 
of a broad parallel beam moving in the x direction, by introducing into the beam a slit of 
narrow width Ay. Show that as a result an uncertainty Ap y  is introduced in the y component 
of momentum of the electron, such that Ap yAy > h/2, as required by the uncertainty principle. 
Do this by considering the diffraction of the wave associated with the electron. 
• In propagating through the apparatus shown in Figure 3-10, the wave will be diffracted by 
the slit. The angle 0 to the first minimum of the "single-slit" diffraction pattern sketched in the 
figure is given by sin 0 = 2/Ay. (This is another example of the general relation 0 ^ Ala between 
diffraction angle, wavelength, and characteristic dimension of a diffraction apparatus.) Since 
the propagation of the wave governs the motion of the associated particle, the diffraction 
pattern also gives the relative probabilities for the electron to arrive at different locations on 
the photographic plate. Thus the electron passing through the slit will be deflected through 
an angle which lies anywhere within a range from about  —0 to + 0. Even though its y mo-
mentum was known with great precision to be zero before passing through the slit (because 
very little was then known about its y position), after passing the slit where the measurement 
of its y position was made its y momentum can be anywhere within a range from about —p y  
to +py , where sin 0 = py /p. So the y momentum of the electron is made uncertain by the y 
position measurement due to diffraction of the electron wave. The uncertainty is 

Ap y  ^ py  = p sin 0 = p2/Ay 
Using the de Broglie relation p = h/a, to connect the momentum of the particle with the wave- 

3.3 x 10 -8  eV  



y  

Slit 	 Photographic  
plate  

Figure 3-10 Measurement of the y coordinate of an electron in a broad parallel beam, by  

requiring it to pass through a slit. The intensity pattern of the diffracted electron wave is  

indicated by using the line representing the photographic plate as an axis for a plot of the  

pattern.  

length of the wave, we obtain  
or 	 4py  = h/Ay  

Apydy = h  

Our result agrees with the limit set by the uncertainty principle. Diffraction, which refers to  

waves, and the uncertainty principle, which refers to particles, provide alternative but equiv- 
alent ways of treating this and all similar problems. 	 •  

Note that in Example 3-6 the wave associated with a single electron is regarded as  
being diffracted. The probability that the electron hits some point on the photo-
graphic plate is determined by the intensity of the electron wave. If only one elec-
tron goes through the apparatus it can hit anywhere except at the zero intensity  

locations of the diffraction pattern, and it will most likely hit somewhere near the  

principal maximum. If many electrons go through the apparatus each of their waves  

is diffracted independently in the same way and their points of arrival on the photo-
graphic plate are distributed according to the same pattern. The fact that diffrac-
tion phenomena involve interference between different parts of a wave belonging  

to a single particle, and not interference between waves belonging to different par-
ticles, was first shown experimentally by G. I. Taylor for the case of photons and  

light waves. Using light of such low intensity that the photons were known to be  

going through a diffraction apparatus one at a time, he obtained, after a very long  

exposure, a diffraction pattern. Then turning the intensity up to normal levels where  

many photons were in the apparatus at any time, he obtained the same diffraction  

pattern. Essentially the same experiment has subsequently been performed for elec-
trons and other material particles.  

3-5 SOME CONSEQUENCES OF THE UNCERTAINTY PRINCIPLE  

The uncertainty principle allows us to understand why it is possible for radiation,  

and matter, to have a dual (wave-particle) nature. If we try experimentally to deter-
mine whether radiation is a wave or a particle, for example, we find that an experi-
ment which forces radiation to reveal its wave character strongly suppresses its  
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particle character. If we modify the experiment to bring out the particle character, its 
wave character is suppressed. We can never bring the wave and the particle view 
face to face in the same experimental situation. Radiation, and also matter, are like 
coins that can be made to display either face at will but not both simultaneously. 
This, of course, is the essence of Bohr's principle of complementarity; the ideas of 
wave and of particle complement rather than contradict one another. 

Consider Young's two-slit interference experiment with light. On the wave picture 
the original wave front is split into two coherent wave fronts by the slits, and these 
overlapping wave fronts produce the interference fringes on the screen that are so 
characteristic of wave phenomena. Suppose now that we replace the screen by a 
photoelectric surface. Measurements of where the photoelectrons are ejected from 
the surface yield a pattern corresponding to the double-slit intensity pattern, so the 
wavelike aspects of the radiation seem to be present. But if the energy and time 
distributions of the ejected photoelectrons are measured, we obtain evidence which 
shows that the radiation consists of photons, so the particlelike aspects will seem to 
be present. If we then think of radiation as photons whose motion is governed by 
the wave propagation properties of certain associated (de Broglie) waves, we are 
faced with another apparent paradox. Each photon must pass through either one 
slit or the other; if this is the case, how can its motion beyond the slits be in-
fluenced by the interaction of its associated waves with a slit through which it did 
not pass? 

The fallacy in the paradox lies in the statement that each photon must pass 
through either one slit or the other. How can we actually determine experimentally 
whether a photon detected at the screen has gone through the upper or the lower 
of the two slits? To do this we would have to set up a detector at each slit, but 
the detector that interacts with the photon at a slit throws it out of the path that 
it would otherwise follow. We can show from the uncertainty principle that a detector 
with enough space resolution to determine through which slit the photon passes 
disturbs its momentum so much that the double-slit interference pattern is destroyed. 
In other words, if we do prove that each photon actually passes through one slit 
or the other, we shall no longer obtain the interference pattern. If we wish to observe 
the interference pattern, we must refrain from disturbing the photons and not try to 
observe them as particles along their paths to the screen. We can observe either the 
wave or the particle behavior of radiation; but the uncertainty principle prevents us 
from observing both together, and so this dual behavior is not really self-contra-
dictory. The same is true of the wave-particle behavior of matter. 

The uncertainty principle also makes it clear that the mechanics of quantum 
systems must necessarily be expressed in terms of probabilities. In classical mechan-
ics, if at any instant we know exactly the position and momentum of each particle 
in an isolated system, then we can predict the exact behavior of the particles of 
the system for all future time. In quantum mechanics, however, the uncertainty 
principle shows us that it is impossible to do this for systems involving small dis-
tances and momenta because it is impossible to know, with the required accuracy, 
the instantaneous positions and momenta of the particles. As a result, we shall be 
able to make predictions only of the probable behavior of these particles. 

Example 3-7 Consider a microscopic particle moving freely along the x axis. Assume that at 
the instant t = 0 the position of the particle is measured and is uncertain by the amount 
Axo . Calculate the uncertainty in the measured position of the particle at some later time t. 
•The uncertainty in the momentum of the particle at t = 0 is at least 

Apx  = h/2Ax 0  
Therefore, the velocity of the particle at that instant is uncertain by at least 

Avx = Apxl in = h/2rnAxo 



^ 

CO  and the distance x travelled by the particle in the time t cannot be known more accurately 
than within 

Ax = tAvx  = ht/2mAx o  
If by a measurement at t = 0 we have localized the particle within the range Ax o , then in a  
measurement of its position at time t the particle could be found anywhere within a range  
at least as large as Ax.  

Note that Ax is inversely proportional to Ax o , so that the more carefully we localize the  

particle at the initial instant, the less we shall know about its final position. Also, the un-
certainty Ax increases linearly with time t. This corresponds to a spreading out, as time  
goes on, of the group of waves associated with the motion of the particle. •  

3-6 THE PHILOSOPHY OF QUANTUM THEORY  

Although there is agreement by all physicists that quantum theory works in the sense that 
it predicts results that are in excellent agreement with experiment, there is a growing con-
troversy over its philosophic foundation. Neils Bohr has been the principal architect of the 
present interpretation, known as the Copenhagen interpretation, of quantum mechanics. His 
approach is supported by the vast majority of theoretical physicists today. Nevertheless, a 
sizable body of physicists, not all in agreement with one another, questions the Copenhagen 
interpretation. The principal critic of this interpretation was Albert Einstein. The Einstein-
Bohr debates are a fascinating part of the history of physics. Bohr felt that he had met 
every challenge that Einstein invented by way of thought experiments intended to refute the 
uncertainty principle. Einstein finally conceded the logical consistency of the theory and its 
agreement with the experimental facts, but he remained unconvinced to the end that it repre-
sented the ultimate physical reality. "God does not play dice with the universe," he said, 
referring to the abandonment of strict causality and individual events by quantum theory in 
favor of a fundamentally statistical interpretation. 

Heisenberg has stated the commonly accepted view succinctly: "We have not assumed that 
the quantum theory, as opposed to the classical theory, is essentially a statistical theory, in 
the sense that only statistical conclusions can be drawn from exact data .... In the formula-
tion of the causal law, namely, `If we know the present exactly, we can predict the future,' 
it is not the conclusion, but rather the premise which is false. We cannot know, as a matter 
of principle, the present in all its details." 

Among the critics of the Bohr-Heisenberg view of a fundamental indeterminacy in physics 
is Louis de Broglie. In a foreward to a book by David Bohm, a young colleague of Einstein's 
whose attempts at a new theory revived interest in reexamining the philosophic basis of 
quantum theory, de Broglie writes: "We can reasonably accept that the attitude adopted for 
nearly 30 years by theoretical quantum physicists is, at least in appearance, the exact counter-
part of information which experiment has given us of the atomic world. At the level now 
reached by research in microphysics it is certain that the methods of measurement do not 
allow us to determine simultaneously all the magnitudes which would be necessary to obtain 
a picture of the classical type of corpuscles (this can be deduced from Heisenberg's uncertainty 
principle), and that the perturbations introduced by the measurement, which are impossible 
to eliminate, prevent us in general from predicting precisely the result which it will produce 
and allow only statistical predictions. The construction of purely probabilistic formulae that all 
theoreticians use today was thus completely justified. However, the majority of them, often 
under the influence of preconceived ideas derived from positivist doctrine, have thought that 
they could go further and assert that the uncertain and incomplete character of the knowledge 
that experiment at its present stage gives us about what really happens in microphysics is the 
result of a real indeterminacy of the physical states and of their evolution. Such an extra-
polation does not appear in any way to be justified. It is possible that looking into the future 
to a deeper level of physical reality we will be able to interpret the laws of probability 
and quantum physics as being the statistical results of the development of completely deter-
mined values of variables which are at present hidden from us. It may be that the powerful 
means we are beginning to use to break up the structure of the nucleus and to make new 
particles appear will give us one day a direct knowledge which we do not now have at this 
deeper level. To try to stop all attempts to pass beyond the present viewpoint of quantum 
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physics could be very dangerous for the progress of science and would furthermore be contrary 
to the lessons we may learn from the history of science. This teaches us, in effect, that the 
actual state of our knowledge is always provisional and that there must be, beyond what is 
actually known, immense new regions to discover." (From Causality and Chance in Modern 

Physics by David Bohm, © 1957 D. Bohm; reprinted by permission of D. Van Nostrand Co.) 
The student should notice here the acceptance of the correctness of quantum mechanics at 

the atomic and nuclear level. The search for a deeper level, where quantum mechanics might 
be superseded, is motivated much more by objection to its philosophic indeterminism than by 
other considerations. According to Einstein, "The belief in an external world independent of 
the perceiving subject is the basis of all natural science." Quantum mechanics, however, 
regards the interactions of object and observer as the ultimate reality. It uses the language of 
physical relations and processes rather than that of physical qualities and properties. It rejects 
as meaningless and useless the notion that behind the universe of our perception there lies a 

co hidden objective world ruled by causality; instead it confines itself to the description of the 
relations among perceptions. Nevertheless, there is a reluctance by many to give up attrib- co 

Û 	uting objective properties to elementary particles, say, and dealing instead with our subjective 
knowledge of them, and this motivates their search for a new theory. According to de Broglie, 
such a search is in the interest of science. Whether it will lead to a new theory that in some 
currently unexplored realm contradicts quantum theory and also alters its philosophic founda-
tions, no one knows. 

QUESTIONS 

1. Why is the wave nature of matter not more apparent to us in our daily observations? 

2. Does the de Broglie wavelength apply only to "elementary particles" such as an electron 
or neutron, or does it apply as well to compound systems of matter having internal 
structure? Give examples. 

3. If, in the de Broglie formula, we let m --> oo, do we get the classical result for macroscopic 
particles? 

4. Can the de Broglie wavelength of a particle be smaller than a linear dimension of the 
particle? Larger? Is there necessarily any relation between such quantities? 

5. Is the frequency of a de Broglie wave given by E/h? Is the velocity given by Ay? Is the 
velocity equal to c? Explain. 

6. Can we measure the frequency v for de Broglie waves? If so, how? 

7. How can electron diffraction be used to study properties of the surface of a solid? 
8. How do we account for regularly reflected beams in diffraction experiments with elec-

trons and atoms? 
9. Does the Bragg formula have to be modified for electrons to account for the refraction 

of electron waves at the crystal surface? 
10. Do electron diffraction experiments give different information about crystals than can be 

obtained from x-ray diffraction experiments? From neutron diffraction experiments? 
Discuss. 

11. Could crystallographic studies be carried out with protons? With neutrons? 
12. Discuss the analogy: physical optics is to geometrical optics as wave mechanics is to 

classical mechanics. 
13. Is an electron a particle? Is it a wave? Explain. 
14. Does the de Broglie wavelength associated with a particle depend on the motion of the 

reference frame of the observer? What effect does this have on the wave-particle duality? 
15. Give examples of how the process of measurement disturbs the system being measured. 
16. Show the relation between the uncontrollable nature of the Compton recoil in Bohr's 

y-ray microscope experiment and the fact that there are four unknowns and only three 
conservation equations in the Compton effect. 



17. The uncertainty principle is sometimes stated in terms of angular quantities as AL 4  Arp > 
h/2 where AL 4, is the uncertainty in a component of angular momentum and Acp is the 
uncertainty in the corresponding angular position. In some quantum mechanical systems 
the angular momentum is measured to have a definite (quantized) magnitude. Does this 
contradict this statement of the uncertainty principle? 

18. Argue from the Heisenberg uncertainty principle that the lowest energy of an oscillator 
cannot be zero. 

19. Discuss similarities and differences between a matter wave and an electromagnetic wave. 

20. Explain qualitatively the results of Example 3-7 that the uncertainty in position of a 
particle increases the more accurately we localize the particle initially and that the 
uncertainty increases with time. 

21. Does the fact that interference occurs between various parts of the wave associated with 
a single particle (as in the G. I. Taylor experiments) simplify or complicate quantum 
physics? 

22. Games of chance contain events which are ruled by statistics. Do such games violate the 
strict determination of individual events? Do they violate cause and effect? 

23. According to operational philosophy, if we cannot prescribe a feasible operation for 
determining a physical quantity, the quantity should be given up as having no physical 
reality. What are the merits and drawbacks of this point of view in your opinion? 

24. Bohm and de Broglie suggest that there may be hidden variables at a level deeper than 
quantum theory which are strictly determined. Draw an  analogy to the relation between 
statistical mechanics and Newton's law of motion. 

25. In your opinion is there an objective physical reality independent of our subjective sense 
impressions? How is this question answered by defenders of the Copenhagen interpreta-
tion? By critics of the Copenhagen interpretation? 

26. Are our concepts limited in principle by our everyday experiences or is this only our 
conceptual starting point? How is this question related to a resolution of the wave-
particle duality? 

PROBLEMS 

1. A bullet of mass 40 g travels at 1000 m/sec. (a) What wavelength can we associate with 
it? (b) Why does the wave nature of the bullet not reveal itself through diffraction 
effects? 

2. The wavelength of the yellow spectral emission of sodium is 5890 A. At what kinetic 
energy would an electron have the same de Broglie wavelength? 

3. An electron and a photon each have a wavelength of 2.0 A. What are their (a) momenta 
and (b) total energies? (c) Compare the kinetic energies of the electron and the photon. 

4. A nonrelativistic particle is moving three times as fast as an electron. The ratio of their 
de Broglie wavelengths, particle to electron, is 1.813 x 10 - 4 . Identify the particle. 

5. A thermal neutron has a kinetic energy (3/2)k T where T is room temperature, 300°K. 
Such neutrons are in thermal equilibrium with normal surroundings. (a) What is the 
energy in electron volts of a thermal neutron? (b) What is its de Broglie wavelength? 

6. A particle moving with kinetic energy equal to its rest energy has a de Broglie wavelength 
of 1.7898 x 10 - 6  A. If the kinetic energy doubles, what is the new de Broglie wavelength? 

7. (a) Show that the de Broglie wavelength of a particle, of charge e, rest mass m o , moving 
at relativistic speeds is given as a function of the accelerating potential V as 

1/2 

= 	
h 	

(1 + 	
eV / - /2moe V ` 2moc2l 

(b) Show how this agrees with 2 = h/p in the nonrelativistic limit 
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1.24 x 10 -2  (1 — /32)1/2 

A = where /3 = v/c. 
E0(MeV) 	/3 

9. Determine at what energy, in electron volts, the nonrelativistic expression for the de 
Broglie wavelength will be in error by 1% for (a) an electron and (b) a neutron. (Hint: 
See Problem 7.) 

10. (a) Show that for a nonrelativistic particle, a small change in speed leads to a change in 
de Broglie wavelength given from 

AA, Av 

Ao 	vo 
(b) Derive an analogous formula for a relativistic particle. 

11. The 50-GeV (i.e., 50 x 10 9  eV) electron accelerator at Stanford University provides an 
electron beam of very short wavelength, suitable for probing the fine details of nuclear 
structure by scattering experiments. What is this wavelength and how does it compare to 
the size of an average nucleus? (Hint: At these energies it is simpler to use the extreme 
relativistic relationship between momentum and energy, namely p = E/c. This is the 
same relationship used for photons, and it is justified whenever the kinetic energy of a 
particle is very much greater than its rest energy m o c 2 , as in this case.) 

12. Make a plot of de Broglie wavelength against kinetic energy for (a) electrons and (b) pro-
tons. Restrict the range of energy values to those in which classical mechanics applies 
reasonably well. A convenient criterion is that the maximum kinetic energy on each plot 
be only about, say, 5% of the rest energy m oc 2  for the particular particle. 

13. In the experiment of Davisson and Germer, (a) show that the second- and third-order 
diffracted beams, corresponding to the strong first maximum of Figure 3-2, cannot occur 
and (b) find the angle at which the first-order diffracted beam would occur if the ac-
celerating potential were changed from 54 to 60 V? (c) What accelerating potential is 
needed to produce a second-order diffracted beam at 50°? 

14. Consider a crystal with the atoms arranged in a cubic array, each atom a distance 0.91 A 
from its nearest neighbor. Examine the conditions for Bragg reflection from atomic 
planes connecting diagonally placed atoms. (a) Find the longest wavelength electrons 
that can produce a first-order maximum. (b) If 300 eV electrons are used, at what angle 
from the crystal normal must they be incident to produce a first-order maximum? 

15. What is the wavelength of a hydrogen atom moving with a velocity corresponding to the 
mean kinetic energy for thermal equilibrium at 20°C? 

16. The principal planar spacing in a potassium chloride crystal is 3.14 A. Compare the angle 
for first-order Bragg reflection from these planes of electrons of kinetic energy 40 keV to 
that of 40 keV photons. 

17. Electrons incident on a crystal suffer refraction due to an attractive potential of about 
15 V that crystals present to electrons (due to the ions in the crystal lattice). If the angle 
of incidence of an electron beam is 45° and the electrons have an incident energy of 
100 eV, what is the angle of refraction? 

18. What accelerating voltage would be required for electrons in an electron microscope to 
obtain the same ultimate resolving power as that which could be obtained from a "y-ray 
microscope" using 0.2 MeV y rays? 

19. The highest achievable resolving power of a microscope is limited only by the wavelength 
used; that is, the smallest detail that can be separated is about equal to the wavelength. 
Suppose we wish to "see" inside an atom. Assuming the atom to have a diameter of 1.0 A, 
this means that we wish to resolve detail of separation about 0.1 A. (a) If an electron 
microscope is used, what minimum energy of electrons is needed? (b) If a photon micro-
scope is used, what energy of photons is needed? In what region of the electromagnetic 
spectrum are these photons? (c) Which microscope seems more practical for this purpose? 
Explain. 
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20. Show that for a free particle the uncertainty relation can also be written as 
A1Ax >_ 2/4n 

where Ax is the uncertainty in location of the wave and A2 the simultaneous uncertainty 
in wavelength. 

21. If A2/2 = 10 -7  for a photon, what is the simultaneous value of Ax for (a) 2 = 5.00 x 
10 -4  A (y ray)? (b) 2 = 5.00 A (x ray)? (e) 2 = 5000 A (light)? 

22. In a repetition of Thomson's experiment for measuring elm for the electron, a beam of 
104  eV electrons is collimated by passage through a slit of width 0.50 mm. Why is the 
beamlike character of the emergent electrons not destroyed by diffraction of the electron 
wave at this slit? 

23. A 1 MeV electron leaves a track in a cloud chamber. The track is a series of water droplets 
each about 10 -5  m in diameter. Show, from the ratio of the uncertainty in transverse 
momentum to the momentum of the electron, that the electron path should not notice-
ably differ from a straight line. 

24. Show that if the uncertainty in the location of a particle is about equal to its de Broglie 
wavelength, then the uncertainty in its velocity is about equal to one tenth its velocity. 

25. (a) Show that the smallest possible uncertainty in the position of an electron whose speed 
is given by fi = v/c is 

Ax 
min 
	h   (1 — /32)112 

Ac / 1 _ fl 2  min 47Lm0c 	 47r 

where 2c  is the Compton wavelength h/m 0 c. (b) What is the meaning of this equation for 
fi = 0? For /3 = 1? 

26. A microscope using photons is employed to locate an electron in an atom to within a 
distance of 0.2 A. What is the uncertainty in the velocity of the electron located in this 
way? 

27. The velocity of a positron is measured to be: vx  = (4.00 ± 0.18) x 10 5  m/sec, vy  = (0.34 + 
0.12) x 10 5  m/sec, vZ  = (1.41 ± 0.08) x 10 5  m/sec. Within what minimum volume was 
the positron located at the moment the measurement was carried out? 

28. (a) Consider an electron whose position is somewhere in an atom of diameter 1 A. What 
is the uncertainty in the electron's momentum? Is this consistent with the binding energy 
of electrons in atoms? (b) Imagine an electron to be somewhere in a nucleus of diameter 
10 -12  cm. What is the uncertainty in the electron's momentum? Is this consistent with 
the binding energy of nuclear constituents? (c) Consider now a neutron, or a proton, to 
be in such a nucleus. What is the uncertainty in the neutron's, or proton's, momentum? 
Is this consistent with the binding energy of nuclear constituents? 

29. The lifetime of an excited state of a nucleus is usually about 10 -12  sec. What is the un-
certainty in energy of the y-ray photon emitted? 

30. An atom in an excited state has a lifetime of 1.2 x 10 -8  sec; in a second excited state the 
lifetime is 2.3 x 10 8  sec. What is the uncertainty in energy for the photon emitted when 
an electron makes a transition between these two levels? 

31: Use relativistic expressions for total energy and momentum to verify that the group 
velocity g of a matter wave equals the velocity v of the associated particle. 

32. The energy of a linear harmonic oscillator is E = p/2m + Cx2/2. (a) Show, using the 
uncertainty relation, that this can be written as 

h2 	Cx2  
E= 	+ 	 

327c2mx2 	2 

(b) Then show that the minimum energy of the oscillator is by/2 where 
1 C 

v =— 
27z 

is the oscillatory frequency. (Hint: This result depends on the AxAp x  product achieving 
its limiting value h/2. Find E in terms of Ax or Apx  as in part (a), then minimize E with 
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respect to Ax or Ap x  in part (b). Note that classically the minimum energy would be 
zero.) 

33. A TV tube manufacturer is attempting to improve the picture resolution, while keeping 
costs down, by designing an electron gun that produces an electron beam which will make 
the smallest possible spot on the face of the tube, using only an electron emitting cathode 
followed by a system of two well-spaced apertures. (a) Show that there is an optimum 
diameter for the second aperture. (b) Using reasonable TV ,  tube parameters, estimate the 
minimum possible spot size. 

34. A boy on top of a ladder of height H is dropping marbles of mass m to the floor and 
trying to hit a crack in the floor. To aim, he is using equipment of the highest possible 
precision. (a) Show that the marbles will miss the crack by an average distance of the 
order of (h/m) 1/2(H/g)1"4, where g is the acceleration due to gravity. (b) Using reasonable 
values of H and m, evaluate this distance. 

35. Show that in order to be able to determine through which slit of a double-slit system each 
photon passes without destroying the double-slit diffraction pattern, the condition 
AyAp y  « h/2 must be satisfied. Since this condition violates the uncertainty principle, it 
cannot be met. 
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BOHR'S MODEL OF 

THE ATOM 

	

4-1 	THOMSON'S MODEL 

properties of model; a particles; multiple scattering; Geiger-Marsden experi-
ment; failure of model 

	

4-2 	RUTHERFORD'S MODEL 

nuclei; cc-particle trajectories; impact parameter and distance of closest ap-
proach; Rutherford's calculation; comparison with Geiger-Marsden experi-
ment; nuclear radii; definition of differential cross section; solid angle; Ru-
therford scattering cross section 

	

4-3 	THE STABILITY OF THE NUCLEAR ATOM 

radiation by an accelerated classical charged body 

	

4-4 	ATOMIC SPECTRA 

line spectra; hydrogen series; Balmer formula; Rydberg constant; alkali 
series; absorption spectra 

	

4-5 	BOHR'S POSTULATES 

statement of postulates; orbital angular momentum quantization; appraisal 

	

4-6 	BOHR'S MODEL 

Bohr's calculation; orbit radii; one-electron atom energy quantization; com-
parison with Balmer formula; singly ionized helium 

	

4-7 	CORRECTION FOR FINITE NUCLEAR MASS 

reduced mass; Rydberg constant evaluation; positronium; deuterium; mu-
onic atom 

	

4-8 	ATOMIC ENERGY STATES 

Franck-Hertz experiment; ionization energy; continuum states 

	

4-9 	INTERPRETATION OF THE QUANTIZATION RULES 

Wilson- Sommerfeld quantization rules; phase space and phase diagrams; 
simple harmonic oscillator; one-electron atom and de Broglie's interpreta-
tion; particle in one-dimensional box 

	

4-10 	SOMMERFELD'S MODEL 

quantization of elliptical orbits; principal and azimuthal quantum numbers; 
degeneracy; effect of relativity; hydrogen fine structure; fine-structure con-
stant; selection rules 
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4-11 	THE CORRESPONDENCE PRINCIPLE 
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statement of principle; justification; charged simple harmonic oscillator; 
hydrogen atom 

	

4-12 	A CRITIQUE OF THE OLD QUANTUM THEORY 
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recapitulation; failures of the old quantum theory; search for a replacement 

QUESTIONS 
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4-1 THOMSON'S MODEL 

By 1910 experimental evidence had been accumulated which showed that atoms 
contain electrons (e.g., scattering of x rays by atoms, photoelectric effect, etc.). These 
experiments also provided an estimate of Z, the number of electrons in an atom. 
They found it to be roughly equal to A/2, where A is the chemical atomic weight 
of the atom in question. Since atoms are normally neutral, they must also contain 
positive charge equal in magnitude to the negative charge carried by their normal 
complement of electrons. Thus a neutral atom has a negative charge — Ze, where 
— e is the electron charge, and also a positive charge of the same magnitude. That 
the mass of an electron is very small compared to the mass of even the lightest atom 
implies that most of the mass of the atom must be associated with the positive charge. 

These considerations naturally led to the question of the distribution of the positive 
and negative charges within the atom. J. J. Thomson proposed a tentative description, 
or model, of an atom according to which the negatively charged electrons were 
located within a continuous distribution of positive charge. The positive charge dis-
tribution was assumed to be spherical in shape with a radius of the known order 
of magnitude of the radius of an atom, 10 -20  m. (This value can be obtained from 
the density of a typical solid, its atomic weight, and Avogadro's number.) Owing 
to their mutual repulsion, the electrons would be uniformly distributed through the 
sphere of positive charge. Figure 4-1 illustrates this "plum pudding" model of the 
atom. In an atom in its lowest possible energy state, the electrons would be fixed 
at their equilibrium positions. In excited atoms (e.g., atoms in a material at high 
temperature), the electrons would vibrate about their equilibrium positions. Since 
classical electromagnetic theory predicts that an accelerated charged body, such as 
a vibrating electron, emits electromagnetic radiation, it was possible to understand 
qualitatively the emission of such radiation by excited atoms on the basis of Thom-
son's model. Quantitative agreement with experimentally observed spectra was lack-
ing, however. 

Example 4-1. (a) Assume that there is one electron of charge —e inside a spherical region 
of uniform positive charge density p (a Thomson hydrogen atom). Show that its motion, if 
it has kinetic energy, can be simple harmonic oscillation about the center of the sphere. 

Figure 4-1 Thomson's model of the atom—a sphere of positive charge 
embedded with electrons. 



1 	2.3 x 102  nt/m 	 i s 	1 
	  = 2.5 x 10 sec  

m 27c 9.11 x 10  -31  kg 
J 

•Let the electron be displaced to a distance a from the center, with a less than the radius  
of the sphere. From Gauss's law, we know that we can calculate the force on it by using  

Coulomb's law  
1  (4 3 e _ pea _ 

F 	
4zcE O  3 

Ira p a2 	3E0  

where (4/3)7ca 3 p is the net positive charge in a sphere of radius a. Hence, we can write F =  

—  ka, where the constant k = pe/3E0 . If the electron at a is freed with no initial velocity, this  

force will produce simple harmonic motion along a diameter of the sphere since it is always  

directed towards the center and has a strength which is proportional to the displacement  

from the center. •  
(b) Let the total positive charge have the magnitude of one electron charge (so that the  

atom has no net charge), and let it be distributed over a sphere of radius r' = 1.0 x 10 -10  m.  
Find the force constant k and the frequency of the motion of the electron.  

►  We have  
e 

p= 
4 ^^, 3  

3  

so that  

3  
9.0 x 109  nt-m2/coul 2  x (1.6 x 10 -19  coul)2 

	102  — 2.3 x 10 nt/m 
(1.0 x 10 -10 m)3  

The frequency of the simple harmonic motion is then  

pe 	e 	e 	e 2  
k=  

3E 0 	4 /3  3E0 	47cE 0r' 3  
— 7cr  
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Since (in analogy to radiation emitted by electrons oscillating in an antenna) the radiation 
emitted by the atom will have this same frequency, it will correspond to a wavelength 

c 3.0 x 10 8  m/sec  
v 	2.5x1015/sec —

1.2x10 m=1200 A  

in the far ultraviolet portion of the electromagnetic spectrum. It is easy to show that an 
electron moving in a stable circular orbit of any radius inside the Thomson atom revolves at 
this same frequency, and so it would radiate at this frequency also. 

Of course, a different assumed radius of the sphere of positive charge would give a different 
frequency. But the fact that a Thomson hydrogen atom has only one characteristic emission 
frequency conflicts with the very large number of different frequencies observed in the spectrum 
of hydrogen. • 

Conclusive proof of the inadequacy of Thomson's model was obtained in 1911 by  
Ernest Rutherford, a former student of Thomson's, from the analysis of experiments  
on the scattering of a particles by atoms. Rutherford's analysis showed that, instead 
of being spread throughout the atom, the positive charge is concentrated in a very 
small region, or nucleus, at the center of the atom. This was one of the most im-
portant developments in atomic physics and was the foundation of the subject of 
nuclear physics. 

Rutherford had already been awarded the Nobel Prize in 1908 for his "investigations in  

regard to the decay of elements and ... the chemistry of radioactive substances." He was a  

talented, hard-working physicist with enormous drive and self-confidence. In a letter written  

later in life, the then Lord Rutherford wrote, "I've just been reading some of my early papers  

and, you know, when I'd finished, I said to myself, `Rutherford, my boy, you used to be a  

damned clever fellow. —  Though pleased at winning a Nobel Prize he was not happy that it  

was a chemistry prize, rather than one in physics. (Any research in the elements was then  
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Figure 4-2 Arrangement of an a-particle scattering experiment. The region traversed by 
the a particles is evacuated. 

considers 	mistry.) In his speech accepting the prize he noted that he had observed many 
transformations 'n his work with radioactivity but never had seen one as rapid as his own, 
from physicist to chemist. 

Rutherford already knew a particles to be doubly ionized helium atoms (i.e., He 
atoms with two electrons removed), emitted spontaneously from several radioactive 
materials at high speed. In Figure 4-2 we show a typical arrangement that he and his 
colleagues used to study the scattering of a particles on passing through thin foils of 
various substances. The radioactive source emits a particles which are collimated into 
a narrow parallel beam by a pair of diaphragms. The parallel beam is incident upon 
a foil of some substance, usually a metal. The foil is so thin that the particles pass 
completely through with only a small decrease in speed. In traversing the foil, how-
ever, each a particle experiences many small deflections due to the Coulomb force 
acting between its charge and the positive and negative charges of the atoms of the 
foil. Since the deflection of an a particle in passing through a single atom depends 
on the details of its trajectory through the atom, the net deflection in passing through 
the entire foil will be different for different a particles in the beam. As a result, the 
beam emerges from the foil not as a parallel beam but as a divergent beam. A quanti-
tative measure of its divergence is found by measuring the number of a particles 
scattered into each angular range O to O + d0. The a particle detector consisted of 
a layer of the crystalline compound ZnS and a microscope. The crystal ZnS has the 
useful property of producing a small flash of light when struck by an  cc  particle. If 
observed with a microscope, the flash due to the incidence of a single cc particle can 
be distinguished. In the experiment an observer counts the number of light flashes 
produced per unit time as a function of the angular position of the detector. 

Let .N' represent the number of atoms that deflect an  cc  particle in its passage 
through the foil. If B represents the angle of deflection in passing through one atom, 
as in Figure 4-3, and O is the net deflection in passing through all the atoms in its 

Figure 4-3 An a particle passing through a Thomson model atom. The angle B specifies 
the deflection of the  cc  particle. 



CO  
^ trajectory through the foil, then statistical theory shows that 

(0 2) 1/2  = Vs-  (02 ) 1/2 	 (4-1)  

Here (0 2) 112  is the root mean square net deflection, or scattering, angle and (92)1/2  is 
the root mean square scattering angle in a deflection from a single atom. The factor 
J.At comes from the randomness of the deflection;  if all deflections were in the same 
direction, clearly we would obtain X instead of /.N' . More generally, statistical theory  
gives the following angular distribution of the scattered a particles 

— 
N(0) d0 = OO e

- e2 /e2  d0 	 (4-2)  

where N(0) de is the number of a's scattered within the angular range O to O + 
dO, and I is the number of a's passing through the foil. 

Because electrons have a very small mass compared to the a particle, they can in 
any case produce only small a-particle deflections; and because the positive charge is 
distributed over all the volume of the r' 10' 10  m radius Thomson atom it cannot 
provide a Coulomb repulsion intense enough to produce a large deflection of the a 
particle. Indeed, using Thomson's model we find that the deflection caused by one 
atom is 0 < 10 -4  rad. This result and (4-1) and (4-2) comprise the a-particle scattering 
predictions of the Thomson model of the atom. Rutherford and his group tested 
these predictions. 

Example 4-2. (a) In a typical experiment (Geiger and Marsden, 1909), a particles were  

scattered by a gold foil 10 -6  m thick. The average scattering angle was found to be (02)1/2  

1° ^ 2 x 10 -2  rad. Calculate (02)1/2.  

■ The number of atoms traversed by the a particle is approximately equal to the thickness  

of the foil divided by the diameter of the atom. Hence  

✓V ^ 10-6 m/10-tom= 104  
The average deflection angle in traversing a single atom then, from (4-1), is  

  2 
(82)1/2 = 

(02)1/2  2  x1010 	
,,, 2 x 10 -4  rad  

	

not in disagreement with the Thomson atom estimate 0 < 10 -4  rad. 	 4  
(b) More than 99% of the a particles were scattered at angles less than 3°. The measure-

ments, using 1° for (02)1/2,  were in agreement with (4-2) for NOD) de for angles Co in this  

range; but the angular distribution of the small number of particles scattered at larger angles  

was in marked disagreement with (4-2). It was found, for example, that the fraction of a's  

scattered at angles greater than 90°, N(O > 90°)/I, was about 10 -4. What does (4-2) predict?  
►  We have  

180° 
 
 

N(0) de  
N(0  > 90°) _  90e 	

— 

e —(90) 2  = 10-3500  
I 	 I 

a strikingly different result than the experiment value of 10 -4.  
In general the number of scattered a particles was observed to be very much larger than  

the predicted number for all scattering angles greater than a few degrees. 	 •  

The existence of a small, but nonzero probability for scattering at large angles  

could not be explained at all in terms of Thomson's model of the atom, which  

basically involves small angle scattering from many atoms. To scientists accustomed  
to thinking in terms of this model it came as a great surprise that some a particles  

were deflected through very large angles, up to 180°. In Rutherford's words: "It was  

quite the most incredible event that ever happened to me in my life. It was as  

incredible as if you fired a 15-inch shell at a piece of tissue paper and it came  

back and hit you."  
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Experiments using foils of various thicknesses showed that the number of large 
angle scatterings was proportional to ✓V' , the number of atoms traversed by the a 
particle. This is just the dependence on .N 1  that would arise if there were a small 
probability that an a particle could be scattered through a large angle in traversing 
a single atom. That cannot happen in Thomson's model of the atom, and this led 
Rutherford in 1911 to propose a new model. 

4-2 RUTHERFORD'S MODEL 

In Rutherford's model of the structure of the atom, all the positive charge of the 
atom, and consequently essentially all its mass, are assumed to be concentrated in a 
small region in the center called the nucleus. If the dimensions of the nucleus are 
small enough, an a particle passing very near it can be scattered by a strong Coulomb 
repulsion through a large angle in the traversal of a single atom. If, instead of 
using r' = 10' 1 ° m for the radius of the positive charge distribution of the Thomson 
atom, which leads to a maximum deflection angle 0 10 -4  rad, we ask what the 
radius r' of a nucleus should be to obtain 0 ^ 1 rad, say, we find r' = 10' 14  m. This, 
as we shall see, turns out to be a good estimate of the radius of the atomic 
nucleus. 

Rutherford made a detailed calculation of the angular distribution to be expected 
for the scattering of a particles from atoms of the type proposed in his model. The 
calculation was concerned only with scattering at angles greater than several degrees. 
Hence, scattering due to atomic electrons can be ignored. The scattering is then due 
to the repulsive Coulomb force acting between the positively charged a particle and 
the positively charged nucleus. Furthermore, the calculation considered only the 
scattering from heavy atoms, to permit the assumption that the mass of the nucleus 
is so large compared to that of the a particle that the nucleus does not recoil ap-
preciably (remains fixed in space) during the scattering process. It was also assumed 
that the a particle does not actually penetrate the nuclear region, so that the particle 
and the nucleus (both assumed to be spherical) act like point charges as far as the 
Coulomb force is concerned. We shall see later that all these assumptions are quite 
valid except for the scattering of a particles from the lighter nuclei, and we can 
correct for the finite nuclear mass in such cases. The calculation, finally, uses non-
relativistic mechanics, since v/c 1/20. 

Figure 4-4 illustrates the scattering of an a particle, of charge + ze and mass M, 
in passing near a nucleus of charge + Ze. The nucleus is fixed at the origin of the 
coordinate system. When the particle is very far from the nucleus, the Coulomb force 
on it is negligible so that the particle approaches the nucleus along a straight line 
with constant speed v. After the scattering, the particle will move off finally along 
a straight line again with constant speed y'.  The position of the particle relative to 
the nucleus is specified by the radial coordinate r and the polar angle (p, with the 
latter measured from an axis drawn parallel to the initial trajectory line. The per-
pendicular distance from that axis to the line of initial motion is called the impact 
parameter, specified by b. The scattering angle 9 is just the angle between the axis 
and a line drawn through the origin parallel to the line of final motion; the perpendi-
cular distance between these two lines is b'. 

Example 4-3. Show that y  = v' and b = b'. 
•The force acting on the particle, being a Coulomb force, is always in the radial direction. 
Hence, the angular momentum of the particle about the origin has a constant value, L. 
Specifically then, the initial angular momentum is equal to the final angular momentum, or 

Mvb = Mv'b' = L 
Of course, the kinetic energy of the particle does not remain constant during the scattering, 
but the initial kinetic energy must be equal to the final kinetic energy since the nucleus is 



^ 

Ze  

Figure 4 -4 The hyperbolic Rutherford trajectory, showing the polar coordinates r, 9 and  
the parameters b, D. These two parameters completely determine the trajectory, in particu-
lar the scattering angle 8 and the distance of closest approach R. The nuclear point charge  
Ze lies at a focus of the branch of the hyperbola.  

assumed to remain stationary. Thus  

2 Mv2 = 1 Mv'2  
2 	2  

Therefore, y  = y' and so from the previous equation b = b', as drawn in Figure 4-4. 	t 

By a straightforward calculation of classical mechanics, using the repulsive Cou-
lomb force (1/4rr€ 0)(zZe2/r2), we can obtain the following equation for the trajectory  

of the a particle (see Appendix E for a derivation)  

1 b 
sin 9+ 2b2  (cos ç — 1) 	 (4-3)  

D 47tE0  Mv2/2 	
(4-4)  

It is a convenient parameter equal to the distance of closest approach to the nucleus 
in a head-on collision (b = 0), since D is the distance at which the potential energy 
(1/4it€ 0)(zZe 2/D) is equal to the initial kinetic energy Mv 2/2 (simply equate the two 
and solve for D). At this point the particle would come to a stop and then reverse 
its direction of motion. The scattering angle 0 follows from (4-3) by finding the value 
of cp as r — co and setting 0 = m — gyp. In this way we find 

cot = 	 (4-5)  

Example 4-4. Evaluate R, the distance of closest approach of the particle to the center of the  

nucleus (the origin in Figure 4-4).  
■ The radial coordinate r will equal R when the polar angle is rp = (7c — 9)/2. Evaluating (4-3)  
for this angle, we get  

R 
= 1  sin (7r 2 

9 
 I + 2b2  I cos (7 2  B)  1^ 

the equation of a hyperbola in polar coordinates. Here D is a constant, defined by 
1 zZe 2  
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R= 2 
1+  

Now, from (4-5) we can put  
D B 

 b= 	
D 

C^— 
 B ^  2  cot = 2  2 tan  2  

and, after some manipulation, obtain  

(71c 

 

— B 
cos 	2  

or  

R = 
D 

[1 + sin (1(9/2)1 	
(4-6)  

This result can be checked physically. Note that as 0 —> 7E, corresponding to b = 0 or a  
head-on collision, R —* D, the distance of closest approach. Also, as B -* 0, corresponding to  
no deflection at all, both b and R go to infinity, as would be expected. 4  

From (4-5) we see that, in the scattering of an a particle by a single nucleus, if  

the impact parameter is in the range b to b + db then the scattering angle is in the  

range 8 to 0 + dB, where the relation between b and 9 is given by the equation.  
This is illustrated in Figure 4-5. The problem of calculating the number N(0) dO  

of a particles scattered into the angular range O to O + dO in traversing ,  the entire  
foil is therefore equivalent to the problem of calculating the number which are in-
cident, with impact parameter from b to b + db, upon the nuclei in the foil. As we  
show in the following example, the result is  

( ) 	

C 

1  1 2  /  zZe2   ^ 2  I  pt2it sin Co  dO 	( ) 
M 	N N O O 

= 47c€O/f 2Mv2 	sin' (0/2) 	 -7  
where I is the number of a particles incident on a foil of thickness t cm containing 
p nuclei per cubic centimeter. 

Example 4-5. Verify (4-7).  
■ Consider a segment of the foil with a cross-sectional area of 1 cm 2, as shown in Figure 4-6.  
A ring, of inner radius b and outer radius b + db, is drawn around an incident axis passing  

through each nucleus, the area of each ring being 2irb db. The number of such rings in this  
segment of the foil is pt. The probability that an a particle will pass through one of these  
rings, P(b) db, is equal to the total area obscured by the rings, as seen by the incident a  
particles, divided by the total area of the segment. We assume the foil to be thin enough that  

we can ignore overlapping of rings from different nuclei. The process involves single scattering 
and the probability for appreciable scattering by more than one nucleus is very low. Hence  

P(b) db = pt2icb db  

+ze  
+ze  

• 	  

+Ze  

Figure 4 -5 The relation between the impact parameter b and the scattering angle B.  
As b increases (less close nuclear approach) the angle B decreases (smaller scattering  
angle). The a particles with impact parameters between b and b + db are scattered  
into the angular range between 0 and  0 + dB.  
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Figure 4-6 A beam of a particles incident on 
a foil of 1 cm 2  area and thickness t cm. The 
rings, which are purely geometrical constructs 
and not anything physical, are centered on 
nuclei. Actually there are enormously many 
more rings than shown and the rings are very 
much smaller than shown. 

but b = (D/2) cot (0/2) so that 

and 

b db 

Thus  

db = 
D d0/2 
2 sine  (0/2) 

D2  sin 0 d0 

8 sin3  (0/2) 	16 sin4  (0/2) 
D2  cos (0/2) d0 

P(b) db = — 8 ptD2  sin 0 
sin4 	(0/2) 

But  —P(b)db  is equal to the probability that the incident particles will be scattered into the 
angular range 0 to 0 + d0. The minus sign arises from the fact that a decrease in b, i.e., 
—db, corresponds to an increase in 0, i.e., +d0. Using our earlier notation O for the scattering 
angle in passing through the entire foil, this is 

N(0) dO 2  sin O d0 — 
I 	— P(b) db = 

8 
ptD 

 sin4  (0/2) 
Finally, with D = (1/4it€ 0)zZe 2/(Mv2/2), we obtain (4-7). 	 • 

If we compare the Rutherford atom result, (4-7), to the Thomson atom result, 
(4-2), we see that although the angular factor decreases rapidly with increasing angle 
in both, the decrease is very much less rapid for Rutherford's prediction. Large angle 
scattering is very much more probable in single scattering from a nuclear atom than 
in multiple small angle scattering from a plum pudding atom. Detailed experimental 
tests of (4-7) were performed within a few months of its derivation by Geiger and 
Marsden, with the following results: 

1. The angular dependence was tested, using foils of Ag and Au, over the angular 
range 5° to 150°. Although N(0) dO varies by a factor of about 10 5  over this range, 
the experimental data remained proportional to the theoretical angular distribution 
to within a few percent. 

2. The quantity N(0) dO was found indeed to be proportional to the thickness t 
of the foil for a range of about 10 in thickness for all the elements investigated. 

3. Equation (4-7) predicts that the number of scattered a's will be inversely pro-
portional to the square of their kinetic energy, Mv 2/2. This was tested by using a 
particles from several different radioactive sources and the predicted energy depen-
dence was confirmed experimentally over an available energy variation of about a 
factor of 3. 

4. Finally, the equation predicts N(0) dO to be proportional to (Ze) 2, the square 
of the nuclear charge. At the time Z was not known for the various atoms. Assuming 
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(4-7) to be valid, the experiment was used to determine Z and it was found that Z 
was equal to the chemical atomic number of the target atoms. This implied that the 
first atom, H, in the periodic table contains one electron, the second atom, He, 
contains two electrons, the third atom, Li, contains three, etc., since Z is also the 
number of electrons in the neutral atom. This result was soon independently con-
firmed by x-ray techniques that will be discussed in Chapter 9. 

Rutherford, his model now confirmed, was able to put limits on the size of the 
nucleus. The distance of closest approach, D, is the smallest value that R takes on, 
which is R at O = 180°. Hence 

1 zZe 2  
R1800  = D = 4n€0 Mv 2/2  

The nucleus radius must be no larger than D because the results are based on the 
assumption that the force acting on the a particle is always strictly a Coulomb force 
between two point charges. This assumption would not be true if the particle pene-
trated the nuclear region at its distance of closest approach. The previous equation 
shows that R1800  decreases as Z decreases. The question arises: How much can R1800 

decrease before R1800  is less than the nuclear radius? Departures from the predicted 
Rutherford scattering were actually observed from the very light (low Z) nuclei. Part 
of this was due to a violation, for the very light nuclei, of the assumption that the 
nuclear mass is large compared to the alpha particle mass; however, deviations re-
mained even after the finite nuclear mass was taken into account in the theory. This 
suggests that penetration of the nucleus occurs in these cases thereby altering the 
predicted scattering. Hence, the nuclear radius can be defined as the value of R at 
the limiting scattering angle, or limiting incident energy, at which deviations from 
Rutherford scattering set in. In Figure 4-7, for example, we show data from Ruther-
ford's group for the scattering of a particles, of various energies, at a fixed large 
angle from an Al foil. The ordinate is the ratio of the observed number of scattered 
particles to the number predicted by the Rutherford theory (corrected for the finite 
nuclear mass). The abscissa is the distance of closest approach calculated from (4-6). 
These data imply that the radius of the Al nucleus is about 10 -14  m = 10 F. (The 
unit of distance used in nuclear physics is the fermi, which equals 10' 15  m. Note 
that 1 F = 10' 5  A, where A, the angstrom, is the unit used in atomic physics.) 

The Rutherford scattering formula, (4-7), is usually expressed in terms of a differ-
ential cross section da/dQ. This quantity is defined so that the number dN of a 
particles scattered into a solid angle dS2 at scattering angle Co is 

dN = 

 

do- 
	In dS2 	 (4-8) 

Aluminum 

x 

   

d 

â o .--. 

 

 

 

  

  

   

X 	7C- 

0 	 ' 

0 	 0.6 	0.8 	1.0 	1.2 	1.4 	1.6 	1.8 

R (10 -14 
 m) 

Figure 4-7 Sorte data obtained in the scattering of a particles from a radioactive source 
by aluminium. The abscissa is the distance of closest approach to the nuclear center. 
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Incident beam  
of I particles  

n nuclei per  
cm 2  of target  

dN particles 
emitted into 

solid angle du  

Figure 4-8 Illustrating the definition of the differential cross section doidS2. If the target is  
thin enough for an incident particle to have negligible chance of interacting with more than  

one nucleus while passing through the target, then dN = (doIdfl)In dS2  

if I a particles are incident on a target foil containing n nuclei per square centimeter. 
The definition is analogous to the definition of a cross section 6 in (2-18) 

N = 6In  

It is illustrated in Figure 4-8. The solid angle AI, which is essentially a two-
dimensional angular range, is measured numerically by the area which the angular 
range includes on a sphere of unit radius centered where the scatterings occur. For 
Rutherford scattering, which is symmetric about the axis of the incident beam, we 
are interested in the solid angle (K2 corresponding to all events in which the scattering 
angle lies in the range dO at O. As is shown in the figure 

dS2 = 27c sin O dO  
Using this in (4-7), writing N(0) dO in that equation as dN, and also writing the 
term pt appearing there as n, we immediately obtain 

C  1  ^2  zZe2 ^ 2 	1  
dN = 

4ic0 	2Mv2  sin4  (0/2) 
In df2  

Comparison with the definition of (4-8) then shows that the Rutherford scattering  
differential cross section is  

d6   ( 1  ) 2  (zZe 2 12 	1 
dS2 	47r€0 J 2Mv2  J  sin4 

4-3 THE STABILITY OF THE NUCLEAR ATOM  

The detailed experimental verification of the predictions of Rutherford's nuclear  

model of the atom left little room for doubt concerning the validity of the model.  

At the center of the atom is a nucleus whose mass is approximately that of the entire  

atom and whose charge is equal to the atomic number Z times e; around this  
nucleus there exist Z electrons, neutralizing the atom as a whole. But serious ques-
tions emerge about the stability of such an atom. If we assume, for example, that the  

electrons in the atom are stationary, there exists no stable arrangement of the elec-
trons which would prevent the electrons from falling into the nucleus under the  

influence of its Coulomb attraction. We cannot allow the atom to collapse (back to  

a nuclear-sized plum pudding) because then its radius would be of the order of a  

du = area/r 2  =  
27r sin Ode 

 (0/2) /2)  (4-9)  
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Slit  

nuclear radius, which is four orders of magnitude smaller than diverse experiments  

show the radius of the' atom to be.  
At first glance it seems that we can simply allow the electrons to circulate about  

the nucleus in orbits similar to the orbits of the planets circulating about the sun.  

Such a system can be stable mechanically, as is the solar system. A serious difficulty  

arises, however, in trying to carry over this idea from the planetary system to  

the atomic system. The problem is that the charged electrons would be constantly  

accelerating in their motion around the nucleus and, according to classical electro-
magnetic theory, all accelerating charged bodies radiate energy in the form of elec-
tromagnetic radiation (see Appendix B). The energy would be emitted at the expense  

of the mechanical energy of the electron, and the electron would spiral into the  

nucleus. Again we have an atom which would rapidly collapse to nuclear dimensions.  

(For an atom of diameter 10' ° m the time of collapse can be computed to be 
10 -12  sec!) Furthermore, the continuous spectrum of the radiation that would be 

emitted in this process is not in agreement with the discrete spectrum which is 
known to be emitted by atoms. 

This difficult problem of the stability of atoms actually led to a simple model of 
atomic structure. A key feature of this very successful model, proposed by Niels Bohr 
in 1913, was the prediction of the spectrum of radiation emitted by certain atoms. 
Hence, it is appropriate at this point to describe some of the principal features of 
such spectra. 

4-4 ATOMIC SPECTRA  

A typical apparatus used in the measurement of atomic spectra is indicated in Figure 
4-9. The source consists of an electric discharge passing through a region containing 
a monatomic gas. Owing to collisions with electrons, and with each other, some of 
the atoms in the discharge are put into a state in which their total energy is greater 
than it is in a normal atom. In returning to their normal energy state, the atoms give 
up their excess energy by emitting electromagnetic radiation. The radiation is colli-
mated by the slit and then it passes through a prism (or diffraction grating for 
better resolution) where it is broken up into its wavelength spectrum which is re-
corded on the photographic plate. 

The nature of the observed spectra is indicated on the photographic plate. In con-
trast to the continuous spectrum of electromagnetic radiation emitted, for instance, 
from the surface of solids at high temperature, the electromagnetic radiation emitted  

Photographic plate  

Figure 4 -9 Schematic of an apparatus used to measure atomic spectra.  
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by free atoms is concentrated at a number of discrete wavelengths. Each of these wave-
length components is called a line because of the line (image of the slit) which it pro-
duces on the photographic plate. Investigation of the spectra emitted from different 
kinds of atoms shows that each kind of atoms has its own characteristic spectrum, 
i.e., a characteristic set of wavelengths at which the lines of the spectrum are found. 
This feature is of greatest practical importance because it makes spectroscopy a very 
useful addition to the usual techniques of chemical analysis. Chiefly for this reason  

much effort was devoted to the accurate measurement of atomic spectra, and, in fact, 
much effort was needed because the spectra consist of many hundreds of lines and 
in general are very complicated. 

However, the spectrum of hydrogen is relatively simple. This is perhaps not sur-
prising since hydrogen, which contains just one electron, is itself the simplest atom. 
Most of the universe consists of isolated hydrogen atoms so that the hydrogen spec-
trum is of considerable practical interest. There are historical and theoretical reasons 
as well for studying it, as will become apparent later. Figure 4-10 shows that part of 
the atomic hydrogen spectrum which falls approximately within the wavlength range 
of visible light. We see that the spacing, in wavelengths, between adjacent lines of the 
spectrum continuously decreases with decreasing wavelength of the lines, so that the 
series of lines converges to the so-called series limit at 3645.6 A. The short wavelength 
lines, including the series limit, are hard to observe experimentally because of their 
close spacing and because they are in the ultraviolet. 

The obvious regularity of the H spectrum tempted several people to look for an 
empirical formula which would represent the wavelength of the lines. Such a formula 
was discovered in 1885 by Balmer. He found that the simple equation 

2 
= 3646 

n2n 4 
	

(in A units) 

where n = 3 for H OE , n = 4 for HR , n = 5 for H y , etc., was able to predict the wave-
length of the first nine lines of the series, which were all that were known at the time, 
to better than one part in 1000. This discovery initiated a search for similar empirical 
formulas that would apply to series of lines which can sometimes be identified in the 
complicated distribution of lines that constitute the spectra of other elements. Most 
of this work was done around 1890 by Rydberg, who found it convenient to deal with 
the reciprocal of the wavelength of the lines, instead of their wavelength. In terms of 
reciprocal wavelength K the Balmer formula can be written 

K = 1/11, = RH(1/2 2  — 1/n2) 	n = 3, 4, 5, ... (4-10)  

where RH is the so-called Rydberg constant for hydrogen. From recent spectroscopic 

Designation 
of line 

H^ H^ Hy  Hs HE  HI,  Hx 

Near ultraviolet Color 	Red 	 Blue 	 Violet 

Figure 4-10 A photograph of the visible part of the hydrogen spectrum. (Spectrum from  
W. Finkelnburg, Structure of Matter, Springer-Verlag, Heidelberg, 1964.)  



Table 4-1 The Hydrogen Series  

Names 	Wavelength Ranges 	Formulas  
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K=RH 

1 2 - 
 n

z 

C
1 	11 

K = RH 22 n2 

^ 1 	11 
K RH 3

2  n2  

(42
l 	l) 

K-RH — nz  

^ l 	11  
K 
 = RH 5 2  n2  

n= 2,3,4,...  

n=3,4,5,...  

n=4,5,6,...  

n= 5,6,7,...  

n= 6,7,8,...  

Lyman 	Ultraviolet  

Balmer 	Near ultraviolet and  
visible  

Paschen 	Infrared  

Brackett 	Infrared  

Pfund 	Infrared  

data, its value is known to be 
RH = 10967757.6 ± 1.2 m -1  

This indicates the accuracy possible in spectroscopic measurements. 
Formulas of this type were found for a number of series. For instance, we now 

know of the existence of five series of lines in the hydrogen spectrum, as shown in 
Table 4-1. 

For alkali element atoms (Li, Na, K, . . .) the series formulas are of the same general 
structure. That is 

1 1 	1 	 ) 
K= =R (m  — a)z  (n—b)2 	

(4-11 

where R is the Rydberg constant for the particular element, a and b are constants for 
the particular series, m is an integer which is fixed for the particular series, and n is a 
variable integer. To within about 0.05% the Rydberg constant has the same value for 
all elements, although it does show a very slight systematic increase with increasing 
atomic weight. 

We have been discussing the emission spectrum of an atom. A closely related prop-
erty is the absorption spectrum. This may be measured with apparatus similar to 
that shown in Figure 4-9 except that a source emitting a continuous spectrum is used 
and a glass-walled cell, containing the monatomic gas to be investigated, is inserted 
somewhere between the source and the prism. After exposure and development, the 
photographic plate is found to be darkened everywhere except for a number of un-
exposed lines. These lines represent a set of discrete wavelength components which 
were missing from the otherwise continuous spectrum incident upon the prism, and 
which must have been absorbed by the atoms in the gas cell. It is observed that for 
every line in the absorption spectrum of an element there is a corresponding (same 
wavelength) line in its emission spectrum; however, the reverse is not true. Only 
certain emission lines show up in the absorption spectrum. For hydrogen gas, nor-
mally only lines corresponding to the Lyman series appear in the absorption spec-
trum; but, when the gas is at very high temperatures, e.g., at the surface of a star, lines 
corresponding to the Balmer series are found. 

4-5 BOHR'S POSTULATES  

All these features of atomic spectra, and many more which we have not discussed,  

must be explained by any successful model of atomic structure. Furthermore, the very  

great precision of spectroscopic measurements imposes severe requirements on the  



accuracy with which such a model must be able to predict the quantitative features 
of the spectra. 

Nevertheless, in 1913 Niels Bohr developed a model which was in accurate quanti-
tative agreement with certain of the spectroscopic data (e.g., the hydrogen spectrum). 
It had the additional attraction that the mathematics involved was very easy to 
understand. Although the student has probably seen something of Bohr's model in 
studying elementary physics, or chemistry, we shall consider it in detail here in order 
to obtain various results that we shall want to make comparisons with elsewhere in 
this book, and also in order to take a careful look at the rather confusing postulates 
on which the model is based. These postulates are: 

1. An electron in an atom moves in a circular orbit about the nucleus under the in-
fluence of the Coulomb attraction between the electron and the nucleus, obeying the 
laws of classical mechanics. 

2. Instead of the infinity of orbits which would be possible in classical mechanics, it 
is only possible for an electron to move in an orbit for which its orbital angular momen-
tum L is an integral multiple of h, Planck's constant divided by 2n. 

3. Despite the fact that it is constantly accelerating, an electron moving in such an 
allowed orbit does not radiate electromagnetic energy. Thus, its total energy E remains 
constant. 

4. Electromagnetic radiation is emitted if an electron, initially moving in an orbit 
of total energy E i, discontinuously changes its motion so that it moves in an orbit of total 
energy E f . The frequency of the emitted radiation v is equal to the quantity (E 1  — E f ) 
divided by Planck's constant h. 

The first postulate bases Bohr's model on the existence of the atomic nucleus. The 
second postulate introduces quantization. Note the difference, however, between 
Bohr's quantization of the orbital angular momentum of an atomic electron moving 
under the influence of an inverse square (Coulomb) force 

	

L = nh 	 n = 1, 2, 3, ... (4-12) 

and Planck's quantization of the energy of a particle, such as an electron, executing 
simple harmonic motion under the influence of a harmonic restoring force : E = nhv, 
n = 0, 1, 2, .... We shall see in the next section that the quantization of the orbital 
angular momentum of the atomic electron does lead to the quantization of its total 
energy, but with an energy quantization equation which is different from Planck's 
equation. The third postulate removes the problem of the stability of an electron 
moving in a circular orbit, due to the emission of the electromagnetic radiation 
required of the electron by classical theory, by simply postulating that this particular 
feature of the classical theory is not valid for the case of an atomic electron. The pos-
tulate was based on the fact that atoms are observed by experiment to be stable—
even though this is not predicted by the classical theory. The fourth postulate 

Ei  — E f  
v = 	h 	 (4-13) 

is really just Einstein's postulate that the frequency of a photon of electromagnetic 
radiation is equal to the energy carried by the photon divided by Planck's constant. 

These postulates do a thorough job of mixing classical and nonclassical physics. The electron 
moving in a circular orbit is assumed to obey classical mechanics, and yet the nonclassical idea 
of quantization of orbital angular momentum is included. The electron is assumed to obey 
one feature of classical electromagnetic theory (Coulomb's law), and yet not to obey another 
feature (emission of radiation by an accelerated charged body). However, we should not be 
surprised if the laws of classical physics, which are based on our experience with macroscopic 
systems, are not completely valid when dealing with microscopic systems such as the atom. 
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4-6 BOHR'S MODEL 

The justification of Bohr's postulates, or of any set of postulates, can be found only 
by comparing the predictions that can be derived from the postulates with the results 
of experiment. In this section we derive some of these predictions and compare them 
with the data of Section 4-4. 

Consider an atom consisting of a nucleus of charge + Ze and mass M, and a single 
electron of charge  —e and mass m. For a neutral hydrogen atom Z = 1, for a singly 
ionized helium atom Z = 2, for a doubly ionized lithium atom Z = 3, etc. We assume 
that the electron revolves in a circular orbit about the nucleus. Initially we suppose 
the mass of the electron to be completely negligible compared to the mass of the 
nucleus, and consequently assume that the nucleus remains fixed in space. The con-
dition of mechanical stability of the electron is 

1 Ze2 	y2  

	

 	=m— 
4rrE O  r2 	r 

where y  is the speed of the electron in its orbit, and r is the radius of the orbit. The 
left side of this equation is the Coulomb force acting on the electron, and the right side 
is ma, where a is the centripetal acceleration keeping the electron in its circular orbit. 
Now, the orbital angular momentum of the electron, L = mvr, must be a constant, 
because the force acting on the electron is entirely in the radial direction. Applying 
the quantization condition, (4-12), to L, we have 

mvr = nh 	 n = 1, 2, 3, ... (4-15) 
Solving for y and substituting into (4-14), we obtain 

2 	2 h2 
Ze 2  = 47nE0mv2r = 47rEOmr 

n 	
= 4rr€ O  n  

mr 	mr 
so 

and 

n2h2  
r = 4nEO 	2 

mZe  

nh 	1 Ze 2  
v =—= 	 

mr 47rE0  nh 

n = 1, 2, 3, . . . (4-16) 

n = 1, 2, 3, . . . (4-17) 

The application of the angular momentum quantization condition has restricted the possible 
circular orbits to those of radii givèn by (4-16). Note that these radii are proportional to the 
square of the quantum number n. If we evaluate the radius of the smallest orbit (n = 1) for a 
hydrogen atom (Z = 1) by inserting the known values of h, m, and e, we obtain 
r = 5.3 x 10 -11  m ^ 0.5 A. We shall show later that the electron has its minimum total energy 
when in the orbit corresponding to n = 1. Consequently we may interpret the radius of this 
orbit as a measure of the radius of a hydrogen atom in its normal state. It is in good agreement 
with the estimate, mentioned previously, that the order of magnitude of an atomic radius is 
1 A. Hence, Bohr's postulates predict a reasonable size for the atom. Evaluating the orbital 
velocity of an electron in the smallest orbit of a hydrogen atom from (4-17), we find 
y  = 2.2 x 106  m/sec. It is apparent from the equation that this is the largest velocity possible 
for a hydrogen atom electron. The fact that this velocity is less than 1% of the velocity of light 
is the justification for using classical mechanics instead of relativistic mechanics in the Bohr 
model. On the other hand, (4-17) shows that for large values of Z the electron velocity 
becomes relativistic; the model could not be applied in such cases. That equation also makes 
it apparent why Bohr could not allow the quantum number n ever to assume the value n = 0, 
as it may in Planck's quantization equation. 

(4-14) 

Next we calculate the total energy of an atomic electron moving in one of the 
allowed orbits. Let us define the potential energy to be zero when the electron is 



infinitely distant from the nucleus. Then the potential energy V at any finite distance 
r can be obtained by integrating the work that would be done by the Coulomb force 
acting from r to oo. Thus  

CO  

2 Ze 	Ze 2 
 

V = — 
471E0r2 dr — 47tEOr  

r 

The potential energy is negative because the Coulomb force is attractive; it takes 
work to move the electron from r to infinity against this force. The kinetic energy 
of the electron, K, can be evaluated, with the aid of (4-14), to be 

1 2 	Ze e  
K =—mv = 	 

2 	4ic€02r  
The total energy of the electron, E, is then 

Ze 2  
E=K+V= — 	= —K  

4t€02r  
Using (4-16) for r in the preceding equation, we have  

2 4 E  = _ mZ e 	1 	
n = 1, 2, 3, ... (4-18)  

(47.(e0)22h2 n2  

We see that the quantization of the orbital angular momentum of the electron leads to 
a quantization of its total energy. 

The information contained in (4-18) is presented as an energy-level diagram in 
Figure 4-11. The energy of each level, as evaluated from (4-18), is shown on the left, 
in terms of joules and electron volts, and the quantum number of the level is shown 
on the right. The diagram is so constructed that the distance from any level to the 
level of zero energy is proportional to the energy of that level. Note that the lowest 
(most negative) allowed value of total energy occurs for the smallest quantum number 
n = 1. As n increases, the total energy of the quantum state becomes less negative, 
with E approaching zero as n approaches infinity. Since the state of lowest total 
energy is, of course, the most stable state for the electron, we see that the normal 
state of the electron in a one-electron atom is the state for which n = 1. 

E 	 n 
0   	

—1.36 x 10
-19 

 joule 	  4 
= - 0.85 eV 

- 2.41 x10
-19 

 joule 	  3 
_ -1.51 eV 

- 5.42 x 10 -19  joule 	 2 
= - 3.39 eV 

- 21.7 x10 -19  joule 	  1 
= -13.6 eV 

Figure 4-11 An energy-level diagram for the hydrogen atom.  
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Example 4-6. Calculate the binding energy of the hydrogen atom (the energy binding the 
electron to the nucleus) from (4-18). 

The binding energy is numerically equal to the energy of the lowest state in Figure 4-11, 
corresponding to n = 1 in (4-18). This yields, with Z = 1 

1 me 4 
E _ 

47rE O)  2h2  
_ 	(9.0 x 10 9  nt-m 2/coul 2) 2  x 9.11 x 10 -31  kg x (1.60 x 10 -19  coul)4  

2 x (1.05 x 10 -34  joule-sec) 2  
= —2.17 x 10 -18  joule= —13.6 eV 

which agrees very well with the experimentally observed binding energy for hydrogen. 	t  

Next we calculate the frequency y  of the electromagnetic radiation emitted when  

the electron makes a transition from the quantum state n i  to the quantum state n f , 
that is, when an electron initially moving in an orbit characterized by the quantum  

number ni  discontinuously changes its motion so that it moves in an orbit charac-
terized by quantum number n f . Using Bohr's fourth postulate (4-13), and (4-18), we  

have  

v — 	 Ei 
 — 

Ef  — + 1 
2 mZ2 e4 	1 

h 	\47c€ O 	4r7h3  of ni 

In terms of the reciprocal wavelength K = 	= v/c, this is  

or  

1 2 me4 K __ 
47rE0 47rh3c Z

2 
 

	

(1 	1  

	

2 	2 

	

nf 	ni  

^ 1 	1)  
K=R„Z2  

nf  n? 
1 2  me 4  

where R  
47rE0 	47rh3c  

(4-19)  

and where ni  and n f  are integers. 
The essential predictions of the Bohr model are contained in (4-18) and (4-19). Let 

us first discuss the emission of electromagnetic radiation by a one-electron Bohr atom 
in terms of these equations. 

1. The normal state of the atom will be the state in which the electron has the 
lowest energy, i.e., the state n = 1. This is called the ground state. (Ground state means 
fundamental state, the term originating from the German word grund, meaning 
fundamental.) 

2. In an electric discharge, or in some other process, the atom receives energy due 
to collisions, etc. This means that the electron must make a transition to a state of 
higher energy, or excited state, in which n > 1.  

3. Obeying the common tendency of all physical systems, the atom will emit its 
excess energy and return to the ground state. This is accomplished by a series of 
transitions in which the electron drops to excited states of successively lower energy, 
finally reaching the ground state. In each transition electromagnetic radiation is 
emitted with a wavelength which depends on the energy lost by the electron, i.e., on 
the initial and final quantum numbers. In a typical case, the electron might be excited 
into state n = 7 and drop successively through the states n = 4 and n = 2 to the 
ground state n = 1. Three lines of the atomic spectrum are emitted with reciprocal 
wavelengths given by (4-19) for ni  = 7 and n f  = 4, ni  = 4 and n f  = 2, and n i  = 2 and 
of =1.  

4. In the very large number of excitation and deexcitation processes which take 
place during a measurement of an atomic spectrum, all possible transitions occur 
and the complete spectrum is emitted. The reciprocal wavelengths, or wavelengths, 
of the set of lines which constitute the spectrum are given by (4-19), where we allow 



nl  and of  to take on all possible integral values subject only to the restriction that 
n• > nf . 

For hydrogen (Z = 1) let us consider the subset of spectral lines which arises from 
transitions in which of  = 2. According to (4-19) the reciprocal wavelengths of these 
lines are given by 

K= R oe (1/nf — 1 /n?) 	nf = 2  and ni > nf  
or 

K= R.,(1/2 2 -1/n2) 	 n=3,4,5,6,... 

This is identical with the series formula for the Balmer series of the hydrogen spec-
trum (4-10), if R oe  is equal to RH. According to the Bohr Model 

1 2  me4  
R o = (47TE ° ) 47ti 3 c 

Although the numerical values of some of the quantities entering into this equation 
were not very accurately known at the time, Bohr evaluated R oe  in terms of these 
quantities and found that the resulting value was in quite good agreement with the 
experimental value of RH. In the next section we shall make a detailed comparison, 
using recent data, between the experimental value of RH and Bohr's prediction, and 
we shall show that the two agree almost perfectly. 

According to the Bohr model, each of the five known series of the hydrogen spec-
trum arises from a subset of transitions in which the electron goes to a certain final 
quantum state n f . For the Lyman series n f  = 1; for the Balmer n f  = 2; for the Paschen 
n f  = 3; for the Brackett n f  = 4; and for the Pfund n f  = 5. The first three of these 
series are conveniently illustrated in terms of the energy-level diagram of Figure 4-12. 
The transition giving rise to a particular line of a series is indicated in this diagram 
by an arrow going from the initial quantum state ni  to the final quantum state nf . 
Only the arrows corresponding to the first few lines of each series and to the series 
limit are shown. Since the distance between any two energy levels in such a diagram 
is proportional to the difference between the energy of the two levels, and since (4-13) 
states that the frequency y  (or reciprocal wavelength) is proportional to the energy 
difference, the length of any arrow is proportional to the frequency (or reciprocal 
wavelength) for the corresponding spectral line. 

The wavelengths of the lines of all these series are fitted very accurately by (4-19) 
by using the appropriate value of n f . This was a great triumph for Bohr's model. 
The success of the model was particularly impressive because the Lyman, Brackett, 
and Pfund series had nbt been discovered at the time the model was developed by 
Bohr. The existence of these series was predicted, and the series were soon found 
experimentally by the persons after whom they are named. 

The model worked equally well when applied to the case of one-electron atoms 
with Z = 2, i.e., singly ionized helium atoms He + . Such atoms can be produced by 
passing a particularly violent electric discharge (a spark) through normal helium gas. 
They make their presence apparent by emitting a simpler spectrum than that emitted 
by normal helium atoms. In fact, the atomic spectrum of He +  is exactly the same as 
the hydrogen spectrum except that the reciprocal wavelengths of all the lines are 
almost exactly four times as great. This is explained very easily, in terms of the Bohr 
model, by setting Z 2  = 4 in (4-19). 

The properties of the absorption spectrum of one-electron atoms are also easy to 
understand in terms of the Bohr model. Since the atomic electron must have a total 
energy exactly equal to the energy of one of the allowed energy states, the atom can 
only absorb discrete amounts of energy from the incident electromagnetic radiation. 
This fact leads to the idea that we consider the incident radiation to be a beam of 
photons, and that only those photons can be absorbed whose frequency is given by 

13
Q

O
W

 S
 aH

O
B

 



o
 

B
O

H
R
'S

 M
O

D
E

L 
O

F
 T

H
E

 A
T

O
M

 
n 
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2 
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E (eV) 
0 

0.85 
—1.51 

3.39 

13.6 

I 	I  
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I 	I 	o  
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Figure 4 -12 Top: The energy-level diagram for hydrogen with the quantum number n for 
each level and some of the transitions that appear in the spectrum. An infinite number of 
levels is crowded in between the levels marked n = 4 and n = GO. Bottom: The 
corresponding spectral lines for the three series indicated. Within each series the spectral 
lines follow a regular pattern, approaching the series limit at the shortwave end of the se-
ries. As drawn here, neither the wavelength nor frequency scale is linear, being chosen 
as they are merely for clarity of illustration. A linear wavelength scale would more nearly 
represent the actual appearance of the photographic plate obtained from a spectroscope. 
The Brackett and Pfund series, which are not shown, lie in the far infared part of the 
spectrum. 

E = hv, where E is one of the discrete amounts of energy which can be absorbed by 
the atom. The process of absorbing electromagnetic radiation is then just the inverse 
of the normal emission process, and the lines of the absorption spectrum will have 
exactly the same wavelengths as the lines of the emission spectrum. Normally the 
atom is always initially in the ground state n = 1, so that only absorption processes 
from n = 1 to n > 1 can occur. Thus, only the absorption lines which correspond 
(for hydrogen) to the Lyman series will normally be observed. However, if the gas con-
taining the absorbing atoms is at a very high temperature, then, owing to collisions, 
some of the atoms will initially be in the first excited state n = 2, and absorption 
lines corresponding to the Balmer series will be observed. 

Example 4-7. Estimate the temperature of a gas containing hydrogen atoms at which the 
Balmer series lines will be observed in the absorption spectrum. 
■ The Boltzmann probability distribution (see Appendix C) shows that the ratio of the num-

ber n2  of atoms in the first excited state to the number n 1  of atoms in the ground state, in a 
large sample in thermal equilibrium at temperature T, is 

n2  e -E2/kT  

n1 	
a -Ei/kT 

where k is Boltzmann's constant, k = 1.38 x 10 -23  joule/°K = 8.62 x 10 -5  eV/°K. For 
hydrogen atoms the energies of these two states are given in the energy-level diagram of Fig- 



ure 4-11: E 1  = —13.6 eV, E2 = — 3.39 eV. Hence 

n2  =  e -(- 3.39+13.6) eV/(8.62 x  10 -5  eV /°K)T 
= 

 e - 1.18 x 10 5  °K/T 

n 1  

Therefore, a significant fraction of the hydrogen atoms will initially be in the first excited state 
only when T is not too much smaller than 10 5  °K; and only when they absorb from that 
state can they produce absorption lines of the Balmer series. 

The situation is complicated by the fact that the n = co level is not far above the n = 2 level. 
This proximity makes the probability that hydrogen atoms will initially be ionized increase 
with increasing temperature about as rapidly as the probability that the atoms will initially 
be in their first excited state. But no absorption lines at all can be produced by initially ionized 
hydrogen atoms. Detailed calculations predict that the maximum amount of Balmer absorp-
tion should be observed when the temperature is about 10 4  °K. 

Balmer absorption lines are actually observed in the hydrogen gas of some stellar atmo-
spheres. This gives us a way of estimating the temperature of the surface of a star. 	• 

4-7 CORRECTION FOR FINITE NUCLEAR MASS 

In the previous section we assumed the mass of the atomic nucleus to be infinitely 
large compared to the mass of the atomic electron, so that the nucleus remains fixed 
in space. This is a good approximation even for hydrogen, which contains the lightest 
nucleus, since the mass of that nucleus is about 2000 times larger than the electron 
mass. However, the spectroscopic data are so very accurate that before we make a 
detailed numerical comparison of these data with the Bohr model we must take into 
account the fact that the nuclear mass is actually finite. In such a case the electron 
and the nucleus move about their common center of mass. However, it is not difficult 
to show that in such a planetarylike system the electron moves relative to the nucleus 
as though the nucleus were fixed and the mass m of the electron were slightly reduced 
to the value µ, the reduced mass of the system. The equations of motion of the system 
are the same as those we have considered if we simply substitute µ for m, where 

mM 
m+M 

is less than m by a factor 1/(1 + m/M). Here M is the mass of the nucleus. 
To handle this situation Bohr modified his second postulate to require that the 

total orbital angular momentum of the atom, L, is an integral multiple of Planck's con-

stant divided by 221. This is achieved by generalizing (4-15) to 
µvr = nh 	 n = 1, 2, 3, ... (4-21) 

Using instead of m in this equation takes into account the angular momentum of 
the nucleus as well as that of the electron. Making similar modifications to the rest 
of Bohr's derivation for the case of finite nuclear mass, we find that many of the 
equations are identical with those derived before, except that the electron mass m is 
replaced by the reduced mass µ. In particular, the formula for the reciprocal wave-
lengths of the spectral lines becomes 

l  
K=RMZ2(4 — n I where R M  -m MM R o = m R (4-22) 

\\ .r 	j 
The quantity R M  is the Rydberg constant for a nucleus of mass M. As M/m --+ co , it 
is apparent that R M  —+ R., the Rydberg constant for an infinitely heavy nucleus which 
appears in (4-19). In general, the Rydberg constant R M  is less than R oe  by the factor 
1/(1 + m/M). For the most extreme case of hydrogen, M/m = 1836 and R M  is less 
than R oe  by about one part in 2000. 

If we evaluate RH from (4-22), using the currently accepted values of the quantities 
m, M, e, c, and h, we find RH = 10968100 m7 1 . Comparing this with the experimen-
tal value of RH given in Section 4-4, we see that the Bohr model, corrected for finite 
nuclear mass, agrees with the spectroscopic data to within three parts in 100,000! 

(4-20) 
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Example 4-8. In Chapter 2 we spoke of the positronium "atom," consisting of a positron and  

an electron revolving about their common center of mass, which lies halfway between them.  

(a) If such a system were a normal atom, how would its emission spectrum compare to that  

of the hydrogen atom?  
■ In this case the "nuclear" mass M is that of the positron, which equals m, the mass of the  

electron. Hence, the reduced mass (4-20) is  

mM m2  m  
= m+M 2m 2  

The corresponding Rydberg constant R M  is, according to (4-22)  

m 	R  a,  
R, 	R m+m c° 	2  

The energy states of the positronium atom then would be given by  

R MhcZ 2 	R cc hcZ 2  

	

Epositronium = 	n 2 	2n2  

ro 	and the reciprocal wavelengths of the emitted spectral lines by L  

	

1 	v 	R ao 2 ^ 1 - 1 1  
h= _ = 	Z 	  

	

â c 	2 	of n i  

The frequencies of the emitted lines would then be half, and the wavelengths double, that of  
a hydrogen atom (with infinitely heavy nucleus), Z being equal to one for positronium and  
for hydrogen. •  

(b) What would be the electron-positron separator, D, in the ground state orbit of  
positronium?  

• In (4-16) we merely replace m by p = m/2 and we find  

471E Dn 2 h 2 	47iE^n 2 h 2  

	

Dpositronium — 
pZe2 	

2 
 mZe2 	

2rhydrogen  

Hence, for any quantum state n the distance of the electron from the "nucleus" is twice  
as great in the positronium atom as in the hydrogen atom (with infinitely heavy nucleus). 4  

Example 4-9. A muonic atom contains a nucleus of charge Ze and a negative muon, p - ,  
moving about it. The p - is an elementary particle with charge —e and a mass that is 2197  
times as large as an electron mass.  

(a) Calculate the muon-nucleus separation, D, of the first Bohr orbit of a muonic atom  
with Z = 1.  

• The reduced mass of the system, with m u _ = 207m, and M = 1836m e , is, from (4-20)  

207m, x 1836m
e = 186me  

 207m, + 1836me  

Then, from (4-16), with n = 1, Z = 1, and m = 186me , we obtain  
2  

Di  86m e2  186 x  5.3 x 10 -11  m = 2.8 x 10 -13  m = 2.8 x 10 -3  A  

Therefore the it -   is much closer to the nuclear (proton) surface than is the electron in a hydro- 
gen atom. It is this feature which makes such muonic atoms interesting, information about  

nuclear properties being revealed from their study. 	 •  
(b) Calculate the binding energy of a muonic atom with Z = 1.  

► From (4-18), with Z = 1, n = 1, and m = p = 186m e , we have  
4 

	

E = —186  m
et 	

= —186 x 13.6 eV = —2530 eV 
(47r€0)22h2 

— 

as the ground state energy. Hence, the binding energy is 2530 eV. 	 • 
(c) What is the wavelength of the first line in the Lyman series for such an atom? 

10.-From  (4-22), with Z = 1, we have 

	

^ 1 	11 

K =  RM  nz — nz /I 

	

f 	t 



For the first Lyman line,  n i = 2 and nî  = 1. In this case, RM  = (µ/m e)R c  = 186R„,. Hence  

K= = 186R 03 (1-
4
)=139.5R^  

With R oe, = 109737 cm -1  we obtain 
2 6.5 A  

so that the Lyman lines lie in the x-ray part of the spectrum. X-ray techniques are necessary, 
therefore, to study the spectrum of muonic atoms. 	 • 

Example 4-10. Ordinary hydrogen contains about one part in 6000 of deuterium, or heavy 
hydrogen. This is a hydrogen atom whose nucleus contains a proton and a neutron. How does 
the doubled nuclear mass affect the atomic spectrum? 

■ The spectrum would be identical if it were not for the correction for finite nuclear mass. 
For a normal hydrogen atom 

RH  _ 
 R ^ 

µZ  - 
// 

R oo  - 109737  ï -1 
= 109678 cm -1  

I 1 + 
M

^ (1 
+ 1836)  

For an atom of heavy hydrogen, or deuterium  

RD  _  R  µi  = R 
1 = 

 109737 1 -1 
= 109707 cm  -1  

C1 + M 	) (1 + 2 x 1836)  
Hence, RD is a bit larger than RH, so that the spectral lines of the deuterium atom are shifted 
to slightly shorter wavelengths compared to hydrogen. 

Indeed, deuterium was discovered in 1932 by H. C. Urey following the observation of these 
shifted spectral lines. By increasing the concentration of the heavy isotope above its normal 
value in a hydrogen discharge tube, we now can enhance the intensity of the deuterium lines 
which, ordinarily, are difficult to detect. We then readily observe pairs of hydrogen lines; the 
shorter wavelength members of the pair correspond exactly to those predicted from RD 

 earlier. The resolution needed is easily obtained, the HOE-line pair being separated by about 
1.8 A, for example, several thousand times greater than the minimum resolvable separation. 

•  

4-8 ATOMIC ENERGY STATES  

The Bohr model predicts that the total energy of an atomic electron is quantized. For  

example, (4-18) gives the allowed energy values for the electron in a one-electron  

atom. Although we have not attempted to derive similar expressions for the electrons  

in a multielectron atom, it is clear that according to the model the total energy of  

each of the electrons will also be quantized and, consequently, that the same must be  

true of the atom's total energy content. The Planck theory of blackbody radiation  

had also predicted that in the process of emission and absorption of radiation, the  

atoms in the cavity wall behaved as though they had quantized energy states. Hence,  

according to the old quantum theory every atom can have only certain discretely  

separated energy states.  
Direct confirmation that the internal energy states of an atom are quantized came  

from a simple experiment performed by Franck and Hertz in 1914. The type of  

apparatus used by these investigators is indicated in Figure 4-13. Electrons are emit-
ted thermally at low energy from the heated cathode C. They are accelerated to the  
anode A by a potential V applied between the two electrodes. Some of the elec-
trons pass through holes in A and travel to plate P, providing their kinetic energy  
upon leaving A is enough to overcome a small retarding potential V,. applied between  
P and A. The entire tube is filled at a low pressure with a gas or vapor of the  

atoms to be investigated. The experiment involves measuring the electron current  
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1 
T  

Heater 

Gas or vapor of atoms 
being investigated 

A P  

	o  + 

—C  

Figure 4-13 Schematic of the apparatus used by Franck and Hertz to prove that atomic  

energy states are quantized.  

reaching P (indicated by the current I flowing through the meter) as a function of 
the accelerating voltage V.  

The first experiment was performed with the tube containing Hg vapor. The nature 
of the results are indicated in Figure 4-14. At low accelerating voltage, the current 
I is observed to increase with increasing voltage V. When V reaches 4.9 V, the current 
abruptly drops. This was interpreted as indicating that some interaction between the 
electrons and the Hg atoms suddenly begins when the electrons attain a kinetic 
energy of 4.9 eV. Apparently a significant fraction of the electrons of this energy excite 
the Hg atoms and in so doing entirely lose their kinetic energy. If V is only slightly 
more than 4.9 V, the excitation process must occur just in front of the anode A, and 
after the process the electrons cannot gain enough kinetic energy in falling toward 
A to overcome the retarding potential Vr, and reach plate P. At somewhat larger 
V, the electrons can gain enough kinetic energy after the excitation process to over-
come Vr, and reach P. The sharpness of the break in the curve indicates that elec-
trons of energy less than 4.9 eV are not able to transfer their energy to an Hg atom. 
This interpretation is consistent with the existence of discrete energy states for the 
Hg atom. Assuming the first excited state of Hg to be 4.9 eV higher in energy than 
the ground state, an Hg atom would simply not be able to accept energy from the 
bombarding electrons unless these electrons had at least 4.9 eV. 

300  
^ 

E 
co  

E 200  

a^ 

100  

5 
	

10 
	

15  
Volts  

Figure 4-14 The voltage dependence of the current measured in the Franck-Hertz  

experiment. 
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Now, if the separation between the ground state and the first excited state is ac-
tually 4.9 eV, there should be a line in the Hg emission spectrum corresponding to 
the atom's loss of 4.9 eV in undergoing a transition from the first excited state to the 
ground state. Franck and Hertz found that when the energy of the bombarding 
electrons is less than 4.9 eV no spectral lines at all are emitted from the Hg vapor 
in the tube, and when the energy is not more than a few electron volts greater than 
this value only a single line is seen in the spectrum. This line is of wavelength 
2536 A, which corresponds exactly to a photon energy of 4.9 eV. 

The Franck-Hertz experiment provided striking evidence for the quantization of 
the energy of atoms. It also provided a method for the direct measurement of the 
energy differences between the quantum states of an atom—the answers appear on 
the dial of a voltmeter! When the curve of I versus V is extended to higher volt-
ages, additional breaks are found. Some are due to electrons exciting the first ex-
cited state of the atoms on several separate occasions in their trip from C to A; but 
some are due to excitation of the higher excited states and, from the position of 
these breaks, the energy differences between the higher excited states and the ground 
state can be directly measured. 

Another experimental method of determining the separations between the energy 
states of an atom is to measure its atomic spectrum and then empirically to construct 
a set of energy states which would lead to such a spectrum. In practice this is often 
quite difficult to do since the set of lines constituting the spectrum, as well as the set 
of energy states, is often very complicated; however, in common with all spectro-
scopic techniques, it is a very accurate method. In all cases in which determinations 
of the separations between the energy states of a certain atom have been made, using 
both this technique and the Franck-Hertz technique, the results have been found to 
be in excellent agreement. 

In order to illustrate the preceding discussion, we show in Figure 4-15 a con-
siderably simplified representation of the energy states of Hg in terms of an energy-
level diagram. The separations between the ground state and the first and second 
excited states are known, from the Franck-Hertz experiment, to be 4.9 eV and 6.7 eV. 
These numbers can be confirmed, and in fact determined with much higher accuracy, 
by measuring the wavelengths of the two spectral lines corresponding to transitions 
of an electron in the Hg atom from these two states to the ground state. The energy 

_ —10.4 eV, of the ground state relative to a state of zero total energy, is not 
determined by the Franck-Hertz experiment. However, it can be found by measuring 
the wavelength of the line corresponding to a transition of an atomic electron from 
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Figure 4-15 A considerably simplified energy-level diagram for mercury. Lying above the 
highest discrete energy level at E = 0 is a continuum of levels. 
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° 	a state of zero total energy to the ground state. This is the series limit of the series 
terminating on the ground state. The energy ( can also be measured by measuring 
the energy which must be supplied to an Hg atom in order to send one of its 
electrons from the ground state to a state of zero total energy. Since an electron of 
zero total energy is no longer bound to the atom, 6' is the energy required to 
ionize the atom and is therefore called the ionization energy. 

Lying above the highest discrete state at E = 0 are the energy states of the system 
consisting of an unbound electron plus an ionized Hg atom. The total energy of an 
unbound electron (a free electron with E > 0) is not quantized. Thus any energy E > 0 
is possible for the electron, and the energy states form a continuum. The electron can 
be excited from its ground state to a continuum state if the Hg atom receives an en-
ergy greater than 10.4 eV. Conversely, it is possible for an ionized Hg atom to capture 
a free electron into one of the quantized energy states of the neutral atom. In this 
process, radiation of frequency greater than the series limit corresponding to that 
state will be emitted. The exact value of the frequency depends on the initial energy 
E of the free electron. Since E can have any value, the spectrum of Hg should have 
a continuum extending beyond every series limit in the direction of increasing fre-
quency. This can actually be seen experimentally, although with some difficulty. These 
comments concerning the continuum of energy states for E > 0, and its consequences, 
have been made in reference to the Hg atom, but they are equally true for all atoms. 

4-9 INTERPRETATION OF THE QUANTIZATION RULES 

The success of the Bohr model, as measured by its agreement with experiment, was 
certainly very striking; but it only accentuated the mysterious nature of the postulates 
on which the model was based. One of the biggest mysteries was the question of the 
relation between Bohr's quantization of the angular momentum of an electron mov-
ing in a circular orbit and Planck's quantization of the total energy of an entity, 
such as an electron, executing simple harmonic motion. In 1916 some light was shed 
upon this by Wilson and Sommerfeld, who enunciated a set of rules for the quan-
tization of any physical system for which the coordinates are periodic functions of 
time. These rules included both the Planck and the Bohr quantization as special 
cases. They were also of considerable use in broadening the range of applicability of 
the quantum theory. These rules can be stated as follows: 

For any physical system in which the coordinates are periodic functions of time, there 
exists a quantum condition for each coordinate. These quantum conditions are 

pq  dq = nqh 	 (4-23) 

where q is one of the coordinates, p q  is the momentum associated with that coordinate, 
nq  is a quantum number which takes on integral values, and means that the integration 
is taken over one period of the coordinate q. 

The meaning of these rules can best be illustrated in terms of some specific ex-
amples. Consider a one-dimensional simple harmonic oscillator. Its total energy can 
be written, in terms of position and momentum, as 

E=K+V= 	+ 2m 
k22 

or 

p2 	x2  _ 
2mE  2E/k 1 



The quantization integral px  dx is most easily evaluated, for the relation between px  
and x that is imposed by this equation, if we consider a geometric interpretation. The 
relation between px  and x is the equation of an ellipse. Any instantaneous state of 
motion of the oscillator is represented by some point in a plot of this equation on a 
two-dimensional space having coordinates px  and x. We call such a space (the p-q 
plane) phase space, and the plot is a phase diagram of the linear oscillator, shown in 
Figure 4-16. During one cycle of oscillation the point representing the position and 
momentum of the particle travels once around the ellipse. The semiaxes a and b of the 
ellipse pX/b 2  + x2/a2  = 1 are seen, by comparison with our equation, to be 

b = 1/2mE 	and 	a = J2E/k 

Now the area of an ellipse is nab. Furthermore, the value of the integral px  dx is 
just equal to that area. (To see this note that the integral over a complete oscillation 
equals an integral in which the representative point travels from x = —a to x = + a 
over the upper half of the ellipse plus an integral in which the point travels back to 
x = —a over the lower half. In the first integral both px  and dx are positive and its 
value equals the area enclosed between the upper half and the x axis; in the second 
both px  and dx are negative so the value of the integral is positive and equals the 
area enclosed between the lower half of the ellipse and the x axis.) Thus we obtain 

px  dx = nab 

In our case 

px dx =  2nE 
Vk/m 

Px 

Figure 4-16 Top: A phase space diagram of the motion of the representative point for a 
linear simple harmonic oscillator. Bottom: The allowed energy states of the oscillator are 
represented by ellipses whose areas in phase space are given by nh. The space between 
adjacent ellipses (for example the shaded area) has an area h. 
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but 
Oc/m = 27ry  

where v is the frequency of the oscillation, so that 

px  dx = E/v  

If we now use (4-23), the Wilson- Sommerfeld quantization rule, we have  
^ 

px dx= E/v =nxh-nh 

or  
E = nhv  

which is identical with Planck's quantization law.  

Note that the allowed states of oscillation are represented by a series of ellipses in phase  

space, the area enclosed between successive ellipses always being h (see Figure 4-16). Again  
we find that the classical situation corresponds to h —* 0, all values of E and hence all ellipses  
being allowed if that were true. The quantity 4  px dx is sometimes called a phase integral; in  
classical physics it is the integral of the dynamical quantity called the action over one oscilla-
tion of the motion. Hence, the Planck energy quantization is equivalent to the quantization of  
action.  

We can also deduce the Bohr quantization of angular momentum from the Wilson-
Sommerfeld rule, (4-23). An electron moving in a circular orbit of radius r has an 
angular momentum, mer = L, which is constant. The angular coordinate is 8, which 
is a periodic function of the time. That is, B versus t is a saw-tooth function, increas-
ing linearly from zero to 27r rad in one period and repeating this pattern in each  
succeeding period. The quantization rule  

n 

pq dq = nqh  

becomes, in this case 

LdB=nh  

and  
2n  

^ L dB= L  d9 = 27rL  

o 

27rL = nh  

L = nh/27r - nh 

which is identical with Bohr's quantization law.  

A more physical interpretation of the Bohr quantization rule was given in 1924 by  

de Broglie. The Bohr quantization of angular momentum can be written as in (4-15)  

as  
mvr = pr = nh/27r 	 n = 1, 2, 3, .. .  

where p is the linear momentum of an electron in an allowed orbit of radius r. If we  

substitute into this equation the expression for p in terms of the corresponding de  

^ 

so that 

or  



Broglie wavelength 

the Bohr equation becomes 

or 

p=h/.l 

hr/A = nh/2R 

2irr = n2 	 n = 1, 2, 3, ... (4-24) 
Thus the allowed orbits are those in which the circumference of the orbit can contain 
exactly an integral number of de Broglie wavelengths. 

Imagine the electron to be moving in a circular orbit at constant speed, with the 
associated wave following the electron. The wave, of wavelength A, is then wrapped 
repeatedly around the circular orbit. The resultant wave that is produced will have 
zero intensity at any point unless the wave at each traversal is exactly in phase at that 
point with the wave in other traversals. If the waves in each traversal are exactly in 
phase, they join on perfectly in orbits that accommodate integral numbers of de 
Broglie wavelengths, as illustrated in Figure 4-17. But the condition that this happens 
is just the condition that (4-24) be satisfied. If this equation were violated, then in a 
large number of traversals the waves would interfere with each other in such a way 
that their average intensity would be zero. Since the average intensity of the waves, 
`Pa, is supposed to be a measure of where the particle is located, we interpret this as 
meaning that an electron cannot be found in such an orbit. 

This wave picture gives no suggestion of progressive motion. Rather, it suggests 
standing waves, as in a stretched string of a given length. In a stretched string only 
certain wavelengths, or frequencies of vibration, are permitted. Once such modes are 
excited, the vibration goes on indefinitely if there is no damping. To get standing 
waves, however, we need oppositely directed traveling waves of equal amplitude. For 
the atom this requirement is presumably satisfied by the fact that the electron can 
traverse an orbit in either direction and still have the magnitude of angular momen-
tum required by Bohr. The de Broglie standing wave interpretation, illustrated in 
Figure 4-17, therefore provides a satisfying basis for Bohr's quantization rule and, 
for this case, of the more general Wilson-Sommerfeld rule. 

There is another example of a system in which the origin of the Wilson-Sommerfeld 
quantization rule can be understood in terms of the requirement that the de Broglie 

Figure 4-17 Illustrating standing de Broglie waves set up in the first three Bohr orbits. 
The locations of the nodes can, of course, be found anywhere on each orbit provided that 
their spacings are as shown. 
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waves associated with a particle undergoing periodic motion form a set of standing 
waves. Consider a particle which moves freely along the x axis from x = — a/2 to 
x = + a/2, but which does not penetrate into the regions outside these limits. This 
system can be thought of as representing approximately the motion of a conduction 
electron in a one-dimensional piece of metal that extends from — a/2 to + a/2. The 
particle bounces back and forth between the ends of the region with momentum px 

 that changes sign at each bounce, but maintains a constant magnitude p. So the 
Wilson-Sommerfeld equation reads 

= p2a = nh  

or  

n h = 2a 	 (4-25)  
p 

But  hip is just the de Broglie wavelength A of the particle, so we have 
nA = 2a  

Thus an integral number of de Broglie wavelengths just fits into the distance covered 
by the particle in one traversal of the region, and this allows the waves associated 
with successive traversals to be in phase and so set up a standing wave. 

We shall see in the following chapters that the properties of standing waves are 
equally important in the quantization conditions of Schroedinger's quantum me-
chanics. And the time-independent features of the standing wave associated with 
an electron in the ground state of an atom will make it possible to understand in a 
simple way the fundamental question of why the electron does not emit electromag-
netic radiation and spiral into the nucleus. 

4-10 SOMMERFELD'S MODEL  

One of the important applications of the Wilson-Sommerfeld quantization rules is to 
the case of a hydrogen atom in which it was assumed that the electron could move in 
elliptical orbits. This was done by Sommerfeld in an attempt to explain the fine struc-
ture of the hydrogen spectrum. The fine structure is a splitting of the spectral lines, 
into several distinct components, which is found in all atomic spectra. It can be ob-
served only by using equipment of very high resolution since the separation, in terms 
of reciprocal wavelength, between adjacent components of a single spectral line is of 
the order of 10 -4  times the separation between adjacent lines. According to the 
Bohr model, this must mean that what we had thought was a 'single energy state of 
the hydrogen atom actually consists of several states which are very close together 
in energy. 

Sommerfeld first evaluated the size and shape of the allowed elliptical orbits, as 
well as the total energy of an electron moving in such an orbit, using the formulas of 
classical mechanics. Describing the motion in terms of the polar coordinates r and 0, 

 he applied the two quantum conditions 

^ L d9 = neh 

^pr dr=n,h 

The first condition yields the same restriction on the orbital angular momentum 
L = not/ 	 = 1, 2, 3, . . .  

that it does for the circular orbit theory. The second condition (which was not appli- 
cable in the limiting case of purely circular orbits) leads to the following relation 

^ p x  dx = 



Figure 4-18 Some elliptical Bohr-Som-
merfeld orbits. The nucleus is located at 
the common focus of the ellipses, indi-
cated by the dot. 

between L and a/b, the ratio of the semimajor axis to the semiminor axis of the ellipse 
L(a/b — 1) = n th 	 nr  = 0, 1, 2, 3, .. . 

By applying the condition of mechanical stability analogous to (4-14), a third equa-
tion is obtained. From these equations Sommerfeld evaluated the semimajor and 
semiminor axes a and b, which give the size and shape of the elliptical orbits, and also 
the total energy E of an electron in such an orbit. The results are 

4nE O n2 h2  

(4-26b) 

1 2 µZ2e4 
E _ —  	 (4-26c) 

4rtE0 	2n2 h2  

where it is the reduced mass of the electron, and where the quantum number n is 
defined by 

n - ne +nr  
Since no  = 1, 2, 3, ... and nr  = 0, 1, 2, 3, ... , n can take on the values 

n= 1,2,3,4,... 
For a given value of n, no  can assume only the values 

no = 1, 2,3,...,n 
The integer n is called the principal quantum number, and  no  is called the azimuthal 
quantum number. 

Equation (4-26b) shows that the shape of the orbit (the ratio of the semimajor to the 
semiminor axes) is determined by the ratio of  no  to n. For  no  = n the orbits are circles 
of radius a. Note that the equation giving a in terms of n is identical with (4-16), the 
equation giving the radius of the circular Bohr orbits. (Remember that (4-16) will 
have m replaced by p if proper account is taken of the finite nuclear mass.) Figure 
4-18 shows, to scale, the possible orbit§ corresponding to the first three values of the 
principal quantum number. Corresponding to each value of the principal quantum 
number n there are n different allowed orbits. One of these, the circular orbit, is just 
the orbit described by the original Bohr model. The others are elliptical. But despite 
the very different paths followed by an electron moving in the different possible orbits 
for a given n, (4-26c) tells us that the total energy of the electron is the same. The total 
energy of the electron depends only on n. The several orbits characterized by a 
common value of n are said to be degenerate. The energies of different states of motion 
"degenerate" to the same total energy. 

ng = 2 

a = 
µZe e  
no 

 b=a — 
n 

(4-26a) 
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This degeneracy in the total energy of an electron, following the orbits of very dif-

ferent shape but common n, is the result of a very delicate balance between potential  

and kinetic energy, which is characteristic of treating the inverse square Coulomb  

force by the methods of classical mechanics. Exactly the same phenomenon is found  

in planetary or satellite motion, which is governed by the inverse square gravitational  

force. For instance, a satellite may be launched into any one of a whole family of  

elliptical orbits, all of which correspond to the same total energy and have the same  

semimajor axis. Of course there is effectively no quantization of the orbit parameters  

in these macroscopic cases, but as far as degeneracy is concerned they are completely  

analogous to the case of a hydrogen atom.  

Sommerfeld "removed the degeneracy" in the hydrogen atom by next treating the  

problem relativistically. In the discussion following (4-17) we showed that, for an  

electron in a hydrogen atom, v/c 10 -2  or less. Thus we would expect the relativistic  

corrections to the total energy, due to the relativistic variation of the electron mass  

whit% will be of the order of (v/c) 2, to be only of the order of 10 -4; however, this is  
just the order of magnitude of the splitting in the energy states of hydrogen that would  

be needed to explain the fine structure of the hydrogen spectrum. The actual size of  

the correction depends on the average velocity of the electron which, in turn, depends  

on the ellipticity of the orbit. After a calculation which is much too tedious to re-
produce here, Sommerfeld showed that the total energy of an electron in an orbit  

characterized by the quantum numbers n and  no  is equal to 

	

µZ2 e4 	L2 	2 	
a2Z2 1  — 3  / J 	

( 	) E 	
(4ir€0) 2n 	n 	4n h 1+ 	ne 	

4-27a 

The quantity a is a pure number called the fine structure constant. Its value is 
a  

a =4 E c = 7.297 x 10-3   

^ 137 	 (4-27b) 
0  

In Figure 4-19 we represent the first few energy states of the hydrogen atom in  

terms of an energy-level diagram. The separation between the several levels with a  

common value of n has been greatly exaggerated for the sake of clarity. Arrows in-
dicate transitions between the various energy states which produce the lines of the  

atomic spectrum. Lines corresponding to the transitions represented by the solid  

arrows are observed in the hydrogen spectrum. The wavelengths of these lines are  

in very good agreement with the predictions derived from (4-27a).  

However, the lines corresponding to the transitions represented by dashed arrows  

in Figure 4-19 are not found in the spectrum. The transitions concerned do not take  

place. Inspection of the figure will demonstrate that transitions only occur if  

nei  — no f  = ± 1 	 (4-28)  

n=4  
n=3, ne =3  
	 —3, ne =2  

n= 3, ne =1  
.^n = 2, n8 =2  

n= 2, ne =1  

n = 1, no  = 1  
Figure 4-19 The fine-structure splitting of some energy levels of the hydrogen atom. The 
splitting is greatly exaggerated. Transitions which produce observed lines of the hydrogen  

spectrum are indicated by solid arrows. 
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This is called a selection rule. It selects from all the transitions those that actually 
OMIT. 

4-11 THE CORRESPONDENCE PRINCIPLE 

A justification of selection rules could sometimes be found with the aid of an auxiliary 
postulate known as the correspondence principle. This principle, enunciated by Bohr 
in 1923, consists of two parts: 

1. The predictions of the quantum theory for the behavior of any physical system must 
correspond to the prediction of classical physics in the limit in which the quantum 
numbers specifying the state of the system become very large. 

2. A selection rule holds true over the entire range of the quantum number concerned. 
Thus any selection rules which are necessary to obtain the required correspondence in 
the classical limit (large n) also apply in the quantum limit (small n). 

Concerning the first part, it is obvious that the quantum theory must correspond 
to the classical theory in the limit in which the system behaves classically. The only 
question is: Where is the classical limit? Bohr's assumption is that the classical limit 
is always to be found in the limit of large quantum numbers. In making this assump-
tion he was guided by certain evidence available at the time. For instance, the classical 
Rayleigh-Jeans theory of the blackbody spectrum agrees with experiment in the limit 
of small v. Since Planck's quantum theory agrees with experiment everywhere, we 
see that correspondence between the quantum and classical theories is found, in this 
case, in the limit of small v. But it is easy to see that as y becomes small the average 
value n, of the quantum number specifying the energy state of blackbody electro-
magnetic waves of frequency y,  will become large. (Since g = nhv, we have = nhv. 
But as  y  -+ 0, I -* kT, so in this limit nhv = kT, which is a constant. Thus n —+ co as 

0 in the classical limit Note also that if we fix y  in the relation nhv = kT = const, 
and take h -i 0 as we frequently have in considering the classical limit, we again find 
n —+ co in that limit.) The second part of the correspondence principle was purely 
an assumption, but certainly a reasonable one. 

Let us illustrate the correspondence principle by applying it to a simple harmonic 
oscillator, such as a pendulum oscillating at frequency v. One prediction of quantum 
theory for this system is that the allowed energy states are given by E = nhv. In the 
discussion in Chapter 1, we saw that, in the limit of large n, this prediction is not in 
disagreement with what we actually know about the energy states of a classical pen-
dulum. In this case of a simple harmonic oscillator, the quantum and classical theories 
do correspond for n —> co insofar as the energy states are concerned. Next assume 
that the pendulum bob carries an electric charge, so that we can compare the predic-
tions of the two theories concerning the emission and absorption of electromagnetic 
radiation by such a system. Classically the system would emit radiation due to the 
accelerated motion of the charge, and the frequency of the emitted radiation would 
be exactly v. According to the quantum physics, radiation is emitted as a result of 
the system making a transition from quantum state ni  to quantum state n f . The 
energy emitted in such a transition is equal to Ei  — E f  = (ni  — n f )hv. This energy is 
carried away by a photon of frequency (Ei  — E f )/h = (ni  — n f )v. Thus, in order to 
obtain correspondence between the classical and quantum predictions of the fre-
quency of the emitted radiation, we must require that the selection rule n i  — n f  = 1 
be valid in the classical limit of large n. A similar argument concerning the absorption 
of radiation by the charged pendulum shows that in the classical limit there is also 
the possibility of a transition in which ni  — n f  = —1. The validity of these selection 
rules in the quantum limit of small n can be tested by investigating the spectrum of 
radiation emitted by a vibrating diatomic molecule. The vibrational energy states 
for such a system are just those of a simple harmonic oscillator, since the force which 
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Table 4-2 The Correspondence Principle for Hydrogen 

n v0 y  % Difference 

5 5.26x10 13  7.38 x 10 13  29 
10  6.57 x 10 12  7.72 x 10 12  14 

100 6.578 x 10 9  6.677 x 109  1.5 
1,000 6.5779 x 106  6.5878 x 10 6  0.15 

10,000 6.5779 x 10 3  6.5789 x 10 3  0.015 

leads to the equilibrium separation of the two atoms has the same form as a harmonic 
restoring force. From the vibrational spectrum it can be determined that the selection 
rule ni  — n f  = ± 1 actually is in operation in the limit of small quantum numbers, 
in agreement with the second part of the correspondence principle. 

A number of other selection rules were discovered empirically in the analysis of 
atomic and molecular spectra. Sometimes, but not always, it was possible to under-
stand these selection rules in terms of a correspondence principle argument. 

Example 4-11. Apply the correspondence principle to hydrogen atom radiation in the classical 
limit 
•The frequency of revolution v o  of an electron in a Bohr orbit follows from (4-16) and (4-17) 

and is given by 
v 1 2  me4  2 

v0  2rcr = (471€ 0) 4Tih 3  n 3  
According to classical physics the frequency of the light emitted in such a case is equal to 

v0 , the frequency of revolution. 
Quantum physics predicts that the frequency v of the emitted light is, from (4-19) 

C 	 1 	1
u=—=

CK=47CE0

)2 me4 ri 
 47ch 3  n f n?] 

But, if this is to agree with v o , we must have ni  — o f  = 1 as a selection rule for large quantum 
numbers. To see this, take ni  — n f  = 1 and obtain 

v = ( 1 
 2  me4 	1 	1 	1 	 — 

4111 0) 42Th 3  [(n — 1)2 	] — \ 	)

2  me4  [ 2n 1  

where ni  = n and n f  = n — 1. Then as n —* co the expression in the square brackets above 
approaches 2/n 3  so that v -* v0 as n —> co. 

In Table 4-2 we illustrate the correspondence for large n. 	 4 

It is instructive to note that although both parts of the correspondence principle 
lead to agreement with experiment for the simple harmonic oscillator, only the first 
part agrees with experiment in the hydrogen atom considered in the preceding ex-
ample. For experiment shows that the selection rule n i  — n f  = 1, which was necessary 
to satisfy the first part of the principle for large n, does not apply to the hydrogen 
atom for small n. Transitions are observed to occur between states of low n, in which 
the quantum numbers differ in value by more than one. This illustrates the fact that 
the old quantum theory cannot always be made to agree with experiment, however 
it is patched up. 

4-12 A CRITIQUE OF THE OLD QUANTUM THEORY 

In the past four chapters we have discussed some of the developments which led to 
modern quantum mechanics. These developments are now referred to as the old 
quantum theory. In many respects this theory was very successful, even more so than 
may be apparent to the student because we have not mentioned a number of success- 

n2 	471E0  47ih3  (n — 1) 2n2  



ful applications of the old quantum theory to phenomena, such as the heat capacity 
of solids at low temperature, which were inexplicable in terms of the classical theo-
ries. However, the old quantum theory certainly was not free of criticism. To com-
plete our discussion of this theory we must indicate some of its undesirable aspects: 

1. The theory only tells us how to treat systems which are periodic, by using the 
Wilson-Sommerfeld quantization rules, but there are many systems of physical in-
terest which are not periodic. And the number of periodic systems for which a 
physical basis of these rules can be found in the de Broglie relation is very small. 

2. Although the theory does tell us how to calculate the energies of the allowed 
states of certain systems, and the frequency of the photons emitted or absorbed when 
a system makes a transition between allowed states, it does not tell us how to 
calculate the rate at which such transitions take place. For example, it does not tell 
us how to calculate the intensities of spectral lines. And we have seen that the 
theory cannot always tell us even which transitions actually are observed to occur 
and which are not. 

3. When applied to atoms, the theory is really only successful for one-electron 
atoms. The alkali elements (Li, Na, K, Rb, Cs) can be treated approximately, but 
only because they are in many respects similar to a one-electron atom. The theory 
fails badly even when applied to the neutral He atom, which contains only two 
electrons. 

4. Finally we might mention the subjective criticism that the entire theory seems 
somehow to lack coherence—to be intellectually unsatisfying. 

That some of these objections are really of a very fundamental nature was realized 
by everyone concerned, and much effort was expended in attempts to develop a 
quantum theory which would be free of these and other objections. The effort was 
well rewarded. In 1925 Erwin Schroedinger developed his theory of quantum me-
chanics. Although it is a generalization of the de Broglie postulate, the Schroedinger 
theory is in some respects very different from the old quantum theory. For instance, 
the picture of atomic structure provided by quantum mechanics is the antithesis of 
the picture, used in the old quantum theory, of electrons moving in well-defined 
orbits. Nevertheless, the old quantum theory is still frequently employed as a first 
approximation to the more accurate description of quantum phenomena provided 
by quantum mechanics. The reasons are that the old quantum theory is often capable 
of giving numerically correct results with mathematical procedures which are con-
siderably less complicated than those used in quantum mechanics, and that the old 
quantum theory is often helpful in visualizing processes which are difficult to visualize 
in terms of the rather abstract language of quantum mechanics. 

QUESTIONS 

1. In a collision between an a particle and an electron, what general considerations limit 
the momentum transfer? Does the fact that the force is Coulombic play any role in this 
respect? 

2. How does the Thomson atom differ from a random distribution of protons and electrons 
in a spherical region? 

3. List objections to the Thomson model of the atom. 
4. Why do we specify that the foil be thin in experiments intended to check the Rutherford 

scattering formula? 
5. The scattering of a particles at very small angles disagrees with the Rutherford formula 

for such angles. Explain. 
6. How does the deduction of (4-3), which gives the trajectory of a particle moving under 

the influence of a repulsive inverse square Coulomb force, differ from the deduction of 
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the trajectory of a planet moving under the influence of the gravitational field of the 
sun? 

7. Could a differential scattering cross section, defined as in (4-8), be used to describe very 
small angle a-particle scattering? 

8. Did Bohr postulate the quantization of energy? What did he postulate? 
9. For the Bohr hydrogen atom orbits, the potential energy is negative and greater in 

magnitude than the kinetic energy. What does this imply? 
10. If only lines in the absorption spectrum of hydrogen need to be calculated, how would 

you modify (4-19) to obtain them? 
11. On emitting a photon, the hydrogen atom recoils to conserve momentum. Explain the 

fact that the energy of the emitted photon is less than the energy difference between the 
energy levels involved in the emission process. 

12. Can a hydrogen atom absorb a photon whose energy exceeds its binding energy, 13.6 eV? 
13. Is it possible to get a continuous emission spectrum from hydrogen? 
14. What minimum energy must a photon have to initiate the photoelectric effect in hydrogen 

gas? (Careful!) 
15. Would you expect to observe all the lines of atomic hydrogen if such a gas were excited 

by electrons of energy 13.6 eV? Explain. 
16. Assume that electron-positron annihilation takes place from the ground state of posi-

tronium. How, if at all, does this alter the y-ray energies of the two-photon decay 
calculated in Chapter 2 by ignoring the bound system? 

17. Is the ionization energy of deuterium different from that of hydrogen? Explain. 
18. Why is the structure of the Franck-Hertz current versus voltage curve, Figure 4-14, not 

sharp? 
19. Is the peak in Figure 4-14 just below 10 eV due to two consecutive excitations of the 

first excited state of mercury or to one excitation of the second excited state? 
20. What examples of degeneracy in classical physics, other than planetary motion, can you 

think of? 
21. The fine-structure constant a is dimensionless and relates e, h, and c, three of the fun-

damental constants of physics. Is any other combination of these constants dimension-
less (other than powers of the same combination, of course)? 

22. How can the correspondence principle be applied to the phase diagram of a linear 
oscillator, Figure 4-16? 

23. According to classical mechanics, an electron moving in an atom should be able to do 
so with any angular momentum whatever. According to Bohr's theory of the hydrogen 
atom, however, the angular momentum is quantized to L = nh/2m. Can the correspon-
dence principle reconcile these two statements? 

PROBLEMS 

1. Show, for a Thomson atom, that an electron moving in a stable circular orbit rotates 
with the same frequency at which it would oscillate in an oscillation through the center 
along a diameter. 

2. What radius must the Thomson model of a one-electron atom have if it is to radiate a 
spectral line of wavelength 2 = 6000 A? Comment on your results. 

3. Assume that the density of positive charge in any Thomson atom is the same as for the 
hydrogen atom. Find the radius R of a Thomson atom of atomic number Z in terms of 
the radius RH of the hydrogen atom. 

4. (a) Ana particle of initial velocity y  collides with a free electron at rest. Show that, as-
suming the mass of the a particle to be about 7400 electronic masses, the maximum de-
flection of the a particle is about 10 -4  rad. (b) Show that the maximum deflection of an 
a particle that interacts with the positive charge of a Thomson atom of radius 1.0 A is 



also about 10 -4  rad. Hence, argue that 8 < 10 -4  rad for the scattering of ana particle 
by a Thomson atom. 

5. Derive (4-5) relating the distance of closest approach and the impact parameter to the 
scattering angle. 

6. A 5.30 MeV a particle is scattered through 60° in passing through a thin gold foil. Calcu-
late (a) the distance of closest approach, D, for a head-on collison and (b) the impact 
parameter, b, corresponding to the 60° scattering. 

7. What is the distance of closest approach of a 5.30 MeV a particle to a copper nucleus 
in a head-on collision? 

8. Show that the number of a particles scattered by an angle O or greater in Rutherford 
scattering is 

C
z 	 z z 

4  É 
/ 
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(Mv2) 

cot e  (0/2) 
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9. The fraction of 6.0 MeV protons scattered by a thin gold foil, of density 19.3 g/cm 3, from 
the incident beam into a region where scattering angles exceed 60° is equal to 2.0 x 10 -5 . 
Calculate the thickness of the gold foil, using results of the previous problem. 

10. A beam of a-particles, of kinetic energy 5.30 MeV and intensity 10 4  particle/sec, is in-
cident normally on a gold foil of density 19.3 g/cm 3, atomic weight 197, and thickness 
1.0 x 10 -5  cm. An a particle counter of area 1.0 cm 2  is placed at a distance 10 cm from 
the foil. If Co is the angle between the incident beam and a line from the center of the 
foil to the center of the counter, use the Rutherford scattering differential cross section, 
(4-9), to find the number of counts per hour for Co = 10° and for Co = 45°. The atomic 
number of gold is 79. 

11. In the previous problem, a copper foil of density 8.9 g/cm 3 , atomic weight 63.6 and thick-
ness 1.0 x 10 -5  cm is used instead of gold. When Co = 10° we get 820 counts per hour. 
Find the atomic number of copper. 

12. Prove that Planck's constant has the dimensions of angular momentum. 

13. The angular momentum of the electron in a hydrogen-like atom is 7.382 x 10 -34  joule-
sec. What is the quantum number of the level occupied by the electron? 

14. Compare the gravitational attraction of an electron and proton in the ground state of a 
hydrogen atom to the Coulomb attraction. Are we justified in ignoring the gravitational 
force? 

15. Show that the frequency of revolution of the electron in the Bohr model hydrogen atom 
is given by y  = 2IEI /hn where E is the total  energy of the electron. 

16. Show that for all Bohr orbits the ratio of the magnetic dipole moment of the electronic 
orbit to its orbital angular momentum has the same value. 

17. (a) Show that in the ground state of the hydrogen atom the speed of the electron can be 
written as  y  = ac where cc  is the fine-structure constant. (b) From the value of a what can 
you conclude about the neglect of relativistic effects in the Bohr calculations? 

18. Calculate the speed of the proton in a ground state hydrogen atom. 
19. What is the energy, momentum, and wavelength of a photon that is emitted by a hydrogen 

atom making a direct transition from an excited state with n = 10 to the ground state? 
Find the recoil speed of the hydrogen atom in this process. 

20. (a) Using Bohr's formula, calculate the three longest wavelengths in the Balmer series. 
(b) Between what wavelength limits does the Balmer series lie? 

21. Calculate the shortest wavelength of the Lyman series lines in hydrogen. Of the Paschen 
series. Of the Pfund series. In what region of the electromagnetic spectrum does each lie? 

22. (a) Using Balmer's generalized formula, show that a hydrogen series identified by the in-
teger m of the lowest level occupies a frequency interval range given by 

Ay = cR H/(m + 1)2 . 

(b) What is the ratio of the range of the Lyman series to that of the Pfund series? 
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23. In the ground state of the hydrogen atom, according to Bohr's model, what are (a) the 
quantum number, (b) the orbit radius, (c) the angular momentum, (d) the linear momen-
tum, (e) the angular velocity, (f) the linear speed, (g) the force on the electron, (h) the ac-
celeration of the electron, (i) the kinetic energy, (j) the potential energy, and (k) the total 
energy? How do the quantities (b) and (k) vary with the quantum number? 

24. How much energy is required to remove an electron from a hydrogen atom in a state 
with n = 8? 

25. A photon ionizes a hydrogen atom from the ground state. The liberated electron re-
combines with a proton into the first excited state, emitting a 466 A photon. What are 
(a) the energy of the free electron and (b) the energy of the original photon? 

26. A hydrogen atom is excited from a state with n = 1 to one with n = 4. (a) Calculate the 
energy that must be absorbed by the atom. (b) Calculate and display on an energy-level 
diagram the different photon energies that may be emitted if the atom returns to its n = 1 
state. (c) Calculate the recoil speed of the hydrogen atom, assumed initially at rest, if it 
makes the transition from n = 4 to n = 1 in a single quantum jump. 

27. A hydrogen atom in a state having a binding energy (this is the energy required to remove 
an electron) of 0.85 eV makes a transition to a state with an excitation energy (this is 
the difference in energy between the state and the ground state) of 10.2 eV. (a) Find the 
energy of the emitted photon. (b) Show this transition on an energy-level diagram for 
hydrogen, labeling the appropriate quantum numbers. 

28. Show on an energy-level diagram for hydrogen the quantum numbers corresponding to 
a transition in which the wavelength of the emitted photon is 1216 A. 

29. (a) Show that when the recoil kinetic energy of the atom, p 2/2M, is taken into account 
the frequency of a photon emitted in a transition between two atomic levels of energy 
difference AE is reduced by a factor which is approximately (1 — AE/2Mc 2). (Hint: The 
recoil momentum is p = hv/c.) (b) Compare the wavelength of the light emitted from a 
hydrogen atom in the 3 -* 1 transition when the recoil is taken into account to the wave-
length without accounting for recoil. 

30. What is the wavelength of the most energetic photon that can be emitted from a muonic 
atom with Z = 1? 

31. A hydrogen atom in the ground state absorbs a 20.0 eV photon. What is the speed of the 
liberated electron? 

32. Apply Bohr's model to singly ionized helium, that is, to a helium atom with one electron 
removed. What relationships exist between this spectrum and the hydrogen spectrum? 

33. Using Bohr's model, calculate the energy required to remove the electron from singly 
ionized helium. 

34. An electron traveling at 1.2 x 10' m/sec combines with an alpha particle to form a singly 
ionized helium atom. If the electron combined directly into the ground level, find the 
wavelength of the single photon emitted. 

35. A 3.00 eV electron is captured by a bare nucleus of helium. If a 2400 A photon is emitted, 
into what level was the electron captured? 

36. In a Franck-Hertz type of experiment atomic hydrogen is bombarded with electrons, and 
excitation potentials are found at 10.21 V and 12.10 V. (a) Explain the observation that 
three different lines of spectral emission accompany these excitations. (Hint: Draw an 
energy-level diagram.) (b) Now assume that the energy differences can be expressed as  hv 
and find the three allowed values of v. (c) Assume that y  is the frequency of the emitted 
radiation and determine the wavelengths of the observed spectral lines. 

37. Assume, in the Franck-Hertz experiment, that the electromagnetic energy emitted by an 
Hg atom, in giving up the energy absorbed from 4.9 eV electrons, equals hv, where y is the 
frequency corresponding to the 2536 A mercury resonance line. Calculate the value of h 
according to the Franck-Hertz experiment and compare with Planck's value. 

38. Radiation from a helium ion He + is nearly equal in wavelength to the H OE  line (the first 
line of the Balmer series). (a) Between what states (values of n) does the transition in the 
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helium ion occur? (b) Is the wavelength greater or smaller than that of the H a  line? 
(c) Compute the wavelength difference. 

39. In stars the Pickering series is found in the  He + spectrum. It is emitted when the electron 
in He jumps from higher levels into the level with n = 4. (a) State the exact formula for 
the wavelength of lines belonging to this series. (b) In what region of the spectrum is the 
series? (c) Find the wavelength of the series limit (d) Find the ionization potential, if He + 

 is in the ground state, in electron volts. 
40. Assuming that an amount of hydrogen of mass number three (tritium) sufficient for 

spectroscopic examination can be put into a tube containing ordinary hydrogen, deter-
mine the separation from the normal hydrogen line of the first line of the Balmer series 
that should be observed. Express the result as a difference in wavelength. 

41. A gas discharge tube contains H 1 , H2, He 3 , He4, Lib, and Li z  ions and atoms (the super-
script is the atomic mass), with the last four ionized so as to have only one electron. (a) 
As the potential across the tube is raised from zero, which spectral line should appear 
first? (b) Give, in order of increasing frequency, the origin of the lines corresponding to the 
first line of the Lyman series of H 1 . 

42. Consider a body rotating freely about a fixed axis. Apply the Wilson-Sommerfeld quan-
tization rules, and show that the possible values of the total energy are predicted to be 

E = h2 n2/2I 	 n=0,1,2,3,... 
where I is its rotational inertia, or moment of inertia, about the axis of rotation. 

43. Assume the angular momentum of the earth of mass 6.0 x 10 24  kg due to its motion 
around the sun at radius 1.5 x 10 11  m to be quantized according to Bohr's relation L = 
nh/2n. What is the value of the quantum number n? Could such quantization be detected? 
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5-1 INTRODUCTION 

We have presented experimental evidence which shows conclusively that the particles 
of microscopic systems move according to the laws of some form of wave motion, 
and not according to the Newtonian laws of motion obeyed by the particles of 
macroscopic systems. Thus a microscopic particle acts as if certain aspects of its 
behavior are governed by the behavior of an associated de Broglie wave, or wave 
function. The experiments considered dealt only with simple cases (such as free 
particles, or simple harmonic oscillators, etc.) that can be analyzed with simple 
procedures (involving direct applications of the de Broglie postulate, Planck's pos-
tulate, etc.). But we certainly want to be able to treat the more complicated cases 
that occur in nature because they are interesting and important. To be able to do 
this we must have a more general procedure that can be used to treat the behavior 
of the particles of any microscopic system. Schroedinger's theory of quantum mechan-
ics provides us with such a procedure. 

The theory specifies the laws of wave motion that the particles of any micro-
scopic system obey. This is done by specifying, for each system, the equation that 
controls the behavior of the wave function, and also by specifying the connection 
between the behavior of the wave function and the behavior of the particle. The 
theory is an extension of the de Broglie postulate. Furthermore, there is a close 
relation between it and Newton's theory of the motion of particles in macroscopic 
systems. Schroedinger's theory is a generalization that includes Newton's theory as 
a special case (in the macroscopic limit), much as Einstein's theory of relativity is 
a generalization that includes Newton's theory as a special case (in the low velocity 
limit). 

We shall develop the essential points of the Schroedinger theory and use them to 
treat a number of important microscopic systems. For instance, we shall use the 
theory to obtain a detailed understanding of the properties of atoms. These prop-
erties form the basis of much of chemistry and solid state physics, and they are 
closely related to the properties of nuclei. 

After we have applied Schroedinger's theory to a number of cases, the student 
should find that he is beginning to develop an intuition concerning the behavior of 
quantum mechanical systems, just as he has developed an intuitive feeling for classical 
systems from his study of Newton's theory and its applications to a number of cases. 
Actually, a better comparison can be made between the Schroedinger theory and 
Maxwell's theory of electromagnetism. The reason for this is that electromagnetic 
waves behave in a manner which is very analogous to the behavior of the wave 
functions of the Schroedinger theory. We shall use this analogy, when appropriate, 
to show how quantum mechanical results are related to results that are familiar from 
the study of electromagnetism, or of other forms of classical wave motion. We shall 
also discuss many experiments which directly confirm the quantum mechanical re-
sults that we obtain, just as we have discussed many experiments which set the stage 
for the theory. But the student will have to exercise a little patience because there 
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is much to be done in developing the theory, and in working out its consequences, 
before we can make many comparisons between these consequences and experiment. 

Now, we have seen that de Broglie's postulate provides a fundamental step in the 
development of Schroedinger's general theory of the behavior of microscopic parti-
cles. However, it is only a step. The postulate says the motion of a microscopic 
particle is governed by the propagation of an associated wave, but the postulate 
does not tell us how the wave propagates. The postulate does predict successfully 
the wavelength of the wave inferred from measurements of the diffraction pattern 
observed in the motion of the particle, but only in cases in which the wavelength 
is essentially constant. Furthermore, we must have a quantitative relation between 
the properties of the particle and the properties of the wave function that describes 
the wave. That is, we must know exactly how the wave governs the particle. 

In this chapter we shall first study the equation, developed by Erwin Schroedinger 
in 1925, which tells us the behavior of any wave function of interest. Then we shall 
study the relation, developed by Max Born in the following year, which connects 
the behavior of the wave function to the behavior of the associated particle. Detailed 
solutions of the Schroedinger equation are deferred to the following chapters, but 
in this chapter we shall look at its solutions in a general way, and we shall see 
how they lead very naturally to the quantization of energy and other important 
phenomena. 

We can appreciate some of the problems concerning the applicability of the de 
Broglie postulate, and also get some clues about what will have to be done to 
remove the problems, by considering again the case of a free particle. In this case 
we have been successful in doing much with the postulate. When, in Chapter 3, it 
was necessary to have a mathematical expression for a wave function, we used a 
simple sinusoidal traveling wave, such as 

T(x,t) = sin 2n (—
x 

— vt) 
	

(5-1) 

or else a wave function formed by adding several simple sinusoidals. The form in 
(5-1) was obtained essentially by guessing, with the guess being based on the fact 
that a free particle has a linear momentum p of constant magnitude, since it is not 
acted on by a force, and therefore it has an associated de Broglie wavelength 2 = h/p 
of constant magnitude. Equation (5-1) is just the familiar form for a sinusoidal 
traveling wave of constant wavelength A. It also has a constant frequency y,  which 
we evaluated from the Einstein relation  y  = E/h, where E is the total energy of the 
associated particle. 

In Chapter 4 we were able to extend the use of a wave function like (5-1) to the 
case of a particle moving in a circular Bohr orbit by imagining such a sinusoidal 
wrapped around the orbit. But this was possible only because in a circular orbit the 
magnitude p of the linear momentum remains constant so that 2 = h/p, the de Broglie 
wavelength, is also constant, even though the particle is acted on by a force. 

We shall not be able to make such simple extensions to treat cases where the linear 
momentum of the particle is of changing magnitude, and, of course, these cases are 
typical of what happens when a particle is acted on by a force. The point is that 
the de Broglie postulate, 2 = h/p, says the wavelength 2 will change if p changes; but 
a wavelength is not even well defined if it changes very rapidly. We illustrate this 
with the nonsinusoidal wave shown in Figure 5-1. For this wave it is difficult to 
define even a variable wavelength since the separation between adjacent maxima is 
not equal to the separation between adjacent minima. To put the point another way, 
if the linear momentum of a particle is not of constant magnitude because the particle 
is acted on by a force, functions which are more complicated than the sinusoidal of 
(5-1) are required to describe the associated wave. We shall need help to find these 
more complicated wave functions. 
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Figure 5-1 A non-sinusoidal wave. Inspection will show that the separation between an  
adjacent pair of maxima differs from that between the closest adjacent pair of minima.  

Therefore it is difficult to define a wavelength even for a single oscillation.  

The Schroedinger equation will provide the required assistance. This is the equation  

that tells us the form of the wave function `P(x,t), if we tell it about the force acting  

on the associated particle by specifying the potential energy corresponding to the  

force. In other words, the wave function is a solution to the Schroedinger equation  

for that potential energy. The most common type of equation which has a function  

for a solution is a differential equation. In fact, the Schroedinger equation is a differ-
ential equation. That is, the equation is a relation between its solution `P(x,t) and  

certain derivatives of `Y(x,t) with respect to the independent space and time variables  

x and t. As there is more than one independent variable, these must be partial  

derivatives, such as  
3'P(x,t) 	a P(x,t) 	a2W(x,t) 	ô2T(x,t) 

ax 	or 	at 	or 	axe 	or 	ate 	(5-2)  

Example 5-1. Evaluate the partial derivatives listed above of the sinusoidal function, (5-1).  

► A partial derivative is a derivative of a function of several independent variables, which is  

evaluated by allowing one of the variables to vary, while holding all the others temporarily  

fixed. This is indicated by using a symbol such as ô"(x,t)/ôx instead of the usual symbol for  

the ordinary derivative d`II(x,t)/dx. The symbol means, for instance  

ÔW(x,t)   [dtP(xt)] 

	
(5-3) 

7x 	dx 	evaluated by treating  t  as a constant  

or  
ô`11(x,t)[d(xt) ]  

	

_ 

 at 	dt 	evaluated by treating  x  as a constant  

Before applying this procedure on the sinusoidal function of (5-1), it is convenient to rewrite  

it in terms of the quantities k = 2701 and co = 27rv. We obtain  

`I'(x,t) = sin 27x C  — vt) = sin (kx — cot)  

The partial differentiations then yield  

ô'(x,t)_ ô sin (kx — cot) 
	 =k cos (kx — cot)  

	

ex 	ex  

	

02111(x,t) 	ô cos (kx — wt) 

	

ôx2 
	 k 	

ax 	= k2  sin (kx — cot)  

ô`F(x,t) ô  sin (kx — wt)  

	

at 	at 	= w cos (kx — wt)  

ô2  (x,t) ô cos  (kx  - wt)  — w 
	 — w2 sin (kx — wt 	2 	 ( 	)  

(5-5)  
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since t can be treated as a constant in the first two differentiations, whereas x can be treated 
as a constant in the last two. These results will prove to be useful shortly. 	 4 

The Schroedinger equation is a partial differential equation. We shall, in due course, study 
solutions of this equation, and we shall see that it is generally quite easy to decompose it into 
a set of ordinary differential equations (i.e., differential equations involving only ordinary 
derivatives). These ordinary differential equations will then be handled by the application of 
straightforward techniques. In all this work we shall assume no previous knowledge about 
differential equations of any type on the part of the student. We shall assume only that he 
knows how to differentiate and integrate. Of course, the student very probably has had some 
experience with ordinary differential equations in connection with his study of classical me-
chanics. He has probably even had a little experience with partial differential equations 
because the Schroedinger equation is a member of the class of partial differential equations 
called wave equations, which arise in many fields of classical as well as quantum physics. 
Examples from the former field are the wave equation for vibrations in a stretched string 
and the wave equation for electromagnetic radiation. We shall see that the quantum me-
chanical wave equation has many properties in common with the classical wave equation, 
and also that it has some very interesting differences. 

5-2 PLAUSIBILTY ARGUMENT LEADING TO 
SCHROEDINGER'S EQUATION 

Now the first problem at hand is not how to solve a certain differential equation; 
instead, the problem is how to find the equation. That is, we are in the position of 
Newton when he was looking for the differential equation 

dp 	2 
F dt  m  dt2 
	

(5-6) 

which is the basic equation of classical mechanics, or of Maxwell, when he was 
looking for the differential equations such as 

0Ex OEy OEz p 
	 (5-7) 

ex 
	+ 	ey  + 	

ôz = E0 5-7 

that form the basis of classical electromagnetism. 
The wave equation for a stretched string can be derived from Newton's law, and 

the electromagnetic wave equation can be derived from Maxwell's equations; but we 
cannot expect to be able to derive the quantum mechanical wave equation from any of 
the equations of classical physics. However, we can expect to receive some help from 
the de Broglie-Einstein postulates 

= h/p 	and 	y  = E/h 	 (5 - 8) 

which connect the wavelength 2 of the wave function with the linear momentum p 
of the associated particle, and also connect the frequency y of the wave function with 
the total energy E of the particle, for the case of a particle with essentially con-
stant p and E. That is, the quantum mechanical wave equation we seek must be 
consistent with these postulates, and we shall use this required consistency in our 
search. Equations (5-8), plus others that we shall have reason to accept, will be 
woven into an argument that is designed to make the quantum mechanical wave 
equation seem very plausible, but it must be emphasized that this plausibility argu-
ment will not constitute a derivation. In the final analysis, the quantum mechanical 
wave equation will be obtained by a postulate, whose justification is not that it has 
been deduced entirely from information already known experimentally, but that it 
correctly predicts results which can be verified experimentally. 

We begin our plausibility argument by listing four reasonable assumptions con-
cerning the properties of the desired quantum mechanical wave equation: 



1. It must be consistent with the de Broglie-Einstein postulates, (5-8) 
= h/p 	and 	v=E/h 

2. It must be consistent with the equation 

E=p2/2m+V 

relating the total energy E of a particle of mass m to its kinetic energy p 2/2m and 
its potential energy V. 

3. It must be linear in `P(x,t). That is, if 'P 1 (x,t) and 'P 2(x,t) are two different 
solutions to the equation for a given potential energy V (we shall see that partial 
differential equations have many solutions), then any arbitrary linear combination of 
these solutions,'P(x,t) = c 1 1P 1 (x,t) + c 2'P2(x,t), is also a solution. This combination is 
said to be linear since it involves the first (linear) power of 'P 1(x,t) and 'I' 2(x,t); it is 
said to be arbitrary since the constants c 1  and c2  can have any (arbitrary) values. 
This linearity requirement ensures that we shall be able to add together wave functions 
to produce the constructive and destructive interferences that are so characteristic of 
waves. Interference phenomena are commonplace for electromagnetic waves; all the 
diffraction patterns of physical optics are understood in terms of the addition of 
electromagnetic waves. But the Davisson-Germer experiment, and others, show that 
diffraction patterns are also found in the motion of electrons, and other particles. 
Therefore, their wave functions also exhibit interferences, and so they should be 
capable of being added. 

4. The potential energy V is generally a function of x, and possibly even t. How-
ever, there is an important special case where 

V(x,t) = V0 	 (5-10) 

This is just the case of the free particle since the force acting on the particle is 
given by 

F = - ôV(x,t)/âx 

which yields F = 0 if Vo  is a constant. In this case Newton's law of motion tells us 
that the linear momentum p of the particle will be constant, and we also know that 
its total energy E will be constant. We have here the situation of a free particle with 
constant values of A = hl p and  y  = E/h, discussed in Chapter 3. We therefore assume 
that, in this case, the desired differential equation will have sinusoidal traveling wave 
solutions of constant wavelength and frequency, similar to the sinusoidal wave func-
tion, (5-1), considered in that chapter. 

Using the de Broglie-Einstein relations of assumption 1 to write the energy equa-
tion of assumption 2 in terms of A and y, we obtain 

h2/2m2 2  + 

Before proceeding, it is convenient to introduce the quantities 

k = 2n/A 	and 	w = 2nv 
	 (5-11) 

As in Example 5-1, they are useful because they keep variables out of denominators 
and because they "absorb" a factor of 2n that would otherwise appear every time 
we write a sinusoidal wave function. The quantity k is called the wave number; the 
quantity w is called the angular frequency. Introducing them, we obtain 

h2 k2/2m + V(x,t) = hw 	 (5-12) 

where 
h - h/2n 

is Planck's constant divided by 2n. To satisfy assumptions 1 and 2, the wave equa-
tion we seek must be consistent with (5-12). 
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V(x,t) = hv 
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In order to satisfy the linearity assumption 3, it is necessary that every term in the 
differential equation be linear in 'P(x,t), i.e., be proportional to the first power of 
W(x,t). Note that any derivative of W(x,t) has this property. For instance, if we con-
sider the change in the magnitude of  02 'P(x,t)/ax e  that results if we change the mag-
nitude of 'P(x,t), say by a factor of c, we see that the derivative increases by the same 
factor and thus is proportional to the first power of the function. This is true since 

02 [c'(x,t)] 	a211(x,t) 
=c 	 

ax 2 	ax2  

where c is any constant. In order that the differential equation itself be linear in 
'P(x,t), it cannot contain any term which is independent of 'P(x,t), i.e., which is pro-
portional to [LP(x,t)] ° , or which is proportional to ['P(x,t)]2  or any higher power. 
After obtaining the equation, we shall demonstrate explicitly that it is linear in W(x,t), 
and in the process the validity of these statements will become apparent. 

Now let us use the assumption 4, which concerns the form of the free particle 
solution. As suggested by that assumption, we shall first try to write an equation 
containing the sinusoidal wave function, (5-1), and/or derivatives of that wave func-
tion. We have already evaluated some of the derivatives in Examples 5-1. Inspecting 
these, we see that the effect of taking the second space derivative is to introduce a 
factor of — k 2 , and the effect of taking the first time derivative is to introduce a factor 
of —w. Since the differential equation we seek must be consistent with (5-12), which 
contains a factor of k 2  in one term and a factor of w in another, these facts suggest 
that the differential equation should contain a second space derivative of P(x,t) and 
a first time derivative of 'P(x,t). But there must also be a term containing a factor of 
V(x,t) because it is present in (5-12). In order to ensure linearity, this term must con-
tain a factor of 'P(x,t). Putting all these ideas together, we try the following form for 
the differential equation 

a 
a21-1-1(x,t) 

+ V(x t)W(x,t) = l3  a`P(x,t) 	 (5-13) 
ax2 	 at 

The constants cc and 13 have values which remain to be determined. They are used to 
provide flexibility which, we might guess, will be needed in fitting (5-13) to the various 
requirements it must satisfy. 

The form of (5-13) seems reasonable in general, but will it work in detail? To find 
out we consider the case of a constant potential, V(x,t) = V° , and evaluate 'P(x,t) 
and its derivatives from (5-1) and (5-5). We obtain immediately 

— a sin (kx — wt)k 2  + sin (kx — wt)V °  = — /3 cos (kx — wt)w 	(5-14) 

Even though the constants a and fi  are at our disposal, we cannot make this agree 
with (5-12), and thus satisfy assumptions 1 and 2, except for special combinations 
of the independent variables x and t for which sin (kx — wt) = cos (kx — wt). It is 
true that we could obtain agreement if a and fi  were not constants, but we reject this 
possibility in favor of the very much simpler one presented next. 

The difficulty at hand arises because differentiation changes cosines into sines, and 
vice versa. This fact suggests that we try using for the free particle wave function not 
the single sinusoidal of (5-1), but instead the combination 

(x,t) = cos (kx — wt) + y sin (kx — wt) 	 (5-15) 

where y is a constant, of as yet undetermined value, which is introduced for the pur-
pose of providing additional flexibility. We hope to find the proper mixture of a 
cosine and a sine that will remove the difficulty. Evaluating the required derivatives, 
we find 



3W(x,t) 
ex 
	= — k sin (kx — cot) + ky cos (kx — cot) 

i 2 
( 

 x,t 
) 	 = —k 2  cos (kx — cot) — k ey sin (kx — cot) 	 (5 - 16) 

8x 2  

ô'P(x,t) 
	  et = co sin (kx — cot) — coy cos (kx — cot) 

Then we try again; substituting (5-15) and (5-16) into the same assumed form, (5-13), 
for the differential equation, and setting V(x,t) = Vo , we obtain 

—ak 2  cos (kx — cot) — ak 2y sin (kx — cot) + Vo  cos (kx — cot) + V oy sin (kx — cot) 

= /3co sin (kx — cot) — f3coy cos (kx — cot) 

or 
[ — ak 2  + Vo  + f3coy] cos (kx — cot) + [ — ak 2y + Voy — /3co] sin (kx — cot) = 0 

In order that the last equality hold for all possible combinations of the independent 
variables x and t, it is necessary that the coefficients of both the cosine and the sine 
be zero. Thus we obtain 

—ak2 +Vo = — 13Yw 
and 

— ak2  + Vo  = /co/Y 	 (5-18) 
Now we have a problem that is easily handled; there are three algebraic equations 
that we must satisfy, (5-12), (5-17), and (5-18), but we have three free constants a, f, 
and y, at our disposal. 

Subtracting (5-18) from (5-17), we find 

0 = — /3Yw — f3w/Y 
or 

y = — 1 /Y 

y 2  = — 1 
or 

y=± /-1-+i 	 (5-19) 
where i is the imaginary number (see Appendix F). Substituting this result into (5-17) 
we find 

—ak2  + Vo  = + i f3co 

This can be compared directly with (5-12) 
h2 k2/2m + Vo  = Pico 

to yield 

and 

or 

a = —h2/2m  

+if3 = h 

(5-20) 

(3 = + iii 	 (5-21) 
There are two possible choices of the sign in (5-19). It turns out to be of no significant 
consequence which choice is made, and therefore we follow conventional usage and 
choose the plus sign. Then (5-21) yields f3 = + ih and, with (5-20), we finally can 
evaluate all the constants in the assumed form of the differential equation. Thus 

(5-17) 

so that 
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(5-13) becomes  

— 

h 2 
 02(x't) + V(x,t)T(x,t) = ih 

atP(x,t) 	
(5-22) 

2m ôx2 	 et  
This differential equation satisfies all four of our assumptions concerning the quantum  

mechanical wave equation.  
It should be emphasized that we have been led to (5-22) by treating a special case:  

the case of a free particle where V(x,t) = V0 , a constant. At this point it seems plau-
sible to argue that the quantum mechanical wave equation might be expected to  

have the same form as (5-22) in the general case where the potential energy V(x,t)  

does actually vary as a function of x and/or t (i.e., where the force is not zero); but we  

cannot prove this to be true. We can, however, postulate it to be true. We do this, and  
therefore take (5-22) as the quantum mechanical wave equation whose solutions  

W(x,t) give us the wave function which is to be associated with the motion of a par-
ticle of mass m under the influence of forces which are described by the potential  

energy function V(x,t). The validity of the postulate must be judged by comparing  

its implications with experiment, and we shall make many such comparisons later.  
Equation (5-22) was first obtained in 1926 by Erwin Schroedinger, and it is therefore  

called the Schroedinger equation.  
Schroedinger was led to his equation by an argument different from ours (and more  

esoteric). We shall see the essential ideas of his argument in Section 5-4. However,  

he was as strongly influenced by the de Broglie postulate in his work as we have been  

in ours. This can be seen in the following quotation, in which the physicist Debye  
ci describes the circumstances surrounding Schroedinger's development of his equation.  L  

"Then de Broglie published his paper. At that time Schroedinger was my successor at the  

University in Zurich, and I was at the Technical University, which is a Federal Institute, and  

we had a colloquium together. We were talking about de Broglie's theory and agreed that we  

did not understand it, and that we should really think about his formulations and what they  

mean. So I called Schroedinger to give us a colloquium. And the preparation of that really got  

him started. There were only a few months between his talk and his publications."  

It should be pointed out that we cannot expect the Schroedinger equation to be 
valid when applied to particles moving at relativistic velocities. This is the case be-
cause the equation has been designed to be consistent with (5-9), the classical energy 
equation, which is incorrect for velocities comparable to the velocity of light. In 1928 
Dirac developed a relativistic theory of quantum mechanics utilizing essentially the 
same postulates as the Schroedinger theory, except that (5-9) was replaced by its 
relativistic analogue 

E = Jc2p2 + (moc2)2  +  V 
The Dirac theory reduces to the Schroedinger theory, of course, in the low-velocity  
limit Because of the serious complications introduced by the square root in the 
relativistic energy equation, a quantitative treatment of the Dirac theory would not 
be appropriate in this book. However, some of the more interesting features of the 
Dirac theory will be described qualitatively in the following chapters on occasions 
when relativistic quantum phenomena must be discussed; and one feature, pair pro-
duction, has already been described. Fortunately, most of the interesting quantum 
phenomena can be studied in cases which are nonrelativistic. 

Example 5 -2. Verify that the Schroedinger equation is linear in the wave function `F(x,t);  

i.e., that it is consistent with the linearity assumption 3.  
■ We must show that, if ' 1 (x,t) and `h 2(x,t) are two solutions to (5-22) for a particular V(x,t),  

then  

tY(x,t) = c i tI' i (x,t) + c2Y`2(x,t)  



is also a solution to that equation, where c l  and c2  are constants of arbitrary value.  Trans- 
posing 

 

 (5-22), we have for the Schroedinger equation  

h2 2  

	

— 2 
	 + V— ii â   = 0 	 cp 

m a  

Now we check the validity of the linear combination by substituting it into this equation it is 	iv 
supposed to satisfy. We obtain 1 

	 ( 

- 
Zm Cl  as l + 

C2 ^ 
	2) 

+ V(ClTl + C2'I'2) — ihI \cl 

aâ l  + C2  aâ 2) 
 = 0 

which can be rewritten as 

clL-2

z z 	 r z z 	 l 
as l

+V`Y1— iii aatl]+cz
L2 

a z V`Yzi% sz J =0  

If the linear combination actually is a solution to the Schroedinger equation then the last 
equality should be satisfied. It is, for all values of c l  and c 2 , because the Schroedinger equation 
says each bracket equals zero since T 1  and `I' 2  are solutions to that equation for the same V.  

A little thought should convince the student that this essential result would not be obtained 
if the Schroedinger equation contained any terms which are not proportional to the first power 
of '(x,t). 	 •  

In following chapters we shall solve in a methodical way Schroedinger's equation 
for a number of important systems, and we shall obtain thereby the wave functions 
that describe the systems. But in this chapter we must use some of these wave func-
tions in order to illustrate various properties of the Schroedinger theory. These wave 
functions will be "pulled out of the hat," as required. However, we shall give the 
student confidence in their validity by verifying that each is a solution to the Schroe-
dinger equation, for the system it is supposed to describe, by the simple procedure of 
substituting it into that equation. In Example 5-3 we do this for a wave function 
which is particularly useful for illustrative purposes. 

Example 5-3. The wave function `I'(x,t) for the lowest energy state of a simple harmonic oscil-
lator, consisting of a particle of mass m acted on by a linear restoring force of force constant  

C, can be expressed as  
`Y(x,t) = Ae Cm/2h)x2 e -(i/2)./C/mt  

where the real constant A can have any value. Verify that this expression is a solution to the  

Schroedinger equation for the appropriate potential. (The time-dependent term is a complex  

exponential; see Appendix F.)  
► The expression applies to the case in which the equilibrium point of the oscillator (the point  

at which the classical particle would rest if it were not oscillating) is at the origin of the x  

axis (x = 0). In this case the time-independent potential energy is  

V(x,t) = V(x) = Cx2/2  

as can be verified by noting that the corresponding force, F = — dV(x)/dx = — Cx, is a linear  
restoring force of force constant C. The Schroedinger equation for this potential is  

	

2 82ty 
 —

2 	
+

2
x 2'I'= ih atp  

To check the validity of the solution quoted, we evaluate its derivatives. We find 
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and  

= - 2 at  

C 
m 

4'  

a2^ 

atp _ — V
2̂ m 

 2xT — 
,/cm 

 xTh  

_ —  VCm  ^` — 

-\/Cm  x ^ —  \/Cm  x^i'^ — 
-,./Cm 	Cm 

 + ^m  x2T  ax2  
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Substituting into the Schroedinger equation yields  / 	Z 
h22rnhm 	2 ^m x2T+ Z x2^= ih( - 2^  m `h 

or  
h ff C 	C Z 	C 2 	h 

2^Im w
- 2 x ^+ 2 x T = 2  

Since the last equality is obviously satisfied, the solution must be valid. 
The general solution to the simple harmonic oscillator Schroedinger equation is treated in 

the following chapter. 	 • 

5-3 BORN'S INTERPRETATION OF WAVE FUNCTIONS  

A very interesting and important property of wave functions can be seen by eval-
uating y = i in (5-15), which specifies the form of the free particle wave function. We  

obtain  
tP(x,t) = cos (kx — wt) + i sin (kx — wt) 	 (5-23)  

The wave function is complex. That is, it contains the imaginary number i. Recall that  
this behavior was forced upon us. We first tried to find a way of satisfying our four  

assumptions concerning the Schroedinger equation by using a purely real free particle  

wave function, (5-1), and we found that there was no reasonable way of doing this.  

Only when we allowed the free particle wave function to have an imaginary part, by  

using the free particle wave function of (5-15) in which y turned out to be equal to i,  
did we succeed. In this process, we also ended up with an i in the Schroedinger  
equation, (5-22). If the student looks carefully at our plausibility argument, it will  

become apparent that the equation contains an i because it relates a first time deriva-
tive to a second space derivative. This is due, in turn, to the fact that the Schroedinger  

equation is based on the energy equation which relates the first power of total energy  

to the second power of momentum. The presence of an i in the Schroedinger equation  
implies that in the general case (for any potential energy function) the wave functions  

which are its solutions will be complex. We shall shortly see that this is true.  

Since a wave function of quantum mechanics is complex, it specifies simultaneously  

two real functions, its real part and its imaginary part (see Appendix F). This is in  
contrast to a "wave function" of classical mechanics. For instance, a wave in a string  

can be specified by one real function which gives the displacement of various ele-
ments of the string at various times. This classical wave function is not complex  

because the classical wave equation does not contain an i since it relates a second  
time derivative to a second space derivative.  

The fact that wave functions are complex functions should not be considered a  

weak point of the quantum mechanical theory. Actually, it is a desirable feature  

because it makes it immediately apparent that we should not attempt to give to wave  

functions a physical existence in the same sense that water waves have a physical  

existence. The reason is that a complex quantity cannot be measured by any actual  

physical instrument. The "real" world (using the term in its nonmathematical sense)  

is the world of "real" quantities (using the term in its mathematical sense).  

Therefore, we should not try to answer, or even pose the question: Exactly what is  

waving, and what is it waving in? The student will remember that consideration of  

just such questions concerning the nature of electromagnetic waves led the nine-
teenth century physicists to the fallacious concept of the ether. As the wave func-
tions are complex, there is no temptation to make the same mistake again. Instead,  

it is apparent from the outset that the wave functions are computational devices which  
have a significance only in the context of the Schroedinger theory of which they are  

a part. These comments should not be taken to imply that the wave functions have  

C —4'  
m 



no physical interest. We shall see in this and the next sections that a wave function 
actually contains all the information which the uncertainty principle allows us to 
know about the associated particle. 

The basic connection between the properties of the wave function W(x,t) and the 
behavior of the associated particle is expressed in terms of the probability density 
P(x,t). This quantity specifies the probability, per unit length of the x axis, of finding 
the particle near the coordinate x at time t. According to a postulate, first stated in 
1926 by Max Born, the relation between the probability density and the wave func-
tion is 

P(x,t) = q*(x,t)T(x,t) 	 (5-24) 
where the symbol T*(x,t) represents the complex conjugate of 'P(x,t) (see Appendix 
F). For emphasis, and clarification, we shall restate Born's postulate as follows: 

If, at the instant t, a measurement is made to locate the particle associated with the 
wave function T(x,t), then the probability P(x,t) dx that the particle will be found at a 
coordinate between x and x + dx is equal to q*(x,t)T(x,t) dx. 

Justification of the postulate can be found in the following considerations. Since 
the motion of a particle is connected with the propagation of an associated wave 
function (the de Broglie condition), these two entities must be associated in space. 
That is, the particle must be at some location where the waves have an appreciable 
amplitude. Therefore P(x,t) must have an appreciable value where Y'(x,t) has an 
appreciable value. We attempt to illustrate schematically the situation in Figure 5-2. 
If the situation were otherwise, there would be serious difficulties with the theory. For 
instance, if the particle were separated in space from the wave, relativistic problems 
would arise because of the time required to transmit information between the two 
entities that are required to follow each other. Since the measurable quantity prob-
ability density P(x,t) is real and non-negative, whereas the wave function T(x,t) is 
complex, it is obviously not possible to equate P(x,t) to `P(x,t). However, since 
LP*(x,t)T(x,t) is always real and non-negative, Born was not inconsistent in equating 
it to P(x,t). 

Example 5 -4. Prove that 'P*(x,t)`P(x,t) is necessarily real, and either positive or zero. 
Any complex function, such as P(x,t), can always be written 

`P(x,t) = R(x,t) + iI(x,t) 	 (5-25a) 

where R(x,t) and I(x,t) are both real functions that are called, respectively, its real and 
imaginary parts. The complex conjugate of T(x,t) is defined as 

`l'*(x,t) = R(x,t) — iI(x,t) 	 (5-25b) 
Multiplying the two together, we obtain 

'P*q = (R — iI)(R + iI) 

or, since i2  = — 1 

'Y*'P =R2 — i 21 2 = R 2 +12  

B
O

R
N

'S
  IN

T
E

R
P

R
E

T
A

T
IO

N
 O

F
 W

A
V

E
  F

U
N

C
T

I O
N

S
  

Figure 5-2 A very schematic picture of a wave function and its associated particle. The 
particle must be at some location where the wave function has an appreciable amplitude. 
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Thus 
111 *(x,t)1(x,t) = [R(x,t)] 2  + [I(x,t)] 2 	 (5-26) 

That is, it equals the sum of the squares of two real functions. Thus `P*(x,t)`P(x,t) must be 
real, and either positive or zero. 	 • 

Of course, there are other possible functions that can be generated from `P(x,t) that 
are real. An example is the absolute value, or modulus, I'P(x,t)I. However, all these 
other possibilities can be ruled out by arguments, too lengthy to reproduce here, 
which show that they would lead to an unphysical behavior for P(x,t). 

It is worthwhile for us to consider again an analogy between electromagnetism 
and quantum mechanics, discussed in Section 3-2. The connection between the 
density of photons in a field of electromagnetic radiation and the square of the elec-
tric field vector is analogous to the connection between the probability density and 
the wave function multiplied by its complex conjugate. Consider, for instance, that 
the electric field vector is a solution to the electromagnetic wave equation, while the 
wave function is a solution to the quantum mechanical wave equation. Both quanti-
ties specify the amplitudes of waves, although the electric vector is real whereas the 
wave function is complex. Therefore, the square of the amplitude of the waves, e2, 
gives the intensity of the waves in the electromagnetic case, while it is necessary to 
take the amplitude times its complex conjugate, `P*F, to obtain a real intensity in 
the quantum mechanical case. In the electromagnetic case the intensity of the waves 
is proportional to their energy density. Since each photon in the electromagnetic 
field carries energy hv, the energy density is, in turn, proportional to the density of 
photons. For one dimension, this is the probability per unit length of finding a 
photon. In the quantum mechanical case the intensity of the waves gives directly the 
probability density which is, in one dimension, the probability per unit length of 
finding a particle. 

Example 5-5. Evaluate the probability density for the simple harmonic oscillator lowest 
energy state wave function quoted in Example 5-3. 
■ The wave function is 

`'(x,t) = Ae-( ✓cm/2!)x2e-012),/C/mt 

The probability density is therefore (see Appendix F for the evaluation of `P*) 
P = ̀ P*tiP = Ae -(

✓cm12*)x2 e +(i/2),/C/m tAe -(,/Cm/2h)x 2e -(i12)„/C/mt 

Or 
P = A2e -(1h)x 2  

Note that the probability density is independent of time, even though the wave function 
depends on time. We shall see later that this is true in any case in which the particle associated 
with the wave function is in a single energy state. The probability density P predicted by 
quantum mechanics is plotted as a function of x by the solid curve in the upper part of 
Figure 5-3. The probability that a measurement of the location of the oscillating particle will 
find it in an element of the x axis between x and x + dx is equal to P dx. 

Since P has a maximum at x = 0, the equilibrium point of the oscillator, quantum 
mechanics predicts that the particle is most likely found in an element dx located at the 
equilibrium point. Proceeding in either direction from that location, the chances of finding it 
in an element of the same length dx decrease rather rapidly, but there are no well-defined 
limits beyond which the probability of finding the particle in an element of the x axis is 
precisely zero. In the following example we shall find that these predictions are very different 
from what would be expected for the oscillating particle according to classical mechanics. • 

Example 5-6. Evaluate the predictions of classical mechanics for the probability density 
of the simple harmonic oscillator of Example 5-5, and compare them with the quantum 
mechanical predictions found in that example. 

■ In classical mechanics the oscillating particle has a definite momentum p, and therefore a 
definite velocity y,  at every value of its displacement x from the equilibrium point. The 
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Figure 5-3 Quantum mechanical (top) and classical (bottom) probability densities for a 
particle in the lowest energy state of a simple harmonic oscillator. The quantum mechan-
ical probability density peaks near the equilibrium point and extends beyond the sharp 
limits of motion predicted by classical physics. The classical probability density is in-
versely proportional to the classical velocity and is greatest at the endpoints of the motion, 
where the velocity vanishes. 

probability of finding it in an element of the x axis of fixed length is proportional to the 
amount of time it spends in the element, and this is inversely proportional to its velocity 
when it passes through the element. That is 

B 2  
P =— 

v 

where B2  is some constant. We obtain an expression for v in terms of x most simply by 
considering the energy equation 

mv2  Cx2  
E= K+V= 	+ 2 	2 

where E, K, and V are total, kinetic, and potential energies, and where the latter has been 
evaluated in terms of x and the oscillator force constant C from an equation justified in 
Example 5-3. We have then 

MV 	Cx2 
=E 

2 

v = 
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So  

P=  

B 2  

 

This expression for the classical probability density P is plotted as the curve in the lower  

part of Figure 5-3. It has a minimum value at the equilibrium point x = 0, and it rises rapidly  

near the limits of the oscillation. The limits occur at values of x where the particle has no  

kinetic energy so the potential energy equals its total energy  

Cx2  
E_  

or  
2  

2E  
C 

Of course, the classical probability density drops abruptly to zero outside these limits of the  

particle's motion, as indicated by the straight lines in the figure. Simply put, the probability of  

finding the oscillating classical particle in an element of the x axis of a given length is smallest  

near the equilibrium point, where it spends the least time, and it rises rapidly near the limits  

of its motion, where it lingers.  
The value of the constant B 2  in the expression for the classical probability density can be  

determined by imposing the requirement that the total probability of finding the particle  

somewhere must equal one. The total probability is just the integral over all x of P so the  
^n expression  
ci Go 	 +,/2E/C  L  
U 

can be used to evaluate B 2 . We shall not bother to carry out this so-called normalization  
procedure for the classical probability density, although it is not difficult to do after expressing  

E in terms of C; but we shall carry out such a procedure in Example 5-7 to determine the value  

of the corresponding constant A 2  that occurs in the quantum mechanical probability density.  

Figure 5-3 shows that the classical prediction for the probability density is very different  

from the quantum mechanical prediction. According to classical mechanics, measurements of  

the location of the particle in the simple harmonic oscillator will always find it within two  

well-defined limits, and they will usually find it near one or the other of these limits According  

to quantum mechanics, when the simple harmonic oscillator is in the lowest energy state  

measurements will usually find the particle to be near the equilibrium point, but there are no  

well-defined limits beyond which the particle will never be found.  

When the oscillator is in its lowest energy state we are very far from the range of validity of  

classical physics. Thus we expect that, of the two predictions, the one made by quantum  

mechanics is correct. As we shall see in Chapter 12, this can be confirmed by measuring  

properties of diatomic molecules that depend on the interatomic spacing, since in low-energy  

states the two atoms in such a molecule feel the linear restoring force characteristic of simple  

harmonic motion. Of course, the trouble with the classical calculation is that it neglects the  

uncertainty principle in associating a definite value of the velocity, or momentum, of the  

particle with a definite value of its position. In Example 5-12 we shall make a comparison be-
tween the classical and quantum mechanical predictions of the probability density function  

for a particle in a high-energy state of a simple harmonic oscillator, where the range of validity  

of classical physics is approached because the uncertainty principle is of no consequence. There  

we shall find the predictions of the two theories to be very similar, as would be expected from  

the correspondence principle. •  

In Example 5-5 we saw one of the predictions of quantum mechanics concerning 
the behavior of a particle in a simple harmonic oscillator. The prediction is typical of 

x= +  

- 00  

(' 2 J 	dx 
Pdx= 	

B 

^ 

	=1 	

,/2E/c 
NIE — Cx 2/2  



the type of information that the theory can provide. It cannot tell us that a particle 
in a given energy state will be found in a precise location at a certain time, but only 
the relative probabilities that the particle will be found in various locations at that 
time. The predictions of quantum mechanics are statistical. 

The uncertainty principle provides the fundamental reason why quantum mechan-
ics expresses itself in probabilities, and not in certainties. For instance, consider in-
vestigating a harmonic oscillator in some typical energy state. In order to really know 
that the system is in a particular state, we must make a measurement of its energy. 
The measurement necessarily disturbs the system in a way that cannot be completely 
determined, so it is not surprising that we cannot predict with certainty where the 
particle will be found when we make a position measurement. In classical mechanics, 
even though the energy of the system is microscopic, we can make the energy mea-
surement, plus any other measurements, without disturbing the system. So classical 
mechanics says we can predict precisely where the particle will be found in a subse-
quent measurement, if we wish. But, when applied to a microscopic system, classical 
mechanics is wrong. Not only is it impossible to predict from classical mechanics 
precisely where a particle in a microscopic system will be in a subsequent measure-
ment, it is, as we found in Example 5-6, impossible even to predict accurately from 
that theory the relative probabilities of finding the particle in various locations. 
Quantum mechanics does allow us to make accurate predictions about these relative 
probabilities because it takes into account quantitatively the fundamental fact of life 
of the microscopic world—the uncertainty principle. 

Born has expressed the situation as follows: 

"We describe the instantaneous state of the system by a quantity W, which satisfies a differ-
ential equation, and therefore changes with time in a way which is completely determined by 
its form at a time t = 0, so that its behavior is rigorously causal. Since, however, physical 
significance is confined to the quantity `If*`If, and to other similarly constructed quadratic 
expressions, which only partially define W, it follows that, even when the physically determin-
able quantities are completely known at time t = 0, the initial value of the `Y-function is 
necessarily not completely definable. This view of the matter is equivalent to the assertion that 
events happen indeed in a strictly causal way, but that we do not know the initial state exactly. 
In this sense the law of causation is therefore empty; physics is in the nature of the case 
indeterminate, and therefore the affair of statistics." 

The first point that Born makes, about the space dependence of `P at some initial 
time being sufficient to completely determine its space dependence at any subsequent 
time, is a consequence of the fact that W satisfies the Schroedinger equation which 
contains only a first time derivative. 

His second point, about not being able to completely define the space dependence 
of the wave function at the initial time, can be seen by inspecting (5-25a) and (5-26). 
These show that if we know a probability density from an initial set of measurements 
on a system, we still cannot determine uniquely an initial wave function to associate 
with the system. All we can determine is the sum of the squares of the real and imag-
inary parts of the wave function. 

We can summarize the ideas of the last few paragraphs by saying that the behavior 
of a given wave function of a system is predictable in the sense that the Schroedinger 
equation for the corresponding potential energy will determine exactly its form at 
some later time in terms of its form at some initial time; but its initial form cannot 
be specified completely by an initial set of measurements and its final form predicts 
only the relative probabilities of the results of the final set of measurements. Again 
quoting Born: "The motion of particles conforms to the laws of probability, but the 
probability itself is propagated in accordance with the law of causality." 
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Example 5-7. Normalize the wave function of Example 5-3, by determining the value of the  

arbitrary constant A in that wave function for which the total probability of finding the as-
sociated particle somewhere on the x axis equals one.  

•The total probability of finding the particle somewhere on the entire range of the x axis is  
necessarily equal to one if the particle exists. This total probability can be obtained mathe-
matically by integrating the probability density function P over all x. Doing this, and setting  
the result equal to one, we have  

GO 	 ^ 
	

CO  

f Pdx = 
J `F

*`Fdx = A2 f e -(✓cm /h)xz dx = 1  

Co- 	-^ 	 Co-  

Since the integrand e -('/ n/
h)x 2 

 depends on x 2, it is an even function of x. That is, its value 
for a certain x equals its value for —x, as can be seen in Figure 5-4. Thus the contribution to 
the total value of the integral obtained in the range — co to 0 equals the contribution obtained  

in the range 0 to + co, and we have  
00 	 oo  

A 2 	e(Nfcm/h)x2 dx = 2A2  e  c✓cm/h)x2 dx = 1 
 

The definite integral can be evaluated by consulting appropriate tables, and yields  

00  

( 	)1/2 r e —( cm/h)x2 dx — 	
7Ch J 	 2(Cm)1 /4  

o 

Then we find immediately that the required value of A is  

A =
(Cm) 1 /8 

 0) 1 	/4  

With this value of A, the wave function becomes  

=
(Cm) 118 

 1P(x,t) — 	e-Wcm/2$0x2 e_(i12)✓c/mt 	 • (nh) 1  /4  
The procedure gone through in Example 5-7 is called normalization of a wave func-

tion, and the wave function quoted at the end of the example is said to be normalized. 
Before the procedure is carried out, the amplitude of a wave function is arbitrary 
because the linearity of the Schroedinger equation allows a wave function to be mul-
tiplied by a constant of arbitrary magnitude and still remain a solution to the equa-
tion. Normalizing has the effect of fixing the amplitude by fixing the value of the 
multiplicative constant, such as A in Example 5-7. It is not always necessary to really 
carry through the calculation that leads to the value of the amplitude constant be-
cause useful results can often be obtained in terms of relative probabilities that are in-
dependent of the actual values of the amplitudes. But it should always be remembered 
that 

f P dx = J 1JJ*tJi dx _1  

Co- 	 Co-  

(5-27)  

x 
— 
	 x1 

Figure 5-4 A plot of the even function a -( 	imx.2 Since the function depends on x 2 , its 
value for any particular x 1  equals its value for —x1.  
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since these integrals give the total probability of finding somewhere the particle de- 
scribed by the wave function, and the probability must equal one if there is a particle. 

5-4 EXPECTATION VALUES  

In the previous section we saw that the wave function contains information about ° 
the behavior of the associated particle in that it specifies the probability density for 
the particle. In this section we shall see how to extract from the wave function a wide 
variety of additional information concerning the particle. That is, we shall learn how 
to obtain from the wave function detailed numerical information not only about the 
position of the particle but also about its momentum, energy, and all other quantities 
that characterize its behavior. For instance, we shall find out how to give quantitative 
evaluations of the terms Ax and Ap in the uncertainty principle. Wave functions are 
useful because they contain so much information about the behavior of the associated 
particle. 

Consider a particle and its associated wave function `P(x,t). In a measurement of 
the position of the particle in the system described by the wave function, there would 
be a finite probability of finding it at any x coordinate in the interval x to x + dx, 
as long as the wave function is nonzero in that interval. In general, the wave function 
is nonzero over an extended range of the x axis. Thus we are generally not able to 
state that the x coordinate of the particle has a certain definite value. However, it is 
possible to specify some sort of average position of the particle in the following way. 
Let us imagine making a measurement of the position of the particle at the instant 
t. The probability of finding it between x and x + dx is, according to Born's postulate, 
(5-24)  

P(x,t) dx = `Il*(x,t)gI(x,t) dx  

Imagine performing this measurement a number of times on identical systems de-
scribed by the same wave function P(x,t), always at the same value of t, and recording 
the observed values of x at which we find the particle. An example would be a set of 
measurements of the x coordinates of particles in the lowest energy states of identical 
simple harmonic oscillators. In three dimensions, an example would be a set of mea-
surements of the positions of electrons in hydrogen atoms, with all the atoms in their 
lowest energy states. We can use the average of the observed values to characterize 
the position at time t of a particle associated with the wave function 'Y(x,t). This 
average value we call the expectation value of the x coordinate of the particle at the 
instant t. It is easy to see that the expectation value of x, which is written x, will be 
given by 

fx = 
	

xP(x,t) dx  

The reason is that the integrand in this expression is just the value of the x coordinate 
weighted by the probability of observing that value. Therefore, we obtain upon inte-
grating the average of the observed values. Using Born's postulate to evaluate the 
probability density in terms of the wave function, we obtain 

x =  
r^ 

J T*(x,t)xlY(x,t) dx (5-28)  

-  ao 

The terms of the integrand are written in the order shown to preserve symmetry with 
a notation which will be developed later. 
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Figure 5-5 A plot of the odd function xe -(.i6" )x2 . The value of the function for any par-
ticular x 1  equals the negative of its value for —x 1 .  

Some students may find these equations more familiar if they are written in the form  

	

I xP(x,t) dx 	J  ^*(x,t)xT(x,t) dx  

- ^  = 	
 

	

J P(x,t) dx 	J  'P *(x,t) 111(x,t) dx  

but these are actually equivalent to the forms we use since (5-27) shows that the denominators  

à 	equal one.  
co  
^j 	Example 5-8. Determine x for a particle in the lowest energy state of a simple harmonic oscil- 

lator, using the wave function and probability density considered in the preceding examples.  

►  We can see immediately from Figures 5-3 and 5-4 that x = O. The reason is that x is the  

average value of x, with the average computed using a weighting factor 'P*'P which is symmet-
rical about x = 0; for every chance of observing a certain positive value of x there is an exactly  

compensating chance of observing a negative value of x of the same magnitude. The behavior  

of the particle in the oscillator is symmetrical about its equilibrium point at x = 0, so = O.  

More formally, we have  

= 	̀If*x111  dx  

- ^ 

where the factor 111 * 111 in the integrand is plotted in Figures 5-3 and 5-4. Now this factor is  

an even function of x, and the remaining factor in the integrand is x itself, which is an odd  

function of x. So the entire integrand is an odd function of x. That is, its value at a particular 
x is exactly equal to the negative of its value at — x, as illustrated in Figure 5-5. From this it 
follows that the integral yields zero since for every contribution to its total value obtained 
from an element of the x axis at some x there is a compensating contribution of the opposite 
sign from the corresponding element at — x. 

From arguments using a coordinate system in which the origin of the x axis is chosen at 
the equilibrium point of the oscillator, we have concluded that z lies at the equilibrium point, 
as indicated in Figure 5-6a; but this conclusion is true, independent of the choice of the origin. 
That is, if the equilibrium point of the oscillator is located to the right of the origin,  1-11 *`11  is 
still centered on the equilibrium point so is still located at that point, as indicated in Figure 
5-6b. The reason is that the behavior of the oscillator is still symmetrical about its equilibrium 
point. If the oscillator is distorted by making the restoring force stronger in one direction than 
in the other, this symmetry is destroyed. (It will no longer be a simple harmonic oscillator.) 
Then'11* 1I' will lose its symmetry, and will be displaced from the equilibrium point. Examples 
are shown in Figures 5-6c and 5-6d. • 

It is apparent that an expression of the same form as (5-28) would be appro-
priate for the evaluation of the expectation value of any function of x. That is 
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Figure 5-6 (a) The probability density for the ground state of a harmonic oscillator whose  

equilibrium point (marked with a triangle) lies at the origin. The expectation value x  
(marked with an arrow) also lies at the origin. (b) The oscillator is displaced along the  
x axis, but the expectation value x remains coincident with the equilibrium point. (c) The  

restoring force is made weaker for positive displacements than for negative displacements,  

destroying the symmetry of the oscillator. The particle now would more likely be found to 
the right of the equilibrium point than to left, so the expectation value z now lies to the  

right of that point. But the equilibrium point is still the location where the particle would 
most likely be found because it is still where the probablity density maximizes. (d) As the 
restoring force is made even more asymmetric, x is further displaced to the right. In all  
figures the short vertical marks on the x axis indicate the limits of the classical oscil-
lation for the appropriate potential, or restoring force, and total energy.  

co  

x2  = I T*(x,t)x 2111(x,t) dx  
- ^ 

and  
CO  

f(x) = 	*(x ,t) f (x)41(x,t) dx  

- cc 

where f (x) is any function of x. Even for a function which may explicitly depend on  

the time, such as a potential energy V(x,t), we may still write  
co  

V(x,t) = 
J 

TI*(x ,t)V( x,t)V( x ,t) dx 	 (5-29)  

because all measurements made to evaluate V(x,t) are made at the same value of t, and 
so the preceding arguments would still hold. 

The coordinate x and the potential energy V(x,t) are two examples of the dynamical 
quantities which can be used to characterize the behavior of the particle. Examples 
of other dynamical quantities are the momentum p and the total energy E. The expec-
tation value of these quantities is always given by the same type of expression. For 
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example, the expectation value of the momentum is given by 

(

Go

' 

= J  tI'*(x,t)plY(x,t) dx  

CO  

However, in order to evaluate the integral in (5-30), the integrand `P*(x,t)pP(x,t)  

must be expressed as a function of the variables x and t. In classical mechanics, p can  
always be written as a function of the variables x and/or t. For instance, for a particle  
moving in a time-independent potential, p can be written as a function of x alone since  

its momentum is precisely known at every point on its path (after the problem has  

been solved). A moment's consideration of the behavior of a classical simple harmonic  

oscillator will verify this. But in quantum mechanics the uncertainty principle tells  

us that it is not possible to write p as a function of x, because p and x cannot be  
simultaneously known with complete precision. Nor is it possible to write p as a func-
tion of t. We must find some other way of expressing the integrand of (5-30) in terms  

of x and t.  
A clue can be found by considering the free particle wave function, (5-23), which is  

T(x,t) = cos (kx — cot) + i sin (kx — cot)  

Differentiating with respect to x, we have  

= —k sin (kx — wt) + ik cos (kx — cot)  

ax  
= ik[cos (kx — cot) + i sin (kx — cot)]  

Since k = p/h, this is  
ô tP(x,t) i  ^ = 	'B(x,t)  

which can be written  

p[`I`(x,t)] = — ih ôx [`P(x,t)]  

This indicates that there is an association between the dynamical quantity p and the 
differential operator — ih(ô/ôx). That is, the effect of multiplying the function ti (x,t) 

 by p is the same as the effect of operating on it with the differential operator — ih(ô/ôx)  
(that is, of taking —iii times the partial derivative of the function with respect to x). 

A similar association can be found between the dynamical quantity E and the dif-
ferential operator ih(a/at) by differentiating the free particle wave function ¶(x,t) with 
respect to t. We obtain 

OT(x,t)  
at 
	= + w sin (kx — wt) — ico cos (kx — wt) 

= — ico[cos (kx — cot) + i sin (kx — cot)]  

Since w = E/h, this can be written 

E[`I`(x,t)] = ih 	[`I`(x,t)]  

Are these relations restricted to the case of free particle wave functions? No! 
Consider (5-9), which relates the total energy E to the momentum p and the potential 
energy V(x,t) 

(5-30)  

p   + V(x,t) = E  
2m  



Let us replace the dynamical quantities p and E by their associated differential op-
erators. Then we have 

^ o, 

2 
2m ^  

	ax + V(x,t) = ih 
 at  

Since (— ih) 2  = —  h2 , and (a/ax) 2  = (a/ax)(a/ax) = a2/0xe, we obtain 
h2 2 

— 	22 + V(x,t)=ih^ 	 (5-31)  

This is an operator equation. It has significance when applied to any wave function  

'P(x,t), in tlié sense that identical results are obtained after performing on the wave  

function the operations indicated on either side of the equal sign. That is, (5-31)  

implies  
h
2 02 (x't) + V(x,t)^(x ,t) = i^1 

01P(x,t) 
2m ax2 	 at  

where'P(x,t) is any wave function. Of course, this is just the Schroedinger equation.  

Therefore, we conclude that postulating the associations  

p 4—)— ih x 
	

and 	E H ih 
t̂ 	

(5-32) 

is equivalent to postulating the Schroedinger equation. The validity of these associa-
tions is unrestricted. 

The procedure used in the last paragraph is essentially the one originally followed 
by Schroedinger in obtaining his equation. It provides us with a powerful method for 
obtaining the quantum mechanical wave equation for more complicated cases than 
the one-particle, one-dimensional case we treat in this chapter. We shall use it later 
to treat the systems we ultimately must deal with. 

Now let us use the first of the operator associations to obtain an integrable ex-
pression for the expectation value of the momentum. We take (5-30), which is 

p = 
 J  YJ*(x,t)pT(x,t) dx  

and replace the p in the integrand by — ih(a/ax). We obtain  
CO  

p = f 111 *(x,t)( — ih x  l'P(x,t)dx 
J 	 j  
-  

or  
CO  

 

 

p = — ih 	'Y 	
a^(x,t)

*(x,t) 	
ax 

dx 

— oo  

(5-33)  

We thus obtain an expression which can be integrated immediately if we know 
'P(x,t).  

At this point we can see the reason for the ordering of the terms in the integrands of (5-30)  

and (5-33). It would not be possible to have  

p= —ih 
	

'I`*(x,t)tP(x,t) 
 8x 

 -dx  
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since this is meaningless. Nor would it be possible to have  

= —ih J ax [T * (x,t) 111(x,t)] dx  

= — ih [P * (x,t)P(x,t)] `°  

because the right-hand side of the last equation always equals zero. This is true because, in any  

realistic situation, the particle would never be found at either x = + co or x = — co, and there-
fore the probability density vanishes at both these limits It should also be mentioned that using 
the expression 

CO  

= —ih J  P(x,t) 
 âW*(x,t) 

 dx 
a 
	  

is equivalent to using the minus sign in (5-19), and it adds nothing new to the theory.  

The ordering of terms is of no consequence in integrands that occur in expressions for the  

expectation values of quantities that are functions of position and/or time, such as (5-28) and  

(5-29), because no derivatives are involved. Nevertheless, it is conventional to use the same  

ordering as is required in the expressions for the expectation value of the momentum.  

Using the second of the operator associations of (5-32), we can evaluate the expec-
tation value of the total energy E of a particle in a state described by the wave func-
tion qi(x,t), as follows 

- 00  

But note that we can also use the energy equation, (5-9), to write E in terms of p and  
V(x,t), and then employ the first of the operator associations of (5-32) to convert p  
into an operator, obtaining  

CO  

E = J  'P*(x, t) ^  2m  x̂2  + V(x,t) LY(x,t) dx  

In fact, the expectation value of any dynamical quantity can be evaluated by using 
only the first of the operator associations of (5-32). That is, if f (x,p,t) is any dynamical 
quantity which is a function of x, p, and possibly t, useful in describing the state of 
motion of the particle associated with the wave function T(x,t), then its expectation 
value f(x,p,t) is given by 

CO  

f (x,p,t) = 
J 

`P * (x,t)ffop (x, — ih ax 
 , t)^(x,t) dx  

- 00  

(5-34)  

where the operator fop(x, — ih ô/ax,t) is obtained from the function f(x,p,t) by everywhere  

replacing p by — ih 0/0x.  

We have found that the wave function 'P(x,t) contains more information than just  

the probability density P(x,t) _ `P*(x,t)`P(x,t). The wave function also contains,  



through (5-34), the expectation value of the coordinate x, the potential energy V, the  
momentum p, the total energy E, and, in general, the expectation value of any  

dynamical quantity f(x,p,t). In fact, the wave function contains all the information  
that the uncertainty principle will allow us to learn about the associated particle.  

Example 5-9. Consider a particle of mass m which can move freely along the x axis  
anywhere from x = — a/2 to x = + a/2, but which is strictly prohibited from being found  
outside this region. The particle bounces back and forth between the walls at x = +a/2 of a  
(one-dimensional) box. The walls are assumed to be completely impenetrable, no matter how  
energetic is the particle. Of course, this assumption is an idealization, but it is a very useful  
one. We shall study this problem in the following chapter, and we shall find that the wave  
function for the lowest energy state of the particle is  

A cos 
x 
 e `E`/ 	 —a/2 < x < +a/2  

`F(x,t) = 	a  

0 	 x < —a/2 or x >_  + a/2  

where A is an arbitrary real constant, and E is the total energy of the particle. This wave func-
tion is another one which is convenient for us to use in this chapter for illustrative purposes.  
Justify its use here by verifying that it is a solution to the Schroedinger equation in the  
region — a/2 < x < + a/2, and determine the value of E for this lowest energy state.  
■ If there are no forces acting on the particle in the region in question, the potential energy  
function must be constant in the region. As potential energies are always undefined to within  
an additive constant, we can take the value of the potential energy to be zero in the region.  
Then the Schroedinger equation in the region reads  

2 a2 q, 

=ih ât 	 —a/2<x<+a/2  

We verify the wave function by substituting its derivatives into the equation. With  

TCx - iEr/^i `I'=A  cos — e  
a 

we obtain  
7L 	^x 

- iEt/fi 
— A sin —  e  

âx 	 a 	a 

 ^ ^ 

 

= —
( it)2

A cos ^  e iEt/i; _ —^â
22 	 l 

and  

Substitution yields  

or  

OT 	iE 
A cos ^x  e- iEt/fl =— iE  

at 	h 	a 	 h  

h2 n2 
 _ — i

iE 

+ 2m a2 
	̂i ^  

h2n2  

E =
2ma2  

Thus we have determined the required value of E corresponding to the wave function we are  

dealing with, and have also verified that the wave function is a solution of the Schroedinger  

equation.  
Figure 5-7 illustrates the wave function by a plot of its space dependence. Note that the  

interior (inside the box) values of Y'(x,t) join onto the exterior (outside the box) values of zero  

at the boundaries of the region at x = — a/2 and x = + a/2 (walls of the box) because the  

T=ELI'  
2ma2  

This is satisfied identically, providing E has the value  
x2h2  
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Figure 5-7 The x dependence of a wave function for the lowest energy state of a particle  

strictly confined to a region of length a, but moving freely therein. Everywhere outside the  

region the value of the wave function is zero.  

cosine function goes to zero when x approaches ±  a/2. The exterior values of T(x,t) are zero,  

of course, because the wave function describes a particle which is strictly prohibited from being  

found outside the region. 	 •  

Example 5-10. Use the "particle-in-a-box" wave function treated in Example 5-9 to evaluate  

the expectation values of x, p, x 2, and p 2  for the particle associated with the wave function.  

► To evaluate x ,  we must evaluate  

= 	̀F*x`P dx  

-  

^ 

Ci_  
t 
U 

Using the wave function of Example 
+a 

x= 

5-9, this is  
/2  

Ex 	+ iEr/^i 	TEX 
 A cos — e 	xA cos— e 

a 	 a  
iEt/^ dx  

—a/2  

+a/2  

	

A2 	 2 ^x 

	

= A 	x cos — dx  
a  

—a/2  

where the integration has been restricted to the region from — a/2 to + a/2 since `I'(x,t) is zero  

outside this region. Now note that the integrand is a product of cos 2  (nx/a), which is an even  
function of x, times x itself, which is an odd function of x. The integrand is therefore an odd  

function of x. From this conclusion it follows that  

+a/2  

(^ 	2  ^x 
J x cos — dx = 0  

a  
—a/2  

because the integral of an integrand which is an odd function of the variable of integration is  

zero if the integration is taken over a range which is centered about its origin (see Example5-8).  

Thus we obtain  

x=0  
A moment's thought should make it clear why measurements of the location of the particle  

which moves freely between —  a/2 and +  a/2 would be expected to average cut to zero.  

To evaluate p, we evaluate  
CO  

p = f J q' *
( — ir~i) atit  

ex 
 dx  

-  

Using the given 1(x,t), and its x derivative which has been calculated in Example 5-9, we ob-
tain  

+
(
a
'
/2 

 

p= — ifi J  A cos —TCX
( a)  —

7r  A sin 
nx e — iEt/n dx 

a  	a  
—  a/2  
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—a/2  a/2  



or 
+a/2 

 TEX 
p= iii -a

a 
A 2 I COS —

a
x  sin —

a
dx 

J  
— a/2 

Again, the integrand is, in total, an odd function of the variable of integration since it is the 
product of an even function cos (xx/a) times an odd function sin (xx/a). Thus we obtain 

p=0  
because the integral is taken over a range centered on the origin, and consequently it yields 
zero. Physically, the expectation value of the momentum of the particle is zero because, if the 
particle is confined to the region from —a/2 to +  a/2 and moving with total energy E, it must 
be bouncing back and forth between the ends of the region and constantly reversing the sign 
(i.e., the direction) of its momentum. That is, the magnitude of its momentum must be such that 
p2/2m = E but, since it is equally probable that the sign of the momentum will be either posi-
tive or negative, measurements of this quantity will average out to zero. 

In evaluating x 2, we must evaluate the integral 
co 	 +a/2  

X
2 
 = 	̀F*x2p dx = 

	
A cos — e+ ZEt/lx2A cos 

nx  e-`Et/1 dx 
a 	 a  

— co 	 —a/2 

+a/2  

= A2  
J  
a/2  

X
2 
 cos  

TCX 
 dx  

a 

This will not yield zero because the integrand is an  even function of x. For the same reason 
we may, as in Example 5-7, immediately simplify the integral to obtain 

+a

a 

 /2 

X 2  = 2A2 

J  x
2  cos2 -x dx  

a  
0  

If we multiply and divide by (a/x) 3 , this can be written  

(a)

3+ir/2
( )2  

	

x2=2A2 
	J  	

cost  ^a d ^  

0  

The integral can now be evaluated by consulting appropriate tables. We find  

2 	2  a3  7E
2  

X2  = A 
47r2  (

6 1^  

In order to fully determine x 2, we must also know the value of the constant A that deter-
mines the amplitude of the wave function. As in Example 5-7, we can find the proper value 
by demanding that the wave function be normalized. That is, we adjust A so that the total prob-
ability of finding the particle somewhere is equal to one. The condition gives 

co 	 +a/2 	 +

(

,t/2 

f tp*`Y dx = A 2  J cost 
-7cx 

 dx = 2A2  a J cos2 7x  d(-1")  = 1 J 	 a 	E 	 a 	a  

- Co 	 —a/2 	 0 

Integrating, we obtain  

2A2a
=1  

n4  

or  

A=  

Thus we have  
_ 	3 2 

	
a2  

	

x2  = 
2 a ^ 	

1 = 
a (

-7r2 1) = 0.033a2  

	

a 47c 2  ( 6 	} 2n2  6  
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The quantity x 2  is not zero, even though z = 0, because any measurement of x 2  must neces-
sarily yield a positive result. This quantity, or its square root /x 2  (the root-mean-square position 
of statistical theory), can be taken as a measure of the flu ctuations about the average, z = 0,  
that would be observed in determinations of the position of the particle. The latter quantity  
has the value  

,\/x 2 =0.18a  
The fluctuations arise because the particle is not always found at the same location, but instead  
at various locations, since the particle can be found wherever 'I'*' has an appreciable value.  
(In this case where î = 0, the quantity •,/x 2  is a measure of the fluctuations. In a case where 

 z 0 0, the quantity Jx2 — x 2  is a measure of the fluctuations. Analogous comments apply to  
the momentum p.)  _ 

Finally, let us evaluate p2  from the expression  
00 	 co 

2 	 2 
P = 

f 
T*(—ifi)2 a 

âx2 
 dx = —h2 J 'I'* a  dx 

	

J 	 âx 2  

	

- 	 -^ 

Using the value of 0 2T/ôx 2  calculated in Example 5-9, we have  

00  

p2 = h2  

 a 

2̂ 
	dx 

J  
-co  

Of course the integral equals one since it is just the probability of finding the particle some- 
where. If we were interested only in evaluating p 2, we would not find it necessary to actually  
carry through the normalization procedure to evaluate A since we can make this statement  
and immediately conclude that  

The square root of this quantity (the root-mean-square momentum)  

	 hn 
JP  — a  

is a measure of the fluctuations about the average, p = 0, that would be observed in determina- 
tions of the momentum of the particle. The fluctuations arise,  as discussed above, because the 
particle can sometimes be found with momentum p = + \/2mE and sometimes with momentum 
p = — /2mE . If we evaluate 

2m7c 2h2  xh  
2ma 2  = a  

from Example 5-9, we note  that  ../p2  is just equal to the magnitude of p.  
If we define Jx2  and N/p2  as the uncertainties Ax and Ap in the position and momentum 

of the particle in the energy state we have been dealing with, we obtain 

nh 
AxAp = V 	

a 

/x2 J 2 = 0 . 18a 
a 

= 0.57h 

This is certainly consistent with the lower limit h/2 set by the uncertainty principle. Note that  

this is the first time we have been able to become really quantitative when referring to the  

uncertainty principle. Expectation values calculated from wave functions make it possible to  

give quantitative definitions to the uncertainties. •  

5-5 THE TIME-INDEPENDENT SCHROEDINGER EQUATION  

The usefulness of wave functions more than justifies the work that is required to  

obtain them. This is done by solving Schroedinger's equation, (5-22)  

 h2  02  (x't) + 
V(x,t)'ll(x,t) = iii 	

F(x,t) 
2m ôx2 	 ôt 

2  

()2 

 
a  



using the potential energy function V(x,t) that properly describes the forces acting on 
the particle of interest. We shall now take the first step in solving this partial differ-
ential equation. As we promised, we shall carefully develop the required mathemat-
ical procedures, assuming no previous knowledge of differential equations on the part 
of the student. 

The standard technique for solving partial differential equations consists of search-
ing for solutions in the form of products of functions, each of which contains only a 
single one of the independent variables that are involved in the equation. The tech-
nique, called the separation of variables, is used because it immediately reduces the 
partial differential equation to a set of ordinary differential equations. As we shall see, 
this is a significant simplification. Here we are dealing with a partial differential equa-
tion involving a single space variable x plus the time variable t. Thus the technique 
consists in searching for solutions in which the wave function ¶(x,t) can be written 
as the product 

'P(x,t) = 11i(x)(p(t) 	 (5-35) 

where the first term on the right side is a function of x alone and the second term is 
a function of t alone. We shall assume the existence of solutions of this form, sub-
stitute these solutions into the Schroedinger equation that they are supposed to sat-
isfy, and see what happens. If our assumed form is invalid we shall, of course, soon 
find out. However, we shall actually find that solutions of the assumed form do exist, 
provided that the potential energy does not depend explicitly on the time t so that the 
function can be written as V(x). Since in quantum mechanics, as in classical mechan-
ics, almost all systems have potential energies of this form, the condition is not a very 
serious restriction. 

Separation of variables will lead to the conclusion that the function i(i(x), which 
specifies the space dependence of the wave function 'Y(x,t) = >/i(x)(p(t), is a solution 
to the differential equation 

2m dx2 + V(x)ifi(x) = Et/i(x) 

called the time - independent Schroedinger equation. Note that this equation is simpler 
than the Schroedinger equation for the same potential energy because it involves only 
one independent variable, x, and it is therefore an ordinary differential equation in-
stead of a partial differential equation. The technique will give us even more informa-
tion about the function çp(t) specifying the time dependence of the wave function. In 
fact, it will show that cp(t) satisfies a simple ordinary differential equation that can 
be solved immediately to yield the simple expression 

(p(t) = e iEt/t, 

where E is the total energy of the particle in the system. Separation of variables is 
such a useful technique that we shall employ it on a number of occasions in the 
remainder of this book. Let us now carry through the details of its application to the 
Schroedinger equation. 

Substituting the assumed form of the solution, 'F(x,t) = tli(x)çp(t), into the Schroe-
dinger equation, and also restricting ourselves to time-independent potential energies 
that can be written as V(x), we obtain 

h2 02 0(x)w(t)  + V(x)0(x)(P(t) = ih  atfr(x)(P(t)  
2m 	ax 2 	 at 

Now 

h2  d2 11 /(x) 
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the notation ô 20(x)/âx 2  being redundant with d20(x)/dx 2  since i/r(x) is a function of x  
alone. Similarly  

00(x)w(t)  _ ^( ) a^(t)  tG( )  d^(t)  
at 	

x 
 ôt 	

x 
 dt  

Therefore, we have  

2m cp(t)  d dz(x) — 
	+ V(x) (x)ço(t) = iht/r(x) d o(t) 
 dt 

Dividing both sides of this equation by I(x)(p(t), we obtain 
1 	h2 d2  (x)  + V(x)11/(x)1=iii 1   4(0  

^i (x) 	2m dx 2 	 rp(t) dt 	
(5-36)  

Note that the right side of (5-36) does not depend on x, while the left side does not  

depend on t. Consequently, their common value cannot depend on either x or t. In  
other words, the common value must be a constant, which we shall call G. The result  
of this consideration is that (5-36) leads to two separate equations. One equation is  

obtained by setting the left side equal to the common value  

h2 z 

0(x) 2m dd  2
x)  + V(x)^Jr(x)] = G 	 (5-37)  

The other equation is obtained by setting the right side equal to the common value  

1 d(p(t) 
= 	 (5-38) ih 

9(t) dt 
	G  

The constant G is called the separation constant, for the same reason that this tech- 
nique for solving partial differential equations is called the separation of variables.  

In retrospect, we see that the effect of employing the technique has been to convert  

the single partial differential equation, involving two independent variables x and t,  
into a pair of ordinary differential equations, one involving x alone and the other  

involving t alone. These equations are coupled in the sense that they both contain the  

same separation constant G, but this type of coupling does not lead to any difficulty in  

obtaining solutions to the equations. We shall find that the time equation, (5-38), has  

a very simple solution. Furthermore, when we demand that this solution agree with  

the de Broglie-Einstein postulate, we shall see that the value of the separation con-
stant G becomes determined Substituting this value of G into the space equation,  
(5-37), we then have an ordinary differential equation, whose solutions can be ob-
tained by employing one of the several standard techniques that have been developed  

for solving such equations. What we have done, in effect, is to reduce the problem  

from that of solving the partial differential space-time Schroedinger equation, (5-22),  

to that of solving the ordinary differential space equation. The product of the solution  

of that equation and the solution of the time equation is the desired solution of the  

Schroedinger equation.  

We can see that the product form 1P(x,t) = >/i(x)cp(t), which we assumed for the  

wave function, is justified because we shall be able to carry out the procedure just  

outlined. We can also see that we cannot carry through the separation of (5-36), into  

the pair of equations that follow from it, if the potential energy function depends on  

both x and t, as stated earlier. The reason is that we cannot then separate terms so  

that one side of the equation does not depend on x while the other side does not  

depend on t.  
The time equation, (5-38), is a simple first-order ordinary differential equation for  

(p as a function of t. There are several general techniques available for finding the  

solutions to such equations. All these techniques have a common feature; they involve  

assuming a general form for the solution, substituting this form into the differential  



equation and, from the resulting equation, determining the specific form required for  

the solution. After studying these techniques, it is often possible to develop enough  

intuition to be able to guess the specific form of the solution in the first instance, at  

least for fairly simple differential equations. This is a time saving and perfectly  

legitimate procedure, providing the guess is verified by substituting it into the differ-
ential equation and showing that the equation is satisfied, and this is the procedure  

that will usually be employed in this book. Consider (5-38) which, upon transposition,  
can be written as  

dcp(t) 
= 
	iG 

dt 	
^ yo(t) 	 (5-39)  

This differential equation tells us that the function yp(t), which is its solution, has the 
property that its first derivative is proportional to the function itself. Anyone with 
much experience in differentiating would not have difficulty in guessing that 9(t) must 
be an exponential function. Therefore, let us assume that the solution to the differ-
ential equation is of the form 

9(t)  =  eŒt  

where a is a constant that will be determined shortly. We verify this assumed solution 
by differentiating it, to obtain 

dcp(t) 
= ace Œt = ayp(t)  dt  

which we then substitute into (5-39). This yields 

agq(t) = — 
i 

^P(t) 

If we set  
iG  

=— h  

the assumed solution obviously satisfies the equation. Therefore  

9(t) = e  - ictIh 	 (5-40)  
is a solution to (5-38) or (5-39). 

The solution 9(t) is written in (5-40) as a complex exponential, but it can be written 
as  

cp(t) = e-iGtth = cos
t 
 — i sin

t 	
(5-41a)  

or 

94) = cos 2n —
G 

t — i sin 27r G  t 	 (`• b) 

We see that 9(t) is an oscillatory function of time of frequency v = G/h. But, according 
to the de Broglie-Einstein postulates of (5-8), the frequency must also be given by 
v = E/h, where E is the total energy of the particle associated with the wave function 
corresponding to 00. The reason is, of course, that 9(t) is the function that specifies 
the time dependence of the wave function. Comparing these expressions, we see that 
the separation constant must be equal to the total energy of the particle. That is 

G = E 	 (5-42) 
Using this value of G in the space equation, (5-37), that we obtained from the 

separation of variables, we have 
h 2  d2 /i(x)  
2m dx2 

+ V(x)1//(x) = Et/i(x)  (5-43)  
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Using this value of G in the solution (5-40) to the time equation, so that we complete  

the specification of p(t), the product form of the wave function becomes  

Lp(x,t) = 0(x)e -  'Et/' 	 (5-44)  

where E is the total energy of the particle.  

Equation (5-43) is called the time-independent Schroedinger equation, because the  

time variable t does not enter the equation. Its time-independent solutions t/i(x) deter-
mine, through (5-44), the space dependence of the solutions Y(x,t) to the Schroedinger  

equation. For the one-dimensional cases that we have been treating in this chapter,  

the time-independent Schroedinger equation can involve only one independent vari-
able x, and it must, therefore, be an ordinary differential equation. However, if there  

are more space dimensions, the time-independent Schroedinger equation will involve  

more independent variables and will therefore be a partial differential equation. (It  

can usually be reduced to a set of ordinary differential equations, in such cases, by  

applying the technique of separation of variables.)  
In all cases the time-independent Schroedinger equation does not contain the  

imaginary number i, and its solutions 0(x) are therefore not necessarily complex  

functions. (That is, 0(x) need not be complex, but it can be if convenience dictates.)  

This equation, and its solutions, are essentially identical to the time-independent  

differential equation for classical wave motion, and its solutions.  

The functions qi(x) are called eigenfunctions. The first part, eigen, is the German  
word for characteristic. We shall subsequently get a better idea of why characteristic  

is appropriate terminology. Here it will suffice to say that its use is conventional.  

It is also conventional not to translate it into English, perhaps in honor of the  

dominant role played by German speaking physicists in the development of quantum  

mechanics.  
The student is cautioned to keep clearly in mind the difference between the eigen-

functions 0(x) and the wave functions 'P(x,t), and also the difference between the  

time-independent Schroedinger equation and the Schroedinger equation itself. Wave  

functions will always be represented by a capital letter Y'; eigenfunctions will always  

be represented by a lower case letter 0.  

Example 5 -11. Develop a plausibility argument, similar to the one given in Section 5-2, which  

leads directly to the time-independent Schroedinger equation.  

• We assume the equation must be consistent with the classical energy equation  

P2  + V = E  
2m  

and also with the de Broglie postulate  

These two relations combine to yield  

or  

h  
p = -, = hk 

h 2 k2  
+V =E  

2m  

k 2 =Lm (E—V)  

Then we assume that the space dependence of the wave function for a free particle is given  

by the sinusoidal  

0(x)(x) = sin 
27rx= 

 sin kx  

The wave number k is constant since the potential energy V is constant for the case of a  
free particle, and since the total energy is constant also. Differentiating 4i(x) twice with respect  



to its only independent variable, we obtain 
d>G(x) 

= k cos kx  
dx  

d d 
Zx)  _ — k 2  sin kx = — k2 ^fi(x)  

since k is a constant. Now we substitute for k 2  the value found above, and obtain 
d^ zx)  = — 

h 2 
 (E — V) (x)  

or  
h2 

 d2/p(x) + tj/(x) = EtP(x) 2m dx
Z  

This is the time-independent Schroedinger equation, but we have obtained it from an argument 
specific to the case of a free particle where V is a constant. If, as in Section 5-2, we postulate 
that the equation is valid even in the general case where V = V(x), we obtain the time-inde-
pendent Schroedinger equation for a particle acted on by a force. 

We have followed a much longer route in the text to obtain the same equation, but we have, 
of course, learned much along the way that is not contained in the time-independent Schroe-
dinger equation. For instance, we know about the time dependence of the wave function 
1I'(x,t) = >/i(x)e - `E", which is responsible for its necessarily complex character and the many  

consequences resulting therefrom. •  

5-6 REQUIRED PROPERTIES OF EIGENFUNCTIONS  

In the following section we shall consider, in a very general way, the problem of  

finding solutions to the time-independent Schroedinger equation. These consider-
ations will show that energy quantization appears quite naturally in the Schroedinger  

theory. We shall see that this extremely significant property results from the fact that  

acceptable solutions to the time-independent Schroedinger equation can be found  

only for certain values of the total energy E.  
To be an acceptable solution, an eigenfunction t/i(x) and its derivative dt/i(x)/dx are  

required to have the following properties:  

iii(x) must be finite. 	 dtli(x)/dx must be finite.  

4i(x) must be single valued. 	 dt/i(x)/dx must be single valued.  

>/i(x) must be continuous. 	 d>/i(x)/dx must be continuous.  

These requirements are imposed in order to ensure that the eigenfunction be a mathe-
matically "well-behaved" function so that measurable quantities which can be eval-
uated from the eigenfunction will also be well-behaved. Figure 5-8 illustrates the  

meaning of these properties by plotting functions which are not finite, not single  

valued, or not continuous, at the point x o .  
If i/i(x) or dijr(x)/dx were not finite, or not single valued, then the same would be true  

for'(x,t) = e  -  `Et/h tfr(x) or ô`I'(x,t)/ôx = e -  iEt//i d f (x)/dx. Since the general formula for  

calculating expectation values of position or momentum, etc., (5-34), contains T(x,t)  

and alP(x,t)/ax, we see that in any of these cases we might not obtain finite and definite 
values when we evaluate measurable quantities. This would be completely unacceptable 
because measurable quantities, like the expectation value of position x, or of momen-
tum p, do not behave in unreasonable ways. (In very rare circumstances, which we 
shall not encounter, 0(x) may actually go to infinity at a point, providing it does so 
slowly enough to keep finite the integral of ,*(x)t/i(x) over a region containing that 
point.) 

In order that dk(x)/dx be finite, it is necessary that t/r(x) be continuous. The reason 
is that any function always has an infinite first derivative wherever it has a discon- 
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0 

f(x) 

0 

f(x) 

xo 

f(x) 

 

Not continuous 

 

  

0 

 

Figure 5 -8 Illustrating functions which are not finite, 
x 

not single valued, or not continuous at a point x o . xo 

tinuity. The necessity for di/i(x)/dx to be continuous can be demonstrated by con-
sidering the time-independent Schroedinger equation, which we write as 

d2 i/r(x) = 2m 
[V(x) — 

E3 ox) 

 
dx2 	h2 

For finite V(x), E, and t/i(x), we see that d 2 i/i(x)/dx 2  must be finite. This in turn, 
demands that we require d0(x)/dx to be continuous because any function that has a 
discontinuity in the first derivative will have an infinite second derivative at the same 
point. (Note that there are discontinuities in the first derivative of the eigenfunction 
for the particle in a box, considered in Example 5-9. They occur at the walls of the 
box, and they arise from the fact that the system is an idealization in which the walls 
are assumed to be completely impenetrable, no matter how high the energy of the 
particle. That is, the potential energy is assumed to become infinite at the walls. This 
is discussed at length in the next chapter.) 

The importance of these requirements on the properties of acceptable solutions to 
the time-independent Schroedinger equation cannot be overemphasized. Differential 
equations have a wide variety of possible solutions. It is only when we select from 
all-the possible solutions those that conform to these requirements that we obtain 
energy quantization, or other equally significant properties of the Schroedinger 

X  
xo 

X  



theory that will be treated in the following chapter. The requirements of finiteness 
and continuity will be used immediately; single valuedness will not be used until later, 
but it is of equal importance. 

5-7 ENERGY QUANTIZATION IN THE SCHROEDINGER THEORY 

It is educational to study the problem of obtaining acceptable solutions to the time-
independent Schroedinger equation with qualitative arguments that concern the cur-
vatures and slopes of curves obtained by plotting the solution. As we shall see, these 
arguments are both very general and very simple. They can teach us about many 
important properties of the time-independent Schroedinger equation, while avoiding 
any involved mathematics. In fact, the point of view that we shall use in this section 
is very useful for making a preliminary investigation of the properties of almost any 
differential equation, and it also provides an intuitive understanding of the behavior 
of such equations. 

We shall obtain only qualitative conclusions from these arguments, but they will be 
quite valuable. A number of quantitative solutions to the time-independent Schroe-
dinger equation for various potentials will be found in the following chapters. We 
shall obtain those solutions from standard analytical techniques for solving differen-
tial equations. A quantitative solution to the time-independent Schroedinger equa-
tion will also be found in Appendix G. That solution is obtained by using a numerical 
technique that is based on the same ideas used in the qualitative arguments of this 
section, and so the student may wish to read that appendix after reading this section. 

We begin our arguments by writing the time-independent Schroedinger equation as 
a* 

dx 2  = 
	[V(x) — E] t/ 	 (5-45) 

The properties of this differential equation depend, among other things, upon the 
form of the potential energy function V(x). This is as it should be since V(x) deter-
mines the force acting on the particle whose behavior is supposed to be described by 
the solutions to the differential equation. We consequently cannot say much about 
the properties of the differential equation until we say something about V(x), so we 
shall do this first. 

In Figure 5-9 we specify the form of V(x) that we shall use in our arguments by 
plotting V versus its independent variable x. The form has been chosen so that it 

X  
Equilibrium 	 Dissociation 
separation 	 separation 

Figure 5-9 The potential energy V(x) for an atom that can be bound to a similar atom to form 
a diatomic molecule, plotted as a function of the separation between the centers of the two 
atoms. 
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contains features which will allow us to illustrate several interesting points, but the 
form also has physical significance. It represents the potential energy for an atom 
that can be bound to a similar atom and form a diatomic molecule. In this case the 
x coordinate represents the separation between the centers of the two atoms. The 
minimum in V(x) occurs at the equilibrium separation, and at the minimum the force 
acting on the atom is F = — dV(x)/dx = 0. As the separation decreases from the equi-
librium value a repulsive force develops in the direction of increasing separation, and 
it becomes larger as the atoms get closer. As the separation increases from the equi-
librium value an attractive force develops in the direction of decreasing separation. 
But if the separation exceeds the disassociation separation indicated in Figure 5-9, 
the force drops to zero since the molecule is broken and the atoms no longer interact. 

With our choice of V(x) the time-independent Schroedinger equation, (5-45), begins 
to assume a specific form. Since this differential equation contains the total energy E 
in a crucial location, however, we must also choose its value in order that the equation 
have properties which are specific enough to make them easy to discuss. The value 
that we choose is indicated in Figure 5-10 by the horizontal line: energy = E = const. 
This figure also replots the curve: energy = V(x). We choose the total energy E in 
such a way that the molecule is bound (classically the separation distance x between 
the atoms must be between the values x' and x" shown in the figure), but the exact 
value of E that we choose is, at this stage, arbitrary. We shall not have to say any-
thing about the combination of parameters 2m/h 2, appearing in the differential equa-
tion, other than that it has a positive value. 

Our argument will consider the differential equation, (5-45), as a prescription which 
determines the value of the second derivative d 2 1///dx 2  of the solution, at a certain x, 
in terms of the values of (2m/h 2)[V(x) — E] and of the solution i/i itself, at that x. This 
will allow us to study important properties of the equation in terms of the general 
shape of the curve traced by a plot of ÿr versus x. Thus we shall obtain a geometrical 
interpretation of the differential equation. 

We shall be particularly concerned with the sign of d 2 tP/dx 2  because it is a property 
of second derivatives that a curve, of the dependent variable plotted versus the inde-
pendent variable, is concave upwards wherever the second derivative is positive and 
concave downwards wherever the second derivative is negative. Students not already 
familiar with this property should inspect Figure 5-11, which shows a case in which 
the slope of the curve of versus x is negative for small x, becomes less negative 
with increasing x, goes through zero, and then becomes positive as x continues to 

V(x) 

E 

0 	x' 	x" 

Figure 5-10 The potential energy V(x) used in qualitative arguments concerning the 
solutions to the time-independent Schroedinger equation, and the total energy E 
chosen for these arguments. 

X  



0 

Figure 5-11 A curve which is concave upwards. The value of the first derivative of the 
function plotted by the curve increases with increasing x, so the second derivative is 
positive. 

increase. The slope, which is equal to dpi/dx, always increases in numerical value with 
increasing x. Therefore the rate of change of slope, which is equal to d2Ji/dx 2, is 
always positive. The curve in this figure is said to be concave upwards. Figure 5-12 
shows a case in which the curve is said to be concave downwards Similar consider-
ations prove that in this case d 2 1/r/dx 2  is always negative. 

Now note that in Figure 5-10 there are two intersections of the line energy = E and 
the curve energy = V(x). These intersections occur at x = x' and x = x", which divide 
the x axis into three regions: x < x', x' < x < x", and x > x". In the first and third 
regions the quantity [V(x) — E] is positive since the value of V(x) is everywhere 
greater than the value of E in these regions. In the second region [V(x) — E] is 
negative. Inspection of (5-45) then shows that the sign of d2 t/J/dx2  is the same as the 
sign of in the first and third regions, and it is opposite to the sign of i/i in the 
second region, since the sign of 2m/h 2  is positive. This means that in the first and 
third regions the curve of i/r versus x will be concave upwards if the value of /i itself 
is positive, and it will be concave downwards if the value of Li is negative. In the 
second region the curve will be concave downwards if ifi is positive, and it will be 
concave upwards if t/r is negative. The various possibilities are shown in Figure 5-13. 
We have now laid the groundwork for our geometrical interpretation of the time-
independent Schroedinger equation. 

For a given form of the potential energy V(x), the differential equation enforces 
a relation between d 2  Ji/dx 2  and Ii that determines the general behavior of >/i. If we 
also specify the value of çi and its first derivative ch/i/dx at some value of the inde-
pendent variable x, then the particular behavior of the dependent va riable ti is deter-
mined for all values of x. The situation is completely analogous to situations found 

0 

Figure 5-12 A curve which is concave downwards. The value of the first derivative of 
the function decreases with increasing x, so the second derivative is negative. 
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Figure 5-13 Illustrating the relation between the sign of >/i and the sign of d 2>/i/dx2 
 in the regions defined by the sign of [V(x) — E]. The relation can be summarized by 

stating that /i is concave away from the x axis wherever [V(x) — E] > 0, and concave 
toward the x axis wherever [V(x) — E] < O. 

in classical mechanics. Consider the differential equation for a classical simple har-
monic oscillator 

d2x_ Cx 
dt2 	m 

This is just Newton's law of motion, a = F/m, with a linear restoring force of force 
constant C. In this case x is the dependent variable, and the independent variable is 
t, but otherwise the analogy is complete. The differential equation enforces a relation 
between x and its second derivative, which determines the general behavior of x as 
a function of t. And if we also specify the value of x and its first derivative dx/dt at 
some value of t (the initial conditions of the motion), then the particular behavior of 
x is determined for all values of t. 

Thus it should be possible to use the time-independent Schroedinger equation, for 
the V(x) and E we have chosen, to determine the behavior of i/i for all x in terms of 
assumed values of tfr and dpi/dx for some particular x. Quantitative calculations that 
do this are found in the next chapters and, particularly, in Appendix G. Here we shall 
obtain qualitative results from arguments based upon the features of the differential 
equation just developed. The arguments will be presented as "thought calculations," 
in the same spirit as the thought experiments of Einstein or Bohr. 

On curve 1 of Figure 5-14 we indicate qualitatively the results of a thought calcula-
tion, which started with assumed values of >/i and di/r/dx at a convenient point x o  in 
the second region, and then traced out the behavior of ÿr in the direction of increasing 
x. Since we took the initial value of >/i to be positive in the region x' < x < x", we 
found the curve describing 1,G initially to be concave downwards. It remained concave 
downwards until it passed into the third region, x > x", where [V(x) — E] changes 
sign. Although the slope of the curve was negative at x = x", it soon became zero, 
and then positive. Then tit started to increase in value, and matters rapidly went from 
bad to worse. The reason is that the differential equation shows that the rate of 
change of slope, i.e., d2 i/i/dx 2, is proportional to the distance from the curve to the 
axis, i.e., >/r. This first calculation produced a iÿ that goes to infinity as x becomes 
large. We found (part of) a solution to the differential equation, but it was not an 
acceptable solution because an acceptable eigenfunction remains finite. 

Curve 2 of Figure 5-14 indicates the results of another attempt made to find an 
acceptable solution. There was no point in changing the assumed initial value of ik 

0 
CO 



Figure 5-14 Three attempts at finding an acceptable solution to a time-independent 
Schroedinger equation for an assumed value of the total energy E. The first two (1,2) 
failed because the solution became infinite at large x. The third (3) gave the solution 
with acceptable behavior at large x, but failed because the solution became infinite 
at small x (dashed curve). 

as this would only expand or contract the vertical scale of the curve because of the 
linearity of the differential equation. What was done was to change the assumed 
initial value of dtÿ/dx. The attempt was not successful because tk became negative in 
the region where [V(x) — E] is positive. The curve became concave downwards and 
went to negative infinity. 

The difficulty in obtaining an acceptable eigenfunction should now be apparent. It 
should also be apparent that, by making exactly the right choice for the initial value 
of dtÿ/dx, it is possible to find a tk whose acceptable behavior with increasing x is as 
indicated by curve 3 of Figure 5-14. For this tk the curve is concave upwards in the 
third region because it remains above the x axis. Nevertheless, the curve does not 
turn up because it gets closer and closer to the axis with increasing x, and the closer 
it gets the less concave upwards it becomes. That is, d2zfr/dx 2  approaches zero as 

approaches zero because the differential equation says these two quantities are 
proportional. 

In Figure 5-14 we also indicate with a dashed curve the results of extending the 
tk of curve 3 in the direction of decreasing x. From the preceding discussion we must 
expect that, in general, tk will go to either positive or negative infinity when extended 
to decreasing x. This cannot be prevented by adjusting the initial choice of dtÿ/dx, as 
that would disturb the acceptable behavior for large x. Nor can the infinite value of 
1i at small x be prevented by joining two different tk functions with different slopes 
at x = x o. This is ruled out by the requirement that for an acceptable eigenfunction 
dtk/dx is everywhere continuous. For a similar reason we cannot try a discontinuity 
in i/i itself. We are forced to conclude that, for the particular value of the total energy 
E that was initially chosen, there is no acceptable solution to the time-independent 
Schroedinger equation. The relation between vi and its second derivative d21/î/dx 2 , 
imposed by the differential equation for the given V(x) and that E, is such that tÿ 
will approach ± co at either large x or small x (or both). The solution to the equa-
tion is unstable, in the sense that it has a pronounced tendency to go to infinity in 
regions where E < V. 

By repeating this procedure for many different choices of the energy E, however, it 
will eventually be possible to find a value E 1  for which the time-independent Schroe-
dinger equation has an acceptable solution tk 1 . In fact, there will, in general, be a num-
ber of allowed values of total energy, E 1 , E2, E3, ... for which the time-independent 
Schroedinger equation has acceptable solutions tÿ1, lÿ2, 03, .... In Figure 5-15 we 
indicate the form of the first three acceptable solutions. The behavior of tÿ 1  for both 
small and large x is the same as the behavior of the function shown in curve 3 of 
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1 

0 

—1 

Figure 5-15 The form of the acceptable eigenfunctions corresponding to the three lowest 
allowed energy states for a potential with a minimum. At x = x o  all three eigenfunctions 
have the same value, but ÿr3 has the largest curvature because it corresponds to the 
highest energy of the three. The solutions are for the potential in Figure 5-10, and they 
are not accurately left-right symmetric because the potential is not symmetric about its 
minimum. 

Figure 5-14 for large x. For x < x o, the behavior of 02 is at first similar to the behav-
ior of `V 1, but, since its second derivative is relatively larger in magnitude, 0 2  crosses 
the axis at some value of x less than x o  but greater than x'. When this happens, the 
sign of the second derivative reverses and the function becomes concave upwards. 
At x = x' the second derivative reverses again and, for x < x', the function gradually 
approaches the x axis. 

From Figure 5-15 we can see that the allowed energy E2  is larger than the allowed 
energy E 1•. Consider the point x o  where both t/ i i  and 02 have the same value. It is 
apparent from the figure that at this point the rate of change of the slope for the latter 
exceeds the same quantity for the former, i.e. 

d2 iP2 	d20 1  
dx 2  > dx2  

Using this in the time-independent Schroedinger equation, (5-45), we find that 

1 17(x) — E21 > 1V(x) — E1 1 
Consulting Figure 5-10, it is clear that if this is true at x o  then 

E2 > E 1  

since E > V(x) at x o . From a similar argument we can show that E3 > E2. It is also 
apparent that the energy differences E2 — E1, E3 — E2, etc., are not infinitesimals 
since, for example, the difference in the first inequality above is not an infinitesimal. 
Thus the allowed values of energy are well separated and form a discrete set of ener-
gies. For a particle moving under the influence of a time-independent potential V(x), 
acceptable solutions to the time-independent Schroedinger equation exist only if the 
energy of the particle is quantized, that is, restricted to a discrete set of energies 
E1, E2, E3, ... . 

This statement is true as long as the relation between the potential energy V(x) 
and the total energy E is similar to that shown in Figure 5-10, in the sense that there 
are two values of the coordinate, x' and x", with [V(x) — E] positive for all x < x' and 
also positive for all x > x". But for a potential of the type illustrated in Figure 5-9, 
that is, a potential which has a finite limiting value V as x becomes very large, there is 
generally room only for a finite number of discrete allowed energy values which 
satisfy the relation E < V. This is illustrated in Figure 5-16. For E > V, the situation 
changes. Now the molecule is unbound (classically the separation distance x between 
the atoms could be any value larger than x'). As far as the time-independent 

 

x 

 

  



0 	 x 

Figure 5-16 Illustrating discretely separated allowed energies E„ lying below the limiting 
value VI  of a potential V(x), and the continuum of E„ lying above. Since En+1 

— En 
decreases as V(x) approaches V I , if the approach is gradual enough there can be an 
infinite number of En  < VI . But generally there are only a finite number. 

Schroedinger equation is concerned, there are now only two regions of the x axis: 
x < x' and x > x'. In the second region [V(x) — E] will be negative for all values of 
x, no matter how large. But, when [V(x) — E] is negative, t/i is concave downwards if 
its value is positive, and concave upwards if its value is negative. It always tends to 
return to the axis and is, therefore, an oscillatory function. Consequently, there will 
be no problem of i/i(x) going to infinity for large values of x. Since we can always make 
I'(x) gradually approach the axis for small values of x by a proper initial choice of 
dpi/dx, we shall be able to find an acceptable eigenfunction for any value of E > V. 
Thus the allowed energy values for  El  are continuously distributed, and are said to 
form a continuum. It is evident that if the potential V(x) is restricted in value for 
small values of x, or for both large and small values of x, then the allowed energies 
will form a continuum for all energies greater than the lowest V. 

The conclusion of our arguments can be stated concisely as follows: 
When the relation between the total energy of a particle and its potential energy is 

such that classically the particle would be bound to a limited region of space because 
the potential energy would exceed the total energy outside the region, then Schroedinger 
theory predicts that the total energy is quantized. When that relation is such that the 
particle is not bound to a limited region, then the theory predicts the total energy can 
have any value. 

Since in classical mechanics a particle bound to a limited region would move 
periodically between the limits of the region, the Wilson-Sommerfeld rules of the old 
quantum theory would also predict a quantization of the particle's energy in such 
circumstances; but these quantization rules were a postulate of the old quantum 
theory, which had a justification in the de Broglie relation only for certain special 
cases. In his first paper on quantum mechanics, Schroedinger wrote: 

"The essential point is the fact that the mysterious `requirement of integralness' no longer 
enters 'into the quantization rules but has been traced, so to speak, a step further back having 
been shown to result from the finiteness and single-valuedness of a certain space function (an 
eigenfunction)." 

Example 5 -12. Use the arguments developed in this section to draw qualitative conclusions 
concerning the form of the eigenfunction for one of the higher energy states of a simple har-
monic oscillator. Then compare the corresponding probability density function with what 
would be predicted for a classical simple harmonic oscillator of the same energy. 
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Figure 5-17 The potential energy V(x) and one of 
the higher allowed values of the total energy E for a 
simple harmonic oscillator. 

► The potential V(x) for a simple harmonic oscillator (see Example 5-3) is plotted by the curve 
in Figure 5-17. In the same figure one of the higher allowed values of the total energy E is 
plotted by a horizontal line. According to the time-independent Schroedinger equation, (5-45) 

d2111 = 
dx2 m[

V(x) — EN/ 

the eigenfunction ' will be an oscillatory function throughout the region where [V(x) — E] is 
negative since d2  /i/dx 2  will be negative (concave downward) if 0 is positive in that region, 
while d20/dx 2  will be positive (concave upwards) if 0  is negative in that region. However, 0 
will oscillate less rapidly near the ends of the region than it does near the center since the 
magnitude of d 20/dx2, which determines the rapidity of oscillation of 0, is proportional to the 
magnitude of [V(x) — E], and the difference between V(x) and E becomes smaller as the ends 
of the region are approached. Therefore, the separation between the nodes of the oscillatory 
function increases near the ends of the region, in the manner indicated in Figure 5-18. 
The figure shows the amplitude of the oscillations in >fi increasing as the ends of the region are 
approached. The reason is that 0  must become larger in magnitude where it "bends over," if 
[V(x) — E] becomes smaller in magnitude, in order that d20/dx 2 , which is proportional to 
their product, continue to have a large enough magnitude to make it bend. Note that Figure 
5-18 indicates 0  gradually approaches the axis outside the region where [V(x) — E] is negative, 
as is required for an acceptable bound state eigenfunction. Also note that as rfi crosses the 
points where [V(x) — E] changes sign, it has no curvature because both that quantity and 
d20/dx2  are zero at these points. 

x" 

Figure 5 -18 The eigenfunction for the thirteenth allowed energy of the simple harmonic 
oscillator. The classical limits of motion are indicated by x' and x". 
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Figure 5-19 The solid curve is the probability density function for the thirteenth allowed  

energy of the simple harmonic oscillator. The dashed curve is the classical probability  
density function for simple harmonic motion with the same energy, and it follows closely the  
average value of the fluctuating quantum mechanical function. Compare with these functions  
for the first allowed energy shown in Figure 5-3.  

The probability density function is essentially the square of fi, and is indicated in Figure  
5-19 by a solid curve. The dashed curve in the same figure indicates the probability density  
that would be expected in classical mechanics for a particle executing simple harmonic os-
cillations in the same potential with the same total energy. As we discussed at length in  
Example 5-6, the classical probability density becomes relatively large near the ends of the  
region where [V(x) — E] is negative since the particle moves most slowly near the ends. The  
figure actually shows the classical and quantum mechanical probability densities for a state of  
only moderately large energy E (actually E 13 ), but it makes quite apparent the nature of the  
correspondence between the probability densities found in the classical limit of very large  
values of E(En  as n —' oo). In this limit the quantum mechanical probability density fluctuates  
within such small distances that only its average behavior, which agrees with the classical pre-
diction, can be detected experimentally. Also, in the classical limit the quantum mechanical  
probability density does not penetrate a measurable distance outside the region where  
[V(x) — E] is negative because the penetration distance is comparable to the distance in which  
it fluctuates. This agrees with the sharp cutoff predicted by the classical probability density.  
For an idealized simple harmonic oscillator, V(x) remains proportional to x 2  even for very  
large values of x 2, and so all the allowed energies are discretely separated.  4 

5-8 SUMMARY  

A particular quantum mechanical system is described by a particular potential energy  

function. We have found that if the potential is time-independent, i.e., can be written  

V(x), the Schroedinger equation for the potential leads immediately to the corre-
sponding time-independent Schroedinger equation. We have also found that accept-
able solutions to the time-independent Schroedinger equation exist only for certain  

values of the energy, which we list in order of increasing energy as  

E1, E2,E3,..., En , . . 

These energies are called the eigenvalues of the potential V(x); a particular potential  
has a particular set of eigenvalues. The eigenvalues early in the list may be discretely  

separated in energy. However, unless the potential increases without limit for both  
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very large and very small values of x, the eigenvalues become continuously distributed  

in energy beyond a certain energy.  
Corresponding to each eigenvalue is an  eigenfunction 

i (x), Y' 2(x), Y' 3(x), ... , Y' n (x), .. •  

which is a solution to the time-independent Schroedinger equation for the potential 
V(x).  

For each eigenvalue there is also a corresponding wave function 

1(x,t),'P2(x,t),'3(x,t), ... ,T , i(x,t),  .. . 

From (5-44) we know that//''these  wave 
,u/ 
 functions are 

1V 1 (x)e
-iEl t/h, Y2 2 (x)e

-iE2t/ft
, t 3 (x)e-

iE3t/h, ... ,^ I,n(x)e-
iE,,t/h .. • 

 

Each wave function is a solution to the Schroedinger equation for the potential V(x).  

The index n, which takes on successive integral values, and which is employed to  

designate a particular eigenvalue and its corresponding eigenfunction and wave  

function, is called the quantum number. If the system is described by the wave function  
LPn (x,t), it is said to be in the quantum state n.  

Each of the wave functions iP n (x,t) is a particular solution to the Schroedinger 
equation for the potential V(x). Since that equation is linear in the wave function, we 
expect that any linear combination of these functions will also be a solution. This was 
verified in Example 5-2 for the case of a linear combination of two wave functions, but 
the proof can clearly be extended to show that an arbitrary linear combination of all 
wave functions which are solutions to the Schroedinger equation for a particular 
potential V(x), i.e. 

kP(x,t) = c1 1P1(x,t) + c2 tP2(x,t) + • • • + cn WPn(x,t) + • • • 	(5-46)  
is also a solution to that Schroedinger equation. In fact, this expression gives the most 
general form of the solution to the Schroedinger equation for a potential V(x). Its 
generality can be appreciated by noting that it is a function which is composed of a 
very large number of different functions combined in proportions governed by the 
adjustable constants cn .  

It should be noted that the time-independent Schroedinger equation is also a linear equa-
tion but, in contrast to the Schroedinger equation, it contains explicitly the total energy E. 

 Therefore, an arbitrary linear combination of different solutions will satisfy the equation only  
if they all correspond to the same value of E. We shall see in the next chapter that there are 
two different solutions to the time-independent Schroedinger equation that do correspond 
to the same value of E because the equation involves a second derivative. We shall also see 
that both solutions are not always acceptable, even for an allowed value of E.  

Example 5 -13. When a particle is in a state such that a measurement of its total energy can 
lead only to a single result, the eigenvalue E, 

/
it is described by the wave function 

= ^(x)e
-iEt/hi  

An example (whose three-dimensionality makes no difference here) would be an electron in  

the ground state of a hydrogen atom. In this case, the probability density function 
* _ 1 * (x)e  + iEt/ii (x)e - iEt/ 1 

 — * (x)t
, 
 (x)  

does not depend on time, as we have seen before. Consider a particle in a state such that a 
measurement of its total energy could lead to either of two results, the eigenvalue E 1  or the 
eigenvalue E2. Then the wave function describing the particle is 

= eltkl(x)e
-iEttm 

 + c202(x)e
- iE2t/h  

An example would be an electron that is in the process of making a transition from an excited  

state to the ground state of the atom. Show that in this case the probability density function is  

an oscillatory function of time, and calculate the oscillation frequency.  



	

■ We have for the probability density 	
/I'' 	 '//,, 

	

T*41  = [c1 / (x)e+iEitrn + c / 	
iE 

(x)e+2t/i][c1Y'1(x)e
- iEit/3r + 

 c2Y'2(x)e -

iE2t/fir] 

Multiplying the two terms in brackets, we obtain four terms 

* = ciclt/4(x)I1(x) + cic2Ji(x)k 1/2(x)  
+ cic1 i(x)01(x)e

i(E2 -Ei)t/fi 	 (5-47)  

+ cic2/4(x)/2(x)e
-i(E2-Ei)t/*  

The time dependences cancel in the first two, but not in the last two. These two terms contain  

complex exponentials that oscillate in time at frequency v. By rewriting the complex expo-
nentials as in (5-41a) and (5-41b), we see immediately that  

E22^h 1 

 E2 

 h 

E1  
V  	 (5-48)  

t 

Some very interesting comments can be made about the results of Example 5-13. 
Consider an electron in the ground state of a hydrogen atom. Since the electron 
could be found at any location where the probability density has an appreciable 
value, the charge it carries would not be confined to a particular location. Thus, when 
speaking of average properties of the electron in the atom, it is appropriate to speak 
of its charge distribution, which is proportional to its probability density. Since the 
probability density is independent of time in the ground state, the charge dist ribution 
is also. But even in classical electromagnetism a static distribution of charge does 
not emit radiation. We see that quantum mechanics provides a way of resolving the 
paradox of old quantum theory concerning the stability, against the emission of 
radiation, of atoms in their ground states. 

Atoms that are excited do emit radiation, and they eventually return to their 
ground states. Consider an electron in the process of making a transition from an ex-
cited state to the ground state of a hydrogen atom. Its probability density, and there-
fore the associated charge distribution, are oscillating in time at the frequency given 
by (5-48) 

E2  - E1  

h  

where E2 is the energy of the excited state and E 1  is the energy of the ground state. Ac-
cording to classical electromagnetism, this charge distribution would be expected to 
emit radiation at the same frequency; but this is also precisely the frequency of the 
photon that Bohr and Einstein say should be emitted, since the energy carried by the 
photon is E2 - E 1 . Of course this cannot happen for an electron in the ground 
state of the atom because there is no state of lower energy for the ground state to 
mix with and produce an oscillatory probability density or charge distribution. 

In addition to predicting correctly the frequencies of the photons emitted in atomic 
transitions, quantum mechanics also predicts correctly the probabilities per second 
that the transitions will take place. We shall obtain these predictions in Chapter 8 
by a simple extension of the calculation of Example 5-13. It will be seen there that the 
perplexing selection rules of old quantum theory follow as an immediate consequence 
of these predictions. 

Schroedinger stressed the fact that his theory provides a physical picture of the 
process of emission of radiation by excited atoms that is very much more appealing 
than that provided by the Bohr theory. In discussing the advantages of his theory, 
he wrote: "It is hardly necessary to point out how much more gratifying it would be 
to conceive of a quantum transition as an energy change from one vibrational mode 
to another than to regard it as a jumping of electrons."  
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QUESTIONS 
1. Why are there difficulties in applying the de Broglie postulate, A = h/p, to a particle whose 

linear momentum is of changing magnitude? 
2. How does the de Broglie postulate enter into the Schroedinger theory? 
3. Is the experimental evidence that the de Broglie-Einstein relation,  y  = E/h, applies to 

wave functions for material particles as firm as the evidence that it applies to electro-
magnetic waves and photons? Is the evidence that it applies to wave functions as firm 
as the evidence that A = h/p applies to wave functions? 

4. What would be the effect on the Schroedinger theory of changing the definition of total 
energy in the relation y = E/h by adding the constant rest mass energy of the particle? 

5. Why is the Schroedinger equation not valid for relativistic particles? 
6. Did Newton derive his laws of motion, or did he obtain them from plausibility argu-

ments? 
7. Give a reason why the Schroedinger equation is written in terms of the potential energy, 

and not in terms of the force. 
8. Why is it so important for the Schrodinger equation to be linear in the wave function? 
9. The mass m of a particle appears explicitly in Schroedinger's equation, but its charge e 

does not, even though both may effect its motion. Why? 
10. The wave equations of classical physics contain a second space derivative and a second 

time derivative. The Schroedinger equation contains a second space derivative and a first 
time derivative. Use these facts to explain why the solutions to the classical wave equa-
tions can be real functions, while the solutions to the Schroedinger equation must be com-
plex functions. 

11. Why does the Schroedinger equation contain a first time derivative? 
12. Explain why it is not possible to measure the value of a complex quantity. 
13. In electromagnetism we compute the intensity of a wave by taking the square of its am-

plitude. Why do we not do exactly the same thing with quantum mechanical waves? 
14. Consider a water wave traveling across the surface of the ocean. If no one were observing 

the wave, or even thinking about it, would you say that the wave exists? Would you auto-
matically give the same answer for a quantum mechanical wave? If not, why not? 

15. What is the basic connection between the properties of a wave function and the behavior 
of the associated particle? 

16. Why does the probability density function have to be everywhere real, non-negative, and 
of finite and definite value? 

17. Explain in words what is meant by normalization of a wave function. 
18. If the normalization condition is not applied, why can a wave function be multiplied by 

any constant factor and still remain a solution to the Schroedinger equation? 
19. Why does Schroedinger quantum mechanics provide only statistical information? In your 

opinion, does this reflect a failing of the theory, or a property of nature? 
20. Since the wave function describing the behavior of a particle satisfies a differential equa-

tion, its evolution in time is perfectly predictable. How does this fact fit in with the un-
certainty principle? 

21. State in words the meaning of the expectation value of x. 
22. Why is it necessary to use a differential operator in calculating the expectation value of 

p? 
23. Are there other examples in science, engineering, or mathematics in which differential 

operators are related to physical quantities? 
24. Do you think it is legitimate to say that we have solved a differential equation by guessing 

the form of the solution and then verifying the guess by substitution? 
25. Explain briefly the meaning of a well-behaved eigenfunction in the context of Schroedin-

ger quantum mechanics. 



26. Why must an eigenfunction be well behaved in order to be acceptable in the Schroedinger 
theory? 

27. Explain in two or three sentences how the quantization of energy is related to the well-
behaved character of acceptable eigenfunctions. 

28. Why is i/i necessarily an oscillatory function if V(x) < E? 

29. Why does tfi tend to go to infinity if V(x) > E? 

30. Is it ever possible for an allowed value of the total energy E of a system to be less than 
the minimum value of its potential energy V(x)? Give a qualitative argument, along the 
lines of the arguments in Section 5-7, to justify your answer. 

31. We have seen several examples of the general result that the lowest allowed value of the 
total energy E, for a particle bound in a potential V(x), lies above the minimum value of 
V(x). Use the uncertainty principle in a qualitative argument to explain why this must 
be so. 

32. If a particle is not bound in a potential, its total energy is not quantized. Does this mean 
the potential has no  effect on the behavior of the particle? What effect would you expect 
it to have? 

PROBLEMS 

1. If the wave functions `F 1 (x,t), P 2(x,t), and T 3(x,t) are three solutions to the Schroedinger 
equation for a particular potential V(x,t), show that the arbitrary linear combination 
I(x,t) = c 1  P 1(x,t) + c 2T2(x,t) + c 3 'P 3(x,t) is also a solution to that equation. 

2. At a certain instant of time, the dependence of a wave function on position is as shown in 
Figure 5-20. (a) If a measurement that could locate the associated particle in an element 
dx of the x axis were made at that instant, where would it most likely be found? (b) Where 
would it least likely be found? (c) Are the chances better that it would be found at any 
positive value of x, or are they better that it would be found at any negative value of x? 
(d) Make a rough sketch of the potential V(x) which gives rise to the wave function. 
(e)To which allowed energy does the wave function correspond? 

3. (a) Determine the frequency v of the time-dependent part of the wave function, quoted in 
Example 5-3, for the lowest energy state of a simple harmonic oscillator. (b) Use this value 
of v, and the de Broglie-Einstein relation E = hv, to evaluate the total energy E of the 
oscillator. (c) Use this value of E to show that the limits of the classical motion of the 
oscillator, found in Example 5-6, can be written as x = 

4. By evaluating the classical normalization integral in Example 5-6, determine the value of 
the constant B 2  which satisfies the requirement that the total probability of finding the 
particle in the classical oscillator somewhere between its limits of motion must equal one. 

5. Use the results of Examples 5-5, 5-6, and 5-7 to evaluate the probability of finding a 
particle, in the lowest energy state of a quantum mechanical simple harmonic oscillator, 

± h 112
/(Cm)

1 14• 
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Figure 5-20 The space dependence of a wave function considered in Problem 2, evaluated 
at a certain instant of time. 
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within the limits of the classical motion. (Hint: (i) The classical limits of motion are ex-
pressed in a convenient form in the statement of Problem 3c. (ii) The definite integral 
that will be obtained can be expressed as a normal probability integral, or an error func-
tion. It can then be evaluated immediately by consulting mathematical handbooks which 
tabulate these quantities. Or, the integral can easily be evaluated by expanding the ex-
ponential as an inifinite series before integrating, and then integrating the first few terms 
in the series. Alternatively, the definite integral can be evaluated by plotting the integrand 
on graph paper, and counting squares to find the area enclosed between the integrand, 
the axis, and the limits ) 

6. At sufficiently low temperature, an atom of a vibrating diatomic molecule is a simple 
harmonic oscillator in its lowest energy state because it is bound to the other atom by a 
linear restoring force. (The restoring force is linear, at least approximately, because the 
molecular vibrations are very small.) The force constant C for a typical molecule has 
a value of about C 10 3  nt/m. The mass of the atom is about m 10 -26  kg. (a) Use 
these numbers to evaluate the limits of the classical motion from the formula quoted in 
Problem 3c. (b) Compare the distance between these limits to the dimensions of a typical 
diatomic molecule, and comment on what this comparison implies concerning the be-
havior of such a molecule at very low temperatures. 

7. Use the particle in a box wave function verified in Example 5-9, with the value of A deter-
mined in Example 5-10, to calculate the probability that the particle associated with the 
wave function would be found in a measurement within a distance of a/3 from the right-
hand end of the box of length a. The particle is in its lowest energy state. (b) Compare 
with the probability that would be predicted classically from a very simple calculation 
related to the one in Example 5-6. 

8. Use the results of Example 5-9 to estimate the total energy of a neutron of mass about 
10 -27  kg which is assumed to move freely through a nucleus of linear dimensions of about 
10 -14  m, but which is strictly confined to the nucleus. Express the estimate in MeV. It 
will be close to the actual energy of a neutron in the lowest energy state of a typical 
nucleus. 

9. (a) Following the procedure of Example 5-9, verify that the wave function 

`h( x t = 
A sin tax  e  - `Earn 	

- a/2 < x < + a/2 
,) 

0 	 x < —a12 or x > + a/2 

is a solution to the Schroedinger equation in the region — a/2 < x < +a12 for a particle 
which moves freely through the region but which is strictly confined to it. (b) Also deter-
mine the value of the total energy E of the particle in this first excited state of the system, 
and compare with the total energy of the ground state found in Example 5-9. (c) Plot the 
space dependence of this wave function. Compare with the ground state wave function 
of Figure 5-7, and give a qualitative argument relating the difference in the two wave 
functions to the difference in the total energies of the two states. 

10. (a) Normalize the wave function of Problem 9, by adjusting the value of the multiplicative 
constant A so that the total probability of finding the associated particle somewhere in the 
region of length a equals one. (b) Compare with the value of A obtained in Example 5-10 
by normalizing the ground state wave function. Discuss the comparison. 

11. Calculate the expectation value of x, and the expectation value of x 2, for the particle 
associated with the wave function of Problem 10. 

12. Calculate the expectation value of p, and the expectation value of p2 , for the particle 
associated with the wave function of Problem 10. 

13. (a) Use quantities calculated in the preceding two problems to calculate the product of 
the uncertainties in position and momentum of the particle in the first excited state of the 
system being considered. (b) Compare with the uncertainty product when the particle is 
in the lowest energy state of the system, obtained in Example 5-10. Explain why the un-
certainty products differ. 



^ 14. (a) Calculate the expectation values of the kinetic energy and the potential energy for a  

particle in the lowest energy state of a simple harmonic oscillator, using the wave function  

of Example 5-7. (b) Compare with the time-averaged kinetic and potential energies for a  

classical simple harmonic oscillator of the same total energy.  

15. In calculating the expectation value of the product of position times momentum, an am-
biguity arises because it is not apparent which of the two expressions  
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xp = J  `I^*x ^ —i^i x̂ )`Fdx  

-  

px = 

should be used. (In the first expression 
xW.) (a) Show that neither is acceptable 
that xp should be real since it is 

f^xp= 	T*  

J  
-00  

x 

measurable. 

CO  

T*
\

— i^i ^ x`Pdx  

ô/ôx operates on W; in 
because both violate 

(b) Then show that 

— iii ax ^ +—i% ax  Ix  

the second it operates on  
the obvious requirement 

the expression 

T dx  
2  

- ^ 

is acceptable because it does satisfy this requirement. (Hint: (i) A quantity is real if it 
equals its own complex conjugate. (ii) Try integrating by parts. (iii) In any realistic case 
the wave function will always vanish at x = + oo.) 

16. Show by direct substitution into the Schroedinger equation that the wave function 
tiP(x,t) = 1/i(x)e  

satisfies that equation if the eigenfunction 0(x) satisfies the time-independent Schroe-
dinger equation for a potential V(x). 

17. (a) Write the classical wave equation for a string of density per unit length which varies 
with x. (b) Then separate it into two ordinary differential equations, and show that the 
equation in x is very analogous to the time-independent Schroedinger equation. 

18. By using an extension of the procedure leading to (5-31), obtain the Schroedinger equa-
tion for a particle of mass m moving in three dimensions (described by rectangular coor-
dinates x, y, z).  

19. (a) Separate the Schroedinger equation of Problem 18, for a time-independent potential, 
into a time-independent Schroedinger equation and an equation for the time dependence 
of the wave function. (b) Compare to the corresponding one-dimensional equations, (5-37) 
and (5-38), and explain the similarities and the differences. 

20. (a) Separate the time-independent Schroedinger equation of Problem 19 into three time-
independent Schroedinger equations, one in each of the coordinates. (b) Compare them 
with (5-37). (c) Explain clearly what must be assumed about the form of the potential 
energy in order to make the separation possible, and what the physical significance of 
this assumption is. (d) Give an example of a system that would have such a potential. 

21. Starting with the relativisitic expression for the energy, formulate a Schroedinger equa-
tion for photons, and solve it by separation of variables, assuming V = O. 

22. Consider a particle moving under the in fluence of the potential V(x) = Clxl, where C is a 
constant, which is illustrated in Figure 5-21. (a) Use qualitative 'arguments, very similar 
to those of Example 5-12, to make a sketch of the first eigenfunction and of the tenth 
eigenfunction for the system. (b) Sketch both of the corresponding probability density 
functions. (c) Then use the classical mechanics to calculate, in the manner of Example 5-6, 
the probability density functions predicted by that theory. (d) Plot the classical proba-
bility density functions with the quantum mechanical probability density functions, and 
discuss briefly their comparison. 
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Figure 5-21 A potential function considered in 
Problem 22. 

23. Consider a particle moving in the potential V(x) plotted in Figure 5-22. For the following 
ranges of the total energy E, state whether there are any allowed values of E and if 
so, whether they are discretely separated or continuously distributed. (a) E < V0 , (b) 
V0  < E< V1 , (c) V1  < E < V2 , (d) V2 < E < V3 , (e) V3 < E. 

V(x) 

V3 00 

co  -( V2 

Vo 

   

x 
0 

Figure 5-22 A potential function considered in 
Problem 23. 

24. Consider a particle moving in the potential V(x) illustrated in Figure 5-23, that has a 
rectangular region of depth Vo , and width a, in which the particle can be bound. These 
parameters are related to the mass m of the particle in such a way that the lowest allowed 
energy E 1  is found at an energy about V0/4 above the "bottom." Use qualitative argu-
ments to sketch the approximate shape of the corresponding eigenfunction t/i 1 (x). 

V(x) 

Vo 

E1 

+a/2 
Figure 5-23 A potential function considered in 
Problem 24. — a/2 

	
0 

25. Suppose the bottom of the potential function of Problem 24 is changed by adding a bump 
in the center of height about V0/10 and width a/4. That is, suppose the potential now 



looks like the illustration of Figure 5-24. Consider qualitatively what will happen to the 
curvature of the eigenfunction in the region of the bump, and how this will, in turn, a ffect  
the problem of obtaining an acceptable behavior of the eigenfunction in the region out- 
side the binding region. From these considerations predict, qualitatively, what the bump 
will do to the value of the lowest allowed energy E 1 . 
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Figure 5-24 A rectangular bump added to the 
z bottom of the potential of Figure 5-23; for Problem 

25. 

26. Because the bump in Problem 25 is small, a good approximation to the lowest allowed 
energy of the particle in the presence of the bump can be obtained by taking it as the 
sum of the energy in the absence of the bump plus the expectation value of the extra 
potential energy represented by the bump, taking the `P corresponding to no bump to 
calculate the expectation value. Using this point of view, predict whether a bump of the 
same "size," but located at the edge of the bottom as in Figure 5-25, would have a larger, 
smaller, or equal effect on the lowest allowed energy of the particle, compared to the 
effect of a centered bump. (Hint: Make a rough sketch of the product of P*'P and the 
potential energy function that describes the centered bump. Then consider qualitatively 
the effect of moving the bump to the edge on the integral of this product.) 

27. By substitution into the time-independent Schroedinger equation for the potential illus-
trated in Figure 5-23, show that in the region to the right of the binding region the 
eigenfunction has the mathematical form 

i/i(x) = Ae-W2m(Vo - E)/fi)x x > + a/2 

28. Using the probability density corresponding to the eigenfunction of Problem 27, write 
an expression to estimate the distance D outside the binding region of the potential within 
which there would be an appreciable probability of finding the particle. (Hint: Take D to 
extend to the point at which `Y*`Y is smaller than its value at the edge of the binding 
region by a factor of  e -  1 .  This  e -  1   criterion is similar to one often used in the study of 
electrical circuits.) 

29. The potential illustrated in Figure 5-23 gives a good description of the forces acting 
on an electron moving through a block of metal. The energy difference V o  — E, for the 
highest energy electron, is the work function for the metal. Typically, V o  — E ^ 5 eV. 
(a) Use this value to estimate the distance D of Problem 28. (b) Comment on the results 
of the estimate. 

x Figure 5-25 The same rectangular bump as in 
Figure 5-24, but moved to the edge of the potential; 
for Problem 26. 

vo/lo 

a/4 



x 
0 

V(x) 

x 

V(x) 

0 

Figure 5-26 An eigenfunction (top curve) and three possible forms (bottom curves) of the 
potential energy function considered in Problem 30. 
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30. Consider the eigenfunction illustrated in the top part of Figure 5-26. (a) Which of the 
three potentials illustrated in the bottom part of the figure could lead to such an eigen-
function? Give qualitative arguments to justify your answer. (b) The eigenfunction shown is 
not the one corresponding to the lowest allowed energy for the potential. Sketch the form 
of the eigenfunction which does correspond to the lowest allowed energy E 1 . (c) Indicate 
on another sketch the range of energies where you would expect discretely separated 
allowed energy states, and the range of energies where you would expect the allowed 
energies to be continuously distributed. (d) Sketch the form of the eigenfunction which 
corresponds to the second allowed energy E2. (e) To which energy level does the eigen-
function presented in Figure 5-26 correspond? 

31. Estimate the lowest energy level for a one-dimensional infinite square well of width a 
containing a cosine bump. That is, the potential V is 

V = Vo  cos (xx/a) 	 — a/2 < x < + a/2 
V = infinity 	 x < —a/2 or x > + a/2 

where Vo  « n22/2ma2 . 
32. Using the first two normalized wave functions `P 1 (x,t) and'F 2(x,t) for a particle moving 

freely in a region of length a, but strictly confined to that region, construct the linear 
combination 

'P(x,t) = c1'P1(x,t) + c2'V2(x,t) 
Then derive a relation involving the adjustable constants c 1  and c2  which, when satisfied, 
will ensure that `I (x ,t) is also normalized. The normalized'P 1 (x,t) and'P 2(x,t) are obtained 
in Example 5-10 and Problem 10. 

33. (a) Using the normalized "mixed" wave function of Problem 32, calculate the expectation 
value of the total energy E of the particle in terms of the energies E 1  and E2 of the two 
states and of the values c 1  and c2  of the mixing parameters. (b) Interpret carefully the 
meaning of your result. 
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34. If the particle described by the wave function of Problem 32 is a proton moving in a 
nucleus, it will give rise to a charge distribution which oscillates in time at the same 
frequency as the oscillations of its probability density. (a) Evaluate this frequency for 
values of E 1  and E2 corresponding to a proton mass of 10 - 27  kg and a nuclear dimension 
of 10 -14  m. (b) Also evaluate the frequency and energy of the photon that would be 
emitted by this oscillating charge distribution as the proton drops from the excited state 
to the ground state. (c) In what region of the electromagnetic spectrum is such a photon? 
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6-1 INTRODUCTION 

In this chapter we shall obtain many interesting predictions concerning quantum 
mechanical phenomena. We shall also discuss some of the experiments confirming 
the predictions, and some of the important practical applications of the phenomena. 
The predictions will be obtained by solving the time-independent Schroedinger equa-
tion for different forms of the potential energy function V(x), to find the eigen-
functions, eigenvalues, and wave functions, and then using the procedures developed 
in the previous chapter to interpret the physical significance of these quantities. 

Our approach will be very systematic. We shall start by treating the simplest 
possible form of the potential, namely V(x) = O. Then we shall gradually add com-
plexity to the potential. With each new potential treated, the student will obtain new 
insight into quantum mechanics and into the behavior of microscopic systems. In 
this process the student should begin to develop an intuition for quantum mechanics, 
just as he has developed an intuition for classical mechanics by repeated use of that 
theory. 

The potentials considered in the first sections of this chapter are not able to bind 
a particle because there is no region in which they have a depression. Although dis-
crete quantization of energy will not be found for these potentials, other fundamental 
phenomena will be found. In addition to the fact that they naturally fit in at the be-
ginning of our systematic approach, another reason for treating nonbinding poten-
tials first is that it emphasizes their importance. Probably half of the work currently 
being done in quantum mechanics concerns unbound particles. 

It is true, however, that most of the applications of quantum mechanics that were 
made initially concerned bound particles. Most aspects of the structure of atoms, 
molecules, and solids are examples of bound particle problems, as are many aspects 
of nuclear structure. Since these are the topics we shall concentrate on in the following 
chapters . of this book, some students (or instructors) may prefer to go directly to 
Section 6-7, which is the first to treat binding potentials, or to Section 6-8, which 
treats an important special case. Those sections are sufficiently self-contained to 
make such short cuts feasible without too much difficulty. 

Throughout this chapter we deal only with time-independent potentials, since only 
for such potentials does the time-independent Schroedinger equation have signifi-
cance. We further restrict ourselves to a single dimension because this simplifies the 
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mathematics while still allowing us to demonstrate most of the interesting quantum  

phenomena. Obvious exceptions are phenomena involving angular momentum, since  

this quantity has no meaning in one dimension. Because angular momentum plays a  

dominant role in atomic structure, the following chapter begins by extending our  

development of quantum mechanics to three dimensions.  

6-2 THE ZERO POTENTIAL  

The simplest time-independent Schroedinger equation is the one for the case: V(x) _  
const. A particle moving under the influence of such a potential is a free particle since  
the force acting on it is F = —dV(x)/dx = O. As this is true regardless of the value of  
the constant, we do not lose generality by choosing the arbitrary additive constant,  

that always arises in the definition of a potential energy, in such a way as to obtain  

V(x) = 0 	 (6-1)  
We know that in classical mechanics a free particle may be either at rest or moving  

with constant momentum p. In either case its total energy E is a constant.  

To find the behavior predicted by quantum mechanics for a free particle, we solve  

the time-independent Schroedinger equation, (5-43), setting V(x) = O. With this form  

for the potential, the equation is  
h2  d2 tŸ(x)  = Et11(x) 	 (6-2)  
2m dx 2  

The solutions are the eigenfunctions lfr(x), and the wave functions '(x,t) according  

to (5-44) are  
1P(x,t) = a(x)e

-iEtm 	 (6-3)  
The eigenvalues E are equal to the total energy of the particle. From the qualitative  

discussion of Section 5-7, we know that an acceptable solution of the time-inde-
pendent Schroedinger equation for this nonbinding potential should exist for any  
value of E > O.  

Of course, we already know a form of the free particle wave function from our  

plausibility argument leading to the Schroedinger equation. That wave function,  

(5-23), is  
'P(x,t) = cos (kx — wt) + i sin (kx — cot)  

Rewriting it as a complex exponential, we have  
'Y(x,t) = e i(kx - wt) 	 (6-4a)  

The wave number k and angular frequency w are  

p ^2mE 	 E 
k = =  h 
	

and 	w = 	 (6-4b)  

We break the exponential into the product of two factors  

W(x,t) =  e ikxe  - hot = e ikxe-  iEtm  

Then we compare with the general form of the wave function quoted in (6-3)  

P(x,t) = lf/(x)e - iEt/i^ 

This comparison makes it apparent that l  

0(
x) 

 eikx 	 where k = V2 ^ E 
	

(6-5) 

That is, the complex exponential of (6-5) gives the form of a free particle eigenfunction 
corresponding to the eigenvalue E. 

More specifically, it is a traveling wave free particle eigenfunction because the 
corresponding wave function, `P(x,t) = ei(kx-wt), represents a traveling wave. This can 
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be seen, for example, from the fact that the nodes of the real part of the oscillatory 
wave function are located at positions where kx — wt = (n + 1/2)7r, with n =0, + 1, 
± 2, .... The reason is that the real part of `Y(x,t), which is cos (kx — wt), has the 
value zero wherever kx — wt = (n + 1/2)71. Thus the nodes occur wherever x = 
(n + 1/2)7r/k + wt/k and, since these values of x increase with increasing t, the nodes 
travel in the direction of increasing x. The conclusion is illustrated in the top part of 
Figure 6-1 which shows plots of the real part of'P(x,t) at successively later times. For 
this wave function, the probability density P*(x,t)T(x,t), illustrated in the bottom 
of Figure 6-1, conveys no sense of motion. 

Intuition suggests that, for the same value of E, there should also be a wave func-
tion representing a wave traveling in the direction of decreasing x. The preceding 
argument indicates that this wave function would be written with the sign of kx 
reversed, that is 

k(x,t) = e rg kx—wt) 	 (6-6) 

The corresponding eigenfunction would be 

0(x) = e - ikx 	where k = 
 m 

E 	 (6-7) 

It is easy to see that this eigenfunction is also a solution to the time-independent 
Schroedinger equation for V(x) = 0. In fact, any arbitrary linear combination of the 

Figure 6-1 	Top: The real part, cos (kx — cot), of a complex exponential traveling wave 
function, AV = eqNX--0 , for a free particle. With increasing time the nodes move in the di- 
rection of increasing x. Bottom: For this wave funotion a sense of motion is not conveyed by 
plotting the probability density 	= e-/(kx- ,,,t)egk`_cot) = 1 since it is constant for all 
t (and all x). Of course, we cannot plot 	itself, as it is complex. 
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two eigenfunctions of (6-5) and (6-7), for the same value of the total energy E, is also 
a solution to the equation. To prove these statements, we take the linear combination 

J2mE  
ll/(x) = Ae ikx + Be  - ikx  where k =  h 

 
in which A and B are arbitrary constants, and substitute it into the time-independent 
Schroedinger equation, (6-2). Since d 

 x(x) = 
i2k2Aeikx + i2k2Be-ikx = — k2  (x) = 

2m 
E  i(x) 	2 	 = 

subs titution into the equation yields 
h2  

2mE iŸ(x) = Etli(x) 2m 
Since this is obviously satisfied, the linear combination is a valid solution to the time-
independent Schroedinger equation.  

The most general form of the solution to an ordinary (i.e., not partial) differential equation  

involving a second derivative contains two arbitrary constants. The reason is that obtaining  

the solution from such an equation basically amounts to performing two successive integra-
tions to remove the secônd derivative, and each step yields a constant of integration. Examples  

familiar to the student are found in general solutions of Newton's equation of motion, which  

involve two arbitrary constants such as initial position and velocity. Since the linear combina-
tion of (6-8) is a solution containing two arbitrary constants to (6-2), it is its general solution.  
The general solution is useful because it allows us to describe any possible eigenfunction as-
sociated with the eigenvalue E. For instance, if we set B = 0, we obtain an eigenfunction for  
a wave traveling in the direction of increasing x. If we set A = 0, the wave is traveling in  
the direction of decreasing x. If we set IAI = IBI, there are two oppositely directed traveling  

waves that combine to form a standing wave. Standing wave eigenfunctions will be used in  

Section 6-3.  

Let us consider now the question of giving physical interpretation to the free par-
ticle eigenfunctions and wave functions. Take first the case of a wave traveling in  

the direction of increasing x. The eigenfunction and wave function for this case are  

i/i(x) = Ae
ikx 	and 	'P(x,t) = Aei(kx-mi) 	 (6-9) 

An obvious guess is that the particle whose motion is described by these functions 
is also traveling in the direction of increasing x. To verify this, let us calculate the 
expectation value of the momentum, p, for the particle. According to the general ex-
pectation value formula, (5-34) 

p = J LY*poP`F dx  

-^ 

where the operator for momentum is 
a  

pop = — ih ax 
 

Now, for the wave function in question, we have  

pops` = — iii x Aei(kx-wr) = —ih(ik)Aei(kx-') = + ikt' = + ,\/2mE  `F 

so  

J= + P*V2mETdx = +2mE 	x  
J 

 -^ 



The integral on the right is the probability density integrated over the entire range 
of the x axis. This is just the probability that the particle will be found somewhere, 
which must equal one. Therefore, we obtain 

p = + J2mE 
This is exactly the momentum that we would expect for a particle moving in the 
direction of increasing x with total energy E in a region of zero potential energy. 

For the case of a wave traveling in the direction of decreasing x, the eigenfunction 
and wave function are 

ÿi(x) = Be' 	and 	P(x,t) = 	kx— wt) 	(6-10) 

When we operate on `I' with pap, the sign reversal of the kx term in the former leads 
to a sign reversal in the result. This, in turn, leads to a momentum expectation value 
of 

= — V2mE 

Therefore, we interpret the eigenfunction, and wave function, as describing the mo- 
tion of a particle which is moving in the direction of decreasing x with negative 
momentum of the magnitude that would be expected in consideration of its energy. 

The eigenfunctions and wave functions just considered represent the idealized sit-
uations of a particle moving, in one direction or the other, in a beam of infinite 
length. Its x coordinate is completely unknown because the amplitudes of the waves 
are the same in all regions of the x axis. That is, the probability densities, for instance 

,p ty = A *e
-i(kx-wo Ae i(kx-00 = A*A  

are constants independent of x. Thus the particle is equally likely to be found any-
where, and the uncertainty in its position is Ax = co. The uncertainty principle states 
that in these situations we may know the value of the momentum p of the particle 
with complete precision, since 

ApAx > h/2 

can be satisfied for an uncertainty in its momentum of Ap = 0, if Ax = co. Perfectly 
precise values of p are also indicated by the de Broglie relation, p = hk, because these 
wave functions contain only a single value of the wave number k. Since there is an 
infinite amount of time available to measure the energy of a particle traveling through 
a beam of infinite length, the energy-time uncertainty principle AEA t >— h/2 allows 
its energy to be known with complete precision. This agrees with the presence of 
a single value of the angular frequency w in these wave functions, because the de 
Broglie-Einstein relation E = hw shows this means a single value of the energy E. 

A physical example approximating the idealized situation represented by these 
wave functions would be a proton moving in a highly monoenergetic beam emerging 
from a cyclotron. Such beams are used to study the scattering of protons by targets 
of nuclei inserted in the beam. From the point of view of the target nucleus, and in 
terms of distances of the order of its nuclear radius r', the x position of a proton in 
the beam may be for all practical purposes completely unknown. That is Ax » r'. 
Thus the free particle wave functions of (6-9) and (6-10) can give a good approxima-
tion to the description of the beam proton in the region of interest near the nucleus 
where the scattering takes place. In other words, near a nucleus the wave function 
of (6-9) 

'Y = Ae i(kx - wt) 

can be used to describe a proton in a cyclotron beam directed towards increasing x, 
providing the beam is extremely long compared to the dimensions of the nucleus—a 
condition which is always satisfied in practice since nuclei are extremely small. The 
wave function describes a particle moving with momentum precisely p = hk and 
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total energy  precisely E = hw, where these quantities are related by the equation 
p = \/2mE appropriate to a particle of mass m moving in a region of zero potential 
energy. 

There is a difficulty concerning the normalization of the wave functions of (6-9) and (6-10). 
In order to have, for instance 

J qi*qi dx = J A *A dx = A*A J dx = 1 
00 	 - 00 	 - Co 

the amplitude A must be zero as f °° dx has an infinite value. The difficulty arises from the 
unrealistic statement made by the wave function that the particle can be found with equal 
probability anywhere in a beam of infinite length. This is never really true since real beams are 
always of finite length. The proton beam is limited on one end by the cyclotron and on the 
other end by a laboratory wall. Although the uncertainty Ax in location of a proton is very 
much larger than a nuclear radius r', it is not larger than the distance L from the cyclotron to 
the wall. That is, even though Ax » r' , it is also true that Ax < L. This suggests that normal-
ization can be obtained by setting `If = 0 outside of the range —L/2 < x < + L/2, or else by 
restricting x to be within that range. In either way we obtain a more realistic description of 
the actual physical situation, and we can also normalize the wave function with a nonvanishing 
amplitude A. The procedure is called box normalization. Despite the fact that the value of A 
obtained depends on the length L of the box, it always turns out that the final result of calcu-
lation of a measurable quantity is independent of the actual value of L used. Furthermore, we 
shall see that it is usually not necessary to carry through box normalization in detail because 
quantities of physical interest can be expressed as ratios in which the value of A cancels. 

The situation is quite analogous to ones commonly encountered in classical physics. For 
instance, in solving a problem of electrostatics, a straight charged wire of infinite length is 
often used to approximate one of finite length in a system where "end effects" are not impor-
tant. This idealization very much simplifies the geometry of the problem, but it leads to the 
difficulty that an infinite amount of energy is required to charge the infinitely long wire, unless 
its charge density is zero. It is usually possible, however, to get around this difficulty simply 
by expressing the quantities that arise in the problem in terms of ratios. 

It is possible to obtain a much more realistic sense of motion than is seen in either 
part of Figure 6-1 by using a large number of wave functions of the form of (6-9) 
to generate a group of traveling waves. Figure 6-2 shows the probability density 
11191  for a particularly simple group, its motion in the direction of increasing x, and 
the ever increasing width of the group. At any instant the location of the group can 
be well characterized by the expectation value z , calculated from the probability 
density. The constant velocity  of  the group, dz/dt, equals the constant velocity of 
the free particle, y  = p/m = N/2mE/m = /2E/m, in agreement with the conclusions of 
Chapter 3. The spreading of the group is a characteristic property of waves that is 
intimately related to the uncertainty principle, as discussed in that chapter. Of course 
the behavior of the group wave function is easier to interpret than the behavior of 
a purely sinusoidal wave function, such as that of (6-9), because the corresponding 
probability density is closer to the description of particle motion we are familiar with 
from classical mechanics. However the mathematics required to describe the group, 
and treat its behavior analytically, is much more complicated. The reason is that a 
group must necessarily involve a distribution of wave numbers k, and therefore a 
distribution of energies E = h2k 2/2m. In order to compose even as simple a group as 
the one shown in the figure, a very large number of sinusoidal waves, with very small 
differences in wave numbers or energies, must be summed in the manner described in 
Chapter 3. These mathematical complications far outweigh any advantages involved 
in the ease of interpretation. Consequently, groups are rarely used in practical quan- 
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Figure 6-2 The probability density 'Y*li for a group traveling wave function of a free  

particle. With increasing time the group moves in the direction of increasing x, and also  
spreads.  

turn mechanical calculations, and most such calculations are performed with wave 
functions involving a single wave number and energy. 

Our consideration of the motion of the group in Figure 6-2 leads us to discuss 
briefly a related case of great interest. If, instead of having the constant value zero, 
the potential function V(x) changes so slowly that its value is almost constant over 
a distance of the order of the de Broglie wavelength of the particle, the group wave 
function will still propagate in a manner similar to that illustrated in the figure, but 
the velocity of the group will now also change slowly. Calculations, starting from 
the Schroedinger equation, lead to an expression relating the change in the velocity, 
dx/dt, of the group to the change in the potential, V(x). The expression is 

ddz 	d 	V(x)  
dt (dt l  dx 	m  

or  

dV(x)  
d 2z 	dx 	F(x)  

dt2 	m 	m 

where the bars denote expectation values and F(x) is the force corresponding to the 
potential V(x). It is unfortunate that the calculations are too complicated to repro-
duce here. They are very significant because they show that the acceleration of the 
average location of the particle associated with the group wave function equals the 
average force acting on the particle, divided by its mass. That is, Schroedinger's 
equation leads to the result that Newton's law of motion is obeyed, on the average, 
by a particle of a microscopic system. The fluctuations from its average behavior 
reflect the uncertainty principle, and they are very important in the microscopic 
limit. But these fluctuations become negligible in the macroscopic limit where the 
uncertainty principle is of no consequence, and it is no longer necessary to speak of 
averages in talking about locations in that limit Also, in the macroscopic limit any 
realistic potential changes by only a small amount in a distance as short as a de 
Broglie wavelength. So it is also not necessary, in that limit, to speak of averages 
when discussing potentials. Thus, in the macroscopic limit we can ignore the bars 
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representing expectation values, or averages, in the equations just displayed. We then 
conclude that Newton's law of motion can be derived from the Schroedinger equation, 
in the classical limit of macroscopic systems. Newton's law of motion is a special case of 
Schroedinger's equation. 

6-3 THE STEP POTENTIAL (ENERGY LESS THAN STEP HEIGHT) 

In the next sections we shall study solutions to the time-independent Schroedinger 
equation for a particle whose potential energy can be represented by a function V(x) 
which has a different constant value in each of several adjacent ranges of the x axis. 
These potentials change in value abruptly in going from one range to the adjacent 
range. Of course potentials which change abruptly (i.e., are discontinuous functions 
of x) do not really exist in nature. Nevertheless, these idealized potentials are used 
frequently in quantum mechanics to approximate real situations because, being con-
stant in each range, they are easy to treat mathematically. The results we obtain for 
these potentials will allow us to illustrate a number of characteristic quantum me-
chanical phenomena. 

An analogy, that is surely familiar to the student, is found in the procedure used in 
studying electromagnetism. This involves treating many idealized systems like the 
infinite wire, the capacitor without edges, etc. These systems are studied because they 
are relatively easy to handle, because they are excellent approximations to real ones, 
and because real systems are usually complicated to treat mathematically since they 
have complicated geometries. The idealized potentials we treat in this chapter are 
used in the same way and with the same justification. 

The simplest case is the step potential, illustrated in Figure 6-3. If we choose the 
origin of the x axis to be at the step, and the arbitrary additive constant that always 
occurs in the definition of a potential energy so that the potential energy of the par-
ticle is zero when it is to the left of the step, V(x) can be written 

V(x) 0 ° 	 x  < 
0 (6-11) 

where V0  is a constant. We may think of V(x) as an approximate representation of the 
potential energy function for a charged particle moving along the axis of a system of 
two electrodes, separated by a very narrow gap, which are held at different voltages. 
The upper half of Figure 6-4 illustrates this system, and the lower half illustrates the 
corresponding potential energy function. As the gap decreases, the potential function 
approaches the idealization illustrated in Figure 6-3. In Example 6-2 we shall see that 
the potential energy for an electron moving near the surface of a metal is very much 
like a step potential since it rapidly increases at the surface from an essentially con-
stant interior value to a higher constant exterior value. 

Assume that a particle of mass m and total energy E is in the region x < 0, and that 
it is moving toward the point x = 0 at which the step potential V(x) abruptly changes 
its value. According to classical mechanics, the particle will move freely in that region 
until it reaches x = 0, where it is subjected to an impulsive force F = — dV(x)/dx 
acting in the direction of decreasing x. The idealized potential, (6-11), yields an im-
pulsive force of infinite magnitude acting only at the point x = O. However, as it acts 
on the particle only for an infinitesimal time, the quantity $ F dt (the impulse), which 
determines the change in its momentum, is finite. In fact, the momentum change is 
not affected by the idealization. 

The motion of the particle subsequent to experiencing the force at x = 0 depends, 
in classical mechanics, on the relation between E and V0 . This is also true in quantum 
mechanics. In the present section we treat the case where E < Vo , i.e., where the total 
energy is less than the height of the potential step as illustrated in Figure 6-5. (The 



r* 	- 
Ĵ♦  

V(x)  

V(x) = V0  

V(x) = 0  
X  

Figure 6-3 A step potential. 

V(x) 	— 	V(x)  

Figure 6-4 Illustrating a physical system with a potential energy function that can be  
approximated by a step potential. A charged particle moves along the axis of two cylindrical  

electrodes held at different voltages. Its potential energy is constant when it is inside either  

electrode, but it changes very rapidly when passing from one to the other.  

case where E > Vo  is treated in the following section.) Since the total energy E is a 
constant, classical mechanics says that the particle cannot enter the region x > O. The 
reason is that in that region 

2 
E= Zm +V(x)<V(x)  

or  

p2   < 0  
2m  

Thus the kinetic energy p 2/2m would be negative in the region x > 0, which would 
lead to an imaginary value for the linear momentum p in the region. Neither is al-
lowed, or even makes physical sense, in classical mechanics. According to classical 
mechanics, the impulsive force will change the momentum of the particle in such a 
way that it will exactly reverse its motion, traveling off in the direction of decreasing 
x with momentum in the direction opposite to its initial momentum. The magnitude 
of the momentum p will be the same before and after the reversal since the total en-
ergy E = p2/2m is constant. 

V(x)  

V(x) = V0  
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V(x) = 0  

Figure 6-5 The relation between total and  
potential energies for a particle incident upon  
a potential step with total energy less than  

the height of the step.  0  
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To determine the motion of the particle according to quantum mechanics, we must 

find the wave function which is a solution, for the total energy E < Vo , to the 
Schroedinger equation for the step potential of (6-11). Since this potential is inde-
pendent of time, the actual problem is to solve the time-independent Schroedinger 
equation. From our qualitative discussion of the previous chapter, we know that an 
acceptable solution should exist for any value of E > 0, since the potential cannot 
bind the particle to a limited range of the x axis. 

For the step potential, the x axis breaks up into two regions. In the region where 
x < 0 (left of the step), we have V(x) = 0, so the eigenfunction that will tell us about 
the behavior of the particle is a solution to the simple time-independent Schroedinger 
equation 

h 2  d20(x)  = Eifr(x) 
2m dx2  

x < 0 (6-12) 

In the region where x > 0 (right of the step), we have V(x) = V o , and the eigenfunction 
is a solution to a time-independent Schroedinger equation which is almost as simple 

h2 d20(x) +V00(x)=Et/i(x) 	x>0 (6-13) 
2m dx 2  

The two equations are solved separately. Then an eigenfunction valid for the entire 
range of x is constructed by joining the two solutions together at x = 0 in such a 
way as to satisfy the requirements, of Section 5-6, that the eigenfunction and its first 
derivative are everywhere finite, single valued, and continuous. 

Consider the differential equation valid for the region in which V(x) = 0, (6-12). 
Since this is precisely the time-independent Schroedinger equation for a free particle, 
we take for its general solution the traveling wave eigenfunction of (6-8). We write 
that eigenfunction as 

ox) = Aezklx 	
x/2mE 

 Be -iklx 	where k 1  = 
 h 

x < 0 (6-14) 

Next consider the differential equation valid for the region in which V(x) = V 0 , 
(6-13). From the qualitative considerations of Section 5-7, we do not expect an oscil-
latory function, such as in (6-14), to be a solution since the total energy E is less than 
the potential energy Vo  in the region of interest. In fact, those considerations tell us 
that the solution will be a function which "gradually approaches the x axis." The sim-
plest function with this property is the decreasing real exponential, which can be 
written 

`Y
(x) = 

e -kzx 	 x > 0 (6-15) 
Let us find out if this is a solution and, if so, also find the required value of k 2 , by 
substituting it into (6-13), which it is supposed to satisfy. We first evaluate 

d20(x) 	
k2) 2e -k2x  = kzi(x) 

Then the substitution yields 
h2  
2m 14(x) + V0  0(x) (x) = E i (x) 

This satisfies the equation, and therefore verifies the solution, providing 

k2 = \
/2m(l o  — E) 	

E < V0  (6-16) 

The solution we have just verified is not a general solution to the time-independent 
Schroedinger equation, (6-13). The reason is that the equation contains a second 

dx2  — ( 



derivative, so the general solution must contain two arbitrary constants. However,  

if we can find a solution to the equation for the same value of E, which is different  
in form from the one we have just found, we can make an arbitrary linear combina-
tion of these two so-called particular solutions. The linear combination will also be a  

solution and, since it will contain two arbitrary constants, it will be a general solution.  

A clue to the form of another particular solution is found by noting that k 2  enters  
as a square in the equation preceding (6-16). Therefore, its sign is immaterial, and  

the increasing exponential  

	

0(x) = e +k2x 	where k2 = N
/2m(Vo  — E) 	

x > 0 (6-17) 

should also be a solution to the time-independent Schroedinger equation that we 
are dealing with. It is equally easy to verify this, by substitution into the equation. 
But let us instead verify that the arbitrary combination of the two particular solutions 

ti(x) = Cek2x + De - k2x 	where k2  = V2m(Vo — E)  x > 0 (6-18)  

and where C and D are arbitrary constants, is a solution to (6-13). We calculate  

d 2 J(x) _ 	z k2x 	2 k2x _ z 	2m V 	E)  
dx2 — Ck

2e + D(— k2) e 	—  kz^(x) _ 	( 2 	) tk(x)  

and substitute the result into the equation. We obtain  

h2  
— 2 2 (Vo —  E)/(x) + VoV(x) = Et/i(x) 

 

Since this is obviously satisfied, we have verified that (6-18) is a solution. Since it 
contains two arbitrary constants, it is the general solution to the time-independent 
Schroedinger equation for the region of the step potential where V(x) = V0 , with E <  
Vo . Although the increasing exponential part will not actually be used in the present 
section, it will be used in a subsequent section. 

The arbitrary constants A, B, C, and D of (6-14) and (6-18) must be so chosen that 
the total eigenfunction satisfies the requirements concerning finiteness, single val-
uedness, and continuity, of 0(x) and d0(x)/dx. Consider first the behavior of ti(x) as 
x —> + co. In this region of the x axis the general form of 0(x) is given by (6-18). 
Inspection shows that it will generally increase without limit as x —+ + co, because 
of the presence of the first term, Cek2 x. In order to prevent this, and keep iii(x) finite,  

we must set the arbitrary coefficient C of the first term equal to zero. Thus we find  

C = 0 (6-19)  
Single valuedness is satisfied automatically by these functions. To study their con-
tinuity, we consider the point x = 0. At this point the two forms of 0(x), given by 
(6-14) and (6-18), must join in such a way that i/i(x) and dk(x)/dx are continuous. 
Continuity of 0(x) is obtained by satisfying the relation 

D(e -k2x) 	= A(e`k 'x) 	+ B(e- `k, x) 

	

x0 	 x=o 	x=0  
which comes from equating the two forms at x = 0. This relation yields  

	

D=A+B 	 (6-20)  
Continuity of the derivative of the two forms  

dtP(x)  = — k 2 De k2 x 	 x > 0  
dx  

and  

dr/r(x) = ik Ae`k 'x — ik Be ^k,x 
dx 	

i 	i x <0  

T
H

E
 S

T
E

P
  P

O
T

E
N

T
IA

L
 (E

N
E

R
G

Y
  L

E
S

S
  T

H
A

N
 S

T
E

P
 H

E
IG

H
T

) 



S
O

LU
T

IO
N

S
 O

F
 T

IM
E

- I
N

D
E

P
E

N
D

E
N

T
 S

C
H

R
O

E
D

IN
G

E
R

 E
Q

U
A

T
IO

N
S

 
is obtained by equating these derivatives at x = 0. Thus we set 

—k 2D(e -k2x)x0  — ik 1 A(e ik1 x)x=0 — ik1B(e iktx)x=0 
 

This yields 

Adding (6-20) and (6-21) gives 

Subtracting gives 

^ \ 	2  k / 
B = —  1 -- 

l 
 

We have now determined A, B, and C in terms of D. Thus the eigenfunction for the 
step potential, and for the energy E < V0 , is 

tŸ(x) =
-
2 

 (1 + ik2/kl)eiklx + 
D 

(1 — ik2/k 1)e'lx 	x 
 < 0 (6-24) 

 

De -k2 x 	 x>- 0  
The one remaining arbitrary constant, D, determines the amplitude of the eigen-

function, but it is not involved in any of its more important characteristics. The  

presence of this constant reflects the fact that the time-independent Schroedinger  

equation is linear in ifr(x), and so solutions of any amplitude are allowed by the  

equation. We shall see that useful results can usually be obtained without bothering  

to carry through the normalization procedure that would specify D. The reason is  
that the measurable quantities that we shall obtain as predictions of the theory con-
tain D in both the numerator and the denominator of a ratio, and so it cancels out.  

The wave function corresponding to the eigenfunction is  

A eikix e - iEt/h +  Be iklx e  iEt/h =  Ae i(k ix-Et/h) + Bei(-klx-Et/h) x < O  
W(x,t) = 

De -  k2x e  - iEt/h 	 x > 0 (6-25)  

Consider the region x < 0. The first term in the wave function for this region is a trav-
eling wave propagating in the direction of increasing x. This term describes a particle  

moving in the direction of increasing x. The second term in the wave function for x <  

0 is a traveling wave propagating in the direction of decreasing x, and it describes  

a particle moving in that direction. This information, plus the classical predictions  

described earlier, suggests that we should associate the first term with the incidence  

of the particle on the potential step and the second term with the reflection of the  

particle from the step. Let us use this association to calculate the probability that  

the incident particle is reflected, which we call the reflection coefficient R. Obviously,  
R depends on the ratio B/A, which specifies the amplitude of the reflected part of the  

wave function relative to the amplitude of the incident part. But in quantum mechan-
ics probabilities depend on intensities, such as B*B and A*A, not on amplitudes.  
Thus, we must evaluate R from the formula  

B*B 
 = 

A* 	 (6-26)  

That is, the reflection coefficient is equal to the ratio of the intensity of the part of  

the wave that describes the reflected particle to the intensity of the part that describes  

the incident particle. We obtain  

R — 
B*B —  (1 — ik2 /kl) *( 1  —  ik2/kl)  
A*A (1 + ik 2/k i)*(1 + ik2/ki)  

k2 D =A—B 
^  

^\ 	2/ k 

	

A = — 1+ 	
i 

 

(6-21)  

(6-22)  

(6-23)  



x 

y
7

4\  A
^ A^ À

\ 

o 

^ 

T
H

E
  S

T
E

P
 P

O
T

E
N

T
IA

L
 (E

N
E

R
G

Y
  LE

S
S

  T
H

A
N

  S
T

E
P

 H
E

IG
H

T
) 

Figure 6-6 Illustrating schematically the combination of an incident and a reflected wave of  

equal intensities to form a standing wave. The wave function is reflected from a potential step  
at x = O. Note that the nodes of the traveling waves move to the right or left, but those of the  
standing wave are stationary.  

or  

	

R — 
(1 + ik 2/k i )(1 — ik2/ki) _ 1 

	 E < Vo  (6-27) 
(1 — ik2/ki)( 1  + ik2/ki)  

The fact that this ratio equals one means that a particle incident upon the. potential 
step, with total energy less than the height of the step, has probability one of being 
reflected—it is always reflected. This is in agreement with the predictions of classical 
mechanics. 

Consider now the eigenfunction of (6-24). Using the relation 

	

eiktx = cos k ix + i sin kix 
	 (6-28)  

it is easy to show that the eigenfunction can be expressed as 

D cos k lx—Dk2  sin k ix 	x<0 
t//(x) = 	 k1 	 (6-29)  

De-k2x 	
x>- 0  

If we generate the wave function by multiplying /i(x) by a - `E:m, we see immediately 
that we actually have a standing wave because the locations of the nodes do not 
change in time. In this problem the incident and reflected traveling waves for x < 0 
combine to form a standing wave because they are of equal intensity. Figure 6-6 
depicts this schematically. 

In the top part of Figure 6-7 we illustrate the wave function by plotting the eigen-
function, (6-29), which is a real function of x if we take D real. The wave function 
can be thought of as oscillating in time according to e -  iEt/J,  with an amplitude whose 
space dependence is given by 0(x). Here we find a feature which is in sharp contrast 
to the classical predictions. Although in the region x > 0 the probability density 

^*^ 	 ^ = D* e  k 2 x e +iEt^ e -k2x e -iEtlh = D*De 2k2x 	 (6-30)  

illustrated in the bottom of Figure 6-7, decreases rapidly with increasing x, there is  
a finite probability of finding the particle in the region x > 0. In classical mechanics  

it would be absolutely impossible to find the particle in the region x > 0 because  

there the total energy is less than the potential energy, so the kinetic energy p 2/2m  
is negative and the momentum p is imaginary. This phenomenon, called penetration 
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Figure 6-7 Top: The eigenfunction iii(x) for a particle incident upon a potential step at x=  
0, with total energy less than the height of the step. Note the penetration of the eigenfunc-
tion into the classically excluded region x > O. Bottom: The probability density T*`I` =  
i/i*0 = 2 corresponding to this eigenfunction. The spacing between the peaks of 02  is  
twice as

Y 
 close as the spacing between the peaks of Li.  

of the classically excluded region, is one of the more striking predictions of quantum 
mechanics. 

We shall discuss later certain experiments which confirm this prediction, but here 
we should like to make several points about it. One is that penetration does not 
mean that the particle is stored in the classically excluded region. Indeed, we have 
seen that the incident particle is definitely reflected from the step. 

Another point is that penetration of the excluded region, which obeys (6-30), is not 
in conflict with the experiments of classical mechanics. It is apparent from the equa-
tion that the probability of finding the particle with a coordinate x > 0 is only 
appreciable in a region starting at x = 0 and extending in a penetration distance Ax,  
which equals 1/k 2 . The reason is that e -  2kzx goes very rapidly to zero when x is very 
much larger than 1/k 2 . Since k 2  = V2m(Vo  — E)/h, we have 

h  

J2m(Vo  — E) 

In the classical limit, the product of m and (V0  — E) is so large, compared to h 2 , that 
Ax is immeasurably small. 

Example 6 -1. Estimate the penetration distance Ax for a very small dust particle, of radius  

r = 10 -6  m and density p = 104  kg/m 3 , moving at the very low velocity y  = 10 -2  m/sec, if the  
particle impinges on a potential step of height equal to twice its kinetic energy in the region  

to the left of the step.  
•The mass of the particle is  

m= 4 nr3p^_ 4x 10 - 18 m 3  x 104 kg/m 3 =4x 10 -14  kg 
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x 

Ox =  



Its kinetic energy before hitting the step is 

2 mv 2  2 x 4 x 10 -14  kg x 10 -4  m2/sec 2  = 2 x 10 -18  joule 

and this is also the value of (V0  — E). The penetration distance is 
h 	 10 -34  joule-sec 

Ax = 
V2m(V o  — E) J2 x 4 x 10 -14  kg x 2 x 10 -18  joule 

2 x 10 -19 m 

Of course, this is many orders of magnitude smaller than could be detected in any possible 
measurement. For the more massive particles and higher energies typically considered in 
classical mechanics, Ax is even smaller. 	 • 

Furthermore, we should like to point out that the uncertainty principle shows the 
wavelike properties exhibited by an entity in penetrating the classically excluded re-
gion are really not in conflict with its particlelike properties. Consider an experiment 
capable of proving that the particle is located somewhere in the region x > O. Since 
the probability density for x > 0 is appreciable only in a range of length Ax, the 
experiment amounts to localizing the particle within that range. In doing this, the 
experiment necessarily leads to an uncertainty Ap in the momentum, which must be 
at least as large as 

h 
AP 

 ^   ^ 
V
/2m(Vo  — E) 

Consequently, the energy of the particle is uncertain by an amount 

AE ^ (0)a 	Vo  — E 

and it is no longer possible to say that the total energy E of the particle is definitely 
less than the potential energy Vo . This removes the conflict alluded to. 

Penetration of the classically excluded region can lead to measurable consequences. 
We shall see this later for a potential that steps up to a height V o  > E, but remains 
up only for a distance not much larger than the penetration distance Ax, and then 
steps down. In fact, the phenomenon has significant practical consequences. One ex-
ample, which we shall refer to soon, is the tunnel diode used in modern electronics. 

Example 6 -2. A conduction electron moves through a block of Cu at total energy E under 
the influence of a potential which, to a good approximation, has a constant value of zero in the 
interior of the block and abruptly steps up to the constant value Vo  > E outside the block. The 
interior value of the potential is essentially constant, at a value that can be taken as zero, since 
a conduction electron inside the metal feels little net Coulomb force exerted by the approxi-
mately uniform charge distributions that surround it. The potential increases very rapidly at 
the surface of the metal, to its exterior value V 0 , because there the electron feels a strong force 
exerted by the nonuniform charge distributions present in that region. This force tends to 
attract the electron back into the metal and is, of course, what causes the conduction electron 
to be bound to the metal. Because the electron is bound, V0  must be greater than its total 
energy E. The exterior value of the potential is constant, if the metal has no total charge, since 
outside the metal the electron would feel no force at all. The mass of the electron is m = 9 x 
10 -31  kg. Measurements of the energy required to permanently remove it from the block, i.e., 
measurements of the work function, show that Vo  — E = 4 eV. From these data estimate the 
distance Ax that the electron can penetrate into the classically excluded region outside the 
block. 
■ In the mks system 

1.6 x 10 -19  joule 	. 
Vo — E = 4eV x 	

1eV 	
^ 6 x 10 	joule  
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So  

h  

J2m(Vo  — E)  

10 -  34joule-sec  

N/2x9x 10 -31  kg x 6 x 10 -19  joule 
10 -le m  

The penetration distance is of the order of atomic dimensions. Therefore, the effect can be of 
consequence in atomic systems. We shall find soon that, in certain circumstances, the effect is 
very important indeed. • 

Let us finally make the point that penetration of the classically excluded region is 
nonclassical in the sense that an entity that does it is not behaving like a classical par-
ticle. But it is behaving like a classical wave since, as we shall see later, the phenom-
enon has been known to occur with light waves since the time of Newton. Penetration 
of the classically excluded region by material particles is just another manifestation 
of the wavelike nature of material particles. 

Figure 6-8 shows the probability density for a wave function in the form of a group,  
for the problem of a particle incident in the direction of increasing x upon a potential 
step with an average value of the total energy less than the step height. The wave func-
tion can be obtained by summing, over the total energy E, a very large number of 
wave functions of the form we have obtained in (6-25). It can also be obtained by a 
direct numerical solution of the Schroedinger equation. Either way involves a large 
amount of work on a high-speed computer, as can be guessed from the complications 

t =0 t =5At t = 60t  

^ 

t  = 7At t  = 90t t = 110t  

t = 12At t = 140t t = 20At  

A  . 

Figure 6 -8 A potential step, and the probability density `1" for a group wave function  

describing a particle incident on the step with total energy less than the step height. As time  

evolves, the group moves up to the step, penetrates slightly into the classically excluded  
region, and then is completely reflected from the step. The complications of the mathe-
matical treatment using a group are indicated by the complications of its structure during  

reflection.  

Ax =  



indicated in the figure. The results of the calculations certainly convey a realistic sense 
of the particle motion; but note that these results show, again, that the particle associ-
ated with the wave function is reflected from the step with probability one, and that 
there is some penetration of the classically excluded region. The fact that we have 
been able to learn these basic results from simple calculations, involving only the 
wave function of (6-25) which contains a single value of E, is an example of the fact 
that it is generally not necessary in quantum mechanics to use wave functions in the 
form of groups. Of course, we must be willing to learn how to interpret the simple 
wave functions. 

6-4 THE STEP POTENTIAL (ENERGY GREATER THAN STEP HEIGHT) 

In this section we consider the motion of a particle under the influence of a step 
potential, (6-11), when its total energy E is greater than the height Vo  of the step. That 
is, we take E > Vo , as illustrated in Figure 6-9. 

In classical mechanics, a particle of total energy E traveling in the region x < 0, in 
the direction of increasing x, will suffer an impulsive retarding force F = — dV(x)/dx 
at the point x = O. But the impulse will only slow the particle, and it will enter the 
region x > 0, continuing its motion in the direction of increasing x. Its total energy E 
remains constant; its momentum in the region x < 0 is p i , where pi/2m = E; its 
momentum in the region x > 0 is p2 , where p/2m = E — Vo . 

We shall see that the predictions of quantum mechanics are not so simple. If E is not 
too much larger than V0 , the theory predicts that the particle has an appreciable 
chance of being reflected at the step back into the region x < 0, even though it has 
enough energy to pass over the step into the region x > O. 

One example of this is found in the case of an electron in the cathode of a photo-
electric cell, which has received energy from absorbing a photon, and which is trying 
to escape the surface of the metallic cathode. If its energy is not much higher than the 
height of the step in the potential that it feels at the surface of the metal, it may be 
reflected back and not succeed in escaping. This leads to a significant reduction in the 
efficiency of photocells for light of frequencies not far above the cutoff frequency. 

A more important example of reflection occurring when a particle tries to pass over 
a potential step is found in the motion of a neutron in a nucleus. To a good approxi-
mation, the potential acting on the neutron near the nuclear surface is a step poten-
tial. The potential rises very rapidly at the nuclear surface because a nucleus tends to 
bind a neutron. If the neutron has received energy, in one way or another, and is 
trying to escape the nucleus, it will probably be reflected back into the nucleus at 
the surface if its energy is only a little greater than the step height. This has the effect 
of inhibiting the emission of lower energy neutrons from nuclei, and thereby consider-
ably increases the stability of nuclei in low-lying excited states. The effect is a mani-
festation of the wavelike properties of neutrons that is very significant in the processes 
taking place in nuclear reactions, as we shall see near the end of this book. 

V(x) 

E 

V(x) = Vo 
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Figure 6-9 The relation between total and 
potential energies for a particle incident up-
on a potential step with total energy greater 
than the height of the step. 0 
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In quantum mechanics, the motion of the particle under the influence of the step  

potential is described by the wave function  

^(x,t) = (x)e Ufa,  

where the eigenfunction ÿr(x) satisfies the time-independent Schroedinger equation 
for the potential. This equation has different forms in the regions to the left and right 
of the potential step, namely 

and  

h2  d2 tŸ(x)  = EVI(x)  2m dx 2  

h 2  d2t//(x)  _ (E — Vo)(P(x)  2m dx 2  

x < 0 (6-31)  

x > 0 (6-32)  

The eigenfunction ti/(x) also satisfies the conditions requiring finiteness, single valued- 
ness, and continuity, for it and its derivative, particularly at the joining point x = 0.  

Equation (6-31) describes the motion of a free particle of momentum p i . Its general 
solution is 

ifi(x) = Ae iklx  + Be -iklx 	 x < 0 (6-33)  
where 

k i  =h 
	h  

Equation (6-32) describes the motion of a free particle of momentum p 2 . Its general  
solution is  

cc)  
ci 	where 

Û 	 V2m(E— Vo)  pz  k 2  =
h 	h  

The wave function specified by these two forms consists of traveling waves of de 
Broglie wavelength ;L i  = h/p i  = 2i/k i  in the region x < 0, and of longer de Broglie  

wavelength /1 2  = h/p 2  = 27r/k 2  in the region x > O. Note that the functions we deal with 
here already satisfy the requirements of finiteness and single valuedness; but we must 
explicitly consider their continuity, and we shall do so shortly. 

A particle initially in the region x < 0, and moving towards x = 0 would, in 
classical mechanics, have probability one of passing the point x = 0 and entering the 
region x > O. This is not true in quantum mechanics. Because of the wavelike prop-
erties of the particle, there is a certain probability that the particle will be reflected 
at the point x = 0, where there is a discontinuous change in the de Broglie wave-
length. Thus we need to take both terms of the general solution of (6-33) to describe 
the incident and reflected traveling waves in the region x < 0. We do not, however, 
need to take the second term of the general solution of (6-34). This term describes a 
wave traveling in the direction of decreasing x in the region x > O. Since the particle is 
incident in the direction of increasing x, such a wave could arise only from a reflection 
at some point with a large positive x coordinate (well beyond the discontinuity at x 
= 0). As there is nothing out there to cause a reflection, we know that there is only a 
transmitted traveling wave in the region x > 0, and so we take the arbitrary constant D 
to have the value 

D = 0 	 (6-35)  

The arbitrary constants A, B, and C must be chosen to make fi(x) and dtr(x)/dx  
continuous at x = O. The first requirement, that the values of Ji(x) expressed by (6-33) 

V2mE Pi  

If/ (x) = Ce`kzx  + De ikzx 	 x > 0 (6-34) 

E > Yo  
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and (6-34) be the same at x = 0, is satisfied if 

A(e iki x )x
-0 

 + B(e -ikix)x
= 0  - C(e ik2x)x =0  

or  
A + B = C 	 (6-36)  

The second requirement, that the values of the derivatives of the two expressions for  

tji(x) be the same at x = 0, is satisfied if  

ik A(eikix) 	— ik B(e
-ik2x) 	

= ik C(e ik2x) 
1 	x=0 	1 	x0 	2 	x=o  

or  
k l (A—B)=k 2 C  

From the last two numbered equations, we find  

B 
k l  +  k2  A 
	and 	C= k 

+ik A  i 	2 	 i 	2  

Thus the eigenfunction is  

Aeikix + A kl 
- k2  e iklx 	 x Ç 0 

kl + k2  

A 
 2k1 eikzx 	 x > 0 
kl + k2  

As before, it will not be necessary to evaluate the arbitrary constant A that determines  
the amplitude of the eigenfunction.  

It is clear that an eigenfunction satisfying the two continuity conditions could not have been  

found if we had initially set the coefficient B of the reflected wave equal to zero. We would then  

have had only two arbitrary constants to satisfy the two continuity conditions, and we would  

not have had one left over to play the role, demanded by the linearity of the time-independent  

Schroedinger equation, of an arbitrary constant that determines the amplitude of the eigen-
function.  

By analogy with our interpretation of the eigenfunction of (6-24), we recognize that  

the first term in the expression of (6-39) valid for x < 0 (left of the discontinuity)  

represents the incident traveling wave; the second term in the expression valid for  

x < 0 represents the reflected traveling wave; and the expression valid for x > 0 (right  

of the discontinuity) represents the transmitted traveling wave.  

Figure 6-10 illustrates the probability density `F*(x,t)T(x,t) = *(x) /,(x) for the  

wave function T(x,t) corresponding to the eigenfunction t/i(x) of (6-39) (in the repre-
sentative case k l  = 2k2). We do not plot either the eigenfunction or wave function, as  

both are complex. In the region x > 0 the wave function is a pure traveling wave (of  

amplitude 4A/3 in this case) traveling to the right, and so the probability density is  

'Y *  (x, t)  W  (x, t) 	All t  

^ (16/9) AM  

(4/9) AM  

(6-37)  

(6-38)  

(6-39)  

r 

x 
0  

Figure 6-10 The probability density 'I' *P for the eigenfunction of (6-39), when k l  = 2k2 .  
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constant as in the bottom part of Figure 6-1. In the region x < 0 the wave function 
is a combination of the incident traveling wave (of amplitude A) moving to the right, 
and a reflected traveling wave (of amplitude A/3) moving to the left. As the ampli-
tude of the reflected wave is necessarily smaller than that of the incident wave, the two 
cannot combine to yield a pure standing wave. Their sum `Y(x,t) in that region is, 
instead, something between a standing wave and a traveling wave. This is seen in the 
behavior of `I'*(x,t) 11'(x,t) for x < 0, which looks like something between the pure 
standing wave probability density of Figure 6-7 and the pure traveling wave proba-
bility density of Figure 6-1 in that it oscillates but has minimum values greater than 
zero. 

The ratio of the intensity of the reflected wave to the intensity of the incident wave 
gives the probability that the particle will be reflected by the potential step back into 
the region x < 0. This probability is the reflection coefficient R. That is 

R _ B*B _ k 1  — k
2l

*  (k1  — k 2 	k 1  — k 2 2 E > V 
A*A \k1  + k2) \k1 + k2) 	k 1  + k2) ° (6-40) 

We see from this result that R < 1 when E > Vo , i.e., when the total energy of the 
particle is greater than the height of the potential step. This is in contrast to the value 
R = 1 when E < V° , that we obtained from the result of Section 6-3. Of course, the 
thing that is surprising about the present result is not that R < 1, but that R > 0. It 
is surprising because a classical particle would definitely not be reflected if it had 
enough energy to pass the potential discontinuity. On the other hand, at a corre-
sponding discontinuity a classical wave would be reflected, as we shall discuss shortly. 

Also of interest is the transmission coefficient T, which specifies the probability that 
the particle will be transmitted past the potential step from the region x < 0 into the 
region x > 0. The evaluation of T is slightly more complicated than the evaluation 
of R because the velocity of the particle is different in the two regions. According to 
accepted convention, transmission and reflection coefficients are actually defined in 
terms of the ratios of probability fluxes. A probability flux is the probability per second 
that a particle will be found crossing some reference point traveling in a particular 
direction. The incident probability flux is the probability per second of finding a par-
ticle crossing a point at x < 0 in the direction of increasing x; the reflected proba-
bility flux is the probability per second of finding a particle crossing a point at x < 0 
in the direction of decreasing x; and the transmitted probability flux is the probability 
per second of finding a particle crossing a point at x > 0 in the direction of increasing 
x. Since the probability per second that a particle will cross a given point is pro-
portional to the distance it travels per second, the probability flux is proportional not 
only to the intensity of the appropriate wave but also to the appropriate velocity of 
the particle. (A more detailed discussion of this point is given in connection with 
Figure L-2 in Appendix L.) Thus, according to the strict definition, the reflection co-
efficient R is 

R_ v 1  B B — B B 	
(6-41) 

v1A*A A*A  

where v 1  is the velocity of the particle in the region x < 0. Since the velocities cancel, 
what remains is identical to the formula we have used previously for R. For T, the 
velocities do not cancel, and we have 

v2 C*C _ v2  (  2k1  )2 _ 	 

	

T 	
v1 A*A v l  I\k l  + k2 ) 

 v2  is the velocity of the particle in the region x > 0. Now 

pi 	hk1 	 p2 hk2  

	

v 1  =—= 	and v2  =—_ m m 	 m m 



So the above expression gives 

T _ 
k 2  (2k1 ) 2 	4ki k 2  

	

k2)2 = 	k2)2 	E > Vo  (6-42) 	cn k 1  (k1 + k2) 	(k1 + k2) 	 cD 
 

It is easy to show by evaluating R and T from (6-40) and (6-42) that 	 o> 

R + T = 1 (6-43)  
This useful relation is the motivation for defining the reflection and transmission co-
efficients in terms of probability fluxes. 

The probability flux incident upon the potential step is split into a transmitted flux 
and a reflected flux. But (6-43) says their sum equals the incident flux; i.e., the proba-
bility that the particle is either transmitted or reflected is one. The particle does not 
vanish at the step; nor does the particle itself split at the step. In any particular trial 
the particle will go one way or the other. For a large number of trials, the average 
probability of going in the direction of decreasing x is measured by R, and the aver-
age probability of going in the direction of increasing x is measured by T.  

Note that R and T are both unchanged in value if k 1  and k2  are exchanged in (6-40) 
and (6-42). A moment's consideration should convince the student that this means the 
same values of R and T would be obtained if the particle were incident upon the 
potential step in the direction of decreasing x from the region x > 0. The wave func-
tion describing the motion of the particle, and consequently the probability flux, is 
partially reflected simply because there is a discontinuous change in V(x), and not 
because V(x) becomes larger in the direction of the incidence of the particle. The be-
havior of R and T when k 1  and k2  are exchanged involves a characteristic property 
of all waves that, in optics, is sometimes called the reciprocity property. When light 
passes perpendicularly through a sharp interface between media with different indices 
of refraction, a fraction of the light is reflected because of the abrupt change in its 
wavelength, and the same fraction is reflected independent of whether it is incident 
from one side of the interface or from the other. Exactly the same thing happens when 
a microscopic particle experiences an abrupt change in its de Broglie wavelength. In 
fact, the equations governing the two phenomena are identical in form. We see, once 
again, that a microscopic particle moves in a wavelike manner. 

In Figure 6-11 the reflection and transmission coefficients are plotted as functions 
of the convenient ratio E/Vo . By evaluating k 1  and k2  in (6-40) and (6-42), we find 
that these expressions for the reflection and transmission coefficients can be written 
in terms of the ratio as 

R=1 —T— 
1 — — Vo/E 2 	E 

— > 1 (6-44) 
— 1 + 1Vo/  E) 	Vo 

^ 	  

0.5 	1.0 	1.5 	2.0  
E/V0  

Figure 6-11 The reflection and transmission coe ff icients R and T for a particle incident  
upon a potential step. The abscissa E/Vo  is the ratio of the total energy of the particle to  
the increase in its potential energy at the step. The case k 1  = 2k2 , illustrated in Figure  
6-10, corresponds to E/Vo  = 1.33.  
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The figure also plots the results 

R =1—T=1 	 V <1 
o 

obtained in (6-27) of the preceding section for a step potential when E/Vo  < 1. 
As an example, for E/Vo  = 1.33 the transmission coefficient has the value T = 0.88. 

This E/Vo  ratio corresponds to the case k 2  = k 1/2 whose probability density pattern 
is illustrated in Figure 6-10. Note from that figure that the probability of finding 
the particle in a given length of the x axis, which is long enough to average over 
the quantum mechanical fluctuations in the probability density, is nearly twice as 
large to the right of the potential step as it is to the left of the step. From a classical 
point of view, which is appropriate to discussing an average over quantum mechan-
ical fluctuations, it can be said that the reasons for this are: (a) the probability that 
the particle will pass the step and proceed into the region to its right is almost 
equal to one, and (b) the particle's velocity is halved when it enters the region to 
the right of the step since k = p/h = mv/h and k2  = k 1 /2, so it spends twice as much 
time in any given length of the axis in that region. 

From Figure 6-11 we see that the energy of the particle must be appreciably higher 
than the height of the potential step before the probability of reflection becomes 
negligible. However, the case in which E becomes very large is not necessarily the 
case of the classical limit for which we know there will be no reflection at all. The 
point is that (6-44) says R depends only on the ratio E/Vo , so that it will keep the 
same value if Vo  increases as rapidly as E. This seems paradoxical until we realize 
that, in the limit of large energies, our basic assumption that the change in the value 
of the step potential V(x) is perfectly sharp can no longer be even an approximation 
to a real physical situation. If the potential function changes only very gradually with 
x, then the de Broglie wavelength will change only very gradually. In this case the 
reflection will be negligible because the change in wavelength is gradual, and reflec-
tion arises from an abrupt change in the wavelength. Specifically, if the fractional 
change in V(x) is very small when x changes by one de Broglie wavelength, then 
the reflection coefficient will be very small. This gives rise to the classical limit since 
in that limit the de Broglie wavelength is so short that any physically realistic po-
tential V(x) changes only by a negligible fraction in one wavelength. 

For particles in atomic or nuclear systems, the de Broglie wavelength can be long 
relative to the distance in which the potential experienced by the particle changes 
value significantly. Then the step potential is a very good approximation. For these 
microscopic particles, the probability of reflection can be large. 

Example 6-3. When a neutron enters a nucleus, it experiences a potential energy which 
drops at the nuclear surface very rapidly from a constant external value V = 0 to a constant 
internal value of about V = — 50MeV. The decrease in the potential is what makes it possible 
for a neutron to be bound in a nucleus. Consider a neutron incident upon a nucleus with 
an external kinetic energy K = 5 MeV, which is typical for a neutron that has just been emitted 
from a nuclear fission. Estimate the probability that the neutron will be reflected at the nuclear 
surface, thereby failing to enter and have its chance at inducing another nuclear fission. 
■ For an estimate, we may take the neutron-nucleus potential to be a one-dimensional step 
potential, as illustrated in Figure 6-12. Because of the reciprocity property of the reflection 
coefficient, we may evaluate it from (6-44), using V o  = 50 MeV and E = 55 MeV for reasons 
that can be seen by inspection of the figure. We have 

R 

 = (

1  — /1- 50/55) 2  , 0.29 
1 + 	— 50/55 

This estimate gives a correct impression of the great importance of the reflection phenomenon 
when low-energy neutrons collide with nuclei. But the numerical value we have obtained for the 
reflection coefficient is not very accurate since the actual neutron-nucleus potential does not 
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Figure 6-12 A neutron of external kinetic energy K incident upon a decreasing potential  

step of depth Vo , which approximates the potential it feels upon entering a nucleus. Its total  
energy, measured from the bottom of the step potential, is E.  

drop quite as rapidly at the nuclear surface, in comparison to the de Broglie wavelength,  

as a step potential.  

6-5 THE BARRIER POTENTIAL  

In this section we consider a barrier potential, illustrated in Figure 6-13. The potential  
can be written as follows  

Vo 	 0<x<a 
V(x) = 	 (6 -45)  

0 	 x<Oorx> a   
According to classical mechanics, a particle of total energy E in the region x < 0,  
which is incident upon the barrier in the direction of increasing x, will have proba-
bility one of being reflected if E < Vo , and probability one of being transmitted into  
the region x > a if E > Vo .  

Neither of these statements describes accurately the quantum mechanical results.  
If E is not much larger than Vo , the theory predicts that there will be some reflection,  
except for certain values of E. If E is not much smaller than V0, quantum mechanics  
predicts that there is a certain probability that the particle will be transmitted through  
the barrier into the region x > a.  

In "tunneling" through a barrier whose height exceeds its total energy, a material  
particle is behaving purely like a wave. But in the region beyond the barrier it can be  
detected as a localized particle, without introducing a significant uncertainty in the  
knowledge of its energy. Thus penetration of a classically excluded region of limited  
width by a particle can be observed, in the sense that the particle can be observed  
to be a particle, of total energy less than the potential energy in the excluded region,  
both before and after it penetrates the region. We shall discuss some consequences  
of this fascinating effect in the present section, as well as some consequences of the  
reflection of particles attempting to pass over a barrier. The following section is  
devoted completely to examples of tunneling through barriers, and considers three  
of particular importance: (1) the emission of a particles from radioactive  r^ lei 
through the potential barrier they experience in the vicinity of the nuclei, (2) the  
inversion of the ammonia molecule which provides a frequency standard for atomic  
clocks, and (3) the tunnel diode used as a switching unit in fast electronic circuits.  

V(x)  

Vo  

0 	a  

Figure 6-13 A barrier potential.  
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For the barrier potential of (6-45), we know from the qualitative arguments of the  

last chapter that acceptable solutions to the time-independent Schroedinger equation  

should exist for all values of the total energy E > O. We also know that the equa-
tion breaks up into three separate equations for the three regions: x < 0 (left of the  

barrier), 0 < x < a (within the barrier), and x > a (right of the barrier). In the regions  

to the left and to the right of the barrier the equations are those for a free particle  

of total energy E. Their general solutions are  
0(x) = Ae` k,x + Be - `k'x 	 x < 0  

(6-46)  

where  
^2mE 

k1_ 
h  

In the region within the barrier, the form of the equation, and of its general solution,  

depends on whether E < Vo  or E > Vo . Both of these cases have been treated in the  

previous sections. In the first case, E < Vo , the general solution is  
0(x) = Fe-k " + GekIIx 	 0 < x < a (6-47)  

where  
J2m(V0 —E) 

h  

In the second case, E > Vo , it is  
0(x) = Fe` k'nx + Ge  - ck1IIx  

where  
-\I2m(E — Vo)  

kII,  = 
	

h  

Note that (6-47) involves real exponentials, whereas (6-46) and (6-48) involve complex  
exponentials.  

Since we are considering the case of a particle incident on the barrier from the  

left, in the region to the right of the barrier there can be only a transmitted wave  

as there is nothing in that region to produce a reflection. Thus we can set  

D= 0  
In the present situation, however, we cannot set G = 0 in (6-47) since the value of x  
is limited in the barrier region, 0 < x < a, so 0(x) for E < Vo  cannot become infinitely  
large even if the increasing exponential is present. Nor can we set G = 0 in (6-48)  
since /i(x) for E > Vo  will have a reflected component in the barrier region that 
arises from the potential discontinuity at x = a.  

We consider first the case in which the energy of the particle is less than the height 
of the barrier, i.e., the case: 
E < Vo  
In matching ,P(x) and di/i(x)/dx at the points x = 0 and x = a, four equations in the  
arbitrary constants A, B, C, F, and G will be obtained. These equations can be used 
to evaluate B, C, F, and G in terms of A. The value of A determines the amplitude 
of the eigenfunction, and it can be left arbitrary. The form of the probability density 
corresponding to the eigenfunction obtained is indicated in Figure 6-14 for a typical 
situation. In the region x > a the wave function is a pure traveling wave and so the  

probability density is constant, as for x > 0 in Figure 6-10. In the region x < 0 the  

wave function is principally a standing wave but has a small traveling wave com-
ponent because the reflected traveling wave has an amplitude less than that of the  

tlf (x) = Ce k̀Ix + De 	 X > a  

k11  = E < Vo  

0 < x < a (6-48)  

E > Vo  
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Figure 6-14 The probability density function 'PT for a typical barrier penetration situation.  

incident wave. So the probability density in that region oscillates but has minimum 
values somewhat greater than zero, as for x < 0 in Figure 6-10. In the region 
0 < x < a the wave function has components of both types, but it is principally a 
standing wave of exponentially decreasing amplitude, and this behavior can be seen 
in the behavior of the probability density in the region. 

The most interesting result of the calculation is the ratio T, of the probability flux 
transmitted through the barrier into the region x > a, to the probability flux incident 
upon the barrier. This transmission coefficient is found to be 

6-49 ( 	) 

where 

kola = 
J2mJ'a2 (

1— V 	
E < Vo  

0  

If the exponents are very large, this formula reduces to  

T — 16  Vo ( 1  Vo l
e zkIIa 	 kIla » 1 (6-50) 

as can be verified with ease. When (6-50) is a good approximation, T is extremely 
small. 

These equations make a prediction which is, from the point of view of classical 
mechanics, very remarkable. They say that a particle of mass m and total energy E, 

 incident on a potential barrier of height Vo  > E and finite thickness a, actually has a 
certain probability T of penetrating the barrier and appearing on the other side. This 
phenomenon is called barrier penetration, and the particle is said to tunnel through 
the barrier. Of course, T is vanishingly small in the classical limit because in that 
limit the quantity 2m Voa2/h 2, which is a measure of the opacity of the barrier, is ex-
tremely large. 

We shall discuss barrier penetration in detail shortly, but let us first finish de-
scribing the calculations by considering the case in which the energy of the particle is 
greater than the height of the barrier, i.e., the case: 
E> Vo  
In this case the eigenfunction is oscillatory in all three regions, but of longer wave-
length in the barrier region, 0 < x < a. Evaluation of the constants B, C, F, and G 

 by application of the continuity conditions at x = 0 and x = a, leads to the following 
formula for the transmission coefficient 

T — 
 v1C*C = 1 — (eikIlIa — e  tkIIIa)z 1 

— 1 + 	sinz  kiria 	-1 	
6-51 * 	 (6-51) 

v 1 A A 	
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2mV°a2  ^  E  
krna =  

h 2 	Vo 

where  

1 ) 	 E >  V0  

Example 6 -4. An electron is incident upon a rectangular barrier of height V 0  = 10 eV and 
thickness a = 1.8 x 10 -10  m. This rectangular barrier is an idealization of the barrier en-
countered by an electron that is scattering from a negatively ionized gas atom in the "plasma" 
of a gas discharge tube. The actual barrier is not rectangular, of course, but it is about the 
height and thickness quoted. Evaluate the transmission coefficient T and the reflection coeffi-
cient R, as a function of the total energy E of the electron. 
• From Example 6-2 we can see that if E is a reasonable fraction of V0  the penetration length 
Ax will be comparable to the barrier thickness a. Thus we can expect appreciable transmission 
through the barrier. To determine exactly how much, we use the numbers given to evaluate 
the combination of parameters 

2mV0a2  2 x 9 x 10 -31  kg x 10 eV x 1.6 x 10 -19  joule/eV x (1.8) 2  x 10 -20  m2  
	_ 	 ^ 9 h2 	 10 -68  joule2 -sec 2  

which enters (6-49). From this we can plot T, and also R = 1 — T, versus E/V0 , in the range 
0 < E/VO  < 1. The plot is shown in Figure 6-15. We see that T is very small when E/V O  « 1. 
But, when E/VO  is only somewhat smaller than one, so that E is nearly as large as V0 , T is not 
at all negligible. For instance, when E is half as large as V0  so that E/VO  = 0.5, the transmis-
sion coefficient has the appreciable value T ^ 0.05. It is apparent that electrons can penetrate 
this barrier with relative ease. 

For E/VO  > 1, we evaluate T, and R = 1 — T, from (6-51), using the same combination of 
parameters as before. The results are also shown in Figure 6-15. For E/V O  > 1, the transmission 
coefficient T is in general somewhat less than one, owing to reflection at the discontinuities in 
the potential. However, from (6-51) it can be seen that T = 1 whenever krna = m, 2n, 3n, ....  
This is simply the condition that the length of the barrier region, a, is equal to an integral or 
half-integral number of de Broglie wavelengths )m = 2n/k,,, in that region. For this particular 
barrier, electrons of energy E 21 eV, 53 eV, etc., satisfy the condition k üja = 2n, etc., and 
so pass into the region x > a without any reflection. The effect is a result of destructive inter-
ference between reflections at x = 0 and x = a. It is closely related to the Ramsauer effect 
observed in the scattering of low-energy electrons by noble gas atoms, in which electrons of 
certain energies in the range of a few electron volts pass through these atoms as if they were 
not there, and so have transmission coefficients equal to one.- Essentially the same effect is seen 
in scattering of neutrons, with energies of a few MeV, from all nuclei. The nuclear effect, called 
size resonance, will be discussed later in the book. • 

T 

J 	  

0 1 
	

5 
	

1 0  
E/V0  

Figure 6-15 The reflection and transmission coefficients R and T for a particle incident  
upon a potential barrier of height VO  and thickness a, such that 2mV 0a 2/h 2  = 9. The abscis- 
sa E/V O  is the ratio of the total energy of the particle to the height of the potential barrier.  
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We can bring together the results of the last three sections by comparing the plot 
of the energy dependence of the reflection coefficient R for a barrier potential, in Fig-
ure 6-15, with the plot of the same thing for a step potential, in Figure 6-11. The com-
parison shows that for both potentials R —* 1 as E/Vo  0, and R —> 0 as E/Vo  —> oo, 
with the decrease in R occurring around E/Vo  = 1. But for the barrier potential the 
reflection coefficient approaches one gradually, at small energies, since the finite thick-
ness of the classically excluded region allows some transmission. Also, the barrier 
potential reflection coefficient oscillates, at large energies, because of interferences in 
the reflections from its two discontinuities. As the step potential can be considered 
to be a limiting case of a barrier of very great width, we can see from our comparison 
the behavior of the barrier potential reflection coefficient in this limit. 

Now we shall discuss in some detail the origins of these results. They all involve 
phenomena which arise from the wavelike behavior of the motion of microscopic 
particles, and each phenomenon is also observed in other types of wave motion. As 
we remarked in Chapter 5, the time-independent differential equation governing 
classical wave motion is of the same form as the time-independent Schroedinger 
equation. For instance, electromagnetic radiation of frequency y  propagating through 
a medium with index of refraction it obeys the equation 

d 2 0(x) 
 	

(27-cv 

  
, h2  0(x) = 0 	 (6-52) 

where the function tfr(x) specifies the magnitude of the electric or magnetic field. When 
we compare this with the time-independent Schroedinger equation, written in the 
form 

d d (x)  + hm [E — V(x)]r/i(x) = 0 

we see that they are identical if the index of refraction in the former is connected with 
the potential energy function in the latter by the relation 

,u(x)  = 2TCv 	2 
[E — V(x)] 	 (6-53) 

Thus the behavior of an optical system with index of refraction µ(x) should be iden-
tical to the behavior of a mechanical system with potential energy V(x), providing 
the two functions are related as in (6-53). Indeed, there are optical phenomena which 
are exactly analogous to each of the quantum mechanical phenomena that arise in 
considering the motion of an unbound particle. An optical phenomenon, completely 
analogous to the total transmission of particles over barriers of length equal to an 
integral or half-integral number of wavelengths, is used in the coating of lenses to 
obtain very high light transmissions and in thin film optical filters. 

An optical analogue to the penetration of barriers by particles is found in the imag-
inary indices of refraction that arise in total internal reflection. Consider a ray of light 
incident upon a glass-to-air interface at an angle greater than the critical angle O . 
The resulting behavior of the light ray is called total internal reflection, and it is 
illustrated in the top of Figure 6-16. A detailed treatment of the process in terms of 
electromagnetic theory shows that the index of refraction, measured along the line 
ABC, is real in the region AB but imaginary in the region BC. Note that an imaginary 
µ(x) is suggested by (6-53) for a region analogous to one in which E < V(x). Further-
more, electromagnetic theory shows that there are electromagnetic vibrations in the 
region BC of exactly the same form as the decreasing exponential standing wave of 
(6-29) for the region where E < V(x). The flux of energy (the Poynting vector) is zero 
in this electromagnetic standing wave, just as the flux of probability is zero in the 
quantum mechanical standing wave, so the light ray is totally reflected. However, if 
a second block of glass is placed near enough to the first block to be in the region in 
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Figure 6-16 Top: Illustrating total internal 
reflection of a light ray. The angle of in-
cidence is greater than the critical angle. 
Bottom: Illustrating frustrated total internal 
reflection. Some of the light ray is trans-
mitted through the air gap if the gap is suf-
ficiently narrow. 
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Figure 6-17 The total internal reflection of water waves. A long vibrating plunger on the left 
produces a set of waves in a region of shallow water, the waves being illuminated so as to 
make their crests easily visible. The waves are totally internally reflected at the diagonal 
boundary of a region where the layer of water abruptly becomes deeper, this reflection 
occurring because the velocity of water waves depends on the depth of the water. Note that 
the intensity of the waves decreases rapidly when they try to penetrate into the region of 
deeper water, but there is some penetration of that region. (Courtesy Film Studio, Education 
Development Center) 



Figure 6-18 Frustrated total internal reflection of water waves. When the region of deeper 
water becomes a sufficiently narrow gap, the waves that have penetrated into the deeper 
water are picked up and transmitted into a second region of shallow water. (Courtesy Film 
Studio, Education Development Center) 

which the electromagnetic vibrations are still appreciable, these vibrations are picked 
up and propagate through the second block. Furthermore, the electromagnetic vibra-
tions in the air gap now carry a flux of energy through to the second block. This 
phenomenon, called frustrated total internal reflection, is illustrated in the bottom of 
Figure 6-16. Essentially the same thing happens in the quantum mechanical case 
when the region in which E < V(x) is reduced from infinite thickness (step potential) 
to finite thickness (barrier potential). The transmission of light through an air gap, at 
an angle of incidence greater than the critical angle, was first observed by Newton 
around 1700. The equation relating the intensity of the transmitted beam to the 
thickness of the air gap, and other parameters, is identical in form to (6-49), and it 
has been verified experimentally. 

It is particularly easy to observe frustrated total internal reflection of electromag-
netic waves, using the microwave region of the spectrum and two blocks of paraffin 
separated by an air gap. Furthermore, careful inspection of the "ripple tank" photo-
graphs in Figures 6-17 and 6-18 will show that the phenomenon can even be observed 
with water waves. Frustrated total internal reflection, or its quantum mechanical 
equivalent barrier penetration, arises from properties common to all forms of classical 
or quantum mechanical wave motion. 

6-6 EXAMPLES OF BARRIER PENETRATION BY PARTICLES 

There are a number of interesting, and important, examples of barrier penetration by micro-
scopic particles. A widespread, but not widely recognized, example occurs in aluminum house-
hold wiring. The usual way for an electrician to join two wires is to twist them together. Often 
there is a layer of aluminum oxide between the two wires, and this material is quite an effective 
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Kinetic energy 
at large r 

E 

U 238 

r' 	r "= 3.Ox 

10 -14 m 
r 

insulator. Fortunately, the layer is extremely thin so the electrons flowing through the wire 
are able to tunnel through the layer by barrier penetration. 

Historically, the first application of the quantum mechanical theory of barrier penetration 
by particles was to explain a long standing paradox concerning the emission of a particles in 
the decay of radioactive nuclei. As a typical example, consider the U238  nucleus. The potential 
energy V(r) of an a particle at a distance r from the center of the nucleus had been investigated 
around 1910 by Rutherford, and others, who performed scattering experiments. Using as a 
probe the 8.8 MeV a particles emitted from the radioactive nuclei of Po212,  it was observed 
that their probability of scattering at various angles from U238  nuclei agreed with the pre-
dictions of Rutherford's scattering formula (see Chapter 4). The student will recall that the 
formula was based on the assumption that the interaction between the a particle and the 
nucleus strictly followed the Coulomb law repulsion that would be expected to operate be-
tween the two positively charged spherical objects. Thus Rutherford was able to conclude that, 
for the U238  nucleus, the potential function V(r) felt by a neighboring a particle followed 
Coulomb's law, V(r) = 2Ze 2/4neor, where 2e is the a-particle charge and Ze is the nuclear 
charge—at least for distances greater than r" = 3 x 10 -14  m where V(r') = 8.8 MeV, the 
probe a-particle energy. It was also known by scattering a particles from nuclei of light atoms 
that V(r) eventually departs from a 1/r law when r < r', the nuclear radius, although the exact 
value of r' was not known for the nuclei of heavy atoms at that time. Furthermore, since a 
particles are occasionally emitted by U238  nuclei, it was assumed that they exist inside such 
nuclei, to which they are normally bound by the potential V(r). From these arguments it was 
concluded that the form of V(r) in the region r < r" must be qualitatively as depicted in 
Figure 6-19. This conclusion has been verified by modern experiments involving the scattering 
of a particles produced by cyclotrons at energies high enough to allow the investigation of the 
potential over the entire range of r. 

The  paradox was connected with the fact that it was also known that the kinetic energy 
of a particles emitted in radioactive decay by U238  was 4.2 MeV. The kinetic energy was, of 
course, measured at a very large distance from the nucleus where V(r) = 0 and the kinetic 
energy equals the total energy E. This value of the constant total energy of the decay a particles 
emitted by U238  is also shown in Figure 6-19. From the point of view of classical mechanics, 
the situation was certainly paradoxical. An a particle of total energy E is initially in the region 
r < r'. This region is separated from the rest of space by a potential barrier of a height which 
was known to be at least twice E. Yet it was observed that on occasion the a particle pene-
trates the barrier and moves off to large values of r. 

Figure 6-19 The potential energy V acting on an a particle at a distance r from the center 
of a U

238  nucleus, and the total energy E of an a particle emitted from that radioactive 
nucleus. The solid part of the potential 'curve was known from scattering measurements to 
follow Coulomb's law into the distance of closest approach r" of an 8.8 MeV a particle. The 
dashed part of the curve shows that the potential was assumed to continue to follow Cou-
lomb's law into the nuclear radius r', where it must drop very rapidly to form a binding 
region. A 4.2 MeV a particle emitted from the radioactive nucleus must penetrate the poten-
tial barrier from the nuclear radius r' to the point at distance r" from the center where 
its potential energy V becomes less than its total energy E. 



To put it another way, according to classical mechanics an a particle emitted from a region  
where the potential energy function has the form shown in Figure 6-19 must, necessarily, have  
a much higher kinetic energy than was actually observed when it is far from the region. The  
reason is simply that in classical mechanics the total energy must be greater than the maximum  
value of the potential energy, if the particle is to escape the barrier. Consider the following  
analogy. You are walking beneath the span of a tall bridge, not looking up. Suddenly a brick  
hits you on the head, but gently, with a light tap. There is no place for the brick to come from,  
other than the bridge, but a brick falling from such a height would have developed enough  
kinetic energy to kill you!  

In 1928 Gamow, Condon, and Gurney treated a-particle emission as a quantum mechanical  
barrier penetration problem. They assumed that V(r) = 2Ze 2/47re0r for r > r', where 2e is the  
a-particle charge and Ze is the charge of the nucleus remaining after the a particle is emitted.  
They also assumed that V(r) < E for r < r', as shown in Figure 6-19. Equation (6-50) was  
used to evaluate the transmission coefficient T since the exponent kna, which determines T,  
has a value large compared to one. In fact, the exponent is so large that the exponential  
completely dominates the behavior of T, and it was sufficient to take  

T ^  e - 2krna =  e - 2✓(2m1h2)(Vo— E)n  

This expression was derived for a rectangular barrier of height V0  and width a, but when the 
expression is valid it can be applied to the barrier V(r) by considering it to be a set of adjacent 
rectangular barriers of height V(r z) and very small width Ar e . This reasoning leads, in the limit, 
to the expression 

T e - 2fr, ✓(2m1*2)[V(r)—E]dr 	 (6-55)  

where the integration is taken from the nuclear radius r', where V(r) rises above E, to the ra-
dius r"', where V(r) drops below E. The use of (6-54), which was derived for a one-dimensional  
case, in (6-55) that concerns a three-dimensional problem, was justified because the a particles  
are almost always emitted with zero angular momentum. That is, they move out along essen-
tially linear paths emanating from the nuclear center, obeying equations which are essentially  
one-dimensional.  

The quantity T gives the probability that in one trial an a particle will penetrate the barrier.  
The number of trials per second could be estimated to be  

v 

N  2r' 	
(6-56)  

if it were assumed that an a particle is bouncing back and forth with velocity y  inside the  
nucleus of diameter 2r'. Then the probability per second that the nucleus will decay by  
emitting an a particle, called the decay rate R, would be  

R 	
v 	 e -2fr; " .^/(2m/h 2)(2Ze 2/4, eor—E)d r 

— 2r ' 	 (6-57)  

Today we know that (6-56) is not a very accurate estimate, but this function, or its more  
correct form, varies so slowly compared to the rapid variation in the exponential that the  
result expressed by (6-57) is an accurate estimate.  

In applying (6-57) to a particular radioactive nucleus, Gamow, Condon, and Gurney took  
all the quantities in the expression as known, except y and r' (r"' can be evaluated from Z  
and E). Assuming y to be comparable to the velocity of the a particle after emission (i.e.,  
mv 2/2 = E), the decay rate R is then a function only of the nuclear radius r'. Using r' = 9 x  
10 -15  m, which was certainly in line with the values obtained from Rutherford's analysis of  
a-particle scattering from light nuclei, they obtained values of R which were in good agreement  
with those measured experimentally, although the decay rate varies over â tremendously large  
range. As an example, for  U238 ,  the decay rate is R = 5 x 10 -18  sec -1 . An example at the  
other extreme is Po212,  for which R = 2 x 106  sec- 1 . This variation in R is due primarily  
to the variation, from one radioactive nucleus to the next, of the energy E of the emitted a  
particles. The height of the barrier and the nuclear radius do not change significantly for  
nuclei in the limited range of the periodic table in which a-emitting nuclei are found. A com-
parison between experiment and theory is shown in Figure 6-20. The successful application  

(6-54)  

E
X

A
M

P
L

E
S

  O
F

 B
A

R
R

IE
R

  P
E

N
E

T
R

A
T

IO
N

 B
Y

  P
A

R
T

IC
LE

S
  



CO  
o  
N  

S
O

LU
T

IO
N
S

 O
F

 T
IM

E
-I

N
D

E
P

E
N

D
E

N
T

 S
C

H
R

O
E

D
IN

G
E

R
 E

Q
U

A
T

IO
N

S
 

CD  
ô 
co  
L  
U 

Po21  

 

  

  

  

 

^ u  238  

   

E9 

8  

x 

10 5  

10°  

r. 
10-5  

U 
^ 
N  

tz4 
10-10  

10-15  

1 0-20  
0 3 	 0.4 	 0.5  

E
-1/2 

(MeV -1/2 ) 

Figure 6-20 The probability per second R that a radioactive nucleus will emit an a particle of  
energy E. The points are experimental measurements and the solid curve is the prediction of  

(6-57), a result of barrier penetration theory.  

Figure 6-21 A schematic illustration of the NH 3  mole-
cule. The light spheres represent the three H atoms  
arranged in a plane. The dark spheres represent two  
equivalent equilibrium positions of the single N atom.  
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Figure 6-22 The potential energy of the N atom in the NH 3  molecule, as a function of its  
distance from the plane containing the three H atoms, which lies at x = 0. In its lower energy  
states, the total energy of the molecule lies below the top of the barrier separating the two  

minima, as indicated by the eigenvalues of the potential shown in the figure.  



x < —a12  or x > + a/2 

—a/2 < x < + a/2 
(6-58) 

of Schroedinger quantum mechanics to the a-particle emission paradox provided one of its 
earliest, and most convincing, verifications. 

Barrier penetration of atoms takes place in the periodic inversion of the ammonia molecule, 
NH 3 . Figure 6-21 illustrates schematically the structure of this molecule. It consists of three H 
atoms arranged in a plane, and equidistant from the N atom. There are two completely equiv-
alent equilibrium positions for the N atom, one on either side of the plane containing the H 
atoms. Figure 6-22 indicates the potential energy acting on the N atom, as a function of its 
distance x from that plane. The potential function V(x) has two minima, corresponding to the 
two equilibrium positions, which are symmetrically disposed about a low maximum located 
at x = 0. This maximum, which constitutes a barrier separating the two binding regions, arises 
from the repulsive Coulomb forces that act on the N atom if it penetrates the plane of the 
H atoms. The forces are strong enough that in classical mechanics the N atom is not able to 
cross the barrier, if the molecule is in one of its low-lying energy states; that is, the lower 
allowed energies of this binding potential are below the top of the barrier, as indicated in the 
figure. But penetration of the classically excluded region allows the N atom to tunnel through 
the barrier. If it is initially on one side, it will tunnel through and eventually appear on the 
other side. Then it will do it again in the opposite direction. The position of the N atom with 
respect to the plane containing the H atoms actually oscillates slowly back and forth across 
the plane. (Since the molecule's center of mass remains fixed in an inertial reference frame, in 
such a reference frame the H atoms must always move in the direction opposite to the direction 
of motion of the N atom. And since the H atoms have relatively small mass, their motion 
must be relatively large.) The oscillation frequency is v = 2.3786 x 10 10  Hz, when the mole-
cule is in its ground state. This frequency is much lower than those found in molecular vibra-
tions not involving barrier penetration, or in other atomic or molecular phenomena. Due to 
the resulting technical simplifications, the frequency was used as a standard in the first atomic 
clocks which measure time with maximum precision. 

A recent, and very useful, example of barrier penetration of electrons is found in the tunnel 
diode. This is a semiconductor device, like a transistor, which is used in fast electronic circuits 
since its high frequency response is much better than that of any transistor. The operation of 
a tunnel diode will be explained in Chapter 13, in the context of a discussion of semicon-
ductors. So here we shall say only that the device employs controllable barrier penetration to 
switch currents on or off so rapidly that it can be used to make an oscillator that can operate 
at frequencies about 10 i1  Hz. 

6-7 THE SQUARE WELL POTENTIAL 

In the preceding sections we have treated the motion of particles in potentials which 
are not capable of binding them to limited regions of space. Although a number of 
interesting quantum phenomena showed up, energy quantization did not. Of course 
we know, from the qualitative discussion of the last chapter, that energy quantization 
can be expected only for potentials which are capable of binding a particle. In this 
section we shall discuss one of the simplest potentials having this property, the square 
well potential. 

The potential can be written 

V(x)  = Ôo 

The illustration in Figure 6-23 indicates the origin of its name. If the particle has total 
energy E < V0 , then in classical mechanics it can be only in the region — a/2 < x < 
+ a/2 (within the well). The particle is bound to that region and bounces back and 
forth between the ends of the region with momentum of constant magnitude but 
alternating direction. Furthermore, any value E > 0 of the total energy is possible. 
But in quantum mechanics only certain discretely separated values of the total energy 
are possible. 

The square well potential is often used in quantum mechanics to represent a situa-
tion in which a particle moves in a restricted region of space under the influence of 
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Figure 6-23 A square well potential.  
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forces which hold it in that region. Although this simplified potential loses some 
details of the motion, it retains the essential feature of binding the particle by forces 
of a certain strength to a region of a certain size. From the discussion in Example 6-2 
it is apparent that it is a good approximation to represent the potential acting on a 
conduction electron in a block of metal by a square well. The depth of the square well 
is around 10 eV, and its width equals the width of the block. Figure 6-24 indicates, 
from a point of view different from that used in Example 6-2, how something like a 
square well can be obtained by superimposing the potentials produced by the closely 
spaced positive ions in the metal. In Example 6-3, we indicated that the motion of a 
neutron in a nucleus can be approximated by assuming that the particle is in a square 
well potential with a depth of about 50 MeV. The linear dimensions of the potential 

CD equal the nuclear diameter, which is about 10 -14  m. 
c 	We begin our treatment by considering, qualitatively, the form of the eigenfunc- co 
o 	tions which are solutions to the time-independent Schroedinger equation for the square 

well potential of (6-58). As in the preceding sections, the problem decomposes itself 
into three regions: x < — a/2 (left of the well), — a/2 < x < + a/2 (within the well), 

One ion  

Ix  

Three ions in line  

Many closely spaced  
ions in line 

(AAMMAAAAAMAA  

Figure 6-24 A qualitative indication of how an approximation to a square well potential  

results from superimposing the potentials acting on a conduction electron in a metal. The  

potentials are due to the closely spaced positive ions in the metal.  



and x > + a/2 (right of the well). The so-called general solution to the equation for 
the region within the well is 

NI2mE 
tli(x) = Ae ikIx + Be - ikix 	where k I  = 	 —a12 < x < +a/2 (6-59) 

The first term describes waves traveling in the direction of increasing x, and the 
second term describes waves traveling in the direction of decreasing x. (This solution 
was derived in Section 6-2. If the student has not studied that section, he can easily 
show that it is a solution to the time-independent Schroedinger equation, for any 
values of the arbitrary constants A and B, by substituting it into (6-2).) 

Now, the classical description of the particle bouncing back and forth within the 
well suggests that the eigenfunction in that region should correspond to an equal 
mixture of waves traveling in both directions. The two oppositely directed traveling 
waves of equal amplitude will combine to form a standing wave. We can obtain such 
behavior by setting the arbitrary constants equal to one another, so that A = B. 
This yields 

w (x) = 
B(eikIx + 

which we write as 
/ e ikix + e -ikIx 

iP(x)=B 	2  

where B' is a new arbitrary constant defined by the relation B' = 2B. But this com-
bination of complex exponentials gives us simply 

ifi(x) = B' cos kIx 	where k 1  = 	
E 	

(6-60) 
h 

This eigenfunction describes a standing wave since inspection of the associated wave 
function `I'(x,t) = fi(x)e - jEtm  shows that it has nodes in the fixed locations where 
cos kIx = 0. 

We can also obtain a standing wave by setting — A = B. This gives 

I (x) = A(eikix _ 

which we write as 

IŸ(x) = A' 	2i 
where A' is a new arbitrary constant defined by A' = 2iA. But this is just 

111(x) = A' sin kIx 	where kI  = V2 E 	
(6-61) 

Since both (6-60) and (6-61) specify solutions to the time-independent Schroedinger 
equation for the same value of E, and since that differential equation is linear in 
0(x), their sum 

111(x) = A' sin kIx + B' cos k ix where kI  = 
,/2mE 

 	— a/2 < x < + a/2 (6-62) 

is also a solution, as can be verified by direct substitution. In fact, this is a general 
solution to the differential equation for the region within the well because it contains' 
two arbitrary constants—it is just as general as the solution (6-59). Mathemati-
cally, the two are completely equivalent. However, (6-62) is more convenient to use in 
problems involving the motion of bound particles. Physically, (6-62) can be thought 
of as describing a situation in which a particle is moving in such a way that the 
magnitude of its momentum is known to be precisely p = hk1  = -,,/2mE, but the direc-
tion of the momentum could either be in the direction of increasing or decreasing x. 

e  - ikIx) 

e ik Ix — e -ikIx 
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vo  

E3  

E2 

E1 

+a/2
0 
 0 —a/2  

Now consider the solutions to the time-independent Schroedinger equation in the  

two regions outside the potential well: x < — a/2 and x > + a/2. In these regions the  
general solutions have the forms  

> fi (x) = CekI'x + De  -  kiix 	where k11  = ^2m( l^°  — E)  x < — a/2 (6-63)  

and  

0(x) = Fekiix + Ge- kiix 	where k11  = 
 1/2m(o — E) 

 x > +a/2 (6-64) 

The two forms of 0(x) describe standing waves in the region outside the well, since 
in the associated wave function 'P(x,t) = 4/i(x)e - `Et /k  the x and t dependences occur as 
separate factors. These standing waves have no nodes, but they will be joined onto 
the standing waves inside the well which do have nodes. (The general solutions were 
derived in Section 6-3. Their validity, for any values of the arbitrary constants C, D,  
F, and G, can easily be verified by students who skipped that section by substitution 
in (6-13).) 

Eigenfunctions valid for all x can be constructed by joining the forms assumed, in 
each of the three regions of x, by the general solutions to the time-independent 
Schroedinger equation. These three forms involve six arbitrary constants: A', B', C,  
D, F, and G. Now since an acceptable eigenfunction must everywhere remain finite, 
we can immediately see that we must set D = 0 and F = O. If this were not done the 
second exponential in (6-63) would make 4i(x) -4 co as x —* — oo, and the first expo-
nential in (6-64) would make 4i(x) —* co as x —* + oo. Four more equations involving 
the remaining arbitrary constants can be obtained by demanding that 0(x) and  

dt/i(x)/dx be continuous at the two boundaries between the regions, x = — a/2 and  
x = + a/2, as is required for acceptable eigenfunctions. (They are already single  

valued.) But we cannot allow all four of the remaining arbitrary constants to be  

specified by these four equations. One of them must remain unspecified so that the  

amplitude of the eigenfunction can be arbitrary. Arbitrary amplitude is required  

because the differential equation is linear in the eigenfunction i/i(x). Thus there seems  

to be a discrepancy between the number of equations to be satisfied and the number  

of constants that can be adjusted. But it is resolved by treating the total energy E as  
an additional constant that can be adjusted, as needed. We shall find that this pro-
cedure works, but only for certain values of E. That is, there will emerge a certain  
set of possible values of the total energy E, and so the energy will be quantized to a  

set of eigenvalues. Only for these values of the total energy does the Schroedinger  

equation have acceptable solutions.  
It is not difficult to carry through this procedure, as we shall see shortly in treating  

a special case. But the general case leads to a solution involving a complicated tran-
scendental equation (an equation in which the unknown is contained in the argument  

Figure 6-25 A square well potential and its  
three bound eigenvalues. Not shown is a con-
tinuum of eigenvalues of energy E > Vo.  
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Figure 6-27 The first eigenfunction for a square well with walls of moderate height. 

+ a/2 —a/2 	0 

x 

Ii/2 

x 

x 

Figure 6-26 The three bound eigenfunctions for the square well of Figure 6-25. 

of a function such as a sinusoidal), which precludes expressing the solution mathemat-
ically in a concise way. Therefore, we relegate the details of the general solution to 
Appendix H, and here continue for a while with our qualitative discussion. 

Figures 6-25 and 6-26 show, respectively, the eigenvalues and eigenfunctions for 
the three bound states of a particle in a particular square well potential. Not shown 
are a continuum of eigenvalues which extend from the top of the well on up, since any 
value of total energy E that is greater than the height of the potential walls V o  is 
allowed. Also not shown are the continuum eigenfunctions. Focusing attention first 
on the region of x within the well, we note that the curvature of the sinusoidal part 
of the eigenfunction increases as the energy of the corresponding eigenvalue increases. 
As a consequence, the higher the energy of the eigenvalue the more numerous are the 
oscillations of the corresponding eigenfunction and the higher is its wave number. 
These results reflect the fact that the wave number k I, in the solution of (6-62) for the 
region inside the well, is proportional to E 1 /2 .The square well potential depicted in 
the figure does not have a fourth bound eigenvalue because the associated value of k I , 
and therefore of E 1 J 2 , would be too large to satisfy the binding condition E < Vo . 

Now consider the parts of the eigenfunctions that extend into the regions outside 
the well. In classical mechanics a particle could never be found in these regions 
since its kinetic energy is p2/2m = E — V(x), which is negative where E < V(x). Note 
that the eigenfunctions go to zero in these classically excluded regions more rapidly 
the lower the energy of the corresponding eigenvalue. This agrees with the fact that 
the exponential parameter kII , in the solutions of (6-63) and (6-64) for the region 
outside the well, is proportional to (V0  — E) 1 / 2 . It also agrees with the idea that 
the more serious the violation of the classical restriction, that the total energy E must 
be at least as large as the potential energy V(x), the more reluctant the eigenfunctions 
are to penetrate the classically excluded regions. 

It is instructive to consider the effect on the eigenfunctions of letting the walls of the 
square well become very high, i.e., letting Vo  —> co. Shown in Figure 6-27 is the first 
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6-8 THE INFINITE SQUARE WELL POTENTIAL 

>/i,i (x) = 0 	x < —a/2 or x >_ + a/2 (6-65) 
This condition for infinite square well eigenfunctions can only be satisfied by violating 
at x = + a/2 the requirement of Section 5-6 that the derivative dhi„ (x)/dx of an eigen-
function be continuous everywhere. But if the student will review the argument which 
was presented to justify the requirement, he will find that the derivative must be 
continuous only when the potential is finite. 

eigenfunction for a square well potential. As Vo  cc, E 1  will increase, but it will do 
so very slowly compared to the increase in Vo. This is true because E 1  is determined 
essentially by the requirement that approximately half an oscillation of the eigen-
function  must fit into the length of the well. Therefore, the exponential parameter 
k1I = \/2m(Vo  — E)/h, which determines the behavior of the eigenfunction in the 
regions outside of the well, will become very large as Vo  becomes very large, and the 
eigenfunction will go to zero very rapidly outside the well. In the limit, 0 1 (x) must be 
zero for all x < — a/2 and for all x > + a/2. For a square well with infinitely high 
walls, 0 1 (x) has the form shown in Figure 6-28. It is apparent that this argument 
holds for all the eigenfunctions of such a potential. That is, for all values of n, in an 
infinite square well potential 

—a/2 	0 	+a/2 

Figure 6-28 The first eigenfunction of a square well with walls of infinite height. 

The infinite square well potential is written as 

V(x) = oo 	
x < — a/2 or x > + a/2 (6-66 

0 —a/2 < x < + a/2 	) 
and is illustrated in Figure 6-29. It has the feature that it will bind a particle with any 
finite total energy E > O. In classical mechanics, any of these energies are possible, 
but in quantum mechanics only certain discrete eigenvalues E„ are allowed. 

We shall see that it is very easy to find simple and concise expressions for the 
eigenvalues and eigenfunctions of this potential because the transcendental equation 
that arises in the solution of its time-independent Schroedinger equation happens to 
have simple solutions. For values of the quantum number n which are not too large, 
these eigenvalues and eigenfunctions can often be used to approximate the corre-
sponding (same n) eigenvalues and eigenfunctions of a square well potential with 

V(x) 

—a/2 0 	+a/2 x Figure 6-29 An infinite square well potential. 
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large but finite Vo . For instance, we mentioned before that it is a very good approxi-
mation to take the potential for a conduction electron in a block of metal to be a 
finite square well. In Example 6-2 we showed that for the typical metal Cu the eigen-
functions penetrate into the classically excluded regions exterior to the well by a 
distance of about 10' 1 ° m. This distance is so small compared to the width of the 
square well, which is the width of the Cu block, that for many purposes it is an 
equally good approximation to use the corresponding eigenfunctions and eigenvalues 
for an infinite square well, and we shall do so later. We shall also use infinite square 
well potentials to discuss the quantum mechanical properties of a system of gas 
molecules, and other particles, which are strictly confined within a box of certain 
dimensions. A particle moving under the influence of an infinite square well potential 
is often called a particle in a box. 

In the region within the well the general solution to the time-independent Schroe-
dinger equation for the infinite square well potential can be written as the standing 
wave of (6-62), which we simplify, by dropping the primes, into the form 

tii (x) = A sin  kx + B cos  kx 	where k = 	E  —a12 < x < + a/2 (6-67) 

(Students who have skipped the preceding sections can see that this i/r(x) represents 
a standing wave by noting that the associated wave function'Y(x,t) = t/r(x)e -L" has 
fixed nodes. They can verify that the i/i(x) is actually a solution to the applicable 
time-independent Schroedinger equation by substituting it into (6-2).) According to 
the condition of (6-65), tJi(x) has the value zero in the regions outside the well. Of 
course, this must be true so that the probability density will be zero in these regions, 
since the particle is strictly confined within the well by its infinitely high potential 
walls. In particular, at the boundaries of the well 

	

i/r(x) = 0 	 x = + a/2 (6-68) 
That is, the standing wave has nodes at the walls of the box. 

Now we develop relations which are satisfied by the arbitrary constants A and B, 
and by the parameter k. Applying the boundary conditions of (6-68) at x = + a/2, we 
obtain 

At x = — a/2, (6-68) yields 

A sin Za + B cos 2
a

= 0 (6-69) 

A  sin —
2

a 
 + B cos (— 

2a)
=0 

or 

 —Asin 
2a
a 
 + Bcos 

 2 
= 0 

Addition of the last two numbered equations gives 

2B coska 
2 

=0 

Subtraction gives 

(6-70) 

(6-71) 

2A sin 
2

a 
= 0 	 (6-72) 

Both (6-71) and (6-72) must be satisfied. When this is done, t/i(x) and dt/r(x)/dx will 
be everywhere finite and single valued, and i/i(x) will be everywhere continuous. As 
discussed at the end of the preceding section, d>li(x)/dx will be discontinuous at 
x = + a/2. 



11rn (x) = A n  sin kn x where k n  = 
a 

n = 2, 4, 6, . . . (6-80) 
nn 
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There is no value of the parameter k for which both cos (ka/2) and sin (ka/2) are 
simultaneously zero. And we certainly do not want to satisfy the two equations by 
setting both A and B equal to zero, for then ÿr(x) = 0 everywhere and the eigen-
function would be of no interest because the associated particle would not be in the 
box! However, we can satisfy these equations either by choosing k so that cos (ka/2) 
is zero and also setting A equal to zero, or by choosing k so that sin (ka/2) is zero 
and also setting B equal to zero. That is, we take either 

A = 0 	and 	cos 
Za 

= 0 	 (6-73) 

or 

	

B = 0 	and 	sin 
ka 

 = 0 
	

(6-74) 

Thus there are two classes of solutions. 
For the first class 

/i(x) = B cos kx 	where cos 
Za 

 = 0 
	

(6-75) 

For the second class 

111(x) = A sin kx 	where s in 
Za 

 = 0 	 (6-76) 

The conditions on the wave number k, expressed in (6-75) and (6-76), are in the 
form of transcendental equations since the unknown, k, occurs in the arguments of 
the sinusoidals; but these transcendental equations happen to be so simple that their 
solutions can be written in concise form immediately. The allowed values of k for the 
first class, (6-75), are 

ka it 3m 5n 

	

2 	2' 2 2 ,  
since cos (n/2) = cos (3n/2) = cos (5n/2) = • • • = O. It is convenient to express this as 

k 
= nrc 

n 	a  n = 1, 3, 5, . . . (6-77) 

The allowed values of k for the second class, (6-76), are 
ka 
2 = it, 2n,3n,... 

since sin it = sin 2g = sin 3rc = 	= O. This can also be expressed as 

k = n
a
il  n 	a  n = 2, 4, 6, . . . (6-78) 

Knowing the allowed values of k, we can then obtain the solutions to the time-inde-
pendent Schroedinger equation for the infinite square well from (6-75) and (6-76). 
We find 

i/rn(x) = B n  cos knx 	where kn  = nn .(x) 	= 1, 3, 5, ... (6-79) 
a 

and 

The solution corresponding to n = 0 is /10 (x) = A sin 0 = 0; it is ruled out because 
it does not describe a particle in a box. The quantum number n has been used to label 
the different solutions of the transcendental equations, and the corresponding eigen- 



functions. If it is necessary to apply the normalization condition, the constants A" and 
B", which specify the amplitudes of the eigenfunctions, will thereby be determined 
(see Example 5-10); but it is not usually necessary to do this. 

The quantum number  n is also used to label the corresponding eigenvalues. Using 
the relation k = /2mE/h of (6-67), and the expression k" = nt/a in (6-79) and (6-80) 
for the allowed values of k, we find 

h2 k2  7c2 h2 n2  
E" = 	"= 	2 	n=1,2,3,4,5,... (6-81) 

2m 2ma 
Thus we conclude that only certain values of the total energy E are allowed. The 
total energy of the particle in the box is quantized. 

The quantitative treatment of the finite square well, discussed in the preceding section and 
carried out in Appendix H, is essentially the same as what we have just gone through. But the 
penetration of the eigenfunction into the regions outside the well, which varies with the energy 
of the associated eigenvalue, leads to more complicated transcendental equations for k that 
must_be solved graphically or numerically. 

Figure 6-30 illustrates the infinite square well potential and its first few eigenvalues 
specified by (6-81). Of course, all the eigenvalues are discretely separated for an in-
finite square well potential since the particle is bound for any finite eigenvalue. Note 
that the pattern formed by the first three eigenvalues of the infinite square well is 
quite similar to that formed by the three bound eigenvalues of the finite square well 
shown in Figure 6-25. In this regard, the infinite square well results provide an ap-
proximation to the finite square well results. However, in detail each potential energy 
function V(x) has its own characteristic set of bound eigenvalues En . 

Of particular interest is the energy of the first eigenvalue. For the infinite square 
well it is 

n2h2  
E1 =

2ma2 	
(6-82) 

This is called the zero-point energy. It is the lowest possible total energy the particle 
can have if it is bound by the infinite square well potential to the region — a/2 < x < 
+a/2. The particle cannot have zero total energy. The phenomenon is basically a result 
of the uncertainty principle. To see this, consider the fact that if the particle is bound 
by the potential, then we know its x coordinate to within an uncertainty of about 
Ax ^ a. Consequently, the uncertainty in its x momentum must be at least Ap 
h/2Ax ^ h/2a. The uncertainty principle cannot allow the particle to be bound by the 

V(x) 

Figure 6-30 The first few eigenvalues of an 
— a/2 	0 	+a /2 	-- 	infinite square well potential. 
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potential with zero total energy since that would mean the uncertainty in the momen-
tum would be zero. For the  particular case of eigenvalue E 1 , the magnitude of the 
momentum is pi ^ -\12mE 1  = ih/a. Since the particle is in a state of motion described 
by a standing wave eigenfunction, it can be moving in either direction and the actual 
value of the momentum is uncertain by an amount which is about ap ^ 2p 1  ^ 2nh/a. 
The uncertainty product AxAp ^ a2rh/a ^ 27th is roughly in agreement with the 
lower limit h/2 set by the uncertainty principle. (Compare with the accurate calcula-
tion of Example 5-10.) 

We conclude that there must be a zero-point energy because there must be a zero-
point motion. This is in sharp contrast to the idea, of classical physics, that all motion 
ceases when a system has its minimum energy content at the temperature of absolute 
zero. The zero-point energy is responsible for several interesting quantum phenomena 
that are seen in the behavior of matter at very low temperatures. A striking example 
is the fact that helium will not solidify even at the lowest attainable temperature 
( 0.001°K), unless a very high pressure is applied. 

The first few eigenfunctions of the infinite square well potential are shown in Figure 
6-31. Note that the number of half wavelengths of each eigenfunction is equal to its 
quantum number n, and that therefore the number of nodes is n + 1. By comparing 
these eigenfunctions with the corresponding eigenfunctions of the finite square well 
shown in Figure 6-26, the student can see again how the results obtained for the 
simple potential can be used to approximate those of the more complicated potential 
(most accurately for eigenfunctions of lowest n value). 

Students familiar with stringed musical instruments may notice that the eigenfunc-
tions for a particle strictly confined between two points at the ends of the box look 
like the functions describing the possible shapes assumed by a vibrating string fixed 
at two points at the ends of the string. The reason is that both systems obey time-
independent differential equations of analogous form, and they satisfy analogous 
conditions at the two points. Here is yet another example of the relation between 
quantum mechanics and classical wave motion. Musically inclined students may also 
notice that the frequencies, v„ = En/h, of the time-dependent factor in the wave func-
tions for the confined particle satisfy the relation v„ cc n 2  (since En  = r 2 h2 n 2/2ma 2), 
whereas the frequencies of the vibrating string satisfy the "harmonic progression" 
vn  cc n. This difference arises because the two systems obey time-dependent differ-
ential equations which are not at all analogous. 

Example 6-5. Derive the infinite square well energy quantization law, (6-81), directly from 
the de Broglie relation p = h/I, by fitting an integral number of half de Broglie wavelengths 
1/2 into the width a of the well. 
► It is clear from Figure 6-31 that the infinite square well eigenfunctions satisfy the following 
relation between the de Broglie wavelengths and the length of the well 

n 2 =a 	 n= 1,2,3,... 

11/3(x) 

x 

x 

Figure 6-31 The first few eigenfunctions of in- 
—a/2 	0 	+a/2 
	 x 

finite square well potential. 



That is, an integral number of half-wavelengths fits into the well. This means 

2a 
n= 1,2,3,... 

n 

So according to de Broglie, the corresponding values of the momentum of the particle are 

h hn _ _ 
P 	2a 	

n= 1,2,3,... 

As the potential energy of the particle is zero within the well, its total energy equals its kinetic 
energy. Thus 

p 2 	
h2n2 	7r2h2n2 

E_—=  
2m 2m4a2  2ma2  

in agreement with (6-81). This trivial calculation can be used only for the simplest case of a 
bound particle—the case of an infinite square well potential. It cannot be applied to find the 
eigenvalues or eigenfunctions of a more complicated potential such as a finite square well. 
(See also the discussion, in connection with (4-25), of the application of the Wilson-
Sommerfeld quantization rule to the infinite square well.) • 

Example 6-6. Before the discovery of the neutron, it was thought that a nucleus of atomic 
number Z and atomic weight A was composed of A protons and (A — Z) electrons, but there 
was a serious problem concerning the magnitude of the zero-point energy for a particle as light 
as an electron confined to a region as small as a nucleus. Estimate the zero-point energy E. 
■ Setting the electron mass m equal to 10 -3°   kg and the width of the well equal to 10 - 14  m 
(a typical nuclear dimension), from (6-82) we obtain 

_ rc 2 h2 	10 x 10 -68  joule 2-sec 2 	10-9 
E 

2m 	10 

	

a2  — 2 x -30  kg x 10 -28  m 2  — 2 
	joule  

10 -9  joule x 	1 eV 
	  109  eV 

2 	1.6 x 10 -19  joule 

= 10 3  MeV 

For estimating the zero-point energy, we are certainly justified in treating the electron as if it 
were confined to an infinite square well. We are also justified in ignoring the three-dimensional 
character of the actual system. But we would not be justified in quoting the value of E just 
obtained because it is extremely large compared to the electron rest mass energy m o c 2  
0.5 MeV. A relativistically valid analogue of (6-82) must be used in this particular problem. 

The required formula can be obtained from the technique used in Example 6-5. Both of the 
equations A = 2a/n and p = h/ A. retain their validity in the extreme relativistic range. So, if we 
replace E = p 2/2m by E = cp (the energy-momentum relation E 2  = c 2p2  + môc 4  in the limit 
E » mo c 2 ), we immediately obtain for n = 1 

ch chn 2rch
—  E = cp = A = 2a = a 

3 x 3 x 10 8  m/sec x 10 -34  joule-sec 	leV 
	 — 108  eV = 102  MeV  

10 -14 m 	 1.6 x 10 -19  joule 

An electron could be found in a nucleus with this zero-point energy, if the magnitude of the 
depth of the binding potential were greater than the magnitude of the zero-point energy. There 
is a binding potential acting on the electron due to the Coulomb attraction of the positive 
charge of the nucleus, but the magnitude of the potential is not great enough. We may esti-
mate this magnitude by setting r = 10-14  m, and Q 1  = Ae, Q2 = — e, where e is the magni-
tude of the electron charge, in the Coulomb potential formula. We obtain, for a typical value 
of A = 100 

Q1Q2 	A e 2 	10 2  x (1.6 x 10 -19  coul) 2 	1 eV 
	  x 	  

47rE0r 	47rE0r — 
	

10 -10  cou1 2/nt-m 2  x 10 -14  m 	1.6 x 10 -19  joule 

— —10 v  eV = —10 MeV 

This is ten times smaller than the required binding energy. So an electron could not be bound 
in a nucleus because of the zero-point energy required by the uncertainty principle. 

n = 1, 2,3,... 
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In 1932 Chadwick, motivated by a suggestion of Rutherford, discovered the neutron. We  

now know that a nucleus is composed of Z protons and (A — Z) neutrons. Because neutrons  
are heavy particles, like protons, their zero-point energy in a nucleus is relatively low so they  

can be bound without difficulty. Indeed, we shall see in Chapter 15 that some of the most  

important properties of nuclei can be explained in terms of the quantum states of neutrons, and  

protons, moving in a (finite) square well potential. •  

Figure 6-31 makes quite apparent the essential difference between the two classes  

of standing wave eigenfunctions specified by (6-79) and (6-80). The eigenfunctions of  

the first class, 0 1(x), 0 3(x), 0 5 (x), ... , are even functions of x; that is  

	

— x) = + li(x) 	 (6-83) 

In quantum mechanics, these functions are said to be of even parity. The eigenfunc-
tions of the second class, 0 2(x), 04(x), 0 6(x), ... , are odd functions of x; that is  

	

0( —  x) = — 0(x) 	 (6-84)  
and are said to be of odd parity. 

The eigenfunctions have a definite parity, either even or odd, because we have cho-
sen the origin of the x axis so that the symmetrical square well potential V(x) is an 
even function of x. Note that if we redefine the origin of the x axis in Figure 6-31 to 
be at, say, the point x = — a/2, the eigenfunctions will no longer have a definite parity. 

These results are obtained for the square well potential, and for any other symmet-
rical potential, since measurable quantities describing the motion of a particle in 
bound states of such potentials must also be symmetrical about the point of symmetry 
of the potential. If the origin of the x axis is chosen to be at that symmetry point, 
then the function describing the measurable quantity must be an even function. As 
an example, this is true for the probability density function P(x,t), for both even and 
odd parity eigenfunctions, since 

P(—x,t) = 0*(-x)0(-x) = [+0*(x)][±0(x)] = 0*(x)0(x) = P(x,t) (6-85)  

This is not true for the wave function itself in the case of an odd parity eigenfunction; 
such a wave function is an odd function of x, but this is not a contradiction because 
the wave function itself is not measurable. Eigenfunctions for unbound states of poten-
tials that are even functions of x do not necessarily have definite parities since they 
do not necessarily describe symmetrical motions of the particle. 

In one dimension, the fact that standing wave eigenfunctions have definite parities, 
if V(— x) = V(x), is of importance largely because it simplifies certain calculations. 
In three dimensions, the property has a deeper significance that will be seen first in 
Chapter 8 in connection with the emission of radiation by an atom making a transi-
tion from an excited state to its ground state. 

The probability density functions, corresponding to the first few eigenfunctions of 
the infinite square well, are plotted in Figure 6-32. Also illustrated in the figure is 
the probability density that would be predicted by classical mechanics for a bound 
particle bouncing back and forth between — a/2 and + a/2. Since the classical particle 

I3 1 33  

iŸ2 * lŸ2  

X  

1P1*;Ÿi 	 Figure 6 -32 The first few probability density func- 
-^ 	 tions for an infinite square well potential. The dashed  

— a/2 	0 	+a/2 
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 curves are the predictions of classical mechanics.  
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would spend an equal amount of time in any element of the x axis in that region, it 
would be equally likely found in any such element. The quantum mechanical proba-
bility density oscillates more and more as n increases. In the limit that n approaches 
infinity, that is for eigenvalues of very high energy, the oscillations are so compressed 
that no experiment could possibly have the resolution to observe anything other than 
the average behavior of the probability density predicted by quantum mechanics. 
Furthermore, the fractional separation of the eigenvalues approaches zero as n ap-
proaches infinity, so in that limit their discreteness cannot be resolved. Thus we see 
that the quantum mechanical predictions approach the predictions of classical me-
chanics in the large quantum number, or high-energy, limit. This is what would be 
expected from the correspondence principle of the old quantum theory. 

6-9 THE SIMPLE HARMONIC OSCILLATOR POTENTIAL 

We have discussed several potentials which are discontinuous functions of position 
with constant values in adjacent regions. Now we turn to the more realistic cases of 
potentials which are continuous functions of position. It turns out that there are only 
a limited number of such potentials for which it is possible to obtain solutions to 
the Schroedinger equation by analytical techniques. But, fortunately, these potentials 
include some of the most important cases, such as the Coulomb potential, V(r) cc 
discussed in the following chapter, and the simple harmonic oscillator potential, 
V(x) cc x 2, discussed in this section. (In this connection, we should remind the student 
that solutions to the Schroedinger equations for potentials of any form can always 
be obtained by the numerical techniques developed in Appendix G.) 

The simple harmonic oscillator is of tremendous importance in physics, and all 
fields based on physics, because it is the prototype for any system involving oscilla-
tions. For instance, it is used in the study of:  the vibration of atoms in diatomic 
molecules, the acoustic and thermal properties of solids which arise from atomic vi-
brations, magnetic properties of solids that involve vibrations in the orientation of 
nuclei, and the electrodynamics of quantum systems in which electromagnetic waves 
are vibrating. Generally speaking, the simple harmonic oscillator can be used to de-
scribe almost any system in which an entity is executing small vibrations about a 
point of stable equilibrium. 

At a position of stable equilibrium, the potential function V(x) must have a mini-
mum. Since any realistic potential function is continuous, the function in the region 
near its minimum can almost always be well approximated by a parabola, as illus-
trated in Figure 6-33. But for small vibrations the only thing that counts is what V(x) 
does near its minimum. If we choose the origins of the x axis and the energy axis to 
be at the minimum, we can write the equation for this parabolic potential function as 

V(x) = 2 x2 	 (6-86) 

V(x) 

  

Figure 6-33 Illustrating the fact that any continuous 
potential with a minimum (solid curve) can be ap- 
proximated near the minimum very well by a para- 

x bolic potential (dashed curve). o 
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Figure 6-34 The simple harmonic oscillator po-
tential. 

where C is a constant. Such a potential is illustrated in Figure 6-34. A particle moving 
under its influence experiences a linear (or Hooke's law) restoring force F(x) = 
—dV(x)/dx = — Cx, with C being the force constant. 

Classical mechanics predicts that a particle under the influence of the linear res-
toring force exerted by the potential of (6-86), which is displaced by an amount x o 

 from the equilibrium position and then released, will oscillate in simple harmonic 
motion about the equilibrium position with frequency 

(6-87) 

where m is its mass. According to that theory, the total energy E of the particle is 
proportional to x6, and can have any value since x o  is arbitrary. 

Quantum mechanics predicts that the total energy E can assume only a discrete set 
of values because the particle is bound by the potential to a region of finite extent. 
Even in the old quantum theory this was known. The student will recall that Planck's 
postulate predicts that the energy of a particle executing simple harmonic oscillations 
can assume only one of the values 

E„ = nhv 	 n = 0, 1, 2, 3, ... (6-88) 
What are the allowed energy values predicted by Schroedinger quantum mechanics 
for this very important potential? To find out, the time-independent Schroedinger 
equation for the simple harmonic oscillator potential must be solved. 

The mathematics used in the analytical solution to the equation is not difficult to 
follow, and it is quite interesting; but since the solution is very lengthy it has been 
placed in Appendix I. Other than verifying by substitution a typical eigenfunction 
and eigenvalue obtained from the solution, here we shall concentrate on describing 
the results of the solution and discussing their physical significance. 

It is found that the eigenvalues for the simple harmonic oscillator potential are 
given by the formula 

E,1  _ (n + 1/2)hv 	n = 0, 1, 2, 3, ... (6-89) 
where y is the classical oscillation frequency of the particle in the potential. All the 
eigenvalues are discrete since the particle is bound for any of them. The potential, 
and the eigenvalues, are shown in Figure 6-35. 

If we compare the Schroedinger results with the Planck postulate, we see that in 
quantum mechanics all the eigenvalues are shifted up by an amount by/2. As a con-
sequence, the minimum possible total energy for a particle bound to the potential 

C 

m 



V( x) 

Figure 6-35 The first few eigenvalues of the sim-
ple harmonic oscillator potential. Note that the 
classically allowed regions (between the intersec-
tions of V(x) and En) expand with increasing values 
of En . 

is E0  = hv/2. This is the zero-point energy for the potential, the existence of which 
is required by the uncertainty principle. Therefore, Planck's postulated energy quanti-
zation of the simple harmonic oscillator, in the form described in Chapter 1, was 
actually in error by the additive constant hv/2. (In fairness to Planck, it should be 
pointed out that in 1914 he published a speculation, based upon entropy considera-
tions, which reads very much like Schroedinger's conclusion concerning hv/2.) This 
constant cancels out in most applications of Planck's postulate because they involve 
only differences between two energy values. As an example, consider the electromag-
netic radiation emitted by the vibrating charge distribution of a diatomic molecule 
whose interatomic spacing is executing simple harmonic oscillations. Since the fre-
quencies of the emitted photons depend only on the differences in the allowed energies 
of the molecule, the additive constant has no effect on the frequencies of the photons. 

But there are observable quantities that show Planck's original postulate is in error 
because it does not contain the zero-point energy. The most important example is 
also connected with the emission of radiation by a vibrating molecule, or atom. When 
we study this subject in a subsequent chapter, we shall see that the rate of emission 
of the photons would not agree with experiment unless simple harmonic oscillators 
have zero-point energies. In fact, we shall find the only reason why the molecule emits 
any radiation is that its vibrations have been stimulated by a surrounding electromag-
netic field whose field strengths are executing simple harmonic oscillations because 
of the zero-point energy of the field. 

In addition to providing completely correct eigenvalues, quantum mechanics also 
provides the eigenfunctions for the simple harmonic oscillator. The eigenfunctions 
4k,,, corresponding to the first few eigenvalues En , are listed in Table 6-1 and plotted 

Table 6-1 Some Eigenfunctions fi(u) for the Simple 
Harmonic Oscillator Potential, where u is 
Related to the Coordinate x by the Equation 
u = [(Cm) 1/4

/h
t/2 ]x 
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Figure 6-36 The first few eigenfunctions of the simple harmonic oscillator potential. The 
vertical ticks on the x axes indicate the limits of classical motion shown in Figure 6-35.  

in Figure 6-36. The eigenfunctions are expressed in terms of the dimensionless vari-
able u = [(Cm)114/h 112]x, which differs from x only by a proportionality constant that  

depends on the properties of the oscillator. For all values of x, the eigenfunction is  

given by the product of an exponential, whose exponent is proportional to — x 2 , times  
a simple polynomial of order x". The polynomial is responsible for the oscillatory  

behavior of tli,, in the classically allowed region where E" < V(x). The number of oscil-
lations increases with increasing n because there are n values of x for which a poly-
nomial of the order x" has the value zero. These values of x are the locations of the  

nodes of ,//". The classically allowed regions lie within the vertical marks shown in  

Figure 6-36. These regions become wider with increasing n because of the shape of  
the simple harmonic oscillator potential V(x), as can be seen by inspecting Figure 6-35  

which also indicates the classically allowed regions for each E. Outside these regions,  
the eigenfunctions decrease very rapidly because their behavior is dominated by the  

decreasing exponential. Since the reiation V(— x) = V(x) is satisfied by the potential,  
we expect that its eigenfunctions should have definite parities. Inspection of Table 6-1  

shows this is true, and that the parity is even for even n and odd for odd n. Thus the  
eigenfunction for the lowest allowed energy is of even parity, as in the case of a square  

well potential. The multiplicative constants A" determine the amplitudes of the eigen-
functions. If necessary, the normalization procedure can be used to fix their values,  

as in Example 5-7; but this is usually not necessary.  
The simple harmonic oscillator eigenfunctions contain a wealth of information  

about the behavior of the system. Some of this information was extracted in Chapter  

5. For instance, Figures 5-3 and 5-18 gave accurate representations of the proba-
bility density functions for the n = 0 and n = 12 quantum states of the oscillator. In  

Chapter 8 we shall show how the eigenfunctions can be used to calculate the rate  

of emission of radiation by a charged simple harmonic oscillator, and derive the  

n. — of  = ± 1 selection rule that had to be introduced in the old quantum theory by  

arguments based on the rather unreliable correspondence principle.  

Example 6 -7. Because the simple harmonic oscillator eigenfunctions for small n have fairly  
simple mathematical forms, it is not too difficult to verify by direct substitution that they  

satisfy the time-independent Schroedinger equation, for the potential of (6-86), and for the  

eigenvalues of (6-89). Make such a verification for n = 1. (For n = 0 the wave function was  
verified by direct substitution in the Schroedinger equation in Example 5-3.)  

•The time-independent Schroedinger equation is 

_ h 2  d2 `"  C  2  + x 
2m dx2 

2  ^i = Eli 
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To verify that the eigenvalue  
3 	3 h (Cl 1/2 3 

h 
(C  1/2 

E1= 2 hv= 22rc1m/ 	2  

and the eigenfunction  
(Cm)1/4  

where u = 	h112  x 

satisfy the equation, we evaluate the derivatives  

di/i l 	du d0(Cm) 114  __ 	 -u2/2 	 u2/2 
dx 	dx du 	h1/2 
	[A le - u2/2  A l u(—u)e 	]  

1/4 _ ( hm) 2   A l e-u2/2[1 — u 2]  
and  

d2 i/i 1  	du d do l   (Cm)114  t  d (Cm)1/4 
 A

l
e u2/2  1 — u2] 

 dx du dx 	hl/ 2 	du h 112 	1 	̂ 	̂  

h  A 1 {—ue - u212 [1 — u2] + e - u212 [ -2u]}  

(Cm) 1 / 2  

{u 2  - 3 }Y' 1 = (^ ̂  1/2  1 (C  ^  l/2 x 2  3101  
Substitution of d 2>li l /dx 2  and E 1  into the equation they are supposed to satisfy yields  

h2  (Cm)1/2 	 h

2m h 

	{(Gm)/ 2 
 h 

x2 
— 3 } ^1+2rŸ1= 2 m  ^1 

Since inspection shows this is satisfied, the verification is completed.  •  
6-10 SUMMARY  

In Table 6-2 we summarize some of the properties of the systems studied in this chap-
ter. The table gives an abbreviated name for each idealized system, and an example  

of a physical system whose potential and total energies are approximated by the ide-
alization. It also gives sketches of the forms of the potential and total energies, and  

corresponding probability density functions, for each system. If the particle is not  

bound, it is incident from the left. We have chosen one significant feature of each  

system to list in the table, but there are many other significant features that we have  

discussed, which are not listed. In fact, in this chapter we have obtained most of  

the important predictions of quantum mechanics for systems involving one particle  

moving in a one-dimensional potential. In the following chapters we shall obtain pre-
dictions from the theory for systems involving three dimensions and several particles.  

A powerful approximation procedure which extends the techniques used in the  

later sections of this chapter to solve the time-independent Schroedinger equation  

for bound particles is given in Appendix J. Appendix K modifies the procedure of  
Appendix J so that it can be applied directly to Schroedinger equations in cases where  

time-independent equations cannot be obtained from them by separating variables.  

And Appendix L uses the results of Appendix K to develop a procedure for extending  

to three dimensions the treatment of unbound particles given in the earlier sections  

of this chapter. A student willing to read out of context a few short passages from  

following chapters will find it quite feasible to study these appendices at this point.  

But many may prefer to wait until all material prerequisite to the appendices and,  

more importantly, the motivation to study them, has been developed. For such it is  

recommended that Appendices J and K be read after Chapter 10 and Appendix L  

after Chapter 15.  

0 1  = Alue u2 /2 
 

(Cm) 1 / 2  

h 

(Cm) 1 / 2  

h  

A l ue - u212 {u 2  —  3}  
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Table 6 -2. A Summary of the Systems Studied in Chapter 6 
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Name of  
System  

Zero  
potential  

Step  
potential  
(energy  
below top)  

Step  
potential  
(energy  
above top)  

Barrier  
potential  
(energy  
below top)  

Barrier  
potential  
(energy  
above top)  

Finite  
square  
well  
potential  

Infinite  
square  
well  
potential  

Simple  
harmonic  
oscillator  
potential  

Physical 
Example 

Proton in 
beam from 
cyclotron 

Conduction 
electron near 
surface of 
metal 

Neutron 
trying to 
escape  
nucleus 

a particle 
trying to 
escape 
Coloumb 
barrier 

Electron scat-
tering from 
negatively 
ionized atom 

Neutron 
bound in 
nucleus 

Molecule 
strictly  
confined 
to box  

Atom of 
vibrating 
diatomic 
molecule 

Potential and 
	

Probability 
	

Significant  
Total Energies 
	

Density 
	

Feature  

QUESTIONS  

1. Can there be solutions with E < 0 to the time-independent Schroedinger equation for the  
zero potential?  

2. Why is it never possible in classical mechanics to have E < V(x)? Why is it possible in  
quantum mechanics, providing there is some region in which E > V(x)?  

3. Explain why the general solution to a one-dimensional time-independent Schroedinger  
equation contains two different functions, while the general solution to the corresponding  
Schroedinger equation contains many different functions.  

4. Consider a particle in a long beam of very accurately known momentum. Does a wave  
function in the form of a group provide a more or a less realistic description of the particle  

than a single complex exponential wavefunction like (6-9)?  



5. Under what circumstances is a discontinuous potential function a reasonable approxi-
mation to an actual system? 

6. If a potential function has a discontinuity at a certain point, do its eigenfunctions have 
discontinuities at that point? If not, why not? 

7. By combining oppositely directed traveling waves of equal amplitudes, we obtain a stand-
ing wave. What kind of a wave do we get if the amplitudes are not equal? 

8. Just what is a probability flux, and why is it useful? 

9. How can it be that a probability flux is split at a potential discontinuity, although the 
associated particle is not split? 

10. Is there an analogy between the splitting of a probability flux that characterizes the behav-
ior of an unbound particle in a one-dimensional system, and the alternative paths that 
can be followed by an unbound particle moving in two dimensions through a diffraction 
apparatus? Why? 

11. Exactly what is meant by the statement that the reflection coefficient is one for a particle 
incident on a potential step with total energy less than the step height? What is meant 
by the statement that the reflection coefficient is less than one if the total energy is greater 
than the step height? Can the reflection coefficient ever be greater than one? 

12. Since a real exponential is a nonoscillatory function, why is a complex exponential an 
oscillatory function? 

13. What do you think causes the rapid oscillations in the group wave function of Figure 
6-8 as it reflects from the potential step? 

14. What is the fallacy in the following statement? "Since a particle cannot be detected while 
tunneling through a barrier, it is senseless to say that the process actually happens." 

15. A particle is incident on a potential barrier, with total energy less than the barrier height, 
and it is reflected. Does the reflection involve only the potential discontinuity facing its 
direction of incidence? If the other discontinuity were removed, so that the barrier were 
changed into a step, is the reflection coefficient changed? 

16. In the sun, two nuclei of low mass in violent thermal motion can collide by penetrating 
the Coulomb barrier which separates them. The mass of the single nucleus formed is less 
than the sum of the masses of the two nuclei, so energy is liberated. This fusion process 
is responsible for the heat output of the sun. What would be the consequences to life 
on earth if it could not happen because barriers were impenetrable? 

17. Are there any measurable consequences of the penetration of a classically excluded region 
which is of infinite length? Consider a bound particle in a finite square well potential. 

18. Show from a qualitative argument that a one-dimensional finite square well potential 
always has one bound eigenvalue, no matter how shallow the binding region. What would 
the eigenfunction look like if the binding region were very shallow? 

19. Why do finite square wells have only a finite number of bound eigenvalues? What are 
the characteristics of the unbound eigenvalues? 

20. What would a standing wave eigenfunction for an unbound eigenvalue of a finite square 
well look like? 

21. Why do the lowest eigenvalues and eigenfunctions of an infinite square well provide the 
best approximation to the corresponding eigenvalues and eigenfunctions of a finite square 
well? 

22. In the n = 3 state, the probability density function for a particle in a box is zero at two 
positions between the walls of the box. How then can the particle ever move across these 
positions? 

23. Explain in simplest terms the relation between the zero-point energy and the uncertainty 
principle. 

24. Would you expect the zero-point energy to have much effect on the heat capacity of 
matter at very low temperatures? Justify your answer. 

25. If the eigenfunctions of a potential have definite parities, the one of lowest energy always 
has even parity. Explain why. 
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26. Are there analogies in classical physics to the quantum mechanical concept of parity? 
27. Are there unbound states for a simple harmonic oscillator potential? How many bound 

states are there? How realistic is the potential? 
28. Explain all aspects of the behavior of all the probability densities of Table 6-2; in partic-

ular explain the probability density for the barrier potential with energy above the top. 
29. What are the other significant features of the systems of Table 6-2? 
30. Considering separately each system treated in this chapter, state which of its properties 

agree, and disagree, with classical mechanics in the microscopic limit. Which agree, and 
disagree, with classical wave motion in that limit? Make the same classifications for the 
properties of the systems in the macroscopic limit. 

31. The eigenvalues in Figure 6-35 are equally spaced, but the lowest eigenvalues in Figure 
6-22 come in closely spaced pairs. By considering the effect of a large bump in a potential 
well on the eigenvalues for symmetric versus antisymmetric eigenfunctions, explain the 
tendency for the eigenvalues to come in pairs in Figure 6-22. 

PROBLEMS 

1. Show that the step potential eigenfunction, for E < V° , can be converted in form from 
the sum of two traveling waves, as in (6-24), to a standing wave, as in (6-29). 

2. Repeat the step potential calculation of Section 6-4, but with the particle initially in the 
region x > 0 where V(x) = V° , and traveling in the direction of decreasing x towards the 
point x = 0 where the potential steps down to its value V(x) = 0 in the region x < 0. 
Show that the transmission and reflection coefficients are the same as those obtained in 
Section 6-4. 

`° 	one, for the case of a step potential with E > Vo . ci. 
	3. Prove (6-43) stating that the sum of the reflection and transmission coefficients equals 

4. Prove (6-44) which expresses the reflection and transmission coefficients in terms of the 
v 	ratio E/Vo . 

5. Consider a particle tunneling through a rectangular potential barrier. Write the general 
solutions presented in Section 6-5, which give the form of l in the different regions of the 
potential. (a) Then find four relations between the five arbitrary constants by matching 
and d>y/dx at the boundaries between these regions. (b) Use these relations to evaluate the 
transmission  coefficient  T, thereby verifying (6-49). (Hint: First eliminate F and G, leaving 
relations between A, B, and C. Then eliminate B.) 

6. Show that the expression of (6-49), for the transmission coefficient in tunneling through 
a rectangular potential barrier, reduces to the form quotéd in (6-50) if the exponents are 
very large. 

7. Consider a particle passing over a rectangular potential barrier. Write the general solu-
tions, presented in Section 6-5, which give the form of >/i in the different regions of the 
potential. (a) Then find four relations between the five arbitrary constants by matching 
and dpi/dx at the boundaries between these regions. (b) Use these relations to evaluate the 
transmission  coefficient  T, thereby verifying (6-51). (Hint: Note that the four relations 
become exactly the same as those found in the first part of Problem 5, if k 1I  is replaced 
by îk111 . Make this substitution in (6-49) to obtain directly (6-51).) 

8. (a) Evaluate the transmission coefficient for an electron of total energy 2 eV incident upon 
a rectangular potential barrier of height 4 eV and thickness 10 -1°  m, using (6-49) and 
then using (6-50). Repeat the evaluation for a barrier thickness of (b) 9 x 10 -9  m and 
(c) 10 -9  m. 

9. A proton and a deuteron (a particle with the same charge as a proton, but twice the mass) 
attempt to penetrate a rectangular potential barrier of height 10 MeV and thickness 
10 -14  m. Both particles have total energies of 3 MeV. (a) Use qualitative arguments to 
predict which particle has the highest probability of succeeding. (b) Evaluate quantita-
tively the probability of success for both particles. 
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10. A fusion reaction important in solar energy production (see Question 16) involves capture 
of a proton by a carbon nucleus, which has six times the charge of a proton and a radius 
of r' ^ 2 x 10 -15  m. (a) Estimate the Coulomb potential V experienced by the proton if 
it is at the nuclear surface. (b) The proton is incident upon the nucleus because of its 
thermal motion. Its total energy cannot realistically be assumed to be much higher than 
10 kT, where k is Boltzmann's constant (see Chapter 1) and where T is the internal 
temperature of the sun of about 10' °K. Estimate this total energy, and compare it with 
the height of the Coulomb barrier. (c) Calculate the probability that the proton can 
penetrate a rectangular barrier potential of height V extending from r' to 2r', the point 
at which the Coulomb barrier potential drops to V/2. (d) Is the penetration through the 
actual Coulomb barrier potential greater or less than through the rectangular barrier po-
tential of part (c)? 

11. Verify by substitution that the standing wave general solution, (6-62), satisfies the time-
independent Schroedinger equation, (6-2), for the finite square well potential in the region 
inside the well. 

12. Verify by substitution that the exponential general solutions, (6-63) and (6-64), satisfy the 
time-independent Schroedinger equation (6-13) for the finite square well potential in the 
regions outside the well. 

13. (a) From qualitative arguments, make a sketch of the form of a typical unbound standing 
wave eigenfunction for a finite square well potential. (b) Is the amplitude of the oscillation 
the same in all regions? (c) What does the behavior of the amplitude predict about the 
probabilities of finding the particle in a unit length of the x axis in various regions? 
(d) Does the prediction agree with what would be expected from classical mechanics? 

14. Use the qualitative arguments of Problem 13 to develop a condition on the total energy of 
the particle, in an unbound state of a finite square well potential, which makes the 
probability of finding it in a unit length of the x axis the same inside the well as outside 
the well. (Hint: What counts is the relation between the de Broglie wavelength inside the 
well and the width of the well.) 

15. (a) Make a quantitative calculation of the transmission coefficient for an unbound particle 
moving over a finite square well potential. (Hint: Use a trick similar to the one indicated 
in Problem 7.) (b) Find a condition on the total energy of the particle which makes the 
transmission  coefficient  equal to one. (c) Compare with the condition found in Problem 
14, and explain why they are the same. (d) Give an example of an optical analogue to 
this system. 

16. (à) Consider a one-dimensional square well potential of finite depth V °  and width a. What 
combination of these parameters determines the "strength" of the well—i.e., the number 
of energy levels the well is capable of binding? In the limit that the strength of the well 
becomes small, will the number of bound levels become 1 or 0? Give convincing justifica-
tion for your answers. 

17. An atom of the noble gas krypton exerts an attractive potential on an unbound electron, 
which has a very abrupt onset. Because of this it is a reasonable approximation to 
describe the potential as an attractive square well, of radius equal to the 4 x 10 -1°  m 
radius of the atom. Experiments show that an electron of kinetic energy 0.7 eV, in regions 
outside the atom, can travel through the atom with essentially no reflection. The phenom-
enon is called the Ramsauer effect. Use this information in the conditions of Problem 14 
or 15 to determine the depth of the square well potential. (Hint: One de Broglie wave-
length just fits into the width of the well. Why not one-half a de Broglie wavelength?) 

18. A particle of total energy 9V0  is incident from the — x axis on a potential given by 

8V° 	 x <0 

V= 0 	 0 <x< a 

5V0 	 x>a 

Find the probability that the particle will be transmitted on through to the positive side 
of the x axis, x > a. 
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Figure 6 -37 Two eigenfunctions considered in Problem 
-a/2 
	

+a/2 	20. 

19. Verify by substitution that the standing wave general solution, (6-67), satisfies the time-
independent Schroedinger equation, (6-2), for the infinite square well potential in the 
region inside the well. 

20. Two possible eigenfunctions for a particle moving freely in a region of length a, but 
strictly confined to that region, are shown in Figure 6-37. When the particle is in the state 
corresponding to the eigenfunction O h  its total energy is 4 eV. (a) What is its total energy 
in the state corresponding to gi ll? (b) What is the lowest possible total energy for the 
particle in this system? 

21. (a) Estimate the zero-point energy for a neutron in a nucleus, by treating it as if it were in 
an infinite square well of width equal to a nuclear diameter of 10 -14  m. (b) Compare your 
answer with the electron zero-point energy of Example 6-6. 

22. (a) Solve the classical wave equation governing the vibrations of a stretched string, for 
a string fixed at both its ends. Thereby show that the functions describing the possible 
shapes assumed by the string are essentially the same as the eigenfunctions for an infinite 
square well potential. (b) Also show that the possible frequencies of vibration of the string 
are essentially different from the frequencies of the wave functions for the potential. 

23. (a) For a particle in a box, show that the fractional difference in the energy between 
adjacent eigenvalues is 

AE„ 2n+1 
E„ 	n2  

(b) Use this formula to discuss the classical limit of the system. 
24. Apply the normalization condition to show that the value of the multiplicative constant 

for the n = 3 eigenfunction of the infinite square well potential, (6-79), is B3 = V21a. 

25. Use the eigenfunction of Problem 24 to calculate the following expectation values, and 
comment on each result: (a) z, (b) p, (c) x2 , (d) p2 . 

26. (a) Use the results of Problem 25 to evaluate the product of the uncertainty in position 
times the uncertainty in momentum, for a particle in the n = 3 state of an infinite square 
well potential. (b) Compare with the results of Example 5-10 and Problem 13 of Chapter 
5, and comment on the relative size of the uncertainty products for the n = 1, n = 2, and 
n = 3 states. (c) Find the limits of Ax and Ap as n approaches infinity. 

27. Form the product of the eigenfunction for the n = 1 state of an infinite square well 
potential times the eigenfunction for the n = 3 state of that potential. Then integrate it 
over all x, and show that the result is equal to zero. In other words, prove that 

GO  

l (x)>/i 3 (x) dx = 0 

- GO 

(Hint: Use the relation: cos u cos  y  = [cos (u + y)  + cos (u — v)]/2.) Students who have 
worked Problem 36 of Chapter 5 have already proved that the integral over all x of the 
n = 1 eigenfunction times the n = 2 eigenfunction also equals zero. It can be proved that 
the integral over all x of any two different eigenfunctions of the potential equals zero. 
Furthermore, this is true for any two different eigenfunctions of any other potential. 
(If the eigenfunctions are complex, the complex conjugate of one is taken in the integrand.) 
This property is called orthogonality. 

28. Apply the results of Problem 20 of Chapter 5 to the case of a particle in a three-
dimensional box. That is, solve the time-independent Schroedinger equation for a particle 



moving in a three-dimensional potential that is zero inside a cubical region of edge length 
a, and becomes infinitely large outside that region. Determine the eigenvalues and eigen-
functions for the system. 

29. Airline passengers frequently observe the wingtips of their planes oscillating up and down 
with periods of the order of 1 sec and amplitudes of about 0.1 m. (a) Prove that this is 
definitely not due to the zero-point motion of the wings by comparing the zero-point 
energy with the energy obtained from the quoted values plus an estimated mass for the 
wings. (b) Calculate the order of magnitude of the quantum number n of the observed 
oscillation. 

30. The restoring force constant C for the vibrations of the interatomic spacing of a typical 
diatomic molecule is about 10 3  joules/m2 . Use this value to estimate the zero-point energy 
of the molecular vibrations. The mass of the molecule is 4.1 x 10 -26  kg. 

31. (a) Estimate the difference in energy between the ground state and first excited state of the 
vibrating molecule considered in Problem 30. (b) From this estimate determine the energy 
of the photon emitted by the vibrations in the charge distribution when the system makes 
a transition between the first excited state and the ground state. (c) Determine also the 
frequency of the photon, and compare it with the classical oscillation frequency of the 
system. (d) In what range of the electromagnetic spectrum is it? 

32. A pendulum, consisting of a weight of 1 kg at the end of a light 1 m rod, is oscillating with 
an amplitude of 0.1 m. Evaluate the following quantities: (a) frequency of oscillation, 
(b) energy of oscillation, (c) approximate value of quantum number for oscillation, 
(d) separation in energy between adjacent allowed energies, (e) separation in distance 
between adjacent bumps in the probability density function near the equilibrium point. 

33. Devise a simple argument verifying that the exponent in the decreasing exponential, 
which governs the behavior of simple harmonic oscillator eigenfunctions in the classically 
excluded region, is proportional to x 2 . (Hint: Take the finite square well eigenfunctions of 
(6-63) and (6-64), and treat the quantity (V0  — E) as if it increased with increasing x in 
proportion to x2 .) 

34. Verify the eigenfunction and eigenvalue for the n = 2 state of a simple harmonic oscillator 
by direct substitution into the time-independent Schroedinger equation, as in Example 
6-7. 
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7-1 INTRODUCTION 

In this chapter we begin our quantum mechanical study of atoms by treating the 
simplest case, the one-electron atom. This is also the most important case. For in-
stance, the one-electron atom hydrogen is of historical importance because it was the 
first system which Schroedinger treated with his theory of quantum mechanics. We 
shall see that the eigenvalues which the theory predicts for the hydrogen atom agree 
with those predicted by the Bohr model and observed by experiment. This provided 
the first verification of the Schroedinger theory. 

There is much more to the Schroedinger theory of the one-electron atom than its 
prediction of the eigenvalues, because it also predicts the eigenfunctions. Using the 
eigenfunctions, we shall learn about the following properties of the atom: (1) the prob-
ability density functions, which give us detailed pictures of the structure of the atom 
that do not violate the uncertainty principle as do the precise orbits of the Bohr 
model, (2) the orbital angular momenta of the atom, which were incorrectly pre-
dicted by the Bohr model, (3) the electron spin and other effects of relativity on the 
atom, which were also incorrectly predicted by the Bohr model, and (4) the rates 
at which the atom makes transitions from its excited states to its ground state—
measurable quantities that were not predictable at all by the Bohr model. 

Above and beyond its historical and intrinsic importance, the Schroedinger theory 
of the one-electron atom is of great practical importance because it forms the founda-
tion of the quantum mechanical treatment of all multielectron atoms, as well as of 
molecules and nuclei. In later chapters this will become very apparent. 

The one-electron atom is the simplest bound system that occurs in nature. But it 
is more complicated than the systems we have dealt with in the preceding chapters 
because it contains two particles, and because it is three dimensional. The system 
consists of a positively charged nucleus and a negatively charged electron, moving 
under the influence of their mutual Coulomb attraction and bound together by that 
attraction. The three-dimensional character of the system allows it to have angular 
momentum. We shall see that interesting new quantum mechanical phenomena arise 
as a consequence. Quantum mechanical phenomena involving angular momentum 
could not arise in our earlier considerations, which dealt only with one-dimensional 
systems. 

The three-dimensional character of the atom causes difficulty because it compli-
cates the mathematical procedures that must be used in its treatment. However, the 
procedures are straightforward extensions of the simpler ones we have used on one-
dimensional systems, so no conceptual problems should arise. We shall avoid prac-
tical problems by relegating to appendices the solution of the more difficult equations, 
as well as other details of interest to some but not all students. We shall present 
in this chapter enough of the mathematics to make it apparent how it is related 
to that used in the preceding chapters. But here we shall emphasize the physical 
considerations underlying the mathematics, the results which it yields, and the inter-
pretation of the results. 

The fact that the one-electron atom contains two particles causes no difficulty at 
all, if use is made of the reduced mass technique. This technique, discussed in Section 
4-7, models the actual atom by an atom in which the nucleus is infinitely massive and 
the electron has the reduced mass u  given by 

_ 
(mMM)m  

(7-1) 

where m is the true mass of the electron and M is the true mass of the nucleus. The 
reduced mass electron moves about the infinitely massive nucleus with the same 
electron-nucleus separation as in the actual atom. Since the infinitely massive nucleus 
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Figure 7-1 Left: In an actual one-electron atom, an electron of mass m and nucleus of  
mass M move about their fixed center of mass. Right: In the equivalent model atom, a  
particle of reduced mass  moves about a stationary nucleus of infinite mass.  

must be completely stationary, it is necessary to treat only the motion of the reduced  

mass electron in the model atom, and the problem is therefore simplified from one  

involving a pair of moving particles to one involving only a single moving particle.  
In classical mechanics, the motion of the reduced mass electron about the sta-

tionary nucleus in the model atom exactly duplicates the motion of the electron  

relative to the nucleus in the actual atom. Furthermore, the total energy of the model  

atom, which is just the total energy of its reduced mass electron, equals the total  

energy of the actual atom in a frame of reference in which its center of mass is at  

rest. The student may have seen a proof of these results of classical mechanics in  

connection with the motion of a planet about the sun, or some other system involving  

the motion of two particles. It is not difficult to prove that the same results are  

obtained in quantum mechanics, but we shall not bother to do so here. Figure 7-1  

indicates the behavior of the electron and the nucleus in the actual atom and in the  

model atom. In both cases the center of mass of the atom is at rest.  

7-2 DEVELOPMENT OF THE SCHROEDINGER EQUATION  

We consider, therefore, an electron of reduced mass  which is moving under the  

influence of the Coulomb potential  
z 

V = V(x,y,z) = 	
— Ze 	

(7-2)  
47r€0 .\/x 2  + y2  + z2  

where x, y, z are the rectangular coordinates of the electron of charge  —e relative 
to the nucleus, which is fixed at the origin. The square root in the denominator is 
just the electron-nucleus separation distance r. The nuclear charge is +Ze (Z = 1 for 
neutral hydrogen, Z = 2 for singly ionized helium, etc.). 

As a first step, we must develop the Schroedinger equation for this three-dimen-
sional system. We do this by using the procedure indicated in Section 5-4. We first 
write the classical expression for the total energy E of the system 

2µ 
(px2  + p;, + pz) + V(x,y,z) = E 	 (7-3)  

The quantities px , py,, pZ  are the x, y, z components of the linear momentum of the 
electron. Thus the first term on the left is the kinetic energy of the system, while the 
second term is its potential energy. Now we replace the dynamical quantities px, p,,, pZ,  
and E by their associated differential operators, using an obvious three-dimensional 
extension of the scheme in (5-32). This gives us the operator equation 

Z
2 2 a2 a 

µ ax 2 + ây2  + 
az2 

 + V(x,y,z) = ih 
at 
 (7-4)  



Operating with each term on the wave function 	 ^' w 
Cn 

`P _ W(x,y,z,t) 	 (7-5) 
w 

we obtain the Schroedinger equation for the system 	 a) 
V 

— 

h2 ra2w(x,Y,z,t) 	a2'`(x,Y,z,t) 	a2P(x,.y,z,t) 	 G' 
2µ L 	axe 	+ 	0)72 	+ 	aza 	+ V(x,y,z) (x,Y,z,t)  

= ih aP(x,Y,z , t) 	 (7-6) 
at 

It is often convenient to write this as 

— 
 2

z 

	

- V2' + VT = ih 
OT 
	 (7-7) 

where we use the symbol 
32 	a2 	a 2  

	

O2=
ax2+ a Y2 + az2 	

(7-8) 

which is called the Laplacian operator, or "del squared," in rectangular coordinates. 
Many of the properties of the three-dimensional Schroedinger equation, and of 

the wave functions which are its solutions, can be obtained by obvious extensions 
of the properties developed in the preceding chapters. For instance, it is easy to show 
by the technique of separation of variables, used in Section 5-5, that since the poten-
tial function V(x,y,z) does not depend on time there are solutions to the Schroedinger 
equation which have the form 

	

'(x,Y,z,t) = j(x,Y,z)e
-IEtm 	 (7-9) 

where the eigenfunction ,/i(x,y,z) is a solution to the time-independent Schroedinger 
equation 

h2  
— 2 V2  i (x,Y,z) + V (x,Y,z) (x,Y,z) = Eiji(x,y,z) 	 (7-10) 

fz 

Note that in three dimensions this equation is a partial differential equation because 
it contains three independent variables, the space coordinates x, y, z. 

7-3 SEPARATION OF THE TIME- INDEPENDENT EQUATION 

The time-independent Schroedinger equation for the Coulomb potential can be 
solved by making repeated applications of the technique of separation of variables to 
split the partial differential equation into a set of three ordinary differential equations, 
each involving only one coordinate, and then using standard procedures to solve 
these equations. However, separation of variables cannot be carried out when rectan-
gular coordinates are employed because the Coulomb potential energy is a function 
V(x,y,z) = —Ze 2/47r€O\/x 2  + y 2  + z2  of all three of these coordinates. Separation of 
variables will not work in rectangular coordinates because the potential itself cannot 
be split into terms, each of which involves only one such coordinate. 

The difficulty is removed by changing to spherical polar coordinates. These are the 
coordinates r, O, cp, illustrated in Figure 7-2. The length of the straight line connecting 
the electron with the origin (the nucleus) is r, and 9 and  9 are the polar and azimuthal 
angles specifying the orientation of that line. Now the distance between the electron 
and the nucleus is just r. So in spherical polar coordinates  the Coulomb  potential can 
be expressed as a function of a single coordinate r = /x2 + y2  + z2 , as follows 

z 

V = V(r) _  — Ze 	 (7-11) 
47rEOr 
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— 

2iC v 2 11 (r,0,9) + V(r)til(r,e,9) = Etfr(r,e,rP)  

h2  
(7-12)  

z 

Figure 7-2 The spherical coordinates r, B, 9  of  
x a point P, and its rectangular coordinates x, y, z.  

Because of this great simplification in the form of the potential, it then becomes pos-
sible to carry out the separation of variables on the time-independent Schroedinger  

equation, as we shall soon see.  
The space derivatives in the time-independent Schroedinger equation also change  

form when the coordinates are changed from rectangular to spherical. A straight-
forward, but tedious, application of the rules of differential calculus shows that the  

time-independent Schroedinger equation can be written as  

where 

V' = 1 ô 
r2  	+ 	

1 	
sin e a 

 + 	1 	
ôz 

(7-13) 
r2  ôr 

 
Or 	r2  sin e ôe 	ôe 	r2  sin2  B 09 2  

is the Laplacian operator in the spherical polar coordinates r, B, gyp. For the details of  
the coordinate transformation leading to (7-12) and (7-13), the student should consult  

Appendix M. A comparison of the forms of the Laplacian operator in rectangular  

and spherical polar coordinates, (7-8) and (7-13), shows that we have simplified the  

expression of the potential energy function at the expense of considerably compli-
cating the expression of the Laplacian operator in the time-independent Schroedinger  

equation that must be solved.  

Nevertheless, the change of coordinates is worthwhile because it will allow us to  

find solutions to the time-independent Schroedinger equation of the form  

r(r,9,9) = R(r)0(8)c(9) 	 (7-14)  
That is, we shall show that there are solutions iJr(r,9,9) to (7-12) that split into prod-
ucts of three functions, R(r), 0(9), and b((p), each of which depends on only one of  

the coordinates. The advantage lies in the fact that these three functions can be found  

by solving ordinary differential equations. We show this by substituting the product  

form, t11(r,9,9) = R(r)0(e)cF(9), into the time-independent Schroedinger equation ob-
tained by evaluating the Laplacian operator in (7-12) from (7-13). This yields 

h2  l a 2  ôROa. 	1 	ô sin 
 axon 1 

+ 	
1 	ô2 Rool 

2 Lr2  ôr \r 	ôr / + r2 sin e ae 	9  ôe J r2  sin2  8 ô 2  J  
+ V(r)ROl) = EROO  

Carrying outthe partial differentiations, we have 
h2  roe,  d / 2  dR'\ 	R1  d 	d® \ 	RO  d211 
2,u L r2  dr 

r 
dr + r2  sin 9 de 

sin e 
 de ) + r2  sin2  8 d92  

+ V(r)R0430 = EROS  
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In this equation we have written the partial derivative ôR/ôr as the total deriva-
tive dR/dr since the two are equivalent because R is a function of r alone. The 
same comment applies to the other derivatives. If we now multiply through by 
— 2µr 2  sin2  0/RO Ih 2, and transpose, we obtain 

1 d2 1 _ sin2  0 d 
r 	

— sin 0 d 
sin 0 

d(i)2µ 
 r2  sin2  0[E — V(r)] 

d92 	R dr r 
2 
 dR 
dr 	O d0 ( 	d0 	h2  

As the left side of this equation does not depend on r or 0, whereas the right side  

does not depend on gyp, their common value cannot depend on any of these variables.  

The common value must therefore be a constant, which we shall find it convenient to  

designate as — mi . . Thus we obtain two equations by setting each side equal to this  

constant  
d2 (1)  
d92

= - mÎ ̂   

and  
N 	 2 

1 _ 	2 	 _ 	 —
R 

—
dr r  d } O sin 0 d0 (

sin 0 de — h2  r2 [E — V(r)] = 
sin2  0 

 By transposing, we can rewrite the second equation as 
1 d m 2 	1 	d ( 	

dd())dr Cr2 dR 	2r2  

	

dr + 	h2 [E — V(r)] = 
sin2  0 O sin 0 d0 

(sin 
0 d0 

Since we have`  here an equation whose left side does not depend on one of the vari-
ables and whose right side does not depend on the other, we conclude again that both 
sides must equal a constant. It is convenient to designate this constant as 1(1 + 1).  
Thus we obtain, by setting each side equal to 1(1 + 1), two more equations 

	

1 
 d (sin 0 

dO 
 + m` 	O = 1(1 + 1)0 	 (7-16)  

sin 0 d0 	d0 	sin2  0  

and  

	

N2 (r
2 

dR 
l  + 2 [E —  V(r)]R =1(1+  1) R 	 (7-17)

dr  

We see that the assumed product form of the solution, ÿr(r,0,9) = R(r)0(0)0(9), is 
valid because it works! We also see that the problem has been reduced to that of 
solving the ordinary differential equations, (7-15), (7-16), and (7-17), for (l )(T), 0(0), 
and R(r).  

In solving these equations, we shall find that the equation for D(T) has acceptable 
solutions only for certain values of m l . Using these values of m 1  in the equation for 
0(0), it turns out that this equation has acceptable solutions only for certain values 
of 1. With these values of  1 in the equation for R(r), this equation is found to have 
acceptable solutions only for certain values of the total energy E; that is, the energy 
of the atom is quantized. 

7-4 SOLUTION OF THE EQUATIONS  

Consider (7-15) for F((p). By differentiation and substitution, the student may easily 
verify that it has a particular solution 

(DM = e tmw  

(The discussion following Example 7-5 explains why this particular solution is used.) 
Here we must, for the first time, explicitly consider the requirement of Section 5-6 
that the eigenfunctions be single valued. This demands that the function OM be 
single valued, and the demand must be considered explicitly because the azimuthal 
angles 9 = 0 and 9 = 27c are actually the same angle. Thus, we must require that 

(7-15)  



O
N

E
-E

LE
C

T
R

O
N

 A
T

O
M

S
 

O(cp) has the same value at cp = 0 as it does at cp = 2n, that is  
EI)(0) _ 0(2g)  

Evaluating the exponential in the particular solution 1(cp), we obtain 
eimt0 =  eiml2n 

or  
1 = cos m 127r + i sin m 12ir 

The requirement is satisfied only if the absolute value of m 1  has one of the values  

	

Imll = 0, 1, 2, 3, ... 	 (7-18)  
In other words, m 1  can be only a positive or negative integer. Thus the set of functions  

Q which are acceptable solutions to (7-15) are  

Û 	 (1)m,(ço) = e irn o 	 (7-19)  
where m 1  has one of the integral values specified by (7-18). The quantum number m 1  
is used as a subscript to identify the specific form of an acceptable solution.  

In solving (7-16) for the functions O(0), the procedure is similar to that used in  

Appendix I to obtain analytical solutions of the time-independent Schroedinger equa-
tion for the simple harmonic oscillator potential. Interested students are referred to  

Appendix N, which goes through this quite lengthy procedure. Here we shall only  

quote the results. It is found that solutions to (7-16) which are acceptable (remain  
finite) are obtained only if the constant 1 is equal to one of the integers 

= I m1l , I mil + 1, l mll + 2, 'mil + 3, . . . 	 (7-20)  
The acceptable solutions can be written  

Oimi(0) = sin^m^^OFi (cos 0) 	 (7-21)  
The Filmil (cos 0) are polynomials in cos 0, which have forms that depend on the value  

of the quantum number 1 and on the absolute value of the quantum number m i . Thus  
it is necessary to use both of these quantum numbers to identify the functions Oimi (0)  
that are acceptable solutions to the equation. Examples of these functions will be  

presented in Section 7-6.  

The procedure used in the solution of (7-17) for the functions R(r), which is also  
similar to that used for the simple harmonic oscillator potential, is also carried out  

in Appendix N. It is found that there are bound-state solutions which are acceptable 
(remain finite) only if the constant E (the total energy) has one of the values En , where  

uZ 2e4  
En = 	

(47rc0)22h2n2 	
(7-22)  

In this expression the quantum number n is one of the integers 

n=1+1,1+2, 1 +3,... 	 (7-23)  
The acceptable solutions are most conveniently written as  

i 
Rni(r) = e 

Zr/nao Zr 
Gn1 

Zr 	
(7-24) 

ao 	cto )  

where the parameter ao  is 
4gEO h2  

ao  = 	ue2  (7-25)  

The Gni(Zr/ao) are polynomials in Zr/ao , with different forms for different values of 
n and 1. Thus both of these quantum numbers are required to identify the different 
functions Rn1 (r) that are acceptable solutions to the equation. But the allowed values 
En  of the total energy carry only the quantum number n as a label since they depend 
only on the value of that quantum number. Examples of the functions Rni(r) will be 
presented in Section 7-6. 
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7-5 EIGENVALUES, QUANTUM NUMBERS, AND DEGENERACY 

One of the important results of the Schroedinger theory of the one-electron atom is 
the prediction of (7-22) for the allowed values of total energy of the bound states of 
the atom. Comparing this prediction for the eigenvalues 

itZ 2e4 	13.6 eV 
En _

(4irc0)22h2n2 - 	 n2  

with the predictions of the Bohr model (see (4-18)), we find that identical allowed en-
ergies are predicted by these treatments. Both predictions are in excellent agreement 
with experiment. Schroedinger's derivation of (7-22) provided the first convincing 
verification of his theory of quantum mechanics. Figure 7-3 illustrates the Coulomb 
potential V(r) for the one-electron atom, and its eigenvalues En . 

What is the relation between the Coulomb potential and its eigenvalues, and the 
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that 
the quantum mechanical calculations leading to the eigenvalues of the Coulomb 
potential are appreciably more complicated. But the Coulomb potential is an exact 
description of a real three-dimensional system. The potentials previously treated are 
approximate descriptions of idealized one-dimensional systems, which are designed 
to simplify the calculations. Part of the complication for the Coulomb potential is 
also due to its spherical symmetry, which forces the use of spherical polar coordinates 
instead of rectangular coordinates. 

The similarities are much more fundamental than the differences. For the Coulomb 
potential, as for any other binding potential, the allowed total energies of a particle 
bound to the potential are discretely quantized. Figure 7-4 makes a comparison be-
tween the allowed energies for a Coulomb potential and for several one-dimensional 
binding potentials. In this figure the Coulomb potential is represented on a crosscut 
along a diameter through the one-electron atom. Note that all the binding potentials 
have a zero-point energy. That is, in all cases the lowest allowed value of total energy 
lies above the minimum value of the potential energy. Associated with its zero-point 
energy, the one-electron atom has a zero-point motion like other systems described 
by binding potentials. In the following section we shall see that this phenomenon can 
give us a basic explanation of the stability of the ground state of the atom. 

Figure 7-3 The Coulomb potential V(r) and its eigenvalues En . For large values of n the 
eigenvalues become very closely spaced in energy since E„ approaches zero as n 
approaches infinity. Note that the intersection of V(r) and En , which defines the location 
of one end of the classically allowed region, moves out as n increases. Not shown in this 
figure is the continuum of eigenvalues at positive energies corresponding to unbound 
states. 
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Simple harmonic 
oscillator 
	

Coulomb 

Figure 7-4 A comparison between the allowed energies of several binding potentials. The 
three-dimensional Coulomb potential is shown in a cross-sectional view along a diameter; 
the other potentials are one-dimensional. 

Although the eigenvalues of the one-electron atom depend on only the quantum 
number n, the eigenfunctions depend on all three quantum numbers n, 1, m 1  since 
they are products of the three functions &t(), (1) i„,,(e), and (I),„,((p). The fact that 
three quantum numbers arise is a consequence of the fact that the time-independent 
Schroedinger equation contains three independent variables, one for each space coor- 
dinate. Gathering together the conditions which the quantum numbers satisfy, we 
have 

lmil =0,1,2,3,... 

l=lmil, lmil +1,lmil+ 2,lmil+ 3,... 	 (7-26) 
n=1+1,1+2, 1 +3,... 

These conditions are more conveniently expressed as 
n = 1,2,3,... 
1= 0, 1,2,...,n-1 	 (7-27) 

m 1 = —1, —1+1, ... , 0, ..., +1-1,1 

Example 7-1. Show that the conditions of (7-27) are equivalent to those of (7-26). 
10. According to (7-26) the minimum value of 1 is equal to Imi l , and the miminum value of 
Imil is O. Thus the minimum value of / is 0 and the minimum value of n, which is equal to 
1 + 1, is 0 + 1 = 1. Since n increases by integers without limit, the possible values of n are 
n = 1, 2, 3, .... For a given n, the maximum value of l is the one satisfying the relation 
n = 1 + 1, that is, 1 = n — 1. Consequently the possible values of 1 are  1= 0, 1, 2, ... , n — 1. 
Finally, for a given 1, the largest value which l  mi l can assume is l m i l = 1. Thus the maximum 
value of mi  is +1 and the minimum value is —1, and it can assume only the values mi  = —1, 
—1 + 1, 	, 0, 	, +1 — 1, +1. • 

Because of its role in specifying the total energy of the atom, n is sometimes called 
the principal quantum number. Because the azimuthal, or orbital, angular momentum 
of the atom depends on 1, as we shall soon see, 1 is sometimes called the azimuthal 
quantum number. We shall also see that if the atom is in an external magnetic field 
there is a dependence of its energy on m i . Consequently, m 1  is sometimes called the 
magnetic quantum number. 

The conditions of (7-27) make it apparent that for a given value of n there are 
generally several different possible values of 1 and m i . Since the form of the eigen-
functions depends on all three quantum numbers, it is apparent that there will be 
situations in which two or more completely different eigenfunctions correspond to 
exactly the same eigenvalue E. As the eigenfunctions describe the behavior of the 
atom, we see that it has states with completely different behavior that nevertheless 
have the same total energy. In physics the word used to characterize this phenomenon 
is degeneracy, and eigenfunctions corresponding to the same eigenvalue are said to 
be degenerate. There is little relation to the common usage of the word; degenerate 
eigenfunctions are not at all reprehensible! 

Finite 
square well 
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Degeneracy also occurs in classical mechanics and in the related old quantum  

theory. In the discussion of elliptical orbits of the Bohr-Sommerfeld atom in Section  

4-10, we indicated that the total energy of the atom is independent of the semiminor  

axis of the ellipse. Thus the atom has states with very different behavior, that is, with  

the electron traveling in very different orbits, which nevertheless have the same total  

energy. Exactly the same phenomenon occurs in planetary motion. This classical  
degeneracy is comparable to the 1 degeneracy that arises in the quantum mechanical  

one-electron atom. The energy of a Bohr-Sommerfeld atom, or of a planetary system,  

is also independent of the orientation in space of the plane of the orbit. This is com-
parable to the m i  degeneracy of the quantum mechanical atom.  

In either classical or quantum mechanics, degeneracy is a result of certain proper-
ties of the potential energy function that describes the system. In the quantum  

mechanical one-electron atom, the degeneracy with respect to m r  arises because the  
potential depends only on the coordinate r, so the potential is spherically symmetrical  
and the total energy of the atom is independent of its orientation in space. The /  

degeneracy is a consequence of the particular form of the r dependence of the  
Coulomb potential.  

If an external magnetic field is applied to the atom, then its total energy will depend  
on its orientation in space because of an interaction between currents in the atom and  

the applied field. We shall study this later, and we shall find that the orientation in  

space is determined by the quantum number m 1. Thus in an external magnetic field  
the degeneracy with respect to m I  is removed and the atom has different energy levels  

for different m 1  values. If the external magnetic field is gradually reduced in intensity,  

the dependence of the total energy of the atom on m l  is reduced in proportion. When  

the field is reduced to zero the energy levels that correspond to different values of m 1  
degenerate into a single energy level, and the corresponding eigenfunctions become  

degenerate.  
Many properties of alkali atoms can be discussed in terms of the motion of a single  

"valence" electron in a potential which is spherically symmetrical, but which does  

not have the 1/r behavior of the Coulomb potential. The energy of this electron does  
depend on 1. Thus the degeneracy with respect to 1 is removed if the form of the r  
dependence of the potential is changed. We shall study this phenomenon on a num-
ber of occasions later in this book, and in the process more insight into the origin of  

the / degeneracy of the Coulomb potential will be obtained.  

From (7-27) it is easy to see how many degenerate eigenfunctions there are, for an  

isolated one-electron atom, which correspond to a particular eigenvalue E. The  
possible values of the quantum numbers for n = 1, 2, and 3 are shown in Table 7-1.  

Table 7-1 Possible Values of I and m1  for n = 1, 2, 3  

n 1 2 3  

l 0 0 1 0 1 2  

m 1  0 0 —1,0, +1 0 —1,0, +1 —2, —1,0, +1, +2  

Number of  
degenerate  
eigenfunctions  
for each l 1 1 3 1 3 5  

Number of  
degenerate  
eigenfunctions  
for each n 1 4 9  
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Inspection of this table makes it apparent that:  

1. For each value of n, there are n possible values of 1.  
2. For each value of 1, there are (21 + 1) possible values of m 1 .  
3. For each value of n, there are a total of n 2  degenerate eigenfunctions.  

7-6 EIGENFUNCTIONS  

The mathematical techniques used in quantum mechanics to obtain (7-22) for the  

eigenvalues of the one-electron atom are, admittedly, quite complicated compared to  

those used in the Bohr model to obtain the same equation. Putting aside questions  

concerning the logical consistency of the postulates of the Bohr model, it is still rea-
sonable to question whether all the extra work involved in the quantum mechanical  

treatment of the one-electron atom is justified by the results obtained. The answer  

is, overwhelmingly, yes! We can now find out much more about the one-electron  

atom than we possibly could from the Bohr model, because we have the eigenfunctions  
as well as the eigenvalues. The eigenfunctions contain a wealth of additional infor-
mation about the properties of the atom. The remainder of this chapter, and the  

following chapter, will be devoted largely to studying the eigenfunctions and ex-
tracting this information from them.  

We know that the eigenfunctions are formed by taking the product 

Y'nlm:(r,e,(P) = R./(00/.,(19)(1).,(0  

We also know, from (7-19), (7-21), and (7-24) that for any bound state 

'mt(W) = eimiro  

0im,(0) = sinlm'l 0 (polynomial in cos 0)  
and  

Rn1(r) = e- (constant)r/n r1  (polynomial in r)  

All the eigenfunctions have basically the same mathematical structure, except that  

with increasing values of n and 1 the polynomials in r and cos 0 become increasingly  
more complicated. Table 7-2 lists the one-electron atom eigenfunctions for the first  

three values of n. They are expressed in terms of the parameter  

4^rEO^i2 
ao= 	2 =0.529 x 10 -to  m = 0.529 A  

which is the radius (or, from Section 4-7, the electron-nucleus separation) of the  
smallest orbit of a Bohr hydrogen atom. The multiplicative constant in front of each  
eigenfunction has been adjusted so that it is normalized. In other words, the integral  
over all space of the corresponding probability density functions equals one, so  
that in each quantum state there is probability one of finding the atomic electron  
somewhere.  

Example 7-2. Verify that the eigenfunction 0211,  and the associated eigenvalue E2, satisfy  
the time-independent Schroedinger equation, (7-12), for the one-electron atom with Z = 1.  
• Since the differential equation is linear in 0, for the purposes of this verification we can 
ignore completely the multiplicative constant 1/8n 11242, and write the eigenfunction as 

tif = re-'12a0  sin Oe`co  

This is the simplest case with a nontrivial dependence on all three coordinates. Nevertheless, 
the verification of this case should give the student some confidence in the validity of all the 
eigenfunctions quoted in Table 7-2. 

Before beginning, let us introduce the convenient notation 

>Ji = f(r,cp) sin  0 = f sin 0  
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Table 7-2 Some Eigenfunctions for the One-Electron Atom  

Quantum Numbers .  
n 

 
1 	m1  Eigenfunctions 
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81 ^/67c `aoj 	ao  

3 	2 	+1 	032±1 = 	
(z \3/2 Z 2 

2 
e -

Zr/3a0 sin B cos O e ± `9  

	

81 ^ ao 	ao 

'I, 	1 	( z  y/2  Z2r2 	2 	+ 
3 	2 	±2 	Y'32±2 = 	( 	2 	e 

Zr/3ao sin2  e -2i(p 
 

	

162 jc \a• 	ao  

and  

= 9(00)Ye
-r/2a0 = gre- r/2ao  

This notation will be useful in evaluating the derivatives that enter in (7-12), which is 

h2 	2  V 	 2^ 	— 
r 01- (r  ar ) + r2  sin B 	

sin e a  
2p [

e )  + r2 	sin2  0 42+ 
V 	Elk  

First we calculate 

NI a  
 =ae(f  sin e) = f cos e 

30  

sin 9 
0 

= f sin e cos 0  

73--6 f s in 0
ae 

 = f(cos2  e — sin2  6) 

1 	a 	a ►^ 

= 
f (cos2 e— sin2 e  

 B 	( 

	

r 2  sin 0 aB 
(sin 
 ae ) r2 \ 	sin e  

Next we calculate 
2  

_ (020 = — tif = —f sin 0  

a2, 1, 	f  

r2  sin 2  e  	 r2  sin e  

3/2 -Zr/a° 1 	0 	0 	
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Adding these two results, we obtain 
1  	

a (sin B 
a

+ 	1 	a2tfr 
	f 	(cost B — sin2  8 — 1) 

r2  sin B a4 	a8 	r2  sin 2  8 a92  r2  sin 8  

2f sin 2  B 	2f sin 6 	21/i  
r2  sin B 	r2 	r2  

Then we calculate  

e - r/2ao — 	  e - r/2ao a 
	= 

% 	r 

Or 	g I\ 	2a0  
3 

r2 a^  = _ 	rz e - r/2ao _  r   e -r/tap 
ar  g ( 	 2a0  

	

2 	2 	2 
a (r2 a^) =  g 2re r/2a0 _  r  e r/zao _ 3r 	e  r/2ao  + r  e -r/2a0 

Or ( Or 	( 	 2a0 	2a0 	4a2  o 
2 	 2 

= 2gre- r/ zao 

( 1  — 
	

8a2) 
= 2 (1 — a

0 
+ 

8a 2) 4  0 	0 	 0  

1 
a (r2atk) = 2 r (z — 	1 	1 2)0 r2 Or 	Or 	 rao  + 8ao  

Substituting this term, and the term coming from the B and cp derivatives, into the differential  
equation that is supposed to be satisfied, we obtain  

2µ  [2  (r ra 	+ 8a2) r ] + 	
V l/i = Eli/ 

0 	0  
or  

h 2  

 µao (1 
	1 

r 8a0) 
 + V = E  

E  = E2 	
8(471E0)2h2  

e2  
V=  

4zzE0r  

47tE Oh2  
ao  = 	2 

µe  

So we have  

Since inspection demonstrates that this equation is satisfied identically, we have completed the  

verification. •  

7-7 PROBABILITY DENSITIES  

We begin to extract information from the one-electron atom eigenfunctions by  

studying the forms of the corresponding probability density functions  

w*tp* e iEnt/ri 	a — iE„t/ 	'I,* 	 ** 	* — P nlm t  	— 4' nlmi'Pnlmi =  RO nl lm r ^ m l R nOI lmi mi  

As these are functions of three coordinates, we cannot directly plot them in two  

dimensions. Nevertheless, we can study their three-dimensional behavior by con-
sidering separately their dependence on each coordinate. We treat first the r depen-
dence in terms of the radial probability density P(r), defined so that P(r) dr is the  

Now  

Also  

and  

,ue4  

h2 µe2 (1 	µe2 	e2 	/ie4  

µ 47tE0h 2  r 	8(47CE 0)h 2 	47te0r 	8(47CE 0) 2h 2  
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probability of finding the electron at any location with radial coordinate between r  
and r + dr. By integrating the probability density `F*`h which is a probability g 	g 	p 	Y 	Y 	̂ 	p 	YPer  
unit volume, over the volume enclosed between spheres of radii r and r + dr, it is 	m  
easy to show that 	 P 

	

P„l(r) dr = R,*,i(r)R„1(r)4itr2  dr 	 (7-28)  
The factor of 4nzr 2  is present on the right side because the volume enclosed between  

the spheres is given by that factor. The use of the quantum numbers n and l as labels  

to specify the form of a particular radial probability density function is obviously ap-
propriate, but the form of these functions does not depend on the quantum number  

mi . Figure 7-5 plots several P„l (r), using dimensionless quantities for each axis. 

0.1  

10 	15 	20 	25  
r  

ao/Z 

Figure 7 -5 The radial probability density for the electron in a one-electron atom for n =  
1, 2, 3 and the values of / shown. The triangle on each abscissa indicates the value of  

r„i  as given by (7-29). For n = 2 the plots are redrawn with abscissa and ordinate scales  
expanded by a factor of 10 to show the behavior of P„I (r) near the origin. Note that in the  
three cases for which 1 = /max = n —  1 the maximum of Pn1 (r) occurs at rBohr  = n 2a o/Z,  
which is indicated by the location of the dashed line. 
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Inspection of the figure shows that the radial probability densities, for each set of 
the pertinent quantum numbers, have appreciable values only in reasonably restricted 
ranges of the radial coordinate. Thus, when the atom is in one of its quantum states, 
specified by a particular set of its quantum numbers, there is a high probability that 
the radial coordinate of the electron will be found within a reasonably restricted 
range. The electron would quite probably be found within a certain so-called shell 
contained within two concentric spheres centered on the nucleus. A study of the 
figure will demonstrate that the characteristic radii of these shells is determined pri-
marily by the quantum number n, although there is a small 1 dependence. 

This property can be seen in a more quantitative way by using the expectation 
value of the radial coordinate of the electron to characterize the radius of the shell. 
An obvious extension of the arguments of Section 5-4 to three dimensions shows that 

c the expectation value is given by the expression 
o 

rn1 = J 
rPn,(r) dr 

o 

If the integral is evaluated, this yields 

rn1 = nZ o { 1 + 2 C1 l(l  n2 1)1l 
 

(7-29) 

rBohr = 

which gives the radii of the circular orbits of a Bohr atom (more precisely, it gives 
the electron-nucleus separation; see Section 4-7.) Quantum mechanics shows that 
the radii of the shells are of approximately the same size as the radii of the circular 
Bohr orbits. These radii increase rapidly with increasing n. The basic reason is that 
the total energy E„ of the atom becomes more positive with increasing n, so the 
region of the coordinate r for which E„ is greater than V(r) expands with increasing 
n, as can be seen in Figure 7-3. That is, the shells expand with increasing n because 
the classically allowed regions expand. 

Example 7-3. (a) Calculate the location at which the radial probability density is a maximum 
for the ground state of the hydrogen atom. (b) Next calculate the expectation value for the 
radial coordinate in this state. (c) Then interpret these results in terms of the results of measure-
ments of the location of the electron in the atom. 
•(a) The radial probability density for the n = 1, 1 = 0 ground state is 

P1 o(r) 

We take R 10(r) from the r-dependent factor of the first eigenfunction listed in Table 7-2, with 
Z = 1, and obtain 

P1o(r) = e-r/aOe -r/a°r2  = e- 2r/aor2 

We have ignored normalization (i.e., for simplicity taken the multiplicative constant equal to 
one) since it has no effect on what we are about to do. This is to find the maximum in P 1 0(r) 
by evaluating its derivative with respect to r and setting the result equal to zero. That is 

dP10(r)  = —  2 e - 2r/ao1. 2 + e  2r/ao2r  
dr 	a0  

- 2r/a °  = — r e 	2r=0 

00 

The values of rn1  are indicated in Figure 7-5 with small triangles. It is apparent that 
rn1  depends primarily on n, since the l dependence is suppressed by the factor of 1/2 
and the factor of 1/n 2  in (7-29). 

An interesting comparison can be made between (7-29) and (4-16) 
n 2 a0  

= Rio(r)R1o(r)47cr2  

ao 



The solution to the equation we have obtained is 
r 

--=0 
ac, 

or 
r = ao  

This is the location of the maximum in the radial probability density. 
(b) To calculate the expectation value of the radial coordinate r, we evaluate (7-29), with 

n = 1, l = 0, and Z = 1. We obtain 
rio  = ao {1 + (1/2)[1]} = 1.5a 0  

(c)We have found that the expectation value of r is somewhat larger than the value of r at 
which the radial probability density is a maximum. The reason is that the radial probability 
density is asymmetrical about its maximum in such a way that there is a small, but not negli-
gible, probability of finding fairly large values of r in measurements of the location of the elec-
tron in the atom. So, although the most likely location of the electron is at r = ac, (i.e., at the 
ground state Bohr electron-nucleus separation, the average value obtained in measure-
ments of the location is r = 1.5a0 . All these features can be seen by inspecting the top curve of 
Figure 7-5. 	 • 

Example 7 -4. In its ground state, the size of the hydrogen atom can be taken to be the radius 
of the n = 1 shell for Z = 1, which is essentially ac, = 4xe0h 2/pee  0.5 A. Show that this fun-
damental atomic dimension can be obtained directly from consideration of the uncertainty . 
principle. 
► The form of the potential function 	 2 

—e 

4nEor 

tends to cause the atom to collapse since the smaller the distance from the electron to the 
nucleus the more negative is the potential energy. This tendency is opposed by the effect of 
the uncertainty principle, as follows. 

If the electron is located within a region of size R, then any component of its linear momen-
tum must have an uncertainty of approximately 

Ap= R  

This uncertainty reflects the fact that the linear momentum of magnitude p can be in any 
direction, so the components can have values ranging from —p to +p. Thus the uncertainty 
in any component of the linear momentum also satisfies approximately the relation 

Op=p 
Therefore, the electron must have a kinetic energy approximately equal to 

p2  (»)2 	h2 

2p 	2p 	2pR 2  

We see that the kinetic energy becomes more positive with decreasing R, which opposes the 
effect of the potential energy to cause collapse. 

If the size of the atom is R, its potential energy is approximately 
e2  

2pR 2  4ne0R 

Obeying the common tendency of all physical systems to be as stable as possible, the atom 
will adjust its size so as to minimize its total energy. The existence of an optimum size can be 
seen qualitatively by inspecting Figure 7-6, which plots K, V, and E as functions of R. (Note 
that R is not the radial coordinate; it is the size of the atom, which we are treating as a variable 
in order to determine its optimum value.) We can find the most energetically favorable size 
quantitatively by differentiating E with respect to R, and setting the derivative equal to zero. 

V(r) = 

V 
=4itEOR 

Then the total energy of the atom is approximately 
h2 	e2 

E=K+V= 
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Figure 7-6 The qualitative behavior of the kinetic energy K, potential energy V and total 
energy E of a hydrogen atom, as functions of the size R of the atom. For small R, K increases 
more rapidly than V decreases because K oc 1/R 2  while V cc —1/R. For large R, K 
becomes negligible compared to V. As a result, E has a minimum at a certain value of R 
(indicated by the mark on the R axis), and at this size the atom is most stable. 

That is 

dE 	2h 2 	e2  
dR 	2µR 3  + 47r€0R 2  

Solving this equation for R, we find 
47rE0h2 

R = 	µe2 = a()  

the size which gives minimum total energy, and therefore the most stable atom. 
The uncertainty principle governs the minimum size of the atom because it governs its 

minimum energy. This is the zero-point energy of the ground state, which has a size that 
arises from its zero-point motion. These simple ideas provide a very satisfactory answer to the 
question of the stability of the ground state of the atom. And this is particularly so if we also 
consider the discussion following Example 5-13, which shows that in its ground state the atom 
does not radiate.  

Figure 7-5 shows that the details of the structure of the radial probability density 
functions do depend on the value of the quantum number 1. For a given n, the func-
tion has a single strong maximum when l takes on its largest possible value; but 
additional weaker maxima develop inside the strong one when 1 takes on smaller 
values. Generally, these weaker maxima are not so important. However, there is a 
related property that can be very important. Inspection of the figure, particularly the 
expanded plots for n = 2, 1 = 0, and n = 2, 1 = 1, will demonstrate that the radial 
probability density functions have appreciable values near the origin at r = 0 only 
for 1 = 0. This means that only for l = 0 will there be an appreciable probability of 
finding the electron near the nucleus. 

Another way of seeing this property is to consider the probability density, 1P*+ = 
elk, itself. Inspection of the eigenfunctions listed in Table 7-2 will show that for 
values of r which are small compared to ao/Z, where the exponential term is slowly 
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varying, the radial dependence of all the eigenfunctions has the behavior  

fi cc r' 	 r —> 0 (7-30)  
This behavior can easily be verified by direct substitution into (7-17), the equation  

that determines the radial dependence of the tp. As a consequence, the radial depen-
dence of the probability densities for small r is  

cc 
 r21 	 r 	0 (7-31)  

From this it follows that the value of elk in a small volume near r = 0 is relatively  
large only for 1 = 0, and decreases very rapidly with increasing 1. The reason is that  
r° »r2 » r4 »..., for r-0.  

We see that there is some probability that the electron will be near the nucleus if  

= 0, but very much less probability that this will happen if 1 = 1, and even less if  
1 = 2, etc. This can have important effects in certain circumstances because the poten-
tial energy of the atom becomes very large in magnitude if the electron is near the  

nucleus. We shall see later that this is particularly true for the case of multielectron  

atoms, which have essentially the same property. In fact the r1  behavior of the eigen-
functions for small r is of predominant importance in the structure of multielectron 
atoms. We shall also see later that the r1  behavior is due physically to the angular 
momentum of the atom, which depends on 1.  

Now let us proceed to the study of the angular dependence of the probability den-
sity functions 

4^nimt 1  nlmt — Rn Rn1OÎmtOtmtalmtalmt  

From (7-19) we have 

Ont# ) `mt (9) = e -
imw etmi0 = 1  

Thus the probability density does not depend on the coordinate çp. The three-
dimensional behavior of >/iimttbnlmt  is therefore completely specified by the product of  
the quantity R 1(r)R n,(r) = Pn,(r)/4itr2  and the quantity 0i  t (0)01mt(0), which plays the  
role of a directionally dependent modulation factor.  

The form of the factor 01  t (0)01mt (0) is conveniently presented in terms of polar  

diagrams, of which one is shown in Figure 7-7. The origin of the diagram is at the  

point r = 0 (the nucleus), and the z axis is taken along the direction from which the  

angle 0 is measured. The distance from the origin to the curve, measured at the angle  

0, is equal to the value of 0i  t (0)01mt (0) for that angle. Such a diagram can also  
be thought of as representing the complete directional dependence of 1ÿflan, Y' nlmt by 
visualizing the three-dimensional surface obtained by rotating the diagram about the 
z axis through the 360° range of the angle cp. The distance, measured in the direction 
specified by the angles 0 and gyp, from the origin to a point on the surface, is equal to 
0i t (0)01mt (0)(1)m t (Çp)'Fmt(cp) for those values of 0 and cp.  

Figure 7-7 A polar diagram of the factor which  
determines the directional dependence of the 
one-electron atom probability density. 
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1=3 , m1 =±1  

z 

1 =3 , m1 = ±2  

z z 

1 =3, m i = ±3  

z 

1=1,m1= ±1 1=2,m1=±2  

1 = 3,m1 =0  
Figure 7-8 Polar diagrams of the directional dependence of the one-electron atom prob-
ability densities for / = 3; m 1  = 0, ±1, ±2, ±3.  

In Figure 7-8 we illustrate an example of the dependence of the form of Oi ,(9)O 1m,(9)  
on the quantum number m l , by a set of polar diagrams for l = 3, and the seven possible  

values of m 1  for this value of 1, i.e., for m 1  = — 3, — 2, —1, 0, 1, 2, 3. Note  the way in which  
the region of concentration of O*,,,(9)O 1m,(9), and therefore Otnitfrnlmi,  shifts from the z  
axis to the plane perpendicular to the z axis as the absolute value of m 1  increases. Some  
features of the dependence of O1  1 (9)O1m,(9) on the quantum number / are indicated in  

Figure 7-9 in terms of a set of polar diagrams for m 1  = ± l and l = 0, 1, 2, 3, 4. In the  
case n = 1, 1 = m1  = 0, which is the ground state of the atom, 1/i n m14'nlm,  depends on  
neither 0 nor cp and the probability density is spherically symmetrical. For the other  

states, the concentration of probability density in the plane perpendicular to the z axis,  
when m 1  = ± 1, becomes more and more pronounced with increasing 1. Figure 7-10 is an  

attempt to overcome the limitations of the two-dimensional printed page using shading  

to represent the three-dimensional appearance of the probability density functions for  

various states of the one-electron atom.  

The probability density functions displayed in these figures generally have a set of  

spherical and conical surfaces, defined by certain values of r and 0, on which they equal  

1=3,m1=1- 3 	 1=4,m1=±4  

Figure 7-9 Polar diagrams of the directional dependence of the one-electron probability  

densities for 1 = 0, 1, 2, 3, 4; m 1  = ±1. 
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Figure 7-10 An artist's conception of the three-dimensional appearance of several 
one-electron atom probability density functions. For each of the drawings a line represents 
the z axis. If all the probability densities for a given n and 1 are combined, the result is 
spherically symmetrical. 
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zero. These nodal surfaces are analogous to the nodal points at which the probability 
density for a particle bound in a one-dimensional potential equals zero (see, for 
example, Figure 6-32). They are a consequence of the fact that the wave functions for a 
bound particle must be standing waves with fixed nodes. 

However, if a collection of hydrogen atoms has been completely isolated from its 
environment, it is not possible to then make measurements on the locations of the 
electron in each atom, knowing that they are all in a quantum state with a particular set 
of quantum numbers n, 1, m l , and thereby locate the nodal surfaces for that state. If it 
could be done it would certainly be remarkable, because it would allow the deter-
mination of the direction of the z axis. And this would amount to finding for each 
atom a preferred direction in a space which should be spherically symmetrical, because 
the Coulomb potential of the atom V = — Ze 2/4rrE0 r is spherically symmetrical. In 
fact, it cannot be done because it is generally not possible to observe any of the 
probability density patterns of Figure 7-10 in actual measurements on free atoms (i.e., 
atoms in the complete absence of external magnetic or electric fields). The only excep-
tion is the spherically symmetrical state for n = 1, 1 = m1  = 0. The reason is that, with  
the exception of the state just mentioned, every state is degenerate with several other 
states of the same n value. Because the energies of atoms in degenerate states are 
identical, it is not possible experimentally to separate them from each other with tech-
niques that leave the probability density unchanged. Thus, all that can be measured is 
the average probability density of the atoms for the entire set of states which are 
degenerate with each other. It turns out that the probability density functions, when 
averaged together in this manner, always yield a spherically symmetrical function. 

Example 7-5. Evaluate the average of the probability density functions for the set of degener-
ate states corresponding to the energy E2.  

■ We have  
1 	''//, 	' II,, 	' rr,, 	 I 	I' 	'I  4 [1''2001''200 + Y' 21-1121-1 + 4'210`1'210 + 5' 2114'211] 

 Z)

3  1 
= 128 ( J 

	

	
e-zr/a° C(2 

— 

ao  I 
+ (

ao/ 2  (2 
sine  0 + 2 sine  8 + cos 2  O 

 Zr 2  

3 	L 	 ' 2 	2 
 

128 1   (a0 	 a 
e -zr/aO

L \2 	r^ + 	r/ J 	
(7-32) 

0 	\a 0  

This spherically symmetrical distribution would be the result of a sequence of measurements on  

the locations of the electrons in one-electron atoms of total energy E2. Of course, it cannot be  
used to detelmine the direction of the z axis, and so there is no contradiction with the fact that this  

direction was initially chosen in a completely arbitrary way.  

` •ote that even for each subset of states including all possible values of m 1  for a given n and  1 (a  
"subshell") the sum of the probability densities is spherically symmetrical. That is , 

2oo^20o 
 is 

spherically symmetrical, and also t f/2 1 -1 11121 -1 + 1V 210 210 +114114/211    is spherically  
symmetrical. This important property is illustrated in Figure 7-10. It will be used later in argu- 
ments concerning multielectron atoms, and nuclei. •  

On the other hand,, consider a situation in which the orientation of the z axis is not  
arbitrary because there is a preferred direction defined, for instance, by an external  

magnetic or electric field applied in that direction to the collection of hydrogen atoms.  

In such a field the quantum states are not degenerate, as we shall see later, and  

measurements of the probability density of atoms in a particular state can be per-
formed. In fact, such measurements can be used to determine the direction of the  

external field.  

To help the student understand the ideas just discussed, let us restate them as follows:  

1. If the behavior of an alom is governed by a potential which has spherical symmetry, like  

the Coulomb potential which depends only on the distance from the electron to the nucleus,  



none of the properties of the atom should single out any particular direction in space because 
all directions are equivalent. 

2. If the atom is placed in an external electric or magnetic field, the spherical symmetry is 
destroyed and the direction defined by the external field becomes unique. 

3. When one direction is unique, we choose one axis of our coordinate system to be in that 
preferred direction because it simplifies the description of the physical situation. We can choose 
other directions, but this unnecessarily complicates the mathematical description. (In electro-
magnetism, as an example, when treating a cylindrical wire it is very advantageous to take one 
axis of the coordinate system along the axis of the cylinder.) 

4. By convention, we call the preferred axis the z axis. (The convention probably comes from 
cylindrical coordinates, in which the axis about which the angular coordinate varies is called 
the z axis.) But we could have called the preferred axis the x or y axis, just as well. 

5. Even if there is no preferred direction, because no external field is applied to the atom, we 
still must choose some arbitrary direction in space for the z axis of our coorindate system. But 
in this case the z axis is not unique physically; it is merely a mathematical construct. Therefore, its 
choice should have no measurable consequences. 

We should also point out that a uniform applied field can serve to define for the atom only a 
single preferred direction. As we have indicated, such a field will generally remove part of the 
degeneracy of the eigenfunctions, and probability densities that depend on the angle B can be 
measured. But the probability densities remain independent of the angle  9, since 1i*i/i cc 
(1)„*,(0)I;,ü (cp) = e - amt9e`mt ° = 1 for every eigenfunction. That is, the probability densities retain 
their axial rotation symmetry about the direction of the applied field, as certainly must be the 
case. 

A nonuniform applied field can serve to define additional preferred directions. It is not 
surprising that such fields can destroy the axial rotation symmetry of the probability density of 
an atom under their influence. Although we have not allowed for this possibility in our 
development, because we shall not need to, it is easy to do if necessary by taking particular 
solutions to (7-15) in the form (1),„,,((p) = cos mi cp or im,(cp) = sin m 1 cp, instead of in the form we 
have taken. With no applied field, or with uniform applied field, the eigenfunction associated 
with cos m 1 cp is degenerate with the eigenfunction associated with sin m ice, so measurement 
of the probability density will always yield a co-independent combination cc cos t  mice + 
sine  mice = 1, just as with the eigenfunctions that we use. In the nonuniform applied field the 
degeneracy can be removed, however, and probability densities that do not have axial rotation 
symmetry can be observed. The solutions 1 mt(cp) = cos mice and t mi((p) = sin m ice are fre-
quently used in chemistry since one atom in a molecule is acted on by a highly nonuniform 
field produced by the other atoms. 

In the next section we shall show that the quantum numbers 1 and m 1  are related to 
the magnitude L of the orbital angular momentum of the electron, and to its z com-
ponent LZ, by the relations 

L= N/l(l+ 1)h 
L Z  = mi ff 

We mention this now because it is an important clue to the interpretation of the 
dependence of t/J n  nitfr„ mi on 1 and m 1 . Consider the case m 1  = 1. Then LZ  = lh, which 
is almost equal to L = \/l(l + 1)h. In this case the angular momentum vector must 
point nearly in the direction of the z axis. For a Bohr atom this would mean that the 
orbit of the electron would lie nearly in the plane perpendicular to the z axis, as illus-
trated in Figure 7-11. With increasing values of 1, the value of lh approaches the value 
of /l(l + 1)h, so that L Z  approaches L. This means the angle between the angular 
momentum vector and the z axis decreases. In terms of the Bohr picture, this demands 
that the orbit lie more nearly in the plane perpendicular to the z axis. An 
inspection of the polar diagrams of Figure 7-9 will demonstrate the correspondence 
between these features of i/rnlmtJniml  and the picture of a Bohr orbit. For m 1  = 0 we 
have LZ  = 0, and the angular momentum vector must be perpendicular to the z axis. 
In a Bohr atom this would mean that the plane of the orbit contained the z axis. Some 
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Figure 7-11 A Bohr orbit lying in a plane nearly 
perpendicular to the z axis. 

indication of this behavior can be seen in the polar diagram for l = 3, ml  = 0 of 
Figure 7-8. 

Although there are many points at which the quantum mechanical theory of the 
one-electron atom corresponds quite closely to the Bohr model, there are certain 
striking differences. In both treatments the ground state corresponds to the quantum 
number n = 1, and it has the same value of total energy. But in the Bohr model the 
orbital angular momentum  for this state is L = nh = h, whereas in quantum mech-
anics it is L = 111(/ + 1)h = 0, since l = 0 when n = 1. There is an overwhelming 
amount of evidence, from measurements of atomic spectra and elsewhere, that shows 
the quantum mechanical prediction for zero orbital angular momentum in the ground 
state to be the correct one. This prediction is also in agreement with one obtained by 
using the techniques we developed earlier to calculate the expectation values of the 
total kinetic energy of the electron in the ground state and of the kinetic energy 
associated only with radial motion. The two values are found to be equal, implying 
that the motion is entirely radial in that state. If the Bohr model were modified in a 
way that would allow for zero angular momentum states, the orbit for such a state 
would be a radial oscillation in which the electron passes directly through the nucleus, 
and the oscillation could take place along any direction in space. This would corre-
spond, in a sense, to a spherically symmetrical probability density or charge dis-
tribution, similar to that which is predicted by quantum mechanics and is observed 
experimentally. Nevertheless, it is difficult to visualize the motion of an electron in 
the ground state of the quantum mechanical atom. That is, it is difficult to make an 
analogy to a classical picture, such as the Bohr picture. But this situation is not 
unique; it is equally difficult to visualize the motion of an electron traveling through 
a two-slit diffraction apparatus. 

7-8 ORBITAL ANGULAR MOMENTUM 

We shall now proceed to justify the relations 

LZ  = mlh 
	

(7-33) 
L= V1(/ +1)h 
	

(7-34) 
between the quantum numbers m l  and 1, and the z component L Z  and magnitude L 
of the angular momentum of an electron in its "orbital" motion about the center of 
an atom. The justification will take a little effort, but it will be well worth it. We have 
just seen that these relations are very useful in interpreting the angular dependence of 
the probability density functions for a one-electron atom. As we continue our study of 
quantum physics, we shall see that the angular momentum relations are extremely im-
portant in the study of all atoms (and nuclei). The basic reason is that in most circum- 



stances the z component and magnitude of the angular momenta of the particles in 
microscopic systems remain constant. From a classical point of view, this happens 
because in most systems the particles move in spherically symmetrical potentials that 
cannot exert torques on them. We shall find that, of all the quantities that can be used 
to describe atoms (and nuclei), angular momentum and total energy are about the 
only ones that do remain constant. A consequence is that most experiments on such 
systems involve measuring angular momentum and total energy. Therefore, quantum 
mechanics must be able to make predictions about angular momentum, as well as 
total energy. Another parallel between these two is that both are quantized. In other 
words, the  relations of (7-33) and (7-34), stating that L z  and L have the precise values  
m r h and Jl(l + 1)h, are quantization relations just like the energy quantization rela-
tion stating that the total energy E of a one-electron atom has the precise values  

—uZ2 e4/(4n€0 ) 22h2 n2 . Angular momentum quantization is certainly as important as  

energy quantization. The only reason that it has not appeared before in our treatment  

of Schroedinger quantum mechanics is that the treatment was restricted to one-
dimensional systems. Of course, angular momentum is the dynamical quantity that  

sets real three-dimensional systems apart from one-dimensional idealizations in  

which it has no meaning.  
The angular momentum of a particle, relative to the origin of a certain coordinate  

system, is the vector quantity L defined by the equation  
L = r x p 	 (7-35a)  

where r is the position vector of the particle relative to the origin, and p is the linear  
momentum vector for the particle. By evaluating the components in rectangular co-
ordinates of the vector, or cross, product, it is easy to show that the three rectangular  

components of L are  
Lx = Ypz — zp y  
Ly  = zpx  — xp z 	 (7-35b)  

Lz = xpy  — Ypx  

where x, y, z are the components of r, and px , py , pz  are the components of p.  

In order to study the dynamical quantity angular momentum in quantum mech-
anics, we construct the associated operators. This is done by replacing px , py , pz  by  
their quantum mechanical equivalents — ih a/ax, — ih 0/0y, — ih 0/3z, according to an  
obvious three-dimensional extension of (5-32). Thus the operators for the three  

components of angular momentum are  

Lxop  = — ih
\Y az  —  z  a  Y  

a  
 Lyop  = — ih (z
al 

ôx 
— x-

0) 
	 (7-36)  

Lzop  = — ih(x —88y— 
 y  ax ) 

Because we must use spherical polar coordinates, these expressions must be trans-
formed into these coordinates. Appendix M shows how this can be done. The results 
are  

L xop  = ih sin (p 
6 + cot B cos çP ^  

\ 	 ^P / 

Lyop  = ih — c os cp â  +  cot 8 sin (p ^ )  
C 	 ^  

L = — i^t ô^p 
 

(7-37)  
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We shall also be interested in the square of the magnitude of the angular momentum 
vector L, which is 
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L2 =LX + Ly + Lz  
As is indicated in Appendix M, in spherical polar coordinates the associated operator 
is 

o  __ 	2 r  1  a C 

	

l 	1 	a2  

L°p — 
	

sin 0 a0 
sin 0 

a 
a0 + sine  0 09 2, 

The first step in deriving the angular momentum quantization equations involves 
using the operators to calculate the expectation values of the z component of L, and 
of the square of its magnitude, for an electron in the n, 1, m 1  quantum state of a one-
electron atom. According to the three-dimensional extension of the prescription of 
(5-34), the expectation value L z  is 

L z  = J T*Lzop lii  dZ  

Here dr stands for the three-dimensional volume element r 2  sin 0 dr dO dçp, and f  
stands for the three definite integrals f  ô  Pig'.  ô'.  The same shorthand notation will be 
used in the remainder of this chapter, and in the following chapters. Continuing our 
calculation of L z, by expressing the wave function as a product of the eigenfunction 
and the exponential time factor we obtain 

or  

Lz = 

J 
etE,,f/NY'n Lmt L zop e

-

iEnt/^tY'nlmt dZ  

Lz = jZm i L;opVmnim i   dz (7 -39)  

Similarly, the expectation value of L 2  is  

L2 
= 

^/^ * 	,/, 
Y^nlmtLop

o2 	
Y'nlmt dZ (7-40 (7-40) 

To evaluate the integrals in the two numbered equations above, we must first evaluate  

' 
Lzop^nlmt and Lop2 J^ Iinlm i .  
Example 7-6. Evaluate Lz opi nlm t , where Lzop  = —itza/ap, and where Cam , is a one-electron  
atom eigenfunction.  
to-We  have  

a 
L ^/ 	= Ih  Y'nlmt  

zop nlmt  
09 

 

Since  

we obtain  
knlmt = R nl(r)eImtleAmt(9)  

a^nlmt 	 r 	d^m t (9)1 
l^2 

 09 = Rnl^r)^Im t ^B) L  — I^l  Ll9  

(7-38)  

ci.  

v r^ 

JJ

ir Zit 

=J 	
T*Lzpp  YJr 2  sin 0 dr dO dkp  

0 0 0  

The quantity r2  sin 0 dr d0 dçp is the element of volume in spherical polar coordinates,  

and the integrations are taken over the complete ranges of all three coordinates.  

Because it will simplify the notation, without causing confusion, we shall write this  

expression as  



According to (7-19)  

SO  

omt((P) = en"'  
N  
^ 
v 

dOmi(T) 
 = lYnietm^^ = lml 0m t (40) 

dyp  

Thus  

i^i. 
a  anlm [  = R (I')O (B) [ — Illlm ^ ( ^ 	ni 	~Imt 	I m t  ^)^  

= mlhRnl(r)OIm t (e)0m t ((p)  
and we obtain the answer  

Lzop ^Ÿnlm t  — mlhOnlmt  

^ 

Although we do not have a concise expression for the functions O lmt (9), which must 
be differentiated to evaluate L  p!r/nlmt,  we know that these functions satisfy the differ-
ential equation (7-16). Using this fact, it is not difficult to show that  

Loptfrnlmt = 1(1 + 1)1221T nlmt 	 (7-42)  

Using (7-41) from Example 7-6 in (7-39), which is  

Lz = J Y'nlmtLzoPY^nlm t  dx 

it is trivial to evaluate Lz . We have  

Lz = mlh  Y^nimt^nlmt  dz 

But we know that this integral has the value one because it is equal to the probability  

density integrated over all space, i.e., the probability of finding the electron some-
where. Thus we obtain  

In a similar fashion we use (7-42) in (7 

L2 = 
 

to obtain 

LZ = 1(1 + 
_ 
L Z  = 1(1 + 

Lz  = 
-40), 

^* 

1)h2J 

1)h2  

nlmtLop^Y 

m lh 
which is 

2 , 1
, nlm t  da  

* 	

,, 
Y^nlmt`l'J/,, nlmt da  

(7-43)  

(7-44)  

Let us compare the results of our expectation value calculations, (7-43) and (7-44),  

with the quantization relations we are trying to verify, that can be written  

Lz  = mitt 	 (7-45)  
L2  = l(1 +  (7-46)  

The former are certainly consistent with the latter, but they are not proofs of the lat-
ter. The quantization relations make stronger statements about the values of L z  and  
L2 . These relations say that any measurement of the angular momentum of an elec-
tron in the n, 1, m 1  state of the atom will always yield Lz  = m lh and L 2  = 1(1 + 1)h2  

(7-41)  
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since, in that state, these quantities have precisely the values quoted. But the expecta- 
tion value relations say only that the values quoted will be obtained on the average,  

that is, when the results of a large number of measurements of L Z  and L2  are averaged.  
To complete the proof of the quantization relations is a matter of continuing along  

the line we have been following. For example, by calculating the expectation value  

of some power of L Z, say the square Lz, it is found that LZ = (m 1h) 2 . This immedi-
ately leads to the conclusion that not only must L Z  equal mh on the average, i.e., L Z  
m 1h, but that LZ  must equal mh always, i.e., L Z  = m 1h. The point is that if L Z  fluctuated  
about its average m 1h it would not be possible to obtain LZ = (m 1h)2 because when  
averaging a power of L Z  higher than the first more weight is given to fluctuations  
above the average than to fluctuations below the average. In order to proceed with  

our interpretation of the angular momentum of one-electron atoms, we defer the de-
tails of this proof to the following section. There we shall also obtain the interesting  

conclusion that Lx  and L y , the x and y components of the orbital angular momentum,  

do not obey quantization relations.  
The fact that Cam, does not describe a state with a definite x and y component of  

orbital angular momentum, because these quantities are not quantized, is mysterious  

from the point of view of classical mechanics. According to the angular momentum  

conservation law of classical mechanics, the orbital angular momentum vector of an  

electron moving under the influence of a spherically symmetrical potential V(r) of a  
one-electron atom in free space would be completely fixed in direction and magni-
tude, and all three components of the vector would have definite values. The reason  

is that there would be no torques acting on the electron. The fact that this result is  

not obtained in the quantum mechanical theory is a consequence of the fact that there  

is an uncertainty principle relation which states that no two components of an angu-
lar momentum can be known simultaneously with complete precision. Because the z  
component of orbital angular momentum has the precise value m 1h, the relation re-
quires that the values of the x and y components be indefinite But one thing can be  

said about the values of these components: Upon evaluating Lx and L y, their average  
values, it is found that both equal zero. So although the particular value of L x  that  
would be obtained in any particular measurement cannot be predicted, it can be pre-
dicted that the average value that would be obtained in a set of measurements of L x  
is zero. And similarly for L y .  

Many of the properties of the orbital angular momentum can be conveniently  

represented by a vector model. Consider the set of states having a common value of the  

quantum number 1. For each of these states the length of the orbital angular momen-
tum vector, in units of h, is L/% = x/1(1 + 1). In the same units, the z component of this  
vector is L Z/h = m 1 . The z component can assume any integral value from L Z/1i =  
— Ito L i/h = +1, depending on the value of m 1 . The case of l = 2 is illustrated in Fig-
ure 7-12. The figure depicts the angular momentum vectors for each of the five states  

	

-0̂  	 ► 	 Figure 7-12 Representing the angular momentum  
vectors (measured in units of h) for the possible 
states with I = 2. In each state the vector is equally 

C 	
1  

- 	 likely to be found anywhere on a cone symmetrical 
i _____ 	 about the z axis. It has a definite magnitude and z  

	

-2 	 component but does not have a definite x or y  
component. 



corresponding to the five possible values of m 1  for this value of 1. In any one of these 
states the angular momentum vector is equally likely to be found anywhere on a cone 
symmetrical about the z axis, and therefore has a definite z component as well as a 
definite magnitude. The vector does not have a definite x or y component, but the 
value of either of these quantities is as likely to be positive as it is to be negative. The 
actual orientation in space of the angular momentum vector is known with the great-
est precision for the states with m 1  = + 1. But even for these states there is some un-
certainty since the vector can be anywhere on a cone of half-angle cos' [lWl(l + 1)].  
In the classical limit 1 — co, and this angle becomes vanishingly small. Thus, in the  

classical limit the angular momentum vector for the states m 1  = + l is constrained to  
lie almost along the z axis and is therefore essentially fixed in space. This agrees with  
the behavior predicted by the classical theory, i.e., with the classical orbital angular  

momentum conservation law.  
The quantum number m1  determines the space orientation of the orbital angu-

lar momentum vector of the one-electron atom. Therefore, in a sense it determines  

the orientation in space of the atom itself. As the spherically symmetrical Coulomb  

potential implies that there is no preferred direction in the space in which the atom  

is situated, we can understand why the theory predicts that the total energy of the  

atom does not depend on m 1 ,  which determines this orientation. Thus we can  

understand why the eigenfunctions are degenerate with respect to the quantum num-
ber ml . The energy of the atom simply does not depend on its orientation in empty  

space.  

7-9 EIGENVALUE EQUATIONS  

Here we shall complete the derivation, started in the previous section, of the orbital angular  

momentum quantization conditions. Then we shall generalize the results of the derivation to  

point out an interesting feature of Schroedinger's theory of quantum mechanics.  

To study the quantization of the orbital angular momentum, we focus attention first on its  

z component, L2 . Now, if the z component quantization condition of (7-45) is valid, then any  

measurement of L Z  will always yield the same precise value specified by that quantization  

condition  
LZ  = m1 hi 	 (7-47)  

Furthermore, measurements of some higher power of L 2 , say the square LZ , will always yield  
the same value LZ = (m 1 h) 2 . As a consequence, the expectation value of the square of L Z  will  
be just LZ = (m lh)2 . Note that, since we also have L Z  = m 1h, this means  

Lz  = LZz  (7-48)  

That is, the expectation value of the square of L Z  equals the square of the expectation value  

of L2 , if the quantization condition of (7-47) is valid.  
On the other hand, if (7-47) is not valid then measurements of L Z  can lead to various values,  

subject, however, to the constraint that the values average out to yield mlhi because we have  
proven in (7-43) that L Z  = m 1h in any case. If the measured values of L Z  fluctuate about the  
average value m 1h, then the expectation value of the square of L Z  will no longer equal the  
square of m itt.. The reason is that when averaging a higher power of L2 , like its square LZ ,  
we give much more weight to the cases in which L Z  is larger than LZ , and much less weight  
to the equally numerous cases in which L Z  is smaller than L. In this situation Lz (mlh) 2 ,  
so L?L 2 . 

An example is shown in Table 7-3, which applies the ideas just discussed to calculating the  
square of the average, and the average of the squares, of the ages of a group of children whose  
individual ages are 1, 2, and 3 years. Inspection of the table shows that when the ages are first  
squared, and then averaged, a larger result is obtained than when the ages are first averaged,  
and then squared. This will be true in any case in which a power of the ages higher than the  
first is averaged, and in which the ages fluctuate. But if all the children in the group have ages  
precisely equal to each other, and therefore to the average age, then it makes no difference in  
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Table 7-3 The Square of the Average, and  
the Average of the Squares, of  
a Set of Fluctuating  
Numbers  

A= 1,2,3  

A -

1+2+3 - 6

- 2  
3 	3  

A2  = 4  

A2 = 1,4,9  

2 -
1+4+9 - 14

- 4.67  
3 	3  

^ 

Q 	AA- N/A 2 —A 2 =,/4.67-4=,/0.67=0.82  
^ 
r 
U  

which order the operations are carried out and the average of the squares equals the square  

of the averages. An example of that situation is shown in Table 7-4. 	_  

For another illustration of these ideas, consider the quantity Ax = Jx2 — z 2. As men-
tioned in Example 5-10, this quantity is used as a measure of the fluctuations that would be 
observed in measurements of the x coordinate of a particle. If there were no fluctuations, then 
x2  = X2 . But the uncertainty principle demands that there be fluctuations in x (which are 
larger the smaller the fluctuations in the linear momentum p). As a result x 2  > x2, and the  
difference between x 2  and z2  increases as the fluctuations in x increase so ,Jx2 — x 2  is a  
measure of these fluctuations.  _ 

Now, it is easy to prove the validity of the relation expressed by (7-48), LZ = Lz2 , and  
therefore also the validity of the quantization condition L z  = m idi of (7-47). To do this we twice  
use (7-41), Lzo r4'nimi = mih1nimi, to calculate L. According to the three-dimensional exten-
sion of the prescription for calculating expectation values, we have  

LZ = J `I' *LZoP lif  di  

This immediately gives  

z  Lz = Vnimi Lzop  I  nimt  d^ 

The dynamical quantity LZ is the product of two factors of the form L z  
LZ =Lz •Lz  

According to the expectation value prescription, the operator L  oP  obtained from that dyna- 
mical quantity is thus the product of two operators of  the  form Lzpp . Therefore 

L o4'n pim i  = Lzop  Lzop
t1'' 

 nim,  

Table 7-4 The Square of the Average, and 
the Average of the Squares, of 
a Set of Nonfluctuating Numbers 

A = 2, 2, 2  
^ - 2 +2+2 — 6 =2  

3 	3  
A 2

= 4  
A 2 =4,4,4  

A
-

2
- 4+4+4 

 = 
 12

- 4  
3 	3  

AA 	— A 2  = —4=0  



In other words, L opt/ nim, means that 	operates twice on i/inimi.  But according to (7-41)  
—L  

Lz op  l nim, = mlhY nlmi  

co Thus each operation of Lz.p  on  Otani, yields the same function Y'nim,,  multiplied by a constant 
factor mih. Therefore, the result of two operations is simply to multiply `i'nlm,  by two factors of  
m ih. That is

//,` 	
cb 

Lz opinim i  = (mlh) 2 Y'nim,  

Knowing this, we immediately obtain

''//,, Lz = J 4'n m,(mih) 2V'nim t  dZ  

= (mih)2 
J 

 'Zm1'fl1m1 dT  

=  (mlh)2 

= L 2  

where we have made use of the fact that the integral over all space of tiromiOnim,  equals one 
because of the normalization condition. Since we have verified (7-48), we have completed our 
verification of the quantization condition Lz  = mih. The proof of the validity of the quantiza-
tion condition L 2  = 1(1 + 1)h2  is carried through in a completely parallel manner. 

Note that these proofs depend on (7-41) and (7-42), Lzoptitnim, = mlh n lm i  and 4,20„1 ,n, =  
1(1 + 1)h2llinimi.  The equations state the surprising facts that the result of operating on the 
one-electron atom eigenfunction Y'nimi  with the differential operator Lzop  is simply to multiply  
that eigenfunction by the constant mih, while the result of operating on it with the differential  

operator Lop  is simply to multiply it by the constant  1(1 + 1)h2 . These results are certainly not  
typical of what happens when a differential operator operates on a function. For instance, if  

we operate on a function, say f(x) = x2 , with the differential operator d/dx, we obtain a very  
different function f'(x) = 2x. As another example, it is not difficult to show that the results of  

operating on  cam , with the operators Lxop  or Lyop  is to produce new functions of r, 8, 9  in  
which these variables enter quite differently from the way they enter in the function Y'nim,•  That  
is  

Lxop`Nnim, # (const)ilin/m,  

Lyop^nimt 	(const)ilinim i  

The ideas that we have developed, in the process of verifying the angular momentum 
quantization conditions, can be extended to provide a deeper insight into the theory of 
Schroedinger quantum mechanics. They can also be used to lead into the more sophisticated 
theories, such as Heisenberg's matrix mechanics. We must leave these matters for more ad-
vanced books. Here we shall say only that the properties associated with (7-41) and (7-42) are 
perfectly general. That is, whenever the dynamical quantity f has the precise value F in the 
quantum state described by the function ifi, then that function satisfies the relation 

fop ll/ = Flk 	 (7-51)  

where fop is the operator corresponding to f.  
We shall also show that the time-independent Schroedinger equation can be written in the  

form of (7-51). To do this, consider the time-independent Schroedinger equation in rectangular  

coordinates  
h2 020 a20. 

 a2,k1  2µ ax2  + ay2  + az2 
+ Vi/r =  Etli 

Rewrite it as  

C 2,u ^a 	2 + ^ 2 + 2̂
J

+Vl i^=Ei%i 

By comparing (7-3) with (7-4), we see that the square bracket is just the operator eop  for the  
total energy. Thus we have  

eop ifi = Elfr  
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Here E is one of the precise allowed values of the total energy of the system described by the 
potential V. The system is also described by the total energy operator eop . 

The general relation of (7-51) is called an eigenvalue equation, i' is said to be an eigenfunction 
of the operator fop , and F is said to be the corresponding eigenvalue. This is the same termin-
ology as is used in the particular case of the eigenvalue equation for the total energy operator 
that is, in the case of the time-independent Schroedinger equation. The total energy operator 
eop  is sometimes called the Hamiltonian. 

These considerations lead to the important conclusion that, since (7-49) and (7-50) show 
I'nlmz is not an eigenfunction of the operators Lx0  or Lyop , the corresponding dynamical 
quantities Lx  and Ly  do not have precise values in the one-electron atom. That is, L x  and Ly 

 do not obey quantization conditions. 

QUESTIONS 

U 	 1. If a hydrogen atom were not at rest, but moving freely through space, how would the 
quantum mechanical description of the atom be modified? 

2. Since it is well known that the Coulomb potential has a much simpler form in spherical 
polar coordinates, why did we begin our treatment of the one-electron atom in rectan-
gular coordinates? 

3. In what important equations of classical physics does the Laplacian operator enter? 
4. Would the results of the calculations be affected if we took different forms for the separa-

tion constants that arise in the splitting of the time-independent Schroedinger equation, 
for the one-electron atom, into three ordinary differential equations? 

5. Why must I'((p) be single valued? How does this lead to the restriction that ml  must be 
an integer? 

6. What would happen if we took e - `m` 0  as the particular solution to the D((p) equation? 
What about cos m i ce or sin m i ce? 

7. Why do three quantum numbers arise in the treatment of the (spinless) one-electron atom? 
8. Can you say what the functions O(0) and 1(cp) would be like if V were a function of r, 

but not proportional to — 1/r? (This is the case for the valence electron of an alkali atom.) 

9. Just what is degeneracy? 
10. What is the relation between the size of a Bohr atom and the size of a Schroedinger atom? 
11. What is the fundamental reason why the size of the hydrogen atom in its ground state 

has the value it does? 
12. For a one-electron atom in free space, what would be the mathematical consequences of 

changing the choice of direction of the z axis? The physical consequences? What if the 
atom is in an external electric or magnetic field? 

13. Why does a uniform electric or magnetic field define only one unique direction in space? 
14. How do the predictions of the Bohr and Schroedinger treatments of the hydrogen atom 

(ignoring spin and other relativistic effects) compare with regard to the location of the 
electron, its total energy, and its orbital angular momentum? 

15. Devise an explanation for the obvious relation between the last two terms of the Lapla-
cian operator, in spherical polar coordinates, and the operator for the square of the 
magnitude of the orbital angular momentum. 

16. Using the connection between L and 1, explain physically why >(i*0 is very small near 
r = 0, unless 1 = 0. 

17. Exactly why do we say that for a hydrogen atom in free space the orbital angular momen-
tum vector can be located with equal probability anywhere on a cone symmetrical about 
the z axis? 

18. Is every eigenfunction of angular momentum magnitude necessarily also an eigenfunction 
of total energy? Is the reciprocal statement true? 

19. Are examples of eigenvalue equations found in classical physics? If so, what are they? 



PROBLEMS  N  
^ 

W 

1. Using the technique of separation of variables, show that there are solutions to the  

three-dimensional Schroedinger equation for a time-independent potential, which can be  

written  
P(x,y,z,t) = Y' (x,y,z)e - 

iEtm  

where l/i(x,y,z) is a solution to the time-independent Schroedinger equation.  

2. Verify that D(cp) = eim")  is the solution to the equation for (Kcp), (7-15). 
3. Hydrogen, deuterium, and singly ionized helium are all examples of one-electron atoms. 

The deuterium nucleus has the same charge as the hydrogen nucleus, and almost exactly 
twice the mass. The helium nucleus has twice the charge of the hydrogen nucleus, and 
almost exactly four times the mass. Make an accurate prediction of the ratios of the 
ground state energies of these atoms. (Hint: Remember the variation in the reduced 
mass.) 

4. (a) Evaluate, in electron volts, the energies of the three levels of the hydrogen atom in the 
states for n = 1, 2, 3. (b) Then calculate the frequencies in hertz, and the wavelengths in 
angstroms, of all the photons that can be emitted by the atom in transitions between 
these levels. (c) In what range of the electromagnetic spectrum are these photons? 

5. Verify by substitution that the ground state eigenfunction Iiloo,  and the ground state 
eigenvalue E 1 , satisfy the time-independent Schroedinger equation for the hydrogen atom. 

6. (a) Extend Example 7-4 to obtain from the uncertainty principle a prediction of the total 
energy of the ground state of the hydrogen atom. (b) Compare with the energy predicted 
by (7-22).  

7. (a) Calculate the location at which the radial probability density is a maximum for the 
n = 2, 1 = 1 state of the hydrogen atom. (b) Then calculate the expectation value of the 
radial coordinate in this state. (c) Explain the physical significance of the difference in 
the answers to (a) and (b). (Hint: See Figure 7-5.) 

8. (a) Calculate the expectation value V for the potential energy in the ground state of the 
hydrogen atom. (b) Show that in the ground state E = V/2, where E is the total energy. 
(c) Use the relation E = K + V to calculate the expectation value K of the kinetic energy 
in the ground state, and show that K = — V/2. These relations are obtained for any state 
of motion of any quantum mechanical (or classical) system with a potential in the form 
V(r) cc — 1/r. They are sometimes called the virial theorem.  

9. (a) Calculate the expectation value V of the potential energy in the n = 2, 1 = 1 state of  
the hydrogen atom. (b) Do the same for the n = 2, 1 = 0 state. (c) Discuss the results of  

(a) and (b), in connection with the virial theorem of Problem 8, and explain how they  

bear on the origin of the 1 degeneracy.  
10. By substituting into the equation for R(r), (7-17), the form R(r) cc r1, show that it is a  

solution for r —* O. (Hint: Ignore terms that become negligible relative to others as r -> O.)  

11. Consider the probability of finding the electron in the hydrogen atom somewhere inside  

a cone of semiangle 23.5° of the +z axis ("arctic polar region"). (a) If the electron were  

equally likely to be found anywhere in space, what would be the probability of finding  

the electron in the arctic polar region? (b) Suppose the atom is in the state n = 2, 1 = 1, 
 m1  = 0; recalculate the probability of finding the electron in the arctic polar region.  

12. (a) Sketch a polar diagram of the directional dependence of the one-electron atom proba-
bility density for 1 = 2, m 1  = O. (b) At what angle 6 does the angular probability density  

have its minimum value ? (c) Where does the angular probability density have a value  

one-fourth its maximum value?  
13. Consider the hydrogen atom eigenfunction 0432.  What are (a) the total energy in eV;  

(b) the expectation value of the radial coordinate in A; (c) the total angular momentum;  

(d) the z component of the angular momentum; (e) the uncertainty in the angular momen-
tum; (f) the uncertainty in the z component of the angular momentum?  

14. Show that the sum of hydrogen atom probability densities for the n = 3 quantum states,  

analogous to the sum in Example 7-5, is spherically symmetrical.  
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15. Show that I(q) = cos m 19, and 41)(9) = sin m 19, are particular solutions to the equation  

for 0(p), (7-15).  
CD  
N  

O
N

E
- E

LE
C

T
R

O
N

  A
T

O
M

S
 16. (a) Evaluate 4,0 ,, 11/2 -1 for the hydrogen atom. (b) Why does the result indicate that  

Y' 21 _ 1 is not an eigenfunction of Lx. p ?  
17. Prove that Lôpl//nlm, = 1(1 + 1)h2111n1mz.  (Hint: Use the differential equation satisfied by 

01mi(0), (7-16).)  
18. We know that 1/i = elkx  is an eigenfunction of the total energy operator eop  for the one-

dimensional problem of the zero potential. (a) Show that it is also an eigenfunction of the 
linear momentum operator pop , and determine the associated momentum eigenvalue. 
(b) Repeat for rÿ = e  - 1kx . (c) Interpret what the results of (a) and (b) mean concerning  

measurements of the linear momentum. (d) We also know that lit = cos kx and t = sin kx 
are eigenfunctions of the zero potential e ap . Are they eigenfunctions of pop? (e) Interpret  
the results of (d).  

19. All four of the functions e`m'u, e - am^ 9', cos mo, and sin m1q  are particular solutions to  
the equation for 0(9), (7-15) (see Problem 15). (a) Find which are also eigenfunctions of  

the operator for the z component of angular momentum LZop . (b) Interpret your results.  

20. A particle of  mass ti is fixed at one end of a rigid rod of negligible mass and length R.  
The other end of the rod rotates in the x-y plane about a bearing located at the origin,  
whose axis is in the z direction. This two-dimensional "rigid rotator" is illustrated in  
Figure 7-13. (a) Write an expression for the total energy of the system in terms of its  

angular momentum L. (Hint: Set the constant potential energy equal to zero, and then  

express the kinetic energy in terms of L.) (b) By introducing the appropriate operators  

into the energy equation, convert it into the Schroedinger equation  

h2  a2`P(cp,t) 
 = ih 

a1P(p,t)  
21 09 2 	at  

where I = µR 2  is the rotational inertia, or moment of inertia, and 'P(9,t) is the wave  
function written in terms of the angular coordinate 9 and the time t. (Hint: Since the  
angular momentum is entirely in the z direction, L = LZ  and the corresponding operator  
is LZ0  =  

21. By applying the technique of separation of variables, split the rigid rotator Schroedinger  

equation of Problem 20 to obtain: (a) the time-independent Schroedinger equation  

h2 d20(9) 
 

Figure 7-13 The rigid rotator moving in the x-y  
plane considered in Problem 20.  

2I d^2 = E^(q )  

and (b) the equation for the time dependence of the wave function  

dT(t) _ iE 

dt 	h  T(t)  

In these equations E = the separation constant, and ch(9)T(t) = 111(9,t), the wave function.  



22. (a) Solve the equation for the time dependence of the wave function obtained in Prob-
lem 21. (b) Then show that the separation constant E is the total energy.  

23. Show that a particular solution to the time-independent Schroedinger equation for the  

rigid rotator of Problem 21 is IM = e`m° where m = J2IE/h.  
24. (a) Apply the condition of single valuedness to the particular solution of Problem 23.  

(b) Then show that the allowed values of the total energy E for the two-dimensional  
quantum mechanical rigid rotator are  

h2m2 

E 	2I 	 Im^= 0,1,2,3,...  

(c) Compare the results of quantum mechanics with those of the old quantum theory 
obtained in Problem 42 of Chapter 4. (d) Explain why the two-dimensional quantum 
mechanical rigid rotator has no zero-point energy. Also explain why it is not a completely 
realistic model for a microscopic system. 

25. Normalize the functions OM = e`mc found in Problem 24.  
26. (a) Calculate the expectation value of the angular momentum, L, for a two-dimensional  

rigid rotator in a typical quantum state, using the eigenfunctions found in Problem 25.  

(b) Then calculate L 2  and L2, and interpret what your results have to say about the  

values of L that would be obtained in a series of measurements on the system.  
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8-1 INTRODUCTION  

In this chapter we continue our study of the one-electron atom. First we shall discuss  

experiments which measure the orbital angular momentum L of an atomic electron.  

These experiments do not actually measure L directly. Instead they measure a related  

quantity µl , the orbital magnetic dipole moment, by measuring its interaction with  

a magnetic field applied to the atom. We shall develop the relation between p i  and L  
that forms the basis of the measurements. We shall also remind the student of some  

of the properties of the interaction between a magnetic dipole and a magnetic field  

used in the measurements, and in others frequently carried out in atomic, solid state,  

and nuclear physics.  
When considering the results of measurements of atomic magnetic dipole moments,  

we shall discover the very important fact that electrons have an intrinsic angular  

momentum called spin, and an associated spin magnetic dipole moment. The effect  

that electron spin has on the energy levels of a one-electron atom will then be ex-
plored. Finally, we shall develop a procedure for calculating the rate at which excited  

one-electron atoms make transitions to lower-lying states by emitting the photons  

that form their line spectrum.  
Our treatments in this chapter will employ a combination of simple electromag-

netic theory, partly classical physics such as the Bohr model, and quantum mechanics.  

Completely quantum mechanical treatments will not be presented because they re-
quire a more advanced knowledge of electromagnetic theory than has been assumed  

in this book. This procedure is justified by the fact that the results agree with those  

of completely quantum mechanical treatments. Of course, the justification is available  

to us only because someone has taken the trouble to work out the completely quan-
tum mechanical treatments.  

8-2 ORBITAL MAGNETIC DIPOLE MOMENTS  

Consider an electron of mass  in and charge — e moving with velocity of magnitude  y  
in a circular Bohr orbit of radius r, as illustrated in Figure 8-1. (Since it is conventional  

to use   for magnetic dipole moment, here we do not use it for the reduced electron  

mass. No confusion will arise because the inherent accuracy of the experiments, and  

calculations, generally does not warrant making a distinction between the reduced  

électron mass and the electron mass m.) The charge circulating in a loop constitutes  

a current of magnitude  
e 	ev  = = 

 

T 2nr  

where T is the orbital period of the electron whose charge has magnitude e. In elemen- 
tary electromagnetic theory, it is shown that such a current loop produces a magnetic  
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Figure 8-1 The orbital angular momentum L and the orbital magnetic dipole moment µ1 
of an electron —e moving in a Bohr orbit. The magnetic field B produced by the circulating 
charge is indicated by the curved lines. The fictitious magnetic dipole that would produce 
an identical field far from the loop is indicated by its poles N, S. 

field which is the same at large distances from the loop as that of a magnetic dipole 
located at the center of the loop and oriented perpendicular to its plane. For a current 
i in a loop of area A, the magnitude of the orbital magnetic dipole moment  1.11  of the 
equivalent dipole is 

	

= iA 	 (8-2) 
and the direction of the magnetic dipole moment is perpendicular to the plane of the 
orbit, in the sense indicated in Figure 8-1. The figure shows the magnetic field pro-
duced by the current loop. It also indicates the two fictitious poles of a dipole that 
would produce a magnetic field which becomes identical to the actual field far from 
the loop. The quantity µ1  specifies the strength of this magnetic dipole; it equals the 
product of the poles' strength times their separation. Because the electron has a neg-
ative charge, its magnetic dipole moment µ1  is antiparallel to its orbital angular mo-
mentum L, whose magnitude is given by 

	

L = mvr 	 (8-3) 
and whose direction is illustrated in Figure 8-1. 

Evaluating i from (8-1), and A for a circular Bohr orbit, (8-2) yields 
ev _ evr 

µi = iA = 2rcr 
7.0.2 
	2 

Dividing by (8-3), we obtain 
µ1 _ 	_ evr 	e 
L 2mvr 2m 	

(8-5) 

We see that the ratio of the magnitude µ1  of the orbital magnetic dipole moment to 
the magnitude L of the orbital angular momentum for the electron is a combination 
of universal constants. It is usual to write this ratio as 

µ1 __ Alta
L 	h (8-6) 

(8-4) 



where 
eh  

=
0.927 x 10 -23  amp-m 2  lb= 2m 

 

and  

g1 = 1 	 (8-8)  
The quantity µb  forms a natural unit for the measurement of atomic magnetic dipole 
moments, and is called the Bohr magneton. The quantity gi  is called the orbital g 
factor. It is introduced, even though it appears here to be redundant, to preserve 
symmetry with equations we shall develop later in treating cases involving g factors 
which are not equal to one. In terms of these quantities, we may rewrite (8-5) as a 
vector equation specifying both the magnitude of µ1  and its orientation relative to L. 

 That is 

glub  =— 
h 

L 	 (8-9)  

The ratio of  1u1  to L does not depend on the size of the orbit or on the orbital 
frequency. By making a calculation similar to the one above for an elliptical orbit, it 
can be shown that gi/L  is independent of the shape of the orbit. That this ratio is 
completely independent of the details of the orbit suggests its value might not depend 
on the details of the mechanical theory used to evaluate it, and this is actually the case. 
Upon evaluation of µi  quantum mechanically (which cannot be done here because the 
electromagnetic theory required is too sophisticated), and dividing by the quantum 
mechanical expression L = .Jl(l + 1)h, the ratio of  121  to L is found to have the same 
value that we have obtained. Granting this, the student will accept that the correct 
quantum mechanical expressions for the magnitude and z component of the orbital 
magnetic dipole moment are 

and  

	

gh  b  L  = 9^ b  	 
µi = 	 ^l(l + 1)h = glµb^l(l + 1) (8-10)  

µi z  = — 

g^ b  L Z  = 9^ b mlh = — giµbmi 	 (8 - 11)  

The minus sign in the last equation reflects the fact that the vector µi  is antiparallel 
to the vector L.  

Now we shall remind the student of the behavior of a magnetic dipole of moment 
u1 when it is placed in an applied magnetic field B. In elementary electromagnetic 
theory it is shown that the dipole will experience a torque 

= gi  x B 	 (8-12)  
tending to align the dipole with the field, and that, associated with this torque, there 
is a potential energy of orientation 

AE = —µi  • B 	 (8-13) 

Example 8-1. Assume that a magnetic dipole, whose moment has magnitude µ i  is aligned  
parallel to an external magnetic field, whose strength has magnitude B. Take µi  = 1 Bohr  
magneton (typical of the magnetic dipole moment of an atom), and B = 1 tesla (typical of the  
field produced by a fairly powerful electromagnet). Calculate the energy required to turn the  

magnetic dipole so that it is aligned antiparallel to the field.  

► According to (8-13), the orientational potential energy when the dipole is parallel to the field  

is —µ 1B, and it is +fi1B when the dipole is antiparallel to the field. So the energy that must  
be supplied to turn the dipole is  

2µ 1B =•2 x 0.927 x 10 - 
 
23  amp- m2  x 1 joule/amp-m 2  

= 1.85 x 10 -23  joule = 1.16 x 10 -4 eV  

(8-7)  
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Although this energy is very small, even by atomic standards, the dipole cannot turn unless it  

is supplied the energy. Conversely, if the dipole is originally aligned antiparallel to the field, it  

cannot turn to align itself parallel to the field unless it can get rid of the same amount of  

elegy •  

If there is no way for a system, consisting of a magnetic dipole moment µ l  in a  
magnetic field B, to dissipate energy the orientational potential energy AE of the  

system must remain constant. In these circumstances, µ/ cannot align itself with B.  
Instead t1  will precess around B in such a way that the angle between these two  

vectors remains constant, and that the magnitudes of both vectors remain constant.  

The precessional motion is a consequence of the fact that, according to (8-9) and  

(8-12), the torque acting on the dipole is always perpendicular to its angular momen-
tum, in complete analogy to the case of a spinning top. The precession, and its ex-
planation, are illustrated in Figure 8-2. It is easy to show (see the figure caption) that  

the magnitude of the angular frequency of precession of pi  about B is given by  

= gittb  B 	 (8-14)  

This equation also indicates that the sense of the precession is in the direction of B.  
The phenomenon is known as the Larmor precession, and to is called the Larmor 
frequency. 

;/ Equation (8-14) is obtained from a classical treatment. But a quantum mechanical treat-
ment leads to the same result, in the sense that the expectation values of the components per-
pendicular to the magnetic field of a quantum mechanical magnetic dipole moment change  

cyclically in time in the same way as do the actual components perpendicular to the magnetic  

field of a classical magnetic dipole moment. To simplify the discussion in subsequent sections,  

we shall frequently speak of the precession of a quantum mechanical magnetic dipole moment  

\  
/ 	 \  

/ 	 \  
/ 	 \^ 	Figure 8-2 A torque ti= µl x B= — (gbub/h) L x B 

/ 	 arises as the atom's magnetic dipole moment p i  inter- 
____i____. 	\ 

L sin 81 	------... \ 	acts with the applied field B. This torque gives rise 
to a change dL in the angular momentum during time  

dt, according to a form of Newton's law, dL/dt = T.  
The change dL causes L to precess through an angle  

/ wdt, where w is the precessional angular velocity.  
/ 	From the diagram, we see that dL = (L sin 0)w dt, 

or Lw sin 8 = dL/dt = z = (g bub/h)LB sin B. So w = 

\^,— _ _ 	 -- 	 gbubBlh, as in (8-14). 



Figure 8-3 In a region where an applied field B is converging, an electron moves in a 
Bohr orbit with velocity y,  the field exerting force F on the electron. Because the electron 
charge is negative, F cc —v x B. Regardless of the position of the electron in the orbit, 
this force has a component that is radially outward and a component in the direction 
towards which B becomes more intense. Averaged over the orbit, the radial component 
cancels, and the average force is in the latter direction (upward). 

Figure 8-4 Illustrating the forces FN and Fs  acting 
on the poles of a fictitious magnetic dipole, equivalent 
to the circulating electron of Figure 8-3, located in a 
region where the applied field B is converging. Since 
FN is greater in magnitude than Fs , the net force on 
the dipole is in the direction in which B becomes more 
intense. This situation may be familiar to the student 
in the case in which the fields and dipole moment are 
electric instead of magnetic. 

in a magnetic field, although to be strictly correct we should speak of the cyclic change in the 
expectation values of its perpendicular components. 

If the applied magnetic field is uniform in space, there will be no net translational 
force acting on the magnetic dipole (although there is certainly a torque). But if the 
field is nonuniform, there will be such a translational force (in addition to the torque). 
What really happens is illustrated in Figure 8-3. This figure shows that an electron 
moving with velocity y  through a circular orbit, in a region in which the B field is 
converging, feels a force proportional to — v x B that always has a component in the 
direction in which the field becomes more intense. The effect can also be seen via the 
analogy between a fictitious magnetic dipole in a nonuniform magnetic field, and an 
electric dipole in a nonuniform electric field, as illustrated in Figure 8-4. Using this 
analogy, it is easy to show that the average force acting on the magnetic dipole is 

FZ = 	
Oz lu 	 (8-15) 

where z is the coordinate axis in the direction of increase of the field strength, and 
ôB Z/ôz is the rate at which it increases. We conclude that a magnetic dipole in a non-
uniform magnetic field experiences a torque, which will cause precession, and a force, 
which will cause displacement. 
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Figure 8-5 The Stern-Gerlach apparatus. The field between the two magnet pole pieces  

is indicated by the field lines drawn at the near end of the magnet. The field intensity  

increases most rapidly in the positive z direction (upward). 

8-3 THE STERN-GERLACH EXPERIMENT AND ELECTRON SPIN  

In 1922 Stern and Gerlach measured the possible values of the magnetic dipole  

moment for silver atoms by sending a beam of these atoms through a nonuniform  

magnetic field. A drawing of their apparatus is shown in Figure 8-5. A beam of neutral  

atoms is formed by evaporating silver from an oven. The beam is collimated by a  

diaphragm, and it enters a magnet. The cross-sectional view of the magnet shows that  

it produces a field that increases in intensity in the z direction defined in the figure,  
which is also the direction of the magnetic field itself in the region of the beam. As the  

atoms are neutral overall, the only net force acting on them is the force F  of (8-15),  
which is proportional to µ z  .. Since the force acting on each atom of the beam is pro-
portional to its value of pl. , each atom is deflected in passing through the magnetic  

field by an amount which is proportional to pl=. Thus the beam is analyzed into  
components according to the various values of pi.. The deflected atoms strike a  

metallic plate, upon which they condense and leave a visible trace.  

If the orbital magnetic moment vector of the atom has a magnitude µi,  then in 
classical physics the z component µis  of this quantity can have any value from —  µi 
to +µi . The reason is that classically the atom can have any orientation relative to the  

z axis, and so this will also be true of its orbital angular momentum and its magnetic  
dipole moment. The predictions of quantum mechanics, as summarized by (8-11), are  

that µii  can have only the discretely quantized values  

µi s  = — giµbmi 	 (8-16a) 
where m 1  is one of the integers 

mi =- 1, -1+1,...,0,...,+1 - 1,+ 1 	 (8-16b)  

Thus the classical prediction is that the deflected beam would be spread into a con-
tinuous band, corresponding to a continuous distribution of values of pi=  from one 
atom to the next. The quantum mechanical prediction is that the deflected beam 
would be split into several discrete components. Furthermore, quantum mechanics 
predicts that this should happen for all orientations of the analyzing magnet. That is, 
the magnet is essentially acting as a measuring device which investigates the quanti-
zation of the component of the magnetic dipole moment along a z axis, which it  
defines as the direction in which its field increases in intensity most rapidly. Since,  

according to quantum mechanics, A. should be quantized for any choice of the z 
 direction because LZ  is quantized for any choice of that direction, the same results 

should be obtained for all positions of the analyzing magnet. 
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Figure 8-6 The deflection pattern recorded on 
the detecting plate in a Stern-Gerlach measure-
ment of the z component of the magnetic dipole 
moment of silver atoms. Maximum deflection oc-
curs at the center of the beam because the atoms 
there pass through the region of maximum field 
gradient, ôB Z/8z. The observed pattern consists of 
two discrete components due to space quantiza-
tion. According to the classical prediction a con-
tinuous band would be expected. 

Stern and Gerlach found that the beam of silver atoms is split into two discrete 
components, one component being bent in the positive z direction and the other bent 
in the negative z direction. Figure 8-6 shows the type of pattern observed on the 
detecting plate. They also found that these results were obtained independent of the 
choice of the z direction. The experiment was repeated using several other species of 
atoms, and in each case investigated it was found that the deflected beam is split into 
two, or more, discrete components. The results are, qualitatively, very direct experi-
mental proof of the quantization of the z component of the magnetic dipole moments 
of atoms and, therefore, of their angular momenta. In other words, the experiments 
showed that the orientation in space of atoms is quantized. The phenomenon is called 
space quantization. 

But the results of the Stern-Gerlach experiment are not quantitatively in agreement 
with (8-16a) and (8-16b), the equations summarizing the predictions of the theory we 
have developed. According to these equations, the number of possible values of j 
is equal to the number of possible values of m l, which is 21 + 1. Since l is an integer, 
this is always an odd number. Also for any value of l one of the possible values of m 1  
is zero. Thus the fact that the beam of silver atoms is split into only two components, 
both of which are deflected, indicates either that something is wrong with the 
Schroedinger theory of the atom, or that the theory is incomplete. 

The theory is not wrong (we shall see later that atoms do have orbital angular 
momenta and magnetic dipole moments with the predicted properties); but, as it 
stands, the Schroedinger theory of the atom is incomplete. This is shown most clearly 
by an experiment performed in 1927 by Phipps and Taylor, who used the Stern-
Gerlach technique on a beam of hydrogen atoms. The experiment is particularly 
significant because the atoms contain a single electron, so the theory we have de-
veloped makes unambiguous predictions. Since the atoms in the beam are in their 
ground state because of the relatively low temperature of the oven, the theory predicts 
that the quantum number / has the value l = 0. Then there is only one possible value 
of m1 , namely mi  = 0, and we expect that the beam will be unaffected by the magnetic 
field since pi. will be equal to zero. However, Phipps and Taylor found that the beam 
is split into two symmetrically deflected components. Thus there is certainly some 
magnetic dipole moment in the atom which we have not hitherto considered. 

One possibility is a magnetic dipole moment associated with motion of charges in 
the nucleus. The magnitude of such a magnetic dipole moment would be of the order 
of ehl2M, where M is the mass of a proton. But the magnetic dipole moment mea-
sured experimentally from the size of the splitting is of the order of Lb = ehl2m, where 
m is the mass of an electron, which is about 2000 times larger. Therefore, the nucleus 
cannot be responsible for the observed magnetic dipole moment. Its source must be 
the electron. 

This leads us to some reasonable assumptions, which are also supported by other 
evidence to be discussed shortly. We assume that an electron has an intrinsic (built-in) 
magnetic dipole moment µs , due to the fact that it has an intrinsic angular momentum 
S called its spin. From a classical point of view, we can think, at least crudely, of the 
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electron producing the external magnetic field of a magnetic dipole because of the 
curent loops associated with its spinning charge. We also assume that the magnitude 
S and the z component S. of the spin angular momentum are related to two quantum 
numbers, s and ms, by quantization relations which are identical to those for orbital 
angular momentum. That is 

S = Vs(s + 1)h 
S Z  = msh  

(Note that Sx  and S,, are not quantized, as is also the case for L x  and L,,.) We further 
assume that the relation between the spin magnetic dipole moment and the spin angu-
lar momentum is of the same form as the relation for the orbital case. That is 

	

9sµb  s 	 (8-19) 

	

11s.= —gsitbms 	 (8-20) 

The quantity gs  is called the spin g factor. 
From the experimental observation that the beam of hydrogen atoms is split into 

two symmetrically deflected components, it is apparent that ,us=  can assume just two 
values, which are equal in magnitude but opposite in sign. If we make the final as-
sumption that the possible values of m s  differ by one and range from —s to +s, as 
is true of the quantum numbers m 1  and  1 for orbital angular momentum, then we can 
conclude that the two possible values of m s  are 

ms  = —1/2, + 1/2 	 (8-21) 

co 	and that s has the single value 
ci 	 s = 1/2 	 (8-22) 
s 
O 
	

By measuring the splitting of the beam of hydrogen atoms, it is possible to evaluate 
the net force FZ  they feel while traversing the magnetic field. From analogy to (8-15), 
and from (8-20), this is F  = — (ôBZ/az)p hgsms . Since ub  is known and ôBZ/ôz can be 
measured, the experiments determine the value of the quantity gsms . Within their 
accuracy, it was found that gsms  = ± 1. Since we have concluded that m, = + 1/2, 
this implies 

9s = 2 	 (8-23) 
These conclusions are confirmed by many different experiments. For instance, in 

the Zeeman effect a uniform external magnetic field is applied to a collection of atoms, 
and measurements are made of the potential energies of orientation in the field of the 
magnetic dipole moments of the atoms. As we shall discuss in detail in Chapter 10, 
this is done by measuring the splitting of the spectral line emitted when the atoms 
decay from some higher energy level to their ground state energy level. The splitting 
of the line occurs because the levels themselves are split according to the different 
values assumed by the orientational potential energy of the atoms. A simple example 
is the Zeeman effect for hydrogen atoms. In their ground state these atoms have no 
orbital angular momentum, and therefore no orbital magnetic dipole moments. But 
the measurements show that their ground state energy level is split by the applied 
magnetic field into two components, symmetrically disposed about the energy of the 
ground state in the absence of a field. This splitting reflects the two possible values 
of the orientational potential energy 

AE= — 'is  •B= —p s.B 

= gsubmsB 

= ± gsLbB/2 

(8-17) 
(8-18) 
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where the z axis is taken in the direction of the applied field. The fact that the level 
is symmetrically split into two components confirms the conclusion that m s  = ± 1/2, 
and the measured magnitude of the splitting confirms the conclusion that gs  = 2. 

Recent spectroscopic measurements of Lamb, using a technique of extreme accu-
racy, actually have shown that gs  = 2.00232. However in almost all situations it is 
quite adequate to say simply that the spin g factor for an electron is twice as large 
as its orbital g factor; i.e., that the spin magnetic dipole moment is twice as large,  
compared to the spin angular momentum, as the orbital magnetic dipole moment is 
compared to the orbital angular momentum. On the other hand, µs  and S are anti-
parallel, just like µ i  and L, because the relative orientation of either pair of vectors 
depends only on the fact that the electron has a negative charge. 

Example 8-2. A beam of hydrogen atoms, emitted from an oven running at a temperature  

T = 400°K, is sent through a Stern-Gerlach magnet of length X =1 m. The atoms experience 
a magnetic field with a gradient of 10 tesla/m. Calculate the transverse deflection of a typical 
atom in each component of the beam, due to the force exerted on its spin magnetic dipole 
moment, at the point where the beam leaves the magnet. 
•At this temperature, the atoms are in their ground state and have no orbital angular mo-
mentum or orbital magnetic dipole moment. They typically have kinetic energy 2kT, where k 
is Boltzmann's constant. (The kinetic theory shows that while the atoms in the oven typically 
have kinetic energy (3/2)k T, the atoms emitted in the beam typically have kinetic energy 
2kT. The reason is that the more energetic atoms hit the walls of the oven more frequently 
and thus have a higher probability of impinging on the hole in the wall through which the 
beam is emitted.) From (8-15) and (8-20), they experience a transverse force 

aBz  
F2_az libgsms  

Since gsms  = +1, this is  

FZ=±aaZ µb 

The typical longitudinal velocity v x  of an atom of mass M in traveling through the magnet  

can be evaluated by setting  

2  Mvz =2kT 

4kT 

M 
Thus the time t the atom experiences the transverse force in traveling through the magnet of  

length X is  

X X  

t = —= 	—X  

vx 	l4kT 
Vj  M  

Because of the force they have a transverse acceleration a2  = FZ /M, and so suffer a transverse  

deflection  
1 2  

2 Z 	

1 FZX2M 
Z=a t  2M 4kT 

- 8kT  
— + 10 tesla/m x 0.927 x 10 -23  amp-m2  x 1 m 2  

— 8 x 1.38 x 10 -23  joule/°K x 400°K 
+2.1x10-3 m  

So  

vx =  

M 
4kT 

aa z  µbX 2  
_ + 
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The separation of the two components is about half a centimeter, which is quite easy to 
observe. 	 4 

The idea of electron spin was introduced some time before the work of Phipps and 
Taylor. In the final sentence of a research paper on the scattering of x rays by atoms, 
published in 1921, Compton had written, "May I then conclude that the electron 
itself, spinning like a tiny gyroscope, is probably the ultimate magnetic particle." This 
was really more of a speculation than a conclusion, and Compton apparently never 
followed it further. 

Credit for the introduction of electron spin is generally given to Goudsmit and 
Uhlenbeck. In 1925, as graduate students, they were trying to understand why certain 
lines of the optical spectra of hydrogen and the alkali atoms are composed of a closely 
spaced pair of lines. This is the fine structure, which had been treated by Sommerfeld 
in terms of the Bohr model as due to a splitting of the atomic energy levels because 
of a small (about one part in 10 4) contribution to the total energy resulting from the 
relativistic variation of electron mass with velocity (see Section 4-10). The results of 
Sommerfeld were in good numerical agreement with the observed fine structure of 
hydrogen. But the situation was not so satisfactory for the alkalis. In these atoms 
the electron responsible for the optical spectrum would be expected( to move in a 
Bohr-like orbit of large radius at low velocity, so the relativistic variation of mass 
would be expected to be small. However, the fine structure splitting was observed to 
be very much larger than in hydrogen. Consequently, doubt arose concerning the 
validity of Sommerfeld's explanation of the origin of fine structure. In considering 
other possibilities, Goudsmit and Uhlenbeck proposed that an electron has an in-
trinsic angular momentum and magnetic dipole moment, whose z components are 
specified by a fourth quantum number m s, which can assume either of two values, 
—1/2 and + 1/2. The splitting of the atomic energy levels could then be understood 
as due to a potential energy of orientation of the magnetic dipole moment of the 
electron in the magnetic field that is present in the atom because it contains moving 
charged particles. The energy of orientation would be either positive or negative 
depending on the sign of m s , i.e., depending on whether the spin is "up" or "down" 
relative to the direction of the internal magnetic field of the atom. (This should not 
be confused with the previously mentioned Zeeman effect, which involves the splitting 
of energy levels of an atom due to the orientational pptential energy of its magnetic 
dipole moment in an external magnetic field applied to the atom.) Uhlenbeck has 
described the circumstances as follows: 

"Goudsmit and myself hit upon this idea by studying a paper of Pauli, in which the famous 
exclusion principle (to be treated in Chapter 9) was formulated and in which, for the first 
time, four quantum numbers were ascribed to the electron. This was done rather formally; no 
concrete picture was connected with it. To us this was a mystery. We were so conversant with 
the proposition that every quantum number corresponds to a degree of freedom (an inde-
pendent coordinate), and on the other hand with the idea of a point electron, which obviously 
had three degrees of freedom only, that we could not place the fourth quantum number. We 
could understand it only if the electron was assumed to be a small sphere that could rotate... . 

Somewhat later we found in a paper of Abraham, to which Ehrenfest drew our attention, 
that for a rotating sphere with surface charge the necessary factor two in the magnetic 
moment (gs  = 2) could be understood classically. This encouraged us, but our enthusiasm 
was considerably reduced when we saw that the rotational velocity at the surface of the 
electron had to be many times the velocity of light! I remember that most of these thoughts 
came to us on an afternoon at the end of September 1925. We were excited, but we had not the 
slightest intention of publishing anything. It seemed so speculative and bold, that something 
ought to be wrong with it, especially since Bohr, Heisenberg, and Pauli, our great authorities, 
had never proposed anything of the kind. But of course we told Ehrenfest. He was impressed 
at once, mainly, I feel, because of the visual character of our hypothesis, which was very much 



in his line. He called our attention to several points, e.g., to the fact that in 1921 A. H. 
Compton already had suggested the idea of a spinning electron as a possible explanation of 
the natural unit of magnetism, and finally said that it was either highly important or nonsense, 
and that we should write a short note for Naturwissenschaften (a physics research journal) and 
give it to him. He ended with the words `and then we will ask Lorentz.' This was done. 
Lorentz received us with his well known great kindness, and he was very much interested, 
although, I feel, somewhat skeptical too. He promised to ,think it over. And in fact, already 
next week he gave us a manuscript, written in his beautiful handwriting, containing long 
calculations on the electromagnetic properties of rotating electrons. We could not fully 
understand it, but it was quite clear that the picture of the rotating electron, if taken seriously, 
would give rise to serious difficulties. For one thing, the magnetic energy would be so large 
that by the equivalence of mass and energy the electron would have a larger mass than the 
proton, or, if one sticks to the known mass, the electron would be bigger than the whole atom! 
In any case, it seemed to be nonsense. Goudsmit and myself both felt that it might be better 
for the present not to publish anything; but when we said this to Ehrenfest, he answered: 
`I have already sent your letter in long ago; you are both young enough to allow yourselves 
some foolishness!' " (from The Conceptual Development of Quantum Mechanics by Max 
Jammer, McGraw-Hill, 1966) 

The most recent experimental evidence indicates that the electron is a point par-
ticle, and certainly not "bigger than the whole atom." One set of experiments 
studies the scattering of electrons by electrons at very high kinetic energies. If these 
objects had appreciable extent in space, in collisions which were so close that they 
overlap, the force acting between them would be modified just as in the close col-
lision of an a particle and a nucleus. It was found that the electrons always act like 
two point objects, with charge —e and magnetic dipole moment µ s, even in the closest 
collisions investigated. Thus electrons have an extent less than this collision distance, 
which is about 10 -16  m. In comparison to the dimensions of an atom (10 -10  m), or 
even the dimensions of a nucleus (10 -14  m), electrons have negligible dimensions. 

Although the electron seems to be a point particle, four quantum numbers are 
required to specify its quantum states. The first three arise because three independent 
coordinates are required to describe its location in three-dimensional space. The 
fourth arises because it is also necessary to describe the orientation in space of its spin, 
which can be either "up" or "down" relative to some z axis. For a classical point 
particle, there is room only for the first three quantum numbers. But the electron 
is not a classical particle. 

Schroedinger quantum mechanics is completely compatible with the existence of 
electron spin; but it does not predict it, so spin must be introduced as a separate 
postulate. The reason for this is that the theory is an approximation which ignores 
relativistic effects. The student will recall that the theory is based on the nonrelativ-
istic energy equation, E = p2/2m + V. The student may also recall reading in Chapter 
5 brief mention of the fact that Dirac developed a relativistic theory of quantum 
mechanics in 1929. Using the same postulates as the Schroedinger theory, but re-
placing the energy equation by its relativistic form E = (c2p2  + môc4)1/2 + V, Dirac 
showed that an electron must have an intrinsic s = 1/2 angular momentum, an in-
trinsic magnetic dipole moment with a g factor of 2, and all the other properties we 
have stated previously. This was a great triumph for relativity theory; it put electron 
spin on a firm theoretical foundation and showed that electron spin is intimately con-
nected with relativity. A quantitative treatment of the Dirac theory would, unfortu-
nately, be beyond the level of this book, but we shall from time to time describe 
qualitatively its results. 

Another aspect of the nonclassical character of spin can be seen by noting that the 
quantum number s, which specifies the magnitude of the spin angular momentum S, 
has the fixed value 1/2. Therefore, we cannot take S to the classical limit by letting 
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s --> cc, as we did in Section 7-8 for the magnitude of the orbital angular momentum 
L by letting its quantum number 1—> co. An equivalent statement is that in the 
classical limit the magnitude of S is completely negligible because h  is so small, so 
spin is essentially nonclassical. This being the case, it is sometimes more harmful than 
helpful to think of spin in terms of a classical model like a small spinning sphere; but 
it must be admitted that it is difficult to avoid thinking in such terms. 

8-4 THE SPIN -ORBIT INTERACTION 

Although spin itself is subtle, there is nothing subtle about many of the effects it 
produces. Perhaps the most important is that it doubles the number of electrons 
which the "exclusion principle" allows to populate the quantum states of multi-
electron atoms. When we study this effect in Chapter 10, we shall see that the ground 
states of atoms would be very much altered if electrons did not have spin. This would 
have profound consequences on the periodic properties of atoms, and therefore on all 
of chemistry and solid state physics. 

In the present section we shall study the interaction between an electron's spin 
magnetic dipole moment and the internal magnetic field of a one-electron atom. Since 
the internal magnetic field is related to the electron's orbital angular momentum, this 
is called the spin-orbit interaction. It is a relatively weak interaction which is respon-
sible, in part, for the fine structure of the excited states of one-electron atoms. 

The spin-orbit interaction also occurs in multielectron atoms, but in such atoms it 
is reasonably strong because the internal magnetic fields are very strong. Further-
more, an effect completely analogous to the spin-orbit interaction occurs in nuclei. 
The nuclear spin-orbit interaction is so strong that it governs the periodic properties 
of nuclei. 

The origin of the internal magnetic field experienced by an electron moving in a 
one-electron atom is easy to understand if we consider the motion of the nucleus 
from the point of view of the electron. In a frame of reference fixed on the electron, 
the charged nucleus moves around the electron and the electron is, in effect, located 
inside a current loop which produces the magnetic field. The argument is illustrated 
qualitatively in Figure 8-7. To make the argument quantitative, we note that the 
charged nucleus moving with velocity — y constitutes a current element j, where 

j = — Zev 

According to Ampere's law, this produces a magnetic field B which, at the position 
of the electron, is 

B — 	 
,ua jxr _ Ze,u o v xr 
4n r3 	47L 	r3  

Figure 8-7 Left: An electron moves in a circular Bohr orbit, the motion as seen by the 
nucleus. Right: The same motion, but as seen by the electron. From the point of view of 
the electron, the nucleus moves around it. The magnetic field B experienced by the 
electron is in the direction out of the page at the electron's location. 



It is convenient to express this in terms of the electric field E acting on the electron. 
According to Coulomb's law 

E— 
 Ze r 
47CEp r3  

From the last two equations, we have 
B = — Eoµ ov x E 

or 

B = — Z v xE 
c 

(8-24) 

since c = 1/1/€0 µo . The quantity B is the magnetic field strength experienced by the 
electron when it is moving with velocity v relative to the nucleus, and therefore 
through the electric field of strength E which the nucleus exerts on it. Equation (8-24) 
is actually of very general validity, and it can be derived from relativistic considera-
tions. 

The electron and its spin magnetic dipole moment can assume different orienta-
tions in the internal magnetic field of the atom, and its potential energy is different 
for each of these orientations. If we evaluate the orientational potential energy of the 
magnetic dipole moment in this magnetic field, from an equation analogous to (8-13), 
we have 

AE= —µ 5 •B 

Using (8-19), this can be written in terms of the electron's spin angular momen-
tum S as 

AE= 9b S• B 
h 

But this energy has been evaluated in a frame of reference in which the electron 
is at rest, whereas we are interested in the energy as measured in the normal frame 
of reference in which the nucleus is at rest. Because of an effect of the relativistic trans-
formation of velocities, called the Thomas precession, the transformation back to the 
nuclear rest frame results in a reduction of the orientational potential energy by a 
factor of 2. Thus, the spin-orbit interaction energy is 

AE = 2 g  h  S• B 	 (8-25) 

The transformation leading to the factor of 2 is interesting, but rather complicated, 
so we shall not carry it out here. (It is carried out in Appendix O.) 

We shall find it convenient to express (8-25) in terms of S • L, the scalar, or dot, 
product of the spin and orbital angular momentum vectors. To this end, we use, in 
(8-24), the relation 

—eE=F 

between the electric field E and the force F acting on the electron of charge — e. 
We also use the relation 

dV(r) r _ 

	

F 	
dr r 

between the force and the potential. (The term r/r is a unit vector in the radial direc-
tion which gives F its proper direction.) With these relations, (8-24) becomes 

1 1 dV(r) 

	

B=— 	vxr 2  
ec r dr 
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So 

and 

Multiplying and dividing by the electron mass m allows us to write this in terms of 
the orbital angular momentum, L = r x my = — my x r, as 

B = 1 1 dV(r) L 
	 (8-26) 

emc 2  r dr 

Note that the strength of the magnetic field B, experienced by the electron because 
it is moving about the nucleus with orbital angular momentum L, is proportional 
to the magnitude of L, and also that the magnetic field vector is in the same direction 
as the angular momentum vector. With this result, we can express the spin-orbit 
interaction energy, (8-25), as 

DE = gslµb  1 dV(r) 
S • L 

2emc 2 ^i r dr 

Evaluating gs  and Jib , we obtain 
4E = 1 1 dV(r) 

 S • L 	 (8-27) 
2m 2c 2  r dr 

This equation was first derived in 1926 by Thomas, using as we have a combination 
of the Bohr model, Schroedinger quantum mechanics, and relativistic kinematics. 
However, it is in complete agreement with the results of the relativistic quantum 
mechanics of Dirac. It is important in the theory of multielectron atoms as well as 
of one-electron atoms. Furthermore, a similar equation is central to the understand-
ing of the theory of the structure of nuclei, as we shall see later in the book. 

Example 8-3. Estimate the magnitude of the orientational potential energy AE for the n = 2, 
l = 1 state of the hydrogen atom, to check whether it is of the same order of magnitude as the 
observed fine-structure splitting of the corresponding energy level. (There is no spin-orbit en-
ergy in the n = 1 state, since for n = 1 the only possible value for lis l = 0, which means L = 0.) 
► The potential is 

e2  
V(r) = 	r 1 

47rE0  

dV(r) 	e2 	2 	r 
dr 	47rE0  

2 

^E= 	
e 	1 S•L  

47rE02m2 c2  r3  

The magnitude of S • L is approximately h2  since each of these angular momentum vectors 
has a magnitude of approximately h. The expectation value of 1/r 3  for the n = 2 state is 
approximately 1/(3a 0 ) 3 . Thus 

e2 	1 m3e6 	 2 	me8 

IAEI . 47rE02m 2c2  3 3  (471E0)
3 h6 	54 x (47rE0) 4c2h4  

(9 x 109  nt-m2/coul2 )4  x 9 x 10 -31  kg x (1.6 x 10 -19  coul)8  
54 x (3 x 10 8  m/sec) 2  x (1.1 x 10 -34  joule-sec)4 

 —10-23 jou1e-10 -4  eV 

Since S • L can be either positive or negative, depending on the relative orientation of the two 
vectors, the energy level is split by roughly 2 x 10 -4  eV. 

Comparing this with the energy of the n = 2, 1 = 1 level of hydrogen, E 2  = — 3.4 eV, we see 
that the ratio of the predicted energy splitting to the energy itself, IAE/EI, is about one part 
in 104. This is in reasonable agreement with the splitting required to explain the fine structure 
of the lines of the hydrogen spectrum associated with this level, as discussed in Section 4-10, 
and therefore it provides some confirmation of the theory we have developed. A more detailed 
comparison of the theory with experiment will be made shortly. t 



Example 8-4. Estimate the magnitude of the magnetic field B acting on the spin magnetic 
dipole moment of the electron in Example 8-3. 
10- From an equation analogous to (8-13), we have AE = —µ S  • B. So 

14E1 — µsB 

where 

µs µb — 10 -23  amp-m2  
Therefore 

10 -23  joule 
B~ 10 23 am 
	m2 - 1tesla 

p-  

This is about equal to the field produced by an electromagnet operating at the limit at which 
its iron core saturates. We see that the electron's spin magnetic dipole moment feels a strong 
magnetic field because it is moving at a high velocity through the strong electric field surround-
ing the nucleus.  

8-5 TOTAL ANGULAR MOMENTUM 

If there were no spin-orbit interaction, the orbital and spin angular momenta L and 
S of an atomic electron would be independent of each other. That is, when an atom 
without spin-orbit interaction is in free space there would be no torques acting on 
either L or S, so both of these vectors are equally likely to be found anywhere on 
cones surrounding the z axis—with the orientation of one vector unrelated to the 
orientation of the other. (The vector S is found with equal likelihood anywhere on 
such a cone, just as is true of the vector L, because S x  = Sy  = 0, just as L x  = Ly  = O.) 
The vectors do, however, have the fixed magnitudes and z components L, L5 , S, S. 
These fixed values are the ones specified by the quantum numbers 1, m 1 , s, m 5 . 

However, there is a spin-orbit interaction. That is, a strong internal magnetic field 
is acting on the atomic electron, the orientation of which is determined by L, and 
produces a torque on its spin magnetic dipole moment, the orientation of which is 
determined by S. As in the case of the Larmor precession of Section 8-2, the torque 
will not change the magnitude of S. Nor will the reaction torque acting on L change 
its magnitude. But the torque does enforce a coupling between L and S which makes 
them undergo a precessional motion with the orientation of each dependent on the 
orientation of the other. They precess around their sum, instead of lying in cones 
symmetrical about the z axis. Since these vectors are not constrained to be found in 
cones that have z-axis symmetry, their z components, L Z  and S Z , do not have fixed 
values when there is a spin-orbit interaction. 

The situation is illustrated in Figure 8-8, which shows L and S precessing due to 
the spin-orbit interaction coupling. Their motion is involved, but not as involved as 
it might be because they must move in such a way that their sum, the total angular 
momentum J, has a simple behavior. That is, if the atom is in free space so that no 
external torques act on it, its total angular momentum 

J = L + S 	 (8-28) 

maintains a fixed magnitude J and a fixed z component J. The vectors L and S pre-
cess around their sum J, and their components in the direction of J remain fixed so 
that its magnitude J is fixed. Also, J has a fixed component JZ  since it can be found 
with equal probability anywhere on a cone symmetrical about the z axis. As we con-
tinue our studies of atoms, we shall find the total angular momentum to be quite 
useful because of the simple behavior of its magnitude and z component. This is 
particularly so in the case of multielectron atoms, where the many orbital and spin 
angular momenta, that compose the total angular momentum, have very complicated 
behaviors. 
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Figure 8-8 The angular momentum vectors L, S, and J for a typical case of a state with 
1 = 2, j = 5/2, m;  = 3/2. The vectors L and S precess uniformly about their sum J, and J can 
be found anywhere on the cone symmetrical about the z axis. 

By using techniques closely related to those we used in Section 7-8 to study the 
properties of the orbital angular momentum, it can be shown that the magnitude 
and z component of the total angular momentum J are specified by two quantum 
numbers j and m;, according to the usual quantization conditions 

J = Vj(j + 1)h 	 (8-29) 
and 

JZ  = mitt 	 (8-30) 
The possible values of the quantum number mi  are, as would be expected 

m;  = —j, —j + 1, ... , +j — 1, +j 	 (8-31) 
We may determine the possible values of the quantum number j by taking the z 

component of (8-28), which defines J. This gives 
JZ =L2 +SZ  

Now, in the absence of the spin-orbit interaction, L Z  and SZ  would satisfy the quantiza-
tion conditions LZ  = m1h and S Z  = m2h. And in such a situation it would still be pos-
sible to define J = L + S, and its z component would still satisfy the quantization 
condition JZ  = m;h. So if there were no spin-orbit interaction we could write 

m .h = mlh + msh 

or 
m; = m l +ms  

Since the maximum possible value of m 1  is 1, and the maximum possible value of m s 
 is s = 1/2, the maximum possible value of m;  is 

(mi)max = l + 1/2 	 (8-32) 
Even though there actually is a spin-orbit interaction, (8-32) is valid. The reason is 
that angular momentum conservation prevents any interaction internal to the iso-
lated atom from changing the z component of its total angular momentum. Hence 
the spin-orbit interaction cannot change the restriction on that quantity imposed by 
(8-32). 

According to (8-31), the maximum possible value of m ;  is also the maximum pos-
sible value of j. In common with the other angular momentum quantum numbers, 
the possible values of j differ by integers. Therefore these values must be members of 
the decreasing series 

j=l+ 1/2, 1— 1/2, l- 3/2,  1- 5/2,. .. 



STIL +S S  

ILI + ISI  

LII 	LI / 	LI / L+S L I 	L 
L + S ^L + S 	ILI — lSII  

Figure 8-9 Vector diagrams which show that for any two vectors L and S the magnitude 
 IL + SI of their sum is always at least as large as the magnitude of the difference in their  

magnitudes, IILI — S. The case for which ILI > ISI is shown; the student can show in his 

own diagram that the conclusion is unaltered if ILI <  ISI. 

To determine where the series terminates, we may use the vector inequality  
IL + Si  >_ IILI —  IS 

whose validity the student may easily demonstrate by inspecting Figure 8-9. Writing  
L + S as J, we have from the above inequality  

or  

 

IJI >- II LI - I SII  

 

      

\/j(/ + 1)h 10(/  + 1)h — Vs(s + 1)hl  

From this it can be shown with no difficulty that since s = 1/2 there are generally two 
members of the series which satisfy the inequality. These are 

j = l + 1/2, 1 — 1/2 	 (8-33a)  

It is even more apparent that if 1 = 0 there is only one possible value of j, namely 

j = 1/2 	 if l = 0 (8-33b) 

The content of the equations stating the possible values of the quantum numbers 
mi  and j can be represented in terms of the rules of vector addition, by constructing  

a set of vectors whose lengths are proportional to the values of the quantum numbers  

1, s, and j. This is illustrated in the following example.  

Example 8-5. Enumerate the possible values of the quantum numbers j and mi, for states in  
which 1 = 2 and, of course, s = 1/2.  
•According to (8-33a), the two possible values of j are 5/2 and 3/2. According to (8-31), for  
j = 5/2 the possible values of m 1  are — 5/2, — 3/2, —1/2, 1/2, 3/2, 5/2. The same equation  
states that for j = 3/2 the possible values of mi  are — 3/2, —1/2, 1/2, 3/2. Vector diagrams for  
this case are shown in Figure 8-10. Inspection should make their interpretation obvious. •  

Vector diagrams of the type shown in Figure 8-10 represent only the rules for  
adding the quantum numbers l and s to obtain the possible values of the quantum  
numbers j and mi. If the relation between the magnitude of an angular momentum  
vector, such as L, and its associated quantum number were L = 1h, instead of L =  

V1(1 + 1)h, these diagrams would also represent the addition of the angular momenta  
L and S to obtain the angular momentum J and its z component J. Since this re-
lation is approximately valid, such diagrams are sometimes used in discussions of  
atomic structure as a simplified description of the addition of the angular momentum  
vectors themselves. The description is another form of the vector model. The descrip-
tion is useful, but it must be remembered that it is only approximate. An accurate  
description of the behavior of the angular momenta would have an appearance  
similar to that previously shown in Figure 8-8, which illustrates the angular momen-
tum vectors for the case 1 = 2, j = 5/2, m;  = 3/2.  
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Figure 8-10 Vector diagrams representing the rules for adding the quantum numbers 
/ = 2 and s = 1/2 to obtain the possible values for the quantum numbers j and m i . Left: 
The maximum possible value of j is obtained when a vector of magnitude / is added to a 
parallel vector of magnitude s, yielding j = / + s = 2 + 1/2 = 5/2. The maximum possible 
z component of this vector gives the maximum possible value of the quantum number mi , 
and the minimum possible z component gives the minimum possible value of mi . The inter-
mediate values of mi  differ by integers. Thus the possible values are mi  = —5/2, —3/2, —1/2, 
1/2, 3/2, 5/2. Right: A vector of magnitude I = 2 is added to an antiparallel vector of mag-
nitude s = 1/2 to yield a vector of magnitude j =I — s = 2 — 1/2 = 3/2, which represents 
the minimum possible value of the quantum number j. The possible z components of the 
vector of magnitude j =°3/2, which differ in value by integers, correspond to the possible 
values m• = —3/2, —1/2, 1/2, 3/2. There are no values of j intermediate between 5/2 and 
3/2 since its possible values also may differ only by integers. Note that these diagrams do 
not accurately represent the addition of the angular momenta associated with the quantum 
numbers. 

8-6 SPIN-ORBIT INTERACTION ENERGY AND THE HYDROGEN 
ENERGY LEVELS 

In the first part of this section we shall obtain an expression for the spin-orbit inter-
action energy in terms of the potential function V(r) and the quantum numbers 1, s, 
and j. In the second part we shall explain how the expression is used to predict the 
detailed structure of the energy levels of the hydrogen atoms. The expression for the 
spin-orbit interaction energy will also enter, on several occasions, into our subse-
quent discussion of multielectron atoms, and it will enter into our discussion of 
nuclei, since they have very strong spin-orbit interactions. 

According to (8-27), the spin-orbit interaction energy is 
1 	1 dV(r) 

AE = 
2tn2 c 2  r dr 

S • L 

To express this in terms of 1, s, and j, we first write 
J=L+S 

Taking the dot product of this equality times itself, and employing the fact that 
L•S=S•L,we have  

So 

or 

J•J=L•L+S•S+2S•L 

S•L=(J•J—L•L—S•S) /2 

S•L= (J2 —L2 —S2)l2 (8-34) 

  

5/2 z 

  

CV 

 

3/2 

1/2 

—1/2 

—3/2 

—5/2 

  



In a quantum state associated with the quantum numbers 1, s, and j, each term on the 	w 
right has a fixed value, and S • L has the fixed value  

S • L = 

 

h2 
 [ j(j + 1) — 1(1 + 1) — s(s + 1)]  0 

CO 

Thus  
h2 	 dVr( ) 

AE = 4  2c2  [1(1 + 1 ) 1(1  + 1)—  s(s + 1)] 
r   dr 

It should be evident that the spin-orbit energy for the state is the expectation value 
of this quantity. (See Appendix J for a detailed justification.) That is, the energy 
arising from the spin-orbit interaction is 

h 2 
AE 4m2c2  [j(j + 1) — 1(1 + 1) — s( s + 1)] 

1 dV(r) 
	(8-35) 

where the expectation value (1/r) dV(r)/dr is calculated using the potential function 
V(r) for the system and the probability density (actually the radial probability density 
4irr2RZR i1) for the state of interest. As was indicated earlier, (8-35) gives a conve-
nient expression of an important result. 

Now we consider the energy levels of the hydrogen atom. In Section 7-5 we ob-
tained the predictions of quantum mechanics for the energy levels of a hydrogen 
atom in which the spin-orbit interaction is not considered, and found that they are 
simply the predictions of the Bohr model. In Example 8-3 we estimated the change 
in the energy of a typical one of these levels due to the presence of the spin-orbit 
interaction. We found that the energy is shifted up by about one part in 10 4  if L is 
approximately parallel to S (if j = 1 + 1/2), and that it is shifted down about that 
amount if L is approximately antiparallel to S (if j = 1— 1/2). We also saw that there 
is obviously no spin-orbit energy shift if L = 0 (if j = 1/2). 

To obtain quantitative predictions of the hydrogen atom spin-orbit interaction 
energy-level shifts from the general expression of (8-35), the potential function is 
equated to the Coulomb potential V(r) = — e 2/47rE Or, and then the expectation value 
(1/r) dV(r)ldr is calculated using the hydrogen atom eigenfunctions. However, before 
these predictions can be compared with experiments, other effects, of comparable im-
portance in the hydrogen atom, must be taken into account. In discussing Sommer-
feld's relativistic modification of the Bohr model in Section 4-10, we estimated that 
the shift in a typical hydrogen atom energy level, due to the relativistic dependence 
of mass on velocity, is about one part in 10 4. So this relativistic effect produces energy 
shifts in the hydrogen atom comparable to those produced by the spin-orbit inter-
action, which is really also a relativistic effect but a different one. A complete treat-
ment of all the effects of relativity on the energy levels of the hydrogen atom can be 
given only in terms of the Dirac theory. But results which are almost (i.e., except for 
1 = 0. states) complete can be obtained from the Schroedinger theory by adding to 
the simple hydrogen energy-level formula both the expectation value of the correc-
tion to the energy due to the spin-orbit interaction and the expectation value of the 
correction to the energy due to the dependence of mass on velocity. We shall not do 
this for two reasons: (1) it would get us into some fairly lengthy calculations, and 
(2) relativistic effects, other than the spin-orbit interaction, are significant only for 
hydrogen and a few more atoms of very small atomic number Z. For typical atoms 
of medium and large values of Z, and the levels involved in their optical spectra, the 
energy associated with these relativistic effects remains of the order of 10 -4  times 
the energy of a level. But we shall see later that the spin-orbit interaction energy 
increases very rapidly with increasing Z. The spin-orbit interaction is the only effect 
we have considered that is generally important in a typical atom, and we have al-
ready said enough about it here. Therefore, we do no more than present the results 
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of Dirac's completely relativistic treatment of the hydrogen atom energy levels, which  

predicts that the energies are  

(4^r€O  22h2n2  [1  + 	n2  (j +1 1/2 4n)] 	
(8-36)  

In this equation µ stands for the reduced electron mass, u = mM/(m + M), and a is  
the fine-structure constant, a = e2/47rEahc ^ 1/137.  

If the student will compare these results of the Dirac theory with the results of  

the Sommerfeld model expressed in (4-27a) and (4-27b), he will see that they are es-
sentially the same. (Both j + 1/2 and  no  are integers ranging from 1 to n.) Since the  

Sommerfeld model is based on the Bohr model, it is only a very rough approxima-
tion to physical reality. In contrast, the Dirac theory represents an extremely refined  

expression of our understanding of physical reality. That these two theories lead to  

essentially the same results for the hydrogen atom is a coincidence that caused much  

confusion in the 1920s, when the modern quantum theories were being developed.  
The coincidence occurs because the errors made by the Sommerfeld model, in ig-
noring the spin-orbit interaction and in using classical mechanics to evaluate the  

average energy shift due to the relativistic dependence of mass on velocity, happen  

to cancel for the case of the hydrogen atom.  

The energy levels of the hydrogen atom, as predicted by Bohr, Sommerfeld, and  

Dirac are shown in Figure 8-11. In order to make visible the energy-level splittings,  

Sommerfeld Dirac  

no= 3  j= 5/2.l = 2  
ng =2  j = 3/2, l = 1,2  
ng = 1  j= 1/2,1=0,1  

ng =2 j= 3/2,1=1  

ng =1 j = 1/2,1=0,1  

 

n=1  

    

     

-15  

     

     

     

      

     

j-1/2,1=0  

     

Figure 8-11 The energy levels of the hydrogen atom for n = 1, 2, 3 according to Bohr,  
Sommerfeld, and Dirac. The displacements of the Sommerfeld and Dirac levels from those  
given by Bohr have been exaggerated by a factor of (1/a) 2 ti  (137) 2  1.88 x 104.  
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called the fine structure, the shifts of the Sommerfeld and Dirac energy levels from  
those given by Bohr have been exaggerated by a factor of (137) 2  = 1.88 x 104. Thus  
the diagrams would be completely to scale if the value of the fine-structure constant  

a were 1 instead of ^ 1/137. Not shown on the Dirac energy-level diagram are the  

values of the quantum number mi, which specify the orientation in space of the atom,  

since its energy is independent of the orientation if there are no external fields. There  

is a similar space orientation quantum number in the Sommerfeld model, whose  

M 

I 	I r,A,A1 	1K= 
 

SS  

To  
amplifier  

H2  
---^ D  O 

M 

	Metastable state  

	 l=0 
n=2, j= 1/21 4.4x10 eV l-1 

10.2 eV 

n=1, j = 1/2 	 1= 0  

Ground state  

Figure 8-12 The apparatus of Lamb and Retherford. Molecular hydrogen (H 2) entering  
oven O is largely dissociated into atomic hydrogen which leaves the oven, passing through  
slits S, S. The arrangement K, A is essentially a vacuum diode, electrons being emitted  
from heated cathode K and accelerated toward anode A. As the hydrogen passes through  
this region, some atoms collide with the electrons and are excited into the n = 2, 1 = 0 state  
described in the text. This state is called a metastable state because decay from it to the  
ground state (n = 1, I = 0) is highly inhibited by the A/ selection rule and because all other  

states lie above it except the n = 2, I = 1, j = 1/2 state which, according to the Dirac theory,  

has exactly the same energy as the metastable state. The experiment showed, however  

that the / = 1 state was in fact about 4.4 µeV below the metastable state. These levels are  

shown below the apparatus.  
The metastable atoms pass out of the collision region K, A and are detected by detector  

D. Any mechanism which causes these atoms to undergo a transition to the / = 1 state  
(transitions to the ground state are forbidden) will result in a decreased signal from D,  
which is sensitive only to metastable atoms. Such transitions can be induced by passing  

the atoms through a region where there is an alternating electric field whose frequency  

y  is such that by — 4.4 µeV, or  y  1060 MHz. Such an alternating field is provided by a  
waveguide W,W, through whose walls the beam is passed.  

To measure exactly the energy difference (Lamb shift) between the metastable (/ = 0) and  

1= 1 states (both n = 2, j = 1/2), we could in principle merely vary the frequency y,  searching  
for a value that maximized transitions from the former to the la tter state, thereby  
minimizing the signal from D. In practice, the frequency is not easily adjusted and the  
levels themselves are adjusted instead by a known amount by means of a magnet M,M,  
this shifting being due to the Zeeman e ffect. 
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values are not shown on the Sommerfeld energy levels, since the quantum number 
is of no consequence unless an external field is applied to the atom. Also not shown 
are the energy levels of hydrogen measured by optical spectroscopy. They are in very 
good agreement with the levels of both Sommerfeld and Dirac. 

The only difference between the results of these two treatments is that Dirac, but 
not Sommerfeld, predicts that for most levels there is a degeneracy (in addition to 
the trivial degeneracy with respect to space orientation just mentioned) because the 
energy depends on the quantum numbers n and j but not on the quantum number 
1. Since there are generally two values of l corresponding to the same value of j, the 
Dirac theory predicts that most levels are really double. This prediction was verified 
experimentally in 1947 by Lamb, who showed that for n = 2 and j = 1/2 there are 
two levels, which actually do not quite coincide. The 1 = 0 level lies above the / = 1 
level by about one-tenth the separation between that level and the n = 2, j = 3/2, 
l = 1 level. The experiments involved measuring the frequency of photons absorbed 
in transitions between the two levels, using the apparatus shown in Figure 8-12. The 
energy separation between these levels is so small that the frequency is in the micro-
wave radio range. Since measurements of radio frequencies can be made very accu-
rately, it is possible to obtain the energy separation to five significant figures. These 
very accurate measurements of the so-called Lamb shift can be explained with preci-
sion in terms of the theory of quantum electrodynamics, as can the slight departure of 
the spin g factor from 2 mentioned in Section 8-3. We cannot develop this quite so-
phisticated theory here, but we shall discuss it in the following section in connection 
with radiation by excited atoms, and in Chapter 17 in connection with the properties 
of the elementary particles. 

Even with its exaggerated scale, Figure 8-11 cannot show the hyperfine splitting of 
co  the energy levels, which in hydrogen is due to an interaction between the internal 

magnetic field produced by the motion of the electron and a spin magnetic dipole 
moment of the nucleus. As nuclear magnetic dipole moments are smaller than elec-
tronic magnetic dipole moments by —10',    the hyperfine splitting is smaller than 
the spin-orbit splitting by the same factor. Nevertheless, we shall see later that this 
effect can be understood quantitatively in terms of Schroedinger quantum mechanics, 
and that it can be used to measure nuclear spins and magnetic moments. In fact, 
every aspect of the behavior of a hydrogen atom can be explained in detail by the 
theories of quantum physics! 

8-7 TRANSITION RATES AND SELECTION RULES 

If hydrogen atoms are excited to their higher energy levels, e.g., in collisions with 
energetic electrons in a gas discharge tube, the atoms will in due course spontaneously 
make transitions to successively lower energy levels. In each transition between a 
pair of levels, a photon is emitted of frequency equal to the difference in their energies 
divided by Planck's constant. The discrete frequencies emitted in all the transitions 
that take place constitute the "lines" of the spectrum, but measurements show that 
not all conceivable transitions do take place. Photons are observed only with fre-
quencies corresponding to transitions between energy levels whose quantum numbers 
satisfy the selection rules: 

Al = +1 	 (8-37) 
Aj = 0, ± 1 	 (8-38) 

That is, transitions take place only between levels whose 1 quantum numbers differ 
by one and whose j quantum numbers differ by zero or one. Measurements of the 
spectra of other one-electron atoms show that these selection rules apply to transi-
tions in all such atoms. 



As discussed in Section 4-11, some of the selection rules could be given some justifi-
cation in the old quantum theory by using the correspondence principle to invoke 
certain restrictions that apply in the classical limit; but the predictions of this tech-
nique were not reliable. Furthermore, the old quantum theory had nothing at all to 
say about atomic transition rates. A transition rate is the probability per second that 
an atom in a certain energy level will make a transition to some other energy level. 
It is easy to measure a transition rate by measuring the probability per second of 
detecting a photon of the corresponding frequency, since this is proportional to the 
intensity of the corresponding spectral line. So it should certainly be possible to cal-
culate a transition rate from atomic theory. An impressive feature of the Schroedinger 
quantum mechanics is that this can be done with no difficulty, using the atomic 
eigenfunctions. Of course all the selection rules can be obtained from transition rate 
calculations, since a selection rule just specifies which transitions have rates so small 
that they are not normally observed. 

We have already used elementary quantum mechanics, in Example 5-13 and the 
discussion following, to develop much of the physical picture that the theory provides 
for the emission of photons by excited atoms. According to that example, if the wave 
function describing an atom is the wave function associated with a single quantum 
state, then the probability density function for the atom will be constant in time. But 
if the wave function is a mixture of the wave functions associated with two quantum 
states, corresponding to the two energy levels E2 and E 1 , then the probability density 
contains terms which oscillate in time at frequency y  = (E2  — E 1 )/h. Since the atomic 
electron can be found at any location where the probability density has an appre-
ciable value, the charge it carries is not confined to a particular location. In effect, 
the atom has a charge distribution which is proportional to its probability density. 
Thus when the atom is in a mixture of two quantum states its charge distribution 
oscillates at precisely the frequency of the photon emitted in the transition between 
the states. This is true since the photon carries away the excess energy E2 — E1, and 
so has frequency y = (E 2  — E 1)/h. 

The simplest aspect of the atom's charge distribution that can be oscillating is the 
electric dipole moment. This is the product of the electron charge and the expectation 
value of its displacement vector from the essentially fixed massive nucleus. The elec-
tric dipole moment is a measure of the separation of the center of the electron charge 
distribution from the nuclear center of the atom. Even in classical physics, a charge 
distribution that is constant in time will not emit electromagnetic radiation, while a 
charge distribution with an oscillating electric dipole moment emits radiation of fre-
quency equal to the oscillation frequency. In fact, an oscillating electric dipole is the 
most efficient radiator. 

We can actually use the classical formula for the rate of emission of energy by an 
oscillating electric dipole to obtain the important factors in thé formula for atomic 
transition rates. In Appendix B it is shown that the dipole radiates electromagnetic 
energy at the average rate R, where 

47z 3  v4  

	

R = 3EOC3  p2 	 (8-39) 

with p the amplitude of its oscillating electric dipole moment and y the frequency of 
oscillation. Since the energy is carried off by photons whose energies are of magni-
tude hv, the rate of emission of photons, R, is 

R 	4ir3 v 3  
R=—= 	2 	 (8-40)  3E0hc3 

p 	 ( 	) 
This probability per second that a photon is emitted is just equal to the probability 
per second that the atom has undergone the transition. Thus R is also the atomic 
transition rate. 
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Relative to an origin at the essentially fixed nucleus, the electric dipole moment p  
of the one-electron atom is defined as  

	

p = —er 	 (8-41)  

where —e is the charge of the electron and r is its position vector from the nucleus  

at the origin. To obtain an expression for the amplitude of the oscillating electric  

dipole moment of the atom when it is in a mixture of two states, we calculate the  

expectation value of p, using the mixed state probability density obtained in Ex- 
ample 5-13 	

I, 'I, 	,/, ,/^ 	/, I, 	 ,/, ,I' 
= Crc1W14'1 + *21/402  + c!cit 2 '4'1e i(E2 -E1)t/^i + crc2`Vtu'2e-i(EZ- E1)tm  

There is no way, from the present argument, for us to determine precisely what values  

of the adjustable constants c 1  and e2  should be used to specify how much of the two  
quantum states are mixed together. But the results we seek are independent of their  

values, as will be seen shortly, so for simplicity we set them both equal to 1. Then  

we have  
w*ip = Vf(Ÿf  + oc o + * i// fe i(E; — Ef)t/fi +  ,l, D ie —i(EL—E1)11  

where we have replaced the labels 2 and 1 by i and  f, for initial and final. As this 
probability density is not normalized, when we use it to evaluate the expectation 
value of p we obtain only a proportionality, but this will suffice. That is, we have 

p cc  J' T1*(_ er)11 dT   cc  -Veil-P  dz  

or  

p cc I kIkf  terich + J tuirertuJ1d +  ei(E;- Ef)t/he I tfrterll/f dti  + e - i(E , -Ef)t/#  J * ertui d  Z  
where we have sandwiched the term er between the other terms of the integrands to 
conform with accepted notation, and where the integrals are three-dimensional. Now 
the first two integrals on the right are not associated with an oscillating p; in fact 
both integrals yield zero. The last two integrals are each multiplied by complex expo-
nentials with a time dependence that oscillates at the frequency y  = (1/27r)(Ei  — E f )/h =  
(E1 — E f )/h. These two terms describe oscillations in the electric dipole moment ex-
pectation value, of amplitude which is measured by the magnitude of the integral in 
either term. Thus we find that the amplitude of the oscillating electric dipole moment 
is proportional to the quantity pfi , where 

r 
pfi  - 

J 
^/i fer^A i  ch 	 (8-42)  

This quantity is called the matrix element of the electric dipole moment taken between  

the initial and final states. Note that its value depends on the behavior of the atom  

in both the initial state, through th, and in the final state, through tPfc. This is reason-
able because the radiating atom is in a mixture of the two states. Setting the p in  
(8-40) proportional to pfi , we obtain  

3 2 

R oc v pfi  

EphC 3  

where R is the transition rate.  
We have obtained the factors v 3  and pf i, as well as the constants Eohc 3 , in the ex-

pression for the transition rate by a partly classical argument. A much more sophisti-
cated argument which uses only Schroedinger quantum mechanics (and is based on  

the last equation derived in Appendix K) leads to the same result, except that the  

numerical proportionality constant is determined. The result is  

167t 3 v 3p fi  
R = 	 (8-43) 

3€0hc3  



Emitted 

O photon 

The same equation can be derived in an even more rigorous manner from the 
theory of quantum electrodynamics, which provides an exact treatment of the quan-
tization properties of electromagnetic fields. Although the results are not different, 
quantum electrodynamics gives a more complete picture of the emission of photons 
by excited atoms. In particular, it explains how the radiating atom gets into the mixed 
state. This happens through a kind of resonance interaction between vibrations of 
the appropriate frequency, in a surrounding field of electromagnetic radiation, and 
an atom in the initial state. The interaction induces the charge oscillations of that 
frequency, which are characteristic of the mixed state, and then the atom emits elec-
tromagnetic radiation of the same frequency. The process is indicated schematically 
in Figure 8-13. 

The emission of photons by atoms, under the influence of the photons that com-
prise an electromagnetic field applied to the atom, is a phenomenon called stimulated 
emission. Atoms also emit photons when an electromagnetic field is not applied, in 
a phenomenon called spontaneous emission. Quantum electrodynamics shows that 
spontaneous emission takes place because there is always some electromagnetic field 
present in the vicinity of an atom, even if a field is not applied! The reason is that 
the electromagnetic field has an energy content which is discretely quantized because 
the energy, at any particular frequency, is given by the number of photons of that 
frequency. Like any other system with discretely quantized energy, the electromag-
netic field has a zero -point energy. The quantum electrodynamics shows that there 
will always be some electromagnetic field vibrations present, of whatever frequency 
is required to induce the charge oscillations that cause the atom to radiate "spon-
taneously." We can see that spontaneous and stimulated emission are qualitatively 
similar. In spontaneous emission, the electromagnetic field surrounding the atom is 
in its zero-point energy state. In stimulated emission an additional field is applied 
so that the electromagnetic field surrounding the atom is in a higher energy state. 
Then more intense field vibrations of the required frequency are present, and there 
is more chance that the atom will be stimulated to radiate. 

From this argument, it is apparent that the transition rate for stimulated emission 
is proportional to the intensity of the applied electromagnetic field. For intense fields 
it becomes very large and the atom radiates very efficiently. This has important prac-
tical consequences in the laser, a device to produce extremely bright beams of coher-
ent light that will be discussed in Chapter 11. In that chapter we shall go more deeply 
into the relation between stimulated and spontaneous emission, but here we shall 
consider only spontaneous emission. 

The transition rate for spontaneous emission, evaluated in (8-43), is independent 
of whether or not an external field is applied. It depends only on the proporties of 
the atomic eigenfunctions. Since the eigenfunctions are known, the electric dipole 
moment matrix elements between various pairs of levels can be obtained by calcu-
lating the value of the associated integral (8-42). Then the rates for transitions be-
tween these levels can be calculated from (8-43). 
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Figure 8-13 A schematic illustration of the emission of a photon by an atom. Electromag-
netic radiation impinging on the atom induces dipole charge oscillations in the atom. Then 
the atom emits electromagnetic radiation. 
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It is found that the agreement between the predictions and the measurements is 
quite good, even though the transition rates vary appreciably from one case to the 
next. For the transition of the hydrogen atom from its first excited state to its ground 
state, the transition rate has the value R ti  108  sec'. This means that in about 10 -8 

 sec the probability that the transition has occurred is about equal to one. It is said 
that the first excited state has a lifetime t = 1/R ^ 10 -8  sec. Although the 1,3  depen-
dence in (8-43) leads to a range of values of R, the value just quoted is typical of 
the orders of magnitude encountered in atomic transition rates—except that the 
transition rates between certain pairs of levels are essentially zero. These are the 
transitions for which the spectral lines are observed to be absent, or extremely weak. 
The transition rates are predicted to be zero in these cases because the integral in the 
electric dipole matrix element yields zero. Thus the selection rules are a set of con-
ditions on the quantum numbers of the eigenfunctions of the initial and final energy  

levels, such that the electric dipole matrix elements are zero when calculated with a  
pair of eigenfunctions whose quantum numbers violate these conditions.  

Example 8-6. When a hydrogen atom is placed in a very strong external magnetic field,  

the spin-orbit interaction coupling of its orbital angular momentum L to its spin angular mo-
mentum S is overwhelmed, and both vectors precess independently about the direction of the  

external field with constant z components LZ  = m ih and SZ  = msh. That is, mi  and m, are good  
quantum numbers under these circumstances. Spectrum measurements made on such atoms  

show the existence of a selection rule Am /  = 0, ± 1. Obtain this section rule by evaluating  

the appropriate electric dipole matrix element.  

►  Written in full, the matrix element is  

J (

n

' 

2
'

7r  

 J J 1f (r,B,9)erilr i(r,B,cp)r 2  sin B dr dB dip  

0 0 0  
The triple integral factors into the product of three single integrals. The one that is interesting,  
because it leads to the selection rule, is  

2n  

I = 
^ 

(131  f(p)r(1)i(9)  dcp  

0 
This is a vector quantity, which has components  

27r  

I x  = J 4131 (9)x0i(9) dcP  

0  
2

r

^ 

1-y = 
J 

(1)4/(0.0)i(rp)d9  

0 
2

r

n 

Iz = J  of(ozali((p)d9  
0 

If we use the relations  
x =r sin 0 cos cp  

y= r sin 0 sin (p  

z=r cos B 

which can be verified by inspecting Figure 7-2, and also evaluate ci(cp) and f((p) from (7-19),  
we obtain  

2
'
n 

fIx  = r sin B J cos (pe i(m`; - nilf»dip  

o  



2
'
n 

Iy  = r sin B sin (pe` (mti - "f»4p i  

o  
27c 

I= r cos 9 	e i(mli - mif )^ d(p Jz  

o  
Any table of definite integrals will show that the integral in Iz  equals zero, unless  

m l , —  m i f  = 0 	or 	Ami  = 0  
The integral in Ix  can be rewritten, to yield  

2a  

Ix = 1 r sin B 	Cei(m mi t i - f -1)^0 + e i(m ti -m if +1)ip] d(p  
2  

o 

This definite integral equals zero, unless  

— mif  = ± 1 	or 	Am i  = +1  
The same result is obtained from the integral in Iy . Therefore, unless Am i  = 0, or ± 1, there 
will be no components of I that are not zero. Since this will also be true of the electric dipole 
matrix element, we have obtained the selection rule. 	 •  

Physically, the selection rules arise because of symmetry properties of the oscillat-
ing charge distribution of the atom. The atom cannot radiate like an electric dipole 
unless the electric dipole moment of its electron charge distribution is oscillating. A 
classical analogy is found in a very short antenna, which is center-fed from high 
frequency sources of alternating current, as illustrated in Figure 8-14. If the leads to 
the antenna are fed out of phase, so that charge flows into one end at the same 
time it flows out of the other, the antenna will radiate relatively efficiently. But if 
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To ground  

To ground  

Figure 8-14 Upper diagrams: Center-fed antennas driven out of phase. Lower diagrams:  
Driven in phase. Left diagrams: The charge distributions are shown at some initial time.  

Right diagrams: At half a period later. The antenna driven in phase will emit very little  

radiation if its length is short compared to a wavelength, and if the distance to the ground  

plane is long compared to a wavelength.  
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the leads are fed in phase, so that charge flows into or out of both ends in unison,  

the antenna will hardly radiate at all.  
Mathematically, it is the symmetry properties of the eigenfunctions in the matrix  

element that are responsible for the selection rules. Some idea of this can be obtained  

in an easy way by considering the parities of the eigenfunctions. In Section 6-8 we  

defined the parity of a one-dimensional eigenfunction as the quantity which describes  

the behavior of the eigenfunction when the sign of the coordinate is changed. The  

definition can be extended immediately to three dimensions. That is, eigenfunctions  

satisfying the relation  
t/i(—x,—y, —z) = +ÿr(x,y,z) 	 (8-44)  

are said to be of even parity, and eigenfunctions satisfying the relation  

li( — x, — y, — z) = — 11J(x, y,z) (8-45)  

are said to be of odd parity. All eigenfunctions that are bound-state solutions to  

time-independent Schroedinger equations for a potential that can be written as V(r),  
like the Coulomb potential, have definite parities, either even or odd. The reason  

is that the probability densities ietP will then have the same value at the point (— x,  

—y,—z)  that they have at the point (x,y,z), which is a requirement of the fact that  

the potential has the same value at these points.  

An example is found in the one-electron atom eigenfunctions of Table 7-2. To see  

this, inspect Figure 8-15, which shows that when the signs of the rectangular co-
ordinates are changed in the parity operation the behavior of the spherical polar  
coodinates is  

r^ r, 	9—*rc — B, 	cp —+ir + (p 	 (8-46)  
By carrying out these changes on several of the eigenfunctions, it is easy to demon-
strate that  

4inlmt(r, 7L — 9,rc + cp) = (— 1) 1  /I 1m l(r,e,Çp) 	 (8-47)  
The parity is determined by (-1) i; it is even if the orbital angular momentum quantum-
number 1 is even, and odd if l is odd. This is true for all eigenfunctions, bound or  
unbound, of any spherically symmetrical potential V(r), since the only significant  
assumption that is used to obtain (8-47) is that V can be written as V(r).  

Now consider the matrix element of the electric dipole moment  

Pfi 
= fvJf*ervJ dr 

The parity of er is odd since the vector r changes into its negative when the signs of  

the rectangular coordinates are changed. Therefore, if the initial and final eigenfunc-
tions `Y i and Of  are of the same parity, both even or both odd, the entire integrand  

will be of odd parity. If this is the case the integral will yield zero because the con- 
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x 

Figure 8-15 Illustrating the parity operation.  



tribution from any volume element will be cancelled by the contribution from the 
diametrically opposite volume element. Then the transition rate will also be zero. 
Therefore, the parity of the final eigenfunction must differ from the parity of the initial 
eigenfunction in an electric dipole transition. Since the parities are determined by 
(-1)', we can understand why transitions for A/ = 0, or ± 2, are not allowed, in 
agreement with the Al = ± 1 selection rule of (8-37). The reason is that in such transi-
tions the parities of the initial and final eigenfunctions would be the same. 

Quantum electrodynamics shows, and experiments verify, that a photon carries 
angular momentum as well as linear momentum. In particular, the theory shows that 
the angular momentum carried by a photon emitted in an electric dipole transition 
is, in units of h, equal to 1. From this point of view, the total angular momentum 
quantum number selection rule Aj = 0, ± 1 of (8-38) represents the requirements of 
angular momentum conservation, which is fundamentally a symmetry property, by 
restricting electric dipole transitions to pairs of states where the change in the total 
angular momentum of the atom can be compensated for by the angular momentum 
carried by the photon it emits. (When Aj = 0 angular momentum conservation is 
satisfied by a change in the orientation in space of the total angular momentum 
vector of the atom at the time the photon is emitted.) This point of view also makes 
it apparent that Al = ± 3 electric dipole transitions cannot occur because they would 
lead to too large a change in the total angular momentum, even though they would 
be all right as far as parity is concerned. 

It should be mentioned that selection rules do not absolutely prohibit transitions 
that violate them, but only make such transitions very unlikely. If a transition cannot 
take place by the normal means of emission of radiation from an oscillating electric 
dipole moment, there is a very small probability (typically reduced by a factor of 
about 10 -4) that it will take place by emission of radiation from an oscillating 
magnetic dipole moment. This may occur through oscillations in orientation of elec-
tron spin angular momentum and magnetic dipole moment. Transitions can also 
take place with very small probabilities (typically reduced by approximately a factor 
of 10 -6) by emission of radiation from an oscillating electric quadrupole moment. 
This involves oscillations in the electron charge distribution of the atom between an 
elongated ellipsoid and a flattened ellipsoid. 

If an atom is excited to a state from which it can return to its ground state only 
by one of these highly inhibited transitions, it may remain in the excited state for an 
appreciable fraction of a second, instead of the lifetime of 10 -8  sec corresponding to 
the typical transition rate of 10 8  sec -1 . The excited state is said to be metastable, and 
the delayed emission of a photon is a form of phosphorescence. In practice, phos-
phorescence of atoms is rarely observed because the metastable state is deexcited, 
without the emission of a photon, when the atom collides with the wall of its container 
and gives up its excess energy directly to the atoms of the wall. A process completely 
analogous to phosphorescence is commonly observed in nuclei, however. 

8-8 A COMPARISON OF THE MODERN AND OLD QUANTUM THEORIES 

We shall very briefly summarize the last chapters by making a comparison between 
the modern quantum theories (Schroedinger, Dirac, and quantum electrodynamics) 
and the old quantum theories (Bohr and Sommerfeld). 

One of the most striking aspects of the modern quantum theories is the way they 
lead progressively to more and more accurate treatments of the hydrogen atom. The 
Schroedinger theory without electron spin accounts for the energy levels of the atom 
that are observed in spectroscopic measurements of moderate resolution. Measure-
ments of high resolution reveal the fine-structure splitting of the energy levels. They 
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can be explained almost completely by adding to the Schroedinger theory corrections 
for the electron spin-orbit interaction and for the relativistic dependence of mass on 
velocity. They can be explained completely by the Dirac theory. Spectroscopic 
measurements of very high resolution show the Lamb shift, which can be understood 
in terms of quantum electrodynamics. Extremely high-resolution measurements show 
the hyperfine splittings, which can be accounted for in the Schroedinger theory by 
an interaction involving the nuclear spin. Another great success of the modern quan-
tum theories is their ability to give very satisfactory treatments of the transition rates 
and selection rules observed in the measurements of the spectra emitted by hydrogen 
atoms, and all other one-electron and multielectron atoms. 

The record of the old quantum theory is spotty. The Bohr model leads to correct 
values for the energies of the unsplit hydrogen atom levels. Sommerfeld's relativistic 
modification of the model agrees with the fine-structure splittings in hydrogen, but 
the agreement is accidental. The relativistic modification cannot account for the 
Lamb shift, nor for hyperfine splittings. Furthermore, it disagrees by orders of magni-
tude with the fine-structure splittings seen in typical multielectron atoms. In fact, the 
Bohr model itself fails completely to explain many of the most obvious features of 
the energy levels of multielectron atoms; it is already in serious trouble with the 
helium atom that contains only two electrons. The old quantum theory is unreliable 
in explaining selection rules, and incapable of explaining transition rates. 

A particularly helpful feature of the Schroedinger theory is that almost all of the 
work done in applying it to one-electron atoms carries over directly when it is applied 
to multielectron atoms. And the theory is certainly accurate enough to explain every 
important feature of multielectron atoms. Furthermore, it is not very much more 
complicated to apply Schroedinger quantum mechanics to such atoms than it is to 
apply it to one-electron atoms. As we shall see in the next two chapters, part of the 
reason that this is true is that most of the electrons in a multielectron atom group 
together with other electrons to form symmetrical and inert shells in which they do 
not have to be treated individually. Only the few electrons in the atom which are 
not in such shells require detailed treatment. 

QUESTIONS 

1. Why, in discussing Figures 8-1 and 8-4, do we speak of fictitious magnetic poles? 
2. Why does the torque acting on a magnetic dipole in a magnetic field cause the dipole to 

precess about the field, instead of lining up with the field? 
3. It is not possible to do a Stern-Gerlach experiment on a free electron to measure its spin 

magnetic dipole moment; it is only possible if the electron is in a neutral atom. Explain 
why. (Hint: There is a superficial answer, which has a superficial rebuttal. A complete 
answer involves the uncertainty principle.) 

4. Exactly why do we conclude that the spin quantum numbers are half-integral? 
5. Is it fair to criticize Schroedinger quantum mechanics for not predicting electron spin? 
6. Are there conceptual difficulties with the idea of a point electron? 
7. Is the electron the "ultimate magnetic particle"? 
S. Explain in simple terms why an electron in a hydrogen atom experiences a magnetic field. 

Does it experience a field in all quantum states? 
9. Just what is the spin-orbit interaction? How does it lead to the observed fine-structure 

splitting of the spectral lines of the hydrogen atom? 
10. When the spin-orbit interaction is taken into account, it is sometimes said that m1  and ms 

 are no longer "good quantum numbers." Explain why this terminology is appropriate. 
What are the good quantum numbers for the one-electron atom when the spin-orbit 
interaction is taken into account? 



11. What are good quantum numbers for a one-electron atom in an external magnetic field 
which, compared to the internal field, is very weak? Extremely strong? 

12. Why is the spin-orbit interaction particularly sensitive to the form of the potential V(r) 
for small r? How can this be used to study experimentally the potentials of multielectron 
atoms? 

13. What is the justification of performing vector additions, as in Figure 8-10, with vectors 
whose lengths are proportional to the quantum numbers specifying the angular momenta, 
instead of with the angular momentum vectors themselves? 

14. Describe briefly all the features of the hydrogen atom energy-level diagram in Figure 8-11, 
and explain the origin of these features. What features are not shown? 

15. Can there be electromagnetic radiation emitted from an oscillating electric monopole (i.e., 
emitted from a charge of oscillating magnitude at a fixed location)? 

16. There are similarities between the emission of electromagnetic radiation by a system of 
oscillating charges, and the emission of gravitational radiation by a system of oscillating 
masses, but dipole gravitational radiation cannot be emitted. Why? 

17. What experimental evidence do you know of that is in contradiction to the presence of 
zero-point energy vibrations of the electromagnetic field? In support of its presence? 

18. What is the relation between spontaneous and stimulated emission? 

19. Explain in physical terms the origin of the selection rules. 

20. Do all atoms pf a certain species take the same time to make a transition between a certain 
pair of levels? 

PROBLEMS 

1. Evaluate the magnetic field produced by a circular current loop at a point on the axis of 
symmetry far from the loop. Then evaluate the magnetic field produced at the same point 
by a dipole formed from two separated magnetic monopoles located at the center of the 
loop and lying along the axis of symmetry. Show that the fields are the same if the current 
in the loop and its area are related to the magnetic moment of the dipole by (8-2). Can 
you see how to extend the argument to show that the fields will be the same at all points 
far from the loop or dipole, and independent of the shape of the loop? 

2. (a) Evaluate the ratio of the orbital magnetic dipole moment to the orbital angular 
momentum, it i/L, for an electron moving in an elliptical orbit of the Bohr-Sommerfeld 
atom discussed in Section 4-10. (Hint: The area swept out by the radius vector of length 
r, when the angular coordinate increases by the increment dB, is dA = r2  d9/2. Use L = 
mr2  dB/dt to evaluate dB in terms of the time increment dt, and then make the trivial in-
tegration.) (b) Compare the results with those of (8-5) for a circular orbit. 

3. The field of an electromagnet is given by B = 0.02 + 0.0115z2, with B in tesla and z = 
distance in cm from the north pole of the magnet. A magnetic dipole whose moment has 
magnitude 1.34 x 10 -23   amp-m2  is located 8.00 cm from the north pole, the dipole 
moment vector at 40° to the local magnetic field direction. What are (a) the torque on the 
dipole, (b) the force on the dipole, and (c) the energy released if the magnetic dipole is 
turned parallel to the field? 

4. A beam of hydrogen atoms in their ground state is sent through a Stern-Gerlach magnet, 
which splits it into two components according to the two spin orientations. One com-
ponent is stopped by a diaphragm at the end of the magnet, and the other continues into 
a second Stern-Gerlach magnet which is coaxial with the beam leaving the first magnet, 
but is rotated relative to the first magnet about their approximately common axes 
through an angle a. There is a second diaphragm fixed on the end of the second magnet 
which also allows only one component to pass. Describe qualitatively how the intensity 
of the beam passing the second diaphragm depends on a. 

5. Determine the field gradient of a 50 cm long Stern-Gerlach magnet that would produce 
a 1 mm separation at the end of the magnet between the two components of a beam of 
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silver atoms emitted with typical kinetic energy from a 960°C oven. The magnetic dipole  

moment of silver is due to a single 1 = 0 electron, just as for hydrogen.  

6. If a hydrogen atom is placed in a magnetic field which is very strong compared to its  

internal field, its orbital and spin magnetic dipole moments precess independently about  

the external field, and its energy depends on the quantum numbers m l  and ms  which  
specify their components along the external field direction. (a) Evaluate the splitting of  

the energy levels according to the values of m l  and ms. (b) Draw the pattern of split levels  

originating from the n = 2 level, enumerating the quantum numbers of each component  
of the pattern. (c) Calculate the strength of the external magnetic field that would produce  

an energy difference between the most widely separated n = 2 levels which equals the dif-
ference between the energies of the n = 1 and n = 2 levels in the absence of the field.  

7. Use the procedure of Example 8-3 to estimate the spin-orbit interaction energy in the  

n = 2, 1= 1 state of a muonic atom, defined in Example 4-9.  

8. Prove that the only possible values of the quantum number j from the series j =  l + 1/2,  
l — 1/2, 1— 3/2, ... , that satisfy the inequality ,\,/j (j + 1) > IVl(l + 1) — Js(s + 1) 1 with  
s= 1/2, are j=l+1/2, 1- 1/2,if 1 0, or j = 1/2, if 1 = 0.  

9. (a) Enumerate the possible values of j and mj, for the states in which 1 = 1, and, of course,  
s = 1/2. (b) Draw the corresponding "vector model" figures. (c) Draw a figure illustrating  

the angular momentum vectors for a typical state. (d) Show also the spin and orbital  

magnetic dipole moment vectors, and their sum the total magnetic dipole moment vector.  

(e) Is the total magnetic dipole moment vector antiparallel to the total angular momentum  

vector?  
10. Consider the states in which l = 4 and s = 1/2. For the state with the largest possible j  

and largest possible m  j , calculate (a) the angle between L and S, (b) the angle between µi 
 

and µs , and (c) the angle between J and the  +z axis. 
11. Enumerate the possible values of j and mj  for states in which / = 3 and s = 1/2.  
12. The relativistic shift in the energy levels of a hydrogen atom due to the relativistic  

dependence of mass on velocity can be determined by using the atomic eigenfunctions to  

calculate the expectation value AErei  of the quantity AErei = Erei — Ecias, the difference  
between the relativistic and classical expressions for the total energy E. Show that for p  
not too large  

so that  
e4 , ^,^ 	1 

AErei = 
— 2mc2  (4itE0)22mc2 lJnljm) Y2  "nljm^ dz 

Ene 2  ç 	1 

47LE mC 2  J 
Inljm, r  Cairn;  dz 

0  

13. (a) Draw the hydrogen energy-level diagram for all states through n = 2 as in the right-
hand part of Figure 8-11, but with the splitting according to l also shown. (b) With arrows  
connecting pairs of levels, show all the transitions that are allowed by the selection rules.  

14. Verify that the parities of the one-electron atom eigenfunctions r 3007 0310 ,  032o, and  
t//322 are determined by (-1) 1 .  

15. (a) Use parity considerations to prove that the first two integrals of the display equation  

preceding (8-42) both yield zero. (b) Interpret what this means about the existence of  

atomic electric dipole moments which are static in time.  

16. By a straightforward evaluation of the electric dipole matrix elements for the eigen-
functions of Table 7-2, show that the selection rule Al = ± 1 of (8-37) is valid for the n = 
2 —* n = 1 transitions of the hydrogen atom.  

17. Consider the electric dipole moment matrix elements for a charged one-dimensional  

simple harmonic oscillator making the transitions ni  = 3, n f  = 0; ni  = 2, n f  = 0; ni  = 1, 
n1  = 0. Use the eigenfunctions of Table 6-1 to show that the matrix elements which are 



not zero agree with the selection rule An = ± 1, discussed in Section 4-11. (Hint: Use 
parity considerations whenever you can.) 

18. (a) Calculate the rate for spontaneous transitions between the n = 1 and n = 0 states of 
a simple harmonic oscillator, carrying charge e. Take the mass of the oscillator to be 
equal to the mass of an atom of some typical ionic molecule, and the restoring force 
constant C to be 10 3  joules/m2 , which is typical for such a molecule. (Hint: Normalized 
eigenfunctions must be used.) (b) From the transition rate, estimate the average time re-
quired to complete the transition. This is the lifetime of the n = 1 vibrational state of the 
molecule. 

19. Consider enough of the electric dipole moment matrix elements for a charged particle in 
an infinite square well potential, using the eigenfunctions of Section 6-8, to see if there 
is a selection rule for this system and, if so, to determine what it is. 

20. Find the selection rule for a rigid rotator carrying charge — e. Use the eigenfunctions in 
0 found in Problem 23 of Chapter 7. (Note: the selection rule to be found is Am = +1 
not Am = 0, ± 1.) 

21. Use the result of Problem 8-20 to find the ratio R i2/Rol  of the rates of transition from 
states 2 to 1 and 1 to 0. 
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9-1 INTRODUCTION 

In this chapter we shall use Schroedinger's quantum mechanics to study multi-
electron atoms from helium to uranium. First we shall discuss in a general way the 
interesting properties of quantum mechanical systems containing several identical 
particles, such as electrons. This will lead us to the so-called exclusion principle, 
which is of dominant importance in determining the structure of multielectron atoms. 
Then we shall consider multielectron atoms in their ground states, and the systematic 
description of these atoms provided by the periodic table of the elements. We shall 
see that quantum mechanics gives a complete explanation of the periodic table, which 
is the basis of inorganic chemistry and much of organic chemistry and solid state 
physics. Finally, we shall consider the high-energy excited states of multielectron 
atoms that are involved in the emission of x rays by these atoms. 

A multielectron atom of atomic number Z contains a nucleus of charge + Ze 
surrounded by Z electrons each of charge  —e. Every electron moves under the in-
fluence of an attractive Coulomb interaction exerted by the nucleus and the repulsive 
Coulomb interactions exerted by all the other Z — 1 electrons, as well as certain 
weaker interactions involving the angular momenta. The quantum mechanical treat-
ment of this complicated system is easier than might be supposed. One reason is that 
the various interactions experienced by an atomic electron are of different strengths, 
so it is possible to deal with them one or two at a time in order of decreasing strength. 
In the first step, which we consider in this chapter, an approximate description which 
takes into account only the strongest interactions is developed. In subsequent steps, 
which we consider in the next chapter, the description is made more and more exact 
by successively taking into account the weaker interactions. We shall find that with 
this procedure it is not difficult to obtain a qualitative understanding of the behavior 
of multielectron atoms. 

Quantitative information about multielectron atoms can be obtained from this 
approximation procedure, but the required calculations must be carried out on large 
computers. Of course, we shall not be able to reproduce such calculations. However, 
in this chapter and the next we shall describe the calculations and their results. We 
shall also compare the results with the properties of multielectron atoms observed 
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by experiment. Our description will be based, in major part, on the theory of the 
one-electron atom developed in the preceding chapters. 

9-2 IDENTICAL PARTICLES 

Before studying multielectron atoms, we must discuss an important topic of quantum 
mechanics that does not enter into the theory of one-electron atoms. This concerns 
the question of how to give an accurate quantum mechanical description of a system 
containing two or more identical particles, such as electrons. Discussing this question 
will lead us to quantum mechanical phenomena that have absolutely no classical 
analogues. In fact, the discussion will bring out some of the most striking differences 
between classical and quantum mechanics. 

The nature of the question can best be illustrated by a specific example. Consider 
a box containing two electrons. These two identical particles move around in the box, 
bouncing from the walls and occasionally scattering from each other. In a classical 
description of this system, the electrons travel in sharply defined trajectories so that 
constant observation of the system allows us to distinguish between the two electrons, 
even though they are identical particles. For instance, in classical physics we can 
follow the development of the system, without disturbing it, by taking motion pictures 
of the system. If on a certain frame of the film we label the image of one of the 
electrons 1, and label the image of the other electron 2, we can follow the motion of 
the electrons through subsequent frames and always be able to say which electron is 
1 and which electron is 2. The procedure is indicated in Figure 9-1. Of course, we 
cannot label the electrons themselves any more than we can paint one red and the 
other green. Electrons are identical particles—any electron is exactly the same as 
any other electron. Nevertheless, in classical physics identical particles can be distin-
guished from each other by procedures which do not otherwise affect their behavior, 
and so it is possible to assign labels to the particles. 

In quantum mechanics this cannot be done because the uncertainty principle does 
not allow us to observe constantly the motion of the electrons without changing their 

Figure 9-1 Top: A sequence of ten frames from a motion picture of two electrons moving 
in a box, according to classical physics. If labels were assigned to their images in the first 
frame, there would be no ambiguity in assigning the same labels to their images in any 
subsequent frame, although it may be necessary to use high magnification and "slow 
motion." Bottom: An enlarged superposition of all ten frames, showing the trajectories of 
the electrons. 



behavior. As we have seen in Section 3-3, the photons which we must use to illuminate  

the scene for the motion picture camera interact with the electrons in a significant  

and unpredictable manner. The behavior of the electrons is seriously affected by any  

attempt to distinguish them.  
An equivalent, but more formal, statement is that in quantum mechanics the finite  

extent of the wave functions associated with each electron may lead to an overlapping  

of these wave functions that makes it difficult to tell which wave function was asso-
ciated with which electron. A good example is provided by the helium atom. The  

wave functions of the two electrons overlap highly in all quantum states, and so the  

electrons cannot be distinguished. There is also an overlap of the wave functions  

associated with the electron and the proton of a hydrogen atom. But this does not  

lead to any problems in distinguishing one particle from the other because an elec-
tron and a proton are not identical—they can be distinguished by the differences in  

their mass, charge, etc.  
We see that there is a fundamental distinction between the classical and quantum  

mechanical description of a system containing identical particles. An accurate quan-
tum mechanical treatment of these systems must be formulated in such a way that  

the indistinguishability of identical particles is explicitly taken into account. That  

is, measurable results obtained from accurate quantum mechanical calculations should  

not depend on the assignment of labels to identical particles. This property leads to  
important effects which have no classical analogies because indistinguishability itself  

is purely quantum mechanical.  
Since it is the eigenfunctions that carry the burden of describing quantum mechan-

ical systems, we must look for a way of writing them so that they contain a mathe-
matical expression of the qualitative ideas developed above. We continue consider-
ing two identical particles (e.g., two electrons, or two protons, or two a particles, or  

two helium atoms) in a box. To simplify the argument, we assume that we can  

neglect the interactions between the particles. Then they will bounce between the  

walls of the box, but they will not scatter from each other. Despite this simplification,  

the results of the following discussion are of quite general validity.  

The time-independent Schroedinger equation for our system of two noninteracting  

particles in three dimensions can be written  

h2  aZY' T  + aZW T  + a2 Y' T 	hZ   	a2 Y' T  + aZ^T  
2m ^ ax; 	ay; 	ôzi ^ 2m 

(.020T+ 

 ôx2 	ôy2 	ôz2 T4 T + V ' =EdT  

(9-1)  

where  
m = the mass of either particle  

x1, y 1 , z 1  = the coordinates of particle 1  

x2, y2 , z2  = the coordinates of particle 2 

This equation can be obtained immediately by writing the classical expression for 
the total energy of the system, replacing the dynamical quantities by their associated 
quantum mechanical operators to obtain the Schroedinger equation, and then sepa-
rating out the time dependence. Since the procedure is a simple extension of that 
used to obtain the time-independent Schroedinger equation for one particle in three 
dimensions, (7-10), and since the validity of (9-1) is quite obvious anyway, we shall 
not include the details here. It is more important to point out that (9-1) does use 
labels, which specify the identity of the two particles as 1 and 2. The language of 
mathematics forces us to use such labels because there would otherwise be hopeless 
confusion between the symbols; we challenge the student to devise a way to write 
an unambiguous equation, analogous to (9-1), without employing particle labels. In 
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using (9-1), we clearly stand a chance of violating the quantum mechanical require-
ments of indistinguishability. We shall see later that this does happen, but that it is  

possible to arrange things in such a way as to remove the difficulty. We shall do this  

by finding certain linear combinations of labeled eigenfunctions which lead to mea-
surable predictions that are independent of the assignment of the labels.  

In the time-independent Schroedinger equation, (9-1)  

,z 2) = the eigenfunction for the total system  

VT(x l , . . . ,z 2) = the potential energy for the total system 
ET = the total energy for the total system 

Since we have assumed that there is no interaction between the two particles, the 
particles move independently. The potential energy of the total system is then simply 
the sum of the potential energies of each particle in its interaction with the walls of 
the box. Each potential energy will depend only on the coordinates of one particle 
and, since the particles are identical, the two potential energy functions are the same. 
Thus 

VT(xl, . • . ,z2) = V(xl,y1,z1) + V(x2,y2,z2) 	 (9-2)  

It is easy to show, by applying the technique of separation of variables, that for the  

potential of (9-2), there are solutions to (9-1) of the form  

t1T(x1, ... ,z2) = 0(x1,y1,z1)0(x2,y2,z2) 	 (9-3)  
where 0(x 1 ,y 1 ,z 1) and iJi(x2iy2 ,z2) satisfy identical one-particle time-independent 
Schroedinger equations. Note that the total eigenfunction is written as a product of 
the two eigenfunctions describing the independently moving particles. 

Each of the eigenfunctions describing one of the particles requires three quantum 
numbers to specify the mathematical form of its dependence on its three space co-
ordinates. In addition, each requires one more quantum number to specify the orien-
tation of the spin of the particle. We shall shorten the notation by using a single 
symbol, such as a, or /3, or y, etc., to designate a particular set of the four quantum 
numbers required to specify the space and spin quantum state of one of the particles. 
Thus a, for example, stands for a certain set of values of the four quantum numbers. 
Then a particular eigenfunction for particle 1 would be written 

4a(x1,y1,Z1) 

We further shorten the notation by writing this as  

tka( 1 )  
This eigenfunction contains the information that particle 1 is in the space and spin  

quantum state described by a. Numerically, it is the function of the form specified by  

>lia , evaluated at the coordinates of particle 1. An eigenfunction indicating that par-
ticle 2 is in the space and spin quantum state /3 would be written  

Vja(2)  
The total eigenfunction 1 T(x l , ... ,z2) for the case in which particle 1 is in the state a,  

and particle 2 is in the state 16, is  

	

OT(xi, • • • ,z2) =' ( 1 ) a(2) 	 (9-4)  
An eigenfunction indicating that particle 1 is in the state J6, and particle 2 is in the  

state a, has the quantum number symbols interchanged 
' 

	

T(x1, ... ,Z 2) = i ( 1 )Y'Œ(2) 	 (9-5)  
Now let us see whether measurable quantities, evaluated from these total eigen-

functions, depend on the assignment of the particle labels. The simplest measurable  

is the probability density function. For  the eigenfunction of (9-4), it is 

^T OT = 0a( 1 )Y^/3(2)YIa( 1)0p(2) 	 (9-6)  



and for the eigenfunction of(9-5), it is 	
,/^ 

i  TkT = i^(1)^a(2)Y'#( 1)0a(2) 
	

(9-7)  

Since the two identical particles are indistinguishable, we should be able to exchange 
their labels without changing a measurable quantity such as the probability density. 
As an example, we carry out this operation on (9-6), obtaining 

4( 1)02)ia( 1 )(frQ(2) 1-*2' ia(2)14( 1 )ia(2)1kQ( 1 )  
2 1  

where the arrows mean that the expression on the left changes into the expression on  

the right when 1 changes into 2 and 2 changes into 1. But it is apparent that the  

relabeled probability density function is not equal to the original probability density  

function. For instance, the first term in the relabeled function (expression on the  

right) is 1//« evaluated at the coordinates x 2 , y 2 , z 2 , while the first term in the original  
function (expression on the left) is tfrâ evaluated at the coordinates x i , y i , z i . Thus a  
relabeling of the particles actually does change the probability density function  

calculated from the eigenfunction of (9-4). The same is true for the eigenfunction of  

(9-5). Therefore, we must conclude that these are not acceptable eigenfunctions for  

the accurate description of a system containing two identical particles. The suspicion  

which we expressed after writing the time-independent Schroedinger equation, (9-1),  

has been justified.  
It is, however, possible to construct an eigenfunction which satisfies the time-

independent Schroedinger equation, and yet has the acceptable property that its  

probability density function is not changed by a relabeling of the particles. In fact,  

there are two ways of doing this. Consider the following two linear combinations of  

the eigenfunctions of (9-4) and (9-5)  

= 	r  [0a(1)0 (3(2) + 0 13( 1)0a(2)]  (9-8)  

and  

1/1,4 = 	 [ia( 1 *,q(2) — IPp( 1 )0a(2)] 	 (9-9)  

The first is called the symmetric total eigenfunction, and the second the antisymmetric 
total eigenfunction (for reasons that will become apparent soon). Now the total  

energy of a system containing a particle in a quantum state a and another particle  

in a quantum state /3 will not depend on which particle is in which state, if the  

particles are identical. Thus both i/i T  = t/r a(1)I/ (2) and 0 2. = t/rp(1)I/ç(2) are solutions 
to the time-independent Schroedinger equation, (9-1), corresponding to the same  
value of the total energy ET. Because that equation is linear in I/ T, it follows im-
mediately that the linear combinations Os  and OA, of the two forms of I//T, are also  
solutions. Since they correspond to the same value of ET, they are degenerate solu-
tions—that is i/is  and Il' A  are different eigenfunctions corresponding to precisely the 
same eigenvalue. The phenomenon is called exchange degeneracy since the difference 
between the degenerate eigenfunctions has to do with exchange of the particle labels. 
The factor of 1/V2 ensures that O s  and tfr A  will be normalized if tJI T  = IPa(1)0p(2) and 
t/I T = i/I (1)tfi a(2) are normalized. 

It is easy to evaluate the probability density functions for his  and  111 A, and then 
show that in both cases their values are not changed by an exchange of the particle 
labels. We shall obtain this result by investigating the effect of an exchange of the 
particle labels on the eigenfunctions themselves. Carrying out the operation, we have 

frs = 
1 	

(1)^ a ^^a(2) + 0^( 1 )^a(2)] 	> 1  [^a(2)^^( 1) + ^R(2)^a( 1)] = ^s (9-10) 
1-^2 ^ 
2-^1 V2  
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= 	 [0.( 1 )0/3(2) /tl2) - ^/il 1)^a12)^ —>^ [0a(2)0Jill ) - ^fi(2)Y^ a(l)] = — ^A ^Y' 	 1 2 ^ 1/` 	 2 -^1 V `  

(9-11)  
We see that the symmetric total eigenfunction Os  is unchanged by an exchange of the 
particle labels, and that the antisymmetric total eigenfunction 0A is multiplied by  
minus one by an exchange of the particle labels. (These properties give rise to their  

names.) We then have for the probability densities  

1s0s 1-+22 V'sY's 	 (9-12)  
2-∎ 1  

and  

4' A4'A 1^2 ( 1) 2 Y'AVIA — Y'VJA  
2 - 

Hence, for both the symmetric and antisymmetric total eigenfunctions, the proba-
bility density functions are not changed by an exchange of the particle labels. The 
change in sign of the antisymmetric eigenfunction under an exchange of the particle 
labels is, of course, not objectionable since an eigenfunction itself is not measurable. 

It can be shown that any measurable quantity that can be obtained from the sym-
metric, or antisymmetric, total eigenfunctions is not affected by an exchange of the 
particle labels. Thus these two eigenfunctions provide an accurate description of a 
system containing two identical particles. Although the labels 1 and 2 do appear in the 
expressions for Os  and  OA, this labeling does not violate the requirements of indis-
tinguishability because the value of any measurable quantity obtained from the eigen-
functions is independent of the assignment of the labels. 

Example 9-1. Two identical particles move independently in a one-dimensional box of  

length a, one being in the ground state of the infinite square well potential describing the box  

and the other being in the first excited state of that potential. For simplicity, assume that the  

particles have no spin, so that the total eigenfunctions for the system are just space eigen-
functions. (a) Evaluate the symmetric and antisymmetric total eigenfunctions of (9-8) and  

(9-9), and verify that the factor 1/J' in these equations does properly normalize them.  

•Using the general forms of (6-79) and (6-80) for the eigenfunctions for one particle in an  

infinite square well potential, and also using the normalization constant evaluated in Example  

5-10, we find that the normalized space eigenfunction of the particle in the ground state is  

-\12/a cos (nx /a) and the normalized space eigenfunction for the particle in the first excited  

state is \/2/a sin (2rcx/a). Thus writing the symmetric and antisymmetric space eigenfunctions  

for the two particle system as 0 +  and  0_, we have from (9-8) and (9-9) 

	

1 2 r xx 1 	2x2 	2x 1 	xx21 1/i + = 	- cos 	sin 	+ sin 	cos 
N a 	a 	a 	a 	a  

	

1 2 r xx 1 	 2nx 1 	1 
tfr - = 	cos 	sin 

2xx2 	 xx2  
	 sin 	cos 	J 

^ a 	a 	a 	a 	a  

when both x 1  and x2  lie within the range -a/2 to a/2. When either x 1  or x2  lie outside that  
range both 0 +  and >(i - are zero since the one particle eigenfunctions have zero value there.  

The normalization integral for 0 +  is  

(9-13)  

-a/2 -a/2  

xx1 	2xx2 	2x1 
cos 

xx2 
+ cos 	sin 	sin 	 —71

a 

 xi 

 a 	a  
2xx 1 	xx2 	xxl 	2xx2 

+ sin 	cos 	cos 	sin 	 dx 1  dx 2  
a 	a 	a 	a  



- a

f

/2 a 

	

 (r/
'
2 	

WO

- = 2 
	

cos2 ^
a

1  dx1 
J 2 a 

 sin
2 27cax2  dx2  

	

_-a/2 	 -a/2 	 n  

	

a/2 	 a/2

2+ J - sin2 2"1  dx l  J - cos 
 ^x2 

dx2 	 ^' 

	

a 	a 	a 	a  

	

-a/2 	 -a/2  

	

a/2 	 a/2  

	

1 2 	xx l 	27cx 1 	2 	2itx2 	rcx 2  
+ J 

 

	

-
a 
 	sin 	dx l 	- sin 	cos 	d 

	

a 	a 	a 	a 	a 	a
x2 

 

- a/2 	 - a/2 

	

a/2 	 a/2 

	

(' 2 	2rcx 1 	Tcxl 	 2 	xx2 	2rcx 2  +  J -sin cos dx l  cos sin dx 2 
a a a a a a  

- a/2 	 -a/2 	 - 

Now each of the first two terms in the bracket yields one since in each both  integrals are  

just the normalization integrals for the normalized one-particle eigenfunctions J2/a cos (xx/a)  
and \/2/a sin (27cx/a). Furthermore, each of the last two terms in the bracket yields zero since  

both are the product of two integrals of the form, and value  

a/2  

	

xx 	27cx 
cos — sin 	dx = 0 

	

a 	a  
-a/2  

The value can be verified in any table of definite integrals. Thus the normalization integral  

for 0+  yields (1/2)[1 + 1], where the 1/2 came from squaring the factor 1/,J in (9-8). So we  

find that that factor does properly normalize 0 +  by making its normalization integral equal  

one. We can also immediately show that the same conclusion is obtained for >Ji-.  

Inspection of a table of definite integrals will further show that the integral from -a/2 to  

a/2 of any two different sinusoidal eigenfunctions for a particle in an infinite square well  

potential has the value zero. In fact, it can be proven from general considerations that the  

integral over all x of any two different eigenfunctions of any particular potential has the value  

zero. This property is called orthogonality. Because of the orthogonality of one-particle eigen-
functions, only 2 of the 2 2  terms in the normalization integral for any symmetric or anti-
symmetric two-particle eigenfunction have nonzero values; and because of the normalization  

of one-particle eigenfunctions, those two values are both equal to 1. Therefore, the factor  

1/V2 in (9-8) and (9-9) ensures that these total eigenfunctions are normalized in all cases. 4  
(b) Write expressions for the expectation value of the separation distance D between the  

particles for the case in which the space eigenfunction for the two-particle system is sym-
metric, and for the case in which it is antisymmetric. Then show that in neither of these  

cases is this expectation value affected by an exchange of the particle labels.  

•The separation distance D is the absolute value of the difference in their x coordinates.  

That is, D =1x2 -   x11 = 1x1 - x2 1. The expectation value D is, for the case of 0 +  
co 	co 	 a/2 a/2  

-oo -oo 	 -a/2 -a/2  

a/2  a/

f
2 	

[cos2

- ^ 

	 1x2 - x11 	^al  sin2 27Câ 2  +  sin  27Câ 1 
 cos 	 

 MC 
 

-a/2 -a/2  

+ 2 cos 
nxl 

 sin 
27rx2 

 sin 
2nx1 

 cos rcx2
]

dx l dx 2  
a 	a 	a 	a  

Similarly, for the case of i/i - 
a//2  a/2 	

r 

D  = 

 
2 

	

 J 	J 1x
2  - x11 Lcos2 ma l  sin 27Lâ 2  +sin2 2  a 1 	

n 	coscos a 2  

-a/2 -a/2  

- 2 cos 
nxl 

 sin 
 27Ex2 

 sin  2 	cos dx2  I dx 1  dx 2 
a 	a 	a 	a  
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1
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Some work would be required to evaluate the integrals fôr these two cases. But we can see 

immediately that in both the values are not affected by exchanging the particle labels. The 
reason is that in both integrals neither the factor ix2 — x i I nor the third term in the square 
brackets are changed and, although the first term in the square bracket changes into the 
second term, the second term changes into the first term. 

We can also see that the value of D obtained with the symmetric space eigenfunction is 
different from the value obtained with the antisymmetric space eigenfunction, because of the 
difference of the sign of the third term in the square bracket. In other words, the average 
separation between the particles in a state in which the space eigenfunction is symmetric is 
different from what it is in a state in which the space eigenfunction is antisymmetric. In 
Section 9-4 we shall give further interpretation to these results, and we shall see that they 
have very interesting consequences. • 

9-3 THE EXCLUSION PRINCIPLE 

As a result of an analysis of data concerning the energy levels of atoms, which we 
shall study soon, in 1925 Pauli was led to his famous exclusion principle (weaker 
condition): 

In a multielectron atom there can never be more than one electron in the same 
quantum state. 
He then established from the analysis of other experimental data that the exclusion 
principle represents a property of electrons and not, specifically, of atoms. The ex-
clusion principle operates in any system containing electrons. 

Now consider the antisymmetric total eigenfunction of (9-9), for a case in which 
both particles are in the same space and spin quantum state a. It is 

Y'A = 	[ ►fra( 1»a(2) — Œ( 1 )u(2)] = 0 	 (9-14) 

The eigenfunction is identically equal to zero. Hence, if two particles are described 
by the antisymmetric total eigenfunction, they cannot both be in a state with the same 
space and spin quantum numbers. The eigenfunctions we have been dealing with were 
obtained under the assumption that there are two identical particles, and that the 
interactions between them can be neglected. If there are more than two identical 
particles and/or if their interactions must be taken into account, the total eigenfunc-
tions have different forms, as we shall see in Examples 9-2 and 9-3. But they can still 
be used to make linear combinations of definite symmetry, either symmetric or anti-
symmetric, and the antisymmetric linear combinations still have values identically 
equal to zero if any two particles are in the same quantum state. In other words, all 
antisymmetric total eigenfunctions have properties which conform to the require-
ments of the exclusion principle. So we conclude there is an alternative expression of 
the exclusion principle (stronger condition): 

A system containing several electrons must be described by an antisymmetric total 
eigenfunction. 

The condition specified by the second statement of the exclusion principle is 
stronger than the condition specified by the first statement, because it satisfies that 
condition, and it also satisfies the requirements of indistinguishability which demand 
total eigenfunctions of a definite symmetry. The stronger condition must be used in 
quantum mechanical calculations that aim for complete accuracy, but the weaker 
condition, which is much easier to apply, is often used in approximate calculations. 
In Section 9-5 we shall discuss the use of these conditions in the treatment of multi-
electron atoms, and we shall compare the results obtained from the stronger one with 
those obtained from the weaker. 

In discovering the exclusion principle, Pauli found the answer to a long-standing problem 
concerning the structure of multielectron atoms. He has written: 



"The question as to why all electrons for an atom in its ground state were not bound in the  

innermost shell had already been emphasized by Bohr as a fundamental problem in his  

earlier works.... However, no convincing explanation of this phenomenon could be given on  

the basis of classical mechanics. It made a strong impression on me that Bohr at that time  

and in later discussions was looking for a general explanation."  

Pauli's explanation of the problem was certainly general. All the electrons cannot be bound  

in the same quantum state represented by the innermost shell of the atom because the system  

must be described by antisymmetric total eigenfunctions, which vanish if even two electrons  

are in the same quantum state. To emphasize just how fundamental the problem is, we jump  

a little ahead of our development to state that if all the electrons in an atom were in the  

innermost shell, then the atom would be essentially like a noble gas. The atom would be inert,  
and it would not combine with other atoms to form molecules. If electrons did not obey the  

exclusion principle this would be true of all atoms. Then the entire universe would be radically  

different. For instance, with no molecules there would be no life!  

Example 9-2. Determine the form of the normalized antisymmetric total eigenfunction for a  

system of three particles, in which the interactions between the particles can be ignored.  

► This is easy to do if it is noted that the two-particle antisymmetric total eigenfunction  

= 	1 [C( 1 )tiip(2) — tfrp( 1 )t/a(2)]  

can also be written as a so-called Slater determinant 

1  
OA = 	 

2!  

iGa( 1 ) ipa(2)  

op(1) op(2)  

 

where 2! = 2 x 1 = 2. The identity of these two expressions can be verified by expanding the 
determinant. In determinantal form, the extension to three particles is obvious 

1  Jia( 1 ) 
Ÿp( 1 ) 

OP) 

^/a(2) 
Op(2) 
tfr y(2) 

/ia(3) 
0p(3)  
OP)  

111 	= 
3! 

where 3! = 3 x 2 x 1 = 6. Expansion of this determinant yields  

^iA = 

	

	 [ 0,( 1)(Pp(2)1/ y(3) + tip( 1)0 y(2) i,(3)  
3!  

+ ifr y( 1)0a(2)1ip(3) — O y( 1 )Iip(2)Iia(3)  
— tfrp( 1 )0a(2)IÎi y(3) — tfra( 1 )ti y(2)0p(3)]  

Each term of this linear combination is a solution, for the same total energy, to the time-
independent Schroedinger equation for a potential energy function in which the variables can  

be grouped into a sum of terms that each depend on the coordinates of only one particle, as in  

(9-2). Therefore, the linear combination is also a solution. By exchanging the appropriate  

particle labels, as we did in (9-11) for a system of two particles, it is easy to verify that it is  

antisymmetric with respect to the exchange of any pair of labels. It also has the property of  

being identically equal to zero if any two particles are in the same space and spin quantum  

state. This can be seen most easily from the determinant itself, since it is a well known  

property of determinants that they vanish if any two rows are identical. It is not difficult to  

follow the procedures of Example 9-1 and to show that W A  is normalized if i/i a(1)0 p(2)1/i y(3),  
and similar terms, are normalized. •  

As is the case for electrons, the symmetry character of other kinds of particles is a  

question settled by experiment. It is found that systems of protons, or of neutrons, or  

of certain other particles, must also be described by antisymmetric total eigenfunc-
tions. On the other hand, it is found that systems of photons, helium atoms, and  
certain other particles, must be described by symmetric total eigenfunctions. There  

are important phenomena associated with the symmetry character of the symmetric  

particles. The most spectacular example is the "superfluid" behavior of liquid helium  
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Table 9-1 	The Symmetry Character of Various Particles  

Particle Symmetry  Generic Name Spin (s)  

Electron  Antisymmetric  Fermion 1/2  
Positron  Antisymmetric  Fermion 1/2  
Proton  Antisymmetric  Fermion 1/2  
Neutron  Antisymmetric  Fermion 1/2  
Muon  Antisymmetric  Fermion 1/2  

a particle  Symmetric  Boson 0  
He atom (ground state)  Symmetric  Boson 0  
rc meson  Symmetric  Boson 0  
Photon  Symmetric  Boson 1  
Deuteron  Symmetric  Boson 1  

at temperatures near absolute zero. This, and other examples, will be discussed in  

Chapter 11, which treats the general properties of systems containing a large number  

of symmetric, or antisymmetric, particles.  

Table 9-1 lists several kinds of particles, their symmetry character, and also the  

value of the quantum number s that specifies the magnitude of their spin angular  

momentum. Also indicated are the two names, fermion and boson, sometimes used to  
distinguish the two classes of particles according to their symmetry character. It is  

very interesting to note that there must be some connection between the symmetry  

character of a particle and its spin. The point is that all the antisymmetric particles  

have half-integral spin just as the electron has, while all the symmetric particles have  

zero or integral spin. This connection has been studied by Pauli, and others, using  

very sophisticated forms of quantum mechanics. Some understanding of its origin  

has been obtained, but at the level of this book it is appropriate to say that the  

symmetry character of a particle should be considered as a basic property, like mass,  

charge, and spin, which is determined by experiment. An exception to this statement  

is that the symmetry of a well-bound composite particle, like a helium atom, can be  

predicted immediately from the symmetries of its constituents. (If the composite  

particle has an even number of antisymmetric constituents, it is symmetric.)  

Example 9 -3. Determine the form of the normalized symmetric total eigenfunction for a  

system of three particles, in which the interactions between the particles can be ignored.  

► In analogy to the relation between (9-8) and (9-9), the required eigenfunction can be  

obtained immediately by writing the linear combination found in Example 9-2 with all the  

signs positive. That is  
1 

s = 	̂̂a( 1)1M2)0 y(3) + 0/3(1)0 y(2)0a(3)  
3!  

+ 0y(1)0a(2)Pp(3) + iky( 1 )0/3(2)Y/a( 3)  

+ Y'/3( 1)J/a(2)Ii (3) + 0a( 1 )0 7(2)0p(3)]  
It is immediately apparent that this linear combination is symmetric with respect to the  

exchange of any two particle labels. The normalization can be verified by the procedure used  

in Example 9-1. 	 •  

9-4 EXCHANGE FORCES AND THE HELIUM ATOM  

We turn now to a property of indistinguishable particles which is, to say the least,  

very strange. Consider a pair of electrons in a system in which we can ignore any  

explicit interactions (like the Coulomb interaction) between the two particles. Ac- 



cording to (9-9), the total eigenfunction for the system can be written  

^A = 	12 [0.( 1)1M2) — ^R( 1)tka(2)] 
z  

This antisymmetric total eigenfunction depends on both the space variables and the  

spin variables of the two electrons since the symbols oc,  /3, y, ... specify sets of three  
space quantum numbers plus one spin quantum number. For the present discussion  

we rewrite it in such a way that the space and spin variables occur in separate factors,  

i.e.  
(total eigenfunction) = (space eigenfunction) x (spin eigenfunction)  

We also make both factors have a definite symmetry with respect to exchange of the  

particle labels. Antisymmetry of the total eigenfunction can then be obtained by  

multiplying a symmetric space eigenfunction times an antisymmetric spin eigenfunc-
tion, or by multiplying an antisymmetric space eigenfunction times a symmetric spin  

eigenfunction.  
The normalized symmetric and antisymmetric space eigenfunctions have the forms  

we used in Example 9-1  
symmetric space 	1  
eigenfunction:   [fra( 1 )0b(2) + tfrb( 1»a(2)]  

antisymmetric space 1  
eigenfunction:   [1fra(1)042) — O b(1)0a(2)]  

where IIi a(1)1/i b(2) and tJi b(1)1/42) are normalized. Each symbol from the series a, b,  
c, ... represents a particular set of the three space quantum numbers only (in contrast  

to the a, /3, y ,  ... , which represent sets of three space and one spin quantum number).  

Of course these forms are very general, there being a wide variety of different Oa  and  
4/b for different systems. 

The forms of the symmetric and antisymmetric spin eigenfunctions are quite an-
other matter. The reason is that the spin variable is not continuous like a space vari-
able, but instead is discrete. For instance, the spin of a single electron can have only 
two discrete orientations relative to any z axis since its z component is either + 1/2 
or —1/2, in units of  h. Continuous functions, such as those displayed in the one-
electron atom space eigenfunctions of Table 7-2, therefore cannot be used for spin 
eigenfunctions. For the case of two noninteracting electrons, each of which has two 
possible spin orientations, there are only four possible spin states for the system, and 
therefore only four possible spin eigenfunctions. Because there are so few we can dis-
play their specific forms. If these four spin eigenfunctions for the system are written 
so as to have definite symmetries, then one will be antisymmetric and the other three 
symmetric. Matrices are frequently employed to write mathematical expressions for 
the spin eigenfunctions, but here we shall write them in terms of combinations of the 
symbols + 1/2 and —1/2 because their interpretations will be more obvious. 

The only possible antisymmetric spin eigenfunction for two noninteracting elec- t trons is 
antisymmetric spin 	1 

eigenfunction: 	N/1-
2[(+ 1/2, — 1/2) — (-1/2, + 1/2)] (singlet) 	(9-17) 

This is a linear combination of a symbol (+ 1/2, — 1/2) that specifies a state where 
the z components of the spins have values, in units of h, of + 1/2 for electron 1 and 
—1/2 for electron 2, minus a symbol (-1/2, + 1/2) that specifies a state where the z 

 components are —1/2 for electron 1 and + 1/2 for electron 2. Due to the minus sign 
between the symbols, the linear combination is antisymmetric in an exchange of the 
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labels of the two electrons since such an exchange would convert the first symbol to 
(-1/2, +1/2) and the second symbol to (+ 1/2, — 1/2), thereby changing the overall 
sign of the linear combination. We shall not need to further manipulate these symbols 
and their linear combinations, and we shall only use them to describe spin states. So 
it will not be necessary for us to further specify their mathematical (i.e., matrix) 
properties. 

There are three possible symmetric spin eigenfunctions 
(+ 1/2, + 1/2) 

symmetric spin 1 
eigenfunctions: 	[(+ 1/2, — 1/2) + (-1/2, + 1/2) 	(triplet) (9-18) 

(— 1/2, —1/2) 
Their symmetry is obvious since for each an exchange of labels results in no change 
in the eigenfunction. These three describe the so-called triplet states, and the anti-
symmetric eigenfunction describes the so-called singlet state. All four of these spin 
eigenfunctions are normalized. 

A physical interpretation of the singlet and triplet states can be obtained by eval-
uating, for each state, the magnitude S' and z component Sz of the total spin angular 
momentum S'. This vector is 

S'= S1+S2 	 (9-19) 
the sum of the spin angular momenta of the two electrons. As is true for all angular 
momenta in quantum mechanics, S' and Sz are quantized according to the relations 

S' = /s'(s'+ 1)h 
Sz = msh 

z 

(9-20) 

Triplet 	 Singlet 

Figure 9-2 Vector diagrams representing the rules for adding the quantum numbers 
s i  = 1/2 and s 2  = 1/2 to obtain the possible values for the quantum numbers s' and ms. 
Left: The maximum possible value of s' is obtained when a vector of magnitude s i  is added 
to a parallel vector of magnitude s2 , yielding s' = s i  + s2  = 1/2 + 1/2 = 1. The maximum 
possible z component of this vector gives the maximum possible value of the quantum 
number ms, and the minimum possible z component gives the minimum possible value 
of ms. The intermediate values of ms (only one in this case) differ by integers. Thus the 
possible values are  m's = +1, 0, —1. Right: A vector of magnitude s i  = 1/2 is added to an 
antiparallel vector of magnitude s 2  = 1/2 to yield a vector of magnitude s' = s 1  — s 2  = 
1/2 — 1/2 = O. A vector whose length is zero must have z component zero as well, so the 
only possible value for ms is zero. The term triplet refers to the state s' = 1 where three 
possible values of ms arise; the term singlet refers to the state s' = 0 where only one 
possible value of m' arises. 



The quantum numbers satisfy the relations 
m's 	' ms  = — —s, . , +s 
s'= 0,1 

The relations between the quantum numbers, obtained when S' and Sz are evaluated, 
can be represented and explained by the rules of vector addition used in Section 8-5. 
Figure 9-2 shows two vectors of length s = 1/2 added to form a vector of length 
s' = 0 or 1, which can have, in the latter case, z components of + 1, 0, —1. As we 
have warned the student before, these vector addition diagrams must be interpreted 
cautiously since the vectors are not really angular momenta. But they do convey 
correctly the impression that in the three triplet states, which correspond to s' = 1, 
ms = + 1; s' = 1, m' = 0; s' = 1, ms = —1, the electron spins are essentially parallel. 
In the singlet state, s' = 0, ms = 0, the electron spins are essentially antiparallel. Figure 
9-3 attempts to show the angular momenta; but as it cannot truly represent the linear 
combinations in (9-17) and (9-18) it oversimplifies somewhat. 

Now we shall employ these ideas to explain a fundamental property of a system 
containing two electrons. If the spins of the two electrons are "parallel" and the spin 

S;'4.1 7 . Fes, 

(9-21) 
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Triplet 
state 

 

Singlet 
state 

0 

Figure 9-3 Triplet  state: Two spin angular momentum vectors of magnitudes S 1  = S2 = 
V(1/2)(1/2 + 1)h. Either can be found with equal likelyhood anywhere on a cone symmetrical 
about the vertical z axis. But their orientations are correlated so that if one is found to be 
pointing in a particular direction the other will be found to be pointing in the same general 
direction. If their z components are both positive, S 1--  = S2= = + (1/2)h,  or both  negative, 

S1. = Sts = — (1/2)h, their sum is a total spin vector of magnitude S' = x/1(1 + 1)h and pos-
itive z component, S' = + 1h, or negative z component, Sz = — 1h. If the spin vectors have 
z components of opposite sign, but point in the same general direction, the  total spin 
vector has a zero z component, Sz = 0, but still has magnitude S' = V1(1 + 1)h, because 
it will be found lying in the plane perpendicular to the z axis. These possibilities are 
the three which can occur in the triplet state. Singlet state: If the two spin vectors have 
z components of opposite sign and point in essentially opposite directions the total spin 
vector has zero z component, Sz = 0, because it has zero magnitude, S' = O. This is the 
singlet state. In a certain sense, the two spin vectors are out of phase in this state. In 
the same sense, the two vectors are  in phase in the Sz = 0 triplet state. These phases 
are related to the minus and plus signs occurring between the terms in the linear com-
binations of the total spin eigenfunctions of (9-17) and (9-18). 
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M eigenfunction is one of the symmetric triplets of (9-18), the space eigenfunction must  

be antisymmetric as in (9-16), in order to have the total eigenfunction antisymmetric.  

Let us consider such a situation for a case in which the space variables of the two  

electrons happen to have almost the same values. Then >ya(1) 0a(2) since the left-
hand side is evaluated at the coordinates of electron 1, which are almost equal to  

the coordinates of electron 2 where the right-hand side is evaluated. For the same  

	

reason, /J b(1) ^ 'ii b(2). As a consequence 	
^^ (( ^^//,, 

	

tka(1)Y1b(2) 	ilj ( 1)Y'a(2)  
In this case the value of the antisymmetric space eigenfunction is  

	

r  [4^a( 1 )4 (2) — Y'b( 1 )1Pa12)] 	r  [00)0a(2) — Wb( 1 )0a(2)] = 0  

The result is that the probability density will be very small when the triplet state  

electrons have similar coordinates, i.e., when they are close together. Since there is  

little chance of finding them close together, the triplet state electrons act as if they  
repel each other. This has nothing to do with a Coulomb repulsion because we as-
sumed at the very beginning of our treatment that there is no explicit interaction  

between the electrons. Instead, it has to do with the properties of antisymmetric space  

eigenfunctions.  
Symmetric space eigenfunctions have inverse properties. If the space eigenfunction  

for the two electrons is symmetric, and they happen to have almost the same coordi-
nates, then that eigenfunction is  

2 [ G( 1)4'b(2) + b(1)0a(2)] ti 	[(1»a(2) + Ob( 1)0a(2)] = ' " Ob( 1 )t//a(2)  
y 	 Y2 

since we shall again have ' a(1) ^ tia(2) and lib(1) th(2). Thus the probability den-
sity will have the value 20b (1) // (2) /' b(1)i/i a(2) when the two electrons with a symmetric  

space eigenfunction are close together. This is twice the average value over all space  

of the probability density for the symmetric space eigenfunction (because i/i b(1)1/i a(2)  
is normalized so the integral of 0b  (1) L' (2)z/i b(1)0a(2) over all space equals one, as  

does the integral over all space of the symmetric space eigenfunction probability den-
sity). So there is a particularly large chance of finding the two noninteracting electrons  

close together if their space eigenfunction is symmetric. Thus, if the spins of the two  

electrons are "antiparallel" and the spin eigenfunction is the antisymmetric singlet,  

as in (9-17), the space eigenfunction must be symmetric, as in (9-15), and the singlet  
state electrons act as if they attract each other since there is a large chance of finding  

them close together.  

Figure 9-4 illustrates the symmetries of surfaces representing the x 1  and x2  dependences of  
a typical antisymmetric, or symmetric, space eigenfunction for a one-dimensional system con-
taining two identical noninteracting particles. The particular simple case shown is for one  

particle being in the ground state of an infinite square well potential of width a, for which the  
eigenfunction has the form of one-half of a cosine wave, and the other particle being in the  

first excited state of that potential, for which the eigenfunction has the form of one full sine  

wave. The top surface represents a situation in which the particle whose coordinate is written  

x 1  is in the ground state (note the half cosine in the x 1  direction), and the particle whose coordi-
nate is x 2  is in the first excited state (note the full sine in the x 2  direction). Since identical par-
ticles are indistinguishable, it is equally possible that the system is in a situation in which the  

particle with coordinate x 1  is in the first excited state and the particle with coordinate x 2  is  
in the ground state. This situation is described by the second surface from the top. In quantum  

mechanics, both situations are allowed for by taking the eigenfunction for the system to be a  
linear combination of equal parts of the eigenfunctions describing either of them. This can be  

done either by adding or subtracting. In subtracting, we obtain the antisymmetric space eigen-
function for the system, which is illustrated by the third surface; in adding, we obtain the sym- 
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Figure 9 -4 Depicting the antisymmetric and symmetric space eigenfunctions of Example  

9-1, 0_ and tp +  for a system of two noninteracting identical particles in a one-dimensional  

infinite square well  potential of width a when one particle is in the ground state with  

eigenfunction J2/a cos (irx/a) and the other is in the first excited state with eigenfunction  

V2/a sin (27rx/a). Top: The first term of Ji_ is shown by constructing the surface whose  

distance above or below the x i , x2  plane is the positive or negative value of (2/a) cos  
(irx i la) sin (2irx2/a). Upper middle: The surface describing the second term of t4 _ , i.e.,  

(2/a) sin (27rx i /a) cos (lrx2/a). Lower middle:  1/J2-  times the first term minus  the  second  
term, which shows the geometry of tp _ itself. It is apparent that the value of 0_ is zero along  
the line x i  = x2 , and it is small everywhere near that line. Thus the probability density I*_0 _  
is very small wherever x i  ^^ x 2 , and so the probability is very small that this condition will be  
achieved. Bottom: 1// times the sum of the term (2/a) cos (nxi /a) sin (21rx2/a) and the  
term (2/a) sin (21rx i /a) cos (lrx 2/a), showing the symmetric space eigenfunction 0 +  for the  
system. This eigenfunction has its maximum magnitudes along the line x 1  = x2 . The prob-
ability density 0+0 +  therefore has its largest magnitudes if the two particles are in the  

same location in their one-dimensional well, and so we conclude that there is a large  

chance of finding them close together.  
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metric space eigenfunction for the system, illustrated by the bottom surface. The point of  

particular interest here is that the antisymmetric space eigenfunction is zero along the line  

x 1  = x2  corresponding to the two particles being in the same location, while the symmetric  

space eigenfunction has its maximum magnitudes along the line. Thus the probability density  

telfr will be very small for the antisymmetric case, and very large for the symmetric case, when  

evaluated for coordinates of the two particles which are nearly the same.  

In classical mechanics a roughly analogous situation could arise in a system containing two  

identical particles, if no effort were made to distinguish them by measurement, in that the  

probability function describing the system would be a linear combination of equal parts (one  

for particle 1 being in a lower energy state and particle 2 in a higher energy state and the  

other for particle 1 being in the higher state and particle 2 being in the lower state). But the  

single possible result for this situation has no analogy to the two distinctly different quantum  

results, because in quantum mechanics we deal with eigenfunctions that can exhibit interfer-
ences since they can be of either sign (or even complex), and then we calculate probabilities  

from them, whereas in classical mechanics we deal directly with probabilities which are nec-
essarily positive and so cannot interfere.  

If the student visualizes similar figures, he will be able to see why the same striking difference  

between the antisymmetric and symmetric space eigenfunctions is found when the particles  

are in any two different states of the infinite square well potential, or any other one-, two-, or  

three-dimensional potential. For a system containing more than two identical particles, these  

conclusions are also obtained for space eigenfunctions which are antisymmetric, or symmetric,  

with respect to the exchange of any two particle labels, since the geometry of the terms in the  

eigenfunctions that involve the two labels can be analyzed in the same way as for a system  

containing only two particles.  

The triplet and singlet cases for a system of two electrons is illustrated schematic-
ally in Figure 9-5. The requirement that an accurate description of the system must 
use a total eigenfunction which is antisymmetric in an exchange of their labels leads 
to a coupling between their spin and space variables. They act as if they move under 
the influence of a force whose sign depends on the relative orientation of their spins. 
This is called an exchange force. It is a purely quantum mechanical effect and has 
no classical analogy. 

Exchange forces do not arise between two electrons which are always constrained 
to remain far apart. An example is the electrons in two hydrogen atoms which are 
well separated from each other. In fact, none of the requirements of indistinguish-
ability need be taken into account for a pair of identical particles which are so widely 
separated that their wave functions do not overlap. The reason is simply that these 
particles can be distinguished from each other by appropriate measurements. 

Exchange forces do arise between two electrons in the same atom, or two neutrons 
or protons in the same nucleus. We shall show this by considering the low-lying en-
ergy levels of the helium atom. 

Example 9-4. The simplest, but least accurate, treatment of the helium atom involves ig-
noring the Coulomb interaction between its two electrons, and taking the total energy of the  

atom to be the sum of the one-electron atom energies of each electron moving about the Z = 2  
nucleus. Use this treatment to predict the energies of the ground and first excited states of the  

atom.  

Triplet 
	

Singlet  

Figure 9 -5 A schematic illustration of the tendency for electrons in a triplet spin state to be  
relatively far apart, and the tendency for electrons in a singlet spin state to be relatively close  

together. 



•From (7-22) for the one-electron atom eigenvalues, we have  
ttZ 2 e4 	ttZ 2e4 

E _ 	 
(4ir€0) 22h2ni (4i€0)22h2n2 	 m 
4x 13.6 eV 4x 13.6 eV 

	

2 	 2 

	

n l 	 n 2 

where we have set Z = 2. In the ground state, the quantum numbers n 1  and n2  are both equal 
to 1, and we obtain 

E= —(4+4) x 13.6 eV= —109 eV 
In the first excited state, one of these quantum numbers equals 1, and the other equals 2. For 
this we obtain 

E= —(4+1)x 13.6 eV= —68 eV 
The energies predicted are shown on the left side of the energy-level diagram of Figure 9-6. 
The right side of that figure shows the energies of the first few levels of helium obtained from 
measurements of the optical spectrum emitted by that atom. The predictions are quite inac-
curate because the Coulomb interaction between the two electrons in the atom is really not 
negligible compared to the Coulomb interactions between each electron and the nucleus, as 
was assumed in this simple treatment, and also because the treatment ignores exchange forces. • 

Figure 9-7 indicates the origin of the first few energy levels of the helium atom. 
The left side of the figure shows the energies of the levels that would be found, as in 
Example 9-4, if there were no Coulomb interaction between its electrons. If this were 
the case, the total energy would be just the sum of the one-electron atom energies of 
each electron moving about the Z = 2 nucleus in states described by the one-electron 
atom eigenfunctions with the quantum numbers indicated. The center of the figure 
shows, in part, the effect of the Coulomb interaction between the electrons. Since this 
interaction energy is positive because both electron charges have the same sign, the 
levels are raised. Furthermore, the upper level is split into two. The reason is that 
the two electrons are somewhat more widely separated on the average when one has 
n = 1, l = 0, and the other has n = 2, l = 0, than when one has n = 1, / = 0 and the 

Figure 9-6 Left: Helium energy levels predicted by a treat-
ment in which the electron-electron interaction is ignored. 
Right: The ground state and first four excited states of 
helium, as determined from the observed spectrum. 
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—50 — 

( n =1,1=0; n=2,l=Singlet 
	 __  	Triplet 

%' - 	 Singlet 

% 
	/ /

7 `n=1,1=0;n=2,1=0 	Triplet 

-n=1;n=2 

n= 1,l=0;n= 1,1=0 
i i   	

-‹—Singlet 

—90 

—100 

—110 - n= 1;n=1 

Figure 9-7 The low-lying energy levels of helium. Left: The levels that would be found if 
there were no Coulomb interaction between its electrons. Center: The levels that would be 
found if there were a Coulomb interaction but no exchange force. Right: The levels that 
would be found if there were a Coulomb interaction and an exchange force. These levels 
are in excellent agreement with the experimentally observed levels shown on the right 
in Figure 9-6. 

other has n = 2, l = 1. This can be seen by inspecting the one-electron atom radial 
probability densities of Figure 7-5. As the energy associated with the Coulomb inter-
action between the electrons is inversely proportional to their separation, the energy 
of the atom is raised less for the first set of quantum numbers, and the degeneracy 
with respect to the l quantum number (found in one-electron atoms) is removed by 
this interaction. The right side of Figure 9-7 shows the effect of the exchange force. 
In the triplet states the electrons tend to keep apart, and in the singlet state they 
tend to keep together. Therefore, the Coulomb interaction between them is relatively 
less effective in raising the energy of the atom in the triplet states, and relatively more 
effective in the singlet state. Part of the m s  degeneracy (of one-electron atoms) is also 
removed by the Coulomb interaction between the electrons, and the levels are further 
split into singlet state and triplet state levels. These are the energy levels that are ob-
served from measurements of the spectrum of the helium atom. Quantitative results 
in good agreement with the measurements can be obtained from quantum mechanics 
by adding to the energies obtained in Example 9-4 the expectation values of the 
energies due to the Coulomb repulsion between the two electrons. Antisymmetric 
total eigenfunctions, composed of one-electron atom eigenfunctions for Z = 2, are 
used to calculate the expectation values. 

It is particularly interesting to note from Figure 9-7 that there is no triplet level 
corresponding to the singlet level in the ground state of helium. It is absent because 
the antisymmetric space eigenfunction, which must be used to multiply the symmetric 
triplet spin eigenfunction, has the form 

	 C4' a( 1 )C,(2) — Y'a( 1) 1//a(2)] = 0 

—60 

— —70 

>. 
'ao 

—80 
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The value is identically equal to zero in the ground state since the space quantum 
numbers for both electrons have the same values, n = 1, 1 = 0, ml  = O. In agreement 
with the exclusion principle, only the singlet level is found in the ground state since 
the spin quantum numbers of the two electrons must be different, i.e., the two elec-
trons must have "antiparallel" spins. Historically the argument was made in the op-
posite order. The experimental fact that the helium spectrum shows this triplet level 
to be absent provided the primary evidence that led Pauli to the discovery of the ex-
clusion principle. 

9-5 THE HARTREE THEORY 

We begin here the quantum mechanical study of multielectron atoms that will occupy 
us for the remainder of this chapter, and the next chapter. Compared to simplified 
one-dimensional systems, or even to the one-electron atom, multielectron atoms are 
quite complicated. But it is possible to treat them in a reasonable way by using a 
succession of approximations. Only the most important interactions experienced by 
the atomic electrons are treated in the first approximation, and then the treatment 
is made more exact in succeeding approximations that take into account the less im-
portant interactions. In this way the treatment is broken into a series of steps, none 
of which is too difficult. The results obtained will certainly justify the effort expended 
because we shall have a detailed understanding of the atoms that are the constituents 
of everything in the universe. Furthermore, the procedures used are worth studying 
for their own sake because they are typical of those used in solving the real problems 
of professional science and engineering, in contrast to the artificial problems of much 
textbook science and engineering. 

In the first approximation used in treating a multielectron atom of atomic number 
Z, we must consider the Coulomb interaction between each of its Z electrons of 
charge  — e and its nucleus of charge + Ze. Due to the magnitude of the nuclear 
charge, this is the strongest single interaction felt by each electron. But even in the 
first approximation we must also consider the Coulomb interactions between each elec-
tron and all the other electrons in the atom. These interactions are individually weaker 
than the interaction between each electron and the nucleus, but, as we saw for the 
case of the helium atom in Example 9-4, they are certainly not negligible. Further-
more, in a typical multielectron atom there are so many interactions between an 
electron and all the other electrons that their net effect is very strong except if the 
electron is quite near the nucleus. This is illustrated in Figure 9-8. 

Figure 9 -8 Left: The strong attractive force exerted by the nucleus on an electron near the 
surface of an atom, and the weak repulsive forces exerted by the other electrons. The net 
effect of the repulsive forces is important because they tend to reinforce each other. Right: 
The very strong attractive force exerted by the nucleus on an electron near the center of an 
atom, and the weak repulsive forces exerted by the other electrons. Here the repulsive forces 
tend to cancel each other. 
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On the other hand, the first approximation must not be so complicated that the 
Schroedinger equation to which it leads is unsolvable. In practice, this requirement 
means that in the first approximation the atomic electrons must be treated as moving 
independently so that the motion of one electron does not depend on the motion of 
the others. Then the time-independent Schroedinger equation for the system can be 
separated into a set of equations, one for each electron, which can be solved without 
too much difficulty since each involves the coordinates of a single electron only. Note 
that this is how the solutions, (9-3), were obtained to the time-independent Schroe-
dinger equation, (9-1), for two particles moving independently in a box. 

The requirements of the last two paragraphs are in conflict—the Coulomb inter-
actions between the electrons must be considered, but the electrons must be treated 
as moving independently. A compromise between the requirements is obtained by 
assuming each electron to move independently in a spherically symmetrical net po-
tential V(r), where r is the radial coordinate of the electron with respect to the nu-
cleus. The net potential is the sum of the spherically symmetrical attractive Coulomb 
potential due to the nucleus and a spherically symmetrical repulsive potential which 
represents the average effect of the repulsive Coulomb interactions between a typical 
electron and its Z — 1 colleagues. It can be seen from Figure 9-8 that very near the 
center of the atom the behavior of the net potential acting on an electron should be 
essentially like that of the Coulomb potential due to the nuclear charge + Ze. The 
reason is that in this region the interactions of the electron with the other electrons 
tend to cancel. It can also be seen from the figure that very far from the center the 
behavior of the net potential should be essentially like that of the Coulomb potential 
due to a net charge + e, which represents the nuclear charge + Ze shielded by the 
charge —(Z — 1)e of the other electrons. 

The procedure of introducing a net potential is one that is encountered in the study 
of many fields of physics. For instance, in Chapter 15 we shall find that a net poten-
tial is the basis of the "shell model" which provides a relatively simple, but very use-
ful, description of the behavior of neutrons and protons in a nucleus. 

It might seem that there is no way to find the net potential of an atom at inter-
mediate distances from its center. The problem is that it obviously depends on the 
details of the charge distribution of the atomic electrons, and this is not known until 
solutions have been obtained to the Schroedinger equation that contains the net 
potential. But it can be taken care of by demanding that the net potential be self-
consistent. That is, if we calculate the electron charge distribution from the correct 
net potential, and then evaluate the net potential from the charge distribution, we 
demand that the potential with which we end up must be the same as the potential 
with which we started. As we shall see, this condition of self-consistency is enough 
to determine the correct net potential. 

Most of the work in this field has been done by Douglas Hartree and collaborators, 
starting in 1928 and continuing to this day. It involves solving the time-independent 
Schroedinger equation for a system of Z electrons moving independently in the atom. 
This equation is analogous to the equation for two electrons moving independently 
in a box, (9-1), in that the total potential of the atom can be written as the sum of 
a set of Z identical net potentials V(r), each depending on the radial coordinate r of 
one electron only. Consequently, the equation can be separated into a set of Z time-
independent Schroedinger equations, all of which are of the same form, and each of 
which describes one electron moving independently in its net potential. A typical 
time-independent Schroedinger equation for one electron is 

h2  
— -

m 
 \72 11/(r,0,9) + V(r)tk(r,8",o) = EtP(r,e,9) (9-22) 



Ze e  
4TcE Or 

e2  
V(r) _ 

Here r, B, qP  are the spherical polar coordinates of the typical electron; V2  is the 
Laplacian operator in these coordinates, of (7-13); E is the total energy of the electron; 
V(r) is its net potential; and /i(r,B,cp) is the eigenfunction of the electron. The total 
energy of the atom is the sum of Z of these total energies. The total eigenfunction 
for the atom is composed of products of Z of these eigenfunctions that describe the 
independently moving electrons. 

Initially, the exact form of the net potential V(r) experienced by the typical electron 
is not known, but it can be found by going through a self-consistent treatment com-
prised of the following steps: 

1. A first guess at the form of V(r) is obtained by taking 

r  0 
(9-23) 

r 	oo 
4nEor 

and by taking any reasonable interpolation for intermediate values of r. This guess 
is based on the idea, mentioned previously, that an electron very near the nucleus 
feels the full Coulomb attraction of its charge + Ze, while an electron very far from 
the nucleus feels a net charge of +e because the nuclear charge is shielded by the 
charge — (Z — 1)e of the other electrons surrounding the nucleus. 

2. The time-independent Schroedinger equation for a typical electron, (9-22), is 
solved for the net potential V(r) obtained in the previous step. This is not easy to do 
because the radial part of the equation must be solved by numerical integration, as 
in Appendix G, since V(r) is a complicated function. The eigenfunctions for a typical 
electron, found in this step, are: ilr a(r,80), ty a(r,d,cp), t1 y(r,0,9), .... They are listed in 
order of increasing energy of the corresponding eigenvalues: Ea, E,2 , Ey , .... Each of 
the symbols, a, /3, y, ... , stands for a complete set of three space and one spin quan-
tum numbers for the electron. 

3. To obtain the ground state of the atom, the quantum states of its electrons are 
filled in such a way as to minimize the total energy and yet satisfy the weaker con-
dition of the exclusion principle. That is, the states are filled in order of increasing 
energy, with one electron in each state, as illustrated schematically in Figure 9-9. 
Then the eigenfunction for the first electron will be i/i «(r l ,O ,9 l ), the eigenfunction for 
the second will be IIR(r2i02 ,rp2), and so forth through the Z eigenfunctions corre-
sponding to the Z lowest eigenvalues, obtained in the previous step. 

4. The electron charge distributions of the atom are then evaluated from the eigen-
functions specified in the previous step. This is done by taking the charge distribu-
tion for each electron as the product of its charge — e times its probability density 

Figure 9-9 A schematic energy-level diagram illustrating the effect 
of the exclusion principle in limiting the population of each quantum 
state of an atom with six electrons. Note that the total energy of 
the atom would be much more negative if the exclusion principle 
did not operate. The diagram does not indicate that many quantum 
states are actually degenerate, nor are the spacings between the 
levels meant to be realistic. 
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function *i. The justification is that *0 determines the probability that the charge 
would be found in various locations in the atom. The charge distributions of Z — 1 
representative electrons are added to the nuclear charge distribution, a point charge 
+ Ze at the origin, to determine the total charge distribution of the atom as seen by 
a typical electron. 

5. Gauss's law of electrostatics is used to calculate the electric field produced by 
the total charge distribution obtained in the previous step. The integral of this electric 
field is then evaluated to obtain a more accurate estimate of the net potential V(r) 
experienced by a typical electron. The new V(r) that is found generally differs from 
the estimate made in step 1. 

6. If it is appreciably different, the entire procedure is repeated, starting at step 2 
and using the new V(r). After several cycles (2 -4 3 -4 4 -4 5 —> 2 —* 3 -* 4 --> 5 —> • • • ) 
the V(r) obtained at the end of a cycle is essentially the same as that used in the be-
ginning. Then this V(r) is the self-consistent net potential, and the eigenfunctions 
calculated from this potential describe the electrons in the ground state of the multi-
electron atom. 

In the Hartree procedure, the weaker condition of the exclusion principle is satis-
fied by the requirement of step 3 that only one electron populates each quantum 
state. But the stronger condition is not satisfied since antisymmetric total eigenfunc-
tions are not used. The reason is that an antisymmetric eigenfunction would involve 
a linear combination of Z! = Z(Z — 1)(Z — 2) • • • 1 terms, which is an extremely large 
number for all atoms except those of very small Z. The procedure is difficult enough 
as is, and the use of antisymmetric eigenfunctions would make it very much more 
difficult. Anyway, the main effect of using antisymmetric total eigenfunctions would 
be to decrease the separation between certain pairs of electrons, and increase it be-
tween others. This leaves the average electron charge distribution of the atom essen-
tially unchanged. Since the average electron charge distribution is the important 
quantity in the approximation treated by Hartree, the use of eigenfunctions which 
are not of a definite symmetry does not introduce a significant error. This has been 
verified by Fock. He made calculations using antisymmetric total eigenfunctions for 
a restricted selection of atoms, and he compared his results with those obtained by 
Hartree. When we discuss in the next chapter the excited states of atoms, however, 
it will be necessary for us to take into account the fact that antisymmetric total eigen-
functions must be used to give a completely accurate description of a system of elec-
trons. Fock's calculations, and the ones we shall consider in the next chapter, are 
feasible because, for reasons we shall see, it is really only necessary to antisymmetrize 
the part of the total eigenfunction describing the behavior of a limited number of 
electrons in a "partially filled subshell." 

It is an interesting bit of history to recall that one of the first large digital com-
puters was employed to perform Hartree calculations. It used relays as switching 
elements, instead of the transistors of modern computers. But even with modern 
computers the calculations are so time consuming that results for a wide variety of 
atoms were obtained only in the 1960s by Herman and Skillman. These results pro-
vide a very satisfactory explanation of the essential features of all multielectron atoms 
in their ground states. As we shall find, the explanation is not unduly complicated. 

9-6 RESULTS OF THE HARTREE THEORY 

The eigenfunctions that are found in the Hartree theory, for the electron in the spheri- 
cally symmetrical net potential of a multielectron atom, are closely related to the 
eigenfunctions discussed in Chapter 7 for the electron in a one-electron atom. In fact, 



the Hartree eigenfunctions can be written
(( 	( 	( 

nlmimslr 8^^) = RnI(r)®Imi( 0)^mi\(P)(ms) 	 (9-24)  
The eigenfunctions are labeled by the same set of quantum numbers n, 1, ml , ms , as  
are used for the one-electron atom eigenfunctions, and these quantum numbers are  

related to each other just as before. The spin eigenfunction, which we indicate sche-
matically as (ms), is exactly the same as for a one-electron atom. Furthermore, the  

functions describing the angular dependence, O lmi (0) and O mi (ç ), are also exactly the  

same. The reason is that the time-independent Schroedinger equation for an electron  

in a spherically symmetrical net potential, (9-22), is of exactly the same form as the  

time-independent Schroedinger equation for an electron in the spherically symmetri-
cal Coulomb potential, (7-12), as far as 0 and cp are concerned. Therefore, (9-22) leads  

directly to (7-15) and (7-16), whose solutions are O 1mi (0) and (1) mi (9). Consequently,  
all the discussion of Chapter 7 concerning the 0 and cp dependence of the eigenfunctions  

for an electron in a one-electron atom applies directly to the 0 and cp dependence of  

the eigenfunctions for an electron in a multielectron atom.  
As an example, (7-32) shows that the sum of the probability densities for the one-

electron atom eigenfunctions with n = 2, l = 1, and all possible values of  m l , is spheri-
cally symmetrical. This statement is certainly also true for n = 2, l = 0, and it can be  
shown to be true for any given n and 1. From the previous discussion, we conclude  

that the same statement applies to the eigenfunctions for a multielectron atom. Now,  

when a multielectron atom is in its ground state, the lowest energy quantum states  

of its electrons are completely filled. This means that for almost all values of n and  

/ there are electrons in states with all possible values of m I . Since the sum of the prob-
ability densities for these electrons is spherically symmetrical, their total charge dis-
tribution is also. At most, only a few electrons in the highest energy states, that is  

states where all possible values of m I  might not be filled, can contribute to any asym-
metries in the charge distribution. In step 4 of the Hartree procedure the charge dis-
tribution used is taken to be completely spherically symmetrical; i.e., it is the best fit  

of a spherically symmetrical distribution to the distribution actually obtained.  

The r dependence of the eigenfunctions for an electron in a multielectron atom is not  

the same as for an electron in a one-electron atom. The reason is that the net potential  
V(r), which enters the differential equation that determines the functions R„I(r), does  
not have the same r dependence as the Coulomb potential. Typical examples of the  

radial behavior of the multielectron atom eigenfunctions are shown in Figure 9-10.  

In this figure we plot the results of a Hartree calculation for the argon atom, Z = 18,  
in terms of the quantities 2(21 + 1)4nr2Ri(r) = 2(2l + 1)P„I(r). Here P„I(r) is the ra-
dial probability density of (7-28), which specifies the probability of finding an electron,  

with quantum numbers n and 1, in a location with a radial coordinate near r. Since  
there are (21 + 1) possible values of m I  for each 1, and since for each of these there  
are 2 possible values of ms, the quantity 2(2/ + 1)P„I(r) is the radial probability den-
sity for the quantum states with quantum numbers n and 1, times the total number  
of electrons which the exclusion principle allows to populate those states. In the  

ground state of argon, two electrons populate the states for n = 1, l = 0; two for  
n = 2, l = 0; six for n = 2, l = 1; two for n = 3, l = 0; and six for n = 3, 1 = 1. These  
are the states which are filled in the ground state of the atom because, as we shall  

see later, they have the lowest energy.  

Figure 9-11 shows the total radial probability density P(r) for the argon atom. This  
is the sum, over the n and / values populated in the atom, of the radial probability  

density for each state times the number of electrons it contains. That is, P(r) gives  
the probability of finding some electron with radial coordinate in the region of r.  

Figure 9-11 also shows the radial dependence of the net potential V(r) in which  
each electron of the argon atom is moving, as obtained from Hartree calculations  
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	 = 1,1=0 

	 Argon  

=2,1=0  

n= 3,1=1  /^^--^ \  
.  . 

% n= 3, 1=0 ^^^  -.....„. 
 

•
... .........  

 ( 	
....1 ......... ....:^---I-- --I  

0.5 	1.0 	1.5 	2.0 	2.5 	3.0 	3.5 	4.0  
r/ao  

Figure 9-10 The Hartree theory radial probability densities for the filled quantum states  

of the argon atom, plotted as functions of r/a o , the radial coordinate in units of the  
hydrogen atom first Bohr orbit radius a o . For each n the probability density is largely  
concentrated in a restricted range of rla o , called a shell. Note that the characteristic  

radius of the outermost shell (n = 3) has an rla 0 , value only a little larger than 1.0, while  
the characteristic radius of the innermost shell (n = 1) has an r/ao  value much smaller than  
1.0. That is, the outermost shell of argon is only a little larger in radius than a o , which is  
the radius of the single shell in hydrogen. The innermost shell of argon is of much smaller 
radius than the hydrogen shell. 

1.0 	1.5 	2.0 	2.5 	3.0 	3.5 	4.0  
r/a o  

Figure 9-11 The total radial probability density P(r) of the argon atom, and the quantity Z(r)  
that specifies its net potential. 

Argon  



for that atom. The net potential is not displayed directly, but indirectly in terms of 
a convenient quantity Z(r). The relation between the two is given by the equation 

2 
V(r) = Z(r)e 
	

(9-25)  
47rEOr  

Note that the figure shows Z(r) -* Z as r —* 0, and Z(r) -. 1 as r —+ co, in agreement 
with the ideas discussed in connection with (9-23). 

By inspecting the plots of Pnl(r) in Figure 9-10, we see that, for all the electrons 
in states with common values of the quantum number n, the probability densities 
are large only in essentially the same range of r. All these electrons are said to be in 
the same shell—terminology we have used before in connection with one-electron 
atoms. Furthermore, the range of r in which the probability densities are large (the 
"thickness" of each shell) is restricted enough that Z(r) has a reasonably well-defined 
value in that range. 

These circumstances form the basis of a crude, but useful, approximate description 
of the results of the Hartree theory, in which all the electrons in the shell labeled by 
n of a multielectron atom are considered to be moving in a Coulomb potential 

Vn(r) = 	Zne2 	 (9-26)  

Example 9-5. Determine the values of Zn  for the argon atom, and then use these values to  
estimate the total energy of the electrons in the three shells populated in the ground state of  
the atom.  
► Inspecting Figure 9-11 to estimate the average values of r characteristic of the populated  
shells, obtaining the values of Z(r) for these r from the same figure, and setting the Z n  equal  
to these values of Z(r), we find that for the argon atom with Z = 18  

Z 1  16 	and 	Z2 = 8 	and 	Z3 = 3  
As indicated earlier, we may use the one-electron atom energy formula, (7-22), with Z = Zn  

liZ2 e4 __ 	Zn  2  E 	
(4ite0)22h2n2 — (n) x 13.6 eV  

to obtain an estimate to the electron energies yielded by the Hartree theory calculations. Doing  
this, we obtain  

z 
E1  ^ —(161 x 

 13.6 eV = —3500 eV 

I/\ J  
E2  ^ —I )

2 
 x 13.6 eV = —220 eV  

E 3  . — (
3
)2x 13.6 eV=

These energies agree within somethinglike 20% with the Hartree results. 	 •  
In Example 9-5 we found that for the argon atom, with Z = 18, the effective Z of  

the innermost shell (n = 1) is Z 1  ^ 16. Hartree calculations show that in all multi-
electron atoms Z 1  has a value of about Z 1  ^ Z — 2. The reason is that for all atoms a  
sphere surrounding the nucleus, of radius equal to the average radial coordinate of an  

4irE Or 

where Zn  is a constant equal to Z(r) evaluated at the average value of r for the shell 
(the "radius" of the shell.) In the crude approximation of (9-26), the one-electron atom 
equations specifying the total energy, and other quantities of interest, can be used 
if we replace Z by Zn . The quantity Zn  is sometimes called the effective Z for the 
shell. This approximation is useful because it allows us to discuss many results of 
the Hartree theory in terms of some very simple equations with easily understandable 
properties, although the Hartree theory actually uses purely numerical procedures 
and so leads to results which must be expressed in cumbersome tables or graphs. 
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electron in the n = 1 shell, contains a negative charge of about — 2e, due to the 
charge distributions of all the other electrons. According to Gauss's law of electro-
statics, this spherically symmetrical distribution of negative charge shields the n = 1  
electron from part of the nuclear charge + Ze, effectively reducing it to about + Ze — 
2e = +(Z — 2)e. Thus the n = 1 electron experiences an effective Z of about Z 1  = 
Z 2. 

We also found in Example 9-5 that for the outermost shell of the argon atom (n = 
 3 for that atom), the effective Z has the small value Z,, ^ 3. This is because an 

electron in the outermost shell is almost completely shielded from the nuclear charge 
by the intervening charge distributions of all the other electrons. The result is com-
parable to what is found in all Hartree calculations. But with increasing Z the value 
of Z„ obtained from the calculations for the outermost shell slowly increases; i.e., it 
increases about as slowly as the increase in n itself. The reason it increases is that the 
shielding of the nuclear charge by the electrons in the intervening shells is not perfect. 
To an accuracy consistent with the crude approximation we are considering, we may  

describe these results by saying that in all multielectron atoms Z„ has a value of about 
Z„ ^ n, if n specifies the outermost shell populated in the atom. 

We shall now use the facts stated in the last two paragraphs to describe and 
explain a number of important results of the Hartree theory: 

1. In multielectron atoms the inner shells of small n are of very small radii because 
for these shells there is little shielding, and the electrons feel the full Coulomb attrac-
tion of the highly charged nucleus. In fact, the Hartree theory predicts that the radius 
of the n = 1 shell is smaller than that of the n = 1 shell of hydrogen by approximately 
a factor of 1/(Z — 2). (This prediction is not too accurate for atoms of very large Z 

 because of relativistic effects, not taken into account in the Hartree theory, which 
become important because inner shell electrons in large Z atoms have energies com-
parable to their rest mass energies mc 2  ^ 5 x 105  eV.) The prediction can be under-
stood in our crude description of the Hartee theory results by setting Z = Z 1  
Z — 2 and n = 1 in the one-electron atom equation for the radial coordinate ex-
pectation value, (7-29) 

_ n2ao  
Y ^' 	 z 

yielding 

rhydrogen 	rhydrogen 

Z 1   
	
Z- 2  

2. The electrons in the inner shells are in a region of large negative potential en-
ergy, so their total energies are correspondingly large and negative. The results of the  

Hartree theory predict that the magnitude of the total energy of an electron in the n = 1  
shell is more negative than that of an electron in the n = 1 shell of hydrogen by  
approximately a factor of (Z — 2)2 . (Relativistic effects limit the accuracy for high Z.)  
This can be understood by setting Z = Z 1  ^ Z — 2 and n = 1 in the one-electron  
atom energy equation, (7-22)  

itZ 2e4  
E= 	  

(47cE 0)2 2h2 n2  

yielding 
E ^—' Z1Eh y drogen (Z — 2) 2Ehydrogen  

3. Electrons in the outer shells of large n are almost completely shielded from the  

nucleus, and so they feel an attraction to it not so different from that felt by an elec-
tron to the singly charged nucleus of a hydrogen atom. The radius of the outermost  

shell can be obtained from our crude description by setting Z = Z„ ^ n in the one- 
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electron atom radial expectation value equation, yielding 	 co 

 

n2ao  n 2 ao  
r ^    ' nao 	 cn  

Z„ 	n 	 CD  
If we check the predictions of this equation with the actual Hartree results for the  

argon atom shown in Figure 9-10, we see that the equation overestimates by a factor  

of 2. About the same factor of 2 overestimate is found in a similar comparison with  

Hartree results for elements of the highest atomic number. The effective Z description  
of the Hartree results is crude, but still useful, because it correctly describes the fact  

that the radius of the outermost populated shell increases only very slowly with increas-
ing atomic number. The Hartree results themselves show that this radius is only about  
three times larger for elements of the highest atomic number than it is for hydrogen.  

Since the radius of the outermost populated shell is essentially the size of the atom,  

the previous statements apply directly to the sizes of various atoms. Nevertheless, it  

is a common misconception to think that atoms of high atomic number are very  

much larger than atoms of low atomic number. Measurements made on atoms, mole-
cules, and solids show this is not true. The Hartree theory explains that it is not true,  

basically because, as the nuclear charge Z increases in going from one atom to the  

next, the inner atomic shells rapidly contract.  
4. We can also see, from our crude description of the Hartree theory results, that  

the theory predicts that the total energy of an electron in the outermost populated  
shell of any atom is comparable to that of an electron in the ground state of hydrogen.  

If we set Z = Z„ in the one-electron atom energy equation to obtain  

tizn  e4  
E 	

(47rE0)22h2n2 	
(9-27)  

and in this set Z n  ^ n, we obtain a predicted energy which is approximately equal  
to the ground state hydrogen energy. The basic reason for this is the shielding of the  

outer shell electron from the full nuclear charge by the charges of the intervening  

inner shell electrons.  
5. Finally, we can use (9-27) to describe crudely the dependence, for a given atom,  

of the total energy of an electron on its quantum number n. Due both to the Zn in 
the numerator and the n 2  in the denominator, E becomes less negative with increasing 
n in going through the shells of a given atom. The total energy of an electron in a 
given multielectron atom becomes less negative very rapidly with increasing n for small 
n, but much less rapidly for large n. The behavior for large n reflects the fact that the  

energy cannot become positive since the electron is bound. This prediction of the  

Hartree theory, and all the others just mentioned, are verified by experiment.  

We close our discussion of the results of the Hartree theory by describing its  

predictions for the total energies of the atomic electrons more accurately than can be 
done on the basis of the crude description we have been using. In a one-electron 
atom, all the quantum states corresponding to a certain shell have exactly the same 
total energy, if the very small energy associated with the spin-orbit interaction is 
ignored. That is, all states in a shell of a particular n are degenerate since the total 
energy depends only on n. But in a multielectron atom this is not the case. As men-
tioned in Section 7-5, the fact that the total energy of a one-electron atom does not 
depend on 1 is a consequence of the fact that its potential is Coulombic, i.e., exactly 
proportional to — 1/r. In a multielectron atom the electrons are moving in a net po-
tential V(r) which is definitely not proportional to — 1/r, and so the total energy of 
these electrons depends on l as well as on n. (Since we are here ignoring the spin-orbit 
and certain other weak interactions, the total energy of the electrons does not depend 
on the quantum number m s  which determines the space orientation of the spin, nor  

on the quantum number m 1  which determines the space orientation of the "orbit")  
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The results of the Hartree theory show that the total energy of an atomic electron 
is actually somewhat more negative than would be predicted from (9-27), the energy 
equation obtained from our crude description of the theory. The difference is largest 
for 1= 0, and it diminishes progressively with increasing 1. Thus in the Hartree 
approximation we write the energy of an electron in a multielectron atom as Ent , to 
indicate that it depends on both n and 1. 

The explanation for the 1 dependence concerns the behavior of the electron prob-
ability density telP, in the region of small r near the nucleus of the multielectron 
atom. According to (7-31) 

te tP cc 1. 21 	 r—> 0 

This was demonstrated for one-electron atom eigenfunctions, but it is equally true 
for multielectron atom eigenfunctions. The reason can be seen by inspecting (7-17), 
which is the differential equation for the function R governing the radial behavior of 
the eigenfunctions. Note that as r —* 0 the term [1(1 + 1)/r2]R completely dominates 
the other term (2,u/h 2)[E — V(r)]R since the factor 1/r 2  makes it increase so rapidly 
with decreasing r for small r. Consequently, for small r the exact form of V(r) is 
unimportant as long as it increases in magnitude less rapidly than 1/r 2. In all atoms 
the eigenfunctions have a radial dependence proportional to r' for small r, and 
therefore the probability density is proportional to r21  for small r. So if we consider, 
as an example, two electrons in the same shell n of a multielectron atom, one with 
l = 0 and the other with 1 = 1, there is much more chance of finding the 1 = 0 electron 
in the region of small r than of finding the 1 = 1 electron in that region. This is true 
since r°  » r2  for small r. Similarly, the chance of finding an 1 = 1 electron is much 
larger than the chance of finding an 1 = 2 electron of the same n at small r since 
there r2  » r4, etc. This property can be seen by carefully inspecting Figure 9-10. 

Before using the property to explain the dependence of Ent  on 1, we indicate its 
physical origin by going through a semiclassical argument involving Figure 9-12. An 
electron with quantum  number 1 has an orbital angular momentum of fixed magni-
tude L = N/l(1 + 1)h. But L = rp 1 , where p l  is the magnitude of its component of linear 
momentum perpendicular to its radial coordinate vector whose length is r. If the 
electron moves into a region where r becomes small, then p1  must become large. Since 
the kinetic energy K of the electron contains a term proportional to pi, it becomes 
more positive with decreasing r in proportion to 1/r 2, for small r. But for small r the 
net potential approaches the Coulomb potential of an unshielded nuclear charge, so 
the potential energy V of the electron becomes more negative with decreasing r in 
proportion to 1/r. Since K cc + 1/r2  and V cc —1/r for small r, its kinetic energy in-
creases more rapidly than its potential energy decreases, as r —* 0. Thus the electron 
avoids that region because there it cannot maintain a constant value of its total en-
ergy E = K + V, as is required by energy conservation. However, the tendency to 
avoid the region of small r is not present for 1 = 0 since then L = 0. So there is much 
more chance of finding an 1 = 0 electron at small r than of finding an / = 1 electron 
in that region. Since the tendency to avoid small r is more pronounced with increas-
ing 1, there is much more chance of finding an / = 1 electron than an / = 2 electron 
at small r, etc. 

Now we can understand the / dependence of Ent . The crude description of the re-
sults of the Hartree theory underestimates how negative the total energy of an atomic 
electron is because it assumes essentially that the electron stays within its shell. In 
fact, there is a small probability that the electron will be found inside its shell in the 
region of small r near the nucleus. When the electron is in this region it has penetrated 
the intervening charge distributions of the other electrons, and it feels nearly the full 
unshielded nuclear charge. Then it has a very much more negative potential energy 
than it has when it is in its shell. The electron will also occasionally be found out- 
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Figure 9-12 Top: The linear momentum p of an electron can be decomposed into a 
component p 11  parallel to the radial vector from the nucleus r, and a component p1  
perpendicular to the radial vector. The product of p l and r is equal to the constant magnitude 
of the angular momentum L. Bottom: An electron moving about a nucleus with constant L. 
When the electron is relatively near the nucleus (illustrated on the left), r is small sop lmust 
be large. When the electron is relatively far away (illustrated on the right), p1  is smaller. Note 
that the magnitude of the total momentum p will also be large when ps is large. Therefore 
the kinetic energy of the electron will be large when it is near the nucleus, in order to 
allow the angular momentum to be a constant of the motion. 

side its shell where its potential energy is less negative than in its shell, but the change 
is considerably smaller than the change in potential energy occurring when it is inside 
its shell. The overall effect of the excursions of an electron inside and outside its shell 
is to make the expectation value of its potential energy somewhat more negative, and 
therefore to make its total energy somewhat more negative than it would be if it 
stayed in its shell. Since we have learned that the probability of an electron with a 
given n being inside the shell in the region near the nucleus is larger the smaller its 
value of 1, we can see that for a given value of n, the total energy En, of an electron in 
a multielectron atom is more negative for 1 = 0 than for 1 = 1, more negative for 1 = 1 
than for 1 = 2, etc. For outer shells with large values of n, where the n dependence is 
not very strong, the values of Ent  can actually depend in a more sensitive way on 1 
than on n. But for a one-electron atom there is no 1 dependence at all in the total 
energy because there is never any shielding so an electron always feels the full nu-
clear charge, and the expectation value of its potential energy is independent of 1. 

All the electrons in a particular shell have radial probability densities which are of 
approximately the same form in the region of the shell, but which are significantly 
different in the region of small r. We have seen that the second property causes the 
total energies of the electrons in the shell to depend on 1. Consequently, it is conve-
nient to speak of each shell as being composed of a number of subshells, one for each 
value of 1. All the electrons in the same subshell have the same quantum numbers 
n and 1. Therefore, all have exactly the same total energy (in the Hartree approxi-
mation which neglects spin-orbit and other weak interactions). Also, all the electrons 
in the same subshell have exactly the same radial probability density Pnl(r). 
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Figure 9-13 The periodic table of the elements, showing the electron configuration for each element. 



9-7 GROUND STATES OF MULTIELECTRON ATOMS AND 
THE PERIODIC TABLE 

Most of the properties of the chemical elements are periodic functions of the atomic 
number Z that specifies the number of electrons in an atom of the element. It was 
first emphasized by Mendeleev in 1869 that these periodicities can be made most 
apparent by constructing a periodic table of the elements. A modern version of his 
table is presented in Figure 9-13. Each element is represented in the table by its 
chemical symbol, and also by its atomic number. Elements with similar chemical and 
physical properties are in the same column. For instance, all elements in the first 
column are alkalis and have a valence of plus one; all elements in the last column 
are noble gases and have a valence of zero. The discovery of the periodic table was 
a great breakthrough of chemistry. Its interpretation was an equally significant devel-
opment of physics. 

We assume that the student has some familarity with the periodic properties of 
the elements from his study of elementary chemistry. For this reason, we do not need 
to stress their importance to chemistry. Our task here is to interpret these properties 
in terms of the Hartree theory of multielectron atoms. That is, in this section we shall 
present the quantum mechanical interpretation of the basis of inorganic chemistry, 
plus that of much organic chemistry and solid state physics. 

The interpretation of the periodic table is based on information about the ordering 
according to energy of the outer filled subshells of multielectron atoms. The required 
information can be obtained from the results of the Hartree calculations, described 
in the last section, which yield the ordering according to energy of the outer filled sub-
shells as is shown in Table 9-2. The first column identifies the subshell by the quantum 
numbers n and 1. 

The second column of Table 9-2 identifies the subshells by giving the spectroscopic 
notation for n and 1. This notation is commonly used in discussing the spectra and 

Table 9-2 The Energy Ordering of the Outer Filled Subshells 

Quantum Numbers 
n, 1 

Designation of 
Subshell 

Capacity of 
Subshell 
2(21 + 1) 

6, 2 6d 10 
5, 3 5f 14 
7, 0 7s 2 
6, 1 6p 6 
5, 2 5d 10 
4, 3 4f 14 
6, 0 6s 2 
5, 1 5p 6 
4, 2 4d 10 
5,0 5s 2 
4, 1 4p 6 
3, 2 3d 10 
4, 0 4s 2 
3,1 3p 6 
3, 0 3s 2 
2, 1 2p 6 
2, 0 2s 2  
1,0 is 2 

i 
Increasing energy 

(less negative) 

— Lowest energy 
(most negative) 
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Table 9-3 	The Spectroscopic Notation for 1 

l 0 1 2 3 4 5 6 

Spectroscopic notation s p d  fg  h i 

energy levels of atoms. The number gives the value of n, and the letter gives the value 
of l according to the scheme shown in Table 9-3. In this scheme the l = 0 state is 
called an s state; the l = 1 state is called a p state; etc. 

The third column of Table 9-2 is equal to 2(21 + 1). As mentioned in the last 
section, that quantity is the number of possible combinations of m l  and mS, for the 
value of l characteristic of the subshell. Thus the third column gives the maximum 
number of electrons that can occupy different states in the same subshell without 
violating the exclusion principle. 

In our discussion of the last section we found that the Hartree theory predicts that 
the energy of the subshell becomes more negative with decreasing values of n and 
with decreasing values of  l. We see this immediately in Table 9-2. The i s subshell, 
which is the only subshell in the n = 1 shell, has the lowest energy. The two subshells 
of the n = 2 shell are both of higher energy and, of these, the 2s subshell is of lower 
energy than the 2p subshell. In the n = 3 shell the subshells 3s, 3p, 3d are also ordered 
in energy according to the predictions of the Hartree theory. However, the energy 
of the 4s subshell is actually lower than the energy of the 3d subshell because, for 
reasons described in the last section, the l dependence of the energy Ent  of the subshells 
can be more important than the n dependence for outer subshells with large values 
of n. Continuing up the list, we see that the ordering of the outer subshells always 
satisfy the following rule: 

For a given n, the outer subshell with the lowest l has the lowest energy. For a given 
1, the outer subshell with the lowest n has the lowest energy. 
Near the top of the list, the l dependence of Ent  becomes so much stronger than the 
n dependence that the energy of the 7s subshell is lower than the energy of the 5f 
subshell. 

It should be noted that Table 9-2 does not necessarily give the energy ordering of 
all subshells in any particular atom, but only the energy ordering of the subshells 
which happen to be the outer subshells for that atom. For instance, the energy of 
the 4s subshell is lower than that of the 3d subshell for K atoms and the next few 
atoms of the periodic table. But for atoms further up in the periodic table the 3d sub-
shell is of lower energy than the 4s subshell because for these atoms they are inner 
subshells and the n dependence of Ent  is so strong that it dominates the l dependence. 
Additional information of this type is presented in Figure 9-14. 

Now the characteristics of an atom depend on the behavior of its electrons. The 
behavior of an electron is specified by the set of four quantum numbers which specify 
its quantum state. However, in the approximation represented by the Hartree theory 
only the quantum numbers n and l are important. Therefore, in this approximation 
an atom can be characterized by specifying the n and 1 quantum numbers of all the 
electrons. This specification of the subshells occupied by the various electrons is called 
the configuration of the atom. The ordering according to energy of the outer filled 
subshells being known, it is trivial to determine the configuration of any atom in its 
ground state. In the ground state the electrons must fill all the subshells in such a 
way as to minimize the total energy of the atom and yet not exceed the capacity 
2(2l + 1) of any subshell. The subshells will fill in order of increasing energy, as listed 
in Table 9-2. 

Consider first the H atom. The single electron occupies the i s subshell, with its spin 
either "up" or "down". For the He atom both electrons are in the is subshell, one 
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Figure 9-14 A schematic representation of the energy ordering of all the subshells in an  

atom, as a function of its atomic number Z. Each curve begins at the Z for which the subshell  
begins to be occupied. Only subshells occupied in atoms through mercury are shown, so all  

curves stop at Z = 80. The ordering of the outer filled subshel Is in various atoms is found on  

the left side of the diagram. The ordering of all filled subshells in mercury is found on the right  

side of the diagram. The energy scale is non-linear and, furthermore, varies with Z.  

with spin "up" and the other with spin "down". The configuration of H is written 
1 H: ls 1  

The configuration of He is written 
2He: 1s 2  

The superscript on the subshell designation specifies the number of electrons which it 
contains; the superscript on the chemical symbol specifies the Z values for the atom. 
In the 'Li atom one of the electrons must be in the 2s subshell because the capacity 
of the is subshell is only 2. The configuration of this atom is 

3 L1: is22s 1  
The 4Be atom completes the 2s subshell and has the configuration 

4Be: 1s2 2s2  
In the six elements from 5 B to 10Ne the additional electrons fill the 2p subshell. The 
configurations of 5 B and 10Ne are 

5 B: 
 1s22s22p 1  

10Ne : 1s22s22p6  

Note that the periodic table of the elements presented in Figure 9-13 is divided 
vertically into a series of blocks with each row labeled by the subshell which, accord-
ing to Table 9-2, the elements of the row are filling. Knowing this, it is easy to write 
the configuration of any atom, with a procedure that will become more apparent in 
Example 9-6. But there are certain atoms for which the last few electrons are observed. 
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to be in different subshells than would be predicted by this scheme. The configura-
tions for these atoms are indicated in the periodic table by the entries below their 
chemical symbol. 

Example 9-6. Write the configurations for the ground states of 19K,  23V, 24Cr, 43Tc, 44Ru, 
46Pd 57 La, 58Ce, and 59Pr. 
■ From the absence of any entry below 19 K in the periodic table of Figure 9-13, we con-
clude that there is nothing exceptional about its configuration. The configuration is then 
obtained by inspecting the periodic table and listing in order the lowest energy subshells, and 
their populations, for the 19 electrons of the atom. It is 

19 K: 1s22s2 
 
2p6 3s2 3p64s 1  

The first 18 electrons completely fill the subshells of lowest energy, and the last electron partly 
fills the 4s subshell. Adding four more electrons to obtain 23V completes the filling of the 4s 
subshell and puts three electrons in the 3d subshell, which is the one of next highest energy. 
The configuration is 

23V: is22s2 2p6 3s2 3p64s2 3d3  

The entry 4s 1 3d 5  for 24Cr in Figure 9-13 means that the configuration of this atom does not 
end with the symbols 4s 2 3d4, as would be expected, but instead is 

24Cr: 1s 22s 22p6 3s 2 3p64s 1 3d 5  

The reason for this behavior will be explained later. Inspection shows that the configurations 
of the other atoms of interest are 

43Tc: is2 2s2 2p6 3s2 3p64s2 3d 1°4p6 5s 24d 5  
44Ru: 1s2 2s22p6 3s2 3p64s2 3d 104p6 5s 14d7  
46Pd: 1s2 2s 2 2p 6 3s2 3p64s2 3d 1°4p64d' o  

57La: 1s22s22p6 3s2 3p64s23d 104p6 5s24d' ° 5p6 6s 2 5d 1  
58Ce: 1s2 2s 2 2p6 3s 2 3p 64s2 3d 1°4p6 5s24d' ° 5p66s24f2  

59Pr: 1s2 2s 2 2p6 3s 2 3p64s 2 3d 1°4p6 5s24d' ° 5p66s24f3  

We see from Example 9-6 that in certain cases the actual configurations observed 
for the elements do not strictly adhere to the predictions of Table 9-2. For instance, 
this table says that the energy of the 3d subshell is greater than the energy of the 4s 
subshell when these subshells are filling Yet in Z4Cr, and also in "Cu, one of the 
electrons that could be in the 4s subshell is actually in the 3d subshell. Similar situa-
tions are observed to occur for the 5s and 4d subshells. In 43Tc the 5s subshell is 
filled in the normal manner. But in 45 Rh there is only one electron in the 5s subshell; 
in 46 Pd both electrons have left the 5s subshell and moved to the 4d subshell. The 
78 13t and 79Au configurations show that the same kind of thing can happen for the 
6s and 5d subshells. From these circumstances we conclude that the energy separa-
tions between the 4s and 3d, the 5s and 4d, and the 6s and 5d subshells must be so 
small while they are being filled that, although generally the ordering of these sub-
shells is as shown in Table 9-2, in certain cases the ordering can actually be reversed. 
This can be seen in Figure 9-14. Configurations which disagree with Table 9-2 are 
also observed in 57La and in the lanthanides (Z = 58 to 71), more commonly called 
the rare earths. Table 9-2 predicts that after the completion of the 6s subshell the 4f 
subshell should fill, but in two of the rare earths there is one 5d electron. A similar 
situation occurs in the group of elements following 89Ac, which are called the ac-
tinides (Z = 90 to 103). From the same argument we used previously, we interpret 
these observations to mean that the energy differences between the 5d and 4f sub-
shells, and between the 6d and 5f subshells, are very small while these subshells 
are being filled. 

On the other hand, certain predictions of Table 9-2 are always obeyed. Since none 
of the configurations is exceptional for elements in the first two and last six columns 



of the periodic table, we conclude that every p subshell is always of higher energy 
than the preceding s or d subshell while these subshells are being filled, and that in 
these circumstances every s subshell is always of higher energy than the preceding p 
subshell. Therefore there must be large energy differences between the subshells con-
cerned while they are being filled. In fact, the energy differences between every s 
subshell and the preceding p subshell are particularly large as can be seen in Figure 
9-14, and it is easy to understand why. Since for a given n the energy of a subshell 
becomes higher with increasing 1, an s subshell is always the first subshell to be 
occupied in a new shell. Consequently, when an electron is added to a configuration 
with a completed p subshell and goes into the subshell of next highest energy, which 
according to Table 9-2 is always an s subshell, the electron will be the first one in a 
new shell. Compared to the electrons in the preceding subshell, its average radial 
coordinate will be considerably larger, its average potential energy will be consid-
erably less negative, and its total energy will be considerably higher—much higher 
than for the usual increase in total energy in going from one subshell to the next. 

The fact that there is a particularly large energy difference between every s subshell 
and the preceding p subshell has some important consequences. Consider atoms of 
the elements 10Ne,' 8 A, 36 Kr, 54Xe , and 86 Rn, in which a p subshell is just completed. 
Because of the very large difference between the energy of an electron in the p subshell 
and the energy it would have if it were in the s subshell, the first excited state of 
these atoms is unusually far above the ground state. As a result, these atoms are 
particularly difficult to excite. In their ground state, Gauss's law shows they produce 
no electric field external to the atom since they consist of sets of completely filled 
subshells, and so they have spherically symmetrical charge distributions with zero 
net charge because they are neutral overall. Furthermore, these atoms produce no 
external magnetic fields in their ground state since, as we shall see later, the total 
angular momenta of electrons in completely filled subshells couple to zero, and this 
coupling yields zero total magnetic dipole moment. Because of the absence of external 
fields (at least on a time-averaged basis), it is very difficult for these atoms to interact 
with other atoms to produce chemical compounds. They also have very low boiling 
and freezing points because they have little tendency to condense into liquids or solid 
form. These are the noble gas elements. 

The atom 'He is also a noble gas because for it the first unfilled subshell is an s 
subshell (even though it does not contain a filled p subshell) so it has an unusually 
high first excited state, and because in its ground state the atom consists of com-
pletely filled subshells and so produces no external fields. That 'He is a noble gas is 
indicated by its being listed in the last column of the periodic table instead of the 
second column. An element such as 20Ca is not a noble gas, even though it consists 
of completely filled subshells, because in its first excited state an electron goes to a 
3d subshell. So the excited state is not far above the ground state and very little 
energy is required to make the atom produce an external field which will allow it to 
interact with other atoms. 

Another aspect of the particular inertness of the noble gases can be obtained by 
plotting, for the various elements, the measured values of the magnitude of the total 
energy of an electron in the highest-energy filled subshell. This is equal to the energy 
required to remove the electron from the atom, which is the ionization energy of the 
atom. Figure 9-15 shows such a plot. We see that the ionization energy oscillates 
about an average value which is essentially independent of Z, in agreement with our 
conclusion of the previous section that the total energy of electrons in the outer shells 
is roughly the same throughout the periodic table. The oscillations are quite pro-
nounced, however, and it is apparent that the total energy of an electron in the 
highest-energy filled subshell of a noble gas is considerably more negative than aver-
age. These electrons are very tightly bound, and the atoms are very difficult to ionize. 
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Figure 9-15 The measured ionization energies of the elements.  

We also see that the ionization energy is particularly small for the elements 3 Li, 
11Na, 19K,  37Rb, 55Cs, and 87Fr. These are the alkalis. They contain a single weakly 
bound electron in an s subshell. Alkali elements are very active chemically because 
it is energetically favorable for them to get rid of the weakly bound electron and 
revert to the more stable arrangement obtained with completely filled subshells. These 
elements are said to have one valence electron, and a valence of plus one. 

At the other extreme are the halogens, 9F, 17 C1, 35Br, 53 I, and 85At, which have 
one less electron than is required to fill their p subshell. These elements have a high 
electron affinity; i.e., they are very prone to capture an electron. They have a valence 
of minus one. In 1962 it was discovered that in special circumstances noble gases 
could be made to combine with the halogen 9F to form stable molecules. Before that 
time it was believed that the noble gases were completely inert. These molecules can 
be formed only because 9F has such a high electron affinity that it can remove one 
of the very tightly bound electrons from the filled outer subshells of the noble gases. 

For the first three rows of the periodic table, the properties of the elements, such 
as valence and ionization energy, change uniformly from the alkali element with 
which the row begins to the noble gas with which it ends. In the fourth row of the 
periodic table this situation is no longer always true. The elements 21 Sc through 
28Ni, which are called the first transition group, have quite similar chemical properties 
and almost the same ionization energies. These elements occur during the filling of 
the 3d subshell. The radius of this subshell is considerably less than that of the 4s 
subshell, which is completely filled for all the first transition group except "Cr. The 
filled 4s subshell tends to shield the 3d electrons from external influences, and so the 
chemical properties of these elements are all quite similar, independent of exactly 
how many 3d electrons they contain. The point is that the chemical properties of the 
elements depend on the electrons in the outer subshells of their atoms, since these 
are the electrons responsible for producing the electric and magnetic fields that inter-
act with electrons in other atoms. The chemical properties of 29Cu are somewhat dif-
ferent from those of the first transition group because it has only a single 4s electron 
in the outermost subshell. To a lesser extent this is also true for 'Cr. The element 
30Zn consists of a set of completely filled subshells and so is somewhat more inert,  

as can be seen from its ionization energy Similar transition groups occur in the filling 
of the 4d and 5d subshells. 

An extreme example of the same situation is found in the rare earths 58Ce through 
71 Lu. These are the elements in which the 4f subshell is filling. This subshell lies deep 
within the 6s subshell, which is completely filled in all the rare earths. The 4f electrons 
are so well shielded from the external environment that the chemical properties of 
these elements are almost identical. The same thing happens in the actinides, 90Th 



through 1o3Lw. In this group the 5f subshell is filling inside the filled 7s subshell. 
Some of the most exciting work in contemporary chemistry is the study of the ac-
tinides of highest atomic number, which have only recently been discovered. 

It is appropriate to close our discussion by emphasizing the importance of the 
exclusion principle. If it were not obeyed, all the electrons in a multielectron atom 
would be in the is subshell because this is the subshell of lowest energy. If this were 
the case, all atoms would have spherically symmetrical charge distributions of very 
small radii that would produce no external electric fields, and furthermore they would 
also have very high first excited states. Then all atoms would be much like noble 
gases, and therefore there would be no molecules. In fact, the entire universe would 
be completely different if electrons did not obey the exclusion principle! 

Example 9-7. Make an order of magnitude estimate of the ionization energy of 92U, if the 
exclusion principle did not operate so that all of its electrons were in its n = 1 shell. For this 
purpose assume that the typical electron feels the nuclear charge shielded by the charge of half 
the other electrons in the shell. Compare the results of the estimate with the actual value of the 
ionization energy shown in Figure 9-15. 
•An estimate of the total energy of a typical electron can be obtained from the one-electron 
atom energy formula 

uZ2e4 _ Z2 
E 	

(47zE O) 22h n2 
— n2 x 13.6 eV 

If we set n = 1 and use an effective Z with the value Z 1  = Z/2 = 92/2 = 46, the absolute 
value of the result is the ionization energy. So we obtain 

1E1 = (46) 2  x 13.6 eV 3 x 104  eV 

From Figure 9-15 we find that the actual ionization energy is 

IEI = 4 eV 

Without the exclusion principle the ionization energy of 92U would be something like four 
orders of magnitude larger than it actually is. 

9-8 X-RAY LINE SPECTRA 

In an x-ray tube such as the one shown in Figure 2-9, electrons are emitted from a 
heated cathode, accelerated in a beam to kinetic energies of the order of 10 4  eV by a 
voltage applied between the cathode and anode, and then strike the anode. While 
traveling through the atoms of the anode, a beam electron occasionally passes near 
an electron in an inner subshell. By means of the Coulomb interaction between the 
energetic beam electron and the atomic electron, the latter can be given enough 
energy to remove it from its very negative energy level and eject it from the atom. This 
leaves the atom in a highly excited state because one of its electrons that had a very 
negative energy is missing. The atom will eventually return to its ground state by 
emitting a set of high energy, and therefore high-frequency, photons which are 
members of its x-ray line spectrum. (The interaction between a beam electron and an 
outer subshell atomic electron leading to low-energy excited states, and the produc-
tion of the optical spectrum, is discussed in the next chapter.) The total spectrum of 
x radiation emitted by an x-ray tube consists of the discrete line spectrum, super-
imposed on a continuum, as is illustrated for a typical case in Figure 9-16. The 
continuum is due to the bremsstrahlung processes occurring when the beam electrons 
suffer accelerations in scattering from the nuclei of the atoms in the anode. As we saw 
in Section 2-6, the shape of the bremsstrahlung continuum depends mainly on the 
energy of the electron beam. But the shape of the x-ray line spectrum is characteristic 
of the particular atoms composing the anode. 
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Figure 9-16 A typical x-ray spectrum. The lines are characteristic of the atoms of the x- ray 
tube anode (tungsten for the case illustrated). The continuum arises from bremsstrahlung by 
electrons accelerated in scattering from the nuclei of these atoms. 

X-ray line spectra are of practical interest because they are significant features of 
x rays, which have so many useful applications in technology and science. These 
spectra are of theoretical interest because they provide information about the energies 
of electrons in the inner subshells of atoms. We shall see that this information is in 
good agreement with the predictions of the Hartree theory. 

As an example of the production of an x-ray line spectrum, assume that an electron 
is initially removed from the is subshell of an atom in the anode of the tube. In the 
first step of the deexcitation process an electron from one of the subshells of less 
negative energy drops into the hole in the is subshell; for instance, a 2p electron could 
drop into the hole. This would leave a hole in the 2p subshell, but the excitation 
energy of the atom would be considerably reduced. Energy is conserved by the emis-
sion of a photon of energy equal to the decrease in the excitation energy of the atom, 
that is, the difference between the energies associated with an electron missing from 
the is and 2p subshells. Typically there would be several subsequent steps in the de-
excitation process. For instance, the hole in the 2p subshell could be filled by a 3d 
electron, leaving a hole in the 3d subshell which is then filled by a 4p electron, etc. 
The net effect of each step is that a hole jumps to a subshell of less negative energy. 
When the hole works its way to the subshell of the atom of least negative energy, 
which is usually the outermost shell, it is filled by the electron initially ejected from 
the is subshell or, more typically, by some other electron in the anode. The atom is 
then neutral again, and in its ground state. 

The energy levels of an atom which are involved in the emission of its x-ray line 
spectrum are most conveniently represented in terms of an energy-level diagram that 
is rather different from the standard type with which we have become familiar. 
Figure 9-17 shows such a diagram for the 92U atom, including all its x-ray energy 
levels through n = 4. Because of the wide range of energies involved, it is conventional 
to use a logarithmic energy scale. Because it simplifies the discussion, it is also con-
ventional to define the total energy of the atom to be zero when the atom is in its 
ground state. Since the energy scale is logarithmic, the zero energy level representing 
the ground state cannot be displayed on the diagram, but this does no harm. The 
most important difference between an x-ray energy-level diagram and a standard 
energy-level diagram is that the x-ray diagram gives the energy of the atom when 
one electron of the indicated quantum numbers n, 1,1 is missing. That is, the diagram 
describes the energy levels of the hole, with quantum numbers n, 1, j, that jumps from 
one subshell to the next when the atom emits its x-ray line spectrum. As a hole re- 
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Figure 9-17 The higher energy x-ray levels for the uranium atom and the transitions  
between these levels allowed by the selection rules.  

presents the absence of an electron of negative energy, the energy associated with a  

hole is positive. So the energies of all the levels of an x-ray diagram are positive.  

The energy levels in Figure 9-17 are also identified by a notation commonly used  

in discussing x-ray spectra. In this notation the value of the quantum number n is  

specified by capital letters, according to the scheme shown in Table 9-4. That is, an  

n = 1 level is called a K level, an n = 2 level is called an L level, etc. Similarly, the  
n = 1 shell is called the K shell, etc. Roman numeral subscripts are used to label levels  

of the same n, according to decreasing energy. That is, in order of decreasing energy  

the three L levels are called L I , L11 , and Linn. 
 

If the energy of an atom with an electron of quantum numbers n, 1, j is particularly  
negative, the energy of an atom with a hole of the same quantum numbers is par-
ticularly positive since more energy must be given to the atom to remove the electron. 
In other words, the lack of a large negative energy is equivalent to the presence of a 
large positive energy. Keeping this inversion in mind, we see from Figure 9-17, which 
was obtained from an analysis of the measured x-ray line spectrum of 92U, that the 
n, 1, j dependences of the x-ray energy levels are as would be expected from the Hartree 
theory. The energies of these levels increase with decreasing values of n and of 1, in 
agreement with an inversion of the rule describing the theoretical predictions that was 
stated in the preceding section. The x-ray energy level for j = 1 + 1/2 has lower 
energy, and the level for the other possibility, j = 1 —  1/2, has higher energy. This is 
the expected inversion of the splitting of the energy levels according to j, discussed 
in connection with one-electron atoms in Section 8-6. In the L shell (n = 2) of 92U 
this splitting is more than 2000 eV, and it is larger than the dependence on 1. So it is 
hardly appropriate to call the j dependence of x-ray energy levels "fine-structure 
splitting." The strong j dependence, which is characteristic of the inner shells of all 
atoms except those of very low Z, is partly due to the increase in  the magnitude of 
the spin-orbit interaction because of the high value of the term (1/r)dV(r)/dr in (8-35). 
It also involves the other relativistic effects that become very large for the high ve-
locity electrons that populate the inner shells of these atoms. 

Table 9-4 	The Spectroscopic Notation for n  

n 1 2 3 4 5  

Spectroscopic notation  K  L  M  N  O  
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As we have indicated, it is convenient to think of the production of the x-ray line 
spectra in terms of the creation of a hole in one of its higher-energy levels, and the 
subsequent jumping of the hole through its lower-energy levels. With each jump, an 
x-ray photon is emitted that carries off the excess energy. The frequency y  of the 
photon bears the usual relation to the energy E which it carries, E = hv. But not all 
transitions occur. There is the following set of selection rules for the change in 
quantum numbers of the hole: 

Al = + 1 

Aj = 0, ±1 

These are the same as the selection rules of (8-37) and (8-38), for an electron in a 
one-electron atom, and they have the same explanation as presented in Section 8-7. 
The x-ray energy-level diagram for 92U, of Figure 9-17, shows the transitions that 
obey these selection rules. The totality of x rays which are emitted .in such transitions 
(plus a few which are observed to be emitted very infrequently in violation of the 
selection rules) constitute the x-ray line spectrum of the atom. All transitions from 
the K shell produce lines of the so-called K series, with K a  corresponding to a transi-
tion to the L shell, K R  to the M shell, etc. All transitions from the L shell produce 
lines of the L series, and so forth. 

Example 9-8. Estimate the minimum accelerating voltage required for an x-ray tube with 
a 26 Fe anode to emit a K a  line of its spectrum. Also estimate the wavelength of a Ka  photon. 
■ We can use the crude description of the results of the Hartree theory to estimate the 
excitation energy of a 26Fe atom with a hole in its K shell. Equation (9-27) tells us that this 
energy is 

l-cZ e4 	 Zn  E K 
 ~ + (47LE0)22h2n2 

13.6 n2  eV 

13.6(Z — 2) 2  eV = 13.6 x (24)2  eV 

+7.8x103 eV 

where we have set n = 1 and Z n  = Z1  = Z — 2. A beam electron bombarding an atom in the 
anode must have this much energy to produce the hole. The voltage V required to accelerate 
the beam electron to this energy is just 

V^ 7.8 x 10 3 V 

After the atom emits a K a  photon, the hole is in its L shell. Then its energy is 

EL  + 13.6 
nz 

 eV 13.6 
(26 —

4 

10)2 
eV ^ + 8.7 x 10 2  eV 

where we have set n = 2 and, following the results of Example 9-5, set Zn  = Z2 = Z — 10. 
The photon carries away energy 

hv = EK — EL 

But since the value of EL  is only about 10% of the value of EK, and since the crude approxi- 
mation we have used to obtain EK is generally not accurate to 10%, we might as well take 

hv EK 

The wavelength , of the photon is related to its frequency y  and its velocity c by the expression 

1 	v 	hv 

c hc 

so 

1 EK 	ke
4 
	

Z — 2 2 , 
 

hc 
ti 

 (47CE0)24iwh3 ( 
	) 

The term multiplying (Z — 2) 2  is Rydberg's constant, R M , defined in (4-22). Therefore 

1 
R M (Z — 2) 2  ^ 1.1 x 10' x (24) 2  m -1  = 6.3 x 109  m -1  

(9-28) 

(9-29) 

(9-30) 
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and  

^1.6x10 -10 m=1.6 A  
This wavelength is about the size of a typical molecule, or the spacing of atoms or molecules 
in a crystal. Thus the Ka  x rays from 26Fe can be used in diffraction experiments to study the 
structure of molecules or crystals. 

A striking feature of x-ray line spectra is that the frequencies and wavelengths of 
the lines vary smoothly from element to element. There are none of the abrupt 
changes from one element to the next which occur in atomic spectra in the optical 
frequency range. The reason is that the characteristics of x-ray spectra depend on the 
binding energies of the electrons in the inner shells. With increasing atomic number 
Z, these binding energies simply increase uniformly, owing to the higher nuclear 
charge, and they are not affected by the periodic changes in the number of electrons 
in the outer shells of the atom that affect the optical spectra. The regularity of x-ray 
spectra was first observed by Moseley. In 1913 he made a survey of x-ray spectra and 
obtained data for a number of elements on the wavelengths of the Ka  line. (There 
are really two closely spaced Ka  lines, as can be seen from Figure 9-17, but it was 
difficult for Moseley to resolve this structure.) The measured wavelengths could be 
fitted within experimental accuracy by the empirical formula 

1  C(Z — a)2 	 (9-31)  

where C is a constant with a value approximately equal to the Rydberg constant RM , 
 and a is a constant with a value of about 1 or 2. This formula, and some of the data, 

are plotted in Figure 9-18. 
Moseley interpreted the empirical formula on the basis of the Bohr model, which 

had been proposed just before he made his measurements. He performed a calculation 
essentially the same as our calculation in Example 9-8 to obtain (9-30), which agrees 
well enough with (9-31), but he took the basic energy equation, (9-27), from the Bohr 
model instead of the Hartree theory. That is, he adapted the Bohr energy equation 
into (9-27) by replacing Z by Zn , as a way of describing the shielding of the nuclear 
charge by electron charges in a multielectron atom. His arguments concerning shield-
ing were similar to ours of Section 9-6, except that he thought the electrons travel in 
well-defined Bohr orbits and concluded that Z 1  ^ Z — 1 instead of Z 1  ^ Z — 2. 

Moseley's work, carried out when he was a graduate student, was an important 
step in the development of quantum physics. His simple and successful application 
of the Bohr model to x-ray line spectra provided one of its earliest confirmations. 
By using the empirical formula to determine Z, he established unambiguously the 

a 5 	10 	15 	20 	25 	30 	35 	40  

z 
Figure 9 -18 Points representing Moseley's data, and a curve representing his empirical  

formula. The curve is a straight line since the square root of the reciprocal of the wave  

lengths of the x-ray lines is plotted versus the atomic number of the atoms producing the  

lines.  
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correlation between the nuclear charge of an atom and its ordering in the periodic  

table of the elements. For instance, he found that the atomic number of 'Co is one  

less than that of 28Ni, even though its atomic weight is greater. He also showed that  

there were gaps in the periodic table, as it was then known, at Z = 43, 61, 72, and 75.  
Elements of these atomic numbers have subsequently been discovered. Moseley's  

contributions were brought to a halt by service in World War I, from which he did  

not return.  

Example 9-9. Measured values of the probability that a 82Pb atom will absorb by the  
photoelectric effect an x-ray photon from an incident beam of photons, are displayed in  

Figure 9-19 by plotting the absorption cross section as a function of the energy hv of the  
photon. The prominent discontinuity just below 10 5  eV is called the K absorption edge. Show  
that it occurs at an energy for which the incident photon can just produce a hole in the K shell  
of 82Pb. Then explain the origin of the discontinuities a little above 10 4  eV.  
► According to (9-27), the energy required to produce a hole in the K shell of 82Pb is  
approximately  

Zz 
EK ^ + 13.6 Z eV ^ 13.6(Z — 2) 2  eV = 13.6 x (80) 2  eV = 8.7 x 104  eV 

n  
This agrees within a few percent with the measured energy of the K absorption edge. A photon 
whose energy is slightly above this edge can be absorbed by the photoelectric effect on any 
electron of the atom. But a photon of energy slightly below the K absorption edge does not 
have enough energy to eject a K shell electron, so for it the photoelectric effect cannot occur 
on a K shell electron. Thus the photoelectric absorption cross section drops abruptly at the 
K absorption edge. 

At energies a little above 10 4  eV there are three L absorption edges. These occur at the 
energies required to produce holes in the L shell of the atom. There are three because "fine 
structure", due to spin-orbit and other relativistic effects, splits the L level into three levels, 
L1, L11, L111, as can be seen in Figure 9-17. •  

10 4 	 10 5  
Photon energy hv (eV)  

Figure 9-19 The probability that a lead atom will absorb an x-ray photon by the photo-
electric effect, as a function of the energy of the photon. The probability is expressed in 
terms of the absorption cross section. 

106  



QUESTIONS 

1. Why is there difficulty in distinguishing the two electrons in a helium atom from each 
other, but not the two electrons in separated hydrogen atoms? What about a diatomic 
hydrogen molecule? 

2. Explain, without reference to the time-independent Schroedinger equation, why the pro-
duct form of the eigenfunction of (9-3) immediately implies that the two particles it 
describes move independently. 

3. Can you write a time-independent Schroedinger equation for two identical particles, 
without using particle labels? 

4. Are particle labels themselves objectionable, in working with quantum mechanical sys-
tems containing identical particles? If not, explain precisely what care must be exercised 
in using them. 

5. Since the value of an antisymmetric total eigenfunction changes when its particle labels 
are exchanged, why can such eigenfunctions be used to give an accurate description of a 
system of electrons? 

6. Does the exchange degeneracy increase the number of degenerate states in an atom 
containing two electrons? Ex4plain. 

7. Do you think the sign of the charge of an elementary particle, like an electron or proton, 
is a more, or less, fundamental property than the "sign" of its symmetry? 

8. Would atoms be affected more by reversing the signs of the charges of all their con-
stituent particles, or by reversing all their symmetries? 

9. Exactly what is meant by the statement that the spin variable is not continuous? 

10. Would it be possible to measure effects of the exchange force acting between two electrons 
if there were no Coulomb interaction between them to produce an interaction energy of 
magnitude dependent on the sign of the exchange force? 

11. Why would it be much more difficult to solve the time-independent Schroedinger 
equation for a system of interacting particles than for a system of independently moving 
particles? 

12. Describe the steps in a cycle of the self-consistent Hartree treatment of a multielectron 
atom. Why is the estimate of the net potential V(r) obtained at the end of a cycle more 
accurate than the estimate used at the beginning? 

13. Why is the angular dependence of multielectron atom eigenfunctions the same as for one-
electron atom eigenfunctions? Why is the radial dependence different, except near the 
origin where it is the same? 

14. Just what is the justification for using one-electron atom equations with an effective Z to 
discuss multielectron atoms? 

15. What are the consequences of the fact that the sizes of all atoms are about the same? 
What are the reasons for this fact? 

16. Devise a purely mechanical system in which a classical particle would exhibit the ten-
dency, illustrated in Figure 9-12, to avoid the point about which it rotates. 

17. Explain all aspects of the Z dependence of the subshell energies, plotted in Figure 9-14. 

18. Why is it particularly difficult to separate mixtures of the rare earth elements by chemical 
techniques? 

19. How can we be sure that if there were no molecules there would be no life? 

20. What property of x rays makes them so useful in seeing otherwise invisible internal 
structures? 

21. Give an example in the classical world where the concept of a hole might be used in a way 
comparable to the way it is used in discussing x-ray line spectra. 

22. What argument might Moseley have used to conclude that the effective Z for the K shell 
is Z 1  Z — 1? Can Gauss's law of electrostatics be applied to evaluate the shielding 
produced by electrons moving in Bohr orbits? 
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23. What features of the periodic table of Figure 9-13 would Mendeleev fail to recognize? 
24. Do the properties of the electrons in multielectron atoms provide any explanation of why 

the element of highest atomic number found in nature is 92U? 
25. In your opinion, what is the most important consequence of the exclusion principle? 

PROBLEMS 

1. By going through the procedure indicated in the text, develop the time-independent 
Schroedinger equation for two noninteracting identical particles in a box, (9-1). 

2. By applying the technique of separation of variables, show that, for a potential of the 
additive form of (9-2), there are solutions to the two-particle time-independent Schroe-
dinger equation, (9-1), in the product form of (9-3). 

3. Exchange the particle labels in the two probability density functions, obtained from the 
symmetric and antisymmetric eigenfunctions of (9-8) and (9-9), and show that neither is 
affected by the exchange. 

4. Verify that the expanded form of the three-particle eigenfunction of Example 9-2 is 
antisymmetric with respect to an exchange of the labels of two particles. 

5. Verify that the expanded form of the three-particle eigenfunction of Example 9-2 is 
identically equal to zero if two particles are in the same space and spin quantum state. 

6. Verify that the 1/ J3! normalization factor quoted in Example 9-2 is correct. 
7. Verify that the expanded form of the three-particle eigenfunction of Example 9-3 is 

symmetric with respect to an exchange of the labels of two particles. 
8. An a particle contains two protons and two neutrons. Show that if each of its con-

stituents is antisymmetric then it must be symmetric, as stated in Table 9-1. (Hint: 
Consider a pair of a particles, and the effect of exchanging the labels of all the con-
stituents in one with those of all the constituents in the other.) 

9. Write an  expression for the expectation value of the energy associated with the Coulomb 
interaction between the two electrons of a helium atom in its ground state. Use a space 
eigenfunction for the system composed of products of one-electron atom eigenfunctions, 
each of which describes an electron moving independently about the Z = 2 nucleus. Do 
not bother to evaluate the expectation value integral, but instead comment on its relation 
to the energy levels shown in Figure 9-7. 

10. Prove that any two different nondegenerate bound eigenfunctions i/i i (x) and tk i(x) that are 
solutions to the time-independent Schroedinger equation for the same potential V(x) obey 
the orthogonality relation 

J  t//7(x)0 i (x) dx = 0 
	

i j 

(Hint: (i) Write the equations to which t/i i  and  tk i  are solutions, and then take the complex 
conjugate of the second one to obtain the equation satisfied by 4. (ii) Multiply the 
equation in ti i  by tJ'7, the equation in ti* by tpi, and then subtract. (iii) Integrate, using 
a relation such as 0i* d2 i/dx 2  — tfrid2 e/dx 2  = (d/dx)(07 dii/dx — tfüdI'7/dx).) The 
proof can be extended to include degenerate eigenfunctions, and also unbound eigen-
functions that are properly normalized. Can you see how to do this? 

11. (a) By going through the procedure indicated in Section 9-5, develop the time-independent 
Schroedinger equation for a system of Z electrons of an atom moving independently in a 
set of identical net potentials V(r). (b) Then separate it into a set of Z identical time-
independent Schroedinger equations, one for each electron. (c) Verify that the form of a 
typical one is as stated in (9-22). (d) Compare this form with the time-independent 
Schroedinger equation for a one-electron atom, (7-12). 

12. (a) Show that there are N! terms in the linear combination for an antisymmetric total 
eigenfunction describing a system of N independent electrons. (Hint: Consider Example 
9-2, and use the mathematical technique of induction.) (b) Evaluate the number of such 



terms for the case of the argon atom with Z = 18. (Hint: Use a mathematical table to 
evaluate N!, or use Stirling's formula, found in most mathematical references, to approxi-
mate it.) (c) State briefly the connection between the results of (b) and the procedure 
used by Hartree to treat the argon atom. 

13. (a) Use information from Figure 9-11 to make a sketch, on semilog paper, of the net 
potential V(r) for the argon atom. Be sure to determine several values for r/a p  between 0 
and 0.25, as this information will be used in Problem 18. (b) Also show the energy levels 
E 1  and E2, using estimates from Example 9-5, and the energy level E3, using measured 
data from Figure 9-15. 

14. (a) Find the value of Z 1  for the helium atom which, when used in the energy equation, 
(9-27), leads to agreement with the ground state energy shown in Figure 9-6. (b) Com-
pare Z 1  with Z. (c) Is Z 1  meaningful for an atom with as few electrons as helium? 
Explain briefly. 

15. From Figure 9-6 estimate the average distance between the two electrons in a helium 
atom (a) in the ground state and (b) in the first excited state. Neglect the exchange 
energy. 

16. (a) Use the Z, z  for the argon atom obtained in Example 9-5 in the one-electron atom 
equation for the radial coordinate expectation value, to estimate the radii of the n = 1, 2, 
and 3 shells of the atom. (b) Compare the results with Figure 9-10. 

17. Develop a mathematical argument for the tendency, illustrated in Figure 9-12, of an 
atomic electron with angular momentum L to avoid the point about which it rotates. 
Treat the electron semiclassically by assuming that it moves around an orbit in a fixed 
plane passing through the nucleus. (a) Show that its total energy can be written 

2L2 	2 

E 2m  + [ V(r) 
+ 2mr2  ] 2m + 

V (r) 

where p H  is its component of linear momentum parallel to its radial coordinate vector of 
length r. (b) Explain why this indicates that its radial motion is as it would be in a 
one-dimensional system with potential V'(r). (c) Then show that V'(r) becomes repulsive 
for small r because of the dominant behavior of the term L 2/2mr2, sometimes called the 
centrifugal potential. 

18. (a) Sketch the potentials V'(r) for the argon atom with 1 = 0 and  1 = 1, defined in 
Problem 17, by adding the corresponding centrifugal potentials to the V(r) obtained in 
Problem 13. (b) Also sketch the energy level E2. (c) Show the classical limits of motion, 
within which E2  > V'(r). (d) Compare these limits with the radial probability densities of 
Figure 9-10, for n = 2, l = 0, and n = 2, l = 1. 

19. Write the configurations for the ground states of 28Ni, 

20. Write the configurations for the ground states of all the lanthanides, making as much use 
as possible of ditto marks. 

21. Recent work in nuclear physics has led to the prediction that nuclei of atomic number 
Z = 110 might be sufficiently stable to allow some of the element Z = 110 to have 
survived from the time the elements were created. (a) Predict a likely configuration for 
this element. (b) Make a prediction of the chemical properties of the element. (c) Where 
would be a likely place to start searching for traces of it? 

22. (a) From information contained in Figures 9-6 and 9-15, determine the energy required to 
remove the remaining electron from the ground state of a singly ionized helium atom. 
(b) Compare this energy with the energy predicted by the quantum mechanics of one-
electron atoms. 

23. (a) Draw a schematic representation of a standard energy-level diagram for the 22Tî atom, 
showing the states populated by electrons for a case in which one electron is missing 
from the K shell. The diagram should be comparable to the one in Figure 9-9 in that 
it should not attempt to give the energies of the levels to an accurate scale, and no 
distinction should be made between L I , L11 , and L111  levels, etc. (d) Do the same for a case 
in which one electron is missing from the L shell. (c) Draw a schematic representation 
of an x-ray energy-level diagram showing the energies of the atom when a hole is in the 

29Cu,  30Zn, 
31Ga. 
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K or L shells. (d) Compare the utility of the standard and x-ray energy-level diagrams 
for cases in which a hole is in an inner shell. (e) Also make such a comparison for cases 
in which a hole is in an outer shell. 

24. The wavelengths of the lines of the K series of 74W are (ignoring fine structure): for K a, 
= 0.210 A; for K R , 2= 0.184 A; for K y, 2 = 0.179 A. The wavelength corresponding to 

the K absorption edge is A= 0.178 A. Use this information to construct an x-ray energy-
level diagram for 74W. 

25. (a) Make a rough estimate of the minimum accelerating voltage required for an x-ray 
tube with a 26Fe anode to emit a La  line of its spectrum. (Hint: As in Example 9-5, 
Z2 ^ Z — 10.) (b) Also estimate the wavelength of the L a  photon. 

26. (a) Use Moseley's data of Figure 9-18 to determine the values of the constants C and a 
in his empirical formula, (9-31). (b) Compare these values with those of (9-30), which was 
derived from the results of the Hartree theory. 

27. It is suspected that the cobalt is very poorly mixed with the iron in a block of alloy. To 
see regions of high cobalt concentration, an x-ray is taken of the block. (a) Predict the 
energies of the K absorption edges of its constituents. (b) Then determine an x-ray photon 
energy that would give good contrast. That is, determine an energy of the photon for 
which the probability of absorption by a cobalt atom would be very different from the 
probability of absorption by an iron atom. 

28. The Lyman-alpha lifetime in hydrogen is about 10 -8  sec. From this, find the lifetime for 
the Ka  x-ray transition in lead. (Hint: For the inner electrons in lead the vvavefunctions 
are hydrogenic with appropriate effective Z; lifetime = 1/R; see (8-43).) 
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10-1 INTRODUCTION 

A description of the behavior of electrons in multielectron atoms involves a succes-
sion of increasingly accurate approximations. In the first step only the strongest inter-
actions felt by the atomic electrons are considered. This is the Hartree approximation, 
discussed in the preceding chapter, in which each electron is treated as if it were 
moving independently in a spherically symmetrical net potential that describes the 
average of its Coulomb interactions with the nucleus and the other electrons. In the 
next steps the description is made more and more accurate by taking into account 
successively the weaker interactions which the electrons feel. In a typical multielectron 
atom these weaker interactions include two that involve departures of the actual 
Coulomb interactions experienced by an atomic electron from the average described 
by the net potential. One of these leads to couplings between the orbital angular 
momenta of the electrons, and the other leads to couplings between the spin angular 
momenta of the electrons through an interesting effect of the exchange force. A third 
weaker interaction involves the internal magnetic fields of the atom, and leads to 
couplings between the spin and orbital angular momenta. A fourth weaker interac-
tion is present if the atom is placed in an external magnetic field, as in the so-called 
Zeeman effect. In this chapter we discuss qualitatively the steps in this succession of 
approximations, and we use the discussion to describe the behavior of the atomic 
electrons. That is, we shall consider the four weaker interactions experienced by these 
electrons, and we shall see that they provide a very satisfactory explanation of the 
important properties of the ground states and low-energy excited states of all atoms. 

An atom is raised from its ground state to one of its low-energy excited states when 
an electron in one of its outer subshells is given a small amount of energy. As an 
example, this can happen when an atom collides with another atom in a gas discharge 
tube. The Coulomb field of the incident atom can act on an electron in an outer 
subshell of the struck atom and give it a few electron volts of excitation energy. In the 
deexcitation process, the atom that has received energy goes from the state initially 
excited to its ground state by emitting a set of low-energy photons whose frequencies 
constitute its optical line spectrum. The initial excitation is therefore called an optical 
excitation. Note the contrast between an optical excitation, which involves giving a 
small amount of energy to an electron in an outer subshell, and an x-ray excitation, 
which involves giving a large amount of energy to an electron in an inner subshell. 

The low-energy excited states of atoms that enter into the production of optical line 
spectra are certainly worth studying. One reason is that a study of these excited states 
of atoms leads to an extremely complete description of their ground states. Another 
reason is that the general ideas behind the successive approximation procedure used 
in the study are similar to those behind the procedures used throughout science and 
engineering to break down a complicated problem into a sequence of not too com-
plicated steps. The details of the procedure are of particular interest to students who 
will continue in physics beyond the level of this book because they are closely related 
to those used in the theory of molecules, nuclei, and elementary particles. (Such stu-
dents should read Appendix J, which provides a theoretical foundation for the pro-
cedure.) Furthermore, optical line spectra are themselves of great practical interest 
because they are valuable experimental tools in many fields. Certainly the best ex-
ample is astronomy. Much of what is known about the stars has come from measure-
ments- and analysis of optical line spectra. The pattern of lines observed in emission 
spectra is used to identify the composition of stars; the intensity of lines observed 
in absorption spectra is used to measure the temperatures of stellar surfaces; the 
Doppler shift of the spectral lines is used to measure the velocities of stars; and the 
Zeeman effect is used to measure the magnetic fields produced by stars. 
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10-2 ALKALI ATOMS 

We begin our study of the optical excitations of multielectron atoms with the simplest 	m 
case, alkali atoms. In their ground states, these atoms contain a set of completely filled 	P 

subshells, the highest energy one being a p subshell, plus a single additional electron 
in the next s subshell. As discussed in Section 9-7, the energy of the electrons in a 
filled p subshell is quite a bit more negative than the energy of an electron in the 
next s subshell. Consequently, the p subshell electrons are not excited in any of the 
low-energy processes which lead to the production of the optical spectra. In essence, 
an alkali atom consists of an inert noble gas core plus a single electron moving in an 
external subshell. The analysis of the optical line spectrum of an alkali atom in terms 
of its excited states is fairly simple since the excited states can be described completely 
by describing the single so-called optically active electron, and the core of filled sub-
shells can be ignored. The total energy of the core does not change, so the total energy 
of the atom is a constant plus the total energy of the optically active electron. It is 
convenient in discussing the excited states of an alkali atom to define the zero of total 
energy in such a way that the total energy of the atom is equal to that of the optically 
active electron. Using this definition, we present in Figure 10-1 diagrams showing the 
energies of the ground state and the first few excited states of the alkali atoms 3 Li 
and "Na, obtained from an analysis of the optical line spectra of these elements, and 
also the energy levels of 1 H for n = 2, 3, 4, 5, and 6. Each energy level is labeled by 
the quantum numbers n and / of the optically active electron, i.e., by its configuration. 
These diagrams do not show fine-structure splittings, which will be discussed shortly. 
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Figure 10-1 Some of the energy levels of hydrogen, lithium, and sodium atoms. 
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The Hartree theory works particularly well as a first step in calculating the energy 

levels of the optically active electron of an alkali element because the net potential 
V(r), due to the nucleus plus the electrons of the core, actually is spherically symmetri-
cal as assumed in the theory. The energies predicted by the theory are in excellent 
agreement with those shown in Figure 10-1. Furthermore, the theory makes it easy to 
understand the structure of these energy-level diagrams and their relation to the dia-
gram for 'H. The dependence of the energy of the optically active electron on its 
quantum numbers n and l is just as we have described in the previous chapter. For a 
given n, the energy is most negative for the smallest value of l because the electron 
spénds more time near the center of the atom, where it feels the full nuclear charge. 
In the ground state of the 'Li atom, the optically active electron is in the 2s subshell 
and its energy is about 2 eV more negative than an n = 2 electron in a 1H  atom. In 
the first excited state, the optically active electron is in the 2p subshell and its energy 
is only about 0.2 eV more negative than an n = 2 electron in 'H. For "Na the / 
dependence makes the 4s level more negative than the 3d level. However, for the large 
radii subshells with large values of n, the l dependence becomes less important, and 
the energy levels of the optically active electron become very close to the energy levels 
of an electron in a 1 H atom. The reason is that the shielding of the nuclear charge 
+Ze by the charge —(Z — 1)e of the electrons in the core of the alkali atom becomes 
practically complete for an electron in a subshell of radius large compared to the 
radius of the core, so the electron experiences essentially the same Coulomb potential 
due to a single charge + e as an electron in a 'H atom. 

The lines of the optical spectra emitted by alkali elements show a fine-structure 
splitting which indicates that all energy levels are double, except those for 1 = 0. This 
is due to a spin-orbit interaction acting on the optically active electron, i.e., due to 
the coupling between the magnetic dipole moment of the electron and the internal 
magnetic field it feels because it moves through the electric field of the atom. Other 
relativistic effects, which are just as important as the spin-orbit interaction in the case 
of a one-electron atom, are generally quite negligible for the optically active electrons 
in all multielectron atoms. We can see this by using the Bohr model result of (4-17) 

Ze e  
v 

= 47rEO nh 

to estimate the average velocity y of an optically active electron, providing we replace 
Z by Zn . As Zn/n is about equal to one for the optically active electrons of all atoms, 
the equation shows that the average value of v/c is about equal to its value in the 
ground state of the 1H  atom; that is v/c ^ 10 -2. The associated relativistic effects for 
optically active electrons thus are of the same order of magnitude throughout the 
periodic table. In contrast, we shall see below that the spin-orbit interaction increases 
in magnitude rapidly in going from 1H  to elements further up the periodic table, and 
so it dominates the other relativistic effects. 

The splitting of the energy levels of an alkali element due to the spin-orbit inter-
action acting on the optically active electron can be understood by considering the 
interaction energy, (8-35) 

h2 	 1 dV(r) _ AE 4m2c2  [j(j + 1) — l(l + 1) — s(s + 1)] r dr  

The arguments leading to this equation apply as well to the optically active electron 
in an alkali atom as to the electron of a one-electron atom, providing that V(r) is 
equated to the Hartree net potential and the expectation value of (1/r)dV(r)/dr is 
calculated using the probability density obtained from the Hartree eigenfunctions. As 
is true for a one-electron atom, when the spin-orbit interaction is included the 
eigenfunctions describing the optically active electron of an alkali atom are labeled 
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J _  1/2  

(10-1)  

l^ 0  (10-2)  

by the quantum numbers n, 1, j, mi . These quantum numbers obey the same rules as 
before. Specifically 

mi = -j,-j+1,..., +j- 1, +j 	 (10-3)  
For 1 = 0, (8-35) shows that the spin-orbit interaction energy is AE = 0. For other  

values of 1, it shows that AE assumes two different values, one positive and the other  

negative, according to whether j = 1 + 1/2 or j = 1— 1/2. Except for 1 = 0, each  
energy level is thus split into two components, one of slightly higher energy for the  

spin and orbital angular momenta "parallel," and one of slightly lower energy for  

these angular momenta "antiparallel." The energy difference is the work required to  

turn the electron magnetic dipole moment from one orientation to the other in the  

internal magnetic field of the atom. The magnitude of the energy splitting is pro-
portional to the expectation value of (1/r)dV (r)/dr, which determines the strength  

of the magnetic field. Since both 1/r and the derivative of the net potential V(r) 
become large for small r, the expectation value is dependent primarily on the behavior  

of V(r) near r = 0.  
According to (9-25) for the net potential V(r) of the Hartree theory, the larger the  

value of Z the more rapidly V(r) becomes negative as r becomes small. Thus the  

magnitude of dV(r)/dr increases with increasing Z, near r = 0. Consequently  
(1/r) dV(r)/dr, and also the spin-orbit splitting, should increase in magnitude with in-
creasing Z. This behavior can be found in the experimental data of Table 10-1, which  
lists the observed splittings of the energy levels of an electron excited to the first p sub-
shell of various alkali atoms.  

The spectral lines of an alkali atom are emitted in transitions between energy levels  

whose quantum numbers satisfy the selection rules: 

Al  = +1 	 (10-4)  

Aj = 0, + 1 	 (10-5)  
These selection rules for the transitions of the single optically active electron of an  

alkali atom are the same as those for the electron of a one-electron atom, and they  

have the same explanation. Of course, the frequencies of the spectral lines are the  

energy differences of the levels involved in the transition, divided by Planck's  

constant.  
If an alkali atom is not placed in an external magnetic field, only one of the weaker  

interactions, mentioned in Section 10-1, acts on the optically active electron. This is  

the spin-orbit interaction that arises from the presence of the internal magnetic field  

of the atom. There are no weaker interactions arising from departures of the actual  

Coulomb interactions experienced by the optically active electron from the average  

described by the spherically symmetrical net potential V(r). The reason is that the  
potential experienced by the optically active electron really is spherically symmetrical  

since all the other electrons in the alkali atom are in the spherically symmetrical core.  

We shall soon see that this simplification does not hold for a typical atom.  

Table 10-1 Spin-Orbit Splittings in a Number of Alkali Atoms 

Element 	 3 Li 	''Na 	19K 	37 Rb 	55 Cs  

Subshell  2p 	 3p 	 4p 	 5p 	 6p  

Spin-orbit  
splitting (eV)  

0.42 x 10 -4 	21 x 10 -4 	72 x 10 -4 	295 x 10 -4 	687 x 10 -4  
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Example 10-1. The yellow light of sodium vapor lamps frequently employed in highway  
illumination is a spectral line arising from the 3p to 3s transitions in 11 Na. (a) Evaluate the  
wavelength of this line by using information contained in Figure 10-1. (b) The line is split by  
the spin-orbit interaction. Evaluate the separation in wavelength of its two components from  
information contained in Table 10-1. (c) Also comment on the application of the selection rules  
to the transitions involved in emission of the two components of the line.  
► (a) Careful inspection of Figure 10-1 shows that the energy difference between the 3p and 3s  
levels of 11 Na is  

E3p —E3 s ^—'(-3.0 eV) —(-5.1 eV) =2.1 eV  

The photons emitted in transitions between these levels carry away energy hv = E 3  — E3s,  
and have frequency y  and wavelength 2, where  

c he 6.6 x 10 -34  joule-sec x 3.0 x 108  m/sec  
v 

 
hv 	2.1 eV x 1.6 x 10 -19  joule/eV  

The value obtained directly from accurate measurements is 2 = 5893 A.  
(b) According to Table 10-1, the spin-orbit interaction splits the 3p level by an energy  

dE = 2.1 x 10 -3  eV. Since  

2= cv -1  

it follows that  

s 	 d^ = 

 
dl _ — cv 2  dv  

and that the magnitude of the separation in wavelength of the two components of the spectral  
° 	line is  

c 	hch dv he dE 

U 	 v 2
dv = 	

(hv)2 	(hv) 2  

6.6 x 10 -34  joule-sec x 3 x 10 8  m/sec x 2.1 x 10 -3  eV x 1.6 x 10 -19  joule/eV  
(2.1 eV x 1.6 x 10 -19  joule/eV) 2  

=5.7x10 -10 m=5.7 A  
(c) The 3p level of higher energy corresponds to j = l + 1/2 = 1 + 1/2 = 3/2, and the 3p  

level of lower energy corresponds to j = 1 — 1/2 = 1 — 1/2 = 1/2. The 3s level is not split  
since 1 = 0, and j = 1/2 only. For transitions from the higher 3p level to the 3s level, 4l =  
—1 and 4j = —1; for transitions from the lower 3p level to the 3s level, 4l = —1 and 4j = 0.  
So both of these transitions are allowed by the selection rules of (10-4) and (10-5). 	4 

10-3 ATOMS WITH SEVERAL OPTICALLY ACTIVE ELECTRONS  

We turn now to the more typical case of an atom containing a core of completely  

filled subshells surrounding the nucleus, plus several electrons in a partially filled  

outer subshell. Since any of these electrons can participate in the excitations leading  

to the emission of the optical spectrum of the atom, all the electrons in the partially  

filled subshell are optically active. The excited states of such an atom are treated by  

first using the Hartree approximation, which accounts for the stronger interactions  

felt by its optically active electrons, and by then including the effects of other inter-
actions which are weaker but still important.  

It should be emphasized that we shall consider here, and in the remainder of the  

chapter, only atoms in which the outer subshell is less than half filled. If the subshell  
is more than half filled, the optical excitations of the atom are discussed in terms  

of the behavior of holes—not electrons—as in our discussion of x-ray line spectra.  

Since a hole is the absence of a negative charge, it is equivalent to the presence of a  

positive charge. Because of this sign reversal, certain effects that we shall deal with  

have a sign reversal in atoms with outer subshells that are more than half filled.  

In the Hartree approximation, the energy of each independently moving optically  

active electron is determined by its quantum numbers n and 1. The dependence of its  



energy E„ 1  on these two quantum numbers is similar to that of a single optically 
active electron in an alkali atom with the same core, since its net potential is not 
very different from the net potential due to the core alone. The total energy of the 
atom is the constant total energy of the core, plus the sum of the total energies of 
the optically active electrons. Consequently, the energy of the atom is determined 
completely in the Hartree approximation by the configuration of the optically active 
electrons, which specifies the n and 1 quantum numbers of each of these electrons. 
Since there are 2l + 1 possible values of m 1  for every 1, and since there are also 2 
possible values of ms , every configuration has a number of different quantum states 
of the same energy. Thus, in the Hartree approximation there are a number of de-
generate energy levels associated with each configuration. Many of these degeneracies 
are removed when weaker interactions, ignored in the Hartree approximation, are 
finally taken into account. This is just what happens when the spin-orbit interaction 
is applied to alkali atoms, removing some of the degeneracies of its energy levels. 

The weaker interactions experienced by optically active electrons must be included 
in a treatment of the low-energy excited states of typical atoms. They can be thought 
of as corrections for effects ignored in the Hartree approximation. The two most 
important corrections are for: 

1. The residual Coulomb interaction, an electric interaction that compensates for 
the fact that the Hartree net potential V(r) acting on each optically active electron 
describes only the average effect of the Coulomb interactions between that electron 
and all the other optically active electrons. 

2. The spin-orbit interaction, a magnetic interaction that couples the spin angular 
momentum of each optically active electron with its own orbital angular momentum. 

There are also relativistic corrections, corrections for interactions between the spin 
of one optically active electron and another because of magnetic interactions between 
the associated magnetic moments, etc.; but these are all very small and can usually be 
ignored. 

We are by now quite familiar with the spin-orbit interaction since it is found in 
studying the optical excitations of one-electron atoms and alkali atoms. The residual 
Coulomb interaction is something new (except for our brief discussion of the 'He 
atom in Section 9-4) since it is found only in studying the optical excitations of atoms 
with two or more optically active electrons. In such atoms the Coulomb interactions 
felt by an optically active electron include those due to the presence of the other 
optically active electrons in the same subshell. Since the charge distribution of the 
other optically active electrons is not spherically symmetrical because the subshell 
is only partly filled, the effect of their Coulomb interactions is not spherically sym-
metrical. Therefore, the spherically symmetrical net Hartree potential V(r) cannot 
accurately describe the actual Coulomb interactions felt by an optically active elec-
tron, but only the best spherically symmetrical average of these interactions. For 
accuracy, we must consider the departures from this average of the actual Coulomb 
interactions. We must also take into account the requirement that an eigenfunction 
describing accurately the optically active electrons be antisymmetric in an exchange 
of the labels of any two of them, since this requirement alters their charge distribution. 

A quantitative treatment can be given by adding, to the energies obtained from the 
Hartree theory, the expectation values of the energies of the residual Coulomb and 
spin-orbit interactions. This is rather like the treatment of the 1 H atom energy levels 
described in Section 8-6, but in the present case antisymmetric eigenfunctions must 
be used for the optically active electrons. Since there are, at most, only a few optically 
active electrons, these antisymmetric eigenfunctions are not too complicated to be 
handled by a large computer. Of course, we cannot present the quantitative treatment 
here; we present instead a qualitative discussion of the excited states of typical atoms. 
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L'  

We have laid the groundwork for a qualitative discussion of one aspect of the 
residual Coulomb interaction in Section 9-4. The student will recall that the require-
ment that the total eigenfunction describing two electrons be antisymmetric, in an 
exchange of their labels, introduces a connection between the relative orientation of 
the spins of the electrons and their relative space coordinates (the exchange force). 
The average distance between the two electrons is larger in the triplet states where 
the spins are "parallel" than it is in the singlet state where they are "antiparallel". 
Consequently, the positive Coulomb repulsion energy acting between the two elec-
trons is smaller in the triplet states, for which the magnitude of the total spin has the 
constant value of S' = ./1(1 + 1) h, than it is in the singlet state, for which it has the 
constant value S' = 0. We have seen an example of this in our consideration of 
the low-energy excited states of the 'Ile atom at the end of Section 9-4. In that atom 
the spin angular momenta of the two optically active electrons couple together so as 
to  yield a  total spin angular momentum with either the constant magnitude S' =  
V1(1 + 1)h or the constant magnitude S' = 0, while maintaining constant magni-
tudes for their individual spin angular momenta. Due to the connection between the 
spin orientation and space coordinates, and also to what we now call the residual 
Coulomb interaction, the energy of the atom is lowest for the state in which S' is 
largest and the electrons are furthest apart. It is found in analyses of the experi-
mentally observed spectra, and it is also found in the quantitative theoretical treat-

o ment, that essentially the same effect is important in all atoms with two or more 
optically active electrons. That is, for such atoms the residual Coulomb interaction 

•c 	produces a tendency for the spin angular momenta of the optically active electrons to 
couple in such a way that the magnitude of the total spin angular momentum S' is 
constant, and the energy is usually lowest for the state in which S' is largest. 

It is easy to see that another aspect of the residual Coulomb interaction is to produce 
a tendency for the orbital angular momenta of the optically active electrons to couple 
in such a way that the magnitude of the total orbital angular momentum L' is con- 
stant. This happens simply because in most quantum states the charge distributions 
of the electrons are not spherically symmetrical, and so they exert torques on each 
other. Since the space orientation of the charge distribution of an electron is related 
to the space orientation of its orbital angular momentum vector, there are torques 
acting between the angular momentum vectors. The torques do not tend to change 
the magnitude of the individual orbital angular momentum vectors, but only tend to 
make them precess about the total orbital angular momentum vector in such a way 
that its magnitude L' remains constant. 

The question then arises: Which of the possible values of L' corresponds to the 
state of lowest energy? There are opposing tendencies, but the basis of the one which 
usually dominates can be understood even from classical physics by considering two 
electrons in a Bohr atom, as illustrated in Figure 10-2. Because of the Coulomb 

Figure 10-2 Two optically active electrons mov-
ing in the same Bohr orbit tend to remain at op-
posite ends of a diameter so as to minimize their  
Coulomb repulsion. As a result, their orbital angu-
lar momenta tend to couple in such a way as to  
yield a maximum total orbital angular momentum.  
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repulsion between the electrons, the most stable arrangement is obtained when the 
electrons stay at the opposite ends of a diameter. In this state of lowest energy, the 
electrons rotate together with individual orbital angular momentum vectors parallel, 
and therefore with the magnitude L' of the total angular momentum vector a max-
imum. This conclusion is confirmed by an analysis of the spectra produced by atoms 
with several optically active electrons. That is, for such atoms the residual Coulomb 
interaction produces a tendency for the orbital angular momenta of the optically active 
electrons to couple in such a way that the magnitude of the total orbital angular momen- 
tum L' is constant, and the energy is usually lowest for the state in which L' is largest. 

In constrast to the tendencies produced by the residual Coulomb interaction, the 
spin-orbit interaction produces a tendency for the spin angular momentum of each 
optically active electron to couple with its own orbital angular momentum, in such a way 
as to leave the magnitudes of these vectors constant, while they precess about their 
resultant total angular momentum vector that is of constant magnitude J. We are 
familiar with this tendency in one-electron atoms and in alkali atoms. We know that 
it is due to torques arising from the interaction of the magnetic dipole moment con-
nected with the spin angular momentum and the magnetic field connected with the 
orbital angular momentum. We also know that the energy is lowest for the state in 
which J is smallest (for a less than half-filled subshell). 

The residual Coulomb and spin-orbit interactions tend to produce effects which 
are in opposition to each other. But for atoms of small and intermediate Z the effects 
of the residual Coulomb interaction are much larger than the effects of the spin-orbit 
interaction. Except for atoms of large Z, the residual Coulomb interaction is treated 
first, since it is the most important, and the spin-orbit interaction is temporarily 
ignored. Then the individual spin angular momenta S i  of the optically active electrons 
are considered to couple to form a total spin angular momentum S', where 

S'=S 1 + S2+•••+Si+••• 	 (10-6)  
and where S' has a constant magnitude satisfying the quantization condition 

S' = s'(s' + l)h 	 (10-7)  
Also, the individual orbital angular momenta L i  of the optically active electrons are 
considered to couple to form a total orbital angular momentum L', where 

L'=L 1 + L2+•••+ Li +••• 	 (10-8)  

and where L' has a constant magnitude satisfying the quantization condition 
L' = 	+ 1)h 	 (10-9)  

These vectors couple in such a way that all their magnitudes S i  and Li  also remain 
constant. Because of the residual Coulomb interaction, the energy of the atom de-
pends on S' and L', so quantum states of the same configuration, but associated with 
different values of S' and L', no longer have the same energy. The state with the 
maximum possible values of S' and L' usually has the minimum energy. 

Having taken the dominant residual Coulomb interaction into account, the weaker 
spin-orbit interaction is then included. This is done by considering a spin-orbit inter-
action between the angular momentum vectors S' and L'. The interaction couples 
these two vectors in such a way that the magnitude J' of the total angular momentum 

J'=L'+S' 	 (10-10) 
is constant, and S' and L' remain constant. The magnitude of J' is also quantized 
according to the usual condition 

J' = ^J(J'  + 1) h  (10-11)  

As a result of the spin-orbit interaction, the energy of the atom depends also on J'. 
 The state with the minimum possible value of J' has the minimum energy. The pro- 

cedure described in the last two paragraphs is commonly named LS coupling. But 
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sometimes it is named Russell-Saunders coupling after the two astronomers who first 
used it in studying atomic spectra emitted by stars. The procedure is valid except for 
atoms of large Z. 

The student should be warned that the common name frequently causes confusion 
because it seems to imply that the coupling between the L and S vectors is the most 
important. In fact, just the opposite is true. In LS coupling the coupling of the in-
dividual L vectors to form the total L vector, and also the coupling of the individual 
S vectors to form the total S vector, are the most important because they have the 
largest effect on the energy. The coupling of the total L vector to the total S vector 
is less important because it has a smaller effect on the total energy. 

If Z is large, the spin-orbit interaction is too strong (see Table 10-1) to justify ignoring it 
even temporarily. This complicates the situation because both the residual Coulomb and the 
spin-orbit interactions must then be treated simultaneously. For atoms of the largest Z, the 
spin-orbit interaction begins to dominate the residual Coulomb interaction, and the treatment 
simplifies because a sequential procedure again becomes possible. This procedure, called JJ 
coupling, involves first treating the relatively strong coupling of the spin and orbital angular 
momenta of each optically active electron of the large Z atom, to form its total angular mo-
mentum, and then treating the relatively weak coupling of these angular momenta to form the 
total angular momentum for all the electrons. Since most atoms are either good or fair ex-
amples of LS coupling, it is the only procedure we shall consider in this chapter. In Chapter 15, 
we shall consider JJ coupling in connection with the behavior of protons and neutrons in 
nuclei, since in all nuclei these particles move under the influence of a very strong spin-orbit 
interaction. 

10-4 LS COUPLING 

Figure 10-3 illustrates the way the various angular momentum vectors combine in LS 
coupling in the state which is normally the one of minimum energy for two optically 
active electrons with quantum numbers l l  = 1, s 1  = 1/2, and  12 = 2, s2  = 1/2. The 
spin angular momenta S i  and S2 precess about their sum S', and S' has its maximum 
possible magnitude (corresponding to s' = 1). The precession is rapid because their 
coupling is relatively strong. The orbital angular momenta L 1  and L2 precess rapidly 
about their sum L' because their coupling is also relatively strong, and L' also has its 

s 

Figure 10-3 The coupling of various angular momentum vectors in a typical LS coupling 
state of minimum energy. Left: The orbital angular momenta L 1  and L2  of the two electrons 
precess rapidly about their vector sum L'. Similarly, their spins S 1  and S2 precess rapidly 
about their sum S'. Right: The total orbital angular momentum L' and the total spin angular 
momentum S' precess slowly about their sum J', the total angular momentum. Finally, J' can 
be found anywhere on a cone symmetrical about the z axis. 
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maximum possible magnitude (corresponding to l' = 3). In addition, there is a slow 
precession of S' and L' about their sum J', with J' having its minimum possible 
magnitude (corresponding to j' = 2). This precession is slow because the coupling 
between S' and L' is relatively weak. Finally, J' can be found anywhere on a cone 
symmetrical about the z axis, with its component Jz along that axis a constant given 
by the quantization condition 

Jz= m'J^i 

where 
m; = —j',—j' + 1,...,+j'-1,+j' 	 (10-13)  

Figure 10-3 is drawn for m' = j'. The quantization of the magnitude of the total 
angular momentum J', and of its z component Jz, is a necessary requirement of the 
absence of external torques acting on the atom. 

Figure 10-3 shows only one of the quantum states that can be formed in LS 
 coupling by two optically active electrons with quantum numbers ll  = 1, s 1  = 1/2, 

and l2  = 2, s2  = 1/2. In fact, there are twelve different sets of states, with different 
quantum numbers s', l', j', that can be formed by these two electrons; and each of 
these twelve sets contains states of 2j' + 1 different possible values of m ; . The rule 
specifying the possible values of m i  is expressed by (10-13). The rules specifying the 
possible values of s', l', j' are conveniently expressed with reference to vector addition 
diagrams employing vectors whose lengths are proportional to the quantum numbers, 
just as we have done in Section 8-5. For the two electrons in question, these diagrams 
have the form indicated in Figure 10-4. The student may verify that the possible 
values of s', l', j' shown in the vector diagrams agree with those obtained from the 

(10-12)  

J
N

Il
d

n
o
J
 S

7 

s ' = 1  

          

     

1  
s ' = 1  

    

       

s ' = 1  

  

        

/ '=3  

 

^ 

l' =  1 '=3  

 

^ 

l'=2  

 

=2  
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l' =1Itj'  

s' = 0, 1'=3, j' =3 	 s' = 0, 1'=2, j' =2 	 s' = 0, 1'=1, j' =1  

Figure 10-4 Vector addition diagrams for the quantum numbers I L  = 1, s 1  = 1/2; / 2  = 2,  

s2  = 1/2.  
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s' = 3/2 

1 '=7 

53 = 1/2 
s' = 1/2 

/3 = 4 Figure 10-5 Vector addition diagrams for 
the maximum and minimum values of s' 
and l' in a configuration of three opt-
ically active electrons with / = 1, / 2  = 
2, / 3  = 4. 

s' = Is l  - s 2 1, Isl  - s 2 I + 1, . . . , s l  + s2, 
l'=111  -12 1,11 1  -121+ 1,...,1 1 + 1 2 	 (10-14) 
j' = is' - l'I , is' -1'1+1,...,s'+l' 

Since s 1  = s2  = 1/2, the first equation gives 
s' =0,1 

This is the same as (9-21). The other two equations can be proved by the same type 
of vector inequality arguments we used to prove (8-33). Obvious generalizations of 
the vector diagrams can be used to find the possible quantum numbers for cases with 
more than two optically active electrons. 

Example 10 -2. Find the possible values of s', l', and j' for a configuration with three optically 
active electrons of quantum numbers l l  = 1, 12  = 2, and 1 3  = 4. 
►  With the aid of the constructions shown in Figure 10-5, we conclude that the minimum 
value of s' is 1/2 and that the maximum value of s' is 3/2. Therefore, the possible values are 
s' = 1/2, 3/2. The constructions also show that the minimum value of l' is 1, and that the 
maximum value of J' is 7. So the possible values are 1' = 1, 2, 3, 4, 5, 6, 7. The possible values 
of j' are then j' = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2. Not indicated in Figure 10-5, 
or in Figure 10-4, are  the 2j' + 1 possible values of m for each value of j'. In the absence of 
external fields, the energy of the atom does not depend on mp  • 

Figure 10-6 illustrates the splitting of the single degenerate level of a particular con-
figuration of an atom with two optically active electrons, due to the residual Coulomb 
and spin-orbit interactions. The configuration is 3d 1 4p 1 , or in abbreviated form 3d4p, 
which involves the same quantum numbers, l l  = 1, s l  = 1/2; 12  = 2, s2  = 1/2, con-
sidered in Figures 10-3 and 10-4. Also illustrated in the figure is the notation used 
by spectroscopists to label the quantum numbers of the levels. For instance, the 
lowest energy level is identified by the symbol 3d4p 3F2 . The first part of the symbol 
gives the configuration. The second part gives the values of s', 1', j'. The letter specifies 
the value of l' according to the scheme of Table 9-3 (except that it is conventional to 
use capitals); that is, F means l' = 3. The subscript gives the value of j'; that is, j' = 2. 
The superscript is equal to 2s' + 1 (and, if s' < l', is also equal to the number of 
components into which the levels are split by the spin-orbit interaction); that is, 
2s' + 1 = 3 so s' = 1. The second part of the symbol is read "triplet F 2." 
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Figure 10-6 The splitting of the energy levels in a typical LS coupling configuration.  

We cannot present explicit equations from which the energies of all the levels in 
Figure 10-6 can be evaluated, but we can write an equation which gives the j' depen-
dence of the spin-orbit interaction energy. This dependence splits the levels for s' = 1, 
and a given l', into triplets of levels. We consider again (8-35) for the spin-orbit inter-
action energy, writing it as  

AE= K[j'(j'+1)—l'(l'+1)—s'(s'+1)] 	 (10-15)  

This equation predicts the expectation value of the interaction energy of the total 
spin and orbital angular momentum vectors S' and L', providing LS coupling is valid 
so that these  vectors are  meaningful. The quantity K is not simply proportional to 
a term like (1/r) dV(r)ldr, as might be expected from earlier applications of (8-35), 
because the potential is more complicated in the present situation. However, K does 
have the same value for all the energy levels of a so-called multiplet; i.e., for all the 
energy levels of a configuration with common values of s' and  1'. Therefore, we can 
calculate from (10-15) the separation in energy between the adjacent levels of a multi-
plet. If the quantum number associated with the level of lower energy is j', the quan-
tum number associated with the level of higher energy is j' + 1, and the separation 
e in the energy of the two levels is 

e=K[(j' +1)(j'+2)— l'(l' +1)— s'(s' +1)]  

K[j'(j' +1)— l'(l' +1)— s'(s' +1)]  

=K[(j ' + 1)(j'+2)—j ' (j ' + 1 )]  
This yields the simple result 

e = 2K(j' + 1) 	 (10-16)  

Thus we see that the separation f in the energy of adjacent levels of a multiplet is 
proportional to the total angular momentum quantum number of the level of higher 
energy. This prediction of (10-16) is called the Landé interval rule. It is widely used in 
atomic physics, as we shall see in Examples 10-3 and 10-4. Essentially the same rule 
is used in molecular and nuclear physics. 

Example 10 -3. In the 3d3d configuration of the 20Ca atom there is a multiplet (in this case 
a triplet) of levels: 3P0 , 3 P 1 , 3P2 . The lowest energy level is observed to be 3P0 , the next is 3 P 1 , 
and the highest is 3P2 . The measured separation g in energy between the 3 P 1  and 3P0  levels 
is 16.7 x 10 -4  eV, and g between the 3P and 3P 1  levels is measured to be 33.3 x 10 -4  eV. 
Compare these values of e with the predictions of the Landé interval rule, (10-16). 
► The theory does not predict an accurate value for the K in (10-16), but it does predict that 
K has the same value for all the levels of a multiplet. So we can obtain an accurate prediction 
for the ratio of the two values of g. For the lowest energy level j' = 0; for the next j' = 1; and 
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Table 10-2 	Fine-Structure Splittings in the Calcium Atom 

Configuration 	Levels Separation 	Levels Separation 

Ratio  

Exp.  Theo.  

3d3d  31) 1, 3 P0  16.7 x 10 -4eV  3P2 , 3P 1  33.3 x 10 -4eV  1.99 2/1  
4s4p  3 P1 , 3 P0  64.9 x 10 -4eV  3P2 , 3P1 131.2 x 10 -4eV  2.02 2/1  
4s3d  3 D 2 , 3 D 1  16.9 x 10 -4eV  3D3, 3 1)2 

 
26.9 x 10 -4eV  1.59 3/2  

3d4p  3 D2, 3 D1  33.1 x 10 -4eV  3 D3, 3 13 2  49.6 x 10 -4eV  1.50 3/2  

for the highest j' = 2. Thus the Landé interval rule predicts 

g(3P2, 3P1)  _  2K(j' + 1
1
)i ,  =1  	2  

6'(3P 1 , 3P0) 	2K(j' + 1)̂ , =0 	1  
The ratio of the measured values of e is 

e(3P2, 3P1)  33.3 x 10 -4  eV  

613/3 1, 3P0)3P0) 16.7 x 10 -4 
 eV = 1.99 

This excellent agreement between the experimentally measured and theoretically predicted  

ratios of ' provides evidence for LS coupling in the 20Ca atom. In other words, the Landé  

interval rule can be used as a test for the presence of LS coupling. 	 •  

The first row in Table 10-2 summarizes the successful Landé interval rule test for  

the presence of LS coupling, carried out in Example 10-3, for a triplet in one of the  

configurations of the 20Ca atom. The other rows show the equally successful results  

of the same test applied to triplets in other configurations of that atom. All together,  

these tests provide convincing evidence for the presence of LS coupling in the 20Ca  
atom. When the same tests are applied to multiplets in various configurations of other  

atoms with more than one optically active electron, they show that LS coupling is  
present in all such atoms of small and intermediate Z.  

Example 10-4. Measurements made on the line spectrum emitted by a certain atom of  

intermediate Z show that the separations between adjacent energy levels of increasing energy,  

in a particular multiplet, are approximately in the ratio 3 to 5. Use the Landé interval rule to  

assign the quantum numbers s', l', j' to these levels. This example gives some insight into the  
procedure used by the experimental spectroscopist in analyzing his measurements.  

► The experimental information is indicated in the energy-level diagram of Figure 10-7. If the  

separation between the lowest energy pair of levels is ', then the separation between the higher  

energy pair is approximately (5/3)e. Although the values of j' for the levels are not initially  

known, it is known that the possible values differ by one, and that the lowest energy level is  

obtained for the lowest j'. So if that quantum number has the value j' for the lowest level, it  
has the values j' + 1 and j' + 2 for the successively higher levels.  

Now the Landé interval rule says that the separation between adjacent levels is proportional  

to the j' value of the upper level. So the separation between the lower pair of levels should be  

= 2K(j'+1)  

and the separation between the higher pair of levels should be  

(5/3)6' = 2K(j' + 2)  
Dividing the first equation by the second, to eliminate the unknown K, we obtain  

3^ 2K(j' + 1)  
5^ 2K(j' + 2)  

Figure 10-7 Illustrating the assignment of quan-
tum numbers in a multiplet from the observed level  
separations.  

j' +2  

j' + 1  

j'  

  

 

 

  



which gives 

or 

and 

+ 5=3j' + 6 

2j'=1 

j' = 1/2 

Thus the j' values of the levels are, in order of increasing energy, j' = 1/2, 3/2, 5/2. 
To determine the values of s' and  1' for the multiplet, we use the third of equations (10-14) 

j' = Is ' 
—l'I, 
 Is' 

 —l ' I +l ,..., s ' + l' 

Since the minimum value of j' is 1/2 and the maximum is 5/2, we have 

Is — l'I = 1/2 

and 
s'+l' = 5/2 

To handle the absolute value, we consider two cases. In the first case s' > l', and these two 
equations are 

and 

Adding gives 

Subtracting gives 

s' — l' =1/2 

s' + l' = 5/2 

2s' = 6/2 	or 	s' = 3/2 

2l'=4/2 	or 	l'=1 

In the second case s' < l', and the equations we must solve are 
— (s' — 1') = 1/2 

and 
s' +l' =5/2 

Adding gives 
2l' = 6/2 	or 	l' = 3/2 

But this is not possible, as the total orbital angular momentum quantum number l' cannot 
have a half-integral value. Therefore, the first case, s' > l', is the correct one, and we conclude 
that s' = 3/2 and l' = 1. 

The spectroscopist carries out this procedure on all the multiplets of a particular configura-
tion, the levels being grouped into configurations by the similarity of their energies. Having 
thereby obtained the l' values for the multiplets of the configuration, the  1 quantum numbers 
of the configuration are identified by using the second of (10-14) (or by using an obvious ex-
tension of the equation if he knows that there are more than two optically active electrons 
because some of the s' values are larger than 1). Identification of the n quantum numbers 
associated with the various 1 quantum numbers is not difficult,  if the n quantum numbers of 
the ground state configuration are known, by making use of the fact that the energy of the 
subshells with common values of 1 increases monotonically with increasing n. The identifica-
tion of the n quantum numbers of the ground state configuration of the atoms is based on 
the same fact. 

10-5 ENERGY LEVELS OF THE CARBON ATOM 

As yet another example of LS coupling, we consider in this section the energy-level 
diagram of the 6C atom, shown in Figure 10-8. The ground state of this atom has 
the configuration 1s22s22p2 , so that there are two p electrons which are optically 
active. The zero of the energy scale in the diagram is defined such that the magnitude 
of the total energy of the atom in its ground state is equal to the energy required to 
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Figure 10-8 Some energy levels of the carbon atom.  

singly ionize the atom. Consequently, the diagram is directly comparable with en-
ergy-level diagrams for alkali atoms and 1 H, in which the zero of energy is defined  

in the same way. The energy levels are labeled by the configuration of the two opti-
cally active electrons, and by the spectroscopic symbol specifying s', l',  j'.  

Consider first the average energy of the levels of the various configurations. In the  

configuration of lowest energy, 2p 2, both electrons remain in the same subshell that  

they occupy in the ground state of the atom. In other configurations, one electron  

remains in that subshell and one is in a subshell of higher energy. Note that the  

average energies of the configurations depend on the n and 1 quantum numbers of the  
electron in the higher energy subshell in essentially the same way as if this electron  

were the single optically active electron in an alkali atom.  

In the 2p2  configuration, the one of lowest average energy, the 3P0 1,2 states are of  
lower energy than the 1S0  and 1 D 2  states because they correspond to a larger value  

of s', and the 1 D2  states are of lower energy than the 1S0  state because they corre-
spond to a larger value of 1'. Note that the s' dependence is stronger than the l' depen-
dence. It is almost always found that the energy associated with the residual Coulomb 
interaction coupling of the spin angular momenta is somewhat larger than the energy 
associated with the residual Coulomb interaction coupling of the orbital angular 
momenta. Of the three closely spaced energy levels for the  3P0 , 1 , 2  states that would 
be resolved on a larger diagram, the one for the 3P0  state is of lowest energy because 
it corresponds to the smallest value of j'. Thus the ground state of the atom is the 
state 2p 2 3P0 . That is, in the ground state of carbon there are two electrons in the 
partially filled third subshell (the 2p subshell), which are coupled so that they have 
one unit of total spin angular momentum, one unit of total orbital angular momen-
tum, and zero total angular momentum. The study of the low-energy excited states 
of atoms leads to an extremely complete description of their ground states! 

In the 2p3s configuration of 6 C the level corresponding to maximum s' is lowest 
in energy, just as in the 2p 2  configuration. Deviations from this rule, and from the 



rule that the maximum l' gives the lowest energy, are seen in the configurations of 
higher average energy, but in 6C there are no deviations from the rule that the mini-
mum j' gives the minimum energy. 

Not shown in Figure 10-8 are a few energy levels of the configuration 2s2p 3, which 
are not usually excited. Also not shown is the spin-orbit splitting of the energy levels, 
since it is much too small to be seen on the scale of the diagram. 

Although not present in 6C, in many atoms there is a hyperfine splitting of the 
energy levels. It is smaller than the spin-orbit splitting by about three orders of 
magnitude. Hyperfine splitting is due to either or both of the following: (1) the inter-
action between an intrinsic magnetic dipole moment of the nucleus and a magnetic field 
produced by the atomic electrons, and/or (2) the interaction between a nonspherically 
symmetrical nuclear charge distribution and a nonspherically symmetrical electric field 
produced by the atomic electrons. These effects are of interest principally because 
they can provide very useful information about the nucleus, and they will be dis-
cussed in Chapter 15. ` 1f  

Note the absence in the 6 C energy-level diagram, of Figure 10-8, of levels for the 
1 P, and 3S1  states in the 2p 2  configuration. This is an effect of the exclusion principle. 
In all other configurations of the diagram the exclusion principle is automatically 
satisfied by the fact that the n quantum numbers of the optically active electrons dif-
fer. But in the 2p 2  configuration both the n and 1 quantum numbers are the same, so 
the exclusion principle puts restrictions on the possible values of the remaining 
quantum numbers. In the Hartree approximation these are sets of the quantum 
numbers m 1 , m s , one set for each of the independent optically active electrons having 
common values of the quantum numbers n and 1. In this approximation the restric-
tions of the exclusion principle are simply that no two electrons can have the same 
set of all four quantum numbers. In LS coupling, where the m 1  and ms  are not useful 
and the quantum numbers l', s', j', mi  are used instead to specify the way the optically 
active electrons are interacting, the restrictions of the exclusion principle are more 
complicated. For the general situation the arguments used to work out the LS 
coupling exclusion principle restrictions are very involved, and even in simpler special 
situations they are somewhat involved. (Interested students will find a sample of these 
arguments, and a complete statement of their conclusions, in Appendix P.) Here we 
shall only mention two of the conclusions obtained from the arguments. One is that 
the absence of the 1 P, and 3 S 1  states in a 2p2  configuration, and of other states in 
other configurations in which the electrons have the same n and 1 quantum numbers, 
can be understood on the basis of the exclusion principle. Another conclusion is that 
when there are as many electrons having the same n and 1 quantum numbers as is 
allowed by the exclusion principle, then the only state that occurs is 'S o . This restric-
tion can be expressed by saying that when a subshell is completely filled, the only 
allowed state is one in which the total spin angular momentum, total orbital angular 
momentum, and total angular momentum are all zero. A consequence of the fact that 
there are no total angular momenta in a completely filled subshell is that it has no 
net magnetic dipole moment. Therefore, only the few electrons in an atom that are 
not in filled subshells are involved in its interaction with external magnetic fields—an 
important simplification. 

This particular restriction of the exclusion principle applied to LS coupling is exactly what 
would be expected from the exclusion principle applied to the Hartree approximation. To see 
that this is so, assume that the electrons in a completely filled subshell are not interacting 
at all with each other. Then the behavior of each can be described by values of the quantum 
numbers m, and ms. Since the subshell is filled, electrons would be found with all possible 
combinations of m 1  and m,, but since all the electrons have the same n and 1, each combination 
of m 1  and m, would occur only once. The result is that for each electron having a certain 
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positive z component of orbital angular momentum (because it has a certain positive m 1), there 
would be an electron having the corresponding negative z component (because it has the 
corresponding negative m 1). Thus the total orbital angular momentum of the electrons in the 
filled subshell would sum up to zero. The same would be true for their total spin angular 
momentum. Therefore, their total angular momentum would also have to be zero. 

The optical line spectrum of the 6C atom, or of any other LS coupling atom, can 
be constructed from its energy-level diagram by evaluating the energy and frequency 
of photons emitted in all possible transitions that do not violate the following LS-
coupling selection rules: 

1. Transitions can occur only between configurations which differ in the n and 1 
quantum numbers of a single electron. This means that two or more electrons cannot 
simultaneously make transitions between subshells. 

2. Transitions can occur only between configurations in which the change in the 1 
quantum number of that electron satisfies the same restriction that applies to one-
electron atoms, (8-37) 

Al =+1 
3. Transitions can occur only between states in these configurations for which the 

changes in the s', l', j' quantum numbers satisfy the restrictions 
As' =0 
Ai' =0, +1 	 (10-17) 
Aj' =0, + 1 (but not j' =0to j' =0) 

The first of (10-17) prohibits transitions between singlet (s' = 0) and triplet (s' = 1) 
states, and vice versa. Nevertheless, transitions are observed between the 2p 21 D2 

 states and the 2p2 3P0,1,2  states of 6C. The reason is that all excitations of that atom 
to singlet states eventually lead to the population of its 2p 2  'D 2  states, since Figure 
10-8 shows them to be the lowest energy singlet states. When they are highly pop-
ulated, the total number of transitions per second to the 2p 2  3P01,2  states becomes 
appreciable, even though the probability is very small that any single atom will make 
this transition since it violates the As' = 0 selection rule. Physically, this rule says 
that if the coupling of the electron spins changes in an atomic transition, the atom 
cannot emit radiation of the type produced by oscillating electric dipole moments. 
If the spin coupling does change, radiation is emitted, but at a very low rate. The 
radiation is produced inefficiently by oscillating spin magnetic dipole moments, as-
sociated with the change in the spin coupling. The last two selection rules of (10-17) 
are similar to those of (8-37) and (8-38). 

10-6 THE ZEEMAN EFFECT 

In 1896 it was observed by Zeeman that, when an atom is placed in an external 
magnetic field, and then excited, the spectral lines it emits in the deexcitation process 
are split into several components. Examples of the Zeeman effect are illustrated in 
Figure 10-9. For fields less than several tenths of 1 tesla, the splitting is proportional 
to the strength of the field. The Zeeman splitting in such fields is smaller than the 
fine-structure splitting, which is proportional to the strength of the more intense 
internal fields of the atom. Clearly, the Zeeman effect indicates that the energy levels 
of the atom are split into several components in the presence of an external magnetic 
field. In certain special cases, which were called "normal," these energy-level splittings 
could be understood in terms of a classical theory developed by Lorentz. But in 
general cases, which were called "anomalous," even a qualitative explanation of the 
observed splittings could not be given until the development of quantum mechanics 
and the introduction of electron spin. 



t■ No field 

Weak field 

Transitions between any singlet 
states in atom with even number 
of optically active electrons. 

Transitions between doublet 
first excited state and doublet 
ground state in the sodium atom. 

2I.1/2 to 251/2 2P312 to  251/2 

INN 
TTT 

Normal 	 Anomalous 

Figure 10-9 Representations of photographic plates showing the splitting of several 
spectral lines in the normal and anomalous Zeeman e ffect. The arrows show the splittings 
predicted by a classical theory of Lorentz. 

In terms of the modern theory, both the normal and the anomalous Zeeman 
splittings are easy to understand. Except when it is in an 1S0  state, an atom will have 
a total magnetic dipole moment, µ, due to the orbital and spin magnetic dipole 
moments, µ i  and µs , of its optically active electrons. (The other electrons are in com-
pletely filled subshells which have no net magnetic dipole moments.) When this 
magnetic dipole moment of the atom is in the external magnetic field B it will have 
the usual potential energy of orientation 

AE= —µ• B 	 (10-18) 
Each of the atom's energy levels will be split into several discrete components corre-
sponding to the various values of'AE associated with the different quantized orienta-
tions of µ relative to the direction of B. In other words, because it has a magnetic 
dipole moment the energy of the atom depends upon which of the possible orienta-
tions it assumes in the external magnetic field. 

To see qualitatively what is behind the distinction between normal and anomalous 
splittings, we evaluate µ by using (8-9) and (8-19) to obtain p i  and  its  for each 
optically active electron in terms of its orbital and spin angular momenta, and then 
summing over all these electrons. That is, we take 

giµb
L 	gllUb  L2 h 
	l _ h 

	— . . . 

gsµb
S 	

gslib 
 S h 	1_  h 	2

_... 

h [(L1 + L2 + ...)+2(S1 +S2+ ...)] 

We have inserted the values g 1  = 1 and gs = 2 for the orbital and spin g factors that 
determine the ratios of the magnetic dipole moments to the angular momenta. Now, 
if the atom obeys LS coupling, the individual orbital angular momenta couple to give 
the total orbital angular momentum L', and the individual spin angular momenta 
couple to give the total spin angùlar momentum S'. Then the expression for the total 
magnetic dipole moment of the atom immediately simplifies to 

µ = —
b 
 [L' + 2S'] 	 (10-19) 

We see that the total magnetic dipole moment of the atom is not antiparallel to its 
total angular momentum 

µ= 
1
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J' = L' + S' 	 (10-20) 
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The basic reason is that the orbital and spin g factor have different values. The result 
is that the behavior of  pi is quite complicated because its orientation is not simply 
related to the orientation of J'. But if S' = 0, i.e., if the spin angular momenta of the 
optically active electrons couple to zero, then µ is antiparallel to J', and the behavior 
of µ, and thus the term µ • B that produces the energy level splittings, is simpler. In 
fact, in this case where the nonclassical phenomenon of spin is effectively not involved, 
the behavior of µ • B can be explained satisfactorily by the old theory of Lorentz. 
This is the case of normal Zeeman splitting. In the general case, S' 0 and the theory 
of Lorentz fails. This is the case of anomalous Zeeman splitting. The terminology was 
introduced long before quantum theory provided a complete understanding of all 
aspects of the Zeeman splittings and, from the modern point of view, it is not very 
appropriate because there is really nothing anomalous about any of the splittings. It 
is interesting to note that the anomalous splittings could have been used at a very 
early date to show that spin exists and to show that the spin g factor differs from the 
orbital g factor. 

Now we shall evaluate quantitatively the Zeeman splittings for typical energy levels 
of LS coupling atoms by applying what we have learned about the behavior of the 
various angular momentum vectors in such atoms. From (10-20) we see that L', S', 
and J' always lie in a common plane. But that plane precesses about J' because of the 
Larmor precession of S' in the internal atomic magnetic field associated with L' (i.e., 
because of the spin-orbit interaction). Equation (8-14) shows that this precessional 
frequency is proportional to the strength of the internal magnetic field of the atom. 
From (10-19) we see that It also lies in the precessing plane, and is typically not anti-
parallel to J'. So µ must also precess about J' with a precessional frequency pro-
portional to the internal magnetic field of the atom. If an external magnetic field B 
is applied to the atom, there will in addition be a tendency for µ to precess about 
the direction of this field, with a precessional frequency proportional to its strength. 
If the external field is weak compared to the atomic field, the precession of µ about 
B will be slow compared to its precession about J'. Then the motion of it is something 
like that illustrated in Figure 10-10. Even in the case of a relatively weak external field 
the motion of  It is complicated, but not too complicated to prevent the evaluation 
of the orientational potential energy AE. 

In Example 8-4 we saw that the strength of an internal magnetic field acting on an 
optically active electron is typically of the order of 1 tesla. So we assume that the 
external magnetic field B is weak compared to 1 tesla. To evaluate the potential 
energy AE of the orientation of µ in the field B, we must evaluate — p • B = — µBB, 
where µB  is the component of  it along the direction of B. Since It precesses much 
more rapidly about J' than about B, we may evaluate µB  by first finding pi., which 
is the average component of µ in the direction of J'. We do this by multiplying µ 
by the cosine of the angle between µ and J'. Then we find µB by multiplying ,u,, by 
the cosine of the angle between J' and B. That is 

µ •J' _ 	µ b  (L'+2S')•(L'+S') 
uJ —

µ  µJ' 	h 	J' 

and 

	

J' • B 	Jz- 	µb  (L' + 2S') • (L' + S')Jz 

	

JIB  = µa J, B 	= ux J, _ 
h 
	J,z 

where we have chosen the z axis to be in the direction of B. Evaluating the dot prod-
uct gives 

J '  
µB =  — 

14 12 
(L '

+2S'2 + 3L ' •S') J2 
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Figure 10-10 Left: The total orbital angular momentum L' and total spin S' couple together  
to form the total angular momentum J' of a typical atom. The total orbital magnetic dipole  
moment µ I- and total spin magnetic dipole moment µs , similarly couple together to form  
the total magnetic dipole moment µ. Since the proportionality constant connecting L' and 

 µ^. is only half the magnitude of the constant connecting S' and pe , the total dipole moment  
will not be exactly antiparallel to J'. And since L' and S' precess rapidly about J', µi , and 

 µs . precess rapidly as well, causing µ to precess about — J' at the same rate. Thus the  
component of µ perpendicular to — J' averages to zero, and the component parallel to — J'  
remains a constant of magnitude pr . Right: In a weak applied magnetic field B, a torque  
is exerted which causes the direction — J', on which µ has the constant average component  
/ix , to precess about the direction of —B. So the average magnitude of this component on  
the direction of the field has the magnitude Its  indicated in the figure.  

Writing (8-34) with primes, we have 
3L'•S' = 3(J' 2  —L'2  — S'2)/2  

So  
, 

µB
= —  

[
L,2+.2S'2+3(J 	

J,2,2—L'2—S^2)l2^ 	 

__ µb (3J'2  + S'2  — L'2)  
h 	2J'2  

Then, according to (10-18)  
AE = —pi • B = —,u BB  

the orientational potential energy is  

AE — 
ptbB (3J'2 + S'2 — L'2) 

 J' 
h 	2J'2 	  Z  (10-21)  

Jz 
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In the state specified by the quantum numbers s', l', j', m;  the dynamical quantities 

Si2, L' 2 , J'2, Jz have the precise values s'(s' + 1)h2 , l'(l' + 1)h2 , j'(j' + l)h 2, m h, respec-
tively. Using these values in (10-21) we obtain an expression for the Zeeman effect 
energy splitting that is most conveniently written as 

AE = µbBgm ; 	 (10-22) 
where 

g=1+f(7 +1)+s'(s'+1)—l'(l'+ 1) 	 (10-23) 
2f(f + 1 ) 

The quantity g is called the Landé g factor. Note that its value is g = 1 = g1 , when 
s' = 0 so j' = 1'. Its value is g = 2 = g3 , when l' = 0 so j' = s'. These are just the values 
that would be expected since if s' = 0 the angular momentum is purely orbital, and 
if l' = 0 it is purely spin. Thus the Landé g factor is a kind of variable g factor that 
determines the ratio of the total magnetic dipole moment to the total angular mo-
mentum in states where that angular momentum is partly spin and partly orbital. 
From (10-22) we see that in an external field of strength B each energy level will split 
into 2j' + 1 components, one for each value of m i'. We also see that the magnitude 
of the splitting will be different for levels with different Landé g factors. 

Example 10-5. Evaluate the Landé g factor for the 3 P 1  level in the 2p3s configuration of the 
6C atom, and use the result to predict the splitting of the level when the atom is in an external 

° magnetic field of 0.1 tesla. 
► For the 3P 1  state s' = 1' = j' = 1. So 

Û 	 1(1 +1)+1(l+1)-1(1+1) — 	2 	3 
g— 1 +

1(1 
 2x1(1+1) 	 1+ 2x2 2  

For j' = 1 the possible values of m;  are -1, 0, 1, so the level is split into three components, 
one with the same energy and the others displaced in energy by 

DE = µ bBgm;  = ±µbag = +9.3 x 10 -24  amp m 2  x 10 1  tesla x 1.5 

= ±1.4 x 10 -24  joule 

= +8.7 x 10 -6  eV 	 44 

Figure 10-11 shows, to scale, the splittings of the 25112  ground state energy level 
and the 2P112  and  2P312  lowest-excited-state energy levels of the 11Na atom, when it 
is placed in a weak external magnetic field. Note that the external magnetic field re- 
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Figure 10-11 The Zeeman splittings of the 2P1/2 , 3/2  first excited state levels of sodium, 
and of its 2S 1/2 ground state level. The transitions allowed by the selection rules are 
shown. Compare the resulting spectral lines with those shown in Figure 10-9. 
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moves the last vestige of degeneracy of the levels, since the energy depends on 
The figure also shows the transitions allowed by the selection rule for 

Am;  = 0, + 1 (but not m; = 0 to m;  = 0 if Aj' = 0) 	(10-24) 
This selection rule is very closely related to the one we derived in Example 8-6. Even 
with its restrictions on the allowed transitions, the Zeeman effect splits each spectral 
line emitted by the atom into a pattern that generally contains a number of com-
ponents. The student should compare the allowed transitions, indicated by arrows in 
Figure 10-11, with the anomalous pattern of lines emitted by "Na  in these tran-
sitions, shown in Figure 10-9. 

All spectral lines arising from transitions between singlet states are split into a 
simple pattern of two components symmetrically disposed about a third component 
that has the same frequency as the single zero-field line, as can be seen in the normal 
pattern of lines shown in Figure 10-9. The reason is that s' = 0 for singlet states, so 
all the g factors have the same value g = 1. It is easy to show that this leads to spectral 
lines with only three components, by constructing a diagram similar to Figure 10-11. 

Example 10-6. The most easily interpreted evidence for the splitting of atomic energy levels 
in an external magnetic field is electron spin resonance. If 11 Na atoms in their ground state are 
placed in a region containing electromagnetic radiation of frequency y,  and a magnetic field of 
strength B is applied to the region, electromagnetic energy will be strongly absorbed when the 
photons have energy hv which just equals the Zeeman splitting of the two components of the 
ground state energy level. The reason is that these photons are able to induce transitions be-
tween the components, indicated in Figure 10-12, in which they are absorbed. In a typical 
experiment y  = 1.0 x 101°  Hz. Determine the value of B at which the frequency defined by 
the Zeeman splitting is in resonance with this microwave frequency. 
► The ground state of 11 Na is a 2S112  state, for which g = 2 and 	= ± 1/2. So (10-22) pre- 
dicts that the displacement in energy of the components of the ground state level in an external 
field B will be 

AE = ubB9m; = ubB2(± 1/2) = ± µbB 
Equating hv to the separation in energy between these two components, we have 

hv = 2µbB 

So 
hv 	6.6 x 10 -34  joule-sec x 1.0 x 10 1 °/sec 

B = 	— 	 = 0.35 tesla 
2µb 	2 x 9.3 x 10 - 24  amp-m2  

This effect is widely used by chemists to measure the magnetic fields experienced by an optically 
active electron in an atom that is part of a molecule. The electromagnetic radiation is supplied 
by a microwave oscillator, and the power drawn from the oscillator is monitored while its 
frequency is varied until the resonance condition is observed. • 

The Zeeman effect is very useful in experimental spectroscopy. By analyzing the 
Zeeman splittings of the spectral lines of an atom, the spectroscopist determines the 
Zeeman splittings of the energy levels of the atom. These can conclusively confirm 
the assignment of the quantum number j' of each level, because 2j' + 1 is equal to 
the number of components into which the level is split. Furthermore, the magnitude 
of the splitting between any two components gives the value of pbBg and, /Lb  and B 
being known, this gives the value of g for the energy level. Since the value of g depends 
on s', l' , j' if the atom obeys LS coupling, it can be used to confirm the assignment of 
s' and 1'. The initial assignment of values to these three quantum numbers usually 

Figure 10-12 Illustrating the transition observed in 
electron spin resonance involving the ground state en-
ergy levels of sodium, split by an external magnetic 
field. 
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comes from application of the Landé internal rule to measured separations of the  

levels of a multiplet, as in Example 10-4.  
An external magnetic field B, which is weak compared to the internal atomic mag-

netic fields that couple S' and L' to form J', cannot disturb this coupling and only  
causes a relatively slow precession of J' about the direction of B. However, if B is  
stronger than the atomic magnetic field, it overpowers the field and destroys the  

coupling of S' to L'. In this case S' and L' precess independently about the direction  

of B. This is the case of the Paschen-Bach effect, which is observed for external fields  

somewhat larger than 1 tesla. If the atom obeys LS coupling, its total magnetic dipole  
moment is still given by (10-19)  

= — [L' + 2S']  

since neither the coupling of the individual spin angular momenta to form S' nor the  

coupling of the individual orbital momenta to form L' are destroyed by such an ex-
ternal field. But in this case ,uB  is simply  

= — (LZ + 2SZ)  

where we have chosen the z axis in the direction of B. Then  

AE= — µ• B=  — N,BB=B(LZ+ 2Sz)  

and we obtain immediately  
AE = ,ubB(m'l  + 2ms) 	 (10-25)  

The quantum numbers mi and ms are useful for an atom in an external magnetic field 
somewhat stronger than the internal magnetic field, because LZ and Sz have definite 
values in these circumstances. It is observed that the selection rules for the two quan-
tum numbers are: 

ams = 0 	 (10-26)  
Am; = 0, + 1 	 (10-27)  

The first selection rule says that the total spin angular momentum, and magnetic 
dipole moment, do not change orientation in an atomic transition. Since such transi-
tions involve the emission of electric dipole radiation, whereas a magnetic dipole 
moment of changing orientation would lead to the emission of magnetic dipole radia-
tion, the origin of the selection rule is obvious. The second selection rule was derived 
in Example 8-6. All the spectral lines are split by the Paschen-Bach effect into three 
components, just as in the normal Zeeman effect. 

10-7 SUMMARY  

This chapter is summarized in Table 10-3, which lists, in order of decreasing impor-
tance in determining the energy, all of the significant interactions experienced by the 
optically active electrons in a typical multielectron atom placed in a weak external 
magnetic field. By typical, we mean an atom with a less than half-filled outer subshell, 
whose atomic number Z is low enough that it obeys LS coupling. If Z is very high, 
the atom obeys JJ coupling and the most important weaker interaction is the spin-
orbit interaction. If the external magnetic field is stronger than the internal magnetic 
field, the interaction it produces is called the Paschen-Bach interaction, and it is more 
important than the spin-orbit interaction in LS coupling. External electric fields have 
effects similar to, but more complicated than, external magnetic fields. 

If the optically active electrons are in a more than half-filled subshell the sign of 
the spin-orbit interaction is reversed because the atom acts as if it had positively 
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Importance in  
Determining  

Energy  
Nature of  
Interaction  

Quantum  
Numbers  

Determining  
Energy  

Energy Lowest  
For  

Dominant  
interaction  

Most important  
weaker inter-
action  

Slightly less  
important  

Appreciably less  
important  

Least important  

Electric;  
average  
potential  

Electric;  
departures from  
average  
potential  

Electric;  
departures from  
average  
potential  

Magnetic;  
internal field  

Magnetic; 	 m^ 
external field  

Minimum n  
Minimum 1  

Maximum s'  

Maximum 1'  

Minimum j'  

Most negative  
m^ 

charged holes instead of negatively charged electrons, which reverses the  relative 
 orientation of the magnetic dipole moment and angular momentum vectors. This re-

sults in the energy level with maximum instead of minimum j' lying lowest. But for 
such atoms maximum s' and maximum l' still give the lowest energy level because 
the sign of the residual Coulomb interaction is unchanged; it is repulsive between 
positive holes just as it is between negative electrons. 

QUESTIONS  

1. Give an example of a system studied in science or engineering, other than a multielectron  

atom, which is best treated by a succession of increasingly accurate approximations.  

2. Why are astronomers so dependent on information obtained from optical spectra?  

3. Why is it not possible to give a small amount of energy to an electron in an inner subshell  

of an atom? What happens if a large amount of energy is given to an electron in an outer  

subshell?  

4. Where in the Hartree approximation is the assumption made that the net potential is  

spherically symmetrical?  
5. Explain, in simple terms, why the spin-orbit interaction becomes stronger with increasing  

Z.  
6. Do atoms of high Z generally have more optically active electrons than atoms of low Z?  

7. Chemists usually speak of valence electrons. What is the corresponding term usually  

employed by physicists?  
S. In studying the residual Coulomb interaction, eigenfunctions are used which are anti-

symmetric with respect to exchange of the labels of pairs of optically active electrons.  

What is the justification for not using eigenfunctions which are antisymmetric with respect  

to the exchange of labels for any pair of electrons in the atom?  

9. Does the coupling of the spin angular momentum of one optically active electron in a  

typical atom to the spin angular momentum of another optically active electron involve a  

magnetic interaction between their spin magnetic dipole moments? If not, explain why  

not, and also explain in simple terms what the coupling is due to.  
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10. Explain the physical origin of the coupling between the orbital angular momenta of the 
optically active electrons in a typical atom. 

11. Why is there a classical explanation for the coupling of orbital angular momenta of 
optically active electrons, but not for the coupling of their spin angular momenta? 

12. In a multiplet with s' > 1', into how many components are the levels split by the spin-
orbit interaction? Consider the multiplet discussed in Example 10-4. 

13. What is the difference between LS coupling and JJ coupling? 

14. What is the relation between the quantum states allowed by the LS coupling exclusion 
principle for a subshell with one hole (i.e., completely filled except for one electron) and 
the quantum states allowed for a subshell with one electron? Would there be a simple 
relation between the optical excitations of a halogen atom and the optical excitations of 
an alkali atom? 

15. What would the exclusion principle be like for JJ coupling? 

16. Is it possible for a Landé g factor to have a value smaller than 1? Larger than 2? 

17. What would be the effect of placing an atom in an external magnetic field of strength very 
much larger than the strength of the internal magnetic field? 

18. Is it possible to completely remove the degeneracy of atomic energy levels without using 
an external magnetic field? 

PROBLEMS 

1. (a) Calculate the wavelength of the 2p to 2s transition in 3 Li. (b) Find the wavelength dif-
ference of the two components into which the line is split by the spin-orbit interaction. 

2. Show that the spin-orbit energy splitting of an alkali atom is given by 
_ 	h2 	1 dV _ 
DE 

4m2c2(2l+1) r dr  

except for 1 = 0, in which case the splitting is zero. 

3. (a) Construct an energy-level diagram for "Na,  similar to Figure 10-1, showing all levels 
lower in energy than the 5s level. (b) Devise a way of indicating the spin-orbit splitting of 
the levels. (Hint: See Figure 10-8.) (c) Indicate which transitions between these levels are 
allowed by the selection rules. 

4. (a) Predict the values of s', 1', j', in the state of maximum energy of two optically active 
electrons with the quantum numbers l l  = 1, s l  = 1/2; 1 2  = 2, s 2  = 1/2. (b) Make a sketch, 
similar to Figure 10-3, which shows the motion of the angular momentum vectors in this 
state. 

5. Find the possible values of s', l', j' for a configuration with two optically active electrons 
with quantum numbers 1 1  = 2, s 1  = 1/2; l 2  = 3, s 2  = 1/2. Specify which j' go with each 
l' and s' combination. 

6. (a) Write down the quantum numbers for the states described in spectroscopic notation 
as 2S312, 3 D2, and 5 P3. (b) Determine if any of these states are impossible, and if so 
explain why. 

7. Make a sketch, similar to Figure 10-6, which illustrates the LS coupling splittings of the 
energy levels of a 4s3d configuration. Use the Landé interval rule to predict the ratios of 
the fine-structure splittings of each multiplet, so that they can be drawn to scale. Label the 
levels with spectroscopic notation. 

8. For an atomic state with quantum numbers l' = 2, s' = 1, j' = 3, find the angle between 
the total magnetic moment and the direction antiparallel to the total angular momentum. 
There is no external field present. 

9. (a) Use the periodic table of Figure 9-13 to determine the ground state configurations for 
the atoms 12Mg, 13A1, and 14Si. (b) Then predict the LS coupling quantum numbers for 
the ground state of each atom. Express your result in spectroscopic notation. 

10. Use the procedure of Example 10-3 to verify the theoretical prediction of Table 10-2 for 



the Landé interval rule test for the presence of LS coupling in the 4s3d configuration of 
the 20Ca atom. 

11. In an atom which obeys LS coupling, the separations between adjacent energy levels of 
increasing energy in the five levels of a particular multiplet are in the ratios 1:2:3:4. Use 
the procedure of Example 10-4 to assign the quantum numbers s', 1', j' to these levels. 

12. Consider a completely filled d subshell, i.e., one containing the ten electrons allowed by 
the exclusion principle. Ignore the interactions between the electrons, so that the Hartree 
approximation quantum numbers n, 1, m 1 , mS  can be used to describe each electron. 
(a) Show that there is only one possible quantum state for the system that satisfies the 
exclusion principle. (b) Show that in this state the z components of the total spin angular 
momentum, the total orbital angular momentum, and the total angular momentum, are 
all zero. (c) Give an argument showing that these conclusions imply that the magnitudes 
of the total spin angular momentum, the total orbital angular momentum, and the total 
angular momentum, are also all zero. (Hint: If an angular momentum vector is not of 
zero magnitude, but has zero z component in one quantum state, then there are other 
quantum states in which it has a nonzero z component.) (d) Now consider the interactions 
between the electrons that are actually present. Can they change the conclusion about the 
total angular momentum of the subshell? What about the total spin angular momentum 
and total orbital angular momentum? 

13. (a) Make a rough sketch of the 6C energy levels in the 2p 2  and 2p3s configurations, using 
information from Figure 10-8. Indicate the fine-structure splittings of the levels by 
exaggerating their magnitude. (b) Show all the transitions allowed by the LS coupling 
selection rules. 

14. (a) Find a state with s', 1', j' quantum numbers for which the value of the Landé g factor 
lies outside the range g = 1 to g = 2. (b) Make a sketch, similar to Figure 10-10, which 
illustrates the angular momentum and magnetic dipole moment vectors for this state. 

15. Consider the 2p3s configuration of the 6 C atom, in which the ordering of the energy levels 
according to s', 1', j', and the relative strengths of the dependences of the energy on these 
quantum numbers, are what is normal for LS coupling. Draw a schematic energy-level 
diagram for this configuration, like Figure 10-6. Use the same (exaggerated) scale for the 
fine-structure splitting, given by the Landé interval rule, for all the levels within a given 
multiplet. (b) Label each level with the spectroscopic notation. 

16. On the energy-level diagram of Problem 15, draw to the same (highly exaggerated) scale 
the Zeeman effect splitting, given by the Landé g factor, for each level under the influence 
of a weak external magnetic field. 

17. (a) Count the total number of components obtained in Problem 16, i.e., the total number 
of different quantum states in the configuration. (b) Show that this equals the degeneracy 
of the configuration in the Hartree approximation, i.e., the product of degeneracy factors 
2(21 + 1) for each of the two optically active electrons in the configuration. 

18. Derive an expression for the Zeeman effect splitting of the levels of a singlet. (Hint: Start 
at the beginning, and take s' = 0 so that a simple expression is obtained for the total 
magnetic dipole moment.) 

19. Give a classical explanation of the normal Zeeman effect based on Faraday's law applied 
to electrons revolving in circular orbits of constant radius. Show that the correct fre-
quency interval between the three components can be obtained. 

20. (a) Construct a diagram, similar to Figure 10-11, which shows transitions allowed by the 
selection rules between the singlet states 2p3s 1 P 1  and 2p2 1 D 2  of the 6C atom. (b) Verify 
that the normal Zeeman pattern of three spectral lines will be produced in these transi-
tions. (c) Evaluate the differences in wavelength of these three spectral lines when the 
atom is in an external field of 0.1 tesla. (Hint: Use a formula for the difference in wave-
length derived in Example 10-1). (d) Evaluate the wavelength of the single line obtained 
when there is no external field, using information from Figure 10-8. 

21. (a) Redraw the energy levels of Figure 10-11, for a case in which the strength of the ex-
ternal magnetic field is increased to the point where the splitting is described by the 
Paschen-Bach effect. (Hint: Here j' is no longer a useful quantum number.) (b) Redraw the 
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transitions allowed by the ms and  in; selection rules, as in Figure 10-11, and show that 
they then produce spectral lines which are split into only three components. 

22. (a) Use the information contained in Figure 10-8 to estimate the magnitude of the energy 
associated with the coupling of the two spin angular momenta to form the total spin 
angular momentum, and with the coupling of the two orbital angular momenta to form 
the total orbital angular momentum, in the 2p 2  configuration of the 6 C atom. (b) Then 
estimate the strength of an external field which will produce an energy of orientation with 
the magnetic dipole moment of each optically active electron larger than the energy esti-
mated in (a). In such a field the couplings of the angular momenta of the optically active 
electrons are completely destroyed. (c) Is such a field available in the laboratory? 
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1  

11-1 INTRODUCTION  

As the number of constituents of a physical system increases, a detailed description 
of the behavior of the system becomes more complex. Thus as we proceed in our 
studies from one-electron atoms to multielectron atoms, and then to molecules, and 
finally to solids, we anticipate increasing complexity and difficulty in treating in detail 
these systems. For a familiar example, consider what would be involved in trying to 
describe the motion of one molecule of a gas in a system containing a liter of that gas 
under standard conditions (containing ^ 10 22  molecules). Fortunately, it is generally 
unnecessary to have such detailed information to determine the most important 
properties of the system—that is, to determine the measurable properties, like the 
pressure and temperature of a gas. Furthermore, the very complexity of a system 
containing a large number of constituents is often responsible for many of the simple 
properties that we observe, as we now explain. 

If we apply the general principles of mechanics (such as the conservation laws) to 
a system of many particles, we can ignore the detailed motion or interaction of each 
particle and deduce simple properties of the behavior of the system from statistical  
considerations alone. In fact, even an elementary statistical approach enables us to 
describe and explain a wide range of physical phenomena and gives us a good deal of 
insight into the behavior of real physical systems. The reason is that there is a rela-
tionship between the observed properties and the probable behavior of the system, 
if the system contains enough particles for statistical considerations to be valid. Con-
sider, for instance, an isolated system containing a large number of classical particles 
in thermal equilibrium with each other at temperature T. To achieve, and maintain, 
this equilibrium, the particles must be able to exchange energy with each other. In 
the exchanges, the energy of any one of the particles will fluctuate, sometimes having 
a larger value and sometimes a smaller value than the average value of the energy 

c^ 
c 	 Fermi energies  
U 



of a particle in the system. However, the classical theory of statistical mechanics 
demands that the energies successively assumed by the particle, or the energies of 
the various particles of the system at some particular time, be determined by a definite 
probability distribution function, called the Boltzmann distribution, which has a form 
that depends on the temperature T. Knowing the probabilities that the particles of 
the system will occupy the various energy states, we can then predict a variety of 
important properties of the entire system by using these occupation probabilities 
to calculate averages over the system of the corresponding properties of the particles 
when they are in those states. 

A more specific example that the student has likely encountered earlier in his 
studies of physics is the relation between the properties of a classical gas and the 
Maxwell distribution of speeds of the molecules of the gas. The Maxwell distribution 
is a consequence of the Boltzmann distribution. It is described by a distribution 
function N(v), where N(v) dv gives the probability that a molecule has a speed in the 
interval between y  and y + dv. From it we can calculate quantities such as the average 
speed (which is related to the momentum carried by the molecules), the average 
squared speed (which is related to the energy they carry), etc., and from these average 
quantities we calculate observable properties such as the pressure (which is related 
to the momentum) and temperature (which is related to the energy), etc. 

Statistical treatments are also applicable as an approximation in systems that con-
tain only moderately large numbers of particles. For instance, we shall in Chapter 15 
apply a statistical treatment to a nucleus (containing ^ 10 2  nucleons) in the so-called 
Fermi gas model of nuclei. But that treatment will not use the Boltzmann distribu-
tion, since it is not valid for quantum particles like those found in a nucleus. 

In this chapter we seek distribution functions that are valid for quantum particles. 
We shall find that there are two: the Bose distribution, which applies to particles that 
must be described by eigenfunctions which are symmetric with respect to an exchange 
of any two particle labels (like a particles or photons); and the Fermi distribution, 
which applies to particles that must be described by eigenfunctions which are anti-
symmetric in such an exchange of labels (like electrons, protons, and neutrons). 

First we shall review the procedures of classical statistical mechanics, developed in 
Appendix C and used in Chapter 1, that lead to the Boltzmann distribution. Then 
we shall see how quantum considerations force significant changes in the classical 
procedures. Next we shall derive the quantum distribution functions in simple equi-
librium arguments that start from the Boltzmann distribution. Then we shall obtain 
useful insights by comparing all the distribution functions with one another. Finally 
we shall give a variety of examples of the application of each of them, and compare 
their predictions with experiment. In this process we shall examine many important 
phenomena, such as superfluidity, electronic and lattice specific heats of solids, and 
light amplification by stimulated emission of radiation (the laser). 

11 -2 INDISTINGUISHABILITY AND QUANTUM STATISTICS 

The Boltzmann distribution predicts the probable number of particles in each of their 
energy states for a classical system containing many identical particles in thermal 
equilibrium at a certain temperature. It is a fundamental result of classical physics, 
not quantum physics. Nevertheless, it is frequently used in discussing quantum phys-
ics, as we have seen before and shall see again. For these reasons, in this book we 
have included two quite different arguments that each lead to the Boltzmann dis-
tribution, but we have put these arguments in Appendix C. The student would be 
well advised to read, or reread, that appendix now. 

Our first argument in Appendix C involves counting the number of distinguishable 
ways the identical entities of a system in thermal equilibrium can divide between 
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them the fixed total energy of the system. The Boltzmann distribution follows from 
assuming that all possible divisions occur with the same probability. In this proce-
dure, an energy division is counted as distinguishable from some other division if it 
differs from that division only by a rearrangement of identical entities between dif-
ferent energy states. That is, identical entities are treated as if they are distinguishable 
in such rearrangements. In the second argument leading to the Boltzmann distribu-
tion, we assume that the presence of one entity in some particular energy state in no 
way inhibits or enhances the chance that another identical entity will be in that state 
and, again, that all possible divisions of the system's energy occur with the same 
probability. 

These assumptions are perfectly acceptable in classical physics. In quantum physics 
the assumption that all possible divisions occur with the same probability remains 
acceptable; but the other assumptions do not. As we saw in Section 9-2, if there is 
appreciable overlapping of the wave functions of two identical particles in a system, 
very important nonclassical effects arise from the indistinguishability of identical par-
ticles (i.e., identical entities). One is that measurable results cannot depend on the 
assignment of labels to identical particles. So the classical definition of distinguishable 
divisions of the energy of a system is in error because if there is no unambiguous way 
to label the identical particles of the system there is no way to distinguish between 
two divisions which differ only by rearranging them, even in rearrangements between 
different quantum states (i.e., energy states). Another effect of the indistinguishability 
of quantum particles is that the presence of one in a particular quantum state very 
definitely influences the chance that another identical particle will be in that state. 
We have seen that if two identical particles are described by an antisymmetric total 
eigenfunction, that is, if they are particles like electrons which obey the exclusion 
principle, then the presence of one in some quantum state totally inhibits the other 
from being in that state. We shall see soon that if the two identical particles are de-
scribed by a symmetric total eigenfunction, that is, if they are like a particles in that 
they do not obey the exclusion principle, then the presence of one in some quantum 
state considerably enhances the chance that the other will be in the same state. 

Of course, if a system contains identical quantum particles, but the circumstances 
are such that there is negligible overlap of the wave functions of any two, the particles 
actually can be distinguished experimentally. In these circumstances the effects of in-
distinguishability become negligible, as we mentioned before in Sections 9-2 and 9-4, 
and the assumptions underlying the Boltzmann distribution become valid. An ex-
ample of such a system is, again, a gas. In the range of density normally encountered 
in the laboratory, the wave functions of the molecules, which are certainly identical 
quantum particles, do not overlap appreciably, and so the Boltzmann distribution 
can be accurately applied to predict the properties of the system. 

In quantum statistics, particles which are described by antisymmetric eigenfunc-
tions are called fermions, and particles which are described by symmetric eigenfunc-
tions are called bosons. That is, the eigenfunction for a system of several identical 
fermions changes sign if the labels of any two of them are exchanged, while the eigen-
function for a system of several identical bosons does not change sign in such a label 
exchange. A partial list of fermions and bosons is found in Table 9-1. These names 
honor two physicists, Fermi and Bose, who were prominent in the development of 
quantum statistics. 

The fact that one fermion prevents another identical fermion from joining it in the 
same quantum state, i.e., the exclusion principle, and certain of its extremely impor-
tant consequences, is something we are familiar with from our study of multielectron 
atoms. This can be described, somewhat formally, by saying that if there are already 
n fermions in a quantum state the probability of one more joining them is smaller by an 
inhibition factor of (1 — n) than it would be if there were no quantum mechanical in- 
distinguishability requirements. If n = 0, the factor has the value (1 — 0) = 1, and so 



there is no inhibition of the probability for the first fermion entering the state. But 
for n = 1, the factor has the value (1 — 1) = 0, and so a second fermion is strictly 
inhibited from entering the same state. Note that the factor automatically limits the 
number n of fermions in any particular quantum state to the values n = 0 or n = 1, 
in agreement with the exclusion principle. The use of the plural in the preceding 
italicized statement may therefore seem somewhat inappropriate; it is used to make 
the statement analogous to one concerning bosons that will follow, and because 
otherwise the argument immediately below the statement would be circular. 

We have not had occasion to show that the presence of one boson in a quantum 
state enhances the probability of a second identical boson being found in that state, 
because we have done little with bosons since developing the quantum mechanics of 
indistinguishable particles. Let us show this now. 

Consider the symmetric eigenfunction for a system of two identical bosons, (9-8) 

W S = G CIYa( 1» (2) + tfrp(1)0a(2)] 

Recall that Ifr a(1) means the particle labeled 1 is in the quantum state a, Op) means 
particle 2 is in state /3, etc., and that although particle labels are actually used, mea-
surable quantities like the probability density /s 4' s have values which are indepen-
dent of the assignment of labels to particles. Recall also that 4's  is normalized, by the 
normalization factor 1/N7i, if we assume that Ii a(1) Ip(2) and tip(1)ili a(2) are normalized. 
Now we place both bosons in the same state, say the state 13, by setting a = fi. Then 
the eigenfunction is 

	

Os = 	1  [0p( 1 )0p(2) + 0p( 1 )0p(2il  

	

= 	2 0p( 1)0p(2) = V G tt/ p( 1 )tŸp(2) 

and the probability density is 

0s* iks = 24( 1) a(2)0p( 1 )0p(2) 

What would the eigenfunction and probability density for this two identical par-
ticle system be like if we had not taken into account the quantum mechanical re-
quirements of indistinguishability of identical particles? The eigenfunction would be 
in the form given by (9-4) or (9-5), since we obtained those directly from the Schroe-
dinger equation before applying indistinguishability requirements. Let us take (9-4) 

= 0a(1)00) 
This eigenfunction /i is normalized since we have assumed that C(1)tji p(2) is normal-
ized. For the case at hand, where a = 13, we have 

= 0p( 1 )0p(2) 
and the normalized probability density is 

0*0 = 01)4(2)0p( 1)0p(2) 	 (11-2) 

It is fair to compare the probability densities of (11-1) and (11-2), since both are 
properly normalized. Doing so, we see that the probability 0'P/i s  of having two 
bosons in the same quantum state has twice the value of the probability elk of this 
situation occurring if the system is described by an eigenfunction that does not satisfy 
the quantum mechanical requirements of indistinguishability. We can express this by 
saying that the probability of having two bosons in the same state is twice what it 
would be for classical particles. Thus the presence of one boson in a particular quan-
tum state doubles the chance that the second boson will be in that state, compared 
to the case of classical particles where there is no particular correlation between the 
energy states occupied by the particles. 
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Example 11 -1. Compare the probability for three bosons to be in a particular quantum state 
with the probability for three classical particles to be in the same state. 
► Inspection of the symmetric eigenfunction for a three boson system, found in Example 9-3, 
shows that it contains 3! = 3 x 2 x 1 = 6 terms like 1li a(1)0p(2)0 1,(3), and that the normaliza-
tion constant is 1/ 3!. After setting a = f = y to put all the bosons in the same state, the prob-
ability density contains (3!) 2  equal terms, but it is multiplied by the square of the normalization 
constant, (1/r3!) 2 . So the probability is larger by a factor of (3!) 2/3! than it would be if there 
were three identical classical particles in the state. The probability for the boson case conse-
quently is larger by a factor of 3!. • 

The results of Example 11-1 can obviously be extended to the case of n identical 
bosons in the same quantum state, and show that the probability of this occurring 
is larger by a factor of n! = n(n — 1)(n — 2) 1, compared to the probability that it 
would occur in the case of n identical classical particles. These results can be looked 
at from a most useful point of view by answering the following question. If there are 
already n bosons in a particular final quantum state of a system in which bosons are 
making transitions from various initial to various final states, what is the probability 
that one more boson will make a transition to that particular final state? 

Let P 1  represent the probability that the first boson is added to the originally emp-
ty state of particular interest. If the enhancement effect we are discussing did not exist, 
the probability that there be n bosons in that state would be just the nth power of P 1 

 since the probabilities of adding successive bosons would all be the same, and since 
the additions would take place independently and independent probabilities are 
multiplicative. That is 

Pn  = (P1 )n 

But the actual probability that there are n bosons in the state is enhanced to the value 
pnoson = n!Pn  = n! (pi  )n 

The actual probability that there are n + 1 bosons in the state is 

Pn+in  = (n + 1)! Pn + 1 
Since (n + 1)! = (n + 1)n!, and since Pn+1 = (P1)n+l = (P1)nP1  = PnP1 , we have 

Pn+in  — (n + 1)n!PnP1  
or 

Pn+in = (1 + n)Pi Pnoson 	 (11-3) 
Now pnoson  is the probability that there actually are n bosons in the state. So the 
answer to the question posed, "If there are already n bosons in a particular final 
quantum state ... ?," is (1 + n)P 1 . But P 1  is the probability of adding any one of the 
bosons if there were no enhancement. So we conclude that, if there are already n 
bosons in a quantum state, the probability of one more joining them is larger by an 
enhancement factor of (1 + n) than it would be if there were no quantum mechanical 
indistinguishability requirements. 

11 -3 THE QUANTUM DISTRIBUTION FUNCTIONS 

The most frequently used procedure for obtaining distribution functions that are 
consistent with the requirements of the indistinguishability of quantum particles in-
volves modifying the first argument of Appendix C so as to satisfy these require-
ments, and then extending the calculations to the case of a large number of particles 
and energy states. Here we shall use a much simpler procedure that is in the spirit of 
the second argument of Appendix C. 

As a preliminary, consider a system of identical classical particles in thermal equi-
librium. The particles exchange energy, but they act independently in that one does 
not influence the specific behavior of another. Focus attention on two particular 



R 1 , 2  

R2  e e  
-> 1 

1/kT  

e -G`2/kT  (11-8)  

energy states of these particles 	and S2 , and let the average numbers of particles 
occupying them be n 1  and n2 . Also let the average rate at which a particle of the 
system that is in state 1 makes a transition to state 2 be R 1 , 2 , and the rate at which 
a particle that is in state 2 makes a transition to state 1 be R21. Both R1,2  and 
R2,1 are rates per particle, i.e., probabilities per second per particle. So the total 
rate at which particles of the system will be making 1 -* 2 transitions is n 1 R1, 2, 
since n 1  is the number of particles that have an opportunity to do so and R1,2 is  
the probability per second that each will take the opportunity. The total rate at which  

particles in the system will make 2 1 transitions is n2R2-.1 
 

If these total transition rates are equal, that is if  

niRl —r2 = n2 R2 „. 1  

and if the same is true of "forward" and "backward" total transition rates between  

all pairs of particle energy states, then the average population of each of these states  

will obviously remain constant in time. But constant average state populations is the  
condition that characterizes thermal equilibrium. Equation (11-4) is a condition  

which ensures that the equilibrium we assume in all of our arguments is maintained.  
In principle, equilibrium can also be maintained by balancing interlocking sets of  

transition cycles, each involving several energy states, without balancing individual  

pairs of total transition rates as in (11-4); but there is no evidence that this situation  

arises in practice. To put the matter another way, (11-4) can be taken as a postulate,  

called detailed balancing, whose justification is found in the fact that it leads to results  

which agree with experiment.  

Note that (11-4) implies  

n2 	R1—>2  

Now in thermal equilibrium the average, or probable, number n 1  of particles in our 
classical system that will be found in state 1 is given by the Boltzmann distribution, 
derived in Appendix C, evaluated at the state energy e 1 . So 

n1 = n(e1) = Ae - 1 IkT 	 (11-6)  
and similarly for n 2 . Thus the population ratio has the value 

n1 	
e -g1IkT  

n = e  ^°z/kT 	 (11-7) 
2  

Hence, (11-5) and (11-7) show that the transition rates per particle must be in the ratio 

(11-4)  

(11-5)  
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for classical particles. 
Now we shall apply the thermal equilibrium condition of (11-4) to a system of 

bosons. We write it as 

	

n i l 2=  n Rboson 	 (11-9) 1 1->2 	2 2-^1  

where n 1  and n2  are the average boson populations of two quantum states of interest,  

and R i_s°2 and RZ21 are the transition rates per boson between these states. These  

rates can be expressed in terms of the rates for the case of classical particles simply  

by multiplying the classical rates by the (1 + n) enhancement factor derived at the  

end of Section 11-2. That is, since there are on the average n 2  bosons in quantum state  
2 when the 1 -> 2 transition takes place, the actual probability per second per particle,  

Rb°ÿ2, is larger by a factor of (1 + n 2) than the value R 1 , 2 , the rate a classical par-
ticle that does not satisfy the indistinguishability requirements would have. As n  

ranges from ^ 0 (for a state which almost never contains a boson) to larger and larger  

values (for a state which contains more and more bosons), the enhancement factor  



Q
U

A
N

T
U

M
 S

T
A

T
IS

T
IC

S
 

ranges from ^ 1 (almost no enhancement) to ever larger values (ever larger enhance-
ment). To summarize, we have  

Rb°y2 = (1 + n2)R1-.2 	 01-10)  

and, similarly  
R'302,7 = (1 + n 1 )R2 . 1 	 (11-11)  

Combining (11-9), (11-10), and (11-11), we obtain  
n 1 (1 + n2 )R 1 - 2  = n2 (1 + n1)R2.1  

or  

n 1 (1 + n 2 ) R2..1 	e'1IkT  

n2 (1 + n i ) R1_,2 = e- S2IkT (11-12)  

ci cis 	where we have used (11-8) to evaluate the ratio of the classical transition rates per 
particle in terms of the Boltzmann distribution. Equation (11-12) can be expressed as 

n 1 	egl/kT =  n2 	
ee2/kT  

1+ n 1 	1+n2  
(11-13)  

The left side of this equality does not involve properties of state 2, and the right side 
does not involve properties of state 1. So the common value of both sides cannot 
involve properties particular to either state, but only a property common to both. It 
obviously does, as the common equilibrium temperature T is found on both sides. 
Thus we conclude that both sides of (11-13) are equal to some function of T, which is 
most conveniently written as e - ", where a = a(T). Equating the left side to the 
common value, we have 

 

n 1  eti/kT = e -a  

or  
1 + n 1  

ni  
= e - (a +g1IkT)  

1 + n i  

so  
ni = 1 n e

- (a +e1lkT) + e -(a+e1IkT) 

or  
n 1 [1 — e - (a+SilkT)] =  e — (a +eilkT)  

Thus 
e -(OE+e1lkT) 	_ 	1  

n l  = 1 — e- (Œ+e1IkT) 	e"ee 1IkT  —  1  

If we use the right side of (11-13), we obtain a completely similar result for the  

dependence of n 2  on e2 . In fact, this result is obtained for the average, or probable,  

number of bosons occupying a quantum state of any energy S. So we have  

n(S) _  
1  

e"e^I kT  —  1 

This is the Bose distribution, which specifies the probable number of bosons, of a sys-
tem in equilibrium at temperature T, that will be in a quantum state of energy 6.  

The same sort of argument can be applied to an equilibrium system of fermions.  
For these particles we write the thermal equilibrium condition, (11-4), as  

nRfe1->,mi2 	2" = n Rfe2->1rmi" 	 (11-15) 
Here Rie  , 2i°n is the rate per fermion for transitions between quantum states 1 and 2,  

R? li°n is the same for 2 —* 1 transitions, and n 1  and n2  are the average fermion  
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populations of these states. Because of the exclusion principle, the instantaneous  

populations of either state can be only zero or one. The populations fluctuate in time,  

due to the statistical nature of the processes that maintain thermal equilibrium, and  

they have average values given by n 1  and n2 . The fermion transition rates can be  
expressed in terms of the rates for classical particles simply by multiplying the classi-
cal rates by the (1 — n) inhibition factor discussed in the middle of Section 11-2. With  

n being interpreted as the average population of a quantum state, (1 — n) is the aver-
age value of the inhibition factor, and this is just what is needed here. As n ranges  

from ^ 0 (for a state which almost never contains a fermion) to ^ 1 (for a state which  
almost always contains a fermion), the inhibition factor ranges from ^ 1 (almost no  
inhibition) to ^ 0 (almost complete inhibition), in agreement with the exclusion  
principle. Thus we have  

Rfe`m'o° = (1 — n R ( 	2) 1,2  

and  
Rz i'°° = (1 — n 1 )R2 _ 1 	 (11-17)  

where R1_,2  and  R2_,1 are the rates for a classical particle that does not satisfy the  

indistinguishability requirements leading to the exclusion principle for fermions.  
Combining (11-15), (11-16), and (11-17), we obtain  

n 1 (1 — n2)R1-, 2 = n2 (1 — nl)R2-->1  

or  

n1( 1  — n 2) R 2 _ 1 	e  g1/kT  

n2 (1 — n 1 ) R 1 _, 2 e 

	

gz/kT 	 (11-18)  

where we have used (11-8) to evaluate the ratio of the classical transition rates per 
particle in terms of the Boltzmann probabilities. Equation (11-18) can be expressed as 

n 1 	egtlkT =  n2  	egZ1kT  

1— n 1 	1—n2  
(11-19)  

By the same reasoning that we used previously, we see that both sides of this equation 
are equal to some function of T, which we again write as e - a, where a = a(T).  
Equating the left side to the common value, we have 

 

n 1  eei/kT = e -a  

or  

1 — n 1  

n l  = e  (a+el/kT)  

1 — n 1  
so  

Or  

Thus  

n 1  = 	1 — n e - (a
+g,/kT) + e- («+g,/kT) 

n l  ^1 + e (a +ei/kT)^ =  

 

e - (a +g1/kT)  

n 1  =
1 + e-(a +eS/kT)  

1  

We write this as  

eaegi/kT + 1  

1  
n(s) = eaeglkT 	1 	 (11-20)  

where we again drop the subscript 1 because the same results are obtained for all  

quantum states. This is the Fermi distribution which gives the average, or probable,  
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number of fermions, of a system in equilibrium at temperature T, to be found in a 
quantum state of energy e. 

11 -4 COMPARISON OF THE DISTRIBUTION FUNCTIONS 

Consider first the Boltzmann distribution of (11-6) 
n(s) = Ae -elkT  

If we set the multiplicative constant A equal to e - a, the Boltzmann distribution is 
1 

d. 1 
U 	 nBose( ) = eaeelkT — 1 	 (11-22) 

and (11-20) tells us that the Fermi distribution is 
( 	1 

nFermi(e) = 
eaeeIkT 

	1 	 (11-23) 

In these relations, k is Boltzmann's constant and T is the equilbrium temperature of 
the system. The parameter a, for a given temperature and system, is specified by the 
total number of particles it contains. For instance, at the end of Appendix C we eval-
uated A = e' for a special form of the Boltzmann distribution that applies to a sys-
tem of simple harmonic oscillators where we defined nBoltz(e)  to be a measure of the 
probability of finding a particular one of them in a state at energy e. The result was 
A = 1/k T. If there we defined nBoltZ(e)  in terms of the probability of finding any one 
of the oscillators in the state, or the probable number in the state, we would obviously 
have found A = ✓r/kT, where Jr is the total number of oscillators in the system. 
This is essentially the way we define nBoltz(e)  here, since it gives the probable number 
of classical particles in the state of energy e. In other words, A is a normalization 
constant whose value for a given T is specified by the total number of particles in the 
system described by the Boltzmann distribution. So the same is true for the parameter 

e (eV) 

Figure 11 -1 The Boltzmann distribution function versus energy for three different values 
of T and a. This function is a pure exponential, falling by a factor of 1/e with each increase 
kT in energy. The energy kT is shown for each temperature at the top of the figure. The 
figure is drawn for a system of particles with the same density as that used in Figure 11-3. 
Choosing the density fixes a for any temperature T. 

nBoltz(U`) = eaee/kT 

From (11-14), we know that the Bose distribution is 
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Figure 11 -2 The Bose distribution function versus energy for three different values of T, 
all with a = O. At energies large compared to kT this function approaches the exponential 
form of the Boltzmann distribution, but at energies small compared to kT it exceeds the 
Boltzmann values, tending to infinity as the energy goes to zero. The energy kT for each 
temperature is shown at the top of the figure. 

cc  appearing in that distribution. It is also true that the  cc  appearing in the Bose distri-
bution for a given T is specified by the total number of Bosons in the system, and 
that the distribution gives the probable number of bosons in the state of energy ?. 
The corresponding statements apply as well for the Fermi distribution. 

In Figure 11-1 we plot the Boltzmann distribution function versus energy for three 
different values of T and a. Note that this distribution is a pure exponential which 
falls by a factor of 1/e for each increase of kT in the energy (, as we discussed at some 
length in Chapter 1. 

In Figure 11-2 we plot the Bose distribution function versus energy for three dif-
ferent values of T. We choose cc  = 0 in each case, so that e" = 1, a case applicable 
to the photon gas to be discussed later. Notice that at energies small compared to kT 
the number of particles per quantum state is greater for the Bose distribution than 
for the Boltzmann distribution. This is a result of the presence of the —1 term in 
the denominator of the Bose distribution law. At energies large compared to kT, 
however, the distribution approaches the exponential form characteristic of the 
Boltzmann distribution, for in this range the exponential factor in (11-22) overwhelms 
the term —1. This is the region in which the average number of particles per quantum 
state is much less than one. 

In Figure 11-3 we plot the Fermi distribution function versus energy for four dif-
ferent values of T and cc. Because the exclusion principle applies here we cannot have 
more than one particle per quantum state. This accounts for the distinctly different 
shape of the curves at low energies compared to the other two distributions in which 
there was no restriction against multiple occupancy of states. If we define the Fermi 
energy as 4 = -xkT, so that cc  = — gF/kT, we can write (11-23) conveniently as 

1 

nFermi(‘) = e(g-gF)/kT + 1 
(11-24) 

This facilitates interpretation of the distribution function. For example, for states with 
e « eF  the exponential term in the above equation is essentially zero at low tempera-
tures and nFermi = 1. These states contain one fermion. For states with e » e,, the 
exponential dominates the denominator at low temperatures and the Fermi dis-
tribution approaches the Boltzmann distribution. Note that in this region the average 
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	f  
	I d 

a T  (OK)  

a 0 — 
b 1000 —3.15 
c 5000 —1.51 
d 10000 —0.69 

J l 	 3 

Figure 11-3 The Fermi distribution function versus energy for four different values of T 
and a. The exclusion principle sets the limit of one particle per quantum state. The Fermi 
energy "F is shown for each curve at the bottom of the figure, and the energy kT is shown 
at the top. The drop, occurring in a region of width about kT centered on eF , becomes more 
gradual as the temperature increases. At high temperatures and energies, the function 
approaches the Boltzmann distribution function. The figure is drawn for a material with 
electron density similar to that of potassium, whose Fermi energy is about 2.1 eV. Choosing 
the density fixes the Fermi energy and, for any given T, fixes a as well. 

number of particles per quantum state is much less than one. At '. _ 4, the average 
number of particles per quantum state is exactly one-half because of the way °F  is 
defined. 

When T = 0, the Fermi distribution gives Fermi = 1 for all states with energies 
below 4 and nFermi = 0 for all states with energies above SF. Thus at T = 0 the 
lowest energy states are filled, starting from the bottom and putting one fermion in 
each successively higher state, until the last fermion in the system goes into the highest 
energy filled state at eF . This obviously minimizes the total energy content of the 
system, as would be expected at absolute zero temperature. Note from Figure 11-3 
that for T « SF/k, SF is at nearly the same energy as it is for T = 0. For these 
relatively low temperatures, the thermal energy of the system has gone into pro-
moting fermions from states of energy somewhat below the zero-temperature 4 
energy to states somewhat above that energy. The population changes are restricted 
to a region of width about equal to kT, since kT is a measure of the thermal energy 
content per particle of the system. The depopulation below the zero-temperature 4 
energy is quite symmetrical to the population above that energy for very small 
temperatures, and so (i F, which is always the energy where nFermi = 0.5, hardly 
changes energy. For increasing temperatures, °F begins to shift downward in energy 
as this symmetry begins to be lost. 

Certain general features of the three distribution functions should be cited. At high 
energies (6 » kT) where the probable number of particles per quantum state for the 
classical distribution is much less than one, the quantum distributions merge with 
the classical distribution. That is, nFermi

ti 
 nBoltz ^ nose, if nBoltz « 1. At low energies 

(6 « kT) where this number is comparable to or larger than one, the quantum dis-
tributions fall on opposite sides of the classical distribution. That is, nFermi < nBoitz < 

nose, if  nBoltz $ 1. These features are most easily seen in Figure 11-4, which plots the 
three distribution functions against the energy ratio 6/kT for the same value of a. 
These features are just what would be expected from our considerations of Section 
11-2. When n5o11z « 1 the effects of the indistinguishability of two identical particles 

1 
g  (eV) 



3 
g/kT 

Figure 11-4 The Boltzmann, Bose, and Fermi distribution functions plotted versus e/kT 
for two different values of a, —0.1 and —1.0. It should be noted that the dashed curves, if 
moved to the left (-0.1) — (-1.0) = 0.9 units, would coincide exactly with the solid curves. 
This observation may provide some further insight into the physical interpretation of a. 

will have very little chance to manifest themselves because there is very little chance 
anyway that two particles will be in the same quantum state. So we expect the quan-
tum distributions to join with the classical distribution for n Boitz  « 1. When the clas-
sical distribution predicts an appreciable probability of there being more than one 
particle per quantum state, i.e., when nBo,t, $ 1, then this probability will be inhibited 
for fermions and enhanced for bosons, and we expect the quantum distributions to 
diverge from the classical distribution in the manner indicated in Figure 11-4. Table 
11-1 summarizes the most important attributes of the three distribution functions. 

Table 11-1 	Comparison of the Three Distribution Functions 

Boltzmann Bose Fermi 

Basic Applies to dis- Applies to indis- Applies to indis- 
characteristic tinguishable tinguishable tinguishable 

particles particles not 
obeying the 
exclusion principle 

particles obeying 
the exclusion 
principle 

Example of system Distinguishable Bosons—identical Fermions—identical 
particles, or particles of zero particles of odd 
approximation to 
quantum distri-
butions at e » kT 

or integral spin half integral spin 

Eigenfunctions of No symmetry Symmetric under Antisymmetric under 
particles requirements exchange of particle 

labels 
exchange of particle 
labels 

1 1 
Distribution 

function 
Ae —glkT  

e"eg/kT  — 1 e(g — gF)lkT + 1 

Behavior of distri-
bution function 

Exponential For e » kT, expo-
nential 

For e » kT, expo- 
nential where 

versus e/kT For e « kT, lies 
above Boltzmann 

g » gF 
If eF  » kT, decreases 
abruptly near f F 

Specific problems Gases at essentially Photon gas (cavity Electron gas 
applied to in this any temperature; radiation); phonon (electronic specific 
chapter modes of vibration gas (heat capacity); heat, contact poten- 

in an isothermal 
enclosure 

liquid helium tial, thermionic 
emission) 
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11-5 THE SPECIFIC HEAT OF A CRYSTALLINE SOLID 

In this section we present the first of several examples of applications of the Boltzmann 
distribution to quantum systems. The specific heat of a solid was found in the early 
(room temperature) experiments of Dulong and Petit to be very similar for all 
materials, about 6 cal/mole-°K. That is, the amount of heat energy required per 
molecule to raise the temperature of a solid by a given amount seemed to be about 
the same regardless of the chemical element of which it is composed. At the time this 
result could be understood on the basis of the following classical statistical ideas. 
There are Avogadro's number, N o , atoms in a mole. Each atom is regarded as exe-
cuting simple harmonic oscillations about its lattice site in three dimensions, so one 
mole of the solid has 3N 0  degrees of freedom. Each degree of freedom is assigned an 
average total energy kT, according to the classical law of equipartition of energy, so 
that 

E = 3No kT = 3RT 

where R is the universal gas constant. Then, the heat capacity at constant volume is 

c„= dT = 3R = 6 cal/mole-°K 

This is called the law of Dulong and Petit. 
Later experiments showed conclusively, however, that as we lower the temperature 

the molar heat capacities vary. In fact, the specific heats of all solids tend to zero as 
the temperature decreases, and near absolute zero the specific heat varies as T 3 . It 
was Einstein who saw that the kT factor, from classical equipartition, had to be 
replaced by a factor that takes into account the energy quantization of a simple 
harmonic oscillator much as Planck had done in the cavity radiation problem. He 
represented a solid body as a collection of 3N 0  simple harmonic oscillators of the 
same fundamental frequency and replaced kT with the result by/(e hvIkT  — 1) of (1-26), 
which was obtained by combining Planck's energy quantization and the Boltzmann 
distribution. He thus found 

3N o hv 	by/kT  
 (11-25 ) E = ehvIkT 	1  = 3RT ehv/kT _ 1  

From this he calculated the specific heat as c, = dE/dT and found qualitative agree-
ment with experiment at reasonably low temperatures. Although all substances do 
have curves of c„ versus T of the same form, we must choose a different character-
istic frequency y for each substance to match the experimental results. Furthermore, 
at very low temperatures the Einstein formula does not contain the T 3  temperature 
dependence required by experiment. 

Peter Debye, in a general and simple way, found the theoretical approach that 
successfully yields the exact experimental results. Earlier treatments dealt with the 
individual atoms in a solid as if they vibrated independently of one another. Actually, 
of course, the atoms are strongly coupled together. Rather than N o  atoms vibrating 
in three dimensions independently at the same frequency, we should deal with a 
system of 3N 0  coupled vibrations. Such a dynamical problem would not only be 
difficult to handle directly but, because the atoms do interact strongly, we could not 
use the statistics of noninteracting particles. Debye pointed out, however, that a 
superposition of elastic modes of longitudinal vibration of the solid as a whole—
each mode independent of the others like the independent modes of two coupled 
pendulums—gives the same individual atom motions as the actual coupling. The 
temperature vibrations of the atoms of a solid are equivalent to a large combination 
of standing elastic waves of a great range of frequencies. The atomic vibrations of a 
crystal lattice appear as macroscopic elastic vibrations of the whole crystal. The prob- 



lem remains to determine the frequency spectrum of the elastic modes of longitudinal 
vibration. Thereafter each mode can be treated as an independent harmonic oscilla-
tor, whose quantized eigenvalues we already know. Then by summing we can obtain 
the total energy of the system. 

Before carrying out the calculation, we should point out that the Boltzmann 
distribution is applicable here. The individual atoms, in the original formulation of 
the problem, may be treated as distinguishable particles; the atoms are distinguished 
from one another by their location in space at the lattice sites of the crystal. How-
ever, the assumption of the earlier formulations that these particles do not interact 
is clearly wrong. In the Debye model, the atoms are replaced by elastic modes of 
vibration of the solid as a whole. These are independent, noninteracting elements—
independent harmonic oscillators. These elements, furthermore, are distinguishable 
from one another, for each mode of vibration (standing wave) is characterized by a 
different set of numbers (nx ,ny ,nz) which correspond essentially to the different number 
of nodes of each mode of vibration. No two modes of vibration can have identical 
sets of these numbers. 

In order to get the frequency spectrum of the modes of vibration, Debye assumed 
that the solid behaved like a continuous, elastic, three-dimensional body, the allowed 
modes corresponding to longitudinal vibrations with nodes at the boundaries. This 
is identical in principle to the calculation of the modes of vibration of electromag-
netic waves in a cavity, considered in Section 1-3. Thus the number of modes with 
frequencies between v and v + dv is 

N(v)dv=
47rV

v2 dv 
v  

where y  is the speed of elastic waves and V is the volume of the solid. This is identical 
to (1-12), except that y replaces c, and that a factor of 2 is removed because, with 
longitudinal rather than transverse waves, we do not have two states of polarization. 
Debye further assumed that the number of modes is limited to 3N 0  per mole, the 
number of translational degrees of freedom of N o  atoms, to account for the actual 
atomic nature of a crystalline solid. The allowed modes varied in frequency then from 
zero to some maximum v m. To get vm  Debye set 

Vm 

f N(v) dv = 3N o  

o 

obtaining 

or 
3v3 
	 v,r, = 3No  (11-27a) 

(9N0

/ 1/3
vm v

47r V 	
(11-27b) 

If now each mode is treated as a one-dimensional oscillator of average energy c 
given by Planck's quantization and the Boltzmann distribution 

hv 
ehv/kT _  1 

 the total elastic energy in the solid is then 
Vm  

(11-26) 
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hv 	47r 	2 
E 	ehv/k T _ 1 

 y3 
	v dv 

_ 

0 
(11-28) 
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This expression can be put in a more compact form if we change to a dimensionless  

variable of integration x = hv/kT so that xm  = hv m/kT. Then 
v„, xm 

E — 
 4rcV  f  hv 3  dv — 4itV (kT\4  h  f  x 3  dx  

v3 	ehv/kT —  1 	y 3 	h ) 	ex — 1  

o 	 o 

and, after substituting 47V/v 3  = 9No/vp3, and consolidating symbols, we obtain 
x„ 

3 
E=3RT x3 

ex 
d 1  

m  
o 

which is Debye's formula. 
Because x is a dimensionless quantity, hv m/k has the dimensions of a temperature. 

It is often called the Debye characteristic temperature, O, of the substance involved. 
Hence, with x m  = Co/T, (11-29) becomes 

©/T  
T4  r x3  

E = 9R 
03  ex —1 
	dx 	 (11-30) 

0  

and Debye's formula for the specific heat of a solid is 
O/T 

3 	3 	 H  

cv = d7  = 9R 4 
0 	ex — 
	1  dx — 

O e°/T  - 1 	
(11-31) 

0  

Debye's theory involves a parameter O which, because of its connection to the elastic 
properties of the solid, can be determined independently of specific heat measure-
ments, as we shall see in Example 11-2. Using these independently determined values 
in the theory, we obtain the excellent agreement with experimental measurements of 
specific heat illustrated in Figure 11-5. In particular, the theory agrees with the ob-
served T 3  law at very low temperatures. 

Example 11 -2. (a) Show how O can be obtained directly from the elastic properties of 
a solid. 
IN-Because 0 = hvm/k we must find vm  first. From (11-27b), v m  = v(9N0/4'tV) 1 /3  so we have 
0 = (hv/k)(9N 0 /4n(V) 1 / 3 . All quantities are measurable experimentally so that 0 can be found 
from measurements of V (the molar volume) and  y  (the speed of elastic waves). 

Actually, since both longitudinal (compressional) and transverse (shear) waves can be trans-
mitted by the solid, and since their speeds are different, we replace y by a more general ex- 
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Figure 11-5 The measured specific heat at constant volume, as a function of temperature,  
for several materials. Horizontal line I represents the Dulong-Petit law, and curve II repre-
sents the predictions of the Debye theory. 

(11-29)  



pression. In particular, if  y 1  represents the speed of longitudinal waves and v t  the speed of CO 
transverse waves in the solid, we require 3N 0  = (4mmV/3vl )vm + (4mV/3vr )2vm instead of  
(11-27a), where allowance is now made for the two polarization states of transverse waves, as cn 
well. Then we use in (11-27b)  

	

1 (1 	2l 	 - 
v3 { v3 + vt3 J  

	

/ 	t/  
From the measurements of  y 1  and vt , v is computed. Some calculated results for O and v m  are: 

Iron 	O = 465°K 	vm  = 9.7 x 10 12  sec -1  
Aluminum O = 395°K 	vm  = 8.3 x 10 12  sec -1  
Silver 	O = 210°K 	vm  = 4.4 x 10 12  sec -1 	 • 

(b) Show that as T —* 0, c„ —> const x T 3  in Debye's (11-31). 
► We have 

C T/3

(^  x 3 
	

0 	1 
c„= 9R 4 	J ex

- 1 dx  Te° l T - 1  
o 

As T decreases, O/T becomes very large. Indeed, as T —> 0, 0/T —> oo, and the last term goes  
to zero. Hence  co  

T\ 3 (' x3 
c„ —>9R4 

 ^ 
	I 

J ex 
 —  1  dx 

/  

which, because f ô x 3 /(ex  — 1) dx = 714/15, yields  
12m4  R  __ 	 

the required T 3  law for very low temperatures.  
(c) Show how O can be obtained from specific heat measurements.  

■If T = 0, then from (11-31) we have  
1 

(' 	3 
c„ = 9R 4 J  exx  1  dx  e 	1  1  = 2.856R = 5.67 cal/mole -°K  

0 

so that the Debye temperature O can be defined as that temperature at which c „  = 2.856R.  
For comparison with part (a), the values so obtained are 455°K for iron, 420°K for aluminum,  
and 215°K for silver. 	 • 

It is remarkable that so simple a model as Debye's yields such excellent results. The  
true frequency spectrum of the modes of vibration should depend on the actual lattice 
structure of the crystalline solid and may differ from the results of Debye's continuum 
model. Such differences as have been found between experiment and Debye's predic-
tions can indeed be accounted for by expected differences between the actual spec-
trum and Debye's so that the experimental facts of the specific heats of solids seem to 
be completely understood. Here we have considered the contributions to the specific 
heat of a solid from the lattice vibrations alone. In Section 11-11 we shall consider 
the contribution made by free electrons to the specific heat of a solid conductor. 

11-6 THE BOLTZMANN DISTRIBUTION AS AN APPROXIMATION TO  

QUANTUM DISTRIBUTIONS  

We have seen that, where the average number of particles per quantum state is much 
less than one, the quantum distributions merge with the classical distribution. Par-
ticularly useful in this region is the Boltzmann factor 

nBoltz( 62)  

nBottz('1)  
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giving the relative number of particles per quantum state at two different energies 
g2 and Si , for a system in equilibrium at temperature T. We have already made use 
of this approximation in Example 4-7. It can be applied in all quantum systems at 
energies more than several kT above the ground state—the states are sparsely occu-
pied so that nBoltz is very much less than one. For example, when we consider thermal 
collisions of atoms in a gas in equilibrium at temperature T the excited states of the 
atoms are normally sparsely populated. Hence we can obtain the relative equilibrium 
populations of the various excited states as a function of temperature by using the 
Boltzmann factor. Since the intensities of the spectral lines depend on these popula-
tions, we can then predict the variation of spectral intensities with temperature. More 
often the procedure is reversed; that is, starting with the known relative intensities 
we can determine the temperature of the source, such as the star considered in Ex- 

c  co  ample 4-7. The same idea is applicable to molecular spectra, as we shall see in Chap- 
Ç 	ter 12. 

The Maxwell distribution of speeds of gas molecules moving freely inside a box is 
validly deduced from the Boltzmann distribution because nBoltz  for all the free particle 
states is very small under the conditions usually existing in nature for ordinary gases. 

Example 11-3. The technique of nuclear magnetic resonance is used to obtain information 
about internal magnetic fields in solids. It is more sensitive than chemical techniques, for ex-
ample, in identifying magnetic impurities in a crystal. Principally, however, it enables us to 
use the nucleus as a probe to get information about solids, much as radioactive tracers are 
used in biological systems. For nuclei of nonzero spin the degeneracy of the energy levels with 
respect to the orientation of the nuclear spin is lifted by the magnetic field. (This is analogous 
to the Zeeman effect.) A resonance absorption of electromagnetic power occurs when photons 
bombarding the solid have the proper energy to excite transitions between these levels. The 
strength of the absorption depends upon the difference in population of the levels involved. 
To illustrate the sensitivity of the technique, use the Boltzmann factor to compute the differ-
ence between the populations n 1  and n 2  of two levels at room temperature, if the resonant 
absorption is detected at a frequency of 10 MHz. 
• The Boltzmann factor is 

nBoltz(e2)  = e -(e2 - oikr =  n2 

nBoltZ(g1) 	 n1 

We have T = 300°K, 62 - = hv, and v = 10 7  sec -1 . Hence 

n2 = e -hv/kT  
n 1  

= e  - 6.6 x 10 - 34  joule-sec x 10 7  sec -1 /1.4 x  10 - 23  joule-°K- 1 x 300°K 

= e -1.6 x 10 -6  . 1 - 1.6 x 10 -6  
Therefore 

1 —
n2 

 = 1.6 x 10 -6  
n l  

or 

= 1.6 x 10 -6  
n 1  

So a difference in populations of less than two parts in a million is detectable, a result which 
reveals the high sensitivity of the NMR technique. The Boltzmann factor is applicable here 
since the population is spread over several close levels, so both n 1  and n2  are small. • 

11-7 THE LASER 

We saw in the previous section that the relative number of particles per quantum state 
at two different energies for a system in thermal equilibrium at temperature T is given, 
in certain circumstances, by the Boltzmann factor, e - V 2-"Ikr . We use this result 

n l  — n2  



now to explain the behavior of a very important device called a laser, an acronym for 
"light amplification by stimulated emission of radiation." A maser is the correspond-
ing system operating in the microwave region of the electromagnetic spectrum. 

Consider transitions between two energy states of an atom in the presence of an 
electromagnetic field. In Figure 11-6 we illustrate schematically the three transition 
processes, namely, spontaneous emission, stimulated absorption, and stimulated emis-
sion. In the spontaneous emission process, the atom is initially in the upper state of 
energy g2 and decays to the lower state of energy f1 by the emission of a photon 
of frequency y  = (e2  — 6'1)/h. (The mean lifetime of an atom in most excited states 
is about 10 - 8  sec. But some decays may be much slower, the excited states then being 
called metastable; the mean lifetime in such cases may be as long as 10 s  sec.) In the 
stimulated absorption process, an incident photon of frequency y, from an electro-
magnetic field applied to the atom, stimulates the atom to make a transition from the 
lower to the higher energy state, the photon being absorbed by the atom. In the 
stimulated emission process, an incident photon of frequency y stimulates the atom to 
make a transition from the higher to the lower energy state; the atom is left in this 
lower state at the emergence of two photons of the same frequency, the incident one 
and the emitted one. 

The processes of stimulated absorption and emission of electromagnetic energy in 
quantized systems can be regarded as analogous to the stimulated absorption or 
emission of mechanical energy in classical resonating systems upon which a periodic 
mechanical force of the same frequency as the natural frequency of the system is im-
pressed. In such a mechanical system, energy can be put in or taken out depending 
on the relative phases of motion of the system and the impressed force. The spon-
taneous emission process, however, is a strictly quantum effect. As discussed in 
Section 8-7, quantum electrodynamics shows that there are fluctuations in the electro-
magnetic field. Because of the zero-point energy of the electromagnetic field, these 
fluctuations occur even when classically there is no field. It is these fluctuations that 
induce the so-called spontaneous emission of radiation from atoms in excited states. 
In all three processes, then, we deal with the interaction of radiation with the atom. 

We wish to show now how these processes are related quantitatively. Let the spec-
tral energy density of the electromagnetic radiation applied to the atoms be p(v). Con-
sider that there are n 1  atoms in energy state g1 and n2  in state g2 , where g2 >  g1. 

Before 	 After 

Spontaneous  
emission  

   

    

(a)  

e2 	 

	

Stimulated -r\-/A-R-,-) 	 

absorption 

^i 

(b)  

e2 	o 

Stimulated  
emission 	 rtJVl 

e i  
(c)  

Figure 11 -6 Illustrating (a) the spontaneous emission process, (b) the stimulated absorp- 
tion process, and (c) the stimulated emission process, for two energy states of an atom.  
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The probability per atom per unit time, or transition rate per atom, that an atom in 
state 1 will undergo a transition to state 2 (stimulated absorption) clearly will be 
proportional to the energy density p(v) of the applied radiation at frequency y  = 
(e2 — S1)/h. In Section 8-7 we argued that the transition rate for stimulated emis-
sion is also proportional to p(v). But as we explained in Section 8-7, the transition rate 
for spontaneous emission does not contain p(v) because that process does not involve 
the applied electromagnetic field. 

The transition rates also depend on the detailed properties of the atomic states 1 
and 2 through the electric dipole moment matrix element of (8-42). Hence, the 
probability per unit time for a transition from state 1 to state 2 can be written as 

R1-.2 = B 12p(v)  (11-33)  

in which B12 is a coefficient that includes the dependence on properties of the states 
1 and 2. The total probability per unit time that an atom in state 2 will undergo a 
transition to state 1 is the sum of two terms, the probability per unit time A21 of spon-
taneous emission and the probability per unit time B21  p(v) of stimulated emission. 
Again, A21 and B21 are coefficients whose values depend on the properties of states 
1 and 2, through the appropriate matrix elements. Hence 

R2->1 = A21 +  B21p(v) 	 (11-34)  

Note again that spontaneous emission occurs at a rate independent of p(v), whereas 
stimulated emission occurs at a rate proportional to p(v).  

If now we consider that the n 1  atoms in state 1 and the n 2  atoms in state 2 of the 
system are in thermal equilibrium at temperature T with the radiation field of energy 
density p(v), then the total absorption rate for the system n 1 R and the total emis-
sion rate n 2R2  _  1  must be equal, as in (11-4). That is 

n 1 R 1 _, 2  = n2 R2 _, 1  (11-35)  
Thus we have 

   

n1B12p(v) = n 2 [A21  + B21p(v)]  

 

If we solve this equation for p(v) we obtain 

   

 

A21  

  

    

p(v)  _ B21  (11-36)  
n1 B12 

	1  
n2 B21  

We now assume we can use the Boltzmann factor, (11-32), with by = 6'2  — e1 , to 
obtain 

_ = Q(^z-^i)lkT =  ehv/kT  

n2  
so that (11-36) becomes 

A21  

p(v) = 
B21 	 (11-37)  

B12  ehvIkT 
— 1  

B21  

This equation, giving the spectral energy density of radiation of frequency y that is in  

thermal equilibrium at temperature T with atoms of energies e1 and 6 2 , must be 
consistent with Planck's blackbody spectrum, (1-27) 

87chv 3 	1 	1 
PT(v) = 	e3 (ehvIkT —  1  

n 1  



Hence, we conclude that 

B12 = 1 
B21 

(11-38) 

and 
A2 1 	87LhV 3  

B21 	C 3  

These results were first obtained by Einstein in 1917, and therefore the coefficients 
are called the Einstein A and B coefficients. Note that the argument does not give us 
values of the coefficients, but only their ratios. However, if we compute the sponta-
neous emission coefficient A 21  from quantum mechanics, using the techniques of 
Section 8-7, we then can obtain the other coefficients from these formulas. 

There is much of physical interest here. For one thing, we find from (11-38) that the 
coefficients of stimulated emission and stimulated absorption are equal. For another, 
we see from (11-39) that the ratio of the spontaneous emission coefficient to the 
stimulated emission coefficient varies with frequency as y 3 . This means, for example, 
that the bigger the energy difference between the two states, the much more likely is 
spontaneous emission compared to stimulated emission. Equation (8-43) shows that 
the y 3  is present in this ratio because A2 1  itself is proportional to y 3 . Still another 
result is that we can obtain the ratio of the probability A21 of spontaneous emission 
to the probability B 21 p(v) of stimulated emission, namely 

B2 1 p(v) 

This shows that, for atoms in thermal equilibrium with the radiation, spontaneous 
emission is far more probable than stimulated emission if by » kT. Since this condi-
tion applies to electronic transitions in both atoms and molecules, stimulated emis-
sion can be ignored in such transitions. Stimulated emission can become significant, 
however, if  hv ^ kT, and it may be dominant if  hv « kT, a condition that applies at 
room temperature to atomic transitions in the microwave region of the spectrum 
where y  is relatively small. 

We are now in a position to understand the concept behind lasers and masers. In 
general, the ratio of the emission rate to the absorption rate can be written as n2R2_1/ 
n 1 R 1 _ 2  or 

rate of emission n2A21 + n2B21p(v) 

  

rate of absorption 
r 
 n1B12p(v) 

=  C 1 	A21 
	
n2 	 (11-41) 

Bz1p(v) n1 

If we have energy states such that e 2  — « kT, or  hv « kT, then (11-40) shows 
that we can ignore the second term in the parenthesis as very much smaller than 
one, and obtain 

rate of emission 	n2  
	  - 	 (11-42) 
rate of absorption n 1  

This result is general in the sense that we have not assumed an equilibrium situation. 
In situations of thermal equilibrium, where the Boltzmann factor applies, we expect 
n2  < n 1 . But in nonequilibrium situations any ratio is possible in principle. If now we 
have a means of inverting the normal population of states so that n 2  > n 1 , then the 
emission would exceed the absorption rate. This means that the applied radiation of 
frequency v = (e2  — 6 1)/h will be amplified in intensity by the interaction process, 
more such radiation emerging than entering. Of course, such a process will reduce 
the population of the upper state until equilibrium is reestablished. In order to sustain 

(11-39) 

A21 = ehv/kT - 1 (11-40) 
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the process, therefore, we must use some method to maintain the population inversion 
of the states. Devices that do this are called lasers or masers, depending upon the 
portion of the electromagnetic spectrum in which they operate. Energy must be 
injected into the system, most commonly by a method described later called optical 
pumping, and the output is an intense, coherent, monochromatic beam of radiation, 
as we now explain. 

In the ordinary atomic light sources there is a random relationship between the 
phases of the photons emitted by different atoms so that the resulting radiation is 
incoherent. The reason is that there is no correlation in the times that the atoms make 
their transitions. In laser light sources, on the other hand, atoms radiate in phase 
with the inducing radiation because their charge oscillations are in phase with that 
radiation. Since in a laser the inducing radiation is a coherent parallel beam formed 
by reflection between the ends of a resonant cell, the emitted photons are all in phase 
and act coherently. The resulting intensity, which is the square of the constructively 
combined amplitudes, is correspondingly high. The states between which transitions 
are made are an upper metastable state, whose relatively long lifetime allows it to 
be highly populated, and the lower ground state of infinitely long lifetime. From the 
uncertainty relation AEAt ^ h, with At equal to the long lifetime of the upper state, 
we conclude that the energy uncertainty in the energy difference of the states is small 
and the emitted transition frequency is sharp, giving a highly monochromatic beam. In 
practical devices the beam is also unidirectional, the coherence property making it 
possible to obtain essentially perfect collimation, or focusing. This further enhances 
the concentration of energy density. Some indication of the concentration of energy 
in a laser beam is given by the fact that a laser with less power than a typical light bulb 
can burn a hole in a metal plate. 

In the solid state laser that operates with a ruby crystal, some Al atoms in the 
Al 2O 3  molecules are replaced by Cr atoms. These "impurity" chromium atoms ac-
count for the laser action. In Figure 11-7 we show a simplified version of the appro-
priate energy-level scheme of chromium. (The uppermost level is really a multiplet.) 
The level of energy e1  is the ground state and the level of energy e3  is the unstable 
upper state with a short lifetime (^ 10 -8  sec), the energy difference e3 — f1 corre-
sponding to a wavelength of about 5500 A. Level e2  is an intermediate excited state 
which is metastable, its lifetime against spontaneous decay being about 3 x 10 -3  sec. 
If the chromium atoms are in thermal equilibrium, the population numbers of the 
states are such that n 3  < n2  < n 1 . By pumping in radiation of wavelength 5500 A, 
however, we stimulate absorption of incoming photons by Cr atoms in the ground 
state, thereby raising the population number of energy state e3  and depleting energy 
state e1 of occupants. Spontaneous emission, bringing atoms from state 3 to state 2, 
then enhances the occupancy of state 2, which is relatively long-lived. The result of 
this optical pumping is to decrease n 1  and increase n 2 , so that n 2  > n 1  and popula-
tion inversion exists. Now, when an atom does make a transition from state 2 to state 
1, the emitted photon of wavelength 6943 A will stimulate further transitions. Stimu-
lated emission will dominate stimulated absorption (because n 2  > n 1 ) and the output 
of photons of wavelength 6943 A is much enhanced. We obtain an intensified co-
herent monochromatic beam. 

In practice, the ruby laser is a cylindrical rod with parallel, optically flat reflecting 
ends, one of which is only partly reflecting as shown in Figure 11-7. The emitted 
photons that do not travel along the axis escape through the sides before they are able 
to cause much stimulated emission. But those photons that move exactly in the 
direction of the axis are reflected several times, and they are capable of stimulating 
emission repeatedly. Thus the number of photons is built up rapidly, those escaping 
from the partially reflecting end giving a unidirectional beam of great intensity and 
sharply defined wavelength. 
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Figure 11 -7 Top: The relevant energy levels of chromium atoms in a ruby laser. State 3 
is very broad (large AE) because it is short lived (small At). State 2 is very sharp (small 
AE) because it is long lived (large At). Optical pumping raises the atom from ground state 
1 to excited state 3, the latter's breadth facilitating the process. Then spontaneous decay 
occurs to state 2, the energy released usually going into mechanical energy in the ruby 
crystal rather than into photon radiation. Finally, state 2 decays to the ground state, either 
through spontaneous emission or through stimulated emission due to photons from other 
such transitions. Since state 2 is very sharply defined and the ground state is infinitely 
sharply defined, this radiation will be very monochromatic. Bottom: A schematic of the ruby 
laser, showing the optical pumping lamp, the escape of photons not moving axially, sug-
gesting the buildup of repeatedly reflected axially moving photons which stimulate further 
emission, and indicating the escape of a fraction of the axial photons through the partially 
reflecting mirror at one end. 

Note that this is reminiscent of the conclusion of Section 11-2 that n bosons already 
in a quantum state will enhance the probability of one more joining them by a factor 
of (1 + n). The conclusion is applicable to the photons in the quantum states of the 
cylindrical rod, since photons are bosons. It is possible to develop the basic theory 
of the laser by applying the Bose distribution to the quantum states of the photons, 
instead of by applying the Boltzmann distribution to the quantum states of the atoms 
as we have done here. But the treatments are very closely related (as they should be 
since they lead to the same results) because the energy density p(v) of (11-34) is 
proportional to the number n of photons in a state at energy by so that equation is 
very similar to the enhancement equations, (11-10) or (11-11), that we used in deriving 
the Bose distribution. Furthermore, (11-35) is identical to the thermal equilibrium 
condition of (11-4) that was also used in the Bose distribution derivation. 

Generally speaking, a laser is a device in which a material is prepared so that the 
higher of two energy levels is more highly populated than the lower energy level, the 
material being enclosed in an appropriate resonator of sharp response. The system 
produces coherent radiation at those frequencies common to the resonator and the 
difference in energy of the levels. There is now a wide variety of lasers—gas lasers, 
liquid lasers, and solid state lasers—covering various regions of the electromagnetic 
spectrum. The intense coherent nature of the radiation they provide has led to in-
creasing application of lasers in fields such as radio astronomy, microwave spectros-
copy, photography, biophysics, and communications. 
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11-8 THE PHOTON GAS 

We begin in this section to study applications of the Bose distribution. The first will 
be a derivation of Planck's blackbody cavity radiation spectrum, in which the pho-
tons in thermal equilibrium at temperature T with the walls of the cavity are treated 
as a gas that is governed by the Bose distribution. According to (11-22), that distribu-
tion is 

n(s) = eaeg/kT 
— 1 

The discussion following (11-22) indicated that the value of the parameter a is speci-
fied by the total number of particles the system governed by the distribution contains. 
But for the case at hand the total number of particles in the system is not constant. 
A photon can be completely absorbed when it strikes a wall of the cavity, or the hot 
wall may at some other time emit a new photon. Thus for a system of photons the 
distribution cannot contain the term e". That is, the Bose distribution for photons (or 
other bosons that can be created or destroyed within the system) must have the form 

n(s) _ 	kT 	 (11-43) 
e -1  — 1 

The number of particles in the system has indeed specified the value of a; because that 
number varies it is necessary that a = 0 so that e = 1. Confirmation of the validity 
of this argument will be obtained soon. 

Let N(s) represent the number of quantum states per unit energy interval at energy 
i—called the density of states—for photons in the cavity. Then N(e) de is the 
number of quantum states for photons in the cavity within the energy interval 6' to 
e + de. Since n(s) is the probable number of photons per quantum state, the product 
n(g)N(g) dg gives the number of photons in the energy interval. However, mode 
for radiation confined to a cavity has already been evaluated by geometrical argu-
ments in Example 1-3, except that the language used there is different from that which 
we are currently using; there we spoke of the radiation as waves and here we speak 
of it as particles (photons). We found there that 

N(v) dv = 8 3V  v 2  dv 
C  

where V is the volume of the cavity and  y  is the frequency of a wave contained in 
the cavity. Using the familiar relation g = hv to evaluate the energy of the associated 
photon, here we find, after multiplying and dividing the term v 2  dv by h 3, that 

8rcV e2 dP 

	

8Tcv 2 	hv 
p T (v)dv = 	 

c 3  ehv/kT — 	 1 dv  (11-45) 

Equation (11-45) is identical to (1-27), obtained in Chapter 1 and verified there by 
comparison with experiment. Note that this agreement confirms the validity of the 
Bose distribution for photons, (11-43). In the Planck derivation the radiation is a set 
of waves confined to the cavity. Each of these standing waves is a mode of vibration 

1 

mode = 	
c3 h3 
	 (11-44) 

Taking the product of this expression times n(s), multiplying by the energy b carried 
by each photon, and then dividing by the volume V of the cavity, we have 

en(e)N(é)  de _ 87c S3  de 
PT(g) 	e 3 h3(ee/kT _ 1)  

where PT(e) de is the energy per unit volume in the energy interval e to g + de. 
Planck's spectrum follows at once by using the relation e = hv to convert from S to 
v. Thus 



1  
n(e) = eae^lkT —  

(11-46)  

that is distinguishable from all the others, just as for the lattice vibration modes in  

the Debye model, so it is valid to apply the Boltzmann distribution to them. In the  

present derivation the cavity radiation is a set of indistinguishable particles—photons  

to which the Bose distribution must be applied.  

11 -9 THE PHONON GAS  

We were able to use the wave-particle duality for electromagnetic radiation to derive  

the thermally excited distribution of radiation in a cavity either on a wave picture  

or a particle picture. Similarly, the thermally excited distribution of elastic vibrations  

in a solid can be deduced by applying a wave-particle duality for acoustic radiation.  

Just as photons are the quanta of electromagnetic radiation, so phonons are the  
quanta of acoustic radiation. Just as photons are emitted and absorbed by vibrations  

of the atoms in a cavity wall, so phonons are emitted and absorbed by vibrating atoms  

at the lattice points in the solid. The sources of each type of radiation are quantized  

so that the energy gain or loss is discrete; the discrete energy transferred through  

the system has an energy hv, where y  is the frequency of the acoustic vibration for  

phonons and of the electromagnetic vibration for photons. Just as the number of  

photons is not fixed or conserved, so the number of phonons is not fixed or conserved.  

The Bose distribution with a = 0, i.e., (11-43), applies to phonon and to photon. There  

are differences, of course, between the photons and phonons. For example, the photon  

propagates through vacuum whereas the phonon propagates through a crystal lattice.  

This leads to different energy-momentum relations, a matter we return to in a sub-
sequent chapter.  

It should be clear that the Debye specific heat formula can be deduced on the  

phonon picture from the Bose distribution in a way analogous to the photon deduc-
tion of the Planck spectrum formula using the Bose distribution. That is, the wave-
particle duality for acoustic radiation is used just as before we used the wave-particle  

duality for electromagnetic radiation. The phonon calculation will not be reproduced  

here because it is completely analogous to the photon calculation and leads to no  

new results. The solid contains a gas of phonons just as the cavity contained a gas of  

photons.  

11 -10 BOSE CONDENSATION AND LIQUID HELIUM 

Here we sketch an application of the Bose distribution to an ideal gas in order to  

compare quantum and classical gas behavior. As a practical application we shall then  

consider the remarkable properties of liquid helium.  

The general form of the Bose distribution is  
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To apply this to bosons whose total number X in a system remains fixed, like helium  

atoms, we must first determine the parameter a. This is done by setting  

cc 

✓V = J  n(g)N(e) de 

o 

where me) dg is the number of quantum states of the system in an energy interval  

e to e + de, and n(s) is the number of bosons per quantum state, so that the integral  

is just the total number X'. Using (11-46), we. have  
oo  

N(S)  de 
= eaeglkT 	1  

(11-47)  
0 
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To proceed we must determine for an ideal gas the number of states in the energy 
interval e to f + de, which is the product of the density of states N(s) and the size 
de of the energy interval. Consider the gas particles to be in a cubical box of side a. 
The potential energy for a particle in such a three-dimensional box is that of a three-
dimensional infinite square well. The Schroedinger equation for a one-dimensional in-
finite square well was solved in Section 6-8, giving allowed energies en = (h2/8ma 2)n 2 . 
By a simple extension of the calculation we find the allowed energies f for a three-
dimensional well to be 

h2  

e 8ma2 (nx ± ny + nz) (11-48) 

in which the quantum numbers nx , n nZ  are positive integers. The number of states 
in an energy interval can be obtained by plotting, in a space formed by axes n x, ni,, nZ , 
the allowed states (which are points where n x , n nZ  take on positive integral values) 
and counting them. We have done this, in a different  context, for the calculation of 
Example 1-3. There we defined r = jnx + ny + fZ, and we found in (1-15) that the 
number of states for r lying between r and r + dr is 

nr2  dr 
N(r) dr =  2  

The same is true here. We convert this into the desired form, N(e)de, by using 
(11-48) to write 

2 h  e = 	r
2 
 

8ma2  

and then taking this equation, and its differential, to evaluate 
rcr2 dr = 

4
TE h2 

  8ma2 ) -
3/2 g1/2 de = 4ha3  (2m3)1/26,1I2 de 

So the number of states for e lying between g and e + de is 

me) de = 4h3  (2m3)1/26e1/2 de  (11-49) 

where V = a3 , the volume of the box. 
If now we combine this result with (11-47) and carry out the integration we obtain 

(27cm hT)3/2 V 
e-Œ 1  + 23/2  e -a + 3 3/2  e -2a + .. . 

To simplify the appearance of this equation, let e - a = A so that we can write 
(27rmkT3 312  V

A 1+23 2 A+332 A 2  + 	 (11-50) 

For large mass m and high temperature T, A must be very small since X is fixed. In 
these circumstances, terms beyond the first power in A can be dropped. But lt.rge m 
and high T should be the classical region. Indeed, we find that the first term gives the 
classical Boltzmann result 

.J1( _ (27cmkT)312V 
A  

h3  

or 
3 

A = 
(2nrmkT) 312 V = e' (11-51) 

Note that A = e' a is proportional to X, as in the Boltzmann result for a system of 
classical oscillators discussed after (11-23). Also note that here we conclude that since 



Now, if A >_  d we expect wave effects to be important. This requires  
h   

kT) 1 /2—
) 1/3 

 
V 	> — 

(3m  

is fixed a must be very large (as A is very small), in contrast to our conclusion 
that a is zero for a system of bosons in which .N' varies. 

If we now compute the total energy E of the ideal gas from 

E = J  en(e)N(e) dS  

we obtain 
3/2 

E _ 
(2^ h

3 	V 2 kT A(1 + 25/2  A + 3 5/2 Az  + •) 	(11-52)  

Once again the classical result follows for very small values of A. Neglecting terms  
beyond the first power in A, and using (11-51), we have E = (3/2).iVkT. This corre-
sponds to an average energy per particle EIS' equal to (3/2)k T, which is the classical  
equipartition of energy result for three-dimensional translational motion. The general  

Bose result for the average energy per particle, obtained by dividing (11-52) by (11-50),  

is, including terms up to A 2  
3 

E = 	= 2 kT [1 — 2 5 / 2  V(2 mkT)3/z] 	
(11-53)  

The term beyond 1 in the bracketed expression of (11-53) represents the deviation  

of the Bose gas from the classical gas. This is sometimes called the degeneracy effect. 
(This degeneracy effect, or gas degeneration, is not related to the degeneracy that  

describes different quantum states having the same energy.) Equation (11-53), which  

neglects higher order terms, pertains to the case of weak degeneracy. Note that the  

degeneracy term is negative so that the average particle energy is less for a Bose gas  

than for a classical gas. This corresponds to previous results in which we found a  

greater probability of two particles to an energy state for the Bose distribution than  

for the Boltzmann distribution, the lower energy states being relatively fuller in the  

Bose gas than in the classical gas) as a consequence. Physically, this manifests itself,  

for example, as a lower gas pressure (lower average momentum) at the same tempera-
ture for a Bose gas than for a classical gas.  

Example 11 -4. Whenever the mean interparticle distance is comparable to or smaller than 
the de Broglie wavelength assigned to particles on the basis of their temperature, we should 
expect to observe wave effects, that is quantum effects, in the system of particles. Show that 
this criterion leads to the requirement that the degeneracy term .4Vh 3/V(2xmkT) 3/2  not be 
negligible compared to 1 if deviations from classical behavior are to be detected. 
■ The de Broglie wavelength of a particle is A = h/p. In  a gas  in equilibrium at temperature 
T the mean kinetic energy is (3/2)kT so that p = -.%/2mK = J3mkT. Hence 

h  
(3mkT) 1 /2  

If the volume of gas is V and there are ✓V atoms of gas, the volume per particle V/.A 1  can 
be set equal to d 3 , where d is the mean interatomic separation. Hence 

( V

)

1/3  
d  

W
f 1
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or, cubing each side 
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which is the same as 

.A h 3  

V(3mkT )312 

Hence, ✓Vh 3/V(27rmkT) 312  should exceed about 1/3 and so the term beyond 1 in the 
bracketed part of (11-53) should exceed about 1/16 to meet our criterion. • 

Under what circumstances might we detect the degeneracy effect experimentally? 
The degeneracy term is negligible in practice for most gases, having a value of about 
10 -5 , so that the Boltzmann distribution applies almost universally to them. Note 
that the degeneracy term, .IVh 3/V(27rmkT) 3 " 2 , becomes more important the smaller 
the mass m, the lower the temperature T, and the higher the density .AVIV. The 
smallest mass gases obeying the Bose distribution (zero or integral spin angular mo-
mentum) are H2 and He. If we prepare such a gas to be at high density and low tem-
perature we bring it near its condensation point. For this reason, and another to be 
mentioned shortly, the degeneracy effect is sometimes called the Bose condensation. 
For H2 the degeneracy term at its normal condensation point is less than 1/100, 
whereas for He near its normal condensation point (4.2°K) the degeneracy term is 
about 1/7. Hence, we should get observable effects more easily for helium. The theory 
would be approximate in this case, for at such high densities the behavior is like a 
real gas of interacting particles rather than an ideal gas of noninteracting particles. 
Indeed, in the liquid, or condensed phase, we observe the most striking nonclassical 
effects in the behavior of helium. Let us now describe these effects. 

Ordinary helium gas is composed almost wholly of neutral atoms of the isotope 
He4. The spin angular momentum of such an atom is zero so that the Bose distribu-
tion must be used to treat the behavior of this gas. At normal atmospheric pressure 
helium gas condenses to a liquid at 4.18°K. It remains as a liquid, i.e., it does not 
freeze into a solid, down to the absolute zero of temperature if it is cooled at a pres-
sure equal to its own vapor pressure. (To obtain solid helium it is necessary to pres-
surize the liquid, about 26 atm of pressure being needed near absolute zero.) If, by 
pumping off the vapor, the temperature of liquid helium is reduced to 2.18°K, a 
dramatic change in its properties is observed. The temperature 2.18°K is called the 
A point because the shape of the graph of specific heat versus temperature resembles 
the letter A with the anomaly at 2.18°K. Liquid helium is called He I when it is above 
this temperature and He II when below. He I is essentially a classical fluid, its be-
havior not being unusual, but He II contains a superfluid component which causes 
it to show spectacular large scale quantum effects, including the following: 

1. As the temperature of liquid helium is lowered by evaporation and the vapor 
is pumped away, the liquid boils in the usual manner. But as the A point is reached 
and passed the boiling suddenly stops throughout the liquid. Though evaporation 
continues, and the temperature and vapor pressure fall, the liquid is completely calm 
(see Figure 11-8). This is explained by the fact that heat can be conducted out of the 
liquid with practically no resistance, since the heat conductivity is measured to in-
crease by a factor of about one million below the A point. 

2. We can determine the viscosity of liquid helium by measuring its rate of flow 
through a fine capillary tube. At the A point, the measured value of the viscosity 
drops by a factor of about one million. 

3. Most unusual and spectacular is the ability of liquid helium, below the A point, 
to creep as a thin film along the walls of its container, as shown in Figure 11-9. The 
speed of this ordered mass motion may be 30 cm or more per second. The effect in-
volves helium first adsorbing on the entire surface of the cold container to form a 
thin film. The film then acts like a siphon through which the liquid flows with almost 
no viscosity. 

>1 
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Figure 11-8 The 2 paint transition in liquid helium. As liquid helium is cooled from its 
normal boiling point at 4.2°K by evaporation, with the use of a vacuum pump, it boils 
normally with small bubbles. As it undergoes the phase transition from He Ito He II at the 
1 point, 2.18 ° K, it suddenly and briefly boils up violently (see top and middle pictures), and 
equally suddenly stops boiling altogether (see bottom picture). Below this transition point 
liquid helium cannot boil, even when pumping, evaporation, and cooling continue. (Cour-
tesy of A. Leitner, Rensselaer Polytechnic Institute) 
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o 
(a) 	 (b) ..........: 

Figure 11-9 The creeping motion of a film of liquid He 4  below the transition temperature 
demonstrates the superfluidity of He II. The film behavior, suggestive of liquid flow through 
a siphon, is shown schematically for liquid levels in the container (a) below and (b) above 
the level of the liquid helium reservoir. In (c) is a photograph of a glass vessel partially filled 
with liquid He II and suspended by threads above the surface of the same liquid seen at 
the bottom of the picture. He II creeps up along the inside wall, over the rim, and down 
along the outside wall as a thin film, collecting as a drop on the bottom. When this drop falls 
another will form, and so on, until the vessel is empty. (Courtesy of A. Leitner, Rensselaer 
Polytechnic Institute) 

K. Mendelssohn has written of the film flow as follows: 

"If the beaker is withdrawn from the bath, the level will drop until it has reached the level 
of the bath. If the beaker is pulled out completely, the level will still drop, and one can see 
little drops of helium forming at the bottom of the beaker and falling back into the bath. This 
is the sort of thing that makes one look twice and rub his eyes and wonder whether it is quite 
true. I remember well the night when we first observed this film transfer. It was well after 
dinner, and we looked around the building and finally found two nuclear physicists still at 
work. When they, too, saw the drops, we were happier." 

All of the properties of He II indicate that it has a very high degree of order. For 
instance, the almost complete absence of viscosity means that, when flowing, He II 
does not develop the small scale turbulences that cause the frictional energy loss re-
sponsible for the viscosity of ordinary fluids. The order is imposed by the (1 + n) 
enhancement factor that we often find when studying the low-energy behavior of a 
system of bosons. When the temperature becomes low enough to allow it, all the he-
lium atoms in a system tend to condense into the same lowest' energy quantum state. 
This is the Bose condensation. The superfluid component, whose concentration rap-
idly approaches 100% as the temperature decreases below the  point, is comprised 
of those atoms which are in that quantum state. To the extent that all the atoms do 
get into the same microscopic state, it becomes the state of the entire macroscopic 
system and the system can only behave in a completely ordered way in which the 
action of any atom "is correlated _with the action of all the others. This tendency is 
extremely pronounced because the factor (1 + n) has an extremely large value if n is 
anything like the total number of atoms in a beaker of liquid helium. 

11 -11 THE FREE ELECTRON GAS 

In this and the following section we apply the Fermi distribution to quantum systems. 
In a manner analogous to that used for a boson gas, we could deduce the behavior 

of an ideal gas of fermions. To the same degree of approximation we would find, for 
example, that the average energy per particle is 

3 
E = 

X 
= 2 kT[1  + 25/2 V(2mk T)3/2] 	 (11-54) 

which is the Fermi result corresponding to the Bose result of (11-53). The degeneracy 
term here (second term in brackets) is positive so that the average particle energy is 
greater for a Fermi gas than for a classical gas. This corresponds to a lower probability 
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(strictly zero) of finding two particles in the same quantum state for the Fermi dis-
tribution than for the Boltzmann distribution, the lower energy states being relatively 
fuller in the classical gas than in the Fermi gas as a result. Physically, this manifests 
itself as a higher gas pressure (higher average momentum), at the same temperature,  

for a Fermi gas than for a classical gas. Notice again how the Bose and Fermi results  

fall on opposite sides of the classical result.  

It is natural to ask for an example of a Fermi gas whose degeneracy effect we can  

detect. In Chapter 15 we shall find an example in the neutrons, and the protons, con-
fined to a nucleus. Helium gas containing only the isotope He 3  also obeys the Fermi 
distribution, as do all particles with odd half-integral spin angular momentum, and 
it remains a gas without condensing to a low enough temperature that the degeneracy 
term of (11-54) is detectable. This isotope is rare and more difficult to get in large 
quantities, but the behavior of He 3  atoms has been shown to be markedly different 
from that of He 4  atoms in ways predicted by the different distribution functions ap-
plicable to them. For example, the vapor pressure of liquid He 3  at a given tempera-
ture is much higher than that of liquid He 4. Indeed, this is the basis for a practical 
method of cooling to 0.02°K. 

It would be quite easy to detect the effect of the degeneracy term for fermions, 
however, if we could obtain a gas of electrons. The degeneracy term can be written 
as nh 3/(27rmkT) 3 / 2, in which n = X/V is the number density of the particles. Notice 
that a small mass in and a high density n can increase the importance of this term, 
as well as a low temperature T. Because the electronic mass is several thousand times 
smaller than that of atoms, the degeneracy effect for electrons should actually be de-
tectable even at high temperatures. For electrons in a metal the number density n of 
conduction electrons is also very high, so that conduction electrons in a metal show 
quantum degeneracy effects. The question remains whether we can regard such elec-
trons, even approximately, as a gas of free electrons, i.e., an ideal gas. 

In a crystalline solid most of the atomic electrons are bound to the nuclei at the 
lattice points, but if it is a metallic conductor electrons from outer subshells of the 
atoms are relatively free to move through the solid. These are the conduction electrons. 
Because their mutual repulsion is cancelled, on the average, by the attractions of the 
atomic cores, we may regard the conduction electrons as approximately free particles 
and can treat them to good approximation as an ideal electron gas (see Figure 6-24). 
Indeed, we can regard the interior of the solid as a region of approximately constant 
potential for these electrons with the metal boundaries acting as high potential walls. 
The electron then behaves as a particle in a box whose quantum states we already 
know (see Section 6-8). 

To get the number N(S)de of states in an energy interval f to e + de we simply 
count the number of standing waves, each representing a definite state of the motion, 
in that energy interval. We have made this calculation before for an ideal gas in a 
box, with results described in (11-49). The results here are the same, after taking into 
account the two possible spin orientations for an electron having a given space eigen-
function. That is 

8rc V(2m 3) 1 /2  
N(e) dg = 	h3 	e1/2 

d
e 

 (11-55)  

Multiplying by n('), the probable number of electrons per quantum state, we obtain 

8^ V ( yn 3 ) 1/2 	1/2 de 
n(e)N(e) de = 	

F 	ec^ ^F)l + 1 	̂F  = — akT 	(11-56)  

This is the electron gas energy distribution of conduction electrons in a metal. 
If now we assume that the temperature is very low (strictly speaking, T = 0), we 

know that all the quantum states up to the Fermi energy 'F are occupied and that  
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none of the higher states are occupied. In that case the total number of free electrons  

equals the total number of distinct states up to energy eF , and we have a way of cal-
culating the Fermi energy. That is 

eF F 

Jr.  = f N(e) de = 
8nV(2m3)1/2 X1'2 d^ = 16m V3hm3)"2  n/2

J  
0  

or  

h2   
( 	

3 , 	2/3 

I 	
(11-57) 

F  8m\ ITV/  

For temperatures such that kT « eF this result is an excellent approximation. For  
ordinary metals we need temperatures of the order of several thousand degrees before  

the approximation breaks down.  

Example 11 -5. Consider silver in the metallic state, with one free (conduction) electron per 
atom. 

(a) Calculate the Fermi energy from (11-57). 
•The density of silver is 10.5 g/cm 3  and its atomic weight is 108. Hence 

.N 6.02 x 1023  atom/mole x 10.5 g/cm 3 
n = 	

_ 

 V 	 108 mole 
	  x 1 free electron/atom 

g/  
= 5.9 x 1022  free electron/cm 3  = 5.9 x 1028/m 3  

Therefore 
h2  C3n\2/3 _ (6.6 x 10 -34  joule-sec) 2   

(

3 x 5.9 x 10 -2$/m3\2/3  
F  8m 71 	 8  x 9.1  x  10 -31  kg ^ 	fI 

=8.8 x 10 -19  joule =5.5eV 
(b) Calculate the degeneracy term for the conduction electrons in metallic silver at 300°K. 

►  We have 
5.9 x 1028/m3  x (6.6 x 10 -34  joule-sec) 3  

(2irmkT) 3/ 2  (27c x 9.1 x 10 -31  kg x 1.38 x 10 -23  joule/°K x 300°K) 312 
 4700  

so that the second term in the brackets of (11-54) has the value 
1 	nh3  

25/2 (21CmkT)3 	/2 820  

Hence, the degeneracy term is extremely large and completely overwhelms the leading (clas-
sical) term of (11-54). The electron gas is said to be a completely degenerate Fermi gas; that  

is, it behaves as if T ^ 0°K with the electrons in the configuration of lowest energy. Such a  

gas shows quantum behavior (i.e., is nonclassical) up to the highest attainable metallic tem-
perature, the electron gas in silver remaining almost completely degenerate until the tempera-
ture is of the order of 10 5  °K. At those temperatures and higher the degeneracy term becomes  

small compared to one.  

We can now understand a result that classical physics was unable to explain, name-
ly the experimental observation that the conduction electrons do not contribute to  

the specific heat of metals at ordinary temperatures. According to the classical view  

the free electrons take part in the thermal motion in a metal, each free electron having  

a mean energy (3/2)k T. Therefore, the specific heat for a metal should be not simply  

3R, due to the vibrations of the atoms at the lattice sites, but it should be (3 + 3/2)R  

instead, in which the (3/2)R term is the contribution per mole of the electron gas.  
The origin of this term is seen by noting that if E = (3/2)k TN 0  = (3/2)R T, then c„ =  

dE/dT = (3/2)R, where N o  is Avogadro's number. According to the Fermi model of  
an electron gas, the electrons do not exhibit this classical behavior until the tempera-
ture reaches about 10 5  °K. That is, there is no equipartition of energy between elec- 

nh3  



trons and lattice contributions, the electron gas in this sense not being anywhere near 
thermal equilibrium with the atoms of the metal confining it. As the temperature is 
raised, the Fermi distribution of electrons among available energy levels is affected 
only slightly at the high-energy end (see Figure 11-3) so that the average electron 
energy is hardly changed at all. This means that at ordinary temperatures the electron 
gas does not contribute to the specific heat of the metal in an appreciable way. That 
is, E (3/2)kTN 0 , but instead it is approximately independent of temperature, so 
that c„ = O. Hence, the Fermi distribution is in accord with experimental facts con-
cerning electrons at ordinary temperatures. 

At ordinary temperatures, and even at temperatures high enough to make the 
cv  = 3R law of Dulong and Petit a good approximation to the specific heat contri-
bution of the lattice vibrations of a solid, the electronic specific heat term is too small 
relative to the atomic specific heat term to be detected. At temperatures near absolute 
zero, where the atomic specific heat is very small, the electronic contribution will 
exceed the atomic contribution. It is in the region of a few degrees Kelvin that the 
electronic specific heat dependence is observed experimentally, again in agreement 
with the Fermi distribution predictions. 

11-12 CONTACT POTENTIAL AND THERMIONIC EMISSION 

Up to now we have treated the electron in a metal as a particle in a box, that is we 
have implicitly assumed the electron does not escape the metal, the potential box 
having very high walls. We know, however, that electrons can escape from metals, 
as in the photoelectric effect, thermionic emission, etc., so that we should modify the 
potential function somewhat. Inside the metal the potential function is approximately 
constant, and near the metal boundary it increases rapidly to reach its higher constant 
value outside the metal. If we take the zero of potential energy to correspond to the 
electron being far outside the metal, then we can let — Y o  represent the depth of the 
resulting potential energy well illustrated in Figure 11-10. 

We can determine Yo  from photoelectric experiments, specifically from the fact that 
there is a cutoff frequency v o  below which photons cannot eject electrons from the 
metal (see Section 2-2). This suggests that the most energetic electrons in the metal 
are an energy interval hv 0  below the top of the potential well. The fact that the photo-
electric current rises rapidly as the photon energy rises above the threshold value 
suggests an abrupt rise in the number of electrons with decreasing kinetic energy 
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Figure 11-10 The average potential energy for a conduction electron in a metal. The 
potential is a well of depth V o  that rises rapidly near the metal boundaries to zero. The energy 
levels increase in density in proportion to f 112 , and are filled up to the Fermi energy 4. The 
work function is wo , and Vo  = wo  + 4. 
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inside the metal. This corresponds to the features of the Fermi distribution, the most 
energetic electrons having kinetic energy and many electrons having nearby 
smaller kinetic energies. Therefore, we can retain the energy distribution of quantum 
states that we found for the particle in a box. (See Section 6-8 for a discussion 
of the similarity in energy levels of an infinite and a finite square well potential.) At 
T = 0 all states are filled up to an energy 6F  above the bottom of the well, this high-
est state having a total energy — hv 0 . That is, — V0  + gaF  = — hvo . Recall now that 
hv0  = w0, the work function of the metal, so that — V0  + eF = — w0  or 

V0  = 	w0 	 (11-58) 
For silver the work function is 4.7 eV and 	is 5.5 eV, so that V0  is 10.2 eV. For 
most metals V0  lies between 5 and 15 eV, as can be seen in Table 11-2. Of course, at 
ordinary temperatures the Fermi distribution does not give a sharp cutoff at eF  but 
is spread out continuously over a narrow energy region near eF. In a region of the 
order of kT on each side of the Fermi energy, i.e., in a transition region of width 
2kT, the number of particles per quantum state goes from a value near one to a value 
near zero. In the limit when T —* 0 this transition region becomes infinitesimally 
narrow. 

With this model for the behavior of electrons in a metal we can explain the contact 
potential difference of two metals and understand the thermionic emission process. 
First, consider the thermionic emission process, which is of great practical importance 
because it is responsible for the emission of electrons from the heated filament of a 
vacuum tube. At high temperatures (i.e., for large values of kT) the distribution of 
electrons among available energy states in a metal extends to energies well above 
4. At sufficiently high temperature some electrons may acquire a kinetic energy 
greater than V0  (i.e., greater than 6aF  + w0) and thereby escape from the metal. We 
can calculate the thermoelectric current density emitted from a metal surface as a 
function of temperature from the Fermi distribution and from the Boltzmann distri-
bution. The calculation involves determining how many electrons will arrive at the 
metal surface moving in the required direction and with enough kinetic energy to 
escape. The two distributions give a different temperature dependence for the current 
density, and experiment rules in favor of the Fermi distribution for electrons. 

As for the contact potential difference between metals, consider two metals A and 
B which at first are not in contact, as is indicated schematically in the left part of 
Figure 11-11. Outside the metals the potential energy of an electron is zero. Inside 
the metals the Fermi level of metal A is WA  below zero and the Fermi level of metal 
B is wB  below zero. Let w B  > WA  so that the Fermi level of metal A is higher than 
that of B. Now let the metals be connected electrically, as illustrated in the right part 
of Figure 11-11. Then the most energetic electrons in metal A will flow into metal 
B, filling the energy levels in B just above its Fermi energy and depleting the upper 
levels in A. The process continues until equilibrium is reached; that is, until the high-
est filled levels in A and B are at the same energy, because the total energy of the 

Table 11 -2 Work Function and Fermi Level 
Energy for Some Metals 

Metal w0  (eV) (eV) 

Ag 4.7 5.5 
Au 4.8 5.5 
Ca 3.2 4.7 
Cu 4.1 7.1 
K 2.1 2.1 
Li 2.3 4.7 
Na 2.3 3.1 
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Metal A 	Space 	Metal B 	Metal A 	Space 	Metal B 
Figure 11 -11 Left: Showing the potential energy for an electron in two separated metals 
A and B with different work functions. Right: The metals are now connected electrically 
by a wire, becoming oppositely charged and exhibiting a contact potential difference. 

system is minimized when this situation is achieved. The result is that metal A be-
comes positively charged in the process and metal B becomes negatively charged. 
Consequently there is a potential difference of (w $  — w A )/e between the metals when 
they are connected electrically, a result in essential agreement with experimental 
values. 

11-13 CLASSICAL AND QUANTUM DESCRIPTIONS OF THE STATE 
OF A SYSTEM 

We saw in Section 4-9 an example of how the instantaneous state of the motion of a classical 
particle can be represented by a point in phase space. For the one-dimensional motion con-
sidered there, the phase space was a two-dimensional space whose abscissa was the position 
x and whose ordinate was the momentum px . For a three-dimensional motion, phase space is 
a six-dimensional space of coordinates x, y, z, p x , py , pz . As the particle moves, the point rep-
resenting it in phase space traces out a path, the path being an ellipse in our earlier example 
of a one-dimensional harmonic oscillator. If we had a large number of such oscillators we 
would have a large number of representative points in phase space corresponding to the instan-
taneous distribution of oscillators. For most systems of interest we can write the total energy 
of each member as E = K + V = (px + py + p!)/2m + V(x,y,z) so that the location of a 
point (x,y,z,p x ,py ,pz) in phase space gives the total energy of that member of the system which 
the point represents. The distribution of points gives the distribution in energy of all members 
of the system. 

Thus, in classical statistics we can characterize the energy distribution of a system by giving 
the number of points in each small volume of phase space, say AxAyAzAp xApyApz. We call 
such a small volume element a cell in phase space, and points in that cell have total energy 
between E and E + dE, corresponding to momentum values between px  and px  + Ap r, etc., 
and position values between x and x + Ax, etc. The cell is chosen to be small enough that 
the average total energy of its representative points differs little from the energy of any one of 
them; it is chosen large enough so that there are many points in a cell, thereby permitting the 
application of statistical ideas. Hence, the size of a cell is somewhat arbitrary and indefinite, 
but once it is chosen the cell is characterized by an average total energy and a population 
number. The cell then is the classical statistical analogue to the quantum state of quantum 
statistics. In Figure 11-12 we illustrate the situation for a one-dimensional system. 

In quantum mechanics we must modify the preceding picture because of the uncertainty 
principle. For one thing we cannot describe the trajectory of a particle by giving the path of 
a representative point in two-dimensional phase space because we cannot simultaneously know 
the exact values of x and px  for the particle. The best we can do is locate the representative 
point at any time between x and x + Ax and px  and px  + Apr  where AxApx  ^ h, so that in-
stead of a representative point tracing out a line we have a small area tracing out a ribbonlike 
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path in two-dimensional phase space. More important, however, is the fact that there is a def-
inite smallest size to any cell in the quantum description. A cell in which AxAp x  is less than 
h is meaningless, such a specification being more precise than allowed by the uncertainty prin-
ciple. For the general six-dimensional phase space, therefore, the smallest cell has a "volume" 
of  P. 

It is therefore possible in the quantum description to remove the arbitrariness and indef-
initeness of the volume element in phase space. Because the size of the cell obviously affects 
the counting of distinguishable divisions of the total energy of the system, there is a certain 
indefiniteness in the results of classical statistics. For example, the entropy of a system can be 
written as S = k In P where P is the number of distinguishable divisions of its energy content 
(i.e., P is a measure of the probability that it has the particular energy). However, the classical 
entropy has an arbitrary constant in it basically because of the indefiniteness of the cell size. 
The quantum value is exact, because of the definiteness of the cell size, and it gives an absolute 
entropy constant in agreement with experiment and the laws of thermodynamics Indeed, it 
was this result, and not the results concerning the cavity radiation, that convinced Max Planck 
of the correctness of his ideas concerning energy quantization and the constant h. And it is 
this smallest size of a cell in phase space in quantum statistics that is the origin of the factor 
h3  displayed in many of the equations in this chapter. 

From considerations discussed here we can also understand the applicability of the classical 
Boltzmann distribution to so many quantum problems. If there is no definite smallest size to 
a cell in phase space then we can always get a situation in which there is not more than one 
particle per state. But this is just the high temperature case wherein classical and quantum 
statistics agree. The classical distribution function is valid in this case, regardless of the indis-
tinguishability of particles. Of course, the real quantum world does set a limit to the smallness 
of a cell so that the classical distribution will not apply when the number of particles per cell 
is more than one. 

QUESTIONS 

1. Exactly what do the inhibition and enhancement factors describe? What are their origins 
2. Can you devise a cycle of transitions between three states which would maintain an 

equilibrium in the populations of these states, with transitions that violate detailed bal-
ancing? Does it seem reasonable to extend this to a system with many states? 

3. What is the basic reason why the quantum distributions merge with the classical distri-
bution at energies much larger than kT? 

4. Explain why the behavior of the Boltzmann distribution is intermediate to that of the 
Bose and Fermi distributions. 

5. Give examples of systems to which the Boltzmann distribution is applicable in principle. 
As a good approximation. 

6. What factors determine the value of a for the thrée distributions? 



7. Interpret physically the Fermi energy eF . 

8. Thermal expansion is related to the anharmonic nature of the vibrations of atoms in a 
solid. Would the Debye model be appropriate to studying thermal expansion of solids? 

9. In Debye's model of a solid, the maximum frequency v m  corresponds to a minimum 
wavelength. Because of the discrete nature of a solid this minimum wavelength corre-
sponds to a vibration in which adjacent atoms move 180° out of phase with one another; 
that is, the interatomic spacing is half a wavelength. Is this plausible? Explain. 

10. Interpret the Debye characteristic temperature O physically. 

11. In our analysis of emission and absorption processes of an atom in an electromagnetic 
field we neglected recoil effects. How does this affect our results? Are we justified in 
ignoring recoils? 

12. What are the dimensions of the Einstein A and B coefficients? 

13. It is said that a laser is not a source of energy but a converter of energy. Explain. 

14. We have ignored the possible degeneracy of the states involved in laser action. How would 
you take this into account? What effect does it have? 

15. Make a step-by-step comparison of the deduction of the Planck radiation law on the 
basis of the Maxwell distribution and the Bose distribution. 

16. List similarities and differences between phonons and photons. 

17. At low densities and high temperatures the Bose gas behaves like a classical ideal gas. 
Make this result plausible physically. 

18. In writing about experiments on the scattering of a particles in helium Rutherford said, 
"On account of the impossibility of distinguishing between the scattered alpha particles 
and the projected He nuclei, the results are subject to a certain ambiguity." Explain how 
an awareness of quantum statistics could have removed the ambiguity. What determines 
whether a gas obeys Bose or Fermi distributions? 

19. How can the ordered state of the He II explain its lack of resistance to heat conduction? 

20. What examples of a Fermi gas are there other than an electron gas and a gas of He 3 
 atoms? 

21. In the ideal gas equations we use the rest mass of particles. Should we ever use the 
relativistic mass instead? Consider the effect of temperature and the nature of the particle. 

22. Give a plausibility argument for the relation, (11-57), between the Fermi energy eF and 
the density of free electrons in a metal. 

23. In the Fermi distribution we obtain the result that at the Fermi energy gF the average 
number of particles per quantum state is exactly one-half. This is definitely not the same 
as saying that 50% of the particles are at energies above the Fermi energy and 50% below. 
Explain. 

24. Justify the assumption that conduction electrons behave approximately as a system of 
free noninteracting particles. 

25. Is there a connection between Vo , the depth of the potential well for conduction electrons 
in a metal, and electron diffraction experiments of the Davisson-Germer type? Can we 
determine V0  from such experiments? 

26. Explain physically the effect of letting h  0 in expressions for the density of states, such 
as (11-49). Explain physically the effect of letting h -4.0  in equations involving the 
quantum degeneracy term, such as (11-53). 

PROBLEMS 

1. The equilibrium state is one of maximum entropy S in thermodynamics and one of 
maximum probability P in statistics. Assuming then that S is a function of P, show that 
we should expect S = k In P, where k is a universal constant. This relation is sometimes 
called the Boltzmann postulate. (Hint: Consider the effect on S and P of combining two 
systems.) 
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2. The Maxwell distribution can be developed by looking at elastic collisions between two  
particles. If initially these particles have energies f1  and g2, and finally g3  and  e4 , then  

+ = 	-
a)+(e2 +5)  

If all possible states are equally probable, the number of collisions per second P is  
proportional to the number of particles in each initial state, i.e.  

P1,2 = CP(g1)P(e2) 

where Red is the probability of a state being occupied, and C is a constant. Similarly  
P3 , 4 = CP(^3)P(e4). In equilibrium, for each collision (1,2) -+ (3,4) there must be a 
collision (3,4) (1,2). Thus P1,2 = P3 , 4. (a) Show that P(g1) = e-gilkT  solves this equa- 
tion. (b) Use similar reasoning to derive the Fermi distribution. Here, however, the initial  
states must be filled and the final states must be empty, and the number of collisions  
becomes  

P1,2 = CP(GP(e2)[1 - P(e3)][1  - P(4)]  
Then show that the equation P1,2 = P3,4 can be solved by  

[

1 
 - P(6L) - 

Cep IkT P(^`) 
 J 

 

which yields (11-23).  
3. (a) Show that at T = 0, in the Fermi distribution, n(s) = 1 for all energy states in which 

 <'F and n(s) = 0 for all energy states in which e > eF . (b) Show that n(s) = 1/2  
for g = gF.  

4. Consider the Fermi distribution of (11-24), n(s) = l/[ev-g'F>1kT + 1]. (a) Show that 
n(s) = 1 - n(24 - g); that is, with é - SF = S, show that n(e, + (5) = 1 - n(gF  - (5). This 
proves that the distribution has a symmetry about n(4) = 1/2. (b) Find n(s) for b =  
g - eF  = kT, or 2kT, or 4kT, or 10k T. Make a rough sketch of n(s) versus e for any  
T > 0. (c) What percent error is made by approximating the Fermi distribution by the  
Boltzmann distribution when 8/kT = 1, 2, 4, 10?  

5. (a) At what energy is the Bose distribution function (for a = 0) equal to one for a  
temperature of 7000°K? (b) What is the temperature of the Bose function (for a = 0) with  
a value of 0.500 at this same energy?  

6. For the Fermi distribution function (a) show that  
gF  

J n(e) de = kT [in (1 + eg'F/kT)/2] 
 

o 

(b) Show that this reduces to ‘F  for T = 0. (c) Show that  
gF  

J  n(g) de = J  n(g) dg + k T(ln 2)  

o 	 o 

7. (a) From (11-25), show that the Einstein model of a solid gives the specific heat as  

(b) Show that c,,-* 0 as T -* 0 but that at low T, c„ increases as a -hv/kT  rather than as  
the required T 3  law.  

8. Show that the Debye specific heat result, (11-31), reduces to the classical law of Dulong  

and Petit at high temperatures. (Hint: First expand both exponentials and retain only first  

order terms. Justify.)  
9. Imagine a cavity at temperature T. Show that c,,, the specific heat of the enclosed radia-

tion, is given by (32n 5 kV/15)(kT/hc) 3 . Explain why c„ does not have an upper limit in  
this case whereas it does for solids.  

10. In some temperature region graphite can be considered a two-dimensional Debye solid,  

but there are still 3N 0  modes per mole. (a) Show that N(v) dv = (2nA/v 2)v dv where A is  

	

ehv/kT 	by \ 2l 

	

= 3R  [(ehvIkT - 	1)2 (kT  



^ 

w 
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the area of the sample. (b) Find an expression for v m  and Co for graphite. (c) Show that  
at low temperatures the heat capacity is proportional to T 2 .  

11. .N' distinguishable atoms are distributed over two energy levels e1 = 0 and g 2  =  ^. 

(a) Show that the energy of the system is given by  

✓t we -e/kT  

1 + e - g1kT  

(b) Show that c„ is given by  

E_  

e -g/kT  

cv  =  
(1 + e-g1kT)2  

(This is the Schottky specific heat and is observed for paramagnetic solids at low tempera-
tures. The energy levels correspond to the magnetic moments being aligned parallel or  

antiparallel to the magnetic field.) (c) Sketch the heat capacity as a function of tem-
perature, being careful to have the correct temperature dependence at high and low  

temperatures.  
12. The variation of density p with altitude y of the gaseous atmosphere of the earth can be  

written as p = poe-9(P°1P°)y, where po  and Po  are sea level density and pressure, provided 
the temperature is assumed to be uniform. (a) From the ideal gas laws show that this can 
be put into the form p = poe -  mgy/kT (b) Show that this has the form of the Boltzmann 
distribution. 

13. (a) By combining n(s) of (11-21) and N(e) of (11-49) for an ideal gas of classical particles,  

with  

 

A =e- "=  
Nh a  

show that  
(27cmkT  ) 312  V  

n(6)N(6)dg _ (kT)312n112 g 1 1 2 e  g/kT de  

is the energy distribution of particles in an ideal gas. (b) Show that Maxwell's speed  

distribution of molecules in a gas, which has the form n(v) dv = Cv2e-mv212kT dv, where  
C is a constant, follows directly from this.  

14. Assume that the thermal neutrons emerging from a nuclear reactor have an energy  

distribution corresponding to a classical ideal gas at a temperature of 300°K. Calculate  

the density of neutrons in a beam of flux 10 13/m2-sec. (Hint: Consider the average  

velocity, and justify its use.)  

15. In a certain nucleus the magnetic moment is 1.4 x 10 -26  joule-m 2/weber. Calculate the  
fractional difference in population of the nuclear Zeeman levels in a magnetic field of  

1 weber/m 2 , (a) at room temperature and (b) at 4°K.  

16. Electron spin resonance is much like nuclear magnetic resonance except that electronic  

transitions are excited between atomic Zeeman levels. These experiments are done at  

microwave frequencies. If the electromagnetic wave has a frequency of 32 KMHz (K band)  

calculate the fractional difference in population between two atomic Zeeman levels (a) at  

room temperature and (b) at 4°K.  

17. (a) Determine the order of magnitude of the fraction of hydrogen atoms in a state with  

principle quantum number n = 2 to those in state n = 1 in a gas at 300°K. (b) Take into  

account the degeneracy of the states corresponding to quantum numbers n = 1 and 2 of  

atomic hydrogen and determine at what temperature approximately one atom in a  

hundred is in a state with n = 2.  

18. Consider the relation n i/n2  = e(g2-"MT ,  the Boltzmann factor for nondegenerate states 
for systems in equilibrium, where e2  > g1. (a) Show that n 2  = 0 at T = 0. (b) Show  
that n 1  = n2  at T = o0 or T = - oo. (c) Show that n 2  > n 1  at finite negative temperature  
T. (d) Show that n 1  - 0 as T -> -0. (e) Hence, explain the statements, "Negative absolute  
temperatures are not colder than absolute zero but hotter than infinite temperature," and  
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"One approaches negative temperatures through infinity, not through zero." (f) Can you 
suggest a change in temperature scale that would avoid temperatures that are negative 
in this sense? 

19. Determine approximately the ratio of the probability of spontaneous emission to the 
probability of stimulated emission at room temperature in (a) the x-ray region of the 
electromagnetic spectrum, (b) the visible region, (c) the microwave region. 

20. An atom has two energy levels with a transition wavelength of 5800 A. At room tempera-
ture 4 x 1020  atoms are in the lower state. (a) How many occupy the upper state, under 
conditions of thermal equilibrium? (b) Suppose instead that 7 x 10 2°  atoms are pumped 
into the upper state, with 4 x 10 20  in the lower state. How much energy in joules could 
be released in a single pulse? 

21. The energy levels in a two-level atom are separated by 2.00 eV. There are 3 x 10 18  atoms 
in the upper level and 1.7 x 10 18  atoms in the ground level. The coefficient of stimulated 
emission is 3.2 x 10 5  m3/W-sec 3, and the spectral radiancy is 4 W/m 2-Hz. Calculate the 
stimulated emission rate. 

22. If B 10  = 2.7 x 10 19  m3/W-sec 3  for a particular atom, find the life-time of the 1 to 0 
transition at (a) 5500 A (visible) and (b) 550 A (ultraviolet)? 

23. Combine (11-49) and (11-47) to obtain (11-50), as follows. Let .x = g/kT and obtain 
CO  

2n V(2mkT) 3 / 2  Î x1 /2 dx 
h3 	J e" +x _ 1 

0 

Then, with a positive, use the relation (e" +  — 1) -1  = e- " - x(1 — e - " -x) -1  = e- "(e -x  + 
a-- —2x + 	) to obtain (11-50). 

24. Obtain (11-52) as follows. Let x = g/kT and show that 
op 

2rckTV(2mkT)312 (' x312 dx 	3 	V(27umkT) 312  	/ 	1 	1 
E  = 	h 3 	e"+x_ 1 = 2 k T 	h3 	 e'  1+25/2 e-"

+••• 

25. Show that the quantum degeneracy in a Fermi gas occurs if kT « eF . (Hint: See Example 
11-4 and use (11-57).) 

26. Show from the Fermi distribution that in a metal at T = 0°K the average energy of an 
electron is 34F/5. 

27. Using 23 as the atomic weight and 9.7 x 10 2  kg/m 3  as the density of metallic sodium, 
compute the Fermi energy on the assumption that each sodium atom gives one electron 
to the conduction band. (Hint: See Example 11-5.) 

28. Using 197 as the atomic weight and 19.3 x 10 3  kg/m 3  as the density of gold, compute 
the depth of the potential well for free electrons in gold. The work function is 4.8 eV and 
there is one free electron per atom. 

29. In a one-dimensional system the number of energy states per unit energy is (l/h) \/2m/e, 
where 1 is the length of the sample and m is the mass of the electron. There are ../If 
electrons in the sample and each state can be occupied by two electrons. (a) Determine 
the Fermi energy at 0°K. (b) Find the average energy per electron at 0°K. 

30. Show that about one conduction electron in a thousand in metallic silver has an energy 
greater than the Fermi energy at room temperature. 
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12-1 INTRODUCTION 

The subject matter of the previous chapters is considered to be common to all of 
quantum physics. The concepts and techniques we have developed in these chapters 
for the purpose of studying atoms prove to be necessary, or at least useful, in studying 
most of the areas to which quantum physics is applied. But from atoms the applica-
tions of quantum physics branch into two well-defined, and fairly well-separated, 
channels. One of these leads to the systems larger than atoms; i.e., it goes from atoms 
to molecules and then to solids. The other channel leads from atoms to the smaller 
systems; i.e., to nuclei and then to their constituents, the elementary particles. In the 
next three chapters we shall follow the first channel, and in the last four chapters of 
this book we shall explore the second. 

We know that two or more atoms can combine to form a stable molecule. Here we 
seek a description of the interatomic forces which bind atoms into molecules, and 
also an understanding of the nature of energy levels and spectra of molecules. Since 
a very large number of atoms may join together to make a solid, in much the same 
way as a few do to form a molecule, the phenomenon of molecular binding is very 
relevant to the properties of solids. The motivation for studying molecular spectra, 
in addition to its intrinsic interest, is found in practical considerations. For example, 
a new but rapidly expanding field of science is molecular astronomy, which involves 
the measurement of molecular spectra originating in interstellar, or intergalactic, 
matter, for the purpose of determining its composition and condition. And as we 
shall see, measurements of molecular spectra have for a long time provided the pri-
mary source of information about important properties of the nuclei contained in 
the molecule. 

12-2 IONIC BONDS 

From one point of view a molecule is a stable arrangement of a group of nuclei and 
electrons. The exact arrangement is determined by electromagnetic forces and the 
laws of quantum mechanics. This concept of a molecule is a natural extension of the 
concept of an atom. Another view regards a molecule as a stable structure formed 
by the association of two or more atoms. In this view the atoms retain their identity 
whereas in the first-mentioned view they do not. Of course, both views are useful and 
there are situations wherein each is directly applicable. In general, however, the struc-
ture and properties of molecules are best described by a combination of both views. 
When a molecule is formed from two atoms, the inner shell electrons of each atom 
remain tightly bound to the original nucleus and are barely disturbed at all. The 
outermost loosely bound electrons, known as the valence electrons, are influenced by 
all the particles (ions + electrons) of the system. Their wave functions are significantly 
modified when the atoms are brought together. Indeed, it is this very interaction that 
leads to binding, i.e., to a lower total energy, when the nuclei or ions are close to-
gether. This interaction, called the interatomic force, is of electromagnetic origin. 
Hence, we see that valence electrons play the central role in molecular binding. 

There are two principal types of molecular binding, the ionic bond and the covalent 
bond. The NaCl molecule is an example of ionic binding and the H2 molecule an 
example of covalent binding. Consider the formation of a NaCl molecule from an 
atom of Na and an atom of Cl which are far apart initially. Figure 9-15 shows that 
to remove the outermost 3s electron from Na and form the Na + ion requires an 
ionization energy of 5.1 eV. The atomic binding in the alkali Na is relatively weak 
because its filled inner subshells are effective in shielding the valence electron elec-
trically from the nucleus so that it moves in a weakened field at an outlying position. 
If now we attach this electron to the halogen Cl atom it will complete a previously 
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Na+ + e + CI 

5.1 eV Na  3.8 eV CI 
ionization 	electron 

energy 	affinity 

Na+  + Cl' (for  R=œ) 

Na + CI 

3.6 eV 

unfilled 3p shell in Cl to form a Cl ion. The halogen has a relatively high electron 
affinity; that is, the closed shell ion is more stable than the neutral atom, its energy 
being lower by 3.8 eV. Hence, at the cost of 1.3 eV of energy (5.1 eV — 3.8 eV), we 
have formed two distinct separate ions, Na +  and Cl ; but these ions exert attractive 
Coulomb forces on one another, and the energy of attraction is greater than 1.3 eV. 
Now, since the mutual Coulomb potential energy of the ions is negative, the potential 
energy of the combined system initially decreases as the separation of the ions is 
steadily reduced. As the ions are brought still closer together the electron charge dis-
tributions begin to overlap. This has two effects, each of which increases the potential 
energy: (1) the nuclei are not as well shielded from one another as before and they 
begin to repel one another and (2) at small internuclear separation we effectively 
have a single system to which the exclusion principle applies, and some electrons 
must be in higher energy states than before to avoid violating this principle. The po-
tential energy curve therefore yields a repulsive force at small interatomic separations 
and an attractive force at large separations. There is a separation at which this energy 
is a minimum, the energy being 4.9 eV lower at this proximity than for distantly sep-
arated ions. Hence, compared to two neutral atoms, Na + Cl, the combined system 
NaCl is lower in energy by 3.6 eV (that is, E = 1.3 eV — 4.9 eV = — 3.6 eV) so that 
a bound state is energetically favored, as illustrated in Figure 12-1. The equilibrium 
nuclear separation in NaC1 is 2.4 A. 

Example 12-1. Evaluate approximately the depth of the minimum in Figure 12-1 by assuming 
that at the 2.4 A equilibrium nuclear separation R of NaCl the Na + and Cl ions have 
spherically symmetrical charge distributions that do not yet overlap. 
■ With this assumption, Gauss's law of electrostatics allows us to evaluate the Coulomb bind-
ing energy of the unit charge ions from the simple expression 

1 e 2  
V = 

-4.9 

Figure 12-1 The energy for the neutral atoms Na and Cl, and for the ions Na +  and CI - , 
as functions of the internuclear separation R. The ionic combination lower__ energy 
at small separation, while the neutral atom combination has lower energy at large se-
paration. Thus, as the two neutral atoms are brought together, they go over to ionic form 
when their separation becomes less than a certain value. 
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where R = 2.4 A. We obtain 

= —6.0 eV 
If the student extrapolates slightly the 1/R behavior in Figure 12-1 to R = 2.4 A, he will see 
that the results of this evaluation are consistent with its assumptions. 	 • 

NaC1 is a molecule held together by ionic binding. Because the region of positive 
charge (Na t ) and the region of negative charge (C1 - ) are separated, there is a per-
manent electric dipole moment. An ionic molecule is thus said to be a polar molecule. 
Ionic binding is also called heteropolar binding. Ionic bonds are not directional, for 
each ion has a closed shell configuration which is spherically symmetrical. Ionic 
bonds can be formed with more than one valence electron, as in the case of the 
MgC12  molecule, when the molecular state is energetically lower than the state of 
separated atoms. The number of ionic bonds that an atom can form depends on the 
shell structure of the atom, i.e., on the ionization potentials for successively removing 
electrons. It will be energetically favorable to form ionic bonds only for those (few) 
outer subshell electrons that have ionization potentials in certain ranges. Compounds 
of elements from the first column, and the second from last column, of the periodic 
table (the alkali halides, such as KC1, LiBr, etc.) are ionic, as are many of those from 
the second column and the third from last column (the alkaline-earth oxides, sulfides, 
etc.). 

12-3 COVALENT BONDS 

Let us consider now the formation of the H2 molecule. If in the case of H2 we were 
to calculate the energy required to form positive and negative hydrogen ions by 
moving an electron from one hydrogen atom to the other, and then added to this 
the energy of the Coulomb interaction of the ions, we would find that there is no 
distance of separation at which the total energy is negative. That is, ionic bonding 
does not result in a bound H2 molecule. The fact that H2 is bound is explained quan-
tum mechanically by the behavior of the electronic eigenfunction describing the 
charge distribution of the system, as two hydrogen atoms approach one another. As 
we shall see soon, the resulting charge distribution does lead to electrostatic attrac-
tion, but it is a charge distribution that can be interpreted as a sharing of electrons 
by both atoms. The binding is called covalent. 

We can best understand the covalent bond by treating first the simpler case of 
H2 , the hydrogen molecular ion. In this case we have two nuclei each exerting a 
Coulomb repulsion on the other, and both exerting a Coulomb attraction on the 
single electron. Since the electron motion is very rapid compared to the nuclear mo-
tions, the procedure is to assume that the nuclei are at rest a distance R apart, with 
the single electron moving in their Coulomb fields, and then determine the electron 
energy from the Schroedinger equation. We next treat R as a variable and consider 
both the electron energy, and the internuclear Coulomb repulsion energy, as a func-
tion of the internuclear separation. The total energy of the system is the sum of these 
two energies, and the system will be bound if the total energy exhibits a minimum 
at some value of internuclear separation. 

The top of Figure 12-2 indicates the potential energy in which the electron moves 
by plotting its value along an x axis passing through the two nuclei, for an inter-
nuclear separation R = 1.1 A. The potential energy is symmetrical with respect to a 
plane perpendicular to the line connecting the two nuclei and passing through its 
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Figure 12-2 Top: The potential function, and the two lowest energy levels, for an electron in 
a H2 molecule with internuclear separation R = 1.1 A. The potential function is evaluated 
along the line passing through the two nuclei. Bottom: The even and odd eigerunctions 
corresponding to the two energy levels, evaluated along the internuclear line. Néar each 
nucleus, both eigenfunctions have magnitudes that are decreasing exponentials of-the 
distance from the nucleus, as in the ground state of the hydrogen atom. 

middle, since the potential is just the sum of a Coulomb potential centered on one 
end of that line and an equal Coulomb potential centered on the other end. Because 
the motion of the electron in a bound state of this potential will have the same sym-
metry, the electron's bound state probability densities etfr will have equal values at 
two points on either side of the plane and equidistant from it. But this requires each 
of its eigenfunctions 0  to have either precisely the same value at the two points, or 
else to have at one point a value precisely the negative of its value at the other point. 
That is, the eigenfunctions must be either even or odd with respect to reflection in 
the plane. The situation is shown schematically in the bottom of Figure 12-2 by plot-
ting the lowest energy even and odd normalized eigenfunctions along a line passing 
through the two nuclei. The important idea is that the odd eigenfunction must nec-
essarily have zero value at the center of this line since it obeys the equation t, ( — x) _ 
— (x), which would otherwise be internally inconsistent at the center where x = O. 
But the even eigenfunction is not so constrained, and thus it has an appreciable value 
at x = O. 

Because an electron with probability density vf*/i  for the odd eigenfunction must 
avoid the center of the molecule, to a certain extent it avoids the central region. And 
since the integral over all space of 0*0 equals one, if that quantity is relatively small 
in the region between the nuclei, it must be relatively large in the regions outside the 
nuclei. These outside regions are where the potential is least binding, however, so 
such an electron is relatively loosely bound. The odd eigenfunction could be more 
tightly concentrated in the regions near the nuclei, while still being zero at the center, 
but only if its curvature were higher. Since higher curvature requires higher kinetic 
energy, this would not decrease the total energy of the electron. An electron whose 
behavior is described by the probability density for the even eigenfunction has a rel-
atively high probability of being found in the region where the potential is most 
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binding—that is, in the region from near one nucleus, through the center of the mol-
ecule, to near the other nucleus. Thus such an electron is relatively tightly bound. 
The two lowest energy levels for an electron in the potential are shown in Figure 
12-2. We can now understand why the lowest of these is for the quantum state in 
which the eigenfunction is even. 

Figure 12-3 shows the sum of the electron energy and the internuclear. Coulomb 
repulsion energy for the two lowest energy states of the H2 molecule, as a function 
of the internuclear separation distance R. For very large R, the electron will bind to 
one nucleus or the other in the lowest energy state of an H atom, and the repulsion 
energy will be negligible, so the energy of the system will have the familiar value 
—13.6 eV. For the quantum state with the even eigenfunction, the energy of the sys-
tem at first decreases with decreasing R. The reason is that the binding energy exerted 
on the electron already near one nucleus becomes negative more rapidly, as the other 
nucleus moves into proximity, than the repulsion energy between the two nuclei be-
comes positive. (The electron in the even eigenfunction state at moderate internuclear 
separation tends to be between the nuclei, so its distance to either nucleus is smaller 
than the distance separating the nuclei.) As the internuclear separation continues to 
decrease, the energy of the system passes through a minimum and then begins to 
increase rapidly. This happens because the electron binding energy when the nuclei 
overlap can become no more negative than — (2) 2  x 13.6 eV = — 54.4 eV, the ground 
state energy of a singly ionized helium atom, whereas the internuclear repulsion 
energy increases without limit as the internuclear separation decreases. For the even 
eigenfunction case the molecule is stably bound by a rudimentary covalent bond. At 
equilibrium it has R 1.1 A, which is where the energy as a function of R has a 
minimum that is about 2.7 eV deep. The measured binding energy, i.e., the energy 
required to dissociate HZ into H and H + , is in good agreement with this value. Be-
cause of the significantly weaker binding of the electron in the odd eigenfunction 
state, the corresponding total molecular energy curve does not have a minimum at 
any value of R. Thus the molecule will not bind if the eigenfunction of the electron 
is odd since its energy always decreases as the nuclear separation increases. 

If we now add a second electron to H2 to form H2, the energy of the system is 
decreased further, the two additional attractive forces acting between this electron 
and the nuclei more than counteracting the electron-electron repulsion. For H2 the 
binding energy is about 4.7 eV, and the equilibrium internuclear separation is about 
0.7 A. So H2 is more compact, and more tightly bound, than HI. The second electron 
in H2 goes into a quantum state whose eigenfunction has the same space properties 

Figure 12-3 The total energy of the HZ molecule for the two lowest electron energy 
levels, as a function of the internuclear separation. The molecule binds only in the state 
where the electron eigenfunction is even. 
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as the eigenfunction for the first electron. That is, in the lowest energy state of H2 

both electrons are in a state with the same space eigenfunction, and that eigenfunction 
is even with respect to reflection in the plane halfway between the two nuclei. So for 
both the probability density shows some concentration in the region between the 
two nuclei. Of course the exclusion principle demands that the two electrons have 
different spin eigenfunctions; thus they have spins with opposite z components. Using 
the more precise terms of Section 9-3, the eigenfunction describing the system of two 
indistinguishable electrons is a product of a symmetric space eigenfunction and the 
antisymmetric (i.e., singlet) spin eigenfunction . In that section we found that the two 
electrons may be relatively close together when the system is described by such an 
eigenfunction. Of course this is consistent with the idea that both have a reasonable 
chance of being located near the point halfway between the nuclei. 

Because of the complete space overlap of the wave functions of the indistinguish-
able electrons in H2, it is definitely not possible to associate a particular electron with 
a particular atom of the molecule. Instead, the two electrons, which are responsible 
for the bond that holds the atoms together as a molecule, are shared by the molecule, 
or shared by the bond itself. This is the idea of the shared pair of electrons, with "anti-
parallel" spins, that form a covalent bond. Note that if the two electrons had essentially 
parallel spins they could not both be in the region between the two nuclei. Then they 
could not both be where they optimize the attraction exerted on them by both nuclei. 
If we imagined trying to form H2 by bringing two separated H atoms together, it 
would make a decisive difference whether the electrons' spins were "parallel" or "anti-
parallel." In Figure 12-4 we show the prediction of quantum mechanics for the total 
energy of the system as a function of internuclear separation in the two possibilities; 
binding is obtained only for "antiparallel" spins. The calculations that produced the 
curves in Figure 12-4 take into account the electron-electron repulsion. This has a 
quantitative effect in reducing the binding, but it does not make a qualitative change 
in the description we have presented of the origin of the covalent bond. 

No more than two electrons can form one covalent bond. We say an electron from 
one atom pairs up with an electron of "antiparallel" spin from another atom. If an 
atom has several electrons in an uncompleted outer subshell, i.e., if it has several va-
lence electrons, each may try to form a covalent bond with a valence electron in a 
nearby atom. However, if there are two valence electrons with "antiparallel" spins 
in one atom, an additional valence electron from another atom will not succeed in 
forming a bond with either of them since they are already paired with each other. 
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Figure 12-4 The total energy of the H2 molecule for "parallel" and "antiparallel" elec-
tron spins, as a function of the internuclear separation. The molecule binds only in the 
state where the electron spins are "antiparallel". 
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That is, if the spin of the additional electron is "antiparallel" to the spin of one of 
these electrons, it is "parallel" to the spin of the other. Since the exclusion principle 
acts in the molecule in such a way as to prevent two electrons with "parallel" spins 
from having the same space eigenfunction, the additional electron may not occupy 
the same energetically favorable molecular region as the electrons of the preexisting 
pair. Therefore the valence electrons of an atom that are effective in forming cova-
lent bonds are those which the action of the exclusion principle in the atom has not 
already forced into pairs with "antiparallel" spins. For instance, in the Hartree theory 
all of the three 2p electrons in N can have "parallel" spins because there are three 
possible values of the quantum number m 1  for 1 = 1, so none of them are forced to 
pair in that atom. (In the residual Coulomb interaction theory the three electrons do 
have "parallel" spins in the ground state of the LS coupling atom N.) The result is 
that the molecule N2 has three covalent bonds. But O has a fourth electron in the 
2p subshell, and the exclusion principle forces it to have its spin "antiparallel" to the 
spin of one of the other three. So there are only two unpaired valence electrons in 
0, and the molecule 0 2  has only two covalent bonds. In general, the number of un-
paired valence electrons equals the number of electrons in the subshell up to the 
point where it is half filled, and it equals the number of vacancies, or holes, in the 
subshell beyond that point. 

As in ionic binding, the forces saturate in covalent binding. That is, a given atom 
strongly interacts with only a limited number of other atoms. Saturation is due to 
the limited number of electrons or vacancies in the outermost occupied subshell of 
the atom. As distinguished from the ionic bond, the covalent bond is directional. The 
directional property is not present in H2 since the probability density of the valence 
electron in each separated H atom is spherically symmetrical, so the only defined 
direction in the H2  molecule is the one connecting the two nuclei, and the covalent 
bond acts along that direction, whatever it may be. In a more typical case the prob-
ability density of a valence electron has its own directional dependence and certain 
preferred directions for forming covalent bonds. The directional properties of cova-
lent bonds are manifested in the structural properties of covalently bonded molecules, 
and so form the basis of organic chemistry. The charge distribution of the paired 
electrons in a covalent bond has a symmetry about the center of the molecule, as we 
discussed in the case of H2, so there is no permanent electric dipole moment asso-
ciated with the covalent bond. The bond is therefore sometimes called homopolar. 
Because the binding in molecules other than those containing two identical nuclei 
may be partly ionic, even though principally covalent, only molecules such as  02 or 
N2 are strictly homopolar. 

12-4 MOLECULAR SPECTRA 

Molecules can remain bound in excited states as well as in the ground state. The 
emission and absorption spectra of molecules are due to transitions between allowed 
energy states. The energy-level scheme is relatively complicated and differs in many 
respects from the atomic case. For one thing, we can no longer classify states accord-
ing to the electronic orbital angular momentum. Because the force on an electron is 
not a central force (in a diatomic molecule, e.g., there are two separated nuclear at-
tracting centers), the magnitude of its orbital angular momentum L is not conserved. 
In the words of Section 7-9, the energy eigenfunctions are not eignfunctions of the 
operator L op . However, in a diatomic molecule the total charge distribution is sym-
metrical about an axis connecting the nuclei, say the z axis, so that the component 
of angular momentum about this axis, L Z , is conserved. We find then that the mole-
cular energy eigenfunctions are eigenfunctions of LZ0  and that L Z  has allowed values 
which are integral multiples of h, in analogy to the values m 1h of atomic states. 



Another difference between the molecular and atomic cases is that we could neglect 
the nuclear motion in an atom, or else we could take it into account easily by using 
the reduced electron mass. Of course, in a molecule, as well as in an atom, we do not 
need to consider the translational motion because that motion, being free particle 
motion, is not quantized. However, the nuclei in a molecule can move relative to one 
another. In a diatomic molecule, for example, the nuclei can vibrate about the 
equilibrium separation, and in addition the whole system can rotate about its center 
of mass. The energy in each of these motions, vibrational and rotational, is quantized 
so that we expect many more energy levels in a molecule than in an atom. Indeed, 
these motions interact or couple with one another and an exact analysis would have 
to take this into account. 

Of course, the solution of the Schroedinger equation for any but the simplest 
molecules is very difficult. However, empirical results of molecular spectroscopy show 
that we can consider the energy of a molecule to be made up of three p rincipal parts—
electronic, vibrational, and rotational. The molecular energy levels fall into widely 
separated groups, each group being said to correspond to a different electronic state 
of the molecule. For a given electronic state the levels again fall into groups separated 
by nearly equal energy intervals; these are said to correspond to successive states of 
vibration of the nuclei. Within a vibrational state is a fine structure of levels ascribed 
to different states of rotation of the molecules. This level structure (which will be dis-
cussed later in connection with Figure 12-9) suggests that we can obtain an approx-
imate solution to the Schroedinger equation by separating it into three equations, 
one describing the motion of the electrons, one the vibration of the nuclei, and one 
the rotation of the nuclei. In the next approximation we can take into account the 
coupling between the electronic and the nuclear motions, such as that between the 
electronic angular momentum and the rotation of the molecule, and the coupling 
between the nuclear vibrational and rotational motions. 

The spectrum emitted by a molecule can be divided into three spectral ranges 
corresponding to the different types of transitions between molecular quantum states. 
In the far infrared we observe the rotation spectra, corresponding to radiation emitted 
in transitions between rotational states of a molecule having an electric dipole mo-
ment. In the near infrared we observe the vibration-rotation spectra, corresponding 
to radiation emitted in vibrational transitions of molecules having electric dipole 
moments, within which there are changes in rotational states as well. In the visible 
and ultraviolet part of the spectrum we observe electronic spectra, corresponding to 
radiation emitted in electronic transitions. The electronic vibrations undergo many 
cycles in the time required for the nuclear configuration to change (this being the 
physical reason that permits us to separate the eigenfunction into an electronic and 
nuclear factor to begin with), so that the electronic spectra have a fine structure 
determined by the rotational and vibrational state of the nuclei during electronic 
transitions. 

In the succeeding sections we shall examine the motion and spectra of diatomic 
molecules and from this extract valuable information about their properties. 

12-5 ROTATIONAL SPECTRA 

The rotational motion of a diatomic molecule can be visualized as the rotation of a 
rigid body about its center of mass, illustrated in Figure 12-5. The center of mass lies 
on the axis connecting the nuclei, and the angular momentum associated with the 
rotation is a vector passing through the center of mass on the axis of rotation per-
pendicular to the internuclear axis. Rotation about the internuclear axis itself is 
negligible. The rotational inertia, or moment of inertia, about the axis of rotation due 
to the nuclei is I = µRô where R 0  is the (equilibrium) separation of the nuclei and 
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Figure 12-5 Top: A simp ified picture of a diatomic molecule consisting of two masses 
m 1  and m 2  rotating about their common center of mass (CM) with separation R o . Bottom:  
A dynamically equivalent model consisting of a reduced mass µ = m 1 m 2 /(m 1  + m2 )  
rotating at distance R o  about a fixed point. If v is the speed of the reduced mass µ, then its 
kinetic energy of rotation is Er  = µv /2 and its angular momentum is L = µvR o . So Er  =  
µL 2 /21.12R1 = L 2/20>  = L2/2I, where 1 - µR1 is its rotational inertia, or moment of inertia.  

µ is the reduced mass of the system. As is proven in the caption to Figure 12-5, the  

rotational energy is, classically, Er  = L 2/21 where L is the angular momentum of the  

system about the axis of rotation. Quantization of the magnitude of the angular  

momentum gives L2  = r(r + 1)h 2  with the rotational quantum number r = 0, 1, 2, ... ,  
so that  

h2  

Er  =  21 
 r(r + 1)  

Successive rotational levels will be separated in energy by  

DEr = Er — Er_ 1 = 2I 
 [r(r + 1) — (r — 1)r] = h2  

(12-1)  

(12-2)  

The quantity b 2/I for the typical molecule has a value of about 10 -4  eV to 10 -3  eV,  
so little energy is needed to raise a molecule to an excited rotational state. At room  

temperature, for example, the translational thermal energy of molecules is 2.5 x  

10 -2  eV, so that ordinary collisions can transfer the necessary energy of excitation.  

At any given temperature the rotational state populations obey the Boltzmann dis-
tribution, since they are spread over many states so each population is small.  

If the molecule has a permanent electric dipole moment, as do all diatomic mole-
cules that do not have identical nuclei, rotational emission and absorption spectra  

may be observed. The emission of radiation is due to the rotation of the electric  

dipole, and the absorption of radiation is due to the interaction of this dipole with the  

electric field of the incident radiation. For electric dipole radiation, the allowed tran-
sitions between states are given by the selection rule analogous to that for orbital  
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angular momentum in atomic transitions, namely Ar = ± 1. The spectral wavelengths 	N  
A follow from (12-2), and 	 v,  
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A 	27rIc  r 
	 (12-3) 

in which r is the quantum number of the upper rotational state. With Ar = ± 1, the 
separation between spectral lines (in terms of reciprocal wavelength) then is A(1/2) = 
h/27tIc, a constant. This is illustrated in Figure 12-6. Measurement of the separation 
gives the value of I, the rotational inertia of the molecule, and from this we can esti-
mate the value of the equilibrium internuclear separation R o . In the case of HCI, for 

r-5  

0  

b'1
:1

10
3

d
S

 1
b

'N
01

1b
'1

O
1:

1 

v  

	

80 — 	 8 • 	 8 HCI 

°- 	 9 	 9 
E. 60 
ô 	 to 	 to 
¢ 40 	11 	

J 	
J 

 

	

20 -12 	 12  

	

104° 	103° 	102° 	101° 	100° 	99°  
Grating setting  

Figure 12-6 Top: Schematic energy-level diagram for the rotational energy states of a  
diatomic molecule, and the corresponding frequency emission spectrum for allowed  

transitions. Bottom: The rotational absorption spectrum for gaseous HCI, giving the  
percent absorption versus a measure of the reciprocal wavelength.  
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example, we find h/27cic = 2079.4 m -1 , which gives I = 2.66 x 10 -47  kg-m2 ; from 
the known masses of H and Cl we then obtain R o  = 1.27 x 10 -10  m as a measure of 
the separation of the atoms in the molecule. Pure rotational spectra fall in the extreme 
infrared or the microwave regions, the corresponding wavelengths A being about 
1 mm to 1 cm. An example is shown in Figure 12-6. Diatomic molecules with identical 
nuclei, like 02 , having no permanent electric dipole moment, do not exhibit pure 
rotational spectra. 

N 	
Example 12 -2. (a) Find the ratio of nr , the number of molecules in rotational level r, to n0 , 

Q- 	the number in the r = 0 level, in a sample in equilibrium at temperature T. es _j 	►  From the Boltzmann factor we have 

nr _ '17r  e - (Er-E0)/kT 

no  Jr0  
in which the "Cs are the degeneracy factors, or number of degenerate quantum states for each 
energy level. For energy E,. there are 2r + 1 states, corresponding to the number of possible 
values of the z component quantum number m r  associated with each value of r. Hence, ✓Vr, = 
2r + 1 and  x0  = 1, so that 

nr 	 - (Er -  E0)lkT 	 • 
no  

(b) Show that the population of rotational energy levels first increases with r and then 
decreases as r continues to increase. 
•From (12-1) we have E,. = (h 2/2I)r(r + 1) and E 0  = 0, so that 

nr  = no (2r + 1)e -(h212IkT) r(r + 1)  

Now as r increases the factor 2r + 1 increases whereas the exponential factor decreases. For 
large r the exponential term dominates so that at first n r  increases with r, but soon the ex-
ponential suppresses the increase and n,. decreases for larger r. For example, for HBr at room 
temperature nr  is a maximum at r = 3 with n 3/n0  ^ 4, whereas by r = 9 we have n9/n0  1/2. 

• 
(c) Relate these populations to the intensities of the rotational lines. 

► Consider the absorption spectrum. The probability that a particular frequency will be 
absorbed is proportional to the number of molecules in the initial rotational energy level. 
Hence the intensity variation of the absorption lines (Ar = + 1) are proportional to the pop-
ulations of the initial rotational energy levels (see Figure 12-6). The student should construct 
a similar argument for the emission spectrum. • 

12-6 VIBRATION-ROTATION SPECTRA 

The nuclei do not maintain a fixed separation, of course, as we assumed previously, 
so that the molecule is not like a rotating rigid body except in approximation. Indeed, 
the rotational inertia I changes from the value assumed previously when the molecule 
rotates because of the stretching of the internuclear distance. Also the nuclei vibrate 
about some equilibrium separation and this vibrational motion is quantized. Let us 
now consider the vibrational motion. 

For a given electronic configuration, we have a potential energy curve whose 
minimum is at an equilibrium separation R 0 . Near R 0  the curve is nearly a parabola 
so that small oscillations are simple harmonic. According to (6-89) the energy of such 
oscillations is quantized to satisfy 

Ev  = (y  + 1/2)hv 0 	 (12-4) 
with the vibrational quantum number y = 0, 1, 2, 3, ... , and where the classical vibra-
tion frequency is v 0  = (1/27r) /C/µ. Note that the energy levels here are equally spaced 
and that there is a zero-point energy (1/2)hv 0 . The separation hvo equals 0.04 eV for 
NaC1 and, because the dissociation energy is about 1 eV, there are approximately 
20 vibrational levels in the potential well. Actually as the energy rises the potential 
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energy curve becomes anharmonic so that the levels are not equally separated but 
get somewhat closer to one another. The rotational levels are spaced much closer 
still, as we saw earlier, there being about 40 rotational levels of NaC1, and about 50 
of HC1, between each pair of vibrational levels. 

Example 12-3. (a) Given that the equivalent force constant C of a vibrating HC1 molecule  
is about 470 nt/m, estimate the energy difference between the lowest and the first vibrational  
state of HC1.  
► We have for HC1  

and 	C = 470 nt/m  

and also  

= 	
1 	_ 	1 

mH 6.02 x 1023 g  6.02 x 1026 kg  

From (12-4) we have that AE = hv o , where  vo  = (1/211) /C/µ. Hence, using these data, we get 
the energy difference to be hv o  = (h/27r),/C/µ = 0.59 x 10 -19  joule = 0.37 eV. 	•  

(b) Given that the rotational inertia of HC1 has the value I = 2.66 x 10 -47  kg-m 2, estimate  
the energy difference between the lowest and first excited rotational state of HC1.  

► Since Er  = (h 2/2I)r(r + 1), the lowest rotational state has an energy E 0  = 0 and the first  
excited rotational state has an energy E 1  = (h2/21)2 = h2/I. The required energy difference 
then is AE = h 2/I. Hence 

h2  _  (6.63 x 10 -34  joule-sec)2 	 22 	 3 	 — 4.2 x 10 	joule = 2.6 x 10 eV 
I 	(2x) 2  x 2.66 x 10 - 47  kg-m 2  

Thus the energy difference between the two lowest vibrational levels is greater by a factor 
142 (i.e., 0.37/2.6 x 10 -3) than that between the two lowest rotational levels in HC1. 	• 

(c) At room temperature, collisions of HC1 molecules in a gas can transfer sufficient kinetic 
energy to internal energy to excite many rotational states.. At what temperature would the  

number of molecules in the first excited vibrational state be equal to 1/e (about 37%) of the 
number in the ground vibrational state? 
■ We have 

n1 -  -47.1  e -(E1 -Eo)/kT  

no  At0  
where the subscripts refer to y  = 1 or y = 0. The vibrational states are not degenerate so that  

= 1 = .iro . Also (E 1  — E0) = hvo  so that  
n1 

=  e
-nvo/kT  

no  
and if kT = hv o  

n 1  = noe  1  

Hence  

T =   	  4300°K 
k 	1.38 x 10 -23  joule/°K  

is the temperature at which the number of HC1 molecules in the first excited vibrational state  
is about 37% of the number in the ground state. Clearly the number of HC1 molecules in the 

 v = 1 state at room temperature is negligible compared to the number in the ground state.  
•  

If the molecule, like HC1 or NaC1, has a permanent electric dipole moment at the  

equilibrium internuclear separation, it will exhibit vibrational emission and absorp-
tion spectra due to the oscillations in the electric dipole moment arising from oscilla-
tions in the nuclear separation. The selection rule for electric dipole transitions is  

Av = + 1 so that AE U  ^ hvo . The resulting spectral lines lie in the infrared, between  

8000 A and 50,000 A for most molecules. Diatomic molecules with identical nuclei  

= 
35 
36  YnH  

hv o 	0.59 x 10 -19  joule  
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HCI  

do not have vibrational spectra because they have no electric dipole moment at any  

nuclear separation. In a vibrational transition the molecule may also change its rota-
tional state so that vibrational changes really result in a combined vibration-rotation  

spectrum. The vibrational transition determines the wavelength region of the spec-
trum and the rotational transitions determine the separation of the lines. The spec-
trum consists of a band of lines, as in Figure 12-7.  

Among the interesting results that can be obtained from analysis of vibrational  

states and spectra are the relative abundance of nuclear isotopes. The frequency of  

vibration, vo  = (1/2ic)JC/,u, depends on the masses of the atoms in the molecule  

through the reduced mass u. If in a sample of HCI molecules, for example, the isotopes  

C1 35  and C1 37  are each present, then the vibrational frequencies and resulting energy  

levels will be slightly different for the two types of molecule (see Figure 12-7). Their  

spectral lines, consequently, will be shifted with respect to one another, and from a  

measurement of spectral intensities we can obtain the relative abundance of the  

isotopes Cl" and Cl".  

r'- 5  

4  

3  
= 1  

2  
1  
0  

Ar= +1  Or =0  Or= — 1-->  

5  r" — 

4  N./  

3  
=0  

2  v 

1 	 V V 
0 

3000 	 2900 	 2800 
	

2700  
Reciprocal wavelength (cm -1 )  

Figure 12-7 Top: Energy-level diagram for vibrational and rotational states of a diatomic  

molecule, showing allowed transitions and the formation of a band of equally spaced  

lines, as indicated in the spectrum below. Note that all Ar = 0 transitions would yield  
photons of the same frequency v o , but being forbidden, that line is missing in the spectrum.  

Bottom: A recorder trace of the vibration-rotation absorption spectrum in HCI. Again note  

that the central transition is missing. The slightly different frequencies at each absorption  

line are due to the presence of two isotopes of chlorine.  
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Figure 12-8 The energy for H2, HD, and D2 is the same function of the internuclear se-
paration R. But the ground state vibrational energy S differs for each molecule.  

In a somewhat related way we obtain experimental evidence for the finite zero-
point energy of an oscillator. Consider the molecules H2, HD, and D2 in which D  
stands for a deuterium atom. Because the electric forces are identical in all cases we  

obtain for all the same potential energy curve V(R), illustrated in Figure 12-8. The  

energy required to dissociate the molecule is Ed = V0 — b. If the ground state energy  
8 were zero, then the dissociation energies would be the same, Ed = Vo , for each type  
of molecule. Quantum theory gives a finite zero-point energy, namely b = (1/2)hv o .  
However, because the reduced mass ,u enters the formula for v o , a has a different value 
for each type of molecule so that their dissociation energies should differ. In fact, with 

/1D2  = 2µH2 	and PHD = (4/3),uH2  

we can predict the difference, and we find that the observed dissociation energies differ 
exactly as predicted, thereby verifying the existence of a zero-point energy in agree-
ment with the requirements of the uncertainty principle. 

In Table 12-1 we list the rotational and vibrational constants of some diatomic 
molecules. 

12-7 ELECTRONIC SPECTRA  

The rotational and vibrational states in molecules are due to the motion of the nuclei. 
There can be also electronic excited states, of course. For each of the electronic states, 
corresponding to different electron configurations, there is a different dependence of 
the molecule's energy on its internuclear separation. Because the atoms are more 
loosely bound in the excited states, the curves representing the molecule's potential 
energy as a function of nuclear separation become shallower and broader, and the 

Table 12-1 Rotational and Vibrational Constants of Some Diatomic Molecules  

Molecule Ro(A) vo  (cm -1 )  
^2 	 ^2  
21 (eV) 	Molecule Ro(Â) vo (cm - i) 	—

2/  
(eV) 

H2  O.74 4395 7.56 x 10 -3  LiH 1.60 1406 9.27 x 10 -4  
HD 0.74 3817 5.69 x 10  - 3 HC13 5  1.27 2990 1.32 x 10 -3 

 

D2 0.74 3118 3.79 x 10 -3  NaC1 35  2.51 380 2.36 x 10 -5  
Li2  2.67 351 8.39 x 10 -5  KC1 35  2.79 280 1.43 x 10 -5  
N2 1.09 2360 2.48 x 10 -4  KBr79 2.94 231 9.1 	x 10 -6  
02 1.21 1580 1.78 x 10 -4  HBr79  1.41 2650 1.06 x 10 -3  
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Figure 12 -9 Illustrating  
electronic states. Each 
vibrational level has its 

R — 

the molecular energy versus internuclear separation curves for two 
electronic state has its own set of vibrational levels, and each 
own set of rotational levels. 

equilibrium separation R 0  increases, with increasing electronic excitation, as illus-
trated in Figure 12-9. The energy separation between different electronic states is from 
1 to 10 eV, so that transitions between electronic states give radiation in the visible 
or ultraviolet portion of the electromagnetic spectrum. 

To each electronic state Ee  there are many bound vibrational states of energy E0 , 
and to each vibrational state there are many bound rotational states of energy Er. 
Neglecting interactions between these modes, we can write the total energy as E _ 
Ee  + Ev  + Er . The energies of all three modes may change in an electronic transition 
so that in general we can write 

4E = AEe  + (E', — Fe') + (E'r  — Er) 	 (12-5) 
The initial (primed) and final (double-primed) vibrational and rotational states differ 
in their binding so that the equilibrium spacing, the rotational inertia, and the fun-
damental vibrational frequency change. A great many transitions are possible and 
they produce a complex spectrum of lines, which appear in a series of bands as il-
lustrated in Figure 12-10. Hence the term band spectra. 

The term 4Ee  is the energy difference of the minima of the two electronic states. 
The vibrational term is Ev — Ez = (y' + 1/2)hvO — (v" + 1/2)hv' (; and the rotational 
term is Er — Er = (h2/21')r'(r + 1) — (h2/2l")r"(r" + 1). For a given electronic tran-
sition the spectrum consists of bands, where each band corresponds to given values 



N 

C2 Swan bands 

6191 A 5636 A 	5165 A 	4737 A 	4383 A  
N 
	

O 	 O 	 O 

O 	 O 
	

O 

IIIIII 	II  III III IIII  

r'- 11  

0 	 
	// 	 

tJ
a

1
0

3
d
S

 O
IN

O
1=1

10
31

3 

Ill 	III 	 IIIIIII 	IIIIIIiii 	HI 	ill 
In N .-I 	M N" 	 N 	 .--I 	 O 	 O  

I 	I 	I 	' 	I 	I 	 I 	 1 	 1 	 I 
CO 1fl <t 	n CO 1f1 	 O 	 O 	 O 	 .-I  

CN (Red) 	 4606 A 	 4216 A 	 3883 A 	 3590 A  

'CN (Violet)  

Figure 12-10 Top: Energy-level diagram and transitions leading to the formation of an  
electronic band. Unlike Figure 12-7, the band spectrum indicated folds back on itself, giving  

rise to a band head at the right end of the spectrum. Again note that the transition of  
frequency vo  is missing. Bottom: Bands of the CN and C2 molecules in a carbon arc in air.  
(From Herzberg, Spectra of Diatomic Molecules, 1950. D. Van Nostrand Co., Inc., New York)  
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of v' and y" and all possible values of r' and r". The selection rules determine the 
possible combination of values of  y', y", and r', r". The rotational selection rule here 
is Ar = 0, ± 1 for electric dipole radiation. This rule is broader than for pure rotation 
in that Ar = 0 is now allowed. The reason is that the change in the electronic config-
uration accompanying the rotational change eliminates the parity considerations 
which earlier excluded Ar = 0 (see Section 8-7). The vibrational selection rule for 
electric dipole radiation is Av = ± 1 for a simple harmonic oscillator. If, however, 
the potential deviates from the simple harmonic,_ i.e., if it is anharmonic, then Av = 
2, 3, ... , etc., are also allowed. These vibrational rules apply only if the electronic 
state does not change and they apply to pure vibration-rotation bands. If there is a 
change in electronic state then the selection rules are determined from the so-called 
Franck-Condon principle, which we explain next. 

We have seen that there is little interaction between the electronic motion and the 
nuclear motion in a molecule. Furthermore, the characteristic time for an electronic 
transition is At ^ 10' 16  sec, whereas for a nuclear vibration the time has the much 
longer value At ^ 10 -13  sec. As a result the internuclear distance stays about the 
same during an electronic transition, and a vertical line (a line of constant R) in Figure 
12-9 accurately represents such a transition. If the upper state corresponds to y' = 0, 
then the probability distribution function for the oscillator is large only near the equi-
librium separation, and an electronic transition to the lower state leaves the molecule 
at about the point P on the potential curve in that figure. This corresponds to y" = 7 
for the lower state. Notice that classically the nuclei have small kinetic energy in each 
case, because y' = 0 initially, and because P corresponds to the end point of the vib-
rational motion for y" = 7. This meets the requirement that the relative nuclear 
velocity be about the same in both states at the time of a transition in order that the 
nuclear motion be able to adjust quickly to the new electronic conditions. Transitions 
are most favorable under these conditions. Quantum mechanically we get the same 
result because in the ground state of an oscillator, as in y' = 0, the maximum ampli-
tude of the eigenfunction occurs at the center of the motion, whereas for the upper 
states, such as in y" = 7, the eigenfunction has maximum amplitude near the ends 
of the oscillation. Since the integral in the electric dipole matrix element, (8-42), that 
determines the relative intensities, or selection rules, involves a product of the eigen-
functions of the upper and lower states, the intensities will be large only where both 
these eigenfunctions have significant space overlap. In general, the most favored 
transitions are those which, from a classical point of view, can occur with the inter-
nuclear distance for both initial and final states the same and the nuclei at end points 
of their oscillations. Examples in Figure 12-9 are shown by vertical lines from v' = 5 
to y" = 2 or y" = 11. These rules were deduced by Franck from classical considera-
tions and put on a firm quantum mechanical basis by Condon. 

If the excited electronic state is not bound, the molecule dissociates. Because such 
unbound states have a continuum of possible energies, the corresponding spectrum 
gives a continuous band. The appearance of a continuum in the absorption spectrum 
of a molecule is therefore experimental evidence for photochemical dissociation. 

12-8 THE RAMAN EFFECT 

An interesting effect which gives much information about molecular quantum states was dis-
covered experimentally in 1928 by Raman. This is the scattering of light by molecules with a 
frequency change. The student may be familiar with other light scattering processes. In ordi-
nary Rayleigh scattering by molecules, the scattered frequency is the same as the incident 
frequency. In the fluorescence process, the frequency of the incident light coincides with an 
absorption frequency of the scattering gas molecules; this is a resonance phenomenon in which 
the molecule is raised to an excited state and, after a short lifetime there, reemits light at a 
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different frequency. In the Raman effect, the scattered frequency is different from the incident  

frequency, and the incident frequency is not related to a characteristic frequency of the scat-
tering molecule.  

If the incident radiation is intense and monochromatic with a frequency y,  it is found that the  
light scattered at right angles to the incident direction contains not only radiation of frequency  

y (Rayleigh scattering), but also weaker radiation of frequency y  + v' (Raman scattering). The  
scattered spectrum therefore has weak Raman lines on each side of the Rayleigh line. If we  

change the incident frequency, we again find weak lines on each side of the Rayleigh line in  

the scattered spectrum with the same frequency difference as before. The frequency difference  
V between the incident and scattered light in the Raman effect is characteristic of transitions  

in the scattering molecule. During the scattering process the molecule may have its state  

changed from one allowed energy to another. To conserve energy in the process the scattered  

photon must then have an energy different from the incident photon by an amount equal but  

opposite to the molecular energy change.  

Consider a scattering molecule in a rotational state r. In the ordinary rotational spectrum,  

lines will be found corresponding to transitions with Ar = + 1. In the scattered Raman spec-
trum, however, we find frequency shifts from the incident frequency that correspond to rota-
tional transitions in the scattering molecule with Ar = ± 2. Hence, transitions that are not  

allowed in the ordinary emission or absorption spectrum are allowed in the Raman process.  

A quantum mechanical analysis of the Raman process leads to the conclusion that a Raman  

transition between states a and f  can occur only if there is a state y such that ordinary transi-
tions are allowed between a and y and /3 and y. It is as though we get from a to 13 by going  
through y. In this case, if a has quantum number r then y has r + 1. An ordinary transition  

from y to /3, however, requires another change Ar = + 1, so that the total change in r from a  

to 16 is Ar = 0, ± 2. The Ar = 0 selection rule gives Rayleigh  scattering, and the Ar = +2 selec-
tion rule gives Raman scattering. Hence in the scattered spectrum we have lines on each side  

of the incident line which are spaced about twice as far apart in frequency as the lines in the  

ordinary rotational spectrum. This is shown schematically in Figure 12-11.  

There is a Raman effect with vibrational states as well. In the process of scattering a photon  

of frequency y a molecule may change its vibrational state. Because Ay = + 1, the final vibra-
tional level of the molecule may be one just above or just below the initial level. Therefore  

the Raman scattering frequency will be y  + y', where the frequency change y' is a characteristic  

vibrational frequency of the molecule. At ordinary temperature, however, most molecules are  

in the ground vibrational state, y  = 0, so that the molecule absorbs energy in changing to  

state y = 1. Hence, only the lower frequency line y — y' appears in the Raman spectrum. How-
ever, the higher frequency line y + v' may be observed if the y = 1 level is sufficiently populated  

so that enough transitions from y = 1 to y = 0 occur to give detectable intensities. This is more  

likely the lower the energy of the y = 1 state and the higher the temperature of the scattering  

gas.  
As an example of the utility of Raman scattering, consider molecules with two identical  

nuclei, such as 0 2  and N2. We cannot directly observe rotational spectra or vibration-rotation  

spectra for such molecules because they have no electric dipole moment. We can, however,  

obtain a spectrum corresponding to vibration and rotation of such molecules in the Raman  

Figure 12-11 Schematic diagram showing 
the origin of rotational Raman lines on  
each side of the Rayleigh scattering line. 
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scattering. It is as though the incident radiation polarizes the molecule, thereby inducing an 
electric dipole moment; this permits absorption and emission of radiation corresponding to 
rotational and vibrational motions of the molecule. Of course, in an electronic transition in 
02  or N2 the fine structure of the,spectrum reveals the vibrational and rotational structure, 
but such a spectrum lies in the ultraviolet and the fine structure is very difficult to resolve. 
Historically, Rasetti used the Raman spectrum to make the first determination of the rotational 
inertia, or moment of inertia, of the N2 molecule. 

12-9 DETERMINATION OF NUCLEAR SPIN AND 
s 	 SYMMETRY CHARACTER 
o 

We have ignored the weaker interactions that enter in the detailed structure of molec-
ular spectra, such as the effect of nuclear spin on the energy states of a molecule. But 
we cannot ignore a very important effect that nuclear spin has on the spectrum of a 
molecule even when the spin interaction itself is negligible. For a diatomic molecule 
with identical nuclei, the states that can be occupied and the transitions that are 
allowed are restricted by symmetry requirements. If the nuclear spins are integral 
(0,1,2, ...) then the complete eigenfunction of the molecule must be symmetric with 
respect to exchange of the labels of the two identical boson nuclei. If the nuclear spins 
are half-integral (1/2,3/2, ...) then this eigenfunction must be antisymmetric in an 
exchange of the labels of the two nuclei because they are identical fermions. 

If we neglect the small interactions between the modes associated with the elec-
tronic, vibrational, rotational, and nuclear spin behavior of the molecule, we can 
write the molecular eigenfunction as a product of four factors. Since it is usually the 
case, we henceforth assume the electronic factor is symmetric in an exchange of the 
labels of the two nuclei because it is even in a reflection in the plane half way between 
them (as in H 2). The vibrational factor is always symmetric since it can be written 

tfry = (Mkt — x 2 1) 
where x 1  and x2  are the coordinates of the nuclei labeled 1 and 2, measured along 
their center to center line. That is, the independent variable in the vibrational eigen-
function is the magnitude of the distance between the two identical nuclei. Since this 
does not change when the nuclear labels are exchanged, 0, itself does not change and 
so is symmetric with respect to the exchange. Thus the symmetry of the molecular 
eigenfunction is governed by the symmetry of the product of its rotational factor and 
its nuclear spin factor. 

The question of what happens to the sign of the rotational factor Cr  when we ex-
change the labels of the identical nuclei is intimately related to the question of what 
happens to the sign when we change the signs of all the coordinates, providing we are 
wise enough to choose the origin of coordinates at the center of the molecule (i.e., 
at its center of mass, halfway between the nuclei). With this choice, the parity ques-
tioning operation of (8-44) (x -* — x,y —* — y,z — z) obviously accomplishes the 
same thing as the symmetry questioning operation (1 —> 2,2 —> 1), and the symmetry 
of Or  becomes the same as its parity. Furthermore, we can immediately apply the 
interpretation of (8-47) to determine the parity of fir,  if we change from the orbital 
angular momentum quantum number l used there to the rotational quantum num-
ber r used here, and conclude that the parity of 1// r  is even if r is even and the parity 
of >Jir  is odd if r is odd. The justification is that if the rotational angular momentum 
of the molecule is quantized then there can be no external torques acting on it, so 
the potential energy function describing the external environment (if any) in which 
the molecular rotation takes place must be spherically symmetrical about our origin 
of coordinates; this is the only requirement for the validity of (8-47). Putting it all 
together, we see that the rotational eigenfunction C.  is symmetric if r is even, and 
antisymmetric if r is odd. 



Now let us consider a situation in which the nuclear spin angular momentum quan-
tum number i has one of the values i = 1/2, 3/2, 5/2, .... Then the complete molecular 
eigenfunction must be antisymmetric in a nuclear label exchange. There are two ways 
this can come about: (1) either the nuclear spin eigenfunction is antisymmetric and 
the rotational eigenfunction is symmetric, or (2) the nuclear spin eigenfunction is 
symmetric and the rotational eigenfunction is antisymmetric. Both possibilities will 
occur, but not in the same molecule. The reasons are: (1) the symmetry of the nuclear 
spin eigenfunction factor is determined by the relative orientation of the two nuclear 
spins (e.g., for i = 1/2, the symmetric case corresponds to the two spins being essen-
tially parallel while the antisymmetric case corresponds to them being essentially 
antiparallel, exactly as for two electrons with spin quantum number s = 1/2), and 
(2) the interaction between the nuclear spins is very small so that if the spins have a 
particular relative orientation, they will maintain it for a very long time (as long as 
years). 

Practically, it is as though there are two distinctly different species of molecules. 
The species with symmetric nuclear spin eigenfunctions is called ortho and the species 
with antisymmetric nuclear spin eigenfunctions is called para as, for example, ortho-
hydrogen and parahydrogen. The same terminology is used in the same way, whether 
i is half-integral or integral. But if i is half-integral, the ortho species has only anti-
symmetric rotational eigenfunctions and the para species only symmetric rotational 
eigenfunctions, as we have been considering; while if i is integral, the symmetry of 
the complete molecular eigenfunction is reversed so the ortho species has only sym-
metric rotational eigenfunctions and the para species has only antisymmetric rota-
tional eigenfunctions. These relations are summarized in the rotational energy-level 
diagrams of Figure 12-12. The pair on the left is for molecules whose nuclei have 
half-integral spin. For the ortho species of such molecules only odd-r rotational 
states can be populated because the rotational eigenfunction must be antisymmetric, 
and it is only for odd r. In the para species only the symmetric rotational states can 
be populated, and these are the ones for even r. The relations are reversed for mole-
cules with integral spin nuclei, as is indicated in the pair of energy-level diagrams on 
the right side of Figure 12-12. The dots in the figure show the energy levels that can 
be populated, and the arrows show the possible transitions between these levels. 
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Ortho 	Para 
(symmetric (antisymmetric 

spin 	 spin 
eigenfunction) eigenfunction) 

Ortho 	Para 
(symmetric (antisymmetric 

spin 	spin 
eigenfunction) eigenfunction) 

Half-integral nuclear spin 	 Integral nuclear spin 

Figure 12-12 Illustrating the relation between the rotational and spin states that can -be 
populated in molecules having symmetric electronic factors with identical half-integral, and 
integral, spin nuclei. The dots indicate the possible states and the arrows indicate transitions 
between these states. 
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Since molecules with two identical nuclei have no electric dipole moments, we 

cannot directly observe the rotational spectra emitted in such transitions; but we can 
indirectly observe transitions between rotational states in Raman scattering, or in 
band spectra, as explained in earlier sections. 

Measurements of the number of transitions made by the para species of such 
molecules, relative to the number of transitions made by the ortho species, constitute 
a quite frequently used procedure for determining the value of the spin quantum 
number i of the nuclei forming the molecules. These numbers are in proportion to 
the relative amounts of the two species present in the sample and, at ordinary tem-
peratures where many rotational states are excited, the relative amounts are in pro-
portion to the numbers of nuclear spin states for the two species. We shall show in 
Example 12-6 that the ratio of the number of antisymmetric spin states, Xpara,  to the 
number of symmetric spin states, . Northo, is 

para _  l 	 (12-6) 
'Kortho 	l + 1 

The 'number of transitions should be in this ratio, so that we get an alternation of 
intensities in the Raman spectra or band spectra, of diatomic molecules with identical 
nuclei. This can be seen in the photograph of the N2 rotational Raman spectrum, 
shown in Figure 12-13, for which the intensities of alternate lines are measured to be 
quite accurately in the ratio 1/2. Even more dramatic is the spectrum of C2, for which 
the ratio is 0/1 because alternate lines are completely missing! We do not show that 
spectrum because the drama is not apparent until a careful comparison between the 
measured and predicted frequencies of the lines demonstrates that half are absent. 

Example 12-4. Determine the values of the nuclear spin quantum number i for the nuclei 
in N2 and C2, by using the measured intensity ratios 1/2 and 0/1 in (12-6). 
►  Since the possible values of i are restricted to i = 0, 1/2, 1, 3/2, 2, ... , inspection immediately 
demonstrates that the solution to 

1 	i 

2 i +1 
is i = 1. This is the spin of the N nucleus (i.e., of its overwhelmingly abundant isotope N14) 

For 

Figure 12 -13 Alternating intensities in a rotational Raman spectrum of N2, excited by the Hg 
line 2536.5 A. 



the solution is obviously i = O. This is the spin of the C nucleus (actually, of its most abundant 
isotope C 12, since the other isotopes, C 13  and C 14, are so rare that the abundant one com- 
pletely dominates the spectrum). 	 • 

The reason for the complete absence of half of the transitions involving rotational 
levels of molecules having symmetric electronic factors and two identical i = 0 nuclei 
is simply that i = 0 means the nuclei are bosons that have no spin, so the molecular 
eigenfunction is necessarily symmetric and has no spin factor in it. Therefore its 
rotational factor must always be symmetric, which requires that the molecule only 
be in even-r rotational levels. Proof that these symmetry considerations are very 
real indeed comes from that fact that if in C2 the nuclei are not identical (e.g., if we 
have C 12 — C13), then half the transitions are not missing. This experimental fact 
actually led to the discovery of the isotope C 13  

As we have said, the procedure of Example 12-4 has been widely applied. It was 
used in the first determination of the spin i = 1/2 of the proton, from the measured 
intensity ratio of 1/3 in the spectrum of H2. The measurements are difficult to make 
only when i becomes very large. 

The determination of the symmetry character of the identical nuclei in molecules 
like N2 is a matter of keeping track of which lines of the spectrum are the more 
intense. 
Example 12-5. In N2 it is observed that transitions involving even-r rotational states yield the 
most intense lines. Determine the symmetry character of the nuclei in that molecule. 
► Since (12-6) shows that the highest population is for nuclear spin states that are symmetric 
(ortho), and since even-r rotational states are also symmetric, the symmetric nuclear spin states 
are associated with the symmetric rotational states. Therefore the N 14  nucleus must be a 
boson. 	 • 

Symmetry character determinations made in this manner on a number of nuclei 
provided some of the earliest evidence for the correlation, seen in Table 9-1, between 
symmetry character and spin. Furthermore, we shall see in Chapter 15 how the fact 
that the particular nucleus N 14  is an i = 1 boson was used at an early date to show 
that nuclei must contain protons and neutrons, instead of protons and electrons. 
Example 12-6. Show that the ratio of the number of antisymmetric spin states to the number of 
symmetric spin states is i/(i + 1), in agreement with (12-6). 
•The number of possible individual states of spin for a particle of a given spin quantum 
number i is equal to the number of possible values of its z component quantum number m i . 
Since, as usual, the values of m i  differ by integers and range from — i to + i, this number is 
the familiar (2i + 1). So the total number of possible independent combinations of spin states 
for two identical particles of spin i is (2i + 1)(2i + 1) = (2i + 1)2 . In (2i + 1) of these states both 
particles will have the same m i, and so are in identical spin states. For these the spin eigen-
function of the two particle system is symmetric with respect to particle label exchange (like 
the top and bottom members of (9-18) in the case of i = 1/2). Of the (2i + 1) 2  — (2i + 1) = 
2i(2î + 1) remaining states, half will be symmetric and half will be antisymmetric in such an 
exchange, since half will involve the sums of products of individual spin eigenfunctions and 
the other half will involve the differences of the same products (like the center member of 
(9-18), and (9-17), in the case of i = 1/2). So the total number of symmetric eigenfunctions is 

Xsymmetric 	ortho = (2i + 1) + (1/2)2i(2i + 1) = (i + 1)(2i + 1) 
and the total number of antisymmetric eigenfunctions is 

'AV'antisymmetric = 	para = (1/2)2i(2i + 1) = 1(2l + 1) 

The ratio of the number of eigenfunctions, or spin states, is 

Afpara _ l 

cirortho 	l + 1 
in agreement with (12-6). 	 • 
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QUESTIONS 

1. Discuss the statement that the interatomic force law must be attractive to permit con-
densed phases and must be repulsive to avoid zero volume. 

2. Would you expect H3 to exist in a bound state? He t? Explain. 

3. Of the so-called inert gases, which might most easily form molecules with other elements? 
Explain. 

4. How would you explain the existence of bound states of XeF 4, in view of the absence 
of valence electrons in a Xe atom? 

5. Do the even, or odd, H2 eigenfunctions have even, or odd, parity? 

6. Explain why only two electrons can form a covalent bond. 

7. Would you predict ionic binding or covalent binding in H 2 O? In NH3? In CH4? Does 
experiment decide the issue or can you rule out one or the other types of binding 
independently? 

8. From the fact that CO 2  does not have a permanent electric dipole moment, what can 
you conclude about the binding and the arrangements of the atoms in the molecule? 

9. Of the molecules H2 , D2, and HD, 'which has the greatest binding energy? The least? 

10. What does it mean to say that a molecule is in an excited state? 
11. Explain how the existence of a finite zero-point vibrational energy is related to the un-

certainty principle. 
12. The fundamental vibrational energy for HC1 is about ten times that for NaCl. Con-

sidering the factors determining this quantity, make this plausible. 

13. What effect, if any, does the increasing angular momentum of higher rotational states of 
a diatomic molecule have on the vibrational energy of the molecule? 

14. What effect does the change in internuclear separation in a diatomic molecule due to its 
vibration (the binding energy curve is asymmetric) have on the rotational energy levels 
of the molecule? 

15. The asymmetry in the binding energy curve accounts for thermal expansion of solids. 
How can information from molecular spectra be used to determine the shape of this 
curve? 

16. Explain why the separation between vibrational levels is somewhat smaller in an excited 
electronic state than in the ground electronic state (see Figure 12-9). Explain the same 
effect for rotational states. 

17. If Raman rotational lines arise from an induced electric dipole moment how can we 
explain that the selection rule is Ar = ± 2 rather than Ar = ± 1? 

18. Since it is known to take a very long time for the para and ortho species of a molecule 
to convert themselves into each other, the interaction between the two nuclear spins in 
a molecule must be very small. Why would you expect this to be the case? 

19. What changes must be made in the result developed in Section 12-9 if the electronic 
factor of the molecular eigenfunction is antisymmetric in an exchange of the labels of the 
two nuclei? 

PROBLEMS 

1. From the following data, find the energy required to dissociate a KC1 molecule into a 
K atom and a Cl atom. The first ionization potential of K is 4.34 eV; the electron affinity 
of Cl is 3.82 eV; the equilibrium separation of KC1 is 2.79 A. (Hint: Show that the mutual 
potential energy of K +  and Cl is —(14.40/R) eV if R is given in Angstroms). 

2. The first ionization potential for K is 4.3 eV; the ion Br - is lower in energy by 3.5 eV 
than the neutral bromine atom. Compute the largest separation of K + and Br ions that 
gives a bound KBr molecule. 

3. For a system which executes simple harmonic motion about a position of stable equi-
librium, the force, F, is given by 
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where V is the potential energy and R — R o  is the deviation from equilibrium. Show that  
the zero-point vibration of a molecule is given by  

( 2 / 

1172  

2 hv o  = 	
^ 

47cu 1/2
\aR2 R 0  

4. The potential energy V of NaC1 can be described empirically by  

e2  
V = 	+ Ae -RIp  

4Te0R  

where R is the internuclear separation. The equilibrium separation of the nuclei R o  is 2.4 A  
and the dissociation energy is 3.6 eV. (a) Calculate A and p/R o , neglecting zero-point  
vibrations. (b) Sketch V and each of the terms in V on one graph. (c) Give the physical  
significance of A and p.  

5. (a) Show that the ratio of the number of molecules in rotational level r to the number  
in the r = 0 level, in a sample at thermal equilibrium, is a maximum for the level  

specified by  
r = (kTI/lî2)1"2 — 1/2  

(b) For HC1, what is the most populated level at 600°K?  

6. Taking the rotational inertia of H2 from Table 12-1, find the temperature at which the  
average translational kinetic energy of an H2 molecule equals the energy between the  
ground rotational state and first excited rotational state. What can you conclude about  

the occupation of rotational excited states in H2 at room temperature?  

7. Determine b, the zero-point vibrational energy, for a NaCl molecule, given that its  

fundamental vibrational frequency is 1.14 x 10 13  vib/sec.  
8. (a) Show that, if Ed is the dissociation energy of a molecule, the fraction of the molecules  

that dissociate at a temperature T is e -  Ed/kT. (b) It is found (from electron diffraction  
studies) that as T increases, the internuclear separation increases. Explain what effect this  

has on the potential energy curve and on the result of part (a).  

9. For NaC1, the separation of two vibrational levels is about 4 x 10 -2  eV. Using Table  
12-1, and noting that the rotational levels are not equally spaced, show that there are  

about 40 rotational levels between a pair of vibrational levels.  
10. The potential energies of two diatomic molecules of the same reduced mass are shown  

in Figure 12-14. From the graph determine which molecule has the larger (a) inter-
nuclear distance, (b) rotational inertia (moment of inertia), (c) separation between  

V  

Figure 12-14 Potential energy curves considered in Problem 10. 
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rotational energy levels of the same r and  y,  (d) binding energy, (e) zero-point energy (Hint: 
See Problem 3), (f) separation between low-lying vibrational states. 

11. (a) What fraction of HC1 molecules at 1000°K will be found in the first excited vibrational 
state? (Hint: Use the Boltzmann factor.) (b) Find the ratio of HCI molecules in the first 
excited rotational state to those in the first excited vibrational state at 1000°K. (Hint: 
Remember the degeneracy factors.) 

12. (a) Derive an expression giving the ratio of the energy of a transition from the lowest to 
the first excited vibrational level to the energy of a transition from the lowest to the first 
excited rotational level for a diatomic molecule. (b) What is this ratio for NaCl? For H 2? 
(Hint: See Example 12-3.) 

13. (a) Show that the relative frequency shift of a spectral line in a rotational band arising 
from a mixture of two isotopic diatomic molecules is given by Av/v = — Aµ/µ, where u 

is the reduced mass of the molecule. (b) What is this ratio for a mixture of HC1 35  and 
HC1 37? 

14. Show that the ratio R of the total number of molecules in all excited vibrational states 
to the number in the ground vibrational state is 

R = (e 

provided that the levels are assumed to be equally spaced. 
15. What is the amplitude of vibration of HCl in the first excited vibrational state? 
16. (a) Use data from Example 12-3 to predict the reciprocal wavelength of the zero-point 

vibration of HC1 given in Table 12-1. (b) What must be the force constant to give exact 
agreement? 

17. From the value 2940.8 cm -1  for the reciprocal wavelength equivalent to the fundamental 
vibration of a molecule C1 2 , each of whose atoms has an atomic weight 35, determine the 
corresponding reciprocal wavelength for C1 2  in which one atom has atomic weight 35 
and the other 37. What is the separation of spectral lines, in reciprocal wavelengths, due to 
this isotope effect? 

18. (a) Specify the resolution, A2/2, of a spectrometer which can just resolve the rotational 
spectra of Na 23 C135  and Na23C1 37  assuming R 0  to be the same for both molecules. (b) 
Would this spectrometer also resolve the vibrational spectra of the two molecules, as-
suming the force constants are the same? 

19. Calculate the difference in dissociation energies of H2 and D2 from the value 4395.2 cm -1 
 for the reciprocal wavelength equivalent to the fundamental vibration of an H2 molecule. 

20. The zero-point vibrational energy for H2 is 0.265 eV. Compare the vibrational energy 
levels of H2, D2, and HD numerically for the low-lying states. 

21. From the fact that the lowest electronic excited state in 0 2  and N2 molecules is over 3 eV 
above the ground state, explain why air is transparent in the visible. 

22. In the vibrational Raman spectrum of HF are adjacent Raman lines of wavelength 2670 A 
and 3430 A. (a) What is the fundamental vibrational frequency of the molecule? (b) What 
is the equivalent force constant for HF? 

23. A ruby laser (2 = 6943 A) is used to excite the Raman spectrum of N2. (a) What are the 
wavelengths of the lines which result from the lowest energy allowed transitions in the 
pure rotational spectrum of N 2? (b) What is the ratio of the intensities of the lines of part 
(a) at room temperature? (c) What are the wavelengths of the lines which result from 
the allowed transitions to and from the ground state vibrational level? (d) What is the 
ratio of the intensities of the lines of part (c) at room temperature? (e) How do the 
answers to parts (a) and (c) change if the laser is used to excite the Raman spectrum of 
diatomic molecules with nonidentical nuclei having the same rotational inertia and force 
constant as N 2? 

24. The energy-level diagram for the rotational levels in each of the two lowest vibrational 
states of the electronic ground state is given in Figure 12-15 for a diatomic molecule. 
Find the energies of the transitions that give rise to the allowed spectral lines in the 
infrared and Raman spectra, (a) for molecules containing two identical i = 0 nuclei, 

hva/kT _ 1)-1 
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Figure 12 -15 Energy levels considered in Problems 24, 25, and 26. 

(b) for molecules containing two identical i = 1/2 nuclei, and (c) for molecules containing 
two nonidentical nuclei. 

25. Calculate the relative intensities at room temperature for the lines found in parts (a) and 
(b) of Problem 24. 

26. Using the information in Figure 12-15, (a) calculate the rotational inertia, or moment of 
inertia, of the molecule in each vibrational level, and (b) calculate the zero-point energy, 

27. (a) How many rotational degrees of freedom do you expect in a polyatomic molecule? 
Translational degrees? If the molecule has N atoms (N > 2) there should be 3N — 6 
vibrational degrees of freedom, i.e., independent modes of vibration. Explain. (b) How 
many vibrational degrees of freedom are there in an H 2 O molecule? A CH4  molecule? 

28. Consider the relative intensities of the spectra of H2 and D2 to determine which Raman 
rotation spectrum will yield lines alternating in intensity and having a relative intensity 
of 1/2. 

29. Band spectrum measurements of diatomic molecules containing C1 35  nuclei yield an 
alternating intensity ratio of 3/5. What is the spin of the C1 35  nucleus? 
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13-1 INTRODUCTION 

Solid state physics is a vast area of quantum physics in which we are concerned with 
understanding the mechanical, thermal, electrical, magnetic, and optical properties of 
solid matter. Some aspects have been discussed in earlier chapters, such as the lattice 
and electronic contributions to the specific heats of solids, radiation from a black-
body, thermionic emission, and contact potentials. Here we shall focus on the origin 
of the forces that hold atoms together in a solid and on the allowed energy levels of 
the electrons in the solid. This will lead us to the band theory of solids. That theory 
will then be applied to phenomena of much practical and theoretical interest, in-
cluding semiconductors and semiconductor devices. Many electrical, thermal, and 
optical properties of solids will thereby become more clearly understood. In the next 
chapter we extend the theory to the phenomenon of superconductivity and consider 
magnetic properties of solids as well. 

13-2 TYPES OF SOLIDS 

In the gaseous state the average distance between molecules is large compared to the 
size of a molecule, so the molecules may be regarded as isolated from one another. 
Many substances, however, are in the solid state at ordinary temperatures and 
pressures. In that state molecules (or atoms) can no longer be regarded as isolated. 
Their separation is comparable to the molecular size, and the strength of the forces 
holding them together is of the same order of magnitude as the forces binding the 
atoms into a molecule. Hence, the properties of a molecule are altered by the presence 
of neighboring molecules. Characteristic of crystalline solids is the regular arrange-
ment of atoms, a recurrent or periodic pattern called a crystal lattice. The solid can 
be regarded as a large molecule, the forces between atoms being due to interaction 
between atomic electrons, and the structure of the solid being determined as that 
arrangement of nuclei and electrons which yields a quantum mechanically stable 
system. Although the number of atoms involved is very large, they are arranged in a 
regular pattern. In noncrystalline solids, such as concrete and plastic, the perfectly 
regular pattern does not hold over long distances, but there is an orderly pattern in 
the neighborhood of any one atom. We shall discuss only crystalline solids in this 
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book. Such solids are classified according to the predominant type of binding, the 
principal types being molecular, ionic, covalent, and metallic. 

Molecular solids consist of molecules which are so stable that they retain much of 
their individuality when brought in close proximity. The electrons in the molecule are 
all paired so that atoms in different molecules cannot form covalent bonds with one 
another. The intermolecular binding force is the weak van der Waals attraction that 
is present between such molecules in the gaseous phase. The physical mechanism 
involved in the van der Waals attraction is an interaction between electric dipoles. 
Because of the fluctuating quantum mechanical behavior of the electrons in a mole- 
cule, all molecules have a fluctuating electric dipole moment, even though for many 
of them symmetry considerations require that it fluctuate about an average value of 
zero. At a time when a molecule has a certain instantaneous electric dipole moment, 
the external electric field that it produces will induce in the charge distribution of a 
nearby molecule a dipole moment. By drawing rudimentary sketches of the charges 
and field in various cases, the student can immediately convince himself that the force 
exerted between the inducing and the induced electric dipole is always attractive. The 
interaction energy is proportional to the mean square of the inducing electric dipole 
moment. The resulting attraction is weak, the binding energies being of the order of 
10 -2  eV and the force varying with the inverse seventh power of the intermolecular 
separation. In the solid, successive molecules have electric dipole moments which 
alternate in orientation so as to produce successive attractions. Many organic com- 

ci. 
 

pounds, inert gases, and ordinary gases such as oxygen, nitrogen, and hydrogen form 
molecular solids in the solid state. Because the binding is weak, solidification takes 
place only at very low temperatures where the disruptive effects of thermal agitation 
are very small. (The melting point of solid hydrogen is 14°K, for example.) The weak 
binding makes molecular solids easy to deform and compress, and the absence of free 
electrons makes them very poor conductors of heat or electricity. 

Ionic solids, such as sodium chloride, consist of a close regular three-dimensional 
array of alternating positive and negative ions having a lower energy than the sepa-
rated ions. The structure is stable because the binding energy due to the net elec-
trostatic attraction exceeds the energy spent in transferring electrons to create the 
isolated ions from neutral atoms, just as for ionic binding in molecules. Ionic binding 
in solids is not directional because spherically symmetrical closed shell ions are in-
volved. Hence the ions are arranged like close-packed spheres. The actual crystal 
geometry depends on which arrangement minimizes the energy, and this in turn 
depends principally on the relative sizes of the ions involved. Because there are no 
free electrons to carry energy or charge from one part of the solid to another, such 
solids are poor conductors of heat or electricity. Because ctf the strong electrostatic 
forces between the ions, ionic solids are usually hard and have high melting points. 
Lattice vibrations can be excited by energies corresponding to radiation in the far 
infrared, so that ionic solids show strong optical absorption properties in that region. 
But optical absorption by excitation of electrons requires energies in the ultraviolet, 
so that ionic crystals are transparent to visible radiation. 

Covalent solids contain atoms that are bound by shared valence electrons, as in 
covalent binding of molecules. The bonds are directional and determine the geo-
metrical arrangement of atoms in the crystal structure. The rigidity of their electronic 
structure makes covalent solids hard and difficult to deform, and it accounts for their 
high melting points. Because there are no free electrons, covalent solids are not good 
heat or electrical conductors. Sometimes, as for silicon and germanium, they are 
semiconductors. At room temperature some covalent solids, such as diamond, are 
transparent; the energy required to excite their electronic states exceeds that of 
photons in the visible region of the spectrum so that such photons are not absorbed. 
But most covalent solids absorb in the visible and are therefore opaque. 



Metallic solids exhibit a binding that can be thought of as a limiting case of 
covalent binding in which electrons are shared by all the ions in the crystal. When 
a crystal is formed of atoms having a few weakly bound electrons in the outermost 
subshells, electrons can be freed from the individual atoms by the energy released in 
binding. These electrons move in the combined potential of all the positive ions and 
are shared by all the atoms in the crystal. We speak of an electron gas interspersed 
between the positive ions and exerting attractive forces on each ion that exceed the 
repulsive forces of other ions, hence the binding. The atoms have vacancies in their 
outermost electron subshell, and there are not enough valence electrons per atom to 
form tight covalent bonds. The electrons are shared by all the atoms and are free to 
wander through the crystal from atom to atom, there being many unoccupied elec-
tronic states. In this sense they behave like a gas, an "electron gas." A metallic solid 
is a regular lattice of spherically symmetrical positive ions, arranged like close-packed 
spheres, through which the electrons move. Metallic solids are obviously excellent 
conductors of electricity, or heat, the electrons easily absorbing energy from incident 
radiation, or lattice vibrations, and moving under the in fluence of an applied electric 
field, or thermal gradient. Because radiation in the visible portion of the electromag-
netic spectrum is easily absorbed, such solids are opaque. All the alkalies form metal-
lic solids. 

The type of binding that a particular solid has is determined experimentally by 
studies of x-ray diffraction, dielectric properties, optical emissions, and so forth. 
There are some solids whose binding must be interpreted as a mixture of the principal 
types we have described. In addition, not all solids have the ideal structure implied 
by the discussion so far. Indeed, the so-called lattice imperfections, or deviations 
from ideal crystal structure, lead to many properties of solids which have practical 
consequences. 

13-3 BAND THEORY OF SOLIDS 

To understand the effect of putting a great many atoms close together in a solid, 
consider first two atoms only that are initially far apart. All of the energy levels of this 
two-atom system have a twofold exchange degeneracy. That is, for the combined 
system the space part of the eigenfunction for the electrons can contain either a 
combination of the individual atom space eigenfunctions which is symmetric in an 
exchange of pairs of electron labels, or which is antisymmetric in such a label ex-
change. (The total eigenfunction of the system of electrons is, of course, antisym-
metric, since the symmetric space eigenfunction is associated with an antisymmetric 
spin eigenfunction, and vice versa.) When the atoms are widely separated, the two 
different types of eigenfunctions lead to the same energy, and so each of the energy 
levels is said to have a twofold exchange degeneracy. But when the atoms are brought 
together, the exchange degeneracy is removed. Because the electron charge density in 
the important region between the atoms depends on whether the space eigenfunction 
is symmetric or antisymmetric, when the atoms are close enough together that the 
wave functions of the individual atoms overlap, the energy of the system depends 
on the symmetry of the space eigenfunction. Hence, a given energy level of the system 
is split into two distinct energy levels as overlap commences, and the splitting in-
creases as the separation of the atoms decreases. Of course a famous example of this 
phenomenon is found in the ground state energy level of the system containing two 
hydrogen atoms, as we saw in Section 12-3. Figure 12-4 shows this splitting for the 
ground state level only, but each of the higher levels of the system splits in the 
same way, and for the same reason, as the atoms are brought together. 

If we had started with three isolated atoms, we would have had a threefold ex-
change degeneracy of the energy levels. When the atoms are brought together in a 
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Figure 13-1 Schematic drawing of the splitting of an energy level in a system of six atoms, 
as a function of the separation distance R between adjacent atoms. The space eigenfunction 
of the level at the top of the band is antisymmetric with respect to two-at-a-time label 
exchange, and the one at the bottom is symmetric with respect to such an exchange. The total 
eigenfunction is antisymmetric for all the levels in the band. But the space eigenfunction for 
the intermediate levels is neither symmetric nor antisymmetric. Instead, the space 
eigenfunction of each of these levels has what might be called a mixed symmetry, there 
being a different mixed symmetry for each intermediate level. The net result is a gradual 
transition of the electron charge distribution from one that leads to a minimum energy to 

t 	 one that leads to a maximum energy in going from the bottom to the top of the band. The 
O 	reason why only two levels in a band can have a space eigenfunction with a well defined 

symmetry (that is, either symmetric or antisymmetric) is that the label exchanges are 
carried out two at a time. 

uniform linear lattice, each of the levels splits into three distinct levels. Figure 13-1 
illustrates this schematically for a typical energy level of a system of six atoms. The 
splitting commences when the center-to-center atomic separation R becomes small 
enough for the atoms to begin overlapping. As R decreases from this value there is a 
decrease in the energy of the levels for which the symmetry of the space eigenfunction 
leads to a favorable electron charge distribution (i.e., which puts electron charge 
where the ions exert the strongest binding), and an increase in the energy of the levels 
associated with space eigenfunctions whose symmetry leads to an unfavorable charge 
distribution. The more favorable, or unfavorable, the charge distribution is, the 
greater is the decrease, or increase, in the energy. So the levels are spread, by the 
quantum mechanical requirements of indistinguishability, about an average energy 
equal to the energy the system would have at a given R if there were no such re-
quirements. Note that this average energy begins to increase rapidly for sufficiently 
small R. This is due to the Coulomb repulsion that the ions exert on each other. 

As we go to a system containing N atoms of a given species, each level of one of 
these atoms leads to an N-fold degenerate level of the system when the atoms are well 
separated. With decreasing separation, each of these splits into a set of N levels. The 
spread in energy between the lowest and highest level of a particular set depends on 
the separation distance R, since R specifies the amount of overlap that causes the 
splitting. But it does not depend significantly on the number of atoms in the system 
if the same separation distance is maintained. Thus, as more and more atoms are 
added to the system each set of split levels contains more and more levels spread over 
about the same energy range at a particular R. At the values of R found in a solid, a 
few angstroms, the energy spread is of the order of a few electron volts (see Figure 
12-4). If we then consider that a solid contains something like 10 23  atoms per mole, 
we see that the levels of each set in a solid are so extremely closely spaced in energy 
that they form a practically continuous energy band. 
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Figure 13-2 Top: Energy-level scheme for two isolated atoms. Middle: Energy-level 
scheme for the same two atoms in a diatomic molecule. Bottom: Energy-level scheme for 
four of the same atoms in a rudimentary one-dimensional crystal. Note that the lowest lying 
levels are not split appreciably because the atomic eigenfunctions for these levels do not 
overlap significantly. 

The process we have just described is indicated in Figure 13-2. We see from this 
figure that the lower-lying energy levels are spread less than those that lie higher. The 
reason is that the electrons in lower levels are electrons in inner subshells of the atoms, 
which are not significantly influenced by the presence of nearby atoms. These elec-
trons are localized on particular atoms, even when R is small, because the potential 
barriers between the atoms are for them relatively high and wide. The valence elec-
trons, on the other hand, are not localized at all for small R, but they become part 
of the whole system. The overlapping of their wave functions results in a spreading 
of their energy levels. It should be pointed out that the is level of an individual atom 
becomes a band of N levels, as does the 2s level, if we count in such a way that 
each of these can accommodate two electrons of opposite spin. But the 2p level is 
triply degenerate in the space quantum number m 1  in the isolated atom, since m 1  can 
assume any of the values —1, 0, + 1. Thus the 2p level in the atom leads to 3N levels 
in the solid. As we shall discuss soon, these can be thought of as forming three bands 
of N levels, whose energy ranges may or may not coincide. 

In Figure 13-3 we show the band formation for the higher levels of sodium, whose 
ground state atomic configuration is 1s 22s2 2p6 3s 1 . Several general features of allowed 
bands (the continuous bands of energy levels for electrons) and forbidden bands (the 
regions where there are no electron energy levels) are illustrated in this figure. Allowed 
bands corresponding to inner subshells, such as 2p in sodium, are extremely narrow 
until the interatomic spacing becomes smaller than the value actually found in the 
crystal. As we go through the outer occupied subshells and into the unoccupied 
subshells of the atom in its ground state, however, the bands become progressively 
wider at a given interatomic separation. The reason is, again, that the greater the 
energy of the electrons the larger the regions in which they can move and the more 
they are affected by nearby ions. As the energy increases, therefore, the successive 
allowed bands widen and overlap each other in energy. 

Direct experimental verification of energy bands comes from observations of x-ray spectra 
in solids. For example, the 3s 2p transition in sodium gives the L series x-ray lines. A very 
sharp line spectrum is observed for gaseous sodium in which the 3s and 2p levels are narrow. 
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Figure 13-3 Showing the formation of energy bands from the energy levels of isolated 
sodium atoms as the interatomic separation decreases. The dashed line indicates the 
observed interatomic separation in solid sodium. The several overlapping bands that 
constitute each p or d band are not indicated. 

But the same x-ray lines from solid sodium are broadened because, although the low-lying 2p 
level remains narrow, the 3s level has now become an energy band. The observed shape of 
x-ray lines from solids agrees with the energy band picture. 

Consider now the occupation of the energy levels. Those bands which originated 
in levels of closed subshell electrons of an isolated atom have all their levels occupied. 
The bands that originated from valence electrons may or may not be fully occupied. 
If an electric field is applied to the solid the electrons will acquire extra energy only 
if there are available empty levels within the range of energy that the strength of the 
applied field allows the electron to gain. If there are no nearby empty levels, then 
the electron will not be able to gain any energy at all and the solid behaves like an 
insulator. What counts in determining the emptiness, or fullness, of the bands con-
taining valence electrons is the valence of the atoms forming the solid, and the ge-
ometry of the crystal lattice into which they solidify. An isolated band will be full if 
a unit cell of the crystal lattice contains two valence electrons, one for each of the 
two possible values of the spin quantum number m s . 

Crystal structure geometry, or crystallography, is a complex subject that is very 
important in any detailed study of solid state physics. It is treated briefly in Appen-
dix Q. We avoid it in the text by restricting ourselves to particularly simple (usually 
one-dimensional) crystal lattices. We shall, however, define a unit cell as the smallest 
geometrical arrangement of atoms that by periodic repetition along the coordinate 
axes can fully describe the geometrical arrangement of the atoms in the complete 
crystal. We shall also say that in a crystal lattice some or all of the degeneracy of 
the atomic valence electron levels with respect to the quantum number m 1  is removed 
because these electrons are not in the spherically symmetrical potential of an atom 
in free space, but in a potential whose more complicated symmetry depends on the 
crystal geometry. For this reason, the three degenerate levels from a p subshell of a 



single atom lead to three bands of N levels, each capable of holding two electrons 
of opposite spin, in a crystal containing N of these atoms. These bands may be com-
pletely nonoverlapping, partly overlapping, or completely overlapping in energy, de-
pending on the crystal geometry. The term isolated band, used in expressing the 
condition for a full band, refers to a case in which these bands do not overlap each 
other or bands from other subshells. Then if there are two valence electrons per unit 
cell, each of the N levels in the lowest lying band will have its full complement of 
two electrons. Note that the quantity determining occupation is the number of va-
lence electrons per unit cell, and not per atom. In a uniform one-dimensional lattice 
of identical atoms, such as we considered in the argument from which we concluded 
that a band contains N levels, if the crystal contains N atoms, a unit cell contains 
one atom and there is no distinction to be made. When that argument is extended 
to three-dimensional crystals containing atoms of different species, it is found that 
the conclusion remains the same, providing. N is the number of unit cells in the 
crystal. Thus if there are two valence electrons per unit cell there will be two in each 
of the levels of the band, and the band will be fully occupied. 

The problem in predicting whether or not a solid is an insulator is that the question 
of band overlap is all important, and this depends on details of the geometry of the 
crystal structure (and of the geometry of the atomic eigenfunctions). If what, as far 
as valence is concerned, might have been a completely filled band actually overlaps 
what might have been a completely empty band, then there will be two partly filled 
bands. The result is that a solid that might have been an insulator will actually be 
a conductor. But it is at least possible to say that a solid can certainly not be an insu-
lator unless one of its unit cells contains an even number of valence electrons, because 
an odd valence electron can never be in a filled band. Most covalent solids like dia-
mond, or ionic solids like sodium chloride, are insulators; they all have an even num-
ber of valence electrons per unit cell. In diamond each carbon atom has four valence 
electrons, and there are two atoms in each unit cell. The eight valence electrons per 
unit cell fully occupy the 4N levels of four bands, one originating from the 2s sub-
shell of the atom and three originating from the three 2p subshells. These bands over-
lap each other, but they are well separated from empty higher energy bands. Sodium 
chloride contains one sodium ion and one chlorine ion per unit cell, and the valence 
band consists of a set of completely filled bands that overlap each other but do not 
overlap unfilled bands. Alkali-earth atoms like beryllium are divalent and form crys-
tals with an even number of valence electrons per unit cell, but these solids are metals, 
not insulators, because overlapping bands make slightly higher unfilled levels ener-
getically available to the electrons. 

In solids formed from the monovalent alkali atoms like sodium, the band con-
taining the valence electrons cannot be filled, and so the solid behaves like a conduc-
tor. Only half of the levels of the isolated 3s allowed band of sodium are filled because 
a sodium atom has a single electron in the 3s level, whereas the exclusion principle 
allows such a level to accommodate two electrons. Hence electrons in the solid can 
easily acquire a small amount of additional energy. Thus any applied electric field 
will be effective in giving electrons energy, and the solid will be a conductor. As we 
mentioned in the previous paragraph, conductors are also found in cases where bands 
containing valence electrons overlap. 

It is worthwhile putting the distinction between conductors and insulators into momentum, 
instead of energy, language. Without an applied electric field there are as many electrons in 
the solid with momentum vectors in one direction as there are with momentum vectors in the 
opposite direction, since there is no net current. When an electric field is applied, this equilib-
rium can be upset causing a current to flow, if some of the electrons can go into quantum 
states with changed momentum vectors. This is quite possible for electrons in a partially filled 
band, but it cannot be done by electrons in a completely filled band. 
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p 

1 	ne2/1  
mv  

(13-1b)  

At temperatures above absolute zero it is, of course, possible for some electrons 
to gain enough thermal energy to jump over the energy gap of a forbidden band of 
energy into a higher allowed band, thereby creating vacancies in the lower allowed 
band and making a new allowed band available. We speak of the nearly filled band 
as a valence band and the nearly empty band as a conduction band. The probability 
of this happening increases with temperature, and it depends strongly on the width 
of the forbidden band. Substances in which the width of the energy gap is small are 
called semiconductors. An example is silicon, a covalent solid with a diamondlike 
structure, but with a forbidden band only about 1 eV wide. It becomes reasonably 
conducting at room temperature though at low temperatures it is an insulator. On 
the other hand the gap between the filled and empty allowed bands in diamond is 
about 7 eV. Thus diamond is an insulator even at relatively high temperatures. 

13-4 ELECTRICAL CONDUCTION IN METALS  

Some useful results concerning conduction electrons in metals can be obtained from 
classical ideas. In the absence of an applied electric field, the directions in which these 
electrons move are random. The reason is that the electrons frequently collide with 
imperfections in the crystal lattice of the metal, which arise from thermal motion of 
the ions about their equilibrium positions in the lattice or from the presence of im-
purity ions in the lattice. In colliding with these imperfections, the electrons suffer 
changes in speed and direction, and this makes their motion random. As in the case 
of molecular collisions in a classical gas, we can describe the frequency of electron-
lattice imperfection collisions by a mean free path 2, where 2 is the average distance 
that an electron travels between collisions. When an electric field is applied to a 
metal, the electrons modify their random motion in such a way that, on the average, 
they drift slowly in the direction opposite to that of the field, because their charge 
is negative, with a drift speed v d . This drift speed is very much less than the effective 
instantaneous speed v of the random motion. In copper vd  is of the order of 
10 -2  cm/sec, whereas v is of the order of 10 8  cm/sec. 

The drift speed can be calculated in terms of the applied electric field E and of v 
 and 2. When a field is applied to an electron in the metal, it will experience a force 

of magnitude eE which will give it an acceleration of magnitude a given by a = eE/m. 
Consider now an electron that has just collided with a lattice imperfection. In general, 
the collision will momentarily destroy the tendency to drift and the electron will 
move in a truly random direction after the collision. Just before its next collision the 
electron will have changed its velocity, on the average, by a2/v where 2/v is the mean 
time between collisions. We call this the drift speed v d , so that 

a2 eE2 
V  = — _  v mv 

If n is the number of conduction electrons per unit volume and j is the current den-
sity, we have v d  = j/ne = eE2/mv. Combining this with the definition of resistivity,  
p = E/j, gives us  

my  

P  ne2 	
(13-1a)  

Equation (13-1a) can be taken as a statement that metals obey Ohm's law, for the  

quantities v and 2 that determine the resistivity p do not depend on the applied elec-
tric field, which is the criterion that the law is obeyed. 

Often we deal with the conductivity 



This can be put in a more useful form by defining a measurable quantity, the mobility  
µ, of magnitude given by the ratio of the drift speed to the applied electric field, i.e. 

vd e^ 	 D  

E 	my 	 (13-1c)  

Then since o-  = ne 2A/mv, we have µ = a/ne or 
a = neµ 	 (13-2)  

If we have conduction by positive carriers as well as negative carriers, the conductivity 
is given by 

a = ngnµn +  pq u 
in which µn  and µp  are the mobilities of negative and positive carriers, qn  and qP  are  
their charges, and n and p are the numbers of these carriers per unit volume. If con-
duction is by negative charge carriers the charge q of the carrier is negative, whereas 
q is positive if conduction is by positive carriers. Since the sign of y also depends on  
the sign of q, each term in the expression for a is always positive.  

The sign of the charge carrier of electric current in a metal can be determined from  

measurements of the Hall effect. That is, when a current carrying conducting sheet 
is placed perpendicular to a magnetic field, an electric field is set up perpendicular 
both to the magnetic field and the flow of current. By measuring the potential dif-
ference between the two surfaces of the conductor, it is possible to deduce the sign 
and value of the quantity 1/nq, called the Hall coefficient. Here n is the number of 
charge carriers per unit volume and q is the charge of the carrier. The electric field 
arises from an accumulation of charge carriers on one surface due to the v d  x B force 
exerted on them when they move with velocity v d  through the magnetic field B. 

In some metals, as zinc and beryllium for example, the Hall effect indicates net 
positive charge carriers. This is interpreted as being due to transitions of electrons 
from the filled valence band to the conduction band leaving holes (unoccupied energy 
levels) in the valence band. Such holes correspond to the absence of an electron and 
behave much like positive charges. As these vacancies are filled by electrons, moving 
under the influence of an electric field, the holes move in a direction opposite to the 
electrons just as though positive charge carriers were moving in the field direction. 
In the case of metals with an s2  atomic configuration, such as zinc and beryllium, 
the mobility of the s-band holes is much greater than that of the p-band electrons. 
Since the sign of the Hall  coefficient  depends on which type of carrier has the higher 
mobility, the Hall  coefficient  is positive for these metals. 

In Table 13-1 we list the Hall coefficients of some metals and also the number of 
free electrons per atom. The latter is computed from the value of the Hall coefficient, 
1/nq, and the density of the metal. For the alkalis and other monovalent metals, Hall 
measurements agree with one conduction electron per atom. Of course, the free-
electron model on which the simple Hall effect analysis is based is not expected to be 
valid for all metals. 

Table 13-1 Observed Hall Coeff icient and Calculated Number of Free Electrons per Atom.  

Metal 
1/nq 

(10 -10  m 3 /coul) No./atom Metal 
1/nq  

(10 -10  m 3/coul) No./atom 

Na —2.5 0.99 Be +2.4 —2.2 
K —4.2 1.1 Zn +0.33 —2.9 
Cu — 0.55 1.3 Cd +0.60 —2.5  
Ag —0.84  1.3 As  +40 —0.04  
Al  —0.30  3.5 Sb —20  0.09  
Li —1.70 1.0 Bi —5000  0.0005 
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N ^ N  (e)  N (e)  

Figure 13-4 Left: The distribution with energy of conduction electrons in an unfilled band  
of width emax in a solid at T = 0, according to the free electron model. Right: The same at  
a higher temperature.  

13-5 THE QUANTUM FREE-ELECTRON MODEL  

Let us now recall our application in Section 11-11 of quantum theory and the Fermi  

distribution to conduction electrons in a metal. There we saw that the potential in  

which the electron moves can be approximated by a rectangular potential well. This  

constant potential smooths out the actual periodic variation due to the ion cores and  

includes the average effect of all the remaining electrons. It is equivalent to treating  

the electrons as an ideal gas of fermions inside the solid. This approximation, which  

greatly simplifies quantum mechanical calculations, turns out to be surprisingly good  

in determining many of the observed properties of solids, as we saw in Section 11-12  

when we used it in describing phenomena such as contact potential and electronic  

specific heats. In connection with our present discussion we can use the result, (11-56),  

for the distribution with energy of free conduction electrons in a metal, namely  

8zc V 
(

m  3
) 1 /2 	1/2 de 

n(g)N(g) dg = 	
e(' eF)' + 1 	

(13-3)  

where n(g)N(g) dg is the number of electrons with energy from e to e + de in a 
metal at temperature T. The justification is that the distribution of energy states in 
a band is nearly the same as that for free electrons if the Fermi energy is not close  

to the top of the band. This condition applies to the alkali metals, for example, and  

accounts for the success that the free-electron model has in describing their electrical  

properties.  
On the left side of Figure 13-4 we show the prediction of (13-3) for the absolute  

zero temperature energy distribution of electrons in a partly filled band, with energy  

being measured from the lowest energy in the band. The maximum energy allowed in  

the band is fi and ^ F < max) as shown in that figure. At a temperature greater than 
zero, the uppermost electrons are excited to occupy nearby available higher states, 
and the distribution function takes the form shown on the right side of Figure 13-4. 
The number of quantum states in an energy interval e to e + de is the factor 
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N(e)de of (13-3), namely  
87tV(2m 3) 112  

N(g) de = 	h3 	e 112  dg (13-4)  

In Figure 13-4 N(s) is shown by a dashed curve and, for unit volume, is the density 
of states. The dash-dot curve is n(s), the Fermi distribution for the number of elec-
trons per state. The solid curve gives the product n(e)N(e), the energy distribution 
of electrons, or number of electrons per unit energy interval. 

Example 13-1. The Fermi energy, gF, for lithium is 4.72 eV at T = 0. Calculate the number 
of conduction electrons per unit volume in lithium. 
► From (11-57) we have 

= 	 for kT « ‘F 	(13-5)  

so that the number of free electrons per unit volume is 
_ N _ 8m\3/2 

3 /2 n V —
\h2l 

^F 3
TE 

 in which m is the mass of the electron. Then, with eF  = 4.72 eV, we have  

8 x 9.11 x 10- 31  kg 	3/2  (4.72 x 1.60 x 10 -19  joule) 3/ 2  
n=  

V 	(6.63 x 10 -34  joule-sec) 2 	 3  

= 4.64 x 1028/m 3  = 4.64 x 1022/cm 3  

as the number of conduction electrons per unit volume in lithium. 
This corresponds exactly to one free electron per lithium atom, since the number of lithium 

atoms per unit volume, in solid lithium of density 0.534 g/cm 3 , is 

0.534  g  x 1 mole x 6.02 x 1023 atom = 4.64 x 10 22  atom/cm 3 	•  
cm3  6.94 g 	 mole 

Example 13-2. Make an estimate of the relative number of conduction electrons in a metal 
which are thermally excited to higher energy states. 
• Figure 13-4 shows that most of the excited electrons are in a range AS above the Fermi 
energy en F , where M ^ 2kT. Assuming that kT « gF, the number A.N' of excited electrons 
can be calculated from 

N(eF)n(eFmM ti N(gF)( 1/2)2kT ^ N(SF)kT  

Equation (13-5) shows that, for kT « gF  

	

=  3 

C 	
3/2 g3/2 
 F  

and (13-4) shows that  

	

aV 	 1/2 

	

N(eF)= 2 
 	

eF  

Hence  
O.N' N(gF)kT  
✓V 	N' 

1 
^  C h^)3 /2  gFl2kT  

7TV 8m 3/z 
Ch2  

3 kT 	
^ 

603/2/2 3  

_ 	J  
2 .6aF  

kT  

gF  

h2 
 (^

3N  2/3 

8m ^ V 
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The fraction of conduction electrons that is thermally excited is small. At room temperature 
kT ^ 0.025 eV and typically eF  ^ 4 eV, so that Ai/.4(^ 1/160. The absolute number of 
excited conduction electrons is large, however, because .iV itself is so large. 

Now we shall use the free-electron model to evaluate the width in energy of a band 
for the simple case of a one-dimensional metal. The eigenfunctions for an electron 
in the deep square well, representing the smoothed out attraction of the ion cores 
distributed uniformly along the x axis plus the average repulsion of the remaining 
electrons, are essentially sinusoidal standing waves like 

i/i cc cos 
2Ex 

= cos kx 	and 	tk cc sin 
2Ex 

 = sin kx 	(13-6) 

where 2 is the wavelength and k = 2E/2 is the wave number. The eigenfunctions have 
nodes at each end of the well since their values go to zero outside the well. These 
boundary conditions lead immediately to the requirement that n2/2 = L, where L is 
the length of the well. Each value of the integer n = 1, 2, 3, ... , corresponds to a 
different eigenfunction, or energy level if we allow two electrons of opposite spin per 
level. Since for free electrons the energy is e = p 2/2m = h2/2m22  = h2n2/8mL 2, the 
minimum value of n corresponds to the level of essentially zero energy at the bottom 
of the band, and the maximum value of n corresponds to the level of maximum en-
ergy at the top, the width of the band being approximately equal to that maximum 
energy. If there are N ions each separated by distance a in the one-dimensional metal 
of length L, then N = L/a. As we have explained before, the number of levels in the 
band is just equal to N, so the maximum value of n will also be equal to N. Thus 
the maximum energy, or energy width of the band in our one-dimensional metal, is 

h2N2 	h2L 2  
max = 8mL2  8mL2a2  

or 
h2n2 

max = 2ma2 	
(13-7) 

This result, which depends on a but is independent of N, confirms the statement made 
earlier that the width of a band depends on the separation of the ions and not on 
the number of ions in the lattice. 

The free-electron model gives very good results for many metals. It is especially 
good for the alkali metals where the overlap of bands (as in Figure 13-3 for sodium) 
is so complete that the density of states N(e) behaves like the curves of Figure 13-4. 
The ei/2 dependence of N(e) on e is not correct, however, in the case of an isolated 
band. Although the actual shape of the curve of density of states depends on the posi-
tion of the band and the structure of the lattice, its shape is roughly symmetric, as 
shown in the upper part of Figure 13-5, in that it decreases to zero at the top of the 
band. 

To understand how this comes about, we consider a one-dimensional crystal which 
is so long that we first ignore the boundary conditions at its end. Then the most con-
venient eigenfunctions for a free electron are sinusoidal traveling waves like 

cc eikx 	and 	ti cc e- ikx 	 (13-8) 
where the forms with positive, or negative, exponents describe an electron moving 
in the positive, or negative, direction of the x axis. It is even more convenient to take 
only the form 1i cc e`k x, and let k be either positive or negative. Now we write the 
energy e of a free electron in terms of its wave number k = p/h, where p is its momen-
tum. That is 

_ p2  h2 k2  e 	_ 2m 2m 
(13-9) 



Unfilled 
levels 

N(e) 

0 
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Figure 13-5 Top: A qualitative representation of the density of states as a function of energy 
in an unfilled isolated band. Bottom: The same for the case of two barely overlapping bands. 

This relation is plotted in Figure 13-6, over a range of k including both positive and 
negative values. A positive value of k corresponds to an electron moving in the posi-
tive x direction, and a negative k corresponds to motion in the opposite direction. 
The energy depends on k 2 , so the curve is symmetrical about k = 0. It can be seen 
immediately by comparing (13-7) and (13-9) that 

k < + n/a 	 (13-10) 
That is, the values of k corresponding to the maximum value of g found in the band 
are — n/a and +n/a, and the value of k corresponding to the mimimum value g = 0 
is the value k = 0 in the middle of this range. Since k cc 11,10c n and n = 1, 2, 3, .. o , 
the values of k allowed by the boundary conditions are evenly spread throughout 
this range. Each of them is associated with a different quantum state for the electron. 

k 
— 7r/a 	 0 	 + it/a 

Figure 13-6 The energy of a free electron plotted as a function of its wave number k. The 
points indicate schematically the uniformly spaced allowed values of k. For the first band of 
the crystal they fall within the range —2t/a < k < +n/a, where a is the ion separation of 
the one-dimensional lattice in which the electron moves freely. 
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Figure 13-7 Illustrating the uniformly distrib-
uted allowed values of the x and y component  
wave numbers for a free electron in the first 
band of a two-dimensional square lattice with  

ion separation a.  

Next consider a two-dimensional metal with ions spaced by the same distance a 
 in both the x and y directions. In a band the allowed values of both the x and y 

component wave numbers, k x  and ky , are uniformly distributed over ranges extending 
from — rz/a to + rz/a, as shown in Figure 13-7. Each pair of kx  and ky  values defines 
a point that specifies a quantum state for a free electron of the metal; these points 
are uniformly distributed within the square. A circle surrounding the origin of radius 
k, where k 2  = kx + kÿ, passes through all states having the same energy since in 
two dimensions (13-9) reads 

^_ 	 h2(kz + ky) h2k2  

The number of states dN, for values of k ranging from k to k + dk, is equal to the  
number of points contained within the area limited by k and k + dk. As the points 
are uniformly distributed, this number will be proportional to the area. The figure 
shows that as long as k < rc/a, dN increases with increasing k; specifically dN = 
2rtk dk. When k begins to exceed rz/a, further increase in k causes dN to decrease. Thus 
dN/dk = N(k), the number of states per unit range of wave number, increases from 
zero for small k, reaches a maximum, and then decreases back to zero when k reaches 
the largest allowed value for the band of our two-dimensional metal. 

The same general behavior is found when these results are converted from N(k) 
to N(s), the number of states per unit energy. In a real three-dimensional metal it is 
also true. That is, the density of states N(6) increases from zero for small e (the 
bottom of the band), reaches a maximum, and then decreases back to zero at the 
largest allowed value (max  found in the band (the top of the band). The detailed  

behavior of N(s) depends on the geometrical details of the arrangements of ions in  

the crystalline metal, as does the exact value of emax•  But the general behavior is  

always about as we have indicated, and the approximate value of émax  is given by  
(13-7) if a is interpreted as the characteristic ion spacing in the crystal.  

13-6 THE MOTION OF ELECTRONS IN A PERIODIC LATTICE  

The free-electron model that we have used ignores the effects of electrons interacting  

with the crystal lattice. Let us begin to consider this by making some general remarks  

about the effect of the periodic variation in the potential. For one thing, the lattice  

periodicity has the effect that the wave functions for an infinitely long lattice are no  

longer sinusoidal traveling waves of constant amplitude, but they exhibit the lattice  

periodicity in their amplitudes. In addition, electrons may be scattered by the lattice.  

Just as an electromagnetic wave suffers a Bragg "reflection" when the Bragg condi-
tion is satisfied, so also when the de Broglie wavelength of the electron corresponds  

to a periodicity in the spacing of the ions the electron interacts particularly strongly  

2m 	2m  



b= a — l  

Kronig-Penney  
model potential  <— l  

^E  a  

with the lattice. We shall see that these modifications result, among other things, in 
changing the resistance of the crystal to the conduction of electricity. 

Our approach in finding the allowed energies of electrons in solids has been to 
consider the effect of forming a solid as the individual constituent atoms are brought 
together. If, instead, we had begun by modelling the periodic potential seen by an 
electron in the crystal lattice by a succession of rectangular wells and barriers, and 
had then solved the Schroedinger equation for such a potential, we would have found 
sinusoidal wave solutions in certain energy ranges (the allowed bands) and real de-
caying exponential wave solutions in the other energy ranges (the forbidden bands). 
This approach permits detailed quantitative calculations, but we present it here only 
qualitatively. 

Although the electrons tend to smooth out the variations in the potential due to 
the ions, the potential is not constant but varies in a periodic way. The actual shape 
of the potential determines the exact solution to the Schroedinger equation for an 
electron in a crystal lattice, but the most important feature of the potential is its peri-
odicity. The effect of periodicity is to change the free particle traveling wave eigen-
function in such a way that instead of constant amplitude it has a varying amplitude 
which changes with the period of the lattice. If the space periodicity of the lattice is 
a, then, according to Bloch, the eigenfunctions for a one-dimensional system do not 
have the free particle traveling wave form i/i(x) = Ae ikx of (13-8), but instead they 
have the form 

	

41/(x) = uk(x)e ikx 	 (13-11a) 

where the periodicity of the lattice requires that 
uk(x) = uk(x + a) = uk(x + na) 	 (13-11b)  

n being an integer. Hence, the effect of the periodicity is to modulate periodically the 
free-electron solution amplitude. The wave function is 

	

'P(x,t) = uk(x)e i(kx 	 (13-12)  

where the second (exponential) factor describes a wave of wavelength )L = 2rc/k that 
travels toward + x if k > 0 and toward — x if k < 0, and the first factor uk(x) describes 
the modulation. The function u k(x) resembles the eigenfunction for an isolated atom. 
Its exact form depends on the particular potential assumed and the value of k. A very 
good approximation to V(x) for a crystal is an array of rectangular potential wells 
and barriers having the lattice periodicity, as in Figure 13-8. Each well represents an 
approximation of the potential produced by one ion. This is the Kronig-Penney model 
which is, of course, easier to treat mathematically than the real case, but which retains 
all of its important features. Let us now examine the model in more detail. 

For wells that are deep and widely spaced, the electron of not too high energy is 
practically bound within one of the wells, so that the lower energy eigenvalues are 
those of a single well. For wells that are closer together the eigenfunctions can pene-
trate the potential barriers more easily. This results in the spreading of a previously 
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Figure 13-8 Illustrating how the potential for an electron moving in a periodic lattice can be  

approximated by the Kronig-Penney model of an array of rectangular potential wells and  

barriers. 



co  
^ 

Vo  

0.51  

0.23  

0  

Single potential well 	 Periodic array of wells  

S
O

L
ID

S
-C

O
N

D
U

C
T

O
R

S
 A

N
D

  S
E

M
IC

O
N

D
U

C
T

O
R

S
 

0.058  

Figure 13-9 Left: Allowed energies for an electron in a single potential well. Right: Allowed 
energies in an array of periodically spaced wells and barriers. The levels shown are for a  

well strength given by 2mV 0/2 /h 2  = (11) 2 , and a barrier thickness b = //16. Note the 
appearance of forbidden bands even for energies g greater than Vo .  

single energy level into a band of energy levels. As the separation of the wells is re-
duced the band becomes wider. Indeed, in the limit of zero barrier thickness we  

obtain an infinitely wide single well in which all energies are allowed, i.e., we obtain  

the free-electron model. In Figure 13-9 we compare the allowed energies of a single  

well with those of the Kronig-Penney model of an array of wells and barriers. Notice  

that each allowed band corresponds to a discrete level of the single well, and that  

forbidden bands appear even for energies 6 greater than the well depth v o . The band 
widths can be made to approach the level width as a increases (the width of the indi-
vidual wells, 1, remaining fixed) and to approach a continuum as a decreases. 

In solving the Schroedinger equation for the Kronig-Penney model, we must sat-
isfy the conditions on the continuity of and dpi/dx, just as we had to do for the 
single rectangular well. This restricts the validity of the Bloch solution, (13-1 la) and 
(13-11b), to certain ranges of energy and gives the allowed bands. For energy values 
in the forbidden bands, the eigenfunctions are rapidly damped by a real decaying 
exponential factor. The expression e(k) for the allowed energies in terms of the wave 
number k of the electron is more complicated than that for the free electron, but the 
gaps or discontinuities in energy occur at values of k given simply by  

k=±â,±2a,±3a ,... 	 (13-13)  

in which a is the space periodicity of the lattice. In Figure 13-10 we plot the func-
tion e(k). At values of k equal to the values specified in (13-13) we get energy gaps, 
whereas for values of k not near those values the energies are much like that of a free 
electron shown by the dashed curve in the figure. The origin of the allowed and for-
bidden bands is apparent from the figure. Each allowed band corresponds to solu-
tions to the Schroedinger equation in which the wave number k has positive values 
in a range of width n/a, and also negative values in a range of the same width. Note 
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Figure 13-10 Allowed energies in a one-dimensional lattice of periodicity a, as a function of  
the wave number k. The dashed curve gives the free electron model result, for comparison.  
The allowed and forbidden energy bands that result are shown on the right.  

that this agrees with a conclusion obtained from a very different point of view in the 
last section, and expressed in (13-10). 

From the present point of view, the gaps between the top of an allowed band and 
the bottom of the next one up can be understood as a result of Bragg reflection of the 
traveling wave describing an electron propagating down the lattice. If a wave travel-
ing to the right is incident on a set of barriers representing the regions between the 
ions of the lattice, spaced by the uniform distance a, it will be partly reflected by each 
of these barriers. Generally, the reflected waves traveling to the left will not be exactly 
in phase with each other, and so they will not combine constructively to produce a 
net reflected wave of large amplitude. But they will be in phase if the wavelength 2 of 
the incident and reflected waves is related to the spacing a by the one-dimensional 
version of (3-3), the Bragg condition 

2a = 2, 22, 32, ... 	 (13-14)  
Here 2a is the extra distance traveled in reflections from successive barriers, so if it 
equals an integral number of wavelengths 2 the reflected waves will all be precisely 
in phase and there will be a net reflected wave whose amplitude equals the amplitude 
of the incident wave. Since 2 = 2n/k, the Bragg condition is 2a = 2n/k, 2(2n/k),  
3(27c/k), ... , or k = + rc/a, +27c/a, + 37c/a, ... , where we have inserted + signs to 
account for the fact that the incident wave could as well be moving to the left (to — x) 
as moving to the right (to +x). Comparing with (13-13), we see that the values of k 

 at which the gaps in the function f(k) occur are just those values of the wave number 
for which the wavelength 2 satisfies the Bragg condition for constructive reflection. 

The gaps themselves arise because there are two distinctly different ways for the 
amplitude of the reflected wave to equal the amp litude of the incident wave, at each 
critical value of k where these amplitudes are equal. Consider, for instance, a unit 
amplitude incident wave moving to the right along the x axis with k = rc/a. The 
traveling wave eigenfunction describing this is eikx = eirzxia. The reflected wave, which 
also has unit amplitude for this value of k, is e - ikx =  e  'xIa. The total eigenfunction  

cn  
CD  



is obtained by adding these two or, equally well, by subtracting them. The first possi-
bility gives 
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0'1°' + e - i(^c^a)x oc cos 
a. 

x
r = ei( 

 

(13-15)  

and the second gives 

ÿr = e`ocia)x — e -i(n/a)x oc sin —
7r 

 x 	 (13-16)  
a  

In both, the reflected wave has the same amplitude as the incident wave, and so it  

combines with it to form a standing wave; but the two cases differ very significantly  

in regard to the locations of the nodes of the standing wave, and therefore in the  

locations of the maxima and minima of the probability density tJr*tfr. In the case where  

t/r oc cos mx/a, the probability density will maximize at x = 0, as well as at x = + a,  
±2a, +3a, ... , while for t(i cc sin 7rx/a the probability density will be zero at all  

these points. If they are the locations of the barriers between ions, the electron de-
scribed by IA will feel a larger repulsion, and therefore have a higher energy, in the  

cosine case than in the sine case. If these points are the locations of the ions, the  

situation will be reversed. But the basic conclusion—that there are two different  

energies e corresponding to the same value of the wave number k when k is any one  
of the values given by (13-13)—is independent of how the origin of the x axis is  

defined.  
Looking again at the function &(k) plotted in Figure 13-10, we see the two different  

values of e at each of the critical values of k where Bragg reflection will occur. We  
also see how this circumstance causes the e(k) curve to have an S-shaped deviation  

from the parabolic curve for a free electron in each region between the critical values  

of k. The range of k values between — 7r/a and + n/a defines what is called the first  

Brillouin zone; those k values between — 27c/a and — 7c/a and between + 7r/a and  
+ 2n/a define the second Brillouin zone, etc., as is indicated below the k axis of the  
figure.  

13-7 EFFECTIVE MASS  

When discussing the behavior of an electron in a periodic lattice under the applica-
tion of an external electric field, it is very convenient to introduce the concept of the  

effective electron mass. This is done by using a relation developed in Section 3-4 to  

describe the motion of the electron in terms of a group of traveling waves. According  
to (3-13b), the velocity g of such a group equals the derivative of the frequencies y  of  
its component sinusoidal traveling waves with respect to their reciprocal wavelengths  

K. That is 
dv = do) 

= g dK dk  

where v is converted to the angular frequency w, and K to the wave number k, by  
multiplying and dividing dv/dic by 2n. To remind the student of the meaning of this  

relation, we shall apply it to the simple case of a free electron, whose energy is  

p2 	h2k2 

e 
= 2m 2m = 

no)  

The last equality depends on the Einstein-de Broglie relation e = by = hcw. Evalua-
ting dw/dk from this expression, we have  

dc^ h2k hk p my  
g =—= ------=v  dk 2m m m m  

(13-17)  



We obtain the correct result that the group velocity g equals the velocity y  of the 
electron whose motion is represented by the group. Of course this result is of general 
validity. 

Now we consider an electron in a one-dimensional lattice, whose wave number 
dependence of energy has the form 6' (k) that we have been discussing. To this system 
an external electric field E is applied. In time dt the electron of charge q moves 
distance dx, and the work done by the external field is the applied force qE multiplied 
by dx. Since this equals the magnitude of the change de in the energy of the electron, 
we have, using (13-17) 

de = qE dx = qE 
d^ 

dt = qEv dt = qEg dt  

But we also have, from e = ho) 

de= haw =hdkdk=hgdk  

Comparison then shows that 
qE dt = h dk 

or  

h dt = qE 

If we take the time derivative of 
do) 1 de  

g  dk h dk 

we obtain 
dg _  1 d2e _  1 d2e _  1 deg dk  
dt h dt dk h dk dt h dk 2  dt 

or, using (13-18) 
dg 1 d2e  
dt h2  dk2 qE  

Employing (13-17) again, this can be written 
dv qE 

dt m* 

where 
1 	1 d2e  

m* h 2  dk2  

(13-18)  

The quantity 1/m* is the reciprocal of the effective mass of the electron in the crystal 
lattice. 

The electron we are studying moves under the in fluence of internal forces, exerted 
on it by the ions of the lattice, and an external force, exerted on it by the applied 
electric field E. If we wish, we can use (13-19a) to discuss its motion in terms of the 
external force alone since that equation is in the form of Newton's law of motion, 
acceleration equals external force divided by mass. Of course the effects of the internal 
forces are actually contained in the equation. They appear, however, only in the 
reciprocal effective mass 1/m*, which can have values quite different from the recip-
rocal of the true electron mass, 1/m. 

The properties of the lattice determine 1/m* because, as we saw in the preceding 
section, they determine the form of the function e(k) and so also the derivative  
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Figure 13 -11 Illustrating the reciprocal effective mass at various locations in the first and 
second Brillouin zones of a one-dimensional lattice. The points on the k axis indicate the 
uniformly distributed allowed values of k. 

d2 6(k)/dk 2  appearing in (13-19b). Figure 13-11 shows the first, and part of the sec-
ond, Brillouin zones of a one-dimensional crystal. The solid curve is e(k) and the 

co parabolic dashed curve is the free electron relation 6' = h20/2m. Near the center of 
c the first zone,  where k h2k2 2m 1 m* = 026 dk 2 h2 02212,0h2 = 1 m. So in 
bc  this region the lattice has very little effect on the electron, because its reciprocal 

effective mass is almost the same as its reciprocal true mass, and it responds to the 
applied electric field as if it were an essentially free electron. The curvature of the 
function g(k) changes significantly from the curvature of the parabola in proceeding 
in either direction from the center of the zone, which makes dramatic changes in the 
reciprocal of the effective mass of the electron and so in its response to the applied 
field. Since d2 6/dk 2  goes through zero, and then becomes negative and of large mag-
nitude as k approaches either boundary of the first zone, 1/m* does the same. Thus 
in the upper part of the energy range of the band corresponding to the first zone 
the electron in the lattice responds to the applied electric field very differently from 
the way it would if it were a free electron. Where 1/m* is zero a given applied force 
qE causes no acceleration of the electron, and where 1/m* is negative the force causes 
an acceleration in the opposite direction to that which would be experienced by a 
free electron. (This has nothing to do with the sign of the electron charge which, to 
avoid confusion, we have written as q instead of — e.) At the bottom of the energy 
band for the second Brillouin zone, 1/m* is positive but appreciably larger than 1/m 
for a free electron, so the applied force produces a relatively large acceleration of the 
electron in the lattice. 

The response of an electron in a crystal to an applied electric field can be under-
stood in terms of the way the electron wave is reflected by the potential barriers 
located between each pair of ions. At the bottom of the first energy band where the 
magnitude of the wave number has the value IkI  0 there is practically no reflection 
since the Bragg condition IkI = rc/a is far from being satisfied. When the field is 
applied the force it produces will increase the electron's momentum, and the work 
it does will increase the electron's energy, just as in the case of a free electron. Higher 
up in the band, where IkI is closer to the critical Bragg value n/a, reflection starts 
to become appreciable. In this region the work done on the electron will still increase 
its energy, but this increases the amount of reflection, and reflection corresponds to 
reversing the sign of its momentum. At the point where 1/m* = 0, the gain in positive 
momentum due to the applied field acting directly on the electron is exactly com-
pensated for by the gain in negative momentum due to the enhanced reflection of 
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the electron by the lattice ions. Thus here the net change in electron velocity is zero, 
and from the point of view of its response to the applied field the electron effec-
tively has infinite mass, or zero reciprocal mass. (Momentum is, of course, given to 
the lattice by the overall effect of applying the field, but not to the electron.) At the 
top of the band the reciprocal effective mass is large and negative because the en-
hanced reflection resulting from the closer approach to the Bragg condition of perfect 
reflection is much more significant in changing the electron momentum than the 
direct action of the applied field. The situation is reversed at the bottom of the next 
higher band, and so the reciprocal effective mass is large and positive there. 

Effective mass is also used in a somewhat different way to compare, for various 
bands, the curvature of the function e(k) in the concave upward approximately para-
bolic regions found except near the tops of bands. If the zero of k is taken to be at 
the boundary of the second zone, and the zero of e is taken at the bottom of the 
corresponding band, then f(k) for the part of the second zone shown in Figure 13-11 
can be written as 

h2k 2 
e(k) . 2m* 	 (13-20) 

If the curvature of g(k) is high, so that e increases rapidly with increasing k, then 
1/m* in this expression is large. Since the allowed values of k are uniformly distributed 
along the k axis of Figure 13-11, the density of the corresponding energy levels along 
the e axis will be low if Z increases rapidly with increasing k. So the reciprocal mass 
can also be used to compare level densities of bands, in the regions where they obey 
(13-20). If the level density is relatively low, 1/m* is relatively large; if the level density 
is relatively high, 1/m* is relatively small. 

The concept of effective mass is useful in a variety of ways. For instance, the classi-
cal theory of the behavior of charge carriers under the in fluence of an applied electric 
field is summarized by (13-1b), which predicts that the electrical conductivity a of the 
material containing the carriers is proportional to the reciprocal of their masses. We 
can easily modify this to take into account the quantum behavior of charge carrying 
electrons in a crystal lattice by replacing the reciprocal true mass with the reciprocal 
effective mass, obtaining 

a cc 1* 
	

(13-21) 
m 

Consider iron. The valence electrons in this metal partly fill its 3d bands, which are 
overlapping and narrow since 3d is an inner subshell in the transition element iron so 
the splitting of the atomic 3d level into the 3d bands is not very pronounced. Because 
the bands are narrow, the level density is high. Therefore the reciprocal effective mass 
is small for the electrons involved in electrical conduction in iron, the value of 1/m* 
being about 0.1/m. As a consequence, the metal is not a particularly good conductor. 
Copper, on the other hand, is a good electrical conductor. The reason is that for 
copper the 3d bands are filled, and the conduction electrons are 4s electrons which 
are in a very broad band (it overlaps the 3d bands) that has a low-level density and 
a high reciprocal effective mass (1/m* is roughly equal to 1/m). The 4s band is broad 
because this is an outer subshell of the atom and so the splitting in the crystal of the 
4s atomic level is large. The result is that the conductivity of copper is an order of 
magnitude higher than the conductivity of iron. 

It should be pointed out that using the reciprocal effective mass in (13-21) amounts to ac-
counting for the influence of a perfect crystal lattice on the accelerated motion of an electron 
in an applied electric field. As was discussed in Section 13-4, accelerated motion takes place 
between collisions of the electron with the imperfections that are actually found in the lattice 
of a real material, due to thermal motion of the ions or to impurity ions. These collisions 
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tend to randomize the electron motion, and they cause the over-all electron motion to be a drift 
with velocity proportional to the strength of the applied field, in contrast to an ever increasing 
velocity with acceleration proportional to the strength of the field. If there were no lattice 
imperfections, after a fixed field was applied the electron current would increase in time until 
it reached such large values that it was limited by practical considerations having nothing to 
do with either the strength of the field or the properties of the material. In such circumstances 
the material could be said to have zero resistance (or at least it could be said not to obey 
Ohm's law). So the presence of nonzero resistance, or noninfinite conductivity, is due to the 
presence of lattice imperfections. This can be seen in the fact that the resistance of a metal 
increases with increasing temperature and with increasing impurity concentration. Neverthe-
less, the value of 1/m*, which has to do with the properties of a perfect lattice, influences the 
value of the resistivity or conductivity because it influences the average velocity gain between 
randomizing collisions with imperfections, and this determines the drift velocity. 

In situations where all the levels of an isolated band are filled except for those near 
the very top, it is convenient to think in terms of holes representing the absence of 
electrons in an otherwise completely filled band. Since the absence of a negatively 
charged electron is equivalent to the presence of a positive charge, holes behave as 
if they are positively charged. Futhermore, since the effective mass is negative for the 
levels near the top of a band, holes, describing the absence of negative effective mass, 
behave as if they have positive effective mass. We shall have more to say about them, 
after we have explained briefly one of the most useful procedures for determining 
experimentally the behavior of electrons in solids. 

13-8 ELECTRON-POSITRON ANNIHILATION IN SOLIDS 

The interaction of positrons with electrons provides a technique used, with great success, to 
measure the momenta of electrons in solids. The positron was introduced in Section 2-7. These 
particles have the same mass and the same magnitude of charge as electrons but positrons are 
positively charged. In that section the process of pair production, in which a photon disappears 
and is replaced by an electron-positron pair, was described. Of interest for the measurement 
of electron momentum, however, is the reverse process, pair annihilation, in which an electron 
and a positron disappear and are replaced by photons. 

In the usual experiment, high energy positrons, from radioactive sources, are directed toward 
a sample. Once inside, they quickly lose energy, via scattering and electronic excitation, to the 
particles of the material. They generally reach their lowest quantum state in about 10 -12  sec 
or less, after penetrating into the sample a distance on the order of 10 -4  m Annihilation takes 
place well inside the material and, at annihilation, the momentum of the positron is nearly 
zero. The most likely result of the annihilation event is the appearance of two photons, trav-
eling in nearly opposite directions, each with energy nearly equal to the electron rest mass 
energy (511 keV). 

Slight deviations of the photon momenta from the same straight line can be used to obtain 
information about the electron momentum distribution in the sample. The geometry is illus-
trated in Figure 13-12, which shows an electron incident on a positron at rest and the emission 
directions of the resulting photons. For the analysis which follows, the direction of one of 
the photons is taken as the z axis and the x axis is taken to be in the plane of the photons. 
Experimentally the z axis is determined by the position of one of the photon detectors. 

Total relativistic energy is conserved in the annihilation process, so 
2m0c 2  = cp1 + cp2 

where m o  is the rest mass of the electron (or positron), p i  is the magnitude of the momentum 
of one photon, and p2  is the magnitude of the momentum of the other photon. The kinetic 
and potential energies of the electron are small compared to its rest mass energy m oc2  and are 
neglected. Momentum is also conserved during annihilation, so 

p cos cp= p i  — p 2  cos 0 
and 

p sin cp= p2  sin B 



x 

P2  
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Pi 

Figure 13-12 Top: An electron incident on a positron at rest. Bottom: The momenta of the 
resulting photons.  

where p is the magnitude of the electron momentum and the angles 9  and 0 are defined in  
the figure. The momentum equations are solved for p i  and p2  and the results are substituted  
into the energy equation to yield  

2moc = p (cos 9  sin 0 + sin 9  cos 0 + sin 9)/sin 0  
For all electrons in solids p « m o c and 0 is extremely small, usually around 10 -3  radians. So 
sin 0 can be approximated by 0, in radians, and cos 0 can be approximated by 1. The first 
term in the parentheses is small compared to the other two and is neglected. When the last 
equation is solved for 0, using these approximations, the result is 

0_ p sin 9  

mo  c  

The angle 0 is measured in what is called an angular correlation experiment and the result is  
used to calculate the x component of the electron momentum, p sin q). The difference in the 
photon energies is given by AE = cp l  — cp 2  = cp cos 9  and, if this quantity is measured, the 
result can be used to calculate the z component of the electron momentum, p cos  9. This is 
rarely done, however, since much finer resolution can be obtained for angular measurements 
than for energy measurements. 

Example 13 -3. Position annihilation takes place in a free electron gas with the same concen-
tration (number per unit volume) as the conduction electrons in lithium. Find the largest corre-
lation angle 0, defined in Figure 13-12. 
■ Consideration of the figure will make it apparent that 0 has the largest value when the 
annihilated electron has the largest possible momentum magnitude and one of the photons is 
emitted in a direction perpendicular to the electron momentum. Electrons with an energy equal 
to the Fermi energy 4 have the largest momentum magnitude. This is the Fermi momentum 
pF, where 4 = pF/2mo . Since the Fermi energy depends only on concentration, according  

to (11-57), and since the Fermi energy for lithium is 4.72 eV, we have  

pF  = ^12moeF = (2 x 9.11 x 10 -31  kg x 4.72 eV x 1.60 x 10 -19  joule/eV) 1 / 2  
or pF  = 1.17 x 10 -24  kg-m/sec. The maximum angle is  

_ 	1.17 x 10 -24  kg-m/sec O _F — 
 pF/moc  9.11 x 10 -31  kg x 3.00 x 10 8  m/sec  

or O F  = 4.29 x 10 -3  rad. 	 •  
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Figure 13-13 Number of two photon annihilation events as a function of correlation angle 
B for a typical metal. The small angle portion is due to annihilation by conduction electrons 
while the large angle portion is due to annihilation by core electrons. 

For a metal, a typical graph of the number of two-photon events as a function of the cor-
relation angle 8 is like that shown in Figure 13-13. The curve is proportional to the number 
of electrons in the sample with x component of momentum equal to p sin (p. The central part 
of the curve is due to annihilation of conduction electrons. For an electron gas, this has a 
parabolic shape and the shape is not much different for conduction electrons in metals and 
semiconductors. By taking measurements with the sample in various orientations relative to 
the z direction, it is possible to construct the momentum distribution of the electrons. If the 
central portion of the curve is extrapolated, the correlation angle for annihilation of an electron 
whose energy equals the Fermi energy can be found and, from this, its Fermi momentum can 
be calculated. 

The wings of the curve, which generally have a Gaussian shape, are due to annihilation of 
electrons in atomic cores, which have higher momenta. The situation here is more complicated 
than for conduction electrons because the positron is repelled by the positively charged atomic 
core and may acquire a high momentum itself before annihilation. The curve reflects the mo-
menta of both electrons and positrons. 

In most molecular solids, including a great many organic materials, in amorphous materials, 
and perhaps in ionic solids, some positrons become bound to electrons and form hydrogen-
like "atoms," called positronium. There are two states of interest: a singlet state with the spins 
of the particles essentially antiparallel and a triplet state with the spins essentially parallel. 
Annihilation from the singlet state produces two photons, and the lifetime of positronium, in 
this state, is short—on the order of 10 -1°  sec. In contrast, two-photon annihilation from the 
triplet state violates conservation of angular momentum and, instead, three photons are usually 
produced. The lifetime of triplet positronium is about 10 - 7  sec in free space. Detection of both 
prompt and delayed photons, in different events, is a signal that positronium has been formed. 
An external magnetic field is sometimes used to change the spin orientations, and the change 
in the relative yield of prompt and delayed photons provides further verification of positronium 
formation. Positronium does not form in materials, such as metals, in which electron concen-
trations are high and the positron suffers many collisions during its lifetime. 

In solids, the triplet state lifetime shortens to around 10 -9  sec, not as short as the singlet 
state lifetime but longer than the free-space triplet state lifetime. This decrease occurs because 
the positron, while still bound to an electron, is annihilated by another electron, outside the 
positronium "atom." The lifetime is dependent on the electron concentration at the site of the 
positronium and so a lifetime measurement provides information about the concentration. 
Positronium is generally trapped in large open spaces between molecules of the material, and 
the positron samples the electron concentration of such a region. Both the number of such 
regions and the electron concentration in them undergo changes when the material changes 
phase, and positronium lifetime measurements are used to study phase transitions in amor-
phous substances, such as glasses, and in organic crystals. 
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13-9 SEMICONDUCTORS 

Semiconductors are of much interest because their behavior is the basis for many 
practical electronic devices, such as transistors. Also, they are excellent illustrations 
of the ideas discussed in previous sections. Semiconductors are covalent solids that 
may be regarded as "insulators" because the valence band is completely full and the 
conduction band is completely empty at the absolute zero of temperature, but they 
have an energy gap between the valence and conduction bands of no more than about 
2 eV. For silicon the energy gap is 1.14 eV and for germanium the gap is 0.67 eV. 
Although the value of the Fermi distribution function governing the relative popula-
tion of an energy state in the conduction band to an energy state in the valence band 
is small, since kT 0.025 eV at room temperature, the number of available states 
in the conduction band is high. Hence the thermal excitation from the valence band 
into the conduction band occurs for a significant number of electrons, this number 
being the product of the number of electrons per quantum state and the number of 
quantum states per energy interval. Furthermore, the conductivity of a semicon-
ductor increases rapidly with rising temperature, the number of excited electrons in 
silicon, for example, increasing by a factor of about one billion with a doubling of 
temperature from 300°K to 600°K. Since the valence band is filled at low temperature, 
with the four valence electrons of silicon or germanium forming covalent bonds, 
each electronic excitation into the conduction band leaves a hole in the valence band. 
These holes, acting as positive charge carriers, also contribute to the conductivity. 
In Figure 13-14 we illustrate the semiconductor band scheme. 

The conductivity of the semiconductors arising from thermal excitation is called 
intrinsic conductivity. There are other ways to enhance the conductivity, such as by 
photoexcitation. The energy gap in semiconductors is equivalent to the energy of 
photons in the red or infrared portion of the electromagnetic spectrum so that semi-
conductors are photoconductive. This contribution to the conductivity increases with 
the intensity of the light and will drop to zero when the light source is turned off and 
the normal thermal equilibrium distribution of electrons is restored. Still another way 
to increase the conductivity is by adding impurities to the semiconductor. That is, 
we replace some atoms of the semiconductor with atoms of another element, having 
about the same size but a different valence. The resulting conductivity, whose origin 
we explain presently, is called extrinsic conductivity, and the procedure is called 
doping. 

If a small quantity of arsenic is added to molten germanium, the arsenic impurities 
will crystallize with the germanium into its diamondlike structure. `Arsenic has five 
electrons per atom in the valence band and germanium has four electrons per atom 
in the valence band. Hence, four of the arsenic electrons are used for covalent binding 
and the fifth electron is nearly free. It cannot go into the filled valence band and is very 
weakly bound in an "orbit" of very large radius around the singly charged arsenic 
ion. The arsenic ion Coulomb attraction is largely shielded by polarization of the 
intervening germanium atoms; that is, the field of the ion is weakened by the dielectric 
nature of the germanium crystal. Because this fifth electron has such a small binding 
energy to the arsenic, it can be ionized, and go into the conduction band at a much 

Conduction 
band 

Energy gap 

Valence 
band 

Figure 13-14 The band scheme of a semicon-
ductor in which the energy gap between the ini-
tially full valence band and the initially empty 
conduction band is small. Thermal excitation 
raises some electrons over the gap into the con-
duction band, leaving holes in the valence band. 
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lower temperature than would be needed for electrons in the valence band. Hence,  

this excess electron will occupy some one of a set of discrete energy levels just below  

the conduction band at a low temperature, but it can very easily be thermally excited  

into that band. At ordinary temperatures all of these excess electrons go into the con-
duction band. The electrical conductivity can be controlled by the amount of arsenic  

used as an impurity. A significant effect is obtained with as little as one impurity atom  

per million semiconductor atoms. An impurity that contributes electrons is called a  

donor impurity and the resultant semiconductor is called an n- type (negative) semi-
conductor because it has an excess of free electrons.  

Example 13 -4. Make a rough estimate of the binding energy of the donor electron of ar-
senic in a germanium crystal, taking the dielectric constant of the crystal to have the value K =  
16, and the effective mass of the electron to have the value m* = 0.2 m.  

►  The donor electron moves in the field of the arsenic ion, As +, and it behaves like the electron  

in the ground state of a hydrogenlike atom. The chief difference is that this electron moves in  

a polarizable lattice rather than in vacuum. Because the potential energy of the ion-electron  

system is now —e 2/K47rE O r, the corresponding hydrogenlike energy levels are given by re-
placing 4nE0  by K47re0  in the hydrogen energy-level formula, (4-18), and also by replacing the  
electron mass m found there by the effective mass m* to take into account the fact that the  
electron is actually in a crystal lattice. Since the electron is near a lower band edge where  
d2 e/dk 2  is large, m* is small; various evidence indicates the value is m* ^ 0.2m. So we have  

ci 	 E 	1 
C  1 2  m

* e4  
L 
U 

where K = 16, m* = 0.2m, and n = 1. Since for K = 1 and m* = m the energy E has the  
value —13.6 eV, it is easy to show that  

E —0.01 eV  

Hence, according to our estimate, the energy required to ionize the arsenic donor electron  
in a germanium crystal to the bottom of the conduction band is about 0.01 eV. The value  
obtained directly from measurements of the photon energy required to ionize, or indirectly  
from measurements of the temperature dependence of the conductivity, is 0.0127 eV. See  
Table 13-2 for measured values in other cases.  

Note that the radius of the Bohr-like orbit of the donor electron is Km/m* - 80 times that  
of the ground state hydrogen atom, as can be seen by inspecting (4-16). So the electron moves  
in an orbit that contains a large number of germanium atoms. This justifies the use, in our  
previous estimate, of the dielectric constant, which is a macroscopic rather than a microscopic  
quantity that characterizes the germanium crystal when it is regarded as a continuum.  t 

If a small quantity of gallium is added to germanium, the situation will be different  

from that just discussed. Gallium has three electrons per atom in the valence band, so  

that it has a deficiency of one electron per atom in forming the covalent bonds. The  

Table 13-2 Donor and Acceptor Ionization 
Energies 

In Germanium 	In Silicon  

Impurity 	 ^ — donor (eV)  

Arsenic 	0.0127 	0.049  
Antimony 	0.0096 	0.039  

Impurity 	eacceptor — é, (eV)  

Gallium 	0.0108 	0.065  
Indium 	0.0112 	0.16  

K 2  47rE^ 2h 2 n2  
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Figure 13-15 Left: Schematic energy-level diagram of a germanium crystal containing 
donor impurity atoms. Right: Containing acceptor impurity atoms. 

result is a hole, which can drift through the crystal, behaving like a positive charge 
and mass as successive electrons fill one hole and create another. From an energy 
point of view, this impurity introduces vacant discrete levels slightly above the top 
of the valence band. Valence electrons are then easily excited into these impurity 
levels, which can accept them, leaving holes in the valence band. The energy separa-
tion between the acceptor levels and the top of the valence band is small for the same 
reasons that give a small separation between the donor levels and the bottom of the 
conduction band: a high dielectric constant and a small effective mass. An impurity 
that is deficient in electrons is called an acceptor impurity and the resultant semi-
conductor is called a p- type (positive) semiconductor. 

Whether the conductivity of a semiconductor is p-type or n-type can be determined 
by the Hall effect. In Figure 13-15 we show schematically the energy-level diagram 
corresponding to each type. The localized energy levels of impurity atoms are not 
broadened into bands because these atoms are many lattice spacings apart and in-
teract with each other very weakly. In Table 13-2 we list the energy of the levels in-
troduced into germanium and silicon crystals by small amounts of common 
impurities. For donor impurities the energy from donor levels to the energy 6', at the 
bottom of the conduction band is given, whereas for acceptor impurities the energy 
from the top of the valence band 4, to the acceptor levels is given. Note that these 
energies are comparable to kT = 0.025 eV at room temperature. Therefore, we can 
expect to have plenty of thermal ionization at room temperature. 

In an intrinsic semiconductor the number of vacant states in the valence band is 
equal to the number of occupied states in the conduction band, so that the Fermi 
energy is located somewhere in the gap between the bands. If the densities of states 
in the two bands are symmetrical then the Fermi energy will be in the middle of the 
gap. The Fermi energy, as the student will recall, is defined as the energy for which 
the average number of electrons that would occupy a quantum state there is 0.5, 
where we treat electron spin in such a way that the maximum occupancy is 1.0. 

Example 13 -5 Consider a forbidden band of width g9  that separates a valence band and 
a symmetrical empty conduction band in an intrinsic semiconductor. Show that the Fermi 
energy lies at the center of the forbidden band, i.e., that = 6 /2 if g = 0 is taken to be the 
upper edge of the valence band. 
•The proof can be followed by inspecting Figure 13-16. At the top of the figure we plot N(e) 
the number of quantum states per unit energy interval for the upper part of the valence band 
and the lower part of the conduction band. The figure tentatively places the Fermi energy eF 
in the center of the gap of width g9  between the two bands. The density of states 
N(8) is drawn so that its descending behavior moving towards the top of the valence band 
is symmetrical to its ascending behavior moving away from the bottom of the conduction band. 
This is in qualitative agreement with the general behavior of N(e) throughout an entire 
isolated band (see, for example, Figure 13-5). 
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n (e) 

6°r 

N(e) 

c 	
Figure 13-16 The number of electrons as a function of energy in the valence and conduc- 

as tion bands of an insulator or semiconductor with a forbidden band width ey , as a product 
0 of the density of states N (e) and the Fermi distribution n(s). 

In the middle of Figure 13-16, we show the Fermi distribution n(s), which is the probable 
number of electrons per state. For clarity, it is constructed for an operating temperature where 
kT (°g . It is also constructed for eF  in the center of the forbidden band. 

The solid curve in the bottom of Figure 13-16 shows the product n(e)N(e), which gives the 
number of electrons per unit energy in various states at the temperature just mentioned. The 
dashed curve shows the same thing for a temperature of absolute zero. At T = 0, the valence 
states are completely filled and the conduction states are completely empty, so the dashed 
curve in the valence region is just N(s), while it is the e axis in the conduction region. The 
area A between the dashed and solid curves is proportional to the number of valence states 
that electrons leave when the temperature is raised; that is, it is a measure of the number of 
holes created. The area B between the solid and dashed curves is proportional to the number 
of electrons that are promoted to states in the conduction band at the operating temperature. 

In an intrinsic semiconductor it is necessary that area A equal area B, since the density of 
holes in the valence band equals the density of electrons in the conduction band. It is apparent 
that this condition is satisfied by Figure 13-16, because we have constructed it with eF  in the 
center of the forbidden band. A moment's consideration will show the student that it would 
not be satisfied for a different choice of e F, due to the symmetry of n(s) about gF, and to the 
(approximate) symmetry of N(s) about the center of the gap between the two allowed bands. 

Example 13-6. Make an estimate of the relative number of electrons in the conduction 
band of an insulator or semiconductor at temperature T. 
► Figure 13-16 also shows an exaggerated picture of the energy distribution of electrons as a 
product of the density of states mg)' and the Fermi distribution n(s) appropriate in the 
valence, forbidden, and the conduction bands of an insulator. If, in the Fermi distribution 
n(s), we have e - eF » kT, then 

1 	1 
e(6. - e.HAT +1 —   e(g - gF)IkT 

so that in such an energy range the Fermi distribution varies with energy like the Boltzmann 
distribution. We know from Example 13-5 that e - gF = e9/2 at the bottom of the con- 
duction band in an insulator, if we measure e from the top of the valence band. So the 

n(e) _ 



condition t - » kT is met since é9  » kT for an insulator. Thus we can take 

( ) 	1  	- s /2kT n = e  s12kT = 2  

as the number of electrons per state in the conduction band of an insulator. 
The Fermi distribution falls in value by an order of magnitude in an energy range of about 

M = 2kT so that we get a good estimate. of AS', the number of conduction electrons, by 
evaluating those in the range 2kT above the bottom of the conduction band. Since AS .  =  
n(g)N(g) M we must now evaluate N(s), the density of states. Because N(6) starts at zero at 
the bottom of the conduction band, a good average value over the range M = 2kT is obtained 
by evaluating N(s) at e = kT. Hence  

As-  = n(6)N(e) M =g9/2kT(kT)2kT 

Let us use here the results .iV' = (2/3)gFN(gF) of Example 13-2 for a metal as an estimate of 
the total number of electrons, .iY. We also note from (13-4) that N(kT)/N(4) = (kT/ ) 1/2,  
so we have  

0s-  e-g9/2kT N(kT)2kT _ 3e_es/2kT (kT)(kT)1/z 

^ N 
(213)4N(4) \  eF  

or  
	 (kT)3/2 

   
e —G°9/2kT 

This is the relative number of conduction electrons for an insulator. 
This fraction is much smaller than the corresponding result kT/gr. of Example 13-2 for a 

metal, partly because the density of states N(s) is smaller near the bottom of the conduction 
band in an insulator than at the Fermi energy in a metal, but principally because of the occu-
pation factor e - e912kT .  Let us take g9  = 6 eV as the gap in a typical insulator so that at room 
temperature this factor is e g912kT = 

 e
-1 50 = 10 -65 . Not only is the fraction AX/.4( insig- 

nificant, but the absolute number of conduction electrons is also negligible for an insulator. If,  

however, g9  = 1 eV, as for a semiconductor, then although e gy/2kT =  e-25 = 10 -1 1  gives a  
very small fraction, the number of conduction electrons is no longer insignificant. •  

In an impurity semiconductor containing donors, the Fermi energy lies above the 
middle of the forbidden band because there are more electrons in the conduction 
band than there are holes in the valence band. In an impurity semiconductor con-
taining acceptors the Fermi energy is below the middle of the forbidden band because 
there are fewer electrons in the conduction band than there are holes in the valence 
band. It is instructive to consider the combined effect of temperature and impurities 
on the Fermi energy. Let us begin at a temperature of absolute zero in an n-type 
semiconductor. The donor levels are all occupied but there are no electrons in the 
conduction band. The Fermi energy then must lie between the donor levels and the 
bottom of the conduction band, because the number of electrons per state n(s) is 
one up to and including the donor levels and zero in the conduction band. Now, as 
the temperature is increased electrons are raised from donor levels to the conduction 
band. At that temperature at which half the donor states are empty, the Fermi energy 
corresponds to the donor-level energy. With a further increase in temperature, elec-
trons in the valence band are excited and the Fermi energy drops more. When the 
number of electrons from the valence band is a very large fraction of those in the 
conduction band, the semiconductor acts as though it were intrinsic and the Fermi 
energy drops to nearly the center of the gap. If we had started with a p-type semi-
conductor we would find in a similar manner that, as the temperature is raised, the 
Fermi energy moves from between the top of the valence band and the acceptor 
levels, at absolute zero, to the center of the gap at high temperatures. At low tem-
peratures, where kT « Ç9 , conduction is due mostly to the impurities because there 
is little excitation of valence electrons. At high temperatures the impurity levels have 
been used up, that is, they have either donated or accepted electrons, so that the 
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Figure 13-17 Left: The Fermi energy as a function of temperature for n-type semicon-
ductors of two different impurity concentrations. Right: For p-type semiconductors of twb  
different impurity concentrations.  

semiconductor acts as though it were intrinsic. In Figure 13-17 we plot the Fermi  

energy as a function of temperature for impurity semiconductors.  

13-10 SEMICONDUCTOR DEVICES  

We shall illustrate the use of impurity semiconductors in electronics by discussing  

briefly the operation of three semiconductor devices, the rectifier, the transistor, and  

the tunnel diode.  
A rectifier is formed by having acceptor impurities (p-type) in one region of a crystal  

and donor impurities (n-type) in another region. The boundary between these regions  

is called a p-n junction. Figure 13-18 shows the energy band structure of an unbiased  

p-n junction at room temperature. The boundaries of the bands must be warped in  

going from the p-region through the junction to the n-region because the Fermi en-
ergy is close to the top of the valence band in the p-region and close to the bottom  
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Recombination 

Thermal 
	  Recombination 
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Valence  
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T 
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concentration 

Low 	4/2  
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Figure 13-18 Electron energy-level diagram for an unbiased p-n junction.  



of the conduction band in the n-region, yet the Fermi energy must have the same 
value everywhere. The reason is that if the Fermi energy were not the same in both 
regions the energy of the system would not be minimized. It could be reduced by 
electrons in one region flowing to unoccupied states of lower energy in the other re-
gion, and so the system would not be in equilibrium. Actually, considerable electron 
flow did take place in establishing equilibrium when the p-region was initially put 
into contact with the n-region. This led to an accumulation of electrons on the p-side 
of the junction, and a deficiency of electrons, or accumulation of holes, on the n-side 
of the junction. Thus the junction region has similarities to a plane parallel condenser 
with a negative charge on the p-side and a positive charge on the n-side, as shown 
in the figure. If an electron is moved through the electric field produced within this 
dipole layer, its energy will increase in going from the n-side to the p-side. This is 
reflected in the way the energy levels at the top of the valence band, and at the bottom 
of the conduction band, are displaced upward in going through the junction region. 

Even after equilibrium is established there is still a flow of electrons back and forth 
through the junction. For one thing, from time to time thermal excitation causes an 
electron to jump up to the conduction band of the p-region (leaving yet another hole 
in its valence band). The electron can move freely to the junction region, and then be 
accelerated by the potential hill it sees there into the n-region, constituting part of 
what is called the thermal current. Also, an electron in the conduction band of the 
n-region with energy slightly below the bottom of the conduction band in the p-
region can gain a little extra energy in a fluctuation and be able to move into the 
p-region. There it may recombine with one of the many holes in the p-region. That 
electron is part of the so-called recombination current. There must be such a current 
because in equilibrium the thermal current must be balanced so that there is no net 
current across the junction. 

Now consider an external voltage source applied across the ends of the device, with 
negative voltage applied to the p-region and positive voltage applied to the n-region. 
This will increase the energy of all the electrons in the p-region, and decrease the 
energy of all of those in the n-region, thereby increasing the height of the potential 
hill between the two regions. Since the junction region was already depleted of charge 
carriers, its resistance is relatively high and most of the voltage drop due to the ap-
plied voltage appears across the junction. As the amount of thermal current depends 
on the temperature and the width of the gap between the valence and conduction 
bands, neither of which are changed by applying the voltage, the thermal current will 
not change. The recombination current will be decreased by a large factor, however, 
because the potential hill is higher so now only the very many fewer electrons farther 
out in the exponentially decreasing tail of the Fermi distribution in the n-region con-
duction band have a chance to move into the p-region conduction band. The net 
effect will be a small flow of electrons in the direction from the p- to the n-regions, 
due to the unbalanced thermal current. This flow of electron current is, of course, in 
the direction that the applied voltage would be expected to produce. It is the small 
reverse bias current indicated by the arrows at the bottom of Figure 13-18. 

The junction rectifier is given a forward bias by applying a positive voltage to the 
p-region and a negative voltage to the n-region. This decreases the height of the 
electron energy hill between the two regions. Again, there is no appreciable effect on 
the thermal current, but the recombination current is increased by a large factor. All 
of a sudden, the very many more electrons that are closer to eF  in the Fermi dis-
tribution of the n-region have enough energy to pass through the junction into the 
p-region conduction band, because the bottom of that conduction band has moved 
down in energy. These electrons do not instantaneously respond to the application of 
a forward bias, but instead they diffuse into the p-region in much the same way that 
the molecules of a gas would diffuse into a region of lower density that suddenly 
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became accessible to them. The net electron current in a forward biased rectifier flows 
in the direction of the recombination electron current, as indicated at the bottom of 
Figure 13-18. The junction is a rectifier because the magnitude of the forward bias 
current is much larger than the magnitude of the reverse bias current, for a given 
magnitude of bias voltage. The reason is that the reverse bias current is limited by the 
small value of the thermal current, whereas the forward bias current becomes very 
large as the height of the electron hill is made small by increasing the forward bias. 
Resistance to current flow in reverse bias is typically greater than resistance in for-
ward bias by four or five orders of magnitude. Note that our explanation has been 
phrased in terms of electron flow. It could as well have been in terms of hole flow; 
both processes occur, and they result in the same rectifying properties of the junction. 

A semiconductor rectifier has many advantages over a diode vacuum tube rectifier, 
including longer life and much smaller size. Like the diode, the p-n junction is a non-
Ohmic element, the current-voltage relation being nonlinear, as shown in Figure 
13-19. Unlike a vacuum tube, however, there is no need for a power-consuming fila-
ment in the semiconductor device so that its efficiency is greater. 

A transistor can be regarded as a combination of two semiconductor rectifying 
junctions, such as a p-n-p or n-p-n combination. In Figure 13-20 we display a cir-
cuit that exhibits transistor behavior. The n-p-n-regions are called emitter, base, and 
collector, respectively. The emitter-base connection is biased in the forward direction, 
so that the resistance to current flow is small in this part of the circuit. The base-
collector connection is biased in the reverse direction, so that ordinarily there is 
higher resistance to current flow in that part of the circuit. However, when a voltage 
is applied in the emitter circuit so that a current is established there, the electrons 
arriving in the base region (which is very thin and of lower conductivity than the 
emitter) are attracted by the potential difference between the base and the collector. 
Hence, there will be a current in the collector circuit. (Because the emitter has a higher 
conductivity than the base, most of the current across the emitter-base junction is 
carried by electrons moving from the emitter to the base, instead of holes moving from 
the base to the emitter.) 

The basic idea of transistor action is that a current in the emitter circuit controls 
a current in the collector circuit. More than 90% of the current through the emitter 
passes through the collector, so that the currents are of similar magnitudes. But the 
voltage across the base-collector connection can be very much greater than that 
across the emitter-base connection, because the former is reverse biased, so the power 
output in the collector circuit can be very much larger than the power input in the 

Circuit symbol: 

Silicon rectifier 
type 1N256 

—500 	—250 

—0.002 

Figure 13 -19 Left: A circuit in which the voltage across a p-n junction can be varied. The 
voltage is taken as positive when the p-side is at higher potential. Right: Current through the 
junction as a function of the applied voltage. Note that very different scales are used for the 
forward- and reverse-biased portions of the curve. 
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Figure 13-20 Left: A circuit in which an n-p-n transistor acts as a power amplifier. Electrons  

flow in the direction shown by the arrow, from emitter to collector. Right: Characteristic 
curves for a transistor acting as a power amplifier.  

emitter circuit. Hence, the transistor acts as a power amplifier. Characteristic current  

versus voltage curves are shown in Figure 13-20. Other circuit connections make  

transistors useful as current amplification or voltage amplification devices, as well.  

A tunnel diode is a semiconductor device that makes use of the phenomenon of  

potential barrier penetration discussed in Section 6-5. It is like a p-n junction made  

from semiconductors with very high impurity concentration. Figure 13-21a plots the  

electron energy across an unbiased junction. The bands are similar to those shown in  

Figure 13-18, except that (1) with a higher impurity concentration the junction is  

narrower since a smaller length of semiconductor contains enough charge carriers to  

produce the required dipole layer across the junction, and (2) the donor and acceptor  

levels, in the n-type and p-type material, are no longer sharp but become broad bands  

which overlap the valence and conduction bands, since the donors, and also the ac-
ceptors, are so closely spaced that they interact. The Fermi energy thus moves up  

into the conduction band on the n-side and down into the valence band on the p-side.  

Because the junction is narrow ( 10' 8  m), electrons can pass through the forbid-
den band at the junction by a process that is in every respect the same as barrier 
penetration. For instance, the eigenfunction describing an electron tunneling through 
the forbidden band has the same exponential form as the eigenfunction for an elec-
tron tunneling through a barrier. At equilibrium, as shown in Figure 13-21a, the rate 
of electron tunneling through the barrier is the same in both directions. 

If now a small external voltage is applied across the ends of the rod with forward 
bias, electron tunneling from the n-side to the p-side is increased because there are 
empty allowed energy states in the p-side valence band, whereas electron tunneling 
in the other direction is decreased. Hence, there is a net current flow through the 
junction as shown in Figure 13-21b. As the applied voltage continues to be increased, 
the net current begins to decrease because the number of empty states available for 
electron tunneling decreases. In Figure 13-21c the net current is reduced almost to 
zero because electrons in the n-type material find no allowed energy states into which 
to flow. With still higher applied voltage the electron current becomes that charac-
teristic of a normal p-n junction. That is, electrons flow through the junction, without 
tunneling, into allowed energy states in the conduction band of the p-type material. 
This happens because the difference in the energies of the bands decreases, making it 
possible for electrons to diffuse through the junction into the conduction band of the 
p-region. This process is indicated in Figure 13-21d. 

Figure 13-22 shows the current-voltage curve characteristic of a typical tunnel 
diode. The letters labeling points on the curve correspond to the four applied vol-
tages of the previous figure. In the region between points b and c, the slope of the 
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(b) 

(d) (c) 

End of 
rod 

1.2 

Germanium 
tunnel diode 
type 1N2940A 
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0.8 
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ti 
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Figure 13-21 Electron energy-level diagrams for the n-type, junction, and p-type regions of 
a tunnel diode. In (a) the diode is unbiased. In (b) a small voltage is applied between the ends 
of the device, with the p-type end positive. In (c) and (d) the voltage is increased 
progressively. The arrows indicate the flow of electrons across the junction between the two 
regions. 

V (volts) 

Figure 13-22 The current flowing through a tunnel diode as a function of the applied 
potential difference. The points labeled by letters correspond to the four applied voltages of 
Figure 13-19. Note that the resistance of the diode is negative for applied voltages between 
b and c. The dashed line indicates the characteristic current were no tunneling to take 
place—namely that for an ordinary germanium junction rectifier. 
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curve, dI/dV, is negative and the tunnel diode has a negative resistance, the current  
decreasing with increasing applied voltage. This feature makes it particularly useful  

in the switching circuits of computers.  

The greatest advantage of the tunnel diode is its very fast response time when  

operating in the region a to c. The current flow in other kinds of semiconductor  

diodes and transistors always depends on the diffusion process. Since the rate of diffu-
sion can change only as fast as the charge carrier distribution can be changed, these  

devices have relatively slow response (slower than vacuum tubes) and it is difficult  

to use them at high frequencies. But the rate of tunneling can change as fast as the  

energy bands can be changed by the applied voltage, and this is a much less serious  

limitation. Tunnel diodes have been used as oscillators at frequencies above 10 11  Hz,  
and in switching circuits that operate in times less than 10 -9  sec.  

QUESTIONS  

1. In the text the solid state is contrasted with the gaseous state in terms of atomic (or  

molecular) interactions. How would you characterize the liquid state in this regard?  

2. Explain the statement that the exclusion principle prevents solids from collapsing to zero  

volume.  
3. Is there an analogy between the splitting of an energy level as two atoms are brought  

together to form a molecule and the splitting of the resonant frequencies as two resonant  

electrical circuits are coupled? Why?  

4. It is often said that a crystal is one giant molecule. Explain. Can we regard a diatomic  

molecule as a small solid?  
5. Why does metallic binding usually occur with atoms having a small number of valence  

electrons?  
6. Why is it, considering the very similar electronic structures, that lithium is a metal where-

as hydrogen is a molecular solid?  
7. Explain why metallic binding leads to a close-packed arrangement of atoms; i.e., explain  

why the lowest energy in metallic binding corresponds to the greatest number density of  

atoms.  
8. Why are metallic solids mostly opaque, covalent solids sometimes opaque, and ionic  

solids hardly ever opaque to visible radiation?  
9. Of the four types of binding in solids discussed in the text, which one (or ones) is most  

likely to produce an insulator? A conductor? A semiconductor?  

10. Justify the statement that (13-1a) meets the criterion that a material obeys Ohm's law.  

11. What mechanisms account for the ordinary electrical resistivity of metals? Which are  

temperature dependent?  
12. How do electrons contribute to thermal conductivity? Are they better than lattice vibra-

tions as carriers of heat energy?  

13. Explain why the electrical conductivity of materials varies over a factor of 10 24  whereas  
the thermal conductivity of materials only varies over a factor of about 10 8 .  

14. Explain why we regard the sequential filling of holes by electrons as equivalent to a posi-
tive current. Could this process be regarded instead as an electron current?  

15. How is the result of Example 13-2, concerning the fraction of conduction electrons that  

is thermally excited, related to the specific heats of metals at high temperatures?  

16. Example 13-2 implies that only AiVI ✓V of the free electrons take part in the conduction  

of electricity, whereas certain other experiments, such as the Hall effect, indicate that all  

.iV electrons take part. Explain.  

17. Explain why a negative effective mass does not lead to a violation of Newton's law of  

motion.  
18. What techniques, other than electron-positron annihilation, might be useful in measuring  

the momenta of electrons in solids?  
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Figure 13-23 Charge densities for valence elec-
1 	1 	1 	1 	trons in four solids considered in Problem 1. 
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19. How is the optical transparency of a semiconductor related to the energy gap of the 
forbidden band? 

20. What elements other than arsenic and antimony can be used as an impurity with ger-
manium to form an n-type semiconductor? What elements other than gallium and indium 
can be used to form a p-type semiconductor? 

21. Could the conductivity of a semiconductor be affected by electron bombardment? By 
bombardment by other particles? 

22. What effect does an applied electric field have on an insulator? 

23. Experimentally the addition of impurities to metals increases their resistivity, but the ad-
dition of impurities to semiconductors decreases their resistivity. Explain. Many insulators, 
however, are not very pure. Why do impurities not affect the resistivity of insulators? 

24. Name the properties of solids that are little affected by the presence of small concentra-
tions of chemical impurities. Name the properties of solids that are greatly affected by the 
presence of small concentrations of chemical impurities. 

25. Give an argument, similar to that given in the text for an n-type semiconductor, ex-
plaining the variation of gF  with Tin a p-type semiconductor. 

26. Explain why the curves of Fermi energy as a function of temperature differ for different 
impurity concentrations, as shown in Figure 13-17. 

27. Explain why the junction transition region is narrower in a semiconductor diode when 
the doping is heavy than it is when the doping is light. 

Q 	28. Rephrase the discussion of the operation of a p-n rectifying junction in terms of hole flow. 

U 
PROBLEMS 

1. In Figure 13-23 we illustrate schematically four charge density distributions for valence 
electrons as functions of the location of atoms, ions, or molecules (shown as dots at the 
bottom). For each distribution (a), (b), (c), (d), state to which type of binding in solids it 
most closely corresponds. 

2. Each element of the row of the periodic table from lithium through neon has a solid form 
(some at very low temperatures). Solids can also be formed by certain compounds of two 
elements of this row. For all of these solids, describe the binding and state whether the 
solid is a metal, a semiconductor, or an insulator. 

3. Describe the binding of solids formed by single elements of the column of the periodic 
table from carbon through lead, and state whether the solid is a metal, a semiconductor, 
or an insulator. 

4. Determine the type of binding in each of the solids described here. (a) Reflects light in the 



visible; electrical resistivity increases with temperature; melting point below 1000°C. 
(b) Reflects light in the visible; electrical resistivity decreases with increasing temperature; 
melting point above 1000°C. (c) Transmits light in the visible; conducts electricity only at 
high temperatures. (d) Transmits light in the visible; does not conduct electricity at any 
temperature. (e) Transmits light in the visible; very low melting point. 

5. The field E produced at a point r by an electric dipole p is given by 

	

1 ° ( p 	r•p / 
E 	

47rE r3 - 3  r5 r 

where the dipole is located at the origin of coordinates. (a) A molecule with an electric 
dipole moment p will induce an electric dipole moment p' in a nearby molecule, where 
p' = aE, a being the polarizability of the nearby molecule. Show that the mutual 
potential energy of the interacting dipoles is 

	

a 	 2  
V=- p'• E= 	(1+3cos 2 0)p 

(47CE °) 2 	 r6  

where B is the angle between r and p. (b) Show the force is attractive and varies as r-7 . 

6. Find the order of magnitude of the electric field needed in ionic solids to free electrons 
from the filled shells of ions. (Hint: Consider the binding energy of an electron and the 
approximate dimensions of an ion.) 

7. Find the region of the electromagnetic spectrum at which crystals of Si, Ge, CdS, KC1, 
and Cu become opaque. The band gap energies fq  are Si = 1.14 eV; Ge = 0.67 eV; 
CdS = 2.42 eV; KC1 = 7.6 eV; Cu = 0 eV. 

8. (a) Using classical physics show that the resistivity of a metal near room temperature is 
proportional to the 3/2 power of the absolute temperature, in disagreement with the 
linear temperature dependence experimentally observed. (Hint: Show that v cc T1I2  and 

cc T -1 .) (b) How does the application of the ideas of quantum mechanics and quantum 
statistics yield the proper temperature dependence of the resistivity? 

9. Compare the values of (a) the drift velocity, (b) the thermal velocity, and (c) the velocity 
corresponding to the Fermi energy, or Fermi velocity, for electrons in copper at room 
temperature. (Hint: Use Table 11-2. A current of 5 amp can easily be carried in a copper 
wire 0.1 cm in diameter.) 

10. Show that, according to the free-electron model, the resistance R of a length L of wire 
is given by 

R = mL/nAe 2 T 

where A is the cross-sectional area of the wire and T is the mean time between collisions. 
11. An aluminum wire has a resistance of 0.01 ohm, a diameter of 0.83 mm; the mean colli-

sion time is 2.0 x 10- 12  sec. (a) If the effective electron mass is 0.97m, find the length of 
the wire. (b) Find the mean free path for an electron having the Fermi energy. Use data 
from Table 13-1. 

12. Calculate the number of electrons per atom of aluminum that conduct electricity from the 
value, -0.3 x 10 -i°  m3/coul, of the Hall coefficient. The density of aluminum is 
2.7 x 103  kg/m 3. What does the result suggest about the band structure of aluminum? 

13. (a) Show that the Hall coefficient for a semiconductor in which there is conduction by 
both holes and electrons is given by (pµp - nµ„)/e(p ji + nµ„)2 . (b) If in a certain 
semiconductor there is no Hall effect, what fraction of the current is carried by holes? 

14. Copper is a monovalent metal with a density of 8 g/cm 3  and an atomic weight of 64. (a) 
Calculate the Fermi energy in electron volts at 0°K. (b) Estimate the width of the 
conduction band. 

15. (a) Calculate the Fermi energy of an alloy of 10% zinc (which is divalent) in copper as-
suming that the alloy has the same atomic spacing and structure as Cu. (b) How does the 
width of the conduction band of the alloy compare to that of copper? The assumption 
used in (a) is not strictly accurate. 

16. Make an estimate of the width of a conduction band in a metal whose internuclear 
spacing has the typical value 3.5 x 10 -1°  m. 
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17. The Fermi temperature is defined by TF = gF/k. (a) Using Table 11-2, calculate the 
Fermi temperature for sodium. (b) What does this tell us about the applicability of 
classical considerations to metals near room temperature? (c) What does this tell us about 
the density of conduction electrons in a metal at room temperature? 

18. The Fermi energy of lithium is 4.72 eV. (a) Calculate the Fermi velocity. (b) Calculate 
the de Broglie wavelength of an electron moving at the Fermi velocity and compare it to 
the interatomic spacing. 

19. The Fermi energy for lithium is 4.72 eV at T = 0°K. Find the density of states at 3.0 eV. 
20. Calculate an approximate ratio of the electronic specific heat to the lattice specific heat of 

lithium at room temperature. (Hint: Use the results of Example 13-2, and justify this use.) 

21. (a) Show that the effect of a lattice periodicity a on periodic potentials having Bloch 
function solutions is to modulate the free-electron solution so that >ji(x + a) = 1/i(x)eika. 

(b) Show that e ika  = —1 at the Brillouin zone boundaries. Comment on the meaning of 
this result. 

22. For a three-dimensional free electron gas confined to a cube, the allowed values of the 
momentum are distributed uniformly in momentum space. Assume that for each v alue of 
the momentum with magnitude less than the Fermi momentum p F  (the momentum cor-
responding to the Fermi energy) there are two electrons which have that momentum and 
that there are no electrons with momentum greater than pF. Show that the number of 
electrons that have a given x component px  of momentum is proportional to 1 — (px/pF)2 . 

This result explains the parabolic shape of the angular correlation curves for positron 
annihilation in metals. 

Û 23. (a) For sodium use the concentration of conduction electrons to estimate the Fermi 
energy, the Fermi momentum, and the maximum correlation angle  OF for photons from 
positron annihilation events involving conduction electrons. Sodium has a cubic unit cell 
with edge a = 4.22 A and there are two atoms per cube. (b) Repeat the calculations for 
potassium. Potassium has the same crystalline structure as sodium but the cube edge is 
5.22 A. (c) In positron annihilation experiments, which of these two metals produces the 
greater fraction of photon pairs with correlation angle greater than 9F? 

24. At what temperature will the number of conduction electrons increase by a factor of 20 
over the number at room temperature for germanium? The gap energy is 0.67 eV. 

25. (a) Show that the number of electrons per unit volume in the conduction band of an 
intrinsic semiconductor is given by ,ir° e -(‘` -") IkT  where X°  = 2(22rmkT) 3 / 2/h 3 , and 
where 6, is the conduction band-edge energy. (b) Show that the number of holes per unit 
volume in the valence band of an intrinsic semiconductor is given .N„e -VF-gOlkT,  

where ✓V„ = 2(27rmkT) 3 /2/h 3 , and where ell  is the valence band-edge energy. 
26. Use the expression for the number of electrons in the conduction band, and the number of 

holes in the valence band, given in Problem 25, and charge neutrality to find the position 
of the Fermi energy in an intrinsic semiconductor. 

27. (a) Show that the product of the number of holes in the valence band and the number of 
electrons in the conduction band depends only on temperature and the gap energy. 
(b) Show that the conductivity a of an intrinsic semiconductor can be used to measure the 
gap energy by calculating ln a. 

28. Write exact expressions for .iY and Xâ, the concentration of ionized and neutral 
donors respectively, in a semiconductor doped to a concentration of .Nd. 

29. (a) The position of the Fermi energy in a doped semiconductor can be found from the 
condition of charge neutrality: X, + .iV = Afp + ✓V â , where A 7  is the number of 
electrons in the conduction band, 	is the number of ionized acceptors, Xi, is the 
number of holes in the valence band and 4â is the number of ionized donors. 
Assuming .N = 0 and ✓V„ » .Np  show that charge neutrality leads to an equation 
quadratic in e gF/kT which has the solution 

eeF/kT = 
— 1+ 1 + 4 -*d  eV`—ed)IkT 

.11(c  

2e - gdlkT 

 



where ec  is the conduction band-edge energy, and ed  is the donor-level energy. (b) This  
equation is soluble in two limits. One is  

4 ^d 
 e(g'- ea)IkT « 1 

 

This means ./rd  small or T large. Use a binomial expansion of the square root to show  
that ✓V„ = Afd  and gF = ^^  + kT ln Gird/Arc). This is the exhaustion region. All the donors  
are ionized but no electrons are excited from the valence band. (c) In the other limit  

4  d̂  e_ 1 » 1  
✓v^ 

Also .Nd  is large and T is small. Show that 

,/Îrn  = ^JVic 
e-(g,-ga)I2kT  

and  

` 	
+ed

+ kT  ln ✓rd  
2 	2 	.Arc  

This is the extrinsic region. Here the donors are being ionized. 

30. Draw an energy-level diagram like that of Figure 13-18 for an n-p-n junction transistor 
and describe the power amplifier action of the transistor in terms of the figure. 

31. The current which flows in a p-n junction is proportional to the number of electrons in the 
conduction band. (a) For an unbiased p-n junction, show that the current from the p-
region to the n-region is proportional to e -  (eg - 5F)/kT  and this current is equal to the  
current from the n-region to the p-region so that no net current flows. (b) When a bias  

potential V is applied show that the net charge flow per unit area of junction is pro-
portional to  

e — (eg — SF•)IkT( eeV/kT _  1)  

where eV is positive for forward bias and negative for reverse bias. 
32. A p-n junction is a double layer of opposite charges separated by a small distance and has 

the properties of a capacitance. The resistivity of a semiconductor can be controlled by 
doping. Thus the elements in the transistor circuit of Figure 13-24a can be manufactured 
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Figure 13-24 An integrated circuit considered in Problem 32. 
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on a p-n-p semiconductor with appropriate layers etched away as shown in Figure 13-24b. 
This is an integrated circuit. Label the appropriate parts of Figure 13-24b with the 
corresponding numbers and letters of Figure 13-24a. 

33. A tunnel diode junction is approximated by a rectangular barrier 100 A thick and 3.3 eV 
high. If 1.00 x 10 25  electrons strike the barrier each second with kinetic energy 3.1 eV, 
and the  effective  electron mass is 0.30m, what current passes the junction? 
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14-1 SUPERCONDUCTIVITY 

Shortly after the discovery of the electron it was recognized that the high electrical 
and thermal conductivities of metals could be attributed to the motion of electrons 
in the metal. Classical theories of metallic conduction treated these electrons as a gas 
of independent particles within the metals colliding with lattice imperfections. Using 
methods of the classical kinetic theory, many experimental facts of electrical and 
thermal conductivity could be explained. With the advent of quantum mechanics, it 
became possible to take into account the wave nature of electrons and the exclusion 
principle. A number of phenomena not previously explainable then became clear. 
For example, the need to use the Fermi distribution for free electrons led to an under-
standing of the electronic contribution to the specific heats of solids. The further 
application of wave ideas led to quantization of energy levels and the band theory 
of solids, which accounted for the wide range in conductivities observed in normal 
solids. The free-electron model approximation averaged out variations in the inter-
actions of electrons with one another and with the lattice ions, and it could account 
for resistance to electron flow under normal conditions. A major failure of this 
independent particle model, however, is its inability to explain superconductivity. To 
understand that phenomenon requires taking into account the collective behavior of 
electrons and ions, or the so-called many-body effects, in solids. Let us now examine 
superconductivity. 

Many factors contribute to the electrical resistivity of a solid, as we have seen. 
Electrons are scattered by the deviations from a perfect lattice due to structural 
defects or impurities in a crystal. In addition, there are vibrations of the lattice ions 
in normal modes that constitute something like sound waves traveling through the 
solid; we refer to such waves as phonons. The higher the temperature is, the more 
phonons there are present in the lattice. When phonons are present, there is an elec-
tron-phonon interaction which scatters conduction electrons and causes further re-
sistance. Hence, the electrical resistance of a solid should decrease as the temperature 
decreases, but we expect a residual resistance even near absolute zero due to the 
crystal imperfections. It therefore seems remarkable that the electrical resistance of 
some solids disappears completely at sufficiently low temperatures. 

In 1911, Kammerlingh-Onnes found that the electrical resistance of solid mercury 
drops to an immeasurably small value when cooled below a certain temperature, 
called the critical temperature Tc . Mercury goes from a normal state to a  supercon-
ducting state as the temperature drops below T, = 4.2°K. Many other elements, and 
many compounds and alloys, have since been found to be superconductors with 
critical temperatures as high as 23°K. But not all materials superconduct. Figure 14-1 
shows the resistivity at very low temperatures for a superconductor, tin, and a non-
superconductor, silver. In a superconductor, currents can be set up which persist for 
years with no detectable decay. 

In 1933, Meissner and Oschenfeld found that as a superconducting substance is 
cooled below its critical temperature in the presence of an applied magnetic field, it 
expels all magnetic flux from its interior. If the field is applied after the substance 
has been cooled below its critical temperature, the magnetic flux is excluded from 
the superconductor. Hence, a superconductor acts like a perfect diamagnet. Both 
Meissner effects are illustrated in Figure 14-2. According to Lenz's law, when the 
magnetic flux through a circuit is changing, an induced current is established in such 
a direction as to oppose the change in flux. In a diamagnetic atom, the orbital elec-
trons adjust their rotational motion to produce a net magnetic moment opposite to 
the externally applied magnetic field. We can say analogously that an external mag-
netic field does not penetrate the interior of a superconducting substance because in 
a superconductor the conduction electrons, whose motion is as unimpeded as in an 
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Figure 14-1 A plot of resistivity p versus temperature T, showing the drop to zero at the  
critical temperature T, for a super-conductor, and the finite resistivity of a normal metal at  

absolute zero.  

atom, adjust their motion to produce a counteracting magnetic field. The entire super-
conductor behaves like a single diamagnetic atom in this respect. Hence, the two prin-
cipal characteristics of superconductors, namely the exclusion of magnetic flux and  

the absence of resistance to current flow, are related to one another. It is necessary  

to have a persisting (resistanceless) current to maintain the flux exclusion when the  

external field is on.  

Figure 14-3 shows a photograph of superconducting levitation. If a small permanent magnet  

is placed over a perfectly conducting surface, it will float there. If the magnet is placed on a  

surface which thereafter is made superconducting (by lowering its temperature), it will rise and  

float. A repulsive force large enough to overcome the weight of the magnet exists between the  

magnet and the diamagnetic superconductor, because the superconducting body excludes the  

magnetic lines of flux associated with the magnet. Serious engineering studies have indicated  

the feasibility of using this phenomenon to provide very smooth support for high-speed pas-
senger trains.  

It is found that if the external field is increased beyond a certain value, called the 
critical field H„ the metal ceases to be superconducting and becomes normal. The 
value of this critical field for a given material depends on the temperature, as shown 
for the case of lead in Figure 14-4. As the external magnetic field increases, therefore, 
the critical temperature is lowered until when H > H,(0°K) there is no supercon-
ductivity for that material at any temperature. We can understand this as follows. 
Suppose that at some temperature below T, we turn on a magnetic field; the super-
conductor will act to exclude this field (the Meissner effect). The energy decrease 
of the magnetic field appears as increased energy of the electrons that make up the 
superconducting current. As the strength of the external magnetic field is increased, 
the energy acquired by the superconductor also increases. At the critical value of the 
field, H„ the energy of the superconducting state becomes higher than the energy of 
the normal state, so that the material becomes normal. 

	-NŒ=t- =tiff  - 

	

H#0,T>T°  H#0,T<Tc 	H=O,T<TT  H#O,T<TT  

Figure 14-2 Left: A schematic illustration of expulsion. Right: The exclusion of magnetic  
flux in a superconductor. Both are called Meissner effects.  
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Figure 14-3 A permanent magnet floating over a superconducting surface.  

Evidence that the lattice vibrations play an important role in the phenomenon of  

r 	superconductivity came in 1950 when experiment revealed that the critical temper- 
c 	ature of crystals made from different isotopes of the same element depends on the  

isotopic mass. The dependence, given by  

M' 12 TC  = const 	 (14-1)  
in which M is the average isotopic mass of the solid, is called the isotope effect. This  
relation shows that the critical temperature would go to zero (hence, no supercon-
ductivity) in the absence of lattice vibrations (when M co). The importance of  

lattice vibrations suggests that an electron-phonon interaction is responsible for  

superconductivity. We can no longer ignore those very interactions which were ne-
glected in the independent particle model of a solid—the electron-phonon and also  

the electron-electron interactions if we hope to get a theoretical explanation of  

4 	6 	T^ 
T (° K)  

Figure 14-4 The variation with temperature of the critical field He  for lead. Note that He  is  
zero when the temperature T equals the critical temperature Tc.  



superconductivity. In 1957, Bardeen, Cooper, and Schrieffer proposed a detailed 
microscopic theory, now known as the BCS theory, in which these interactions are 
included. The predictions of the BCS theory are in excellent agreement with experi-
mental results. Let us now consider a qualitative picture of it. 

An electron in a solid passing by adjacent ions in the lattice can act on these ions 
with a set of Coulomb attractions which gives each of them momentum that causes 
them to move slightly together. Because of the elastic properties of the lattice, this 
region of increased positive charge density will then propagate as a wave, which 
carries momentum, through the lattice. The electron has emitted a phonon! The mo-
mentum the phonon carries is supplied by the electron, whose momentum changed 
when the phonon was emitted. If a second electron subsequently passes by the 
moving region of increased positive charge density, it will experience an attractive 
Coulomb interaction, and thereby it can absorb all the momentum the moving region 
carries. That is, the second electron can absorb the phonon, thereby absorbing the 
momentum supplied by the first electron. The net effect is that the two electrons have 
exchanged some momentum with each other, and thus they have interacted with each 
other. Although the interaction was a two-step one, involving a phonon as an inter-
mediary, it certainly was an interaction between the two electrons. Furthermore, it 
was an attractive interaction, since the electron involved in each of the steps partici-
pated in an attractive Coulomb interaction. The BCS theory shows that in certain 
conditions the attraction between two electrons due to a succession of phonon ex-
changes can exceed slightly the repulsion which they exert directly on each other 
because of the (shielded) Coulomb interaction of their like charges. Then the elec-
trons will be weakly bound together, and form a so-called Cooper pair. We shall see 
that Cooper pairs are responsible for superconductivity. 

The conditions for their formation, in numbers large enough to allow supercon-
ductivity, are (1) that the temperature be low enough to make the number of random 
thermal phonons present in the lattice small (they would inhibit the ordered processes 
involved in superconductivity); (2) that the interaction between an electron and a 
phonon be strong (so that a substance which has a relatively low resistance at room 
temperature, because its conduction electrons interact weakly with thermal lattice 
vibrations, will not be a possible superconductor at low temperature); (3) that the 
number of electrons in states lying just below the Fermi energy be large (these are 
the electrons which are energetically able to form Cooper pairs); (4) that the two 
electrons have "antiparallel" spins (then their space eigenfunction will be symmetric 
in a label exchange, which means that they will be close enough together to form a 
pair); and (5) that, in the absence of an externally applied electric field, the two 
electrons of a pair have linear momenta of equal magnitude but opposite direction 
(as will be explained next, this facilitates the participation of the maximum number 
of electrons in pair formation). 

Because Cooper pairs are weakly bound, they are constantly breaking up and then 
reforming, usually with different partners. Also, because they are weakly bound they 
are large. (In Example 14-2 we shall estimate the typical separation of two electrons 
in a pair to be of the order of 10 ¢  A.) Thus, within the region occupied by the electrons 
of a pair, there are very many other electrons that would also like to participate in the 
pairing process. The system will be most tightly bound, and therefore most stable, if 
they can do so. The system achieves this by having the total linear momentum of each 
pair equal to zero, in the absence of an applied electric field. The discussion of the 
formation of a pair shows that the total momentum of any pair is a constant, since 
the net result of exchanging a phonon between the two electrons is to preserve the 
total momentum of the pair. If all the pairs have the same constant total momentum, 
then there will be no inhibition to the unavoidable process of old pairs breaking up 
and new pairs reforming, because any pair can be converted to any other pair by 
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phonon exchange, and so the maximum number of pairs will be present. This con-
clusion is plausible from the qualitative argument we have given. It is put on a com-
pletely firm foundation by the quantitative calculations of the BCS theory, which 
show that the wave functions describing pair formation are in phase, and thus add 
constructively and lead to a large total probability for pair formation, when the pairs 
all have the same total momentum. In the absence of an applied electric field, sym-
metry considerations obviously demand that the common value of the pair total mo-
mentum be zero. So we see why the two electrons of each pair have linear momenta 
of equal magnitude, but opposite direction, in such circumstances. We also see that 
the ground state of the system is very highly ordered, in that all the pairs in the lattice 
are doing exactly the same thing as far as the motion of their centers of mass is 
concerned. This order extends through the lattice, and not just through the region 
occupied by a pair, because the pairs are relatively large and there are many of them 
so there is multiple overlapping. The order propagates through adjacent overlapping 
regions. 

When an external electric field is applied, the pairs, which behave rather like parti-
cles with two electron charges, move through the lattice under the influence of the field. 
But they do it in such a way as to continue to maintain the order, because that will 
maintain their number at a maximum. Thus they carry current by moving through 
the lattice with all of their centers of mass having exactly the same momentum. The 
motion of each pair is locked into the motion of all the rest, and so none of them 
can be involved in the random scatterings from lattice imperfections that cause low-
temperature electrical resistance. This is why the system is a superconductor. 

It is tempting to think of a Cooper pair as acting like a boson, since it contains two fermions. 
If this could be done, superconductivity would be simply another example of Bose condensa-
tion, as in the superfluidity of liquid helium. That is, it would be the completely correlated 
motion of a set of bosons all in the same quantum state due to the effect of the (1 + n) boson 
enhancement factor discussed in Chapter 11. Theories which preceded the BCS theory tried 
unsuccessfully to use this approach. The reason why it is not valid is that the individual 
electrons in each pair are weakly bound to the pair, which also means the pair is large. As a 
consequence, the eigenfunction for the system of overlapping pairs must take into account the 
exchange of labels of one electron from one pair and one electron from another pair, as well as 
the exchange of labels of one complete pair and another complete pair. In the latter exchange 
the system eigenfunction will not change sign because two fermion labels are being exchanged, 
but in the former the eigenfunction does change sign since only one fermion label is being 
exchanged. So Cooper pairs are neither purely bosonlike (no sign change), nor purely fermion-
like (sign change) with respect to all eigenfunction label exchanges that must be considered. In 
a system of tightly bound helium atoms, the only type of label exchange that must be 
considered is an exchange of the label of one atom with the label of another. Such an exchange 
actually involves an even number of fermion label exchanges (each atom contains two elec-
trons, two protons, and two neutrons), so the eigenfunction does not change sign and the atoms 
of the system act like bosons. 

According to the BCS theory, the binding energy of a Cooper pair at absolute zero 
is about 3kTT . As the temperature rises, the binding energy is reduced, and goes to 
zero when the temperature equals the critical temperature T c . Above T„ a Cooper 
pair is not bound. 

With a binding electron-electron interaction at absolute zero, it is energetically 
advantageous for two electrons, each in single-particle states just below the Fermi 
energy, 4, to promote themselves to vacant states just above where they can 
interact in such a way as to form a Cooper pair. The energy required to put the elec-
trons into the higher single-particle states is more than compensated for by the energy 



made available by the binding of the Cooper pair they form. Thus the zero tempera-
ture Fermi distribution of a superconductor is unstable, in the sense that electrons in 
states within a range of the order of kT, below the Fermi energy will leave those states 
and enter states within a similar range above the Fermi energy, where they will form 
pairs. The result is that the T = 0 distribution of occupied states of a superconductor 
looks something like a T = TT  Fermi distribution for a normal conductor. The reason 
why the electrons must be above `f to be able to freely form pairs is that a large 
number of unoccupied states are found only above 4, and unoccupied states must 
be available for the two electrons of a pair to enter after they change their momenta 
by one emitting and the other absorbing a phonon. 

Although there is an almost continuous distribution of single particle states avail-
able to each electron in a superconductor at T = 0, the distribution of states available 
to the system is anything but continuous. As far as the system is concerned, there is 
its superconducting ground state, then an energy gap of width eig  in which there are 
no states at all, and above the gap a set of states which are nonsuperconducting. The 
gap width eg  equals the binding energy of a Cooper pair. The gap arises because if 
one electron of the system in a single particle state in the region of width — kT, sur-
rounding 6'F  absorbs energy from some source, so that it makes a transition from 
that state to another single particle state only infinitesimally different in energy, then 
the pair of which it had been a member will be broken and the binding energy of the 
pair will be lost to the system. Thus the source must be able to supply an energy 
equal to a pair binding energy before an electron near gF can make a transition to 
the energetically nearest state. (Even more energy must be supplied to excite an elec-
tron well below eF, despite the fact that it is not in a pair, since all the nearby states 
are already occupied.) Therefore the minimum energy that can be accepted by the 
ground state system, which is the width of its energy gap, is the binding energy of a 
Cooper pair. The states which begin at the top of the gap are not superconducting 
since in them the system has enough energy for pairs to be broken. 

The width of the gap at T = 0 is (' g  ^ 3kT,. But it narrows as the temperature 
rises, and it becomes of zero width at T = TT  where the pairs are no longer bound. 
At temperatures below TT  the superconducting ground state corresponds to a large 
scale quantum state in which the motions of all the electrons and ions are highly 
correlated. It takes the gap energy Çg  to excite the system to the next higher state, 
which is not superconducting, and this is more energy than the thermal energy avail-
able to the system. For instance, at T = 0.1T, the value of the gap energy is still 
about eg  = 3kT„ while the thermal energy is about kT = 0.1kTc . 

For most superconductors near T = 0 the energy needed to bridge the gap corre-
sponds to photons in the very far infared, or microwave, portion of the electromag-
netic spectrum. The existence and width of the gap is established experimentally by 
the abrupt change in absorption of far infared or microwave radiation when the 
photon energy by drops below the gap energy. 

Example 14-1. The critical temperature of mercury is 4.2°K. 
(a)What is the energy gap in electron volts at T = 0? 

•As stated earlier, the Cooper pair binding energy, or gap energy, is 
eg  3kT °  

So 
eig  3 x 1.4 x 10 -23  joule/°K x 4.2°K = 1.8 x 10 -22  joule 

1.1x10 -3  eV 	 • 
(b)Calculate the wavelength of a photon whose energy is just sufficient to break up Cooper 

pairs in mercury at T = 0. In what region of the electromagnetic spectrum are such photons 
found? 
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• The energy is  
he  = hv =  

So the wavelength is  
he 6.6 x 10 -34  joule-sec x 3 x 10 8  m/sec 	3  

^,_ 	 =1.1x 10 -  m  
(©g 	1.8 x 10 -22  joule  

These photons are in the very short wavelength part of the microwave region. 	•  
(c) Does the metal look like a superconductor to electromagnetic waves having wavelengths  

shorter than that found in part (b)? Explain.  
• No, since the energy content of shorter wavelength photons is sufficiently high to break up  

the Cooper pairs, or excite the conduction electrons through the energy gap into the non-
superconducting states above the gap. 	 •  

Example 14 -2. (a) Estimate the size of a Cooper pair of binding energy gg .  
• The wave function of a Cooper pair is made up of waves, describing its two component  
electrons, with wave numbers drawn from a range Ak corresponding to an energy range  
Al — Sg . The energy range is centered on SF, and the wave number range is centered on the  
corresponding kF . Since the energy of one of the electrons is  

2 	h2k2  

2m* 2m*  
we have  

M = 
 h22k Ak  

2m*  

and  
M _  h2 k Ak2m* 2Ak Ak  

^ 	m *h2 k 2 	k 
	ti 

 k  

Setting g = SF, k = kF , and Ai  = gg , we have  
Ak gg  

kF  1F 
As 1g/1F  — 10 -4  in a typical case, we obtain  

Ak 10 -4kF  
Since we saw in Chapter 13 that at the top of a band k = ic/a, if the zeros of k and I are  
taken at the bottom of the band as we do here, we can set kF  1/a. We also know that the  
lattice spacing is a — 1 A. Thus we find that  

Ak ^  l
A  

is the range of wave numbers contained in the wave function for a Cooper pair. A very general  
property of waves ((3-14), which leads to the uncertainty principle) then immediately tells us  
that the extent in space of the wave function is  

	

Ax ^ 	 `^ Ak 104 A  

This is the size of a typical Cooper pair.  
(b) Estimate the density of Cooper pairs in a superconductor.  

► Example 13-1 shows that the density of conduction electrons in a metal is n 102 2/cm 3 .  
The fraction that will form Cooper pairs in a superconductor is of the order of Ak/k F  —10 -4.  
So  

nCooper pairs `v 10 18/ cm 3 
 

Note that the volume of one pair is —(10 4  A) 3  = (10 -4  cm) 3  = 10 -12  cm 3 . So each such  

	

volume contains —10 6  overlapping pairs! 	 •  

The width of the forbidden gap, and the density of quantum states, in a super-
conductor can be determined from the current-voltage characteristic of a tunnel 

P 
^ _  

10 4  



junction. In such junctions a thin oxide layer ( 10- 9  m thick) separates a normal 
and a superconducting metal. Electrons tunnel through the barrier, which the non-
conducting oxide layer represents, with the aid of an applied voltage. In 1962, 
Josephson predicted that if the metals on both sides of the junction are supercon-
ducting, a current can flow when no voltage is supplied. If a small voltage (' a few 
millivolts) is applied, an alternating current of frequency in the microwave range 
results. These effects can be used to detect extremely small voltage differences and 
to measure with enormous precision the ratio e/h used in determination of the fun-
damental physical constants. Other superconducting effects predicted by Josephson 
permit a number of quantum properties to be seen in a very simple way, particularly 
the quantization of magnetic flux, discussed below. 

There are many important applications of superconductivity. An obvious applica-
tion is to superconducting electromagnets, whose fields arise from resistanceless cur-
rents flowing through the magnet windings, for use in electric motors and generators. 
A difficulty is that magnetic fields tend to be induced in the wires of the windings, 
which tends to destroy their superconductivity. But progress is being made in finding 
what are called Type II superconductors, which have Cooper pairs whose dimensions 
are small enough to allow a magnetic field to thread its way through the length 
of a wire in a set of localized channels. These channels lose their superconductivity, 
but the channels in between them do not. Several niobium-titanium alloys have been 
found which are Type II superconductors, and they also have the convenience of 
relatively high critical temperatures (T, ^ 20°K). 

The absence of power dissipation in superconducting elements makes possible 
many electronic applications in which space requirements and transmission time re-
quirements are limited, as in computers. Because superconductors are diamagnetic, 
they can be used to shield out unwanted magnetic flux. This can be put to use in 
shaping the magnetic lens system of an electron microscope, for example, to eliminate 
stray field lines and to greatly improve the practical resolving power of the instru-
ment thereby. 

Apart from such technological applications of superconductivity, of which a great 
many more can be cited, there is an increasing application of the theoretical ideas 
to other fields of physics. For example, these ideas have been applied to analyzing 
nuclear structure, with much success in accounting for otherwise unexplained experi-
mental facts. In the next chapter we shall see similarities between the collective model 
of the nucleus and the BCS collective model of superconductivity. Some of the 
methods of superconductivity theory are being applied to the elementary particles 
of high-energy physics, as well, so that the theory suggests a unity underlying the 
various areas of quantum physics. 

The Meissner effect can be stated in another way, namely, that it is possible to induce 
currents in a specimen in a time-invariant magnetic field simply by lowering the temperature. 
Such a statement contradicts Maxwell's equation E • dl = —d(1:1 B /dt (or V x E = — aB/at) 
and shows that the Meissner effect is not a classical effect but a quantum effect revealing itself 
on a macroscopic scale. This has been confirmed by experiments on a superconducting ring. 
If such a ring in a normal state is placed in a uniform magnetic field, and then cooled to the 
superconducting state, electric currents are established that flow in opposite directions on the 
inner and outer surfaces of the ring, as in the upper part of Figure 14-5. This excludes the field 
from the interior of the ring but does not affect the field inside the hole of the ring. When the 
external field is removed, the outside surface current disappears but the inside surface current 
persists. We say that the superconducting ring has trapped the original magnetic field in the 
hole, as in the lower part of Figure 14-5. When the magnetic flux trapped in the ring is mea-
sured as a function of the strength of the applied magnetic field, it is found that the flux is 
quantized, i.e., it increases in discrete steps. The system acts very much like a macroscopic 
Bohr atom in which one eigenfunction describes the correlated motion of the entire set of 
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Figure 14-5 Top: A ring of superconducting material is cooled below the critical temper-
ature in the presence of a uniform magnetic field. Currents are established as shown on  
the inner and outer surfaces of the ring, thereby excluding the field from the superconduc-
ting material comprising the ring. Bottom: The external field is removed. The outside sur-
face current disappears, and the inside surface current persists. The result is that magnetic  

flux is trapped in the hole enclosed by the ring.  

Cooper pairs traveling around the ring. Flux quantization arises because the eigenfunction  

must be single valued. The quantum of flux is 2ific/q, where q is the charge carried by one  
pair. The measurements confirm the BCS prediction that q = 2e.  

14-2 MAGNETIC PROPERTIES OF SOLIDS  

Materials may have intrinsic magnetic dipole moments, or they may have magnetic  

dipole moments induced in them by an applied external magnetic field of induction.  

In the presence of a magnetic field of induction, the elementary magnetic dipoles,  

whether permanent or induced, will act to set up a field of induction of their own that  

will modify the original field. The student will recall that magnetic dipole moments,  
which can be regarded as microscopic currents (e.g., in atoms), are a source of mag-
netic induction B just as are macroscopic currents (e.g., in magnet windings). In fact,  

we can write  
B = ,uoH + µoM 	 (14-2)  

in which M, called the magnetization, is the volume density of magnetic dipole mo-
ment, and H, called the magnetic field strength, is associated with macroscopic cur-
rents only. The magnetic vector H, which can be written as H = (B — µoM)/µ o , plays  
a role in magnetism that is analogous to the role of D in electricity, since D, the  
electric displacement, originates only with free charges, not polarization charges. The  

magnetic vector M, which can be written as µ/V, the magnetic dipole moment per  

unit volume, has the same dimensions as H.  
For certain magnetic materials, it is found empirically that the magnetization M  

is proportional to H. Hence, we can write  
M = xH (14-3)  



in which the dimensionless quantity x is called the magnetic susceptibility. The prin- 

	

cipal problem in studying the magnetic properties of such materials is to determine 	o.) 

x for them and to find how it depends, if at all, on the temperature T and the value co 
of H. The magnetization M can be put in terms of x and B as 

M = 	
xB 	 (14-4) 	w 

uo( 1  + x) 
From this expression we can see that if the susceptibility x is small compared to one, 
then M ^ xB/,u o  and the contribution made to B by the magnetic moments, that is 
poM in (14-2), is small. This applies in fact to magnetic materials which are dia-
magnetic or paramagnetic. 

Diamagnetism is negative magnetic susceptibility, and paramagnetism is positive 
susceptibility. In diamagnetic materials the magnetization is opposite in direction to 
the field of induction, so that x is negative in (14-4). The value of B is smaller in the 
region of the diamagnetic material than it would be if the material were absent. The 
origin of diamagnetism is Lenz's law: the magnetic dipole moment arising from cur-
rents induced by an applied field opposes that field. A perfect diamagnet, such as 
a superconductor, excludes all flux from its interior so that B = 0 and x = —1 for 
such materials. For nonsuperconducting diamagnets, however, the magnitude of x is 
generally less than 10 -5 . In a vacuum, there is, of course, no magnetization and 
x = O. All substances exhibit diamagnetism, but the induced magnetic dipole moment 
responsible for it is masked in most substances by the existence of a permanent 
magnetic dipole moment. In such substances, called paramagnetic, the permanent 
magnetic dipole moments of the atoms tend to line up in the direction of the applied 
field. Here the magnetization M is in the direction of B and the magnetic suscepti-
bility x is positive. For typical paramagnetic materials, x ^ 10 -4. In the presence of 
a strong field of induction diamagnetic substances are weakly repelled and para-
magnetic substances are weakly attracted by the field, corresponding to the fact that 
x is relatively small for both types of substance though of opposite sign. 

A third, and most important, type of magnetic material is ferromagnetic. Ferra-
magnetism is the presence of a spontaneous magnetization in materials even in the 
absence of an externally applied field of induction. The only ferromagnetic elements 
are iron, cobalt, nickel, gadolinium, and dysprosium, but there are many compounds 
and alloys of these and other elements that are ferromagnetic. Ferromagnetic sub-
stances are strongly attracted even by relatively weak fields, their magnetization being 
very large. Ferromagnetic susceptibilities are as large as 10 5 . There is a connection 
between ferromagnetism and paramagnetism, only those crystals whose atoms or 
molecules are individually paramagnetic being capable of exhibiting the kind of co-
operative behavior that leads to ferromagnetism. In the succeeding sections we ex-
amine paramagnetism and ferromagnetism in greater detail, and we discuss their 
relationship to one another and to diamagnetism. 

14-3 PARAMAGNETISM 

In a paramagnetic material the atoms contain permanent magnetic dipole moments. 
These moments are associated with the intrinsic electron spin and the orbital motion 
of the electrons. (Nuclear magnetic dipole moments are three orders of magnitude 
smaller than the electronic magnetic dipole moments, and so they can be neglected 
for our purposes here.) An externally applied field of induction B will tend to align 
these dipole moments parallel to the field. Because the energy is lower when the mag-
netic dipole moment is parallel to the field than when it is antiparallel, the parallel 
alignment is preferred. The result is an induced field that adds to the applied field so 
that the susceptibility is positive. In comparison, diamagnetic effects are negligible. 
The tendency of magnetic dipole moments to line up in the field direction is opposed 
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by the thermal motion which tends to make the directions of the magnetic dipoles 
random. Hence the susceptibility is temperature dependent, and its value is deter-
mined by the relative strength of the thermal energy kT and the magnetic interaction 
energy —p. • B. We expect the susceptibility to decrease with increasing temperature 
and, indeed, Curie found at low fields and not too low temperatures that 

C 
x  T  

where C is a positive constant characteristic of the particular paramagnetic material.  

This is called the Curie law.  
In atoms with filled subshells, the spin magnetic dipole moments, and separately 

the orbital magnetic dipole moments, cancel in pairs. Only unfilled subshells can have 
unpaired electrons, so that we expect paramagnetism only in materials containing 
atoms whose electronic subshells are partly filled. In such materials the orientation 
in space of the total magnetic dipole moments can change without changing the elec-
tronic configurations of the constituent atoms. The inert gases, and many ions, have 
closed subshell configurations, so that they do not exhibit paramagnetism and are 
excellent for diamagnetic studies. Likewise in materials in which the pairing of spins 
is required, such as in covalent crystals and many ionic crystals, the magnetic dipole 
moments cannot change direction and such materials are also diamagnetic. The basic 
requirement for paramagnetism in solids is that the individual magnetic dipole mo-
ments have some degree of isolation. The atoms must act independently, for if the 
wave functions overlap significantly the  operation of the quantum mechanical re-
quirements concerning indistinguishable particles will tend to pair up the magnetic 
dipole moments. Many of the transition elements, and all of the rare earths, form 
paramagnetic solids. In these cases we have unfilled inner subshells, and the required 
isolation of the individual moments results from the shielding of these inner subshells 
by the filled outer subshells of the atoms. 

Let us now calculate the paramagnetic susceptibility for the simplest kind of 
system, that is one containing separated atoms, in each of which the electronic 
orbital angular momentum is zero and there is an unpaired electron of spin angular 
momentum with two possible space orientations. We imagine unpaired electrons 
placed in a magnetic field B, and we neglect the interactions between such electrons. 
Let n represent the number of unpaired magnetic dipole moments per unit volume. 
If n _ represents the volume density of moments that are parallel to the field and 
sn +  represents the same for moments that are antiparallel, then n_ + n + = n. For a 
parallel alignment of the magnetic dipole moment it the magnetic potential energy 
is —12B, and for an antiparallel alignment the energy is µB. Then, from the Boltzmann 
distribution, we have for the number in each energy state n_ = cne"B/kT  and n +  _  
cne - uB/kT ,  in which c is some constant of proportionality. The resultant magnetiza-
tion, i.e., the magnetic dipole moment per unit volume, is 

M = ,ll(n_ — n +) = µcn(euB/kT _  e-AB/kT)  

It is convenient to consider the average net moment, defined as µ = M/n and given  
by  

M µcn(e^`B/kT -  e - µB/kT )  
= = 	  

 

^ n 	(n_ + n +) 

cn(eµB/kT _  e - µB/kT )  

-  cn(eµB/kT + e-uB/kT)  
or  

eµB/kT -  e  -  µB/kT  

µ - µ  eµB/kT +  e- µB/kT  (14-5)  
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Since under ordinary circumstances µB « kT, we can expand the exponentials and 
obtain 

CD  
^ 

( 1 + µB/kT) — (1 — icB/kT) µ 2B  

(1 + yB/kT)+(1 —12B/kT) kT 

The paramagnetic susceptibility then is given by  

M  nµ nu 2B ,uonu2  
H H kTH kT 

where we have used (14-4), for small x, to write B y oH. Hence, we obtain an  
approximation to the Cu rie result x = C/T, in which C = µon,u2/k and the suscepti-
bility varies inversely with the temperature. Note (14-5) shows that if the applied field  

B is removed we have µ = 0, and there is no net magnetization. The alignment of  
the elementary dipoles depends on the presence of the field and, in its absence, the  

thermal motion randomizes the dipole directions so that the net magnetization is  

zero.  
In the top of Figure 14-6 we plot the magnetization, M = nµ from (14-5), as a  

function of the applied field B for different temperatures. For small values of B, M is  
essentially a straight line whose slope is greater the lower the temperature. As B is  
increased the magnetization approaches the value nµ asymptotically. This is the  
saturation condition, in which all the unpaired magnetic dipole moments  it are  
aligned with the applied field B. The strength of the field required for saturation  
increases with the temperature.  

In the bottom of Figure 14-6 we plot the ratio M/Mmax,  where  Mmax  is the satura-
tion magnetization, versus B/T for a paramagnetic salt. The curve is predicted by the  

exact theoretical calculation, (14-5), which agrees very well with the experimental  
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Figure 14-6 Top: A plot of magnetization M versus the magnetic induction B in a para-
magnetic substance for two temperatures T 1  and T2 = 3T1 . Bottom: A plot of MIMmax versus  

BIT for the paramagnetic salt potassium chromium sulfate.  
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points. The Curie law prediction, (14-6), is seen to be a good approximation at small  

values of B/T.  

Example 14 -3. (a) A magnetic field of induction achievable with an iron core eletromagnet 
is 1.0 tesla. Compare the magnetic interaction energy of an electron spin magnetic dipole 
moment with this field to the thermal energy at room temperature. 
►  We have for spin magnetic dipole moment 

eh  
= µb = 	= 9.3 x 10 - 24  joules/tesla 

2m  
and for the magnetic interaction energy 

,uB = 9.3 x 10 -24  joule/tesla x 1.0 tesla = 9.3 x 10 -24  joule 
= 5.8 x 10 -5  eV  

At room temperature, T = 300°K, the thermal energy is 
kT = 8.6 x 10 -5  eV/°K x 300°K = 2.6 x 10 -2  eV 

so that 
µB 5.8 x 10 -5  eV 	3 
	 = 2.2 x 10 -  

kT 2.6 x 10 -2  eV  

Hence, the assumption jiB « kT is quite valid at ordinary temperatures and fields, ,uB being 
about 0.2% of kT in this example. In practice, the saturation region of Figure 14-6 is reached 
by going to lower temperatures rather than to higher fields.  

(b) For this case estimate the paramagnetic susceptibility in a solid material having n = 
2.0 x 1028  moments/m 3 , a typical value for substances with one unpaired electron per atom. 
■ From (14-6) we have, when tiB « kT  

2  

1.38 x 10 -23  joule/°K x 300°K  
= 5.2 x  10 -  

The result is an estimate because the theory used is approximate, neglecting, as it does, inter- 
actions between the electrons. Most paramagnetic substances have measured values somewhat  

smaller than this result. 	 •  

It is found that the Curie relation deduced above does not apply to metals, al-
though it does apply to nonmetallic paramagnetic materials. Indeed, in metals the 
paramagnetic susceptibility is much smaller and virtually independent of tempera-
ture. We have a situation here somewhat like the one in Section 11-11 where we 
sought an understanding of the electronic contribution to the specific heats of metals. 
In the analysis leading to (14-6), we used the classical Boltzmann distribution. That 
was valid because the electrons were associated with different atoms and they could 
be distinguished by their location, but in metals we must use the Fermi distribution 
because the electrons behave there as a Fermi gas of indistinguishable particles. When 
we do so we get a smaller susceptibility than before, and one that is independent of 
temperature, as we now explain. 

In Figure 14-7a we plot the energy distribution of electrons in a metal, the energy 
states that correspond to spin magnetic dipole moments aligned antiparallel to the 
field being plotted above the energy axis and those that correspond to moments 
aligned parallel being plotted below the axis. Here we imagine the field B to be 
(nearly) zero. When B is increased, at first all the electron energies shift, the energy 
rising by ,uB for antiparallel moments and dropping by µB for parallel moments, as  
shown in Figure 14-7b. Some electrons will subsequently make transitions from the  

higher energy antiparallel states to the lower energy parallel states, leading to the 
equilibrium situation of minimum total energy shown in Figure 14-7c. We have seen 
in Example 14-3 that µB = 10 -4  eV at B = 1.0 tesla, which is a very small energy 

^ 	 l2onk  
rx =kT ci  

Û _ 47.c x 10 -7  tesla-m/amp x 2.0 x 1028/m 3  x (9.3 x 10 - 24  joule/tesla) 2  



n (&)N(e) n (4)N(e) 	 n (1;)N(&) 

(a) 	 (b) 	 (c) 

Figure 14-7 The distribution of electrons with energy in a metal; the electrons occupy states 
indicated by the shaded areas. States with spin magnetic dipole moments antiparallel to the 
applied field are plotted above the energy axis, and states with moments parallel to the field 
are plotted below. (a)-The applied field is essentially zero. (b) The situation immediately after 
the field is increased to value B. (c) The equilibrium situation in applied field B. In these 
diagrams the magnetic interaction energy )uB is greatly exaggerated relative to the Fermi 
energy eF . 

shift compared to the Fermi energy, eF ^ 1 eV. Hence, the number of electrons with 
parallel moments is only slightly larger than those with antiparallel moments, the 
randomizing thermal effect dominating, so that the susceptibility should have a small 
value. Furthermore the situation would not be expected to be sensitive to reasonable 
temperature changes so the susceptibility should be practically independent of tem-
perature, as is observed experimentally for metals. 

14-4 FERROMAGNETISM 

Ferromagnetism is a spontaneous magnetization of small regions of a material that 
exists even in the absence of an external field of induction. Let us summarize the 
principal known features of ferromagnetism. First, the spontaneous magnetization 
in ferromagnetic materials varies with the temperature. The magnetization is a maxi-
mum at T = 0°K and drops to zero at a temperature T c, called the ferromagnetic 
Curie temperature, as is illustrated in Figure 14-8. Secondly, at temperatures higher 
than Tc  the materials become paramagnetic and have a magnetic susceptibility that 
is given by the relation x = C/(T — T e). This is a modification of the Curie relation 
for paramagnetic materials, in which x is not defined for temperature below Tc  where 
the material has a permanent magnetization. Thirdly, a ferromagnetic material is 
not magnetized in the same direction throughout its volume but has many smaller 
regions of uniform magnetization direction, called domains, that may be randomly 
oriented with respect to each other. Finally, the only ferromagnetic elements are iron, 
cobalt, nickel, gadolinium, and dysprosium There is a quantum theory of ferro-
magnetism that can explain all these observed properties. But before going into it, 
we show in the following example that a simple classical explanation, which obvi-
ously suggests itself, is not sufficient. 
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Figure 14-8 The spontaneous magnetization M, versus temperature T in a ferromagnetic 
material. Tc  is the ferromagnetic Curie temperature. 
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Example 14-4. The field of induction produced by a magnetic dipole of moment along a 
line parallel to its axis is given by B = µ0µ/2xx 3 , where x is the distance from the dipole. 
Calculate the interaction energy of two iron atoms, with parallel and collinear magnetic dipole 
moments of magnitude µ = 2.2 Bohr magnetons, separated by the interatomic spacing in 
iron, 3 A. Then evaluate the temperature at which the magnetic interaction energy equals the 
thermal energy, to show that this classical dipole-dipole interaction will not explain ferro-
magnetism in iron. 

The interaction energy, when one dipole aligns itself in the field produced by the other 
dipole, is negative (binding) and of magnitude 

E — 	
µoµ2_  4n x 10 - ' tesla-m/amp x (2.2 x 9.3 x 10 -24  joule/tesla) 2  
2itx 3 	 22t x (3 x 10 -10  m) 3  

= 3.1 x 10 -24  joule 

Equating this energy to the thermal energy kT, and solving for T, we find 

E 	3.1 x 10 -24  joule 
k 	1.38 x 10 -23  joule/°K 

The temperature is very low because the dipole-dipole interaction energy is very small. At 
room temperature, thermal energy is three orders of magnitude larger, and the randomizing 
tendency of thermal agitation would completely destroy the tendency for the dipole-dipole 
interaction to align the individual magnetic dipole moments and produce a large total mag-
netization. Such alignment is, however, actually found in iron at room temperature because 
it is ferromagnetic at that temperature. So we conclude that the explanation of ferro-
magnetism cannot be the very weak classical dipole-dipole interaction. • 

To illustrate the quantum theory of ferromagnetism consider iron, cobalt, or nickel, 
all of which are transition elements that have partially filled 3d inner subshells. The 
quantum numbers m 1  and m s  for the 3d electrons in an atom of a ferromagnet con-
taining such atoms will have those values that minimize the energy of the ferro-
magnetic system, consistent with the requirements of the exclusion principle. If the 
z component orbital angular momentum quantum numbers m 1  of two 3d electrons 
have the same values, for example, the z component spin angular momentum quan-
tum numbers m s  must have opposite values. If the  m 1  values are different, the m s 

 values can be the same, which means that the spins can be essentially parallel. Now 
the g factor, which specifies the ratio of the total magnetic dipole moment to the 
total angular momentum, has a value for ferromagnetic materials near the value g = 
2 that corresponds to electron spin (see Section 10-6, particularly (10-23)). This 
indicates that the magnetization is due to "parallel" spin rather than orbital mag-
netic dipole moments. Thus the electrons in the 3d subshell of an atom of iron align 
themselves so that the spins are essentially parallel. The reason is that it reduces the 
energy of the atom. That is, two 3d electrons stay farther apart on the average if 
their spins are "parallel" than if their spins are "antiparallel," and if they are farther 
apart their mutual Coulomb repulsion energy is reduced. This is just the tendency 
(see Section 10-4) for the spins in an unfilled subshell to all couple "parallel" and 
maximize the total spin, to the extent allowed by the exclusion principle, because this 
minimizes the residual Coulomb energy. Thus a single atom of iron is paramagnetic, 
because it has a permanent spin magnetic dipole moment, basically because of the 
interaction between the spin coordinates and space coordinates imposed by the 
quantum mechanical requirements concerning the exchange of labels of indistin-
guishable particles. For this reason the spin coupling is sometimes said to be due to 
the strong exchange interaction operating within the atom. 

Now consider a crystal lattice of iron atoms. There is also a strong exchange 
interaction between adjacent atoms of the lattice because the electrons in the atoms 
are indistinguishable and the atoms are close enough to each other that indistin-
guishability makes a difference. This exchange interaction will also lead to a coupling 



of spins, i.e., the total spins of adjacent atoms, but it is more complicated than the 
exchange interaction within a single atom because the geometry of the system of 
atoms is more complicated than the geometry of a single atom. The results of the 
exchange interaction can be that the lowest energy of the system occurs when the 
spins of adjacent pairs of atoms are "parallel," or that it occurs when they are 
"antiparallel." In the first case the system will be ferromagnetic; in the second it will 
be antiferromagnetic. 

We can understand ferromagnetism by considering the five overlapping 3d energy 
bands of a crystal composed of one of the transition element atoms. The totality of 
these bands, which we shall here call the 3d band, can hold ten electrons per atom. 
When full, the band has five electrons with spin "up" and five with spin "down," per 
atom. The band is narrow because the 3d subshell is an inner subshell, as we discussed 
in Section 13-7. In the ferromagnetic atoms, however, the 3d band is only partially 
filled. In iron, for example, there are six 3d electrons per atom. If we at first assumed 
that three of these electrons have spin with one orientation and three have spin with 
the other orientation, the electrons occupying the lowest energy available states in 
each of two partial bands of opposite spin, we could not be sure that this is the state 
of lowest energy for the system because the exchange interaction of the lattice will 
shift the partial bands of opposite spin with respect to each other. The partial band 
of one spin, i.e., the collection of energy levels in which all the electrons have one 
spin orientation, will be lowered in energy by the exchange interaction and the partial 
band of the other spin will be raised in energy by the interaction. We could have 
five electrons per atom in one partial band, and the sixth in the partial band of the 
opposite spin, if the total energy of the system is lowered more by the exchange inter-
action than it is raised by the higher energy resulting from the asymmetrical popula-
tion of electron energy levels between the two partial bands. That is, competing with 
the desire of all electrons to go into the partial band of lowest energy is the fact that, 
if they do, some will be forced by the exclusion principle to go into the higher energy 
levels of that partial band. We shall soon present a figure that illustrates, and further 
explains, this competition. 

Calculations show that for a few elements one partial band will indeed be filled and 
the other will not, so that a large spontaneous magnetization will exist in them. When 
the interaction between spins is calculated as a function of the ratio of one-half the 
internuclear separation to the radius of the 3d subshell in transition elements, it is 
found that parallel spin alignment is favored if this ratio exceeds 1.5. Typical values 
of the ratio are Mn, 1.47; Fe, 1.63; Co, 1.82; Ni, 1.98; so that iron, cobalt, and nickel 
are expected to be ferromagnetic and manganese not to be. In fact manganese crystals 
are not ferromagnetic. The theory is further confirmed by the fact that certain com-
pounds (such as the Heusler alloys) which contain manganese atoms that are farther 
apart are ferromagnetic. 

In Figure 14-9 we plot the energy difference between magnetized and unmagnetized 
configurations versus the ratio of half the internuclear separation to the 3d radius. 
As the separation between atoms is increased from the value giving the maximum, the 
3d wave functions overlap less and less and the indistinguishability requirements soon 
cease to apply; hence, the exchange interaction reduces the energy less and less. If in a 
crystal lattice the valence electron subshell radii are small compared to the inter-
nuclear spacing, as in the rare earth elements, we expect the material to be paramag-
netic because the individual spin magnetic dipole moments are isolated from one 
another. As the separation between atoms is decreased from the value which yields 
the maximum, the energy bands widen and the excess energy associated with the 
asymmetrical population in the magnetized state increases more than the exchange 
interaction reduces the energy. Indeed, we approach the situation in diatomic mole-
cules wherein "antiparallel" spins give the lowest energy since the electrons spend 
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Figure 14-9 The variation of the energy difference between unmagnetized and magnetized 
configurations with the ratio of the internuclear separation to the diameter of the 3d subshell, 
for some transition elements. 

most of their time between nuclei. In elements with valence electrons in outer unfilled 
subshells, the subshell radius is large enough, compared to internuclear separation, 
that we expect all these electrons to form pairs having "antiparallel" spins. Then there 
will be no spin magnetic dipole moment and the material will be diamagnetic. Fig-
ure 14-10 illustrates schematically the population of two partial bands of opposite 
spin, for internuclear separation smaller than, equal to, and larger than the range of 
values that leads to ferromagnetism. 

We see that the ferromagnetic situation is a delicate one in which the valence sub-
shell radius is large enough to permit sufficient space overlap to allow the require-
ments of indistinguishability to apply, but at the same time small enough to prevent 
the width of the valence band from becoming too large. In those cases in which the 
magnetized state is favored, the energy difference between magnetized and unmag-
netized states is of the order of a tenth of an electron volt per atom. This situation 
makes it clear, therefore, that the spontaneous magnetization is temperature de-
pendent and that additional thermal energy made available by an increase in 
temperature can eliminate the conditions favoring the spin alignment responsible 
for ferromagnetism. At T = 0°K all the spin alignment permissible exists, but as the 
temperature is raised successively more of the "parallel" alignments are made random 
by thermal motion. Just below the Curie temperature, Tc, the alignment breaks up 
rapidly (see Figure 14-8), and it is entirely gone above Tc . For iron the Curie 
temperature is 1043°K, for cobalt it is 1400°K, and for nickel 631°K. 

The origin of domains remains to be explained. Ferromagnetic materials are not 
observed to be magnetized unless they have been put in an external magnetic field 
previously. It is said that, although spontaneous magnetization exists, the magnetiza-
tion in one small region, or domain, of a ferromagnetic material can be oriented in a 
direction different from that in another domain, so that the macroscopic resultant 
magnetization can be zero. Domains arise in the first place because the energy of a 
large crystal is not a minimum when it is uniformly magnetized. The particular size 
and shape of a domain is determined by a process that minimizes the total of three 
different types of energy involved. There is first the magnetic field energy. If, for 
example, the entire solid specimen formed a single domain there would be a large 
external field and a large magnetic energy associated with the field. The external 
magnetic field can be greatly reduced, thereby decreasing the energy in it, by dividing 
the specimen into domains whose magnetizations tend to cancel one another as in 



Ferromagnetic 	 Larger 
spacing 	 spacing 

Smaller 
spacing 

Figure 14 -10 Illustrating schematically the valence band structure for three different 
internuclear spacings of a system of atoms which are, individually, paramagnetic. With 
decreasing spacing, the wavefunctions of electrons in valence subshells of adjacent atoms 
overlap, and exchange effects set in. They cause the valence level to split into a band and, 
from the point of view of the band being decomposed into two partial bands of oppositely 
aligned spins, they also cause the partial bands to be displaced with respect to each other. 
The possibility of ferromagnetism arises because, in a favorable case such as is illustrated, 
with decreasing spacing the displacement at first increases about as rapidly as the band 
width increases. This relation is not maintained into very small spacings because the band 
width increases more and more rapidly with decreasing spacing (see Figure 13-3). At all 
spacings, the levels of the two partial bands will be occupied in such a way that the Fermi 
energies are equal, since this minimizes the total energy of the system. For the situation 
described by the central figure, the number of valence electrons in the total band is sufficient 
to completely fill all levels of the lower partial spin band, but only the lower levels of the upper 
partial spin band. The system is then ferromagnetic since most of the valence electron spins 
are aligned in the same direction. In the figure on the right this does not happen because the 
energies associated with both exchange effects are small compared to kT. It does not happen 
in the figure on the left because the band width is large compared to the partial band 
displacements. Thus ferromagnetism requires not only that there be a range of valence 
subshell overlap where the two exchange effects have a particular relation, but also that the 
internuclear spacing to valence subshell diameter ratio be such as to make the overlap in the 
actual system be in that range. 

Figure 14-11. However, the domain boundaries, or walls, are sites of highly localized 
and nonuniform magnetic fields of considerable intensity, and a second type of energy 
is required to create them. The third energy is the difference in energy between a 
situation where the specimen is magnetized in one direction relative to the axis of 
the crystal and a situation in which it is magnetized in another direction. 

In an unmagnetized piece of iron the individual domains, within which the mag-
netic dipole moments are aligned, are oriented at random. As we magnetize the iron 
by placing it in an external magnetic field, two effects take place. One is a growth 
in size of the domains that are favorably oriented with respect to the field at the expense 
of those that are not, as shown in Figure 14-12. Another is a rotation of the direction of 
magnetization within a domain toward the direction of the applied field. The well-
known hysterisis effect, in which the magnetization of ferromagnetic materials does not 
return to zero as we first apply an external field and then remove it, is due to the fact that 
the domain boundaries do not move completely back to their original positions when 
the external field is removed. The motion of these boundary walls is not reversible and 
is affected by crystal imperfections such as impurities and strains. The material is left 
magnetized even though there is no externally applied field, a condition called 
permanent magnetism. 
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Figure 14-11 Ferromagnetic domains. Top left: In a single crystal the magnetization vectors  

must lie along equivalent axes of the crystal. This crystal has no net magnetization, although  

each domain is magnetized. Top right: In a polycrystalline substance the crystal axes are  
randomly oriented, so that the magnetization vectors are randomly oriented. Bottom:  
Domain patterns for a single crystal of iron containing 3.8% silicon. The white lines show the  

boundaries between the domains. (Courtesy H. J. Williams, Bell Telephone Laboratories)  

0.01 mm  

Figure 14-12 Top: The growth of domains in a single crystal in an externally applied  
magnetic field H, showing schematically preferential domain growth, domain rotation, and  

saturation. Bottom: An external magnetic field, directed to the right, is imposed on a spec-
imen. The magnetization in each domain is shown by white arrows. The domain boundary  
moves down across a region in which there is a crystal imperfection as the preferentially  
oriented domain grows. (Courtesy H. J. Williams, Bell Telephone Laboratories) 
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Figure 14-13 Showing how elementary magnetic dipole moments are oriented by the 
interatomic exchange interaction in (a) ferromagnetism, (b) antiferromagnetism, and (c)  
ferrimagnetism. 

14-5 ANTIFERROMAGNETISM AND FERRIMAGNETISM  

Two other types of magnetism, closely related to ferromagnetism, are antiferro-
magnetism and ferrimagnetism. In antiferromagnetic materials, of which Mn0 2  is an  
illustration, the exchange interaction forces adjacent atoms to have "antiparallel"  

spin orientations, as in Figure 14-13b. In Mn0 2 , for example, the negative oxygen  

ion has on each side a positive manganese ion; the magnetic dipole moments of the  

positive ions are aligned essentially antiparallel because each is paired with one of  

the oppositely oriented electron spins of the oxygen ion in the lowest energy con-
figuration of the system. Hence such materials show very little gross external mag-
netism. If they are heated sufficiently the materials become paramagnetic, the  

exchange interaction ceasing to act. In ferrimagnetic substances two different kinds  
of magnetic ions are present; in nickel ferrite the two ions are Ni +  + and Fe+ + + The  
exchange interaction locks the ions into a pattern like that of Figure 14-13c. The same  

antiferromagnetic exchange interaction exists, which aligns the magnetic dipole mo-
ments "antiparallel," but since ions with two different magnitudes of magnetic dipole  

moment are present, the net magnetization is not zero. The external magnetic effects  

are intermediate between ferromagnetism and antiferromagnetism, and here too the  

exchange interaction disappears if the material is heated above a certain characteristic  

temperature. The ferrites are crystals having small electrical conductivity compared  

to ferromagnetic materials, and they are useful in high-frequency situations because of  

the absence of significant eddy current losses.  

QUESTIONS  

1. Why do superconducting currents flow on the surface of a superconductor?  

2. Why is the electric field zero inside a superconductor?  

3. Does perfect conductivity require that the interior magnetic field of a body be zero? What  

does it require of the interior magnetic field?  

4. How would you measure the critical field of a superconductor as a function of tempera-
ture?  

5. The critical external magnetic field at absolute zero varies with the material as M-1/2.  

Explain.  
6. Can you say whether lead or aluminum has the higher superconducting critical tempera-

ture from the fact that at room temperature the electrical conductivity of aluminum is  

much larger than that of lead?  
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7. A superconducting film can be used as a high sensitivity bolometer (an instrument for  

measurement of heat radiation). Explain.  

8. To what extent can the two electrons in a Cooper pair be thought of as moving as if they  

were bound to opposite ends of a spring? What property of the system constitutes the  

spring?  
9. Exactly what is the distinction between the energy states of an electron in a supercon-

ductor and the energy states of the superconductor itself?  

10. Are there analogies between superconductivity and superfluidity?  

11. Superconductors whose Cooper pairs are small enough to allow the existence of magnetic  

field carrying channels also have relatively high critical temperatures. What is the reason  

for this very convenient behavior of Type II superconductors?  

12. Discuss the use of a paramagnet as a thermometer. In what temperature range would it  

be useful?  

13. The magnetization induced in a diamagnetic sphere by an external magnetic field does not  

vary with the temperature, in sharp contrast to the situation in paramagnetism. Make this  

plausible.  
14. Does the orbital motion of an electron contribute to paramagnetic behavior of the atom  

or only the intrinsic spin of an electron?  
15. The paramagnetic susceptibility of the rare earth elements is generally greater than that  

of the transition elements. Take into account the electronic shell structure and explain  

why.  
16. Is the neglect of the nuclear spin magnetic dipole moment justifiable in our discussion of  

paramagnetism? Explain.  
17. From the fact that most organic molecules have magnetic dipole moments of less than a  

few Bohr magnetons, show that life processes cannot be affected by laboratory magnetic  

a 	fields.  ro t  
0 	18. Why do the ferromagnetic elements come from the middle of the group of transition  

elements or from the middle of the rare earth elements rather than the ends of the respective  

groups?  
19. Copper has a filled inner 3d electronic subshell and one 4s valence electron. Explain why  

you would not expect it to be ferromagnetic.  
20. Why is susceptibility not defined for temperatures below the Curie temperature in ferro-

magnetic materials?  
21. Are the electronic configurations of gadolinium and dysprosium consistent with the fact  

that they are ferromagnetic elements? Explain.  

22. Why can the exchange interaction have a significant effect on a narrow band with a high  

density of states (as the 3d band in the transition elements) although the interaction  

energy is small?  
23. A nail is placed at rest on a smooth table top near a strong magnet. It is released and  

attracted to the magnet. What is the source of the kinetic energy the nail has just before  

it strikes the magnet?  
24. Why, for permanent magnets, do we use materials composed of small crystals and having  

large imperfections? Also why, for transformer magnets, do we use materials composed  

of large crystals having few imperfections?  

PROBLEMS  

1. Estimate the size of a Cooper pair in mercury by equating the binding energy at 0°K to  

the electrostatic repulsion energy between the two electrons.  

2. (a) Show, from Maxwell's equations, that resistivity p = 0 (a perfect conductor) implies  
that B = const inside the material. (b) Show, from Maxwell's equations, that B = 0 inside  
a material (a superconductor) implies that the resistivity of the material is p = O.  
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Figure 14-14 The energy as a function of positive 

k wave number for a superconductor; for Problem 5. 

3. Show from Lenz's law that the Meissner effect implies perfect conductivity, but that per-
fect conductivity does not imply the Meissner effect. 

4. The critical field of tin at 2°K is 0.02 weber/m 2 . Draw a graph of the magnetization at 
2°K of a long thin sample of tin as a function of applied field. 

.5. Part of the e versus k diagram for electrons in a superconductor is shown in Figure 
14-14. (a) Draw a curve of the density of electrons as a function of e for a superconductor 
at T = 0°K. (b) Draw a graph of the energy necessary to place holes in the supercon-
ducting state and electrons in the normal state. This is a graph of (e - eF) versus k; 

is at the center of the gap for a superconductor. The notion that only electrons are 
in the normal state and only holes in the superconducting state is not accurate. 

6. When two metals are separated by a very thin insulator, electrons from one metal can 
tunnel through the insulator to the other metal. Electrons flow until the Fermi levels of 
the two metals are equal. When a battery is connected between the two metals, as shown 
in Figure 14-15, the Fermi levels are displaced and a current flows if there are filled 
electron levels in one metal opposite empty levels in the other metal. Draw current voltage 
characteristics for the following junctions. (a) Normal metal-normal metal. (b) Normal 
metal-superconductor. (c) Superconductor-superconductor. (Hint: The Fermi energy of a 
superconductor lies at the center of the energy gap.) 

7. Use Faraday's law of induction to show that a hole in a superconductor will trap mag-
netic flux, i.e., dB/dt = 0 in the hole. Remember that the electric field E = 0 in any circuit 
through the superconductor which encloses the hole, and also that the Meissner effect 
does not apply to the hole. 

8. Estimate the magnitude of the isotope effect for superconducting materials. Take the 
critical temperature for naturally occurring vanadium (99.76% V 51 , with mass 50.9440u; 
0.24% V 50, with mass 49.9472u) to be 5.300°K precisely. What is the critical temperature 
for pure V50? 

9. Derive (14-4) for the magnetization, using (14-2) and (14-3). 

111 11 	AA/U` 	Figure 14-15 Metals separated by a thin insulator; for Problem 6. 
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10. Show from (14-2) and (14-3) that x = —1 for a superconductor. Is this result consistent  

with (14-4)?  
11. (a) Calculate the magnetization of 1 mole of oxygen at standard temperature and pressure  

in the earth's magnetic field. The susceptibility of oxygen is 2.1 x 10 -6  and the earth's  
field is 5 x 10 -  5  tesla. (b) What is the saturation magnetization of 1 mole of oxygen? Its  

magnetic dipole moment is 2.8 Bohr magnetons.  

12. (a) Find the value of ,uB/kT for a paramagnetic material with a magnetization one-half  

the saturated value. (b) Use this result to find the magnetic dipole moment per molecule  

of potassium chromium sulphate.  
13. Calculate the temperature of the sample of Example 14-3 when the magnetic field is re-

duced isentropically from 1 tesla at 1°K to 0.01 tesla, assuming Curie's law. (An isentropic  

process is one in which the populations of the states do not change. Hence the magne-
tization must remain constant.) This process is called adiabatic demagnetization and is  
useful in low-temperature physics.  

14. What is the magnetization of the two-level system, discussed in connection with (14-5),  

when 1  uB » kT? 

15. From Figure 14-7 it can be argued that the magnetization due to conduction electrons  

should be proportional to the number of electrons within µB of the Fermi energy. (a)  

Show that this leads to the susceptibility being given approximately by  

3.AV µ0µb 
= 	 x  2k TF  

where AT is the number of conduction electrons, y o  is the permeability constant, jb  is  
the Bohr magneton, and TF is the Fermi temperature. (b) Evaluate x for copper.  

16. (a) Show that the specific heat at constant field  CH  for the two-level system, discussed in  
connection with (14-5), is given by  

Cg = (e2µB1kT + 1) 2  

where ✓Y is the number of atoms in the system. This is the Schottky specific heat. (Hint: 
Take the energy of the dipoles aligned parallel to the field to be zero.) (b) What is the 
temperature dependence of cH  at high and low temperatures? (c) Sketch cH  as a function  
of T. Estimate (do not calculate) where CH  will be a maximum.  

17. A ferromagnet can be considered to be similar to a paramagnet except that there is an  

internal molecular field Hw  tending to spontaneously align the elementary dipoles. (a) The 
material will become spontaneously magnetized when the energy of interaction between 
the dipole and the molecular field is equal to kTc . Calculate the value of Hw  for iron 
where the magnetic moment is 2.2 Bohr magnetons and Tc  is 1000°K. (b) What is the 
magnetization of a 1 cm 3  sample of iron which has a single domain? (Density = 7.9 g/cm 3 ; 
atomic weight = 56). (c) What is the energy in the field? 

18. The molecular field of Problem 17 can be taken as proportional to the magnetization 
of the sample so that Hw  = 2M. (a) Show that this leads to a susceptibility given by 

C 
X = T — T c  

where Tc  = CA. (b) Calculate the value of for iron. 
19. A simple model for an antiferromagnet is a lattice of two kinds of paramagnetic ions such 

that the nearest neighbors of A atoms are B atoms. If the antiferromagnetic interactions 
are between nearest neighbors only, the magnetization of the sample above the Curie 
point can be written as 

TM A  = C'(H — 2MB)  

and  
TM B  = C'(H — AMA)  

,/rk 
2f lB 2  e2µB/kT 

( kT^  
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Here C' is the Curie constant for one sublattice only. The effective field in sublattice A is 
H — AMB, and positive A corresponds to antiferromagnetic interactions between A and 
B atoms. Show that this leads to a susceptibility above Tc  given by 

C 
x 	 

— T+Tc  

where C = 2C' and Tc  = CA. 

20. Sketch curves of x -1  versus T for T > Tc  for (a) a paramagnet, (b) a ferromagnet, and 
(c) an antiferromagnet, and discuss the meaning of the intercept on the T axis. 



15 
NUCLEAR MODELS 

	

15-1 	INTRODUCTION 

role of models; comparison of nuclear and atomic energy scales 

	

15-2 	A SURVEY OF SOME NUCLEAR PROPERTIES 

previously considered and newly introduced information concerning nu-
clear masses, charges, radii, magnetic dipole moments, spin, symmetry, and 
electric quadrupole moments; nuclear forces and their strong, attractive, 
short range, charge independent character; neutrons as nuclear constituents 

	

15-3 	NUCLEAR SIZES AND DENSITIES 

electron scattering measurements of nuclear charge distributions; charge 
density; half-value radii; surface thickness; similar value of interior mass 
density for all nuclei 

	

15-4 	NUCLEAR MASSES AND ABUNDANCES 

mass spectrometry; mass unit; isotopes; energy balance in reactions; Q value 
relations; results of mass determinations; mass deficiency; binding energy 
per nucleon and its roughly constant value for nearly all nuclei; saturation; 
fission; fusion; relation between stable N and Z values; tendency for even 
N and even Z 

	

15-5 	THE LIQUID DROP MODEL 

relation of universal values of interior mass density and binding energy per 
nucleon to properties of liquid drop; classical arguments for volume, surface, 
and Coulomb terms of mass formula; introduction of asymmetry and pair-
ing terms; parameters; use of formula to predict neutron binding energies; 

. Brueckner theory determination of volume term parameter 

	

15-6 	MAGIC NUMBERS 	 530 

experimental evidence; analogy to atomic physics; apparent difficulties in 
considering independent particle motion 

	

15-7 	THE FERMI GAS MODEL 
	

531 

net nuclear potentials; exclusion principle production of independent parti-
cle motion; estimate of Fermi energy; origin of asymmetry term in mass 
formula 

	

15-8 	THE SHELL MODEL 	 534 

relation to Hartree theory; eigenfunctions; radial node quantum number 
n; ordering of energy levels according to n and l; centrifugal potentials; 
exclusion principle construction of nuclei; failure to explain higher magic 
numbers; introduction of strong, inverted, spin-orbit interaction 

	

15-9 	PREDICTIONS OF THE SHELL MODEL 
	

540 

spins at or near magic numbers; JJ coupling; attractive residual interaction; 
antiparallel pairing tendency; origin of pairing term in mass formula; spins 

509 

510 

515 

519 

526 

508 



cn  o  
0 

C/)  
CD  
C)  

^ ^ 
1 

N
O

Il
J

fl
a

O
a

lN
l 

and parities for nuclei of odd A, or of even A with N and Z even; nuclei 
of even A with N and Z odd; difficulties with magnetic dipole moments 

15-10 THE COLLECTIVE MODEL  

deformable net nuclear potentials describing collective motions; satisfactory 
prediction of magnetic dipole moments; shell model difficulties with electric 
quadrupole moments and satisfactory collective model predictions 
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QUESTIONS  

PROBLEMS  

15-1 INTRODUCTION  

In the past chapters our considerations have taken us from atoms to the larger 
systems, molecules and solids, of which atoms are constituents. Now we reverse our 
direction and consider the smaller systems, nuclei, which are constituents of atoms. 

There is a pronounced difference between the theoretical study of atoms, or systems 
of atoms, and the theoretical study of nuclei. Long before the theory explaining the 
properties of atoms was being developed, the basic nature of the electromagnetic 
forces acting on individual electrons in atoms was known in complete detail. But 
during most of the period when the understanding of the properties of nuclei was 
being developed, very little was known about the details of the nuclear forces acting 
on the protons and neutrons in nuclei. Although a fairly complete knowledge of 
nuclear forces has recently become available, they turn out to be complicated enough 
that it has not yet been possible to use this knowledge to construct a comprehensive 
theory of nuclei. That is, we cannot explain all of the properties of nuclei in terms of 
the properties of the nuclear forces acting between their protons and neutrons. 
However, there are a number of models, or rudimentary theories of restricted validity. 
Each of these can explain a certain limited range of nuclear properties, using argu-
ments that do not involve all the details of the nuclear forces. Even though progress 
is being made on the development of a comprehensive theory, an introductory study 
of nuclei is still largely the study of the various nuclear models. In this chapter we 
treat the most important models and use them to describe and explain the properties 
of nuclei in their ground states. In Chapter 16 we use these models to study nuclei 
in their excited states, and to study naturally occurring transitions between nuclear 
states (nuclear decay, including radioactivity) and artificially produced transitions 
(nuclear reactions, including fission and fusion). The detailed properties of nuclear 
forces are treated in Chapter 17, where we consider the elementary particles which 
are constituents of nuclei. 

A pronounced difference between the experimental study of atoms and the experi-
mental study of nuclei arises from the difference between their characteristic energies. 
The energy characteristic of nuclei is of the order of 1 MeV. For instance, we saw in 
Chapter 6 that the attractive nuclear potential exerted on a neutron when it is in a 
nucleus is a few MeV deep, and that the height of the repulsive Coulomb barrier sep-
arating two positively charged nuclei is also a few MeV. We shall soon see that the 
same order of magnitude characterizes the binding energy of a proton or neutron to a 
typical nucleus, and the separation in energy between its ground state and first excited 
state. The energy characteristic of atoms is of the order of 1 eV. Because this is so 
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Figure 15-1 The relative abundance of the elements. Note strong fluctuations superposed  

on a general decreasing trend with increasing A, the mass number.  

low (not much higher than room temperature thermal energy kT ^ 0.025 eV) atoms  
are easily excited, and they have little difficulty in combining to form molecules and  

solids. For nuclei, very special circumstances are required to produced excitation  

because of their very high characteristic energy. Weisskopf has described the situation  

well:  

"In our immediate environment atomic nuclei exist only in their ground state; they affect  

the world in which we live only by their charge and mass and not by their intricate dynamic  

properties. In fact, all the interesting nuclear phenomena ... come into play only under  

conditions which we have created ourselves in accelerating machines. It is to some extent a  

man-made world.  
It is not completely man made, however. The centers of all stars are regions of the universe  

where nuclear reactions go on, and thus where nuclear dynamics plays an essential role in the  

course of nature. Hence the nuclear phenomena are the basis of our energy supply on earth, in  

reactors as well as in the sun. But nuclear physics is even more important for the world in  

which we live from the point of view of the history of the universe. The composition of matter  

as we see it today is the product of nuclear reactions which have taken place a long time ago  

in the stars or in star explosions, where conditions prevailed which we simulate in a very micro-
scopic way within our accelerating machines. Hence the material basis of the world in which  

we live is a product of the laws of nuclear physics. I cannot better illustrate the interconnection  

of all facts of nature, the tightly woven net of the laws of physics, than by pointing to the chart  

of abundances of elements in our part of the universe (see Figure 15-1). Each maximum and  

minimum in the curve of abundances corresponds to some trait of nuclear dynamics, here a  

closed shell, there a strong neutron cross section, or a low binding energy. If the 7.65 MeV  

resonance in carbon did not exist, then, according to Hoyle and Salpeter, practically no car-
bon would have been formed and we would probably not have evolved to contemplate these  

problems. Whenever we probe nature—be it by studying the structure of nuclei, or by learning  

about macromolecules, or about elementary particles, or about the structure of solids we  

always get some essential part of this great universe." (From "Problems of Nuclear Structure,"  
by Victor Weisskopf, Physics Today 14: 7, 1961.)  

15-2 A SURVEY OF SOME NUCLEAR PROPERTIES  

We begin our study of nuclei by quickly reviewing what we have already learned  

about them in the process of studying atoms and molecules, and by adding some new  

information that is also obtained largely from atoms and molecules. The items of new  



information are considered here only briefly; each will be discussed in more detail 
later: 

1. We have learned (Chapter 4) that the mass of a nucleus is only slightly less than 
the mass of an atom containing that nucleus. Thus the nuclear mass is approximately 
equal to the integer A times the mass of a hydrogen atom, or approximately equal to 
A times the mass of a proton, the nucleus of a hydrogen atom. The integer A, called 
the mass number, is the one closest to the atomic weight of the atom containing the 
nucleus in question. We have also learned (Chapters 4 and 9) that the charge of a 
nucleus is exactly equal to the atomic number Z of the corresponding atom, times the 
negative of the charge of an electron, or exactly Z times the charge of a proton. The 
atomic number gives the location of an atom in the periodic table of the elements. 
That table (Chapter 9) shows that A is roughly equal to 2Z, except for the proton for 
which Z = A = 1. 

2. Analysis of a-particle scattering from nuclei of low A (Chapter 4) indicated that 
the radii of such nuclei are somewhat less than 10 F, where the radius is defined as the 
distance from the center of the nucleus at which the potential acting on the a particle 
first deviates from a Coulomb potential. Analysis of the rate of emission of a particles 
by radioactive nuclei of high A (Chapter 6) indicated that the radii of these nuclei, 
defined in the same way, are ^ 9 F. The symbol F represents the unit of length, called 
the fermi, used in nuclear physics. Its value is 

1 F = 1 x 10 -15 m 	 (15-1) 

Note that this length, characteristic of nuclei, is five orders of magnitude smaller than 
the length 1 A characteristic of atoms since 1 A = 1 x 10 -1 ° m. 

3. Both the a-particle scattering and the a-particle emission analyses showed that 
there is a nuclear force, which is attractive, acting between the particle and the nucleus, 
in addition to the repulsive Coulomb force acting between the two. They indicated 
that the nuclear force is of very short range, i.e., that it extends only for a distance 
appreciably less than 10 F. The analyses also indicated that the nuclear force is strong, 
compared to the Coulomb force, since it dominates the latter, which is repulsive, to 
produce an overall attraction on the a particle when it is very close to the nucleus. 
Modern experiments involving the scattering of protons from protons show that the 
range of the nuclear force is 2 F, and that the magnitude of the negative energy 
associated with the attractive force is larger than their Coulomb energy, when the two 
protons are separated by that distance, by roughly a factor of 10 2 . Furthermore, ex-
periments involving the scattering of protons from neutrons indicate that the nuclear 
force is charge independent. That is, the nuclear force between protons and neutrons 
is the same as between protons and protons, or between neutrons and neutrons 
(except for exclusion principle effects that apply in the latter two cases only). Although 
the scattering experiments which provide direct experimental proof of the charge 
independence of nuclear forces are fairly recent, an educated guess was made at an 
early stage that the nuclear force would have this simplifying property. We shall 
consider the scattering experiments in Chapter 17, and certain other evidence for 
charge independence later in this chapter and in Chapter 16. Until then we too shall 
make the assumption that the nuclear force is charge independent. Finally, it should 
be mentioned that the nuclear force is extremely strong compared to the gravitational 
force. The magnitude of the energy associated with the nuclear force acting between 
two protons separated by less than 2 F is larger than their gravitational energy by 
a factor of about 10 40  

4. It has been mentioned (Chapters 8 and 10) that nuclei have magnetic dipole 
moments. They arise from the intrinsic magnetic dipole moments of the protons and 
neutrons in the nuclei, and from the currents circulating in the nuclei due to the mo-
tion of the protons. Nuclear magnetic dipole moments are studied by using optical 
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spectroscopic equipment of extremely high resolution to measure the hyperfine split-

ting of atomic energy levels, which results from the interaction of the dipole moments 
with the magnetic field produced by the atomic electrons. The value of the interaction 
energy AE depends on the orientation of the nuclear magnetic dipole moment in the 
internal magnetic field, and is given by the equation 

AE = C[f(f + 1) — i(i + 1) — j(j + 1)] 	 (15-2) 

where j, i, and f are quantum numbers specifying the magnitudes of the atom's total 
electronic angular momentum, total nuclear angular momentum, and grand total 
angular momentum, respectively. This equation is completely analogous to (10-15), 

r which describes the atomic spin-orbit interaction energy. The constant C is propor- 
tional to the magnitude of the nuclear magnetic dipole moment ,u. Measurements of 

Û AE, and therefore of C, show that for all nuclei it is of the order of the nuclear 
magneton µ,,. This quantity is 

eh 
µn = 2M = 0.505 x 10 -26  amp-m2 ^ 10 -3/4 	 (15-3) 

where M is the proton mass and µb  is the Bohr magneton. Measurements of hyperfine 
splitting also show that the sign of the nuclear magnetic dipole moment (giving the re-
lative orientation of the magnetic dipole moment vector and the angular momentum 
vector of the nucleus) is positive (parallel) in some cases and negative (antiparallel) 
in others. Nuclei with both A and Z even have µn  = 0. 

5. The total nuclear angular momentum quantum number i, usually called the 
nuclear spin, can be obtained simply by counting the number of energy levels of a 
hyperfine splitting multiplet. If the multiplet is associated with a value of j larger than 
i, then f can assume 2i + 1 different values so there will be 2i + 1 different energy 
levels. It is found that i is an integer for nuclei of even A, with i = 0 if Z is also even, 
and that i is a half-integer for nuclei of odd A. The magnitude I of the total nuclear 
angular momentum is given in terms of i by the usual relation I = Ji(i + 1) h. The 
total angular momentum of a nucleus arises from the intrinsic spin angular momenta 
of its protons and neutrons and also from the orbital angular momenta due to the 
motion of these particles within the nucleus. It should be emphasized that in nuclear 
physics the word spin frequently refers to the total angular momentum of a nucleus, 
in contrast to atomic physics where the word refers to the intrinsic spin angular mo-
mentum only. When there is possibility of confusion, we shall henceforth use the ter-
minology intrinsic spin angular momentum, and we shall continue to use the symbol 
s, when referring to that part of the angular momentum of a single particle that has 
nothing to do with orbital angular momentum (e.g., the intrinsic spin angular mo-
menta of both protons and electrons are given by s = 1/2). 

6. Closely related to the spin of a nucleus is the symmetry character of the eigen-
function for a system containing two or more nuclei of the same species (Chapter 9). 
This is studied by analyzing the spectra of diatomic molecules containing two identi-
cal nuclei (Chapter 12). It is found that nuclei with integral spin quantum number i 

(nuclei of even A) are of the symmetric type, i.e., they are bosons, while nuclei with 
half-integral i (nuclei of odd A) are of the antisymmetric type, i.e., they are fermions. 
Such molecular spectra also provide independent measurements of i, which confirm 
values obtained from hyperfine splitting. 

7. As we have already indicated, nuclei are composed of protons and neutrons. The 
neutron is an uncharged particle of nearly the same mass as the proton, and pre-
cisely the same intrinsic spin angular momentum and symmetry character (s = 1/2, 
antisymmetric). A nucleus with mass number A and atomic number Z contains A 
nucleons, a word used for both protons and neutrons, of which Z are protons and 
A — Z are neutrons. This rule obviously leads to a mass and charge in agreement 
with item 1. 



Before the discovery of the neutron, it was thought that a nucleus of mass number 
A and atomic number Z contains A protons and A — Z electrons. This rule also leads 
to a mass and charge in agreement with item 1, but we have seen that the zero-point 	m 
energy is unrealistically high if a particle as light as an electron is confined in a region 	P 
as small as a nucleus (Chapter 6). Furthermore, the spin and symmetry character of 	w 
nuclei composed of protons and neutrons are, in all cases, in agreement with the mea-
surements 

 

 described in items 5 and 6. For nuclei in which A is even and Z is odd, 
the spin and symmetry character disagree with the measurements if nuclei are com-
posed of protons and electrons. 

Example 15-1. The mass number and atomic number of the nucleus of the most prevalent 
variety of nitrogen are: A = 14, Z = 7. Its measured nuclear spin and symmetry character are: 
i = 1, symmetric. (See Examples 12-4 and 12-5.) Show that the spin and symmetry character 
disagree with the assumption that nuclei contain A protons and A — Z electrons. Also show 
that the spin and symmetry character are in agreement with the assumption that nuclei contain 
A nucleons, of which Z are protons and A — Z are neutrons. 
► If the nucleus contains 14 protons and 7 electrons, it contains an odd number, 14 + 7 = 21, 
of the particles that all have half-integral intrinsic spin angular momentum quantum numbers. 
(They all have s = 1/2.) The rules for combining angular momentum quantum numbers 
presented in Section 8-5 make it apparent that, whether or not these particles have orbital 
angular momenta, each of their tot al  angular momentum quantum numbers will be half-
integral since orbital angular momentum quantum numbers are always integral. Furthermore, 
it is apparent that a nucleus containing an odd number of particles, each with half-integral 
total angular momentum quantum number, can only have a half-integral total angular 
momentum quantum number. In other words, its nuclear spin will be half-integral, in dis-
agreement with the measurements. 

It is also apparent from the discussion of Section 9-3 that the symmetry character of a 
nucleus containing an odd number of antisymmetric particles must be antisymmetric. The 
reason is that an exchange of labels of two such nuclei amounts to an odd number of exchanges 
of labels of antisymmetric particles. This multiplies the total eigenfunction of the system by 
an odd power of minus one, which equals minus one, so that the total eigenfunction is anti-
symmetric. Again we see that the nitrogen nucleus cannot contain 14 protons and 7 electrons, 
giving it an odd total number of particles, since the measurements show that it is a nucleus 
of the symmetric type. 

If the nucleus contains 7 protons and 7 neutrons, the total number of particles is 7 + 7 = 
14, an even number. Since neutrons have the same intrinsic spin angular momentum and 
symmetry character as protons (or electrons), we see that the nucleus will be symmetric because 
in an exchange of labels of two nuclei the total eigenfunction will be multiplied by an even 
power of minus one, and an even power of minus one equals plus one. Its nuclear spin will 
be integral since an even number of particles of half-integral intrinsic spin angular momentum 
quantum numbers must have an integral total angular momentum quantum number. Both of 
these predictions are in agreement with the measurements. • 

Some years before its discovery, Rutherford suggested the existence of a particle 
having the properties of what we now call the neutron. A number of people tried to 
devise experiments to detect it. But this was difficult because, being uncharged, the 
neutron does not easily ionize atoms when it passes through matter, and most devices 
for detecting particles depend on ionization. In 1932 Chadwick succeeded in detecting 
neutrons emitted from beryllium nuclei when they are bombarded with cc  particles 
obtained from a radioactive source. He used a Geiger counter behind a layer of 
paraffin. The neutrons collide with protons in the paraffin, and they transfer an 
appreciable fraction of their kinetic energy to the protons. The protons then penetrate 
the Geiger counter, where they are counted with high efficiency since they are charged 
and therefore produce much ionization. The experimental arrangement is indicated 
in Figure 15-2. 

8. Many nuclei are not precisely spherical in shape, but instead they are in the 
shape of an ellipsoid. The earliest evidence for this came from accurate measurements 
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Figure 15 -2 A schematic depiction of the experimental arrangement used by Chadwick 
in the discovery of the neutron. 

of the hyperfine splitting of the energy levels of atoms of these nuclei. If the hyperfine 
splitting were due entirely to the energy of orientation of the nuclear magnetic dipole 
moment in the internal magnetic field of the atom as assumed in (15-2), the analogy 
with (10-15) for the spin-orbit interaction would require that the pattern formed by 
the split atomic energy levels obey an interval rule like Landé's (10-16). But deviations 
from such an interval rule are seen in the hyperfine splitting of many atoms. The 
deviations indicate that in these atoms the hyperfine splitting is partly due to an elec-
tric interaction between an ellipsoidal distribution of the nuclear charge and the 
atomic electric field. That is, in these atoms the energy depends on the orientation of 
the ellipsoidal nuclear charge distribution in the internal electric field of the atom, 
as well as on the orientation of the nuclear magnetic dipole moment in the internal 
magnetic field of the atom. 

The observed departure of the nuclear charge distribution from spherical symmetry 
is specified by the nuclear electric quadrupole moment q. As is illustrated in Figure 
15-3, for q > 0 the ellipsoidal charge distribution is elongated in the direction of its 
symmetry axis, with the elongation increasing as q becomes more positive. For q < 0 
the ellipsoidal charge distribution is flattened in the direction of its symmetry axis, 
with the flattening increasing as q becomes more negative. A more precise definition 
of q will be given in Section 15-10. 

For nuclei with spin i >_ 1, the hyperfine splitting measurements show that there 
are cases with electric quadrupole moment q > 0, as well as cases with q < 0. But 
for nuclei with i = 0 or i = 1/2, these measurements always yield q = 0; that is, no 
departures from spherical shape are observed for such nuclei in these measurements. 
It is easy to see why nuclei appear to have a spherical shape if they have zero nuclear 
spin. If they have no nuclear spin they do not have any particular orientation in space, 
as there is no total angular momentum vector that must maintain a fixed component 
in some direction. The nuclei must then have all possible orientations in space. So 
even though they are actually nonspherical, we cannot see this in the hyperfine split-
ting measurements because, averaged over a sample containing many nuclei, the 
nuclei would appear to be spherical. But we can see their true shape in measurements 
involving nuclear reactions. As will be discussed in the following chapter, they show 
that certain nuclei with nuclear spin i = 0 do have quadrupole moments. 

q> 

Figure 15 -3 Left: A prolate (football-shaped) charge 
distribution gives rise to a positive quadrupole moment 
q. Right: An oblate (fat pumpkin-shaped) charge distri-
bution gives rise to a negative quadrupole moment. 
Both ellipsoids are symmetrical about the axis through 

q< 0 their center. 



Nuclei must also be observed to be spherical in hyperfine splitting measurements 
if they have nuclear spin i = 1/2. The reason is that for i = 1/2 there are only two 
possible orientations of the nuclear shapes relative to the direction defined by any 
electric field which is applied to the nuclei. Since both give the same energy of inter-
action between this field and the electric quadrupole moments, on the average the 
energy splitting is zero, and so no evidence of quadrupole moments can be observed 
in these measurements. 

The largest values of q are found for nuclei in the region of the rare earth elements. 
In the most extreme case the largest dimension of the ellipsoidal charge distribution 
is along the direction of the symmetry axis, and it exceeds the smallest dimension 
by about 30%. But for typical nuclei with i > 1, the difference in the largest and 
smallest dimensions of the ellipsoid is only a few percent. So for most purposes it is 
a good approximation to assume that typical nuclei are spherical, particularly since 
more than half of all the nuclei have i = 0, and so they appear in most circumstances 
to be precisely spherical. 

15-3 NUCLEAR SIZES AND DENSITIES 

We begin our detailed discussion of nuclei by considering the results of measurements 
of their sizes. The most straightforward and accurate measurements involve scatter-
ing of electrons, of several hundred MeV kinetic energy, from thin targets containing 
atoms whose nuclei are to be investigated. As nuclear forces do not act on an electron, 
its scattering is due to its Coulomb interaction with the nuclear charge distribution. 
An electron scattered through an appreciable angle has had a single close encounter 
with a nucleus, just as in oc-particle scattering from nuclei (see Section 4-2). Therefore, 
measurements of electron scattering should be able to provide information about the 
nuclear charge distribution, such as its size. The charge distribution is, of course, 
only the distribution of protons in the nucleus, but there is much additional evidence 
indicating that the neutrons have approximately the same distribution as the protons. 

The method can be thought of as the use of an "electron microscope" to "look at" 
the charge distribution. What is actually seen is not the charge distribution itself, 
but a diffraction pattern which it produces in scattering the electron wave function. 
Qualitatively, we know that the separation in angle between adjacent minima of the 
diffraction pattern, 0, will obey the usual diffraction relation (see Chapter 3 and, in 
particular, Appendix L) 
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where 2 is the electron de Broglie wavelength, and r' is the radius of the charge dis-
tribution. Thus a measurement of 0 gives immediately an estimate of r', since 2 can 
be calculated from the known kinetic energy. 

Example 15-2. Electrons of kinetic energy K = 500 MeV are scattered from a target of nuclei, 
of charge distribution radius r', into a diffraction pattern that has minima with an average 
separation of 0 ^ 30°. Estimate r'. 
•First we must evaluate the de Broglie wavelength 2 from the electron momentum p. Since 
the total energy E of the electrons is very high compared to their rest mass energy m oc2  = 
0.51 MeV, we may use expressions that are valid in the extreme relativistic limit 

E K 
p = —= — 

c 	c 

500 MeV 	1 joule 	 l a 	  x 	 = 2.7 x 10 	kg-m/sec 
3 x 10 8  m/sec 6.2 x 10 12  MeV 
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Figure 15-4 An apparatus used to study the scattering of high-energy electrons from a 
target of nuclei. Only the end of the electron linear accelerator is shown. It is actually 
a very long evacuated tube in which radio frequency fields accelerate the electrons to the 
required energy. 

Then the de Broglie relation gives 

_ h 

p 
6.6 x 10 -34  joule-sec _ 24 x 10

-15  m 
2.7 x 10 -19  kg-m/sec 

Converting 0 to radians, and invoking (15-4), we find 

r' 0 
2.4 x 10 -15  m 
	 = 4.5 x 10 -15 m= 4.5F 

0.53 rad 

for an estimate of the charge distribution radius. 	 • 

An accurate determination of the nuclear charge distribution can be obtained if 
the shape of the electron diffraction pattern is analyzed quantitatively. This involves 
adding up the portions of the electron wave function scattered from each region of 
the nucleus, in proportion to an assumed charge density in that region, and taking 
into account the phase differences that produce the constructive or destructive inter-
ference at different scattering angles which constitutes the diffraction pattern. The 
assumed charge distribution is varied until the best fit to the measured diffraction 
pattern is obtained. It is found that the fit is very sensitive to the details of the charge 
distribution, so that it can be well determined even if the diffraction pattern contains 
only one minimum. The analysis is related to the one-dimensional Schroedinger scat-
tering calculations of Chapter 6. But it is much more complicated because it is three 
dimensional and because it is relativistic, so the Dirac version of quantum mechanics 
must be used. Thus we can only quote results. 

Figure 15-4 indicates the experimental apparatus used by Hofstadter, and collabor-
ators, to measure the scattering of high-energy electrons from various nuclei. The 
electrons are produced in a linear accelerator, part of which is shown. It operates 
something like a very large-scale version of the electron guns used in electron micro-
scopes, or television tubes. The electrons are scattered from a thin target foil, whose 
atoms contain the nuclei of interest, located at the center of the evacuated scattering 
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Figure 15-5 A measure of the number of 
electrons scattered from 6C as a function 
of the scattering angle for 420 MeV incident 
electrons. The differential scattering cross 
section du/di-2 is the measure used. It is eval-
uated in terms of the area unit commonly 
employed in nuclear physics, called the barn; 
1 bn = 10- 24 cm-2.  The curve is the fit to the 
data points obtained from the scattering anal-
ysis described in the text. 
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chamber. Scattered electrons are detected by the spectrometer, which determines their 
kinetic energy by bending them in its magnetic field. Only the elastically scattered 
electrons are counted, that is, those whose kinetic energy is the same as the electrons 
of the incident beam, less the small amount of kinetic energy of the recoiling nuclei. 
This requirement ensures that the nuclei remain undisturbed, so that their ground 
state charge distribution will be obtained. 

Figure 15-5 shows results obtained in the scattering of 420 MeV electrons from 
the small mass number nucleus 6C. The ordinate is the differential scattering cross 
section da/dS2, a quantity defined in (4-8) which is proportional to the number of 
electrons scattered at each angle. The points with accuracy estimates are the data, 
and the solid curve is the best fit to the data obtained from the analysis. The radial 
distribution of nuclear charge density p(r), which produces this fit, is shown by the 
curve labeled 6C in Figure 15-6. 

For a given electron energy, the diffraction patterns measured for nuclei of larger 
mass number A develop additional minima, which become more closely spaced as A 
increases. Equation (15-4) indicates this means the radius of the charge distribution 
increases with increasing A. The quantitative results are shown by the curves in Fig-
ure 15-6, which represent the charge densities p(r) obtained for a number of nuclei. All 
of these charge densities can be described fairly accurately by the empirical equation 

P(r) = 	
P(0) 	 (15 -5) 1 + e(r - a)/6 

where the parameters a and b have the values 

a = 1.07A1 " 3  x 10 -15  m = 1.07A 1 " 3  F 
	

(15-6) 
b = 0.55 x 10 -15 m=0.55F 

	
(15-7) 

We draw the following conclusions from Figure 15-6 and (15-5) through (15-7): 
1. The charge density of nuclei, which is essentially the distribution of protons in 

the nuclei, is constant in the nuclear interior and falls fairly rapidly to zero at the 
nuclear surface. 



r (F) 

Figure 15-6 The charge densities of a number of nuclei. The charge density labeled 6C 
produced the fit to the scattering data shown in Figure 15-5. The half-value radius para-
meter a, surface thickness 2h, and interior charge density p(0), are shown for 6 C. 

2. The radius at which the density has one-half its interior value, a, increases slowly 
with increasing number of nucleons in the nucleus, A. Specifically, the radius a is pro-
portional to A 1 t 3  

3. The thickness of the nuclear surface is given approximately by the quantity 2b, 
since most of the drop in the value of the factor 1/[1 + ear - a)11, from its interior 
value of one to its exterior value of zero, occurs when r charges from a — b to a + b. 
This surface thickness 2b has approximately the same value for all nuclei. 

4. The interior value of the charge density, p(0), decreases slowly with increasing A. 
5. If we assume that the distribution of protons in nuclei is approximately the 

same as the distribution of neutrons (there is good evidence for this assumption), 
then the charge density p(r), which gives the density of protons in the nucleus, is the 
same as the mass density p M(r), which gives the density of all nucleons in the nucleus, 
except for a factor proportional to Z/A, the ratio of the number of protons to the 
total number of nucleons in the nucleus. That is 

p(r) cc  Â pm(r) 	 (15-8) 

Then the decrease of p(0) with increasing A is explained entirely by the decrease in 
Z/A with increasing A. (The periodic table shows that Z/A ^ 1/2 for A 40, while 
Z/A ^ 1/2.5 for A ^ 240.) This indicates that the interior value of the mass density, 
pM(0), is approximately the same for all nuclei. 

Example 15 -3. Evaluate approximately the interior mass density of a nucleus. 
► Approximate results can be obtained most easily by noting that the ratio of the density of 
a nucleus to the density of a solid, containing atoms with that nucleus, is 

density of nucleus 	volume of nucleus -1  [(radius  of nucleus)31-  1 

density of solid matter 
a 

 volume of atom  
	
C  radius of atom   

For all nuclei 

. 10 s radius of nucleus 

radius of atom 

For instance, the radius of the outer shell of the 6C atom is a little less than 2 A = 2 x 10 -1  ° m, 
while the half-value radius of its nuclear charge or mass distribution is a little more than 2 F = 



2 x 10 -15  m. Thus we obtain 

density of solid matter 

Since the density of solid matter is of the order of 10 3  kg/m 3 , we find that the density of a 
nucleus has the extremely high value 

density of nucleus — 10 18  kg/m 3  
The densities of nuclei are some 15 orders of magnitude larger than the densities encountered 

in the macroscopic world. It is, therefore, not surprising that other properties of nuclei can 
differ remarkably from the properties of macroscopic objects. • 

15-4 NUCLEAR MASSES AND ABUNDANCES 

Very precise measurements of nuclear masses provide information about some of the 
most basic nuclear properties. Now the masses of atoms of a particular Z, but pos-
sibly a mixture of A, can be obtained to several significant figures by chemical tech-
niques and a knowledge of Avogadro's number. Since the mass of a nucleus differs 
from the mass of the corresponding atom by a known amount, these techniques pro-
vide fairly accurate determinations of nuclear masses. But for the extremely accurate 
determinations needed in the study of nuclei, we must use the physical techniques 
of mass spectrometry or energy balance in nuclear reactions. Both give information 
about the masses of atoms of a particular Z and A. From these masses, the masses of 
the corresponding nuclei can be evaluated by subtracting Z times the electron mass. 
The mass equivalent of the electron binding energies is small enough to be ignored. 

An example of one of the many types of mass spectrometers is the Bainbridge de-
sign, illustrated in Figure 15-7. The source produces singly ionized atoms with charge 
+ e, mass M, and a distribution of velocities. These atoms travel through an evacu-
ated region of crossed electric and magnetic fields which act as a velocity filter, pass-
ing only those with velocity y  satisfying the equation 

eE = Bev 

Figure 15-7 An apparatus used to measure atomic masses. Magnetic pole pieces above 
and below the plane of the paper provide a uniform magnetic field into the paper through-
out the region enclosed by the dashed line. The entire apparatus shown is contained 
in a vacuum chamber. 
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The terms on the left and right are the magnitudes of the opposing electric and mag-
netic forces. Atoms of velocity y  = E/B enter a region of uniform magnetic field, are 
bent into a semicircle of radius R, and fall on a photographic plate where they pro-
duce an image. The distance from the diaphragm S2 to the image is 2R, where R satis-
fies the equation 

Bev = 
Rv  2  

The term on the right is the mass times the centripetal acceleration. Solving for M, 
we obtain 

RBe _ RB 2e 
M =  
	

(15-9)  
v 	E 

The singly ionized atomic mass can be determined from absolute measurements of 
the quantities on the right side of (15-9). But in practice use is made of various hydro-
carbon molecules to calibrate the apparatus over a wide range of masses, in terms 
of the standard mass of carbon. The main reason that carbon is used as a standard, 
or unit, of mass is that many different hydrocarbons are readily available. In fact, the 
ion source usually produces some ionized hydrocarbons automatically, since hydro-
carbons in the form of vacuum pump oil are present in the apparatus. The mass of 
the neutral atom can be obtained from that of the singly ionized atom by adding 
one electron mass. 

With the mass spectrometry technique, extremely accurate measurements can be 
made. As an example, consider the nucleus 20Ca40 . (The superscript before the chem-
ical symbol gives the value of Z; the superscript after the symbol gives the value of 
A.) The mass of atom with this nucleus is quoted as 

M2oCa 4o  
The symbol u represents one mass unit; it is defined in terms of the prevalent species 
of carbon in such a way that 

M6C i2 - 12.0000000u  (15-10)  
A number of other examples of atomic masses are found in Table 15-1. 

Using the first mass spectrometer, Thomson discovered the existence of isotopes 
in 1911. When the ion source contained a mixture of noble gases, he found an image 
on the photographic plate with mass corresponding to A = 20, and an associated 

Table 15-1 Atomic Masses and Binding Energies  

Z A 

Binding Energy in MeV 

Mass in u 
Total 
(SE) 

Per Nucleon 
(AE/A)  

on 1 

1H1 

1H2  

1H3  

2He3  

2He4  

4Be9  

6Cr2  

8016  

29 CU63 
 

5osn 12o  

74W  184  

92U238  

0 
1 
1 
1 
2 
2 
4 
6 
8 

29 
50 
74 
92 

1 
1 
2 
3 
3 
4 
9 

12 
16 
63 

120 
184 
238 

1.0086654 (±4)  
1.0078252 (± 1)  
2.0141022 (+1) 
3.0160500 (+10) 
3.0160299 (+2) 
4.0026033 (±4) 
9.0121858 (±9) 

12.0000000 (+0) 

	

15.994915 	(±1) 

	

62.929594 	(+6) 

	

119.9021 	(±1) 

	

183.9510 	(±4) 

	

238.05076 	(±8) 

2.22 
8.47 
7.72 

28.3 
58.0 
92.2 

127.5 
552 

1020 
1476 
1803 

1.11  
2.83  
2.57  
7.07  
6.45  
7.68  
7.97  
8.75  
8.50  
8.02  
7.58  

= 39.962589 ± 0.000004u  



weaker image corresponding to A = 22. A number of tests proved these were both 
due to a noble gas, and this could only be Ne, with chemical atomic weight of 20.18. 
He interpreted these results to mean that there are two chemically indistinguishable 
species of Ne atoms, called isotopes, one with A = 20 and relative abundance of about 
91%, and one with A = 22 and relative abundance of about 9%. They are chemically 
indistinguishable since they have exactly the same structure of atomic electrons 
because their nuclei have the same charge and therefore the same Z, but they are 
physically distinguishable since they have different masses because their nuclei have 
different A. The nuclei of the Ne isotopes are: lo Ne 2o ,  loNe21 ,  loNe22; the second 
occurs with relative abundance of about 0.3%, and it could not be detected by 
Thompson's apparatus. All three of these nuclei contain 10 protons; however, the 
first contains 10 neutrons, the second contains 11 neutrons, and the third contains 
12 neutrons. 

Modern mass spectrometers, using detectors which are very sensitive and have a 
linear response, provide accurate determinations of the relative abundance of the 
various isotopes. As an example, the abundances of the normally occurring mixture 
of 8 0 isotopes are 

8 O i6  = 99.759% 
80 17  = 0.037% 
80 18  = 0.204% 

Another technique of accurate mass determination, which provides a supplement 
and check for the technique of mass spectrometry, is the study of energy balance in 
nuclear reactions. Consider the nuclear reaction 

2 He4 + 7 N 14 _÷ 8017 + 1H1 

A bombarding particle 2He4  (an a particle) interacts with a target nucleus 7N 14  to 
produce a residual nucleus 80 17  and a product particle 'H' (a proton). This was the 
first artificially produced nuclear reaction, discovered in 1919 by Rutherford who used 
7.7 MeV a particles from a radioactive source. Now x particles of a variety of energies 
obtained, perhaps, from an electrostatic generator would be used to investigate this 
typical reaction. As is discussed in Appendix A, mass and kinetic energy are not 
separately conserved in nuclear reactions. Instead, there is conservation of total rela-
tivistic energy, E = K + mc 2 , where K is kinetic energy and m is used here for rest 
mass. For the general case, illustrated in Figure 15-8, a bombarding particle a inter-
acts with a target nucleus A to produce a residual nucleus B and a product particle 
b; that is 

a+A-413+b 	 (15-12) 
In this case the conservation of total relativistic energy in the laboratory frame of 
reference reads 

  

(K a  + mac') + mA c2  = (KB  + mBc 2) + (Kb + mbc2) (15-13) 

a 

 

A 

Before 

 

   

 

After Figure 15-8 A nuclear reaction wherein a bombard-
ing particle a is incident on a target nucleus A. After 
the reaction takes place, the product particle b is 
emitted at the angle 0, and the residual nucleus B 
recoils in such a way that momentum is conserved. 
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Note that KA = 0 since A is stationary in the laboratory frame. Because there can be 
an exchange of energy between kinetic energy and rest mass energy, it is possible for 
the final kinetic energy KB + Kb to be greater, or less, than the initial kinetic energy 
K a . The difference is called the Q value of the reaction. That is 

	

Q= K B +Kb — Ka 	 (15-14) 
From (15-13), this can also be written 

Q= (Ma  +mA — mB — mb)c 2 	 (15-15) 
We see that a measurement of the Q value of a reaction gives information about 

the rest masses of the entities involved in the reaction. The Q value can be measured 
by measuring Ka, Kb, and K B . However, the latter quantity is usually difficult to 
measure. The difficulty can be avoided by using a relation that comes from the con-
servation of momentum to eliminate K B  from (15-14), This is easy to do in the limit 

K a/mace  « 1 	K b/m bc2  « 1 	KB/mBC 2  « 1 
where the classical expressions such as K a  = maya/2 and pa  = maya  can be used. 
The result is that in this classical limit 

Q = Kb(1 + mb/ — Ka (l — 
ma — 

2 	(KaKbmamb) 112  cos 0 	(15-16) 
MB 	MB 

where 0 is the angle of emission of the product particle, defined in Figure 15-8. This 
result is of sufficient accuracy for the analysis of nuclear reactions at the energies 
which have been used in most experiments. 

In (15-15), the masses refer to the rest masses of the nuclei A and B, and to the rest 
masses of the completely ionized nuclear particles a and b. However, to the accuracy 
of the approximation in which the mass equivalent of the electron binding energy is 
ignored, this equation can also be considered to read 

Q = (Ma  + MA — MB — Mb)c 2 (15-17) 
where the large M refer to the masses of the neutral atoms. The second form is 
obtained from the first by adding (Za  + ZA )mc 2  to the first two terms and subtracting 
(Z B  + Z b)mc 2  from the last two, where mc 2  is the rest mass energy of an electron. 
This procedure is valid since the relation 

Za + ZA =ZB+Zb 	 (15-18) 
must be true in any nuclear reaction in order to have conservation of charge. 

Example 15-4. In Rutherford's reaction, (15-11), bombarding 2 He4  particles (a particles) of 
kinetic energy Ka  = 7.70 MeV interact with 7N14  target nuclei to produce 8017  residual 
nuclei and 1 H 1  product particles (protons). The protons emitted at 90° to the beam of bom-
barding a particles are found to have kinetic energy Kb= 4.44 MeV. (a) Determine the Q value 
of the reaction. (b) Then use it to determine the atomic mass of 80 17  in terms of the other 
three atomic masses involved in the reaction. 
► (a) Since the emission angle is 8 = 90°, (15-16) for the Q value simplifies to 

Q= Kb 1-I 
mb 

  — K a (1 — 111a  
MB 	 MB 

With sufficient accuracy, we can take mb/m B , the ratio of the product particle and residual 
nucleus masses, as 1/17; we can also take m a/mB , the ratio of the bombarding particle and 
residual nucleus masses, as 4/17. So 

Q = Kb(1 + 1/17) — Ka(1 — 4/17) 
= 1.06Kb  — 0.765Ka  
= 1.06 x 4.44 MeV — 0.765 x 7.70 MeV = —1.18 MeV 

(b) The atomic masses involved in the reaction are related to the Q value divided by c 2 , 
which is 

Q 	1.18 MeV 

c2 	 C 2  



Attractive 
potential 

To express this in mass units, we use the relation 	 N 
uc2  = 931.5 MeV 	

w 

which comes from evaluating the rest mass energy of a particle of rest mass lu. We obtain 	cp  
Q 1 	2 	 1 

c2 = 
	.18 c 2 	

x 931.5 MeV —0.00127u 

According to (15-17), the atomic mass of 80 17  can be expressed in terms of the other atomic 
masses, and Q/c2 , as follows 

M8 0 17 = M2He4 + M7N i4 — M1 H1 — = M2 He4 + M7N i4 — M1 H 1 + 0.00127u 

Thus the atomic mass of 8 0 17  can be determined from the measured Q value, if the other 
atomic masses are accurately known. 	 • 

The analysis of energy balance in a large number of reactions has provided results 
which accurately check the results obtained by mass spectrometry. Furthermore, the 
agreement between these two methods provides the most accurate confirmation of the 
relativistic theory of mass and energy, upon which the energy balance is based. Table 
15-1 lists a few of the many atomic masses that have been measured by these methods, 
as well as the mass of the neutron. Now let us begin to extract information about 
the nuclei from the precise measurements of their masses. 

Example 15 -5. Use the data of Table 15-1 to compare the mass of the 2He4  atom with the 
mass of its constituent parts. 
► The mass of the 2 He4  atom is 

M2He4 = 4.0026033u 
The mass of its constituent parts is the mass of two 1 H 1  atoms plus the mass of two neutrons; 
that is 

2M1 H 2 + 2M08 1 = 2 x 1.0078252u + 2 x 1.0086654u 
= 4.0329812u 

Both M2He 4 and 2M2H i + 2M08 1 contain two electron rest masses. But the former is smaller 
than the latter by the amount 

AM = 4.0329812u — 4.0026033u = 0.0303779u 
We shall see immediately that this result is a manifestation of the binding energy of the 2He4 

 nucleus. 	 • 

For any atom, a calculation as in Example 15-5 will show that its mass is less than 
the mass of its constituent parts by an amount AM called the mass deficiency. The 
origin lies in the nucleus, and in the equivalence between energy and mass. For 
instance, consider any one of the four nucleons in the 2He4  nucleus. Since the nucleon 
is stably bound to the nucleus, it must be moving in some sort of an attractive po-
tential representing the net attraction of the other three nucleons. Furthermore, to be 
bound it must have a negative energy E < O. The situation is depicted in Figure 15-9. 
The energy required to remove the nucleon from the nucleus, leaving it a free nucleon 

Figure 15 -9 A schematic representation of the potential and total energies of a nucleon 
in a helium nucleus. The potential extends beyond the nuclear mass distribution by about 
the range of the nuclear force, and then it rapidly goes to zero. 

S
3

O
N

t/
a

N
f1

8
t/
  a

N
`d

 S
3

S
S

dW
 1

:1
br

3
1
9

f1
N

 



N  
67  

N
U

C
LE

A
R

 M
O

D
E

LS
 

of negligible kinetic energy at r -* co, is IEI.  Conversely, if such a free nucleon comes  

in from r -4 co and combines with the other nucleons to form the nucleus, its energy  

must decrease by the amount IEI. The excess energy could be carried off by the  

emission of electromagnetic radiation., The same situation holds for the other nu-
cleons in the nucleus. Thus we see that when a dispersed system of free nucleons  

combines to form a nucleus, the total energy of the system must decrease by an  

amount AE, the binding energy of the nucleus. The decrease AE in the total energy  

of the system must, according to relativity theory, be accompanied by a decrease  

AM in its mass, where  
Lo 	 AMc 2  = AE 	 (15-19)  
T  

For 2He4, the mass deficiency is AM = 0.0303779u. Therefore its binding energy is as 
Û 	AE = AMc 2  = 28.3 MeV, where we have used the convenient relation from Example 

15-4  
lu x c2  = 931.5 MeV 	 (15-20)  

This value of AE is listed in the next to last column of Table 15-1. The last column 
of the table lists AE/A, called the average binding energy per nucleon, which is the 
binding energy of the nucleus divided by the number of nucleons it contains. For 
2He4, the value of AE/A is 28.3 MeV/4 = 7.07 MeV. 

One of the most important features of a nucleus is its average binding energy per 
nucleon. The quantity is plotted as a function of A in Figure 15-10. The points are 
the data obtained from the measured masses in the manner just described. Note that 
AE/A at first rises rapidly with increasing A, but very soon AE/A is roughly constant 
at a value 

8 MeV 	 (15-21) 
If each nucleon in a nucleus exerted the same attraction on all the other nucleons, 

the binding energy per nucleon would continue to increase as more and more nu-
cleons were added to the nucleus; that is, AE/A would be proportional to A. The 
extremely important fact that AE/A is not proportional to A is due, in part, to the 
short range of nuclear forces. A complete explanation of the saturation of nuclear 
forces, which is responsible for the fact that AE/A has approximately the same value 
throughout most of the periodic table, will be given in Chapter 17. This saturation 
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Figure 15-10 The average binding energy per nucleon for stable nuclei. The smooth curve  

is obtained from the semiempirical mass formula developed in Section 15-5.  
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has a certain analogy to the saturation of  molecular forces in covalent bonding, but  

the origins of the two saturation phenomena have no relation to each other, as we  

shall see in that chapter.  
Inspection of Figure 15-10 shows  that AE/A actually maximizes at about 8.7 MeV  

for A ^ 60, and then decreases slowly to about 7.6 MeV for A ^ 240. We shall find  
that the decrease is due to Coulomb repulsions between protons in the nucleus. One  

consequence is the phenomenon of nuclear fission, in which a large A nucleus, such  
as 92U238 , splits into two intermediate A nuclei because the two intermediate A nuclei  
are more stable than the large A nucleus.  

Example 15 -6. Use Figure 15-10 to estimate the difference between the binding energy of a  

92U238  nucleus and the sum of the binding energies of the two nuclei produced if it fissions  

symmetrically.  
► The figure shows that the average binding energy per nucleon for a nucleus of mass number  

around A = 238 is 7.6 MeV. So the binding energy of the nucleus present before the fission  

is 238 x 7.6 MeV 1810 MeV. The figure also shows that the average binding energy per  

nucleon for a nucleus of mass number around A = 238/2 = 119 is ^ 8.5 MeV. So each of the  
two nuclei present after the symmetrical fission has a binding energy of ^ 119 x 8.5 MeV  
1010 MeV. The sum of their binding energies is ^ 2020 MeV. This sum is larger than the initial  
binding energy 1810 MeV by about 210 MeV. Thus the final state (after the nucleus fissions) is  

more stable than the initial state (before the nucleus fissions), because the total binding energy  

is higher in the final state. When the total binding energy increases by about 210 MeV in the  
fission, energy in this amount is liberated. Most of it goes into the kinetic energy of the two  

nuclei produced in the fission. In a nuclear reactor this kinetic energy is degraded into thermal  

energy, which is the source of the power produced by the reactor. •  
In nuclear fusion two or more nuclei of very small A combine to form a larger 

nucleus that has a higher average binding energy per nucleon because its value of A is 
nearer the value A 60 , at which AE/A maximizes. It might seem that only a few 
nuclei near A = 60 would be stable. This is not true because there are other factors, 
to be discussed later, which inhibit fission and fusion. 

We conclude this section by considering the distribution of Z and A values of the 
stable nuclei, which is additional information obtained from the mass spectrometer 
measurements. The data are plotted in Figure 15-11. Each stable nucleus is indicated 
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Figure 15-11 The distribution of stable nuclei.  
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Table 15-2 The Distribution of Stable Nuclei  

Number of  
A 	N 	Z 	Stable Nuclei  

Even 	Even 	166  
Odd 	Odd 	 8  
Even 	Odd 	57  
Odd 	Even 	53  

with a square whose abscissa is the neutron number N = A — Z, the number of neu-
trons in the nucleus, and whose ordinate is the atomic number Z, the number of 
protons in the nucleus. Note that for small Z there is a tendency for stable nuclei 
to have Z = N. We shall see that this is due to the fact that nuclear forces operate 
symmetrically on neutrons and protons because nuclear forces are charge indepen-
dent, as mentioned in Section 15-2. For large Z, stable nuclei tend to have Z < N. 

 This is another effect of the Coulomb repulsions between protons, which produce a 
positive energy proportional to Z 2 . The effect discriminates energetically against the 
presence of protons in nuclei of large Z, but it is not important in nuclei of small Z 

 where the Z = N tendency dominates. 
There is a tendency for stable nuclei to have even Z and also even N. This can 

be seen from the data of Table 15-2, which lists the number of stable nuclei of various 
types. We shall find that this tendency is present because two nucleons of the same  
species can form a closely spaced pair in which they interact particularly strongly, 
and thereby make a particularly large contribution to the nuclear binding energy. 

15-5 THE LIQUID DROP MODEL  

We shall now employ the liquid drop model of the nucleus, and information obtained 
from the data concerning the distribution of Z and A values for stable nuclei, to 
obtain a formula for the masses of these nuclei. This formula will then be used in 
a variety of ways throughout our treatment of nuclei. The liquid drop model is based 
on two properties that we have found are common to all nuclei, except those of very 
small A, (1) their interior mass densities are approximately the same and (2) their total 
binding energies are approximately proportional to their masses since AE/A ^ const. 
Both of these properties can be compared with analogous ones concerning macro-
scopic drops of some incompressible liquid. For such classical liquid drops  of various 
sizes (1) their interior densities are the same and (2) their heats of v porization are 
proportional to their masses. The second comparison is meaningful since the heat 
of vaporization is the energy required to disperse the drop into its constituent mole-
cules, and so it is comparable to the binding energy of the nucleus. The mass formula 
will be developed by using the model to suggest other analogies between a nucleus 
and a classical liquid drop, but it will also be necessary to include terms in the formula 
that describe certain nuclear properties whose origins are nonclassical. 

The liquid drop model approximates the nucleus as a sphere with a uniform inte-
rior density, that abruptly drops to zero at its surface. The radius is proportional 
to A 113 ; the surface area is proportional to A 213 ; and the volume is proportional to 
A. Since the mass is also proportional to A, which is the number of nucleons in the 
nucleus, this gives the result that density = mass/volume cc A/A = const, in agree-
ment with the electron scattering measurements. 

The mass formula consists of a sum of six terms 

Even  

Odd  

Mz,A = .fo(Z,A)  + fl(Z,A) + f2(Z,A) + f3(Z,A)  + f4(Z,A)  + f5(Z,A) (15-22)  



	

where Mz, A represents the mass of an atom whose nucleus is specified by Z and A. 	 N;  
The first term is the mass of the constituent parts of the atom  

f0(Z,A) = 1.007825Z + 1.008665(A — Z) 	 (15-23) 	m  

	

The coefficient of Z is the mass of the 'IV atom in mass units, and the coefficient 	̂, 

	

of (A — Z) is the mass of the neutron, °n', in the same units. The remaining terms 	C131  
correct for the mass equivalents of various effects contributing to the total nuclear 
binding energy. 

Of most importance is the volume term 

fi(Z,A) = —a,A 	 (15-24)  

This accounts for a binding energy proportional to the nuclear mass, or volume. The 
term describes the tendency to have the binding energy per nucleon a constant. Such 
a term would be present for a classical liquid drop. Because it is negative, it reduces 
the mass, and therefore increases the binding energy. 

Next is the surface term 

f2(Z,A) = +a2A 213 	 (15-25)  
It is a correction proportional to the surface area of the nucleus. Since the term is  

positive, it increases the mass and consequently reduces the binding energy. In a clas-
sical drop of liquid, this term would represent the effect of the surface tension energy. 
It would arise from the fact that a molecule at the surface of the drop feels attractive 
forces only from one side, so its binding energy is less than the binding energy of a 
molecule in the interior which feels attractive forces from all sides. Therefore, simply 
setting the total binding energy proportional to the volume of the drop overestimates 
the binding energy of the surface molecules, and a correction proportional to the 
number of such molecules, or to the surface area, must be made to reduce the binding 
energy. The same thing happens in a nucleus. 

The Coulomb term is 

/ 	 Z2 
f3(Z,A) = +a3 A113  (15-26)  

It accounts for the positive Coulomb Ipnergy of the charged nucleus, which is assumed  

to have a uniform charge distribution of radius proportional to A" 3 . This effect of the  
Coulomb repulsions between the protons increases the mass and reduces the binding  

energy. A similar -term would be present for a charged drop of a classical liquid.  

The next term brings in a property specific to nuclei. It is the asymmetry term  

(Z — A/2) 2  
f4(Z,A) _ + a4 	

A 	
(15-27)  

which accounts for the observed tendency to have Z = N. Note that it is zero for  
Z = N = (A — Z), or 2Z = A, but is otherwise positive and increases with increasing  

departures from that condition. That is, the greater the departure from Z = N, the  
larger the mass or the smaller the binding energy. The form used in (15-27) is about  

the simplest one having these properties, but there is also some theoretical justifica-
tion, involving the charge independence of nuclear forces, that will be indicated later.  

The tendency of nuclei to have even Z and even N is accounted for by the pairing 
term  

= —f(A) 	if Z even, A — Z = N even  

f5(Z,A) = 0 	if Z even, A — Z = N odd  
or Z odd, A — Z = N even  

= +f(A) if Z odd, A — Z = N odd  

(15-28)  
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It decreases the mass if both Z and N are even, and increases it if both Z and N are 
odd. Thus it maximizes the binding energy if both Z and N are even. A qualitative 
explanation of the origin of this term will be given later; it involves the quantum 
mechanical properties of indistinguishability of identical particles. But the exact form 
of the function f(A) is usually determined by fitting the data. For a simple power law, 
the best fit is obtained with 

^ 1  
Q 

+ a3Z2A  -1/3  + a4(Z — A/2)2A 1  + 	0 a5A-  1/2  (in u) (15-30) 
U 

This is called the semiempirical mass formula because the parameters al  through a5  
are obtained by empirically fitting the measured masses. A formula of this type was  

first developed by Weizsacker in 1935. Determinations of the parameters have since  

been made on several occasions. One set providing good results is  

a l  = 0.01691  
a2  = 0.01911  
a3  = 0.000763 	 (in u) (15-31)  

a4  = 0.10175  
a5  = 0.012  

Using these parameters, the formula yields excellent agreement with the average  

trend of the measured masses of all the stable nuclei except those of very small A.  
A comparison is shown in Figure 15-10, in which the smooth curve is AE/A evaluated  
from the sum of the volume, surface, Coulomb, and asymmetry terms. Figure 15-12  

shows these terms individually. The semiempirical mass formula is of great practical  

utility because it is a simple formula that predicts with considerable accuracy the  

masses, and therefore the binding energies, of some 200 stable nuclei, and many more  

unstable nuclei. As we shall see in the following example, predictions of nuclear  
binding energies can lead immediately to predictions of other quantities of interest.  

Surface  
term  

Coulomb  
term  

f(A) = a 5 A -112  

Gathering together (15-22) through (15-29), we have  

MZ,A = 1.007825Z + 1.008665(A — Z) — a l A + a2 A 2I 3  

(15-29)  

+1  

Volume  
term  

Asymmetry  
term  

Net binding  
energy per  

nucleon  

I 	I 	 I 	i 	i 	i 	I 	l 	i 	 i 	l 	t 	i 	i 	i 	l  

50 	 100 	 150 	 200 	 250  

Mass number A  

Figure 15-12 Illustrating how the volume, surface, Coulomb, and asymmetry terms of the  
semiempirical mass formula combine to yield the average binding energy per nucleon.  
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Example 15-7. Use the semiempirical mass formula to predict the binding energy made avail-
able if a 92U235  nucleus captures a neutron. This is the energy which induces fission of the 
92U236  nucleus that is formed in the capture.  

•The binding energy is  

En = {[M92,235 + M0,1] — [M92,236]}c 2  

The term in the first square bracket is the mass of a 92U235  atom plus the mass of a neutron,  
which are the constituents of the 92U236  atom whose mass appears in the second square brac-
ket. Since the neutron mass, M 0 , 1 , is precisely 1.008665u, the first two terms from the semi-
empirical mass formula, (15-30), cancel out in the expression for En . Then we obtain  

2/3 	(92) 2 	(92 — 235/2) 2 ] 
En  = —a i (235) + a2(235)213 + a, 

	+ a4 	235 	J  
(92)2 	(92 — 236/2)2  2 

	

— [—ai (236)  + a2 (236) 213  + a3  (2 
 6) 13  + a4 	236 	(236)1/2 

 cz  

=  {

ai  —  a2 [(236)213  — (235) 2/3 ] + a3 (92) 2 
 r 1 1  

 L (235) 1/3  (236) 1/3]  

— a4 
[(26.0) 2  (25.5)2 1 +  a5  ^ c2 

 236 	235 J (236) 1 / 2  

{0.0169 — 0.0191 x 0.11 + 0.00076 x 1.9 — 0.1018 x 0.097 + 0.012 x 0.065}c 2  _ {0.0169 — 0.0021 + 0.0014 — 0.0099 + 0.0008}c 2  
= {0.0071u}c2  = 6.6 MeV  

where we have used (15-20) to convert to MeV.  

If the neutron has negligible kinetic energy before it is captured, the 92U236  nucleus is  
formed in a state of excitation energy equal to En . As we shall discuss at length in the next  
chapter, the excitation energy often sets the nucleus into a vibration in which it oscillates  

between being elongated (having a positive quadrupole moment) and being flattened (having  

a negative quadrupole moment). This vibration cannot take place without the excitation  

energy since the surface term of the semiempirical mass formula inhibits departures of the  

nucleus from the approximately spherical shape it has in its ground state. When the nucleus  

has a maximum elongation, the effect of the Coulomb term can cause it to fission.  

Of great importance in nuclear reactor technology is the fact that En  for neutron capture by  
a 92U238  nucleus is about 1.5 MeV smaller than the value just calculated for capture by  

92U235  The terms in the preceding expressions have almost the same values, except that the  

contribution of the pairing term (the last term) is negative instead of positive. Since all 92U  
nuclei require an excitation of about 6 MeV to overcome the surface term inhibition,  

will fission only if the neutron it captures brings in more than about 1 MeV of kinetic energy,  

in addition to its binding energy. We shall see that this means 92U238  is not very useful in the  
"chain reaction" that takes place in reactors. •  

The liquid drop model is the oldest, and most classical, nuclear model. At the time  
the semiempirical mass formula was first developed, mass data was available, but  

not much else was known about nuclei. The parameters were purely empirical, and  

there was not even a qualitative understanding of the asymmetry and pairing terms.  

Nevertheless, the formula was significant because it described fairly accurately the  

masses of hundreds of nuclei in terms of only five parameters. At present we do have  

an insight into the origin of the two terms mentioned. And the most important  

parameter, the al  of the volume term, is no longer purely empirical. Nuclear theory  
has been developed to the point that it predicts the value of a l , reasonably well, in  
terms of the detailed properties of nuclear forces. The nuclear theory, which is largely  

the work of Brueckner, is very similar to the Hartree theory of the atom in the sense  

that it involves self-consistent calculations for a system of fermions, but the calcula-
tions are even more complicated because of the complicated nature of nuclear forces.  

We shall make no attempt to describe them.  

92U238  
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15-6 MAGIC NUMBERS 

The liquid drop model gives a good account of the average behavior of nuclei in 
regard to mass, or binding energy. Since binding energy is a direct measure of sta-
bility—the higher the binding energy of a nucleus the more stable it is—the liquid 
drop model describes well the average behavior of nuclei in regard to their stability. 
However, nuclei with certain values of Z and/or N show significant departures from 
this average behavior by being unusually stable. These values of Z and/or N are the 
magic numbers 

Z and/or N = 2, 8, 20, 28, 50, 82, 126 	 (15-32) 
The situation is analogous to the unusual stability of the electron shells of noble gas 
atoms containing Z = 2, 10, 18, 36, 54, 86 electrons. But in the nuclear case the in-
dications are not as pronounced as in the atomic case, and it is necessary to consider 
several of them to demonstrate the "magic" character of the numbers quoted in 
(15-32). The two most convincing are: 

1. Nuclei prefer having magic Z and/or N. This can be seen by inspecting Figure 
15-11. To quote just two examples, there are six stable isotopes for Z = 20, whereas 
the average number of stable isotopes in that region is about two. For Z = 50 there 
are ten stable isotopes, whereas the average number in that region of the periodic 
table is about four. All plausible explanations of how nuclei were originally formed 
relate this type of abundance to stability; i.e., the more stable a particular type of 
nucleus is, the more numerous are its stable isotopes. 

2. Figure 15-10 shows that the average binding energy per nucleon is significantly 
higher for nuclei that have Z and/or N equal to 2 or 8 than it is for neighboring 
nuclei. The outstanding example is Z He4, for which Z = N = 2. The effect is even 
more pronounced if a measure of stability more sensitive than AE/A is considered. 
This is En , or Ep, the minimum energy required to separate a neutron, or proton, 
from the nucleus; it is usually called the binding energy of the "last" neutron, or 
proton. As an example, for 'He' the value of En  is 20.6 MeV (i.e., this much energy 
is required to produce the reaction 2He4 2He3  + ° n ' ). The value of Ep  for  2He4  is 
19.8 MeV. These are abnormally high. Figure 15-13 is a plot of the difference between 
the value of En  measured for a number of nuclei, and the value predicted by the 
semiempirical mass formula. Except for the effect of the pairing term, the predicted 
value is a smooth function that decreases slowly from around 8 MeV for intermediate 
values of N to around 6 MeV for large values of N (as we saw in Example 15-7 where 
we predicted En  for 92U236).  The unusual stability of nuclei with N = 28, 50, 82, 126 
is shown by the exceptionally large energy required to remove their last neutron. 

There are a number of other somewhat less convincing pieces of evidence for the 
magic numbers, such as the fact that for most of the known spontaneous neutron 

S +3 — 
+2 — 	•• 	 • 

—1— • 

—2 — 	 SF 
W -3  

20 28 40 50 60 	80 82 100 	120 126 140 
N 

Figure 15-13 The difference between the binding energy of the last neutron and the pre-
diction of the semiempirical mass formula, as a function of the number of neutrons in the 
nucleus. These data provide clear, evidence for the magic numbers 28, 50, 82, and 126, for 
neutrons. Similar evidence shows that 20, 28, 50, and 82 are also magic numbers for 
protons. But there is no concrete evidence, pro or con, concerning 126 for protons since 
nuclei with such large Z values have not yet been detected. 



emitters, like 8017, 36 Kr 87 , and 54Xe 137 , N equals a magic number plus one. This 
implies an unusually small affinity for the extra neutron. 

The analogy between nuclear and atomic magic numbers prompted many people 
to look for an explanation of the nuclear phenomenon that was similar to the ex-
planation of the atomic phenomenon. The student will recall that the key point in 
that explanation is the formation of closed shells by the electrons moving indepen-
dently in the atomic potential. However, when the nuclear magic numbers were first 
being discussed seriously, around 1948, it seemed very difficult to understand how 
nucleons could move independently in a nucleus. The reason was that the liquid drop 
model had been dominant for a number of years, and it seemed basic to this model 
that a nucleon in a nucleus (of density — 10 1s  kg/m 3 !) would constantly interact with 
its neighbors through the strong nuclear force. If so, the nucleon would be repeatedly 
scattered in traveling through the nucleus, and it would follow an erratic path, re-
sembling Brownian motion much more than the motion of an electron moving in-
dependently through its orbit in an atom. 

15-7 THE FERMI GAS MODEL 

Weisskopf first pointed out that there is a simple explanation of how nucleons can 
move independently through a nucleus in its ground state. The explanation is based 
on the Fermi gas model of the nucleus. This model is essentially the same as the free-
electron gas model of the conduction electrons in a metal, considered in Section 11-11. 
It assumes that each nucleon of the nucleus moves in an attractive net potential, that 
represents the average effect of its interactions with other nucleons in the nucleus. 
The net potential has a constant depth inside the nucleus since the distribution of 
nucleons is constant in this region; outside the nucleus it goes to zero within a dis-
tance equal to the range of nuclear forces. Thus the net potential is approximately 
like a three-dimensional finite square well of radius a little larger than the nuclear 
radius, and of depth that will be determined in Example 15-8. In the ground state of 
the nucleus, its nucleons, which are all fermions of intrinsic spin s = 1/2, occupy the 
energy levels of the net potential in such a way as to minimize the total energy without 
violating the exclusion principle. 

Figure 15-14 indicates the quantum states filled by the neutrons in the ground state 
of a nucleus. Since protons are distinguishable from neutrons, the exclusion principle 
operates independently on the two types of nucleons, and we must imagine a separate 
and independent diagram representing the quantum states filled by the protons. It is 
immediately apparent from these diagrams why the exclusion principle prevents almost 
all the nucleons from scattering from each other when the nucleus is in its ground 
state. The point is that almost all the states which are energetically accessible are 
already completely filled, and so there can be essentially no collisions except those 
in which two nucleons of the same type exchange quantum states. The net effect of 
such an exchange of two indistinguishable particles is, however, the same as if there 
had been no collision at all. Of course, if there is a set of partly filled degenerate 
states at the Fermi energy, the few nucleons in these states can collide with each 
other, but only a small fraction of the total number of nucleons can be in such states. 
Thus we see why almost all of the nucleons that compose a nucleus can move freely 
within the nucleus if it is in its ground state. 

Example 15 -8. Evaluate the Fermi energy of a typical nucleus, and use the results to deter-
mine the depth of the net nuclear potential. 
•The Fermi energy, SF, is the energy indicated in Figure 15-14 of the nucleon in the highest 
filled level of the system, measured from the bottom of the potential well. It is related to the 
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Figure 15-14 A schematic representation of the energy 
levels filled by the neutrons in the ground state of a nucle-
us. The lowest levels are filled, according to the limitations 
of the exclusion principle, up to the Fermi energy S F . 

nucleon mass M, and nucleon density p, by (11-57), which we write here as 
2h2 3 )2/3  

gF 
2M \n P  

(15-33) 

(This expression can be obtained directly from the equation for the energies of the levels of 
a three-dimensional square well simply by filling its lowest levels up to the Fermi energy.) 

Let us consider the Fermi gas of neutrons in a uniform spherical nucleus of radius 
r' = aA1 / 3  

For a typical nucleus, the number of neutrons is 
N 0.60A 

Thus 
N 

P'=4  
na 3A 

3 

0.60A 	0.45 
P= 

and the Fermi energy is 
n2h2 (0.26) 

F 	2Ma2 

Using a radius constant a ^ 1.1F consistent with the electron scattering measurements as 
summarized by (15-6), and evaluating the other parameters, we obtain 

cfF  ^ 43 MeV 

The relations between the depth of the potential Vo , the Fermi energy 4, and the binding 
energy of the last neutron En , are shown in Figure 15-15. As mentioned in the previous 
section, E„ is approximately equal to 7 MeV for a typical nucleus. Thus for this nucleus the 

aA 1/3 

gives 

1.33na 3 A na3  

(15-34) 

T 0 
E„ 

Vo 
T 
110  
0) 
C w 66F 

r 
Figure 15-15 Illustrating the relation between the 
depth Vo  of a nuclear square well potential of 
radius r' = aA 1 " 3 , the Fermi energy enF, and the 
binding energy E„ of the last neutron. 
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depth of the net nuclear potential acting on its neutrons is 

Vo= gF+ E„^ 43 MeV + 7 MeV = 50 MeV 
A very similar result is obtained for the net nuclear potential for protons. (Of course pro- 
tons also feel a net Coulomb potential exerted by the charges of other protons in the nucleus.) • 

There is evidence from a number of studies of the behavior of nucleons of various energies 
that the depth of the net nuclear potential, Vo , is not a constant, but instead it decreases slowly, 
and approximately linearly, as the energy of the nucleon increases. This causes no difficulty 
because its effect on the dynamics of nucleon motion in the net potential can be completely 
described by introducing an effective nucleon mass, in much the same way as we did in Section 
13-7 when treating the independent particle motion of a conduction electron in the net poten-
tial for a crystal lattice. That is, it is possible to continue treating V o  as a constant with the 
value we have obtained in Example 15-8, if the actual nucleon mass M is replaced by an 
effective nucleon mass M*. Furthermore, because the actual change in, Vo  is slow, M* is not 
very different from M, and so for most considerations involving nucleons of not too high 
energy it is permissible to take M* = M, i.e., to completely ignore the fact that Vo  is not quite 
a constant. 

There is also a dependence of the depth of the net nuclear potential V o  seen by a proton, 
or by a neutron, on the difference between the number Z of protons and number N of neu-
trons that the nucleus contains. This is described by adding to Vo  a term A Vo  cc ± (N — Z)lA, 
with the plus sign used for the potential seen by a proton and the minus sign used for the 
potential seen by a neutron. The dependence is a result of the exclusion principle, which 
restricts the interactions between two protons, or two neutrons, to certain quantum states, 
but puts no restrictions on the interactions between a proton and a neutron. Consequently, 
the attractive interaction between two nucleons in a nucleus is stronger between a proton and 
a neutron than between two protons or between two neutrons. Thus the net nuclear potential 
acting on a proton is deeper than that acting on a neutron if the nucleus contains more 
neutrons than protons in proportion to the fractional neutron excess, and vice versa if there 
is a proton excess. This dependence plays an important role in the effect described by the 
asymmetry term of the semiempirical mass formula, as we shall indicate. In most other consid-
erations it is not so important and can be ignored. 

The tendency for nuclei to have Z = N also has a simple explanation in the Fermi 
gas model. Consider a nucleus of very small Z, for which the Coulomb force acting 
between protons can be ignored in comparison to the stronger nuclear force. In this 
nucleus there are two independent Fermi gases, the neutrons and the protons. Both 
move in net nuclear potentials which, in this approximation, are the same—basically 
because the nuclear force acting between neutrons is the same as the nuclear force 
acting between protons since the nuclear force is charge independent. As is indicated 
in Figure 15-16, the energy levels of the two systems must then also be the same in 
this approximation. For a given value of A, the total energy of the nucleus is obvi-
ously minimized if the levels are filled with Z = N, because nucleons would occupy 

Figure 15-16 A schematic representation of independent 
Fermi gases of neutrons and protons in the minimum 
energy state of a nucleus of very small Z, which is indi-
cated by a square well with rounded edges. Neutrons 	Protons 
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levels of energy higher than necessary if this condition were violated. A nucleus can 
adjust its N and Z values while maintaining a fixed value of A = N + Z by using 
the beta decay process (discussed in Chapter 16) to convert neutrons to protons, or 
vice versa. When the argument is made quantitative, it leads to the mathematical 
expression, (15-27), used in the asymmetry term of the semiempirical mass formula. 
The reason why the factor 1/A appears in the term is that the levels of a three-
dimensional potential well are more closely spaced the larger the value of A. So with 
increasing A there is a scaling down of the energy penalty, associated with violating 
the N = Z condition, that is described by the factor (Z — A/2) 2 .  

The effect of the term AVo  cc ±(N — Z)/A in the depth of the net nuclear potential, ex-
plained previously, also contributes significantly to the presence of the asymmetry term in the  

U semiempirical mass formula, and its consequences. Consider a typical nucleus containing N  
neutrons and Z protons, with N > Z. The contribution of the AK, term to the total binding  

energy from the Z protons is canceled by its contribution from the first Z neutrons. But there  
is an uncanceled contribution from the remaining (N — Z) neutrons which decreases the total  
binding energy, or increases the nuclear mass, in proportion to (N — Z) 2/A cc (Z — A/2) 2/A.  

15-8 THE SHELL MODEL  

The Fermi gas model establishes the validity of treating the motion of the bound  

nucleons in a nucleus in terms of the independent motion of each nucleon in a net  

nuclear potential. The next step is obviously to solve the Schroedinger equation for  

that potential, and to obtain a detailed description of the behavior of the nucleons.  

This procedure is employed in the shell model of the nucleus. The shell model plays  
a role in nuclear physics comparable to that played by the Hartree theory in atomic  

physics. But the shell model is cruder since the exact form of the net atomic potential  

is internally determined by the self-consistent atomic theory, while the exact form of  

the net nuclear potential must be inserted into the nuclear model. Of course, some  

general information about the net nuclear potential is available from the Fermi gas  

model.  
The procedure of the shell model involves first finding the neutron and proton  

energy levels for an assumed form of the net potential of a particular nucleus. That  

is, if each nucleon is treated as moving independently in a net nuclear potential V(r),  

the nucleon has allowed energy levels which are determined by the form of V(r), and  
which are found by solving the Schroedinger equation for that potential. The only  

forms for the net potential considered are spherically symmetrical functions, V(r),  
where r is the distance from a nucleon to the center of the nucleus; other forms  

would greatly increase the difficulty of solving the Schroedinger equation. Just as in  

the Hartree theory of atoms, it is found that the energy of a nucleon energy level of the  

net nuclear potential V(r) depends on quantum numbers n and 1, which specify the  
radial and angular behavior of a nucleon in the level. The quantum number 1 is just  
the same as the one we encounter throughout atomic physics when dealing with any  

spherically symmetrical potential like V(r). The quantum number n used in nuclear  
physics is related to, but not the same as, the quantum number of atomic physics  

that is symbolized by the same letter. Because of the approximate square well form  

of the net potential V(r) which arises in nuclear physics, it is more convenient in that  

field to use what is called the radial node quantum number n.  
Figure 15-17 contains schematic illustrations of some of the energy levels, and  

associated eigenfunctions, of the bound states of a three-dimensional square well  

V(r). On the left, the n dependence of the energies of the levels is indicated for a well  

which is wide and deep enough to bind a ls, 2s, and 3s state. The radial behaviors  
of the corresponding eigenfunctions iji(r,9, p) = R(r)0(9)t(q) are indicated by plot- 



Figure 15 -17 Left: Illustrating qualitatively the product rR of the radial coordinate r and 
the radial dependence R of the eigenfunction V/ for states, of the indicated three-dimensional 
square well, with I = 0 and n = 1, 2, 3. Each is shown by using its energy level as an r 
axis. Since the radial probability density is P = 4nr2 R*R = 4n(rR) 2 , if the student visualizes 
the squares of the functions depicted he can make comparisons with the radial probability 
densities for states of a one-electron atom Coulomb potential, or a multielectron atom 
Hartree net potential, by looking also at Figures 7-5 or 9-10. In so doing, he should keep 
in mind that the quantum number n is used differently in atomic physics. The fact that the 
radial node quantum number n of nuclear physics just specifies the number of nodes of 
rR within the well is made apparent by this figure. Right: The same for states with n = 1 
and I = 0, 1, 2. The way that what might be called a centrifugal effect tends to prevent 
a nucleon from approaching r = 0 as the orbital angular momentum quantum number I 
becomes larger than 0 is seen in this figure. 

ting for each rR(r), whose square is proportional to the radial probability density, 
using the appropriate energy level as an r axis. The notation is means n = 1 and 
l = 0, as usual. Note that for fixed 1, the energy increases with increasing n. The reason 
is that rR(r) for n = 1 contains essentially one-half of an oscillation within the well 
region, rR(r) for n = 2 contains two half oscillations, and rR(r) for n = 3 contains 
three half oscillations. So the eigenfunctions kfr for higher n necessarily have higher 
curvature, and higher curvature requires higher kinetic or total energy. Note also 
that the number of nodes within the well of the radial dependence of r times each 
eigenfunction is just equal to n, as its name implies. 

There are bound states in the well of Figure 15-17 for values of 1 other than 1 = 0. 
On the right side of that figure the 1 dependence, for fixed n, of the energies of the 
levels, and r times the radial behavior of the corresponding eigenfunctions, are indi-
cated by showing them for the ls, 1p, and ld states. Since all of these have n = 1, 
all the rR(r) have only one radial node. Nevertheless, the radial behavior of the 
eigenfunction i/r changes with changing 1 because of the property expressed by (7-32) 

i/roc R(r)ocr` 	 r —> 0 
and discussed at length in Chapters 7 and 9. This is the familiar tendency of a particle 
in states of any spherically symmetrical potential, for which orbital angular momen-
tum is constant so that 1 is a good quantum number, to avoid the origin more .and 
more as 1 gets larger. Thus, with increasing 1 the one-half of an oscillation in the 
various rR(r) for n = 1 is contained within a smaller and smaller region of the r axis. 
So the eigenfunctions i/i have higher curvature, and the corresponding energy levels 
are found higher in the well. 

The results concerning three-dimensional square wells that are of most conse-
quence are that the energies of bound levels increase with increasing n, for a given 1, 
and that they also increase with increasing 1, for given n. The student should further 
observe that when using the radial node quantum number n of nuclear physics there 
is no restriction on the largest possible value of l for a given n. 

There is such a restriction in atomic physics because the quantum number n used there, 
called the principal quantum number, is just equal to the sum of the radial node quantum 
number and the orbital angular momentum quantum number. That is 

nprincipal = nradial + 1 
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Since the minimum value of nradial  is 1, the largest possible value of 1 for a given nprincipai is  

(nprincipai — 1). The reason why nprincipal is used in atomic physics is that when V(r) is an  
attractive Coulomb potential, V(r) cc — 1/r, the way the energy of a level increases with in-
creasing nradial  happens to be precisely the same as the way it increases with increasing 1. Thus 
the energy of the levels of a Coulomb potential does not depend on both nradiai  and 1, but 
only on their sum nprincipal. This gives yet another insight into the origin of the degeneracy 
of the energy levels of the hydrogen atom. 

Additional insight into the properties of the quantity rR can be obtained by considering the 
radial part of the time-independent Schroedinger equation for a spherically symmetrical po-
tential V(r), which is (7-17). Inspection will show that we can immediately put it in the form 

^n 	 h2  d2 (rR) [1(1( + 1)h2 	ll 

2µ dr2 
+ 
	

2µr2  + V(r)J (rR) = E(rR) 
cs 

 

This is seen to be equivalent to the Schroedinger equation in the function rR for motion in one  
dimension, r, except that the term 1(1 + 1)h2 /2121.2 = L2 /2 µr 2  is added to the potential V(r).  
This term is often called the centrifugal potential, for reasons which can be seen by considering  

the energy conservation equation for a classical particle of mass µ moving under the influence  
of a potential V(r). As a particle will move in a plane containing the origin, it can be described  

by the coordinates r, 0, and the equation is  
2 	 2 

E = 

 
1 µ (dry  + 1 (r  µ de 

 I + V(r)  

Also the orbital angular momentum of the particle is a constant 

= 
2  d8 

L — µr dt  

so the energy equation can be written 
2 	2 

E=
1 

2 µ (dt) + L2 	r2 
+  V(r)i 

µ  
This is seen to be the energy conservation equation for classical motion in one dimension, if  
r is the one-dimensional coordinate, with the term L 2/2µr 2  added to the potential V(r). This  
positive term acts like a repulsive potential, tending to keep the particle away from the origin.  

The higher the value of L, the stronger is the effect, in agreement with our usual conclusion.  

Note also that for 1 = 0 the differential equation for rR is mathematically identical to the  
one-dimensional time-independent Schroedinger equation for fr. This is why the plots of rR in  
Figure 15-17 for ls, 2s, and 3s states look so much like the plots of  ip for a one-dimensional  
square well potential in that they are both sinusoidal within the well and decreasing exponen-
tial outside. They are not identical, however, because rR necessarily has the value zero in all  
states at the point r = O.  

Having found the nucleon energy levels in the assumed square-well-like form of the  

net nuclear potential V(r), the next step of the shell model is to "construct" the nucleus  

by filling them, in order of increasing energy, with the N neutrons and Z protons that  
the nucleus contains. The exclusion principle limits the occupancy of each level to  
2(2l + 1) neutrons, or protons. This occupancy corresponds to the 2 possible values  

of the quantum number m s, which specifies the orientation of the intrinsic spin  

angular momentum of a nucleon, and the (2l + 1) possible values of the quantum  

number ml ,  which specifies the orientation of the orbital angular momentum of the  

nucleon. These two z component angular momentum quantum numbers are the same  
as in the Hartree theory of atoms. And the procedure for constructing a nucleus by  

filling its nucleon energy levels is just the same as that used in the Hartree theory to  

construct an atom by filling its electron energy levels, except that in a nucleus there  

are particles of two distinguishable species—the neutrons and the protons—to which  

the exclusion principle applies independently. Originally, it was hoped that a partic-
ular form for the potentials V(r) of the various nuclei could be found in which the  

ordering and spacing of the nucleon energy levels would be such that an unusually  



tightly bound level, containing an appropriate number of neutrons or protons, would 
completely fill in those nuclei having values of N or Z equal to the magic numbers—
just as the filling of unusually tightly bound electron energy levels leads to the noble 
gas atoms for Z equal to the atomic magic numbers. Many different detailed forms 
for the radial dependence of the nuclear potential were tried (including one aptly 
called the "wine bottle potential," a square well with a bump centered in the bottom, 
like the profile of a wine bottle bottom, which suppresses somewhat the 1 dependence 
of the energy). It was found that there is no form for V(r) which leads even to the 
ordering of the nucleon energy levels required to explain the magic numbers. 

The mystery of the magic numbers was solved in 1949 by Mayer, and indepen-
dently by Jensen, who introduced the idea of a nuclear spin-orbit interaction. They 
proposed that each nucleon in a nucleus feels, in addition to the net nuclear potential, 
a strong inverted spin-orbit interaction proportional to S • L, the dot product of its spin 
and orbital angular momentum vectors. Strong means that the interaction energy is 
much (about 20 times) larger than would be predicted by using the atomic spin-orbit 
formula, (8-35), equating V(r) to the net nuclear potential and m to the nucleon mass. 
Inverted means that the energy of the nucleon is decreased when S • L is positive, and 
increased when it is negative. Thus the sign of the interaction is opposite to the sign 
of the magnetic spin-orbit interaction experienced by an electron in an atom; that is, 
the interaction energy is negative when the total angular momentum of the nucleon 
J = S + L has its maximum possible magnitude (i.e., when S and L are as parallel as 
possible, and S • L is positive). However, as the magnitude of the spin-orbit interaction 
is proportional to S • L just as it is for an atomic electron, the magnitude of the spin-
orbit splitting of the nucleon energy levels will be approximately proportional to the 
value of the quantum number 1, just as it is for the electron energy levels. Although 
there are similarities between the atomic and nuclear spin-orbit interactions, their 
differences make it clear that the latter is not magnetic in origin. Instead, it is an 
attribute of the nuclear force whose origin will be explained in Chapter 17. 

The left-hand part of Figure 15-18 shows the ordering and approximate spacing 
of the energy levels which nucleons are filling in nuclei with potentials V(r) in the form 
of square wells with rounded edges, like the potential shown in Figure 15-16. As the 
levels are filled, in proceeding up the periodic table, the depth of the potentials is held 
constant while their radii increase in proportion to the cube root of the number of 
nucleons they contain in the filled levels. The same general features seen in the left 
part of Figure 15-18 are found in all spherically symmetrical potentials that have a 
form bearing any resemblance to an attractive square well. Of course, the details of 
the ordering and spacing of the nucleon energy levels depends on the details of the 
competition between the n dependence and the 1 dependence of the energy, and this 
depends on the details of the radial behavior of the nuclear potential; but any reason-
able nuclear potential gives essentially the same ordering of the levels according to n 
and 1 as that for square wells with rounded edges, and it also gives gaps between the 
levels in essentially the same places. Since, as we saw in Example 15-8, the net nuclear 
potential is related to the nuclear mass density, square wells with rounded edges are 
most certainly the correct forms for the potential as they reflect the constant inte-
rior values, and fairly gradual changes at the nuclear surface, of the mass densities. 
But as we have already said, and will see specifically in Example 15-9, the ordering 
and spacing of the energy levels for these potentials, shown in the left-hand part of 
Figure 15-18, does not lead to the observed magic numbers if there is no spin-orbit 
interaction. 

The right-hand part of Figure 15-18 shows how the nucleon energy levels are split 
by the nuclear spin-orbit interaction. In the presence of the spin-orbit interaction, m 1  
and ms  are no longer useful quantum numbers because the z components of the 
orbital and intrinsic spin angular momenta of a nucleon are no longer constants when 
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Figure 15-18 Left: The order of filling, as the occupancy and well radius increase, of the  

levels of rounded edge square wells with no spin-orbit interaction. Right: The levels that  
arise when a strong inverted S • L interaction is added. The column marked (2j + 1) shows  
the number of like nucleons that may occupy the corresponding level without violating the 
exclusion principle. The column marked E (2j + 1) gives for each level the cumulative  

number of nucleons that lie in all levels up through that level. Significant energy gaps lie  

above each of the levels marked with a magic number in the last column.  

these angular momenta are coupled by the interaction. Thus n, 1, j, mi  must be used  
to label the split energy levels. The quantum number j specifies the magnitude of the  
total angular momentum, J, of a nucleon, which is the sum of its spin and orbital  
angular momenta; and m;  is the quantum number specifying the z component of its  
total angular momentum, J. As a result of the spin-orbit interaction, the energies  
of the levels depend on j as well as on n and 1, with the larger j (corresponding to  
the larger value of J, or S • L) yielding the smaller energy since the sign of the nuclear  
spin-orbit interaction is inverted. According to the exclusion principle, each of these  
levels has a capacity of (2j + 1), which is equal to the number of possible values of 

 m; . This is shown in the first column on the right in the figure. The second column  



shows the total capacity of the levels up to and including the level in question. The 
third column shows the same thing for each level which lies unusually far below 
the next higher level. Since these are the levels which will be unusually tightly bound, 
we see that the shell model with strong inverted spin-orbit interaction predicts pre-
cisely the magic numbers of (15-32). 

Figure 15-18 is so frequently used by nuclear physicists that many of them have it memo-
rized. An easier procedure is to construct it by using the acrostic 

spuds if pug dish of pig 
which means: (eat) potatoes if the pork is bad. Deletion of all vowels, except the last, yields 

spdsfpgdshfpig 

This is the ordering of 1 for all the unsplit levels, through those leading to the magic number 
126. The values of n are assigned easily since the first s level is ls, the second is 2s, etc. The 
remainder of the figure is constructed by applying an inverted spin-orbit splitting, proportional 
to 1. 

It should also be pointed out that Figure 15-18 is not an energy-level diagram for any 
particular nucleus; instead it gives the order in which the nuclear levels appear below the 
Fermi energy as the radius of the nuclear potential increases in proportion to A 113  .  That is, it 
gives the order in which the highest energy levels of the various nuclei fill. It also gives an 
indication of the relative magnitudes of the separation between adjacent levels as they are 
filling So it is analogous to the diagram that could be constructed for atoms by using only the 
left side of Figure 9-14. 

Finally, we should mention that there is some recent experimental and theoretical evidence 
showing that there may be small but important changes from Figure 15-18 in the filling order 
of the highest levels in the case of protons. We shall discuss this in Section 16-2. 

Example 15-9. Use Figure 15-18 to predict the first four magic numbers for nuclei with 
potentials in the form of square wells with rounded edges (a) under the assumption that there 
is no spin-orbit interaction, and (b) under the assumption that there is a strong inverted spin-
orbit interaction. 
•(a) If there is no spin-orbit interaction then the nucleon energy levels are simply those shown 
on the left-hand part of the figure. Recalling that the capacity of each level is 2(21 + 1), and 
that s, p, d, f, g, ... mean l = 0, 1, 2, 3, 4, ... , we see that the first few levels, and their capacities, 
are, in order of increasing energy: ls, capacity 2; 1p, capacity 6; ld, capacity 10; 2s, capacity 2; 
1f, capacity 14; 2p, capacity 6; 1g, capacity 18. The first magic number will be the number 
of nucleons required to fill the first level, i.e., 2. The next magic number will be the number 
required to fill the first two levels, i.e., 2 + 6 = 8. If the third and fourth levels are very close 
in energy, as indicated in the figure, the next magic number will be the number of nucleons 
required to fill the first four levels, i.e., 2 + 6 + 10 + 2 = 20. So far these magic numbers are in 
agreement with the observed magic numbers: 2, 8, 20, 28, 50, 82, 126. But the next magic 
number predicted in the absence of spin-orbit interaction will be the total number of nucleons 
required to fill the first five levels, or the first six levels, depending on whether or not the 
fifth and sixth levels are considered to be very close in energy. The two possibilities are, 

 2 + 6 + 10 + 2 + 14 = 34, or 2 + 6 + 10 + 2 + 14 + 6 = 40. Both disagree with the observed 
magic number 28. Similar numerology will make it apparent that the higher predicted magic 
numbers also disagree with those that are observed, and that there is no way to remove the 
discrepancy by rearranging the spacing, or even the ordering, of the nucleon energy levels in 
the absence of spin-orbit interaction. 

(b) If there is a strong inverted spin-orbit interaction, then the nucleon levels are split into 
the filling pattern shown on the right-hand part of Figure 15-18. The figure also shows the 
capacity (2j + 1) of each level, as well as the sum E(2j + 1) of its capacity and the capacity of 
all the lower energy levels, as explained in the text. The spin-orbit interaction splitting does not 
change the first three predicted magic numbers, 2, 8, 20, as is clear from the figure, so the 
agreement with observation is maintained. But agreement is also obtained with the higher 
magic numbers. For instance, the spin-orbit interaction splits the 1f level into the 1f 712, whose 
energy is depressed, and the 1 f 5/2,  whose energy is elevated. Since the capacity of the 1 f 7/2 
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level is (2j + 1) = 2 x 7/2 + 1 = 8, the magic number after 20 is predicted to be 20 + 8 = 28,  
in agreement with the observation. The observed magic number 50 is obtained because the  
1992  level, with a capacity of 2 x 9/2 + 1 = 10, is depressed in energy and so comes close to  
the 2p level. Since the total number of nucleons filling the levels up to and including the 2p is  
40, as we saw earlier, the total number filling the levels up to and including the 1g 912  is  
40 + 10 = 50. Inspection of Figure 15-18 makes the origin of the remaining magic numbers  
apparent. Note that the fact that the spin-orbit splitting increases in magnitude, with increas-
ing 1, plays an important role in achieving agreement with the observations. •  

15-9 PREDICTIONS OF THE SHELL MODEL  

The shell model can do much more than predict the magic numbers, and all their  

consequences. For instance, it can also predict the total angular momentum of the  

ground states of almost all the nuclei. Consider nuclei for which both N and Z are  
magic, such as 8016, 20Ca40, and 

 

82 Pb208 . According to the model, they will contain  

only completely filled subshells of neutrons and protons, and the exclusion principle  

therefore requires that, for both the neutron and proton systems, the intrinsic spin  

and orbital angular momentum vectors of all the nucleons couple together (add up)  

to yield zero total angular momentum. (The formal proof of this obvious requirement  

is essentially the same as that given in Appendix P.) This agrees with the measure-
ments, discussed in Section 15-2, which show that for these nuclei the total angular  

momentum quantum number, called the nuclear spin, is i = O. For nuclei which con-
tain a magic number of nucleons of one type, and a magic number plus, or minus,  

one of nucleons of the other type, the exclusion principle demands that the total angu-
lar momentum of the nucleus be the total angular momentum of the extra nucleon,  

or (compare Appendix P) of the hole. For such nuclei the nuclear spin i should equal  
the total angular momentum quantum number j of the extra nucleon, or hole.  

Example 15-10. Use Figure 15-18, and the exclusion principle argument just stated, to  

predict the ground state spins of the following nuclei: (a) 7N15 (b)  80 17 (c) 19K39 (d)  82pb207  

and (e)  
■ (a) Figure 15-18 predicts that 7N15  is doubly magic except for a proton hole in the 1 p1/2  
subshell. So it should have a spin i equal to the value j = 1/2 for that subshell. This prediction  
agrees with measurement. It will also be obtained from a somewhat different point of view in  

Example 15-11.  
(b)The figure predicts that 8 0 17  is doubly magic except for an extra neutron in the 1d572 

 

subshell. So it should have i = j = 5/2, in agreement with measurement.  
(c)19K 39  is predicted to be doubly magic except for a proton hole in the 1d 3/2  subshell, so  

it should have i = j = 3/2. It does.  
(d)According to Figure 15-18, 82Pb207  is doubly magic except for a neutron hole in the  

11 13/2 subshell. So the exclusion principle predicts that it should have a spin i = j = 13/2. How-
ever, the measured spin is i = 1/2. This is not a failure of the exclusion principle, but instead  

is a failure of Figure 15-18, as we shall explain shortly.  

(e)The figure predicts that 83 Bi 209  is doubly magic except for an extra proton in the 1h 9î2  
subshell. So its spin should be i = j = 9/2. This agrees with measurement. 	 • 

Now consider nuclei for which N and/or Z are not near magic numbers. These 
nuclei contain subshells with several nucleons, or holes, and the problem of how the 
intrinsic spin and orbital angular momenta of these nucleons couple is much the same 
problem as that studied in Chapter 10 in connection with the behavior of electrons 
in atoms. But there are important differences between atoms and nuclei in this regard. 
One is that most atoms obey what is called LS coupling, while essentially all nuclei 
obey what is called JJ coupling. The difference in the angular momentum coupling 
schemes obeyed by atoms and nuclei has to do with the fact that the spin-orbit inter-
action is relatively weak in atoms, and quite strong in nuclei (see Section 10-3). Thus 
in nuclei the spin-orbit interaction dominates the coupling. That is, in JJ coupling, the 

83Bi209  



intrinsic spin angular momentum of a nucleon couples strongly with its own orbital 
angular momentum to form the total angular momentum for that nucleon. This hap-
pens for each nucleon. Finally, the several total angular momenta that have been 
formed couple together less strongly to form the total angular momentum for the 
nucleus. Another difference between the angular momentum couplings in atoms and 
nuclei is that the final coupling which forms the total angular momentum of the 
nucleus is particularly simple. This is apparent from the fact that all nuclei with even 
N and even Z are found to have a total angular momentum given by i = 0, as stated 
in Section 15 -2. An explanation is that, whenever there is an even number of nu-
cleons of a given species in a subshell, the total angular momenta of each of these 
nucleons couple together to yield a total angular momentum for the nucleus, which 
is zero. This is true, but the coupling is even simpler. There is much evidence indi-
cating that the total angular momenta of the protons in a subshell couple together in 
pairs, with the total angular momentum of each pair of protons equal to zero, and 
that the same thing happens for pairs of neutrons in a subshell. 

Some of the evidence for the pairing tendency has been presented before in discuss-
ing the abundance of stable nuclei, and the semiempirical mass formula. It arises 
from a pairing interaction. This is a residual nuclear interaction, i.e., a part of the 
total nuclear interaction experienced by the nucleons that is not described by the 
spherically symmetrical net potential V(r) of the shell model, or by the spin-orbit 
interaction. Although not described by these attributes of the shell model, the pairing 
interaction can be predicted from them. The net potential V(r) represents the inter-
actions experienced by a nucleon on the average. The pairing interaction represents a 
departure from the average interaction described by V(r), that arises when the nucleon 
is particularly close to another nucleon with which it can have an individual inter-
action. It involves the collision of nucleons in degenerate states of a partly filled 
subshell, mentioned in Section 15-7. A pair of nucleons having the same values of j 
but opposite values of m (e.g., j = 5/2, m;  = 5/2; j = 5/2, m;  = — 5/2) collide with 
each other in such an interaction, and after the collision enter previously empty states 
that have different but still opposite values of m;  (e.g., j = 5/2, m;  = 3/2; j = 5/2, 
m;  = — 3/2). It is clear that angular momentum is conserved in such collisions, and 
that the collisions are not inhibited by the exclusion principle. The energy of the 
system is reduced because, when colliding, the nucleons are particularly close together, 
and the exclusion principle does not prevent them from exerting on each other the 
strongly attractive short range nuclear force. 

Because the nuclear force exerted between two nucleons is strong and short range, 
the departures from the average described by the pairing interaction are pronounced. 
Thus the pairing interaction is fairly strong, although it is less strong than the spin-
orbit interaction. It is short range, just like the nuclear force leading to the fluctuation 
it represents. It is attractive because that force is attractive. A similar interaction re-
sulting from a departure from the average, called the residual Coulomb interaction, 
arises in the treatment of atoms, as we have seen in Section 10 -3. In atoms, the repul-
sive residual Coulomb interaction between the electrons in a subshell tends to make 
them form parallel couplings of their angular momenta. In nuclei the tendency is for 
antiparallel couplings because the residual nuclear interaction between the nucleons 
is attractive. The reason can be understood by carrying through arguments similar 
to those used for the atomic couplings (see Section 10-3), in the case of an attractive 
residual interaction. Briefly, these arguments show that since two nucleons of the same 
species are described by an antisymmetric total eigenfunction, on the average they are 
closer to each other if their spin angular momenta are essentially antiparallel. Also 
they are closer on the average if their orbital angular momenta are essentially anti-
parallel, because then they move in opposite directions around the same "orbit" and 
so frequently pass by each other. Thus they form a closely spaced pair if their total 
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angular momentum vectors are essentially antiparallel. When they form such a closely  

spaced pair with zero total angular momentum, the attractive nuclear force acting  

between them makes a larger contribution to the binding energy of the nucleus, and  

so makes the nucleus more stable. Hence the tendency to form a pair, and maintain  

essentially antiparallel total angular momentum vectors throughout their sequence  

of collisions with each other. These collisions change the orientation of their orbit,  

but they always move in opposite directions through whatever orbit they happen to  

be in.  
The energy decrease, arising from the coupling of a pair of nucleons of the same  

type, or pairing energy, gives rise to the preference for nuclei to have even Z and  

even N, and to the pairing term of the semiempirical mass formula. It is also  

responsible for the occasional failure of Figure 15-18 to predict correctly the ground  

state nuclear spins. For the case of 82 PbZ07 , considered in Example 15-10, the nuclear  

spin is 1/2 because it is energetically favorable for a neutron from the 3p1/2  subshell  
to pair with the odd neutron in the 111 3/2  subshell, leaving a hole in the 3p1/2  subshell. 
The reason is that the pairing energy is larger the larger the 1 values of the compo-
nents of the pair, because with increasing 1 the nucleons move in a more classical 
way (i.e., more like particles confined to orbits in a plane), and this increases the 
overlap of their wave functions (i.e., they get closer together). Since the two subshells 
have very nearly the same energy, the pairing effect dominates. 

If a subshell contains an even number of nucleons, their total angular momenta 
should couple together in pairs to yield zero total angular momentum. If one more 
nucleon is added, it should be difficult for it to disturb the pairs that were already 
there, because the pairing interaction is fairly strong. Thus the total angular momen-
tum of the whole subshell should be due entirely to the odd nucleon. Therefore, the 
entire angular momentum of an odd-A nucleus should be due to the total angular momen-
tum of the single odd nucleon in the highest energy occupied subshell, and the nuclear 
spin i should be equal to the value of the quantum number j for that subshell. With 
only one or two exceptions, this rule allows the observed values of i for all odd-A 
nuclei to be explained in terms of Figure 15-18. It is, however, necessary to allow for 
occasional interchanges of the filling order of some closely spaced levels because of 
the pairing effect discussed in the preceding paragraph. 

For odd-A nuclei, the shell model is also quite successful in predicting the parities 
of the nuclear eigenfunctions, i.e., whether they are even or odd functions of their 
space variables (see (8-44) and (8-45)). Because the nucleons in the shell model are, 
basically, moving independently, a nuclear eigenfunction can be written as a product 
of the eigenfunctions for each of its nucleons just as in the Hartree theory of atoms. 
We shall see in Example 15-11 that the parity of the nuclear eigenfunction is just 
the parity of the eigenfunction for the odd nucleon. Because (8-47) shows that the 
parity of that eigenfunction is determined by (-1)`, we find that if the odd nucleon 
is in a subshell in which l is even, the nuclear parity is even; if 1 is odd, the parity is 
odd. In the next chapter we shall find that the nuclear parity is extremely important 
in determining the types of transitions that occur in certain kinds of radioactivity 
and nuclear reactions because there are selection rules that involve parity. 

It should be apparent that the shell model predicts that for even-A nuclei, with N 
and Z even, the nuclear spin is i = 0 and the nuclear parity is even. This agrees with 
experiment. For even-A nuclei, with N and Z odd, the value of j and the parity of 
the eigenfunctions are predicted for each of the two odd nucleons. From this the 
nuclear parity can be obtained immediately, but it is only possible to set limits on 
the nuclear spin and to say that it must have an integral value. However, there are 
only a few odd-N, odd-Z nuclei. The arguments of the last two paragraphs can also 
be extended to provide information about the spins and parities of low-lying excited 



states of nuclei. As we shall see later, this information is dependable only if the N 
and/or Z values lie near the magic numbers. 

Example 
/
1

,
5-11. Predict the ground state nuclear spin and parity for the following nuclei: 

/ (a)  8016 , (b)  80 17 (e)  80 18 (d)  7N15 (e)  7N14.  

• (a) The 8 0 16  nucleus has even N and even Z, and it is also doubly magic since both N 
and Z equal 8. It has two neutrons in the is 1/2  subshell which couple together in a pair 
to yield zero total angular momentum. Both of these neutrons are described by even parity 
eigenfunctions, since l = 0, so their part of the product eigenfunction for the nucleus is even. 
There are four neutrons in the 1p 3/2  subshell, that couple into two pairs, both of which have 
zero total angular momentum. All four of these neutrons are described by odd parity eigen-
functions since 1 = 1, but the product of four odd functions is an even function, so their part of 
the product eigenfunction for the nucleus is also even. There are two neutrons in the 1p 1/2 

 subshell, which form a pair of zero total angular momentum. They contribute two odd 
eigenfunctions to the product eigenfunction for the nucleus, so their part of the product 
eigenfunction is also even. Exactly the same remarks apply to the protons. The net result is 
that the nuclear spin is zero, and the nuclear parity is even. 

(b) 80 17  is an odd-N, even-Z nucleus. Its neutrons and protons are doing the same things 
as the neutrons and protons in 8016, except that it has a single extra unpaired neutron in a 
1d5/2  subshell. This gives the nucleus a spin of i = 5/2. The parity of the eigenfunction for the 
unpaired neutron is even since l = 2, so the nuclear parity is even. 

(c)80 18  is an even-N, even-Z nucleus. The predicted spin and parity are i = 0, and even. 
The reasons are that there are two neutrons in the 1d5î2  subshell, which form a pair of zero 
total angular momentum, and which both have even parity eigenfunctions. 

(d)7N 15  is an even-N, odd-Z nucleus. Its neutrons and protons behave as in 8016, except 
that it has only one unpaired proton in the 1p 1i2  subshell. This odd proton gives the nucleus 
a spin of i = 1/2. Since the eigenfunction for the proton is odd because 1 = 1, the nuclear 
parity is odd. Note that we predicted the nuclear spin, from a somewhat different point of 
view, in Example 15-10. 

(e)7N14  is an odd-N, odd-Z nucleus. It has an unpaired proton in the 1p 1/2  subshell, and 
also an unpaired neutron in the 1p 1/2  subshell. Both have a total angular momentum quantum 
number of j = 1/2. We cannot say precisely what the nuclear spin should be without knowing 
how these two different particles couple their angular momenta. But we can say that there are 
only two possibilites for the nuclear spins, i = 0, or i = 1. Experiments show that i = 1 is 
the correct value. We can predict unambiguously that the nuclear parity will be even, since 
the unpaired proton and the unpaired neutron both contribute an odd eigenfunction to the 
product eigenfunction for the nucleus, and the product of two odd functions is an even function. 
This prediction is born out by the experiments, as are all the predictions made in the earlier 
parts of this example. 	 • 

The shell model is not so successful in predicting the magnetic dipole moments of 
nuclei. It says that the magnetic dipole moment of an odd-A nucleus (i.e., even N 
and odd Z, or odd N and even Z) should be due entirely to that of the single odd 
(unpaired) nucleon. The reason is that the magnetic dipole moments of the other 
nucleons would be expected to cancel out in pairs, if their total angular momenta 
do the same. The experimental data are illustrated in the two parts of Figure 15-19, 
for even-N, odd-Z nuclei and for odd-N, even-Z nuclei. The data are obtained in 
the manner indicated in Section 15-2. Also shown in the figure are the so-called 
Schmidt lines, which represent the predictions of the shell model for cases in which the 
spin and orbital angular momenta of the odd nucleon are either essentially parallel 
or essentially antiparallel, that is for the two possible cases j = 1 + 1/2 or j = 1 — 1/2. 
The data show only a barely recognizable tendency to follow qualitatively the 
predictions of the shell model. 

The failure in the model is due to its assumption that the nuclear magnetic dipole 
moment is due entirely to the single odd nucleon. It is not true that all the other 
nucleons are always paired off with total angular momenta and magnetic dipole 
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Figure 15-19 Top: Measured magnetic dipole moments of even-N, odd-Z nuclei and the  
shell model predictions. The upper line is the prediction if the spin and orbital angular  

momenta of the odd proton are assumed to be essentially parallel, and the lower line is the  
prediction if they are assumed to be essentially antiparallel. Bottom: The same for odd N, 
even Z. Here, the lower line is for the "parallel" assumption and the upper line is for the  

"antiparallel" assumption.  
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moments that strictly cancel. The assumption is good enough to lead to the predic-
tion of correct magnitude for the total angular momentum of the nucleus, since this 
quantity is quantized. If occasionally the pairs have a nonzero total angular mo-
mentum, then at that time the odd nucleon must have exactly the right total angular 
momentum to compensate and keep the magnitude of the total angular momentum 
of the nucleus constant. This kind of compensation cannot also take place for the 
magnetic dipole moments since the g factors, which relate the magnitudes of the mag-
netic dipole moments to the magnitudes of the angular momenta, change as the angu-
lar momentum couplings change (see Section 10-6). And since the nuclear magnetic 
dipole moment does not have a quantized magnitude, there is nothing to enforce such 
a compensation. 

15-10 THE COLLECTIVE MODEL 

The shell model is based upon the idea that the constituent parts of a nucleus move 
independently. The liquid drop model implies just the opposite, since in a drop of 
incompressible liquid the motion of any constituent part is correlated with the motion 
of all the neighboring parts. The conflict between these ideas emphasizes that a model 
provides a description of only a limited set of phenomena, without regard to the exis-
tence of contrary models used for the description of other sets. A theory, such as 
relativity or quantum theory, provides a description of a very large set of phenomena. 
At the border lines between its own set of phenomena and other sets of phenomena, 
a theory fuses without conflict into the theories used for the description of the other 
sets. 

As nuclear physics evolves, attempts are made to remove conflicts between various 
models and unify them into more comprehensive models. The most successful and 
most important example is the collective model of the nucleus, which combines certain 
features of the shell and liquid drop models. It is partly the work of Aage Bohr, whose 
father developed the Bohr model of the atom. The collective model assumes that the 
nucleons in unfilled subshells of a nucleus move independently in a net nuclear 
potential produced by the core of filled subshells, as in the shell model. However, the 
net potential due to the core is not the static spherically symmetrical potential V(r) 
used in the shell model; instead it is a potential capable of undergoing deformations 
in shape. These deformations represent the correlated, or collective, motion of the 
nucleons in the core of the nucleus that are associated with the liquid drop model. 

As in the shell model, the nucleons fill the energy levels of the potential, which are 
split by the same spin-orbit interaction and lead to the same magic numbers, and 
nuclear spin and parity predictions. Consider a nucleus with one more than a magic 
number of nucleons. Inspection of the shell model energy levels of Figure 15-18 will 
show that the extra nucleon will have a relatively large orbital angular momentum. 
Classically, it will move in an orbit of relatively large radius, near the surface of the 
core of completely filled subshells. Because of the attractive nuclear interaction be-
tween the extra nucleon and the nucleons in the core, the core is distorted. Bulges 
circulate around the surface of the core, following the motion of the extra nucleon. 
The effect is very much like the tides at the surface of the earth, which follow the 
motion of the moon, and arise from the attractive gravitational interaction. If there 
are two extra nucleons of the same species, classically they will move in opposite 
directions around the surface of the core in orbits that are essentially in the same 
plane. The reason is that their pairing interaction produces "antiparallel" coupling 
of their angular momenta. This increases the distortion of the core. Physically, the 
distortion of the core affects the motion of the extra nucleons. Mathematically, this 
is handled by distorting the net potential in which these nucleons move. One result is 
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a considerable complication of the necessary task of solving the Schroedinger equa-
tion for the potential. Another result is a considerable extension of the set of phenom-
ena that can be described accurately by the model. 

For instance, in the collective model, part of the total angular momentum of the 
nucleus is carried in the form of orbital angular momentum by the "tidal waves" 
circulating around the surface of the core. A moving deformation, partly composed 
of protons, constitutes a current that produces a magnetic dipole moment propor-
tional to its angular momentum. This is also true in the case of the single moving 
nucleon that the shell model says is totally responsible for the nuclear magnetic dipole 
moment, but the proportionality constants differ. The moving deformation produces 
less magnetic dipole moment than a moving proton, and more than a moving neu-
tron, relative to the angular momentum it carries. These changes are exactly what is 
required to remove the discrepancies between the measured nuclear magnetic dipole 
moments and the shell model predictions, shown by the Schmidt lines in Figure 15-19. 

The student may notice an analogy between the behavior of two electrons always moving  

in opposite directions with antiparallel spins in a Cooper pair of a superconductor, and two  

neutrons or two protons always moving in opposite directions in an unfilled subshell of a  

nucleus with spins that, because of the nuclear pairing interaction, are also antiparallel. An-
other analogy is that in both cases the behavior of a pair of interacting particles influences,  

and is influenced by, the behavior of the other particles in the system, which move collectively.  

Analogies are also found between the mathematical procedures used in BCS superconductivity  

calculations and in nuclear collective model calculations.  

A nuclear property which can be explained quite well in terms of the collective  

model is the electric quadrupole moment q. The hyperfine splitting measurements  
yielding q were briefly explained in Section 15-2, and there it was also stated that  

q is a measure of the departure from spherical symmetry of the nuclear charge distribu-
tion, as observed in measurements such as hyperfine splitting which are sensitive to  

the average of this departure over a sample containing many nuclei. The exact defini-
tion of the electric quadrupole moment is  

R =  J p[3z2 (x2 +  y2  +  z2)]  dz (15-35)  

where p is the average nuclear charge density in units of proton charges, and where  

the three-dimensional integral is taken over the nuclear volume with di the volume  
element. Note that q is equal to Z, the number of protons in the nucleus, multiplied  
by the average over p of the difference between three times the square of the z coor-
dinate and the sum of the squares of all the coordinates. That is  

q = Z[3z2  —  (x 2  + y2  + z2)] 	 (15 - 36)  
It is clear then that q = 0 if the average nuclear charge density p is spherically  
symmetrical, since in that case x 2  =  y2  = z 2 . If p is not spherically symmetrical, it  
must at least have symmetry about the axis of the cone on which the total angular  

momenta of the nuclei are found. In typical cases the average charge density is an  

ellipsoid with such a symmetry axis. For (15-35) and (15-36), the symmetry axis is  

taken as the z axis. The second of these equations shows immediately that q > 0 if  
p is elongated in the z direction so that z 2  > x 2  = y2 , and that q < 0 if p is flattened  
in the z direction so that z 2  < x2 =  y2 .  

The measured values of the average nuclear electric quadrupole moment q are  
shown in Figure 15-20. Some features of the data shown in the figure can be under-
stood qualitatively in terms of the shell model. For example, that model predicts  

q < 0 for an even-N, odd-Z nucleus with Z equal to a magic number plus one. The  
reason is that the nucleus contains only completely filled proton subshells, which  
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Figure 15-20 The nuclear electric quadrupole moment, q, about the symmetry axis,  
divided by Zr' 2 , for odd-A nuclei. The distance r' is the average from the center of the  
ellipsoidal distribution, of charge +Ze, to the surface. The quantity 1 + q/Zr' 2  is approxi-
mately equal to the ratio of the distances from the center to the surface measured parallel  

to, and perpendicular to, the symmetry axis.  

have a spherically symmetrical charge distribution, plus one odd proton moving in 
an "orbit" near a plane perpendicular to its symmetry axis. Thus the charge distri-
bution is flattened in the direction of the symmetry axis. For an even-N, odd-Z 
nucleus with Z one less than a magic number, the shell model correctly predicts q > 0 
since this nucleus would contain one proton hole (the absence of charge) moving in 
a similar orbit. These shell model arguments are illustrated in Figure 15-21. They 
make plausible the observations (1) that q is positive for an even-N, odd-Z nucleus 
if Z is in a range just below a magic number, (2) that q is zero if Z is at the magic 
number, and (3) that q is negative if Z is in a range just above the magic number. 
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Figure 15-21 Left: Illustrating schematically an odd proton in a nucleus with Z equal to  
one more than a magic number. To a fair approximation the proton moves in an orbit of  

radius equal to the nuclear radius. Averaged over time, its charge distribution looks like  

a ring. The same is true at any time of the charge distribution averaged over a sample  

containing many such nuclei. The total charge distribution contains an excess of charge,  
relative to a spherical distribution, in a plane perpendicular to the symmetry axis (the z  
axis). Thus the nucleus has a negative quadrupole moment. Right: Illustrating a proton  
hole in a nucleus with Z equal to one less than a magic number. The hole leads, on the  
average, to a ring containing a deficiency in charge in a plane perpendicular to the sym-
metry axis. The electric quadrupole moment is positive because the charge distribution  
has an excess of charge, relative to a spherical distribution, in the direction of the sym-
metry axis (the z axis). 

However, the shell model is not capable of yielding correct quantitative results for  

electric quadrupole moments. Its predictions for the magnitude of q are generally  
low, and for some nuclei between magic numbers they are lower than the observed  

magnitude by more than a factor of 10.  

Example 15 -12. Estimate the shell model prediction for the average electric quadrupole  

moment q of the nucleus 51Sb123,  and compare with the measured value shown in Figure  

15-20.  
■ According to the shell model, the charge distribution of this nucleus is due to a spherically  

symmetrical core of completely filled proton subshells, plus a single odd proton in a 1g 712  
subshell. Since the orbital angular momentum of this proton is high (1 = 4), to a fair ap-
proximation it can be thought of as moving in a Bohr-like orbit of radius about equal to the  

nuclear radius r'. (Recall we found in Section 7-8 that orbital motion approaches the classical  

limit as 1 becomes large.) Thus an average of the nuclear charge distribution looks some-
thing like that shown on the left of Figure 15-21. The spherical core makes no contribution  

to the nuclear electric quadrupole moment q. So, if we take the symmetry axis perpendicular  

to the orbit as the z axis, we have  

q  = 
Jp[3z2   (x2  + y2  + z2)] dr  

where p is approximately the charge density for a uniformly charged ring, of radius r', in a  

plane perpendicular to z. This p is zero except where x 2  + y2  = r' 2  and z = 0. Thus  

q _,-., f 	— r' 2  Jp dr  

The integral of p yields one since the ring contains the charge of one proton and p is measured  
in units of proton charges. Therefore, the result we obtain for an estimate of the shell model 
predictions of q for 51Sb123  is  

q^  —r'2  

Figure 15-20 shows that the measured value of q for this nucleus is such that  

Zq 2 ^ -0.09  



or 
q ^ 0.09Zr' 2  —0.09 x 51r' 2  —5r' 2 

 The magnitude of the shell model prediction is too low, compared to the measurements, by 
about a factor of 5. 	 t 

Another prediction of the shell model is that the value of the electric quadrupole 
moment for odd-A nuclei depends significantly on whether they have odd N, even 
Z or even N, odd Z. The reason is simply that the odd nucleons are uncharged 
neutrons in the first case and charged protons in the second case. But Figure 15-20 
shows that the value of q for odd-A nuclei depends on only the number of odd 
nucleons, independent of whether or not the odd nucleons are charged. 

The collective model explains all the features of the measured electric quadrupole 
moments that are incorrectly predicted by the shell model. It leads to large enough 
values of q because the core can be deformed so that the charges of many protons 
contribute to the total electric quadrupole moment. For nuclei between the magic 
numbers the core deformations become quite large, and therefore the electric quad-
rupole moments also become quite large. As the deformations can be due to extra 
nucleons of either species, the collective model explains why the observed values of q 
do not depend significantly on whether the odd nucleons are neutrons or protons. 

In addition to the collective rotations of the nuclear core that we have been con-
sidering, there are also collective vibrations. Certainly the most spectacular example 
is nuclear fission. This will be discussed in the next chapter. 

15-11 SUMMARY 

Table 15-3 briefly summarizes this chapter by listing the nuclear models we have 
treated, and some of their most significant features. We have seen that each model 
can provide satisfactory explanations of certain properties of nuclei in their ground 
states (but no single model can explain all the properties). In the next chapter we 
shall find that these models can provide explanations of the properties of nuclear 
decay and nuclear reactions. In that chapter we shall also come across another 
important nuclear model, not listed in Table 15-3. This is the optical model, which 

Table 15-3 Nuclear Models and the Ground State Properties of Nuclei 

Name Assumptions Theory Used Properties Predicted 

Liquid drop Nuclei have similar Classical (asymmetry Accurate average 
model mass densities, and and pairing terms masses and binding 

binding energies introduced with no energies through 
nearly proportional 
to masses—like 
charged liquid drops 

justification) semiempirical mass 
formula 

Fermi gas Nucleons move Quantum statistics Depth of net 
model independently in of Fermi gas of nuclear potential 

net nuclear potential nucleons Asymmetry term 
Shell model Nucleons move Schroedinger Magic numbers 

independently in net equation solved for Nuclear spins 
nuclear potential, with 
strong inverted spin-
orbit coupling 

net nuclear potential Nuclear parities 
Pairing term 

Collective Net nuclear potential Schroedinger equation Magnetic dipole 
model undergoes deforma- solved for non- moments 

tions spherical net 
nuclear potential 

Electric quadrupole 
moments 
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is a generalization of the shell model that describes the behavior of an unbound 
nucleon moving through a nucleus. 

QUESTIONS 

1. Was there a stage in the development of atomic physics in which models played a role 
comparable to that now played by models in nuclear physics? Are models used now in 
atomic physics? 

2. In those regions of the universe where thermal energy is kT ' 10 6  eV, are atomic 
processes more apparent than nuclear processes? What about those regions where kT -r 	10 -6  eV? 

Ç 3. All nuclei have an electric monopole moment (which measures their total charge). Some 
O nuclei have an electric quadrupole moment (which measures the departure from a 

spherical shape of their charge distribution). No nuclei have an electric dipole moment 
(which would measure the departure of the center of their charge distribution from the 
center of their mass distribution). Why would we not expect electric dipole moments for 
nuclei? 

4. Nuclei have magnetic dipole moments. Why do they not have magnetic monopole mo-
ments? What about magnetic quadrupole moments? 

5. If an electron of kinetic energy 100 keV passed through a typical atom it could be 
scattered through a fairly large angle in a close collision with an atomic electron. If its 
kinetic energy is 100 MeV it could be scattered through a fairly large angle only in a close 
collision with the nucleus. Why? 

6. Why is the mass unit not defined in terms of the mass of the hydrogen atom? (Hint: 
Use Table 15-1 to make a quick estimate of the mass of 92U238  if the mass of 1 H 1  is 
1.000000u.) 

7. Since atomic and molecular reactions also involve binding energies, why did the 
nineteenth century chemists not observe mass deficiencies and thereby discover relativity 
theory? 

8. Many textbook problems in mechanics consider zero Q-value collisions between idealized 
classical particles. Is the Q value exactly zero in collisions between real classical particles 
(like real billiard balls)? What is the sign of the Q value? 

9. Why are the most stable nuclei found in the region near A ^ 60? Why do not all nuclei 
have A 60? 

10. The semiempirical mass formula contains five parameters, and it predicts quite accurately 
more than 500 masses. How does its ratio of predictions to parameters compare with 
other empirical formulas of physics or engineering? 

11. Why does the pairing term make a negative contribution to the energy liberated when 
a neutron is captured by 92U238,  and a positive contribution in the case of 92U235? 

What are the practical consequences of this situation? 
12. Why are the atomic magic numbers not the same as the nuclear magic numbers? 
13. Explain why there can be no collisions between a typical nucleon and another in a nucleus 

in its ground state. If a high-energy nucleon, say from a cyclotron beam, enters a nucleus 
in its ground state, can it collide with a nucleon in the nucleus? 

14. What fundamental law of physics is most responsible for the existence of nuclear magic 
numbers? 

15. Is there a relation between the l dependence of the spin-orbit splitting of nuclear levels 
and the Landé interval rule for the spin-orbit splitting of atomic energy levels? 

16. Why do most nuclei obey JJ coupling, whereas most atoms obey LS coupling? 
17. Use the argument associated with Figure 9-4 to explain why there is a tendency for the 

intrinsic spin angular momenta of a pair of identical nucleons to be essentially antiparallel 
in order to minimize their average separation. Then modify the argument illustrated in 
Figure 10-2 to explain why the average separation of the pair is minimized if their orbital 



angular momenta are also essentially antiparallel. Do these arguments explain why the 
pairing interaction tends to make the total angular momenta of the pair essentially 
antiparallel? 

18. If one factor in a nuclear eigenfunction consists of a product of an even number of eigen-
functions for nucleons in a particular subshell, why is the parity of the factor even, 
independent of whether the parities of the nucleon eigenfunctions are all even or all odd? 
How does this lead to the rule for predicting the parities of odd-A nuclear eigenfunctions? 

19. How can the magnetic dipole moment data of Figure 15-19 be used to identify the orbital 
angular momentum quantum number 1, of many nuclei, in terms of the measured value 
of their total angular momentum quantum number j? 

20. If the tidal waves circulating around the nuclear core in the collective model were entirely 
composed of protons, instead of being composed partly of protons and partly of neutrons, 
what would be the effect on the magnetic dipole moments predicted by the model? 

21. What is the simplest distribution of point charges that has an electric quadrupole 
moment? 

22. Is a positive electric point charge surrounded by a concentric circular ring of negative 
charge, of total magnitude equal to that of the point charge, an electric monopole, 
dipole, quadrupole, or something else? 

23. Why are there no magic numbers that are odd? 
24. Why is the nuclear shell model called a model, while the comparable atomic Hartree 

theory is called a theory? Generally speaking, how does a model differ from a theory? 

PROBLEMS 

1. The analysis of the optical spectrum of an atom shows that there are four energy levels 
in a certain hyperfine splitting multiplet. The analysis also shows that the value of the 
total electronic angular momentum quantum number for that multiplet is j = 2. Deter-
mine the value of the nuclear angular momentum quantum number, or nuclear spin i, 
for the nucleus of the atom. 

2. The nuclear spin and symmetry character of the boron nucleus with Z = 5 and A = 10 
are: i = 3, symmetric. (a) Show that the mass, charge, nuclear spin, and symmetry 
character agree with the assumption that nuclei contain Z protons and A — Z neutrons. 
(b) Which of these four properties disagree with the assumption that nuclei contain A 
protons and A — Z electrons? 

3. (a) Evaluate, in MeV, the energy of gravitational attraction for two spherically sym-
metrical protons with a center-to-center separation of 2 F. (b) Do the same for the energy 
of Coulomb repulsion at that separation. (c) Compare your results with the energy of 
nuclear attraction, which is about —10 MeV at that separation. 

4. Electrons of kinetic energy 1000 MeV are scattered from a target containing 79Au nuclei. 
(a) Use data from Figure 15-6 to find the radius at which the nuclear charge density is 
half its interior value. (b) Then use this radius to predict the approximate separation 
in angle between adjacent minima of the diffraction pattern that is observed in the 
scattering. 

5. Use the empirical equation representing the measured nuclear charge densities, (15-5), 
and the parameter b quoted in (15-7), to determine the distance in which the nuclear 
charge densities fall from 90% to 10% of their internal values. 

6. Show that for 6C 12  the nuclear density given by (15-5) is one-half the central density at 
a radius differing from the parameter a by 0.0126 F approximately. 

7. A mass spectrometer selects ions moving at 4.8 x 10 5  m/sec; the magnetic field is 0.22 
tesla. A sample of triply ionized oxygen atoms is analyzed. How far apart are the images 
produced by 8016  and 80 18  ions on the photographic plate? 

8. Estimate the pressure in a mass spectrometer with an ion path radius of about 10 cm by 
setting the mean free path equal to the length of the trajectory. 
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9. Derive (15-16), which relates the Q value of a nuclear reaction to the dynamical quantities  

involved in the reaction. (Hint: Write equations for the conservation of the components  
of linear momentum in the directions parallel to and perpendicular to the direction of  
the incident particle. Then eliminate from these the angle between the direction of the  
residual nucleus and the direction of the incident particle.)  

10. (a) Use (15-16) to calculate the energy of protons emitted in the direction of incidence of  
the 7.70 MeV a particles in the Rutherford reaction of (15-11). The Q value of the reaction  
is —1.18 MeV. (b) Compare your results with Example 15-4.  

11. How much energy in MeV would have to be supplied to a nucleus of 24Cr52  in order  
to split it into two identical fragments? The atomic mass of 24Cr 52  is 51.94051u, and  
that of 12Mg26  is 25.98260u.  

12. Since the reaction 1 H2  + 1 H 3  —+  2 He4  + 0n 1  has a high positive Q value, it is frequently  
Û used to obtain high-energy neutrons, 0n 1 , from a low-energy electrostatic generator  

accelerating a beam of deuterons, 1 H 2, into a target of tritons, 1 H 3 . (a) Use information  
presented in Table 15-1 to calculate the Q value for the reaction. (b) Use (15-16) to  
calculate the energy of the neutrons emitted from the reaction in the same direction as  
the incident beam of deuterons, if the energy of the deuterons is 0.500 MeV.  

13. Use the masses quoted in Table 15-1 to verify that the binding energy per nucleon of  
6C12 has the value quoted in that table.  

14. (a) Use information presented in Table 15-1 to evaluate, in MeV, the energy released in  
the fusion of two 1 H 2  nuclei to form a 2 He4  nucleus. (b) Also evaluate, in MeV, the  
height of the Coulomb repulsion barrier which must be overcome before there is an  
appreciable probability that the two nuclei can get close enough together for fusion to  
take place. Treat the 1 H2  nuclei as uniformly charged spheres of radius 1.5 F, and  
evaluate the energy of Coulomb repulsion when they are just touching.  

15. (a) The Coulomb energy of a uniformly charged sphere of radius r', i.e., the energy  
required to assemble the charge, is  

5 47EO r'  

Take r' = 1.1A 1 " 3  F, which is consistent with the electron scattering measurements, and  
show that V then assumes the form of the Coulomb term of the semiempirical mass  
formula. (b) Evaluate, in mass units, the coefficient of Z 2/A 1 / 3  in the expression obtained 
for V, and compare with the empirical value of the coefficient a 3  given in (15-31). 

16. The nuclei 5 B 11  and 6011  are said to be a pair of mirror nuclei because they have the  
same number of nucleons, and the number of protons in one equals the number of  
neutrons in the other. If nuclear forces are charge independent, their total binding energies  
should differ only in that the Coulomb energy is higher in 6C 11 . The atomic mass of  
5B "  is 11.009305u, and the atomic mass of 6C11 is 11.011432u. (a) Evaluate the difference  
in their total binding energies. (b) Assuming both nuclei to be uniformly charged spheres  
of the same radius r', and using the expression for the Coulomb energy given in Problem  
15, find the value of r' that leads to a difference in Coulomb energy that agrees with the  
difference in binding energy. (c) Compare this charge distribution radius with the radial  
dependence of the charge density for the similar nucleus  

17. (a) Evaluate the terms of the semiempirical mass formula for 26 Fe 56 . (b) Convert them  
to their equivalents in MeV, divide by A, and then compare them with Figure 15-12. (c)  
Use the terms to predict the atomic mass. (d) Evaluate the average binding energy per  
nucleon, and compare with Figure 15-10.  

18. According to the a-particle model of the nucleus, 6C 12  consists of three a particles, i.e.,  
2 He4  nuclei, and 8016  consists of four a particles. (a) Use Table 15-1 to evaluate the  
difference between the total binding energy of 6 C 12  and the total binding energies of three  
a particles. (b) Evaluate the difference between the total binding energy of 80 16  and the  
total binding energies of four a particles. (c) Draw schematic diagrams of 6C 12  and 

 8016  

3 Z2e2  
V= 	 

6C12 shown in Figure 15-6.  

according to the a-particle model, and use them to show that there can be three "bonds"  
connecting the a particles in 6C 12, while there can be six bonds connecting the a particles  



in 8016 . The exact nature of a bond was not specified in the model, but it was thought 
that they were somehow analogous to bonds in molecules. (d) Use the results of parts (a) 
and (b) to show that the total binding energies of 6C12  and 8016  could be accounted 
for by saying that every possible bond contributes a binding energy of a little over 2 
MeV. The a-particle model is not highly regarded because little more can be done with 
it than has been done in this problem. 

19. Use the acrostic explained in Section 15-8 to construct the diagram giving the ordering 
and approximate spacing of the energy levels which the nucleons are filling in the shell 
model. After you have finished, compare with Figure 15-18. 

20. Use the exclusion principle argument of Example 15-10 to predict from the shell model 
diagram of Figure 15-18 the nuclear spins of: 

21. (a) Use the existence of the pairing interaction to predict from the shell model diagram 
of Figure 15-18 the nuclear spins and parities of 6011 ,  20Ca44 2sNi61 32Ge73 . Briefly 
justify each prediction. (b) The observed spins and parities are: (3/2, odd), (0, even), (3/2, 
odd), (9/2, even). Give an explanation of any discrepancies you find. 

22. (a) Predict from the shell model diagram of Figure 15-18 the possible values of the nuclear 
spins, and also predict the parities, of the following odd-N, odd-Z nuclei: 
231/50 (b) The observed spins  and parities are: (3, even), (4, odd), (6, even). Does there 
seem to be any preferential tendency in the coupling of the angular momenta of the odd 
neutron and odd proton? 

23. Use the shell model to predict for the ground state of 80 17  (a) the spin; (b) parity; (c) 
sign of the magnetic dipole moment; (d) sign of the electric quadrupole moment. 

24. The measured nuclear spin of 23V51  is 7/2. Since this is an even-N, odd-Z nucleus, the 
nuclear spin is due to the odd proton that has a total angular momentum quantum num-
ber j = 7/2. Since there are two possible relations between j and the orbital angular 
momentum quantum number 1 for that proton, namely j = 1— 1/2 and j = / + 1/2, the 
value of l could be either 3 or 4. (a) Use the measured value of the magnetic dipole moment 
and its relation to the Schmidt lines, shown in Figure 15-19, to predict the most likely 
value of 1. (b) Use the shell model diagram of Figure 15-18 to predict the value of 1, and 
compare with (a). 

25. (a) Use the measured electric quadrupole moment of 73Ta 181 , presented in Figure 15-20, 
to evaluate approximately the ratio of the distances from the center to the surface of its 
ellipsoidal charge distribution, measured parallel to and perpendicular to its symmetry 
axis. (b) Use the electron scattering charge distribution radius a, from (15-6), to evaluate 
approximately the average of these distances. (c) From the answers to (a) and (b) evaluate 
approximately these distances, which are the semimajor and semiminor axes of the 
ellipsoidal charge distribution. (d) Make a sketch, to scale, of the charge distribution. 

26. A solid right circular cylinder of radius R and length L has uniform charge density p. 
 Find its electric quadrupole moment, indicating for what ratios L/R it will be positive, 

negative, or zero. 
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16-1 INTRODUCTION 

  

In the preceding chapter we used the properties of the ground states of stable nuclei 
to introduce the most important nuclear models. In this chapter we use these models 
to consider the decay of unstable nuclei, and also to consider nuclear reactions in-
volving both stable and unstable nuclei. Our considerations will concern excited 
states of nuclei, as well as their ground states. 

Nuclear decay divides itself into three categories. One is a decay—the spontaneous 
emission of an a particle from a nucleus of large atomic number. We shall see that 
this process, or the closely related process of spontaneous fission, is responsible for 
setting an upper limit on the atomic numbers of the chemical elements occurring in 
nature. A second type of nuclear decay is fi  decay—the spontaneous emission or 
absorption of an electron or positron by a nucleus. It is particularly interesting 
because it will tell us much about the fi-decay interaction, which is one of the funda-
mental interactions, or forces, of nature. A third type of nuclear decay is y decay—the 
spontaneous emission of high-energy photons when a nucleus makes transitions from 
an excited state to its ground state. We shall find that y decay gives detailed infor-
mation about the excited states of nuclei that can be used to improve the nuclear 
models. We shall also find that y decay is used in the Mössbauer effect to make 
extremely high-resolution energy measurements in many different fields of physics. 

Nuclear reactions will provide us with additional information about excited states 
of nuclei, since the residual nucleus in a reaction is typically formed in an excited 
state. Among the nuclear reactions that we shall consider are those that occur in 
the nuclear fission reactors that are now used as inexpensive sources of energy. We 
shall also consider the reactions that may some day be used to produce energy on 
earth by nuclear fusion and that have been used for a long time by stars to produce 
the energy, and the chemical elements, of which nature is composed. 

16-2 ALPHA DECAY 

Nuclear decay occurs, sooner or later, whenever a nucleus containing a certain num-
ber of nucleons is put in an energy state which is not the lowest possible one for a 
system with that number of nucleons. Invariably, the nucleus is put into the unstable 
state as a consequence of a nuclear reaction. But in some cases the nuclear reaction 
responsible for producing the unstable nucleus took place recently in a man-made 
particle accelerator, while in other cases it took place in natural events that happened 
billions of years ago when our part of the universe was formed. Unstable nuclei that 
originate from the natural events are often called radioactive; the processes that occur 
in their decay are often called radioactive decay, or radioactivity. One of the reasons 
why radioactive decay is interesting is that it provides clues about the origin of the 
universe. 

A process that is particularly important in radioactive decay is a decay, occurring 
commonly in nuclei with atomic number greater than Z = 82. It involves the decay 
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of an unstable parent nucleus into its daughter nucleus by the emission of an a particle, 
the nucleus 2He4. The process takes place spontaneously because it is energetically 
favored, the mass of the parent nucleus being greater than the mass of the daughter 
nucleus plus the mass of the a particle. The reduction in nuclear mass in the decay 
is primarily due to a reduction in the Coulomb energy of the nucleus when its charge 
Ze is reduced by the charge 2e carried away by the a particle. The energy made 
available in the decay is the energy equivalent of the mass difference. This decay 
energy is carried away by the a particle as kinetic energy. Ignoring the mass equiva-
lents of atomic electron binding energies, the  cc-decay energy E can be written in 
terms of the atomic masses of the parent nucleus, Mz , A, of the daughter nucleus, 
Mz _ 2,A- 4, and of the a particle, M 2 ,4, as 

E = [Mz,A — (Mz- 2,A-4 + M2,4)]C2 	 (16-1) 
Figure 16-1 displays the decay energies E for parent nuclei in the a-emitting range 

of Z, or A. The data are obtained from direct measurements of the kinetic energy of 
the a particles by bending them in a magnetic field, and/or by using (16-1) with the 
measured masses. The dashed line represents the general trend for the parent nuclei 
to become increasingly unstable to a decay as A gets further away from the value 
A ^ 60, where the average binding energy per nucleon, AE/A, maximizes. It also 
represents the predictions of the liquid drop model. Superimposed on the general 

ci. 	trend is a peak, roughly 4 MeV high, occurring at the parent nucleus  84Po
212 . The 

Ç 	peak is explained by the shell model as due to the particular stability of the associated 
daughter nucleus, 82Pb208 . Since the daughter has magic Z = 82 and magic N = 126, 
it is about 4 MeV more tightly bound than typical nuclei in this region of A. (Figure 
15-13 shows that about 2 MeV of extra binding energy is found at each magic num- 

Th
232 	U 238 
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200 	210 	220 	230 	240 	250 	260 

A 

Figure 16-1 Alpha-decay energies for nuclei in the a-emitting region. The dashed curve 
represents the general trend predicted by the semiempirical mass formula. 



ber.) Note that the a-decay energies range from 8.9 MeV for 84Po212 to 4.1 MeV for 
aoTh232 

The moderately energetic particles emitted in a decay of radioactive nuclei were put to very 
good use by Rutherford, and others, in the scattering experiments that led to the discovery 
of nuclei (see Chapter 4). Similar use continued to be made of a particles from radioactive 
sources in investigating nuclear structure, until the invention of cyclotrons by Lawrence in the 
late 1930s. Cyclotrons, and other types of particle accelerators, produce particles of higher 
energy which can be used in more precise measurements because they have shorter de Broglie 
wavelength. Accelerators also produce more intense beams of particles than can be obtained 
from radioactive sources, and this makes the measurements easier to carry out. 

Example 16-1. Ana particle is emitted by the parent nucleus 84Po212. Estimate the Coulomb 
potential it feels at the nuclear surface, and then make an approximate plot of the sum of the 
Coulomb and nuclear potentials acting on the a particle in various locations. 
•If we approximate the daughter nucleus and the a particle as uniformly charged spheres, 

the Coulomb repulsion potential energy when they are just touching will be 
2Ze2  

Vo  = + 41cEOr' 

where + 2e is the a-particle charge, + Ze is the daughter nucleus charge, and r' is the sum of 
the radii of the a-particle and daughter nucleus uniform charge distributions. We can estimate 
these radii by using the charge density half value radii a of the actual charge distributions 
found in the electron scattering measurements, and quoted in (15-6) 

a = 1.07A 113  F 

We obtain for the sum of the radii 
r'= (41 /3  + 208 1 / 3)1.07 F 

= 8.0 F 

So 
2 x 82 x (1.6 x 10 -19  coul) 2  

Vo — 	 — is 	=4.8 x 10 12 joule 
1.1 x 10 10  coul2  /nt-m z  x 8.0 x 10 -15  m 

= 30 MeV 

Figure 16-2 indicates the total (Coulomb plus nuclear) potential acting on the a particle. 
As it approaches the nucleus, it feels the repulsive Coulomb potential increasing in inverse 
proportion to the distance between the centers of the a particle and nucleus, and reaching the 
value of Vo  when this distance equals r'. Inside the surface it feels a rapid onset of the strong 
attractive nuclear potential, which soon dominates. (The onset is, of course, not quite as rapid 
as shown in the figure.) Also indicated is the 84Po212  a-decay energy E = 8.9 MeV, which is 

30 
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Figure 16-2 An approximate representation of the Coulomb plus nuclear potential V acting 
on an  cc  particle emitted from a 84Po212  nucleus, and the total energy E of the  cc  particle. 
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the energy of the emitted cc  particle. Note that it is much less than 170  , the height of the Coulomb  
barrier. 	 •  
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Since every decay energy shown in Figure 16-1 is far less than the height of the  
Coulomb barriers, which is 30 MeV for all a decays, the  cc  particle tends to be  
trapped by the barrier in every decay. It can escape only by the quantum mechanical  
process of barrier penetration. We have previously gone through a detailed treatment  
of this process, so here we shall only remind the student of the results, but he would  
be well advised to look again at Section 6-6. At least he should inspect Figure 6-20,  
which plots the probability per second that a nucleus will emit an a particle, called  
the decay rate R, versus the decay energy E. The figure shows that the decay rate  
decreases extremely rapidly as the decay energy decreases and the  cc  particle tunnels  
more deeply through the Coulomb barrier.  

Now consider a system containing many nuclei of the same species at some initial  
time. The nuclei cc decay (or, equally well, fl or y decay) at the decay rate R. We shall  
calculate the number of undecayed nuclei present at some subsequent time. If there  
are N undecayed nuclei at time t, then the number decaying in the following time  
interval dt can be written dN. Since R is the probability that a particular nucleus  
will decay in 1 sec, R dt is the probability that it will decay during the time interval,  
and NR dt is the probability that any one of the nuclei will decay in that interval.  
Thus the average number of decaying nuclei is  

where the minus sign accounts for the fact that dN is intrinsically negative since N  
decreases. Rearranging the terms, and integrating, we obtain 

dN = —Rdt 
 

^ r  
^. 
s 	 dN = —NRdt 	 (16-2)  
U 

ln N(t) — ln N(0) = ln 
N(t) 

 N(0) 
= —Rt 

or  

N(t) =  e  _ Rt 
N(0)  

so  

N(t) = N(0)e -Rt 	 (16-3)  
In this expression N(0) is the number of undecayed nuclei at the initial time 0, and  

N(t) the number of undecayed nuclei at the subsequent time t. Since the calculation  
involves probabilities, its results are correct only on the average, but fluctuations  

from the average are very small in the typical case in which the number of nuclei in-
volved is very large. Figure 16-3 is a plot of (1p-3), which is called the exponential 

decay law.  
Also indicated in Figure 16-3 is the lifetime T characteristic of the decay. This is the  

average time a nucleus survives before it decays. It is obvious from their definitions  
that T is inversely proportional to the decay rate R. In fact, it is easy to show from  
a simple integration of the decay law that  

T = R 
	

(16-4)  

Using this relation in (16-3), we conclude that in one lifetime the number of un- 
decayed nuclei decreases by a factor of e, as indicated in the figure. Further indicated  
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Figure 16-3 The exponential decay law for N(t), the number of nuclei surviving at time t. 
Also shown are the lifetime T and half-life T112. Note that N(t) is expressed in units of the 
original number of nuclei N(0), while time is expressed in units of the lifetime T. 

is the half- life T 112 , which is the time required for the number of undecayed nuclei 
to decrease by a factor of 2. The relation between the two times is obtained directly 
from the decay law 

T112 = (In 2)T = 0.693T 	 (16-5) 
In a more typical system, there are several related radioactive nuclei decaying 

successively into each other by a decay (and/or other decay processes). For instance, 
92U234 a decays into 90Th230, which a decays into 88 Ra226 , etc. Thus a system ini-
tially filled with 92U234  will eventually contain a mixture of all these nuclei. Differen-
tial equations governing the general behavior of such a family can be written down 
easily, and they can be solved with not much more difficulty in certain cases. In the 
most important case, the significant features of the solution can be discerned from 
the following qualitative argument. Consider a family of decays in which the parent 
has by far the smallest decay rate, or longest lifetime. The situation is indicated sche-
matically in Figure 16-4. On a time scale comparable with the parent lifetime, the 
population of the parents decreases exponentially. But on the much shorter time scale 
comparable to the daughter lifetimes, the population of the parents remains essen-
tially constant, and so the total number decaying per second into the first daughters 
seems contant. Since the first daughters decay rapidly after they are formed, their 
population is governed by the constant resupply from decay of the parents. Thus the 
population of the first daughters remains constant. The same is true for the second 
daughters, since they are being formed at a constant rate from the decay of the con-
stant population of the first daughters. In fact, the populations of all the daughters 
will remain constant as long as we consider times short compared to the parent life-
time so that the population of the parents remains essentially constant. (If we consider 
longer times all that happens is that the population of the parents, and of all the 
daughters, decreases exponentially at the same rate following the slow decay of the 
parents.) Thus, on the shorter time scale, we have an equilibrium condition, which 
requires that the following relation be satisfied 

NOR0  = N 1 R 1  = N2R2  = • • • 	 (16-6) 

Figure 16 -4 A schematic representation of a family of successive decays. 
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For instance, the left side of the first equality is the total number of parents decaying  

per second to form first daughters, while the right side is the total number of first  

daughters decaying per second. If the total rate of formation of first daughters did not  

equal their total rate of decay, their population would not remain constant. Equation  

16-6 describes the most important case of a family of decays. It is sometimes used to  

determine the values of the R, or T, from measurements of the N, and one known R.  
We can now understand how a-decaying nuclei with very short lifetimes can be  

found in nature. For example, 84Po212 , with T — 10 -6  sec, can be extracted from  
naturally occurring minerals that presumably have been in existence for billions of  

years. The reason is simply that the short lifetime a emitters are in equilibrium in  

decay families with long lifetime parents, called radioactive series. There are three  
such series that occur naturally: the 4n series whose parent is 90Th232  with T =  
2.01 x 10 10  yr, the 4n + 2 series whose parent is 92U238  with  T = 6.52 x 10 9  yr, and  
the 4n + 3 series whose parent is 92U235  with T = 1.02 x 10 9  yr. The names charac-
terize the A values for the members of the series. For instance, the parent of the  

4n + 3 series has A equal to four times an integer plus three, where the integer is 58.  

Since each a decay reduces A by four (and the other decay processes do not change  

A), all the daughters of this series will also have A equal to four times some smaller  
integer plus three.  

There is evidently also room for a 4n + 1 series. Actually there is such a series,  

whose parent is 93Np237  with lifetime T = 3.25 x 106  yr. The series can be produced  
artificially by using a nuclear reaction to make the parent, but it is not found in nature  

since the lifetime of the parent is very short compared to the age of the earth, which  

is estimated from geological and cosmological evidence to be —10 10  yr (see Example  
16-2). Consequently any parent nuclei initially present have decayed away.  

In this connection note that Figure 16-1 shows the decay energies of the parents of  

the three naturally occurring series are particularly low. If they were less than 1 MeV  

higher their decay rates would be so much higher, and their lifetimes so much shorter  

than — 10 1  ° yr, the age of the earth, that the naturally occurring elements would stop  

at Z = 82 instead of Z = 92. The same figure indicates why the presently known  
naturally occurring elements do stop at Z = 92. It is because the a-decay energies for  

nuclei with Z > 92 are large enough to lead to lifetimes short compared to the age  

of the earth. Finally, an extrapolation of Figure 16-1 to Z < 82 shows that the corre-
sponding elements are apparently stable to a decay because their decay energies are  

so small that the lifetimes are immeasurably long.  

Students frequently wonder why nuclei of large Z spontaneously emit a particles,  
ZHe4, but do not spontaneously emit any of the particles 2He3 , 1 H2, or  1H 1 , even  
though emitting any of these particles reduces the Coulomb energy of the nucleus.  

The reason is simply that for the particles other than 2He4  the binding energy per  
nucleon, AE/A, is much smaller than it is for a typical nucleus. Thus their emission  

is not energetically favorable. The emission of a 6C12 particle from a nucleus of large  
Z would be energetically favorable because it has a high AE/A and also reduces con-
siderably the Coulomb energy of the nucleus. And the emission of a particle of even  

larger Z would be even more so because of the increased reduction of the Coulomb  

energy. Such a process is called spontaneous fission. For naturally occurring nuclei of  

the highest Z values, i.e., for Z in the range just below 92, the decay rate for spon-
taneous fission is very much smaller than the decay rate for emitting an a particle  

because of the very much reduced probability of a more massive particle penetrating  

a higher Coulomb barrier. As Z becomes larger than about 100, the decay rate for  

spontaneous fission becomes comparable to, and eventually larger than, the decay  

rate for a-particle emission. The reason is that with increasing Z the decay energy  
for spontaneous fission increases more rapidly than the decay energy for a-particle  

emission, so the spontaneous fission Coulomb barrier becomes relatively easier to  

penetrate.  



There is an as yet unverified prediction that the nucleus of the element with Z = 110 and  
A = 294 might have a lifetime as long as ti  108  yr. If so, a little of it could possibly still be  

present on the earth if enough of it were formed 10 1°  yr ago. The prediction follows from  

the prediction that the proton magic number after Z = 82 is Z = 114, not Z = 126 as indicated  
in Figure 15-18 of the shell model. Of course the prediction of that figure that N = 126 is  
a neutron magic number is abundantly verified by experiment, and it is also believed that  

N = 184 is a neutron magic number as predicted by the figure. But there is no experimental  

evidence concerning Z values much beyond 100 since the corresponding nuclei have not been  
discovered yet, so Z = 126 is not actually known to be magic. The difference between the recent  

shell model predictions for the higher proton and neutron magic numbers arises because for  

protons there is, in addition to the nuclear potential, a repulsive Coulomb potential that be-
comes large for nuclei of large Z. It tends to raise all the proton levels, but more so for levels  

of small l whose probability densities extend deeper into the nuclear center where the Coulomb  

potential is stronger. The result is to raise the 2f and 3p levels relative to the li level, making  
the 1/13/2  level lie just above the 2f712  level, and creating a proton magic number at Z =  
100 + 14 = 114. Thus the nucleus with Z = 114, and N = 184, is believed to be doubly magic.  
That nucleus also lies near, but not on, the curve of maximum stability obtained from an  

extrapolation of the semiempirical mass formula of the liquid drop model. In othe words,  

Z = 114 and N = 184, or Z = 114 and A = 298, is expected to be doubly magic and also to  
have almost the most stable value of Z for that value of A. Collective model calculations  

indicate that the best compromise between the requirements for stability of the shell and liquid  

drop models is obtained by removing four protons to reduce the Coulomb energy, which is  

extremely important for nuclei of such large Z. Thus these calculations predict maximum  

stability at Z = 110 and A = 294. They also predict a lifetime of ' 10 8  yr against decay  
by a-particle emission or spontaneous fission into two smaller nuclei. The fission process is  

actually the most likely decay because it is more effective in reducing the Coulomb energy.  

So Z = 110 and A = 294 is predicted to be "an island of stability in a sea of spontaneous  

fission."  

Example 16-2. In the mixture of isotopes normally found on the earth at the present time,  

92U238  has an abundance of 99.3% and 92U235  has an abundance of 0.7%. The measured  
lifetimes of these radioactive isotopes are 6.52 x 10 9  yr and 1.02 x 109  yr, respectively. By  
assuming that they were equally abundant when the uranium in the earth was originally  

formed, estimate how much time has elapsed since the time of formation. (That is assume  

pairing effects in the initial formation ratios are small compared to lifetime effects in the pre-
sent abundance ratios.)  
► If the number of 92U238  nuclei originally formed is N, the number present now is  

N238 = 
Ne—xt  =  Ne-t/T = Ne- 1/6.52  

where t is the elapsed time in units of 10 9  yr. Since the number of 92U235  nuclei originally 
formed is, by assumption, also N, the number now present is 

N235 = Ne  t/1.02  

The present abundance of 92U235  is  

7 X lO_
3 
 = 	

N235 	_ N235  Ne  

N235 + N238 

ti 

N238 
 Ne - 06.52  

t/1.02  

= e - (01.02-06.52) 
= 

 e - 0 . 827t  

So  

	

e0.827t  	1 
	

= 143  
7 x 10 -3  

0.827t ^ ln (143) = 4.96  
4.96  

	

t 	
=6.0 

^ 0.827 
 

That is, the elapsed time is 

^ rn  
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t 6.0  x 109  y  
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The estimate obtained from this simple argument is in reasonable agreement with the estimates  
of the age of the earth, or of the solar system, obtained from more sophisticated geological  
and cosmological arguments. 	 4 

16-3 BETA DECAY  

A more complete description of the processes occurring in the 4n radioactive series  

is plotted in Figure 16-5. In addition to a decay, there is also [3 decay. For the  
radioactive series, 16 decay involves a nucleus Z, A emitting a negatively charged  
electron and being transformed into the nucleus Z + 1, A. There are also two other  
types of f3 decay that will be considered shortly.  

It is instructive to superimpose Figure 16-5 on Figure 15-11, the plot of the Z  
and N values of the stable nuclei. The result, shown in Figure 16-6, makes it clear  

that the radioactive series uses /3 decay to keep as good a match as possible between  
the average slope of the path traced out by its decay and the average slope of the  

"curve of stability." Another way of saying this is that the a-decay energy of a nucleus  

is relatively small if the nucleus it would a decay into is too far from the curve of  

stability. But in just these circumstances the fl-decay energy is relatively large. As  

the decay rates for both processes increase rapidly with increasing decay energy, the  

co 	nucleus in question will 10 decay because that process has a larger decay energy, and 
Q 	so a much larger decay rate. In some cases, the decay rates for the two competing 

processes are comparable, both processes occur, and the series branches (see 84Po216  

and 83 Bi212  in the 4n series). 
In the first part of this section we shall study the energetics of f3 decay. Then we 

shall study the dependence of the decay rate on the decay energy. There we shall see 
that the decay rate also depends strongly on the spins and parities of the nuclear 
states involved in the decay. This dependence on spin and parity makes the fl-decay 
process a very useful tool in the investigation of nuclei. 

To discuss the energetics of f3 decay, we plot atomic masses MZ, A, in the region of 
the curve of stability, as a function of Z for fixed A. Figure 16-7 shows typical results 
for odd A, and Figure 16-8 shows results typical for even A. Except near magic 
numbers, all the results are well described by the semiempirical mass formula. For 
odd A, the values of MZ,A  are found to lie on a parabola. For even A, there are 
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Figure 16-5 The decay processes occurring in -the 4n series.  
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Figure 16-6 Illustrating why fi  decay occurs in the 4n and other radioactive series.  
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58  odd value of A. The value A = 135 is chosen for  
this example.  

Figure 16-8 The masses of  
atoms with a given even  
value of A. The value A=102  
is chosen for this example.  
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two parabolas corresponding to the two possible signs of the pairing term, (15-28); 
the upper one is for odd Z, odd N, and the lower one is for even Z, even N. These 
curves are really cross cuts through the curve of stability, showing its structure. They 
specify how the masses increase when the Z values depart from their most stable 
values for a given A. Note that for an odd value of A, there is generally only one most 
stable value of Z. (Rarely there are two values straddling the bottom of the parabola 
that happen to lead to almost the same mass.) For a given even A, there are generally 
two stable values of Z (but occasionally there are three). 

Nuclei whose Z values are not the most stable, in consideration of their A values, 
can change Z to attain stability by three different fl-decay processes. One is the 
process of electron emission that occurs in the radioactive series. In this process, a 
negatively charged electron is emitted by the nucleus, so Z increases by one, N de-
creases by one, and A remains fixed. The other processes are electron capture and 
positron emission. In the former the nucleus captures a negatively charged atomic 
electron, and in the latter it emits a positively charged positron. In both, Z decreases 
by one, N increases by one, and A remains fixed. 

Electron emission takes place if the mass mz ,A of the initial nucleus exceeds the 
mass mz+1,A  of the final nucleus plus one electron rest mass m. The mass excess times 
c2  equals the energy E made available in the decay. That is, the decay energy is 

E = [mz,A — (mz+ 1,A + m)]c 2 	 (16-7a) 
à 
s 	This energy must be positive for the decay to occur. We can write it in terms of atomic 
O 	masses by adding and subtracting Z electron rest masses, to yield 

E = [mz , A  + Zm — (mz+1,A + Zm + m)]c 2  

Neglecting the binding energies of atomic electrons, we obtain the simple result that 
the decay energy in electron emission is 

E = [Mz,A — Mz+1,A]c
2 	 (16-7b) 

We see that electron emission occurs when the initial atomic mass exceeds the final 
atomic mass because the mass of the electron added to the atom is compensated for 
by the mass of the electron emitted by the nucleus. 

Electron capture takes place if the mass mz , A of the initial nucleus plus one electron 
rest mass m exceeds the mass mz_ 1 ,A of the final nucleus. The energy made available 
in the decay is 

E = [(mz , A  + m) — mz-1,A1 c 2  = [mz,A — (mz-1,A — m)]c 2 	(16-8a) 
or 

E = [mz , A  + Zm — (mz- 1,A + Zm — m)]c 2  

In terms of atomic masses, the decay energy in electron capture is 

E = [Mz,A — Mz-1,A]c2 
	 (16-8b) 

When the energy is positive, electron capture occurs. This simple result is obtained 
because the mass of the electron taken from the atom in the capture is compensated 
for by the mass of the electron captured by the nucleus. 

Positron emission requires that the mass mz A of the initial nucleus exceed the mass 
mz _ 1,A of the final nucleus plus one positron rest mass, which also equals m. The 
energy made available in the decay is 

E = [mz,A — (mz- i,A + m)]c2 	 (16-9a) 
or 

E = [mz , A +Zm—(m z _ 1-,A+Zm — m) - 2m]c 2  

In terms of atomic masses, this expression says that the decay energy in positron emis-
sion is 

E = [Mz,A — Mz-1,A — 2m]c2  (16-9b) 



O Electron 

Z + 1, A 

Final state 

In positron emission the atom must emit one electron since its nucleus emits one 
positron and has, therefore, one less positive charge. Thus there cannot be the com-
pensation of electron masses found in the other fl-decay processes. The result is that 
in order to have the decay energy in positron emission positive, which is a necessary 
condition for the process to occur, the initial atomic mass must exceed the final 
atomic mass by more than two electron rest masses, 2m = 0.00110u. 

We conclude that if Mz ,A > Mz+1 , A then electron emission can occur. If Mz ,A > 
Mz _ 1 ,A then electron capture can occur. But positron emission can occur only if 
MZ,A > MZ-1,A + 2m; and in this case electron capture can also occur. Thus there 
is a range in which the difference in atomic masses is such that electron capture is 
possible while positron emission is energetically forbidden. In practice, atomic mass 
differences frequently fall in this range and so there are relatively few positron emit-
ters in nature. In all these processes the decay energy E varies from case to case from 
a small fraction of 1 MeV to more than 10 MeV, and typically it is somewhat less 
than 1 MeV. 

Example 16-3. The only known nuclei with A = 7 are 3 Li 7 , whose atomic mass is M3 7 = 
7.01600u, and 4Be7 , whose atomic mass is M4 , 7 = 7.01693u. Which of these nuclei is stable 
to fi decay? What process is employed in the f decay of the unstable nucleus to the stable 
nucleus? 
► Since the atomic mass of 3 Li 7  is the lowest, it is the nucleus which is fi stable. 

As far as charge conservation is concerned, the fl-unstable 4Be 7  could decay into the stable 
nucleus either by capturing an atomic electron or by emitting a positron. But as far as energy 
conservation is concerned, only electron capture is possible since the difference in the atomic 
masses, M4, 7 - M3 , 7 = 7.01693u — 7.01600u = 0.00093u, is less than two electron masses, 
2m = 0.00110u. Thus electron capture is the process employed in the fi  decay of 4Be 7  into 
3Li7 . 4 

Now let us consider the very interesting question of what happens to the decay 
energy in fl-decay processes. Take the most common one, electron emission. A nu-
cleus Z, A, which we assume to be stationary in the initial state, emits an electron 
and recoils, as indicated in Figure 16-9. If there are just two particles in the final 
state, there can be only one linear momentum conserving way in which the available 
energy, which is the decay energy E, can be shared. In fact, since nuclei are so massive 
their recoil velocities are extremely low and they carry practically no kinetic energy. 
Thus the electron should carry away almost all of the decay energy E in the form of 
kinetic energy. But measurements made at an early stage in the study of radioactivity, 
using bending magnets, showed that the electrons are emitted with a spectrum of 
kinetic energies K e, as indicated in Figure 16-10. 

For many years, the fact that electrons are emitted in fi decay with a spectrum of 
energies was very mysterious and very disturbing. Electrons emitted at the end point 
Ké aX  of the spectrum carry away all the decay energy E, since Ké 8X  was observed 
to equal E within experimental accuracy. That is 

KQ aX = E 	 (16-10) 
But typical electrons carry away much less than the energy E which, the measured 
mass differences show, must be released in the process. It would appear that some of 
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Figure 16-9 The electron emission process, assuming 
(incorrectly, as we shall see) that only two particles 
comprise the final state. 
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Figure 16-10 The spectrum of electrons emitted in the fi decay of 83 Bi 210 .  

this energy has vanished! Several attempts were made to detect the missing energy, 
for instance by placing the fl-decaying material inside a calorimeter with very thick 
lead walls, but they were fruitless. The situation was grave enough that some physi- 
cists were beginning to seriously consider abandoning the law of conservation of rela- 

c 	tivistic energy, when Pauli proposed a less repugnant alternative. ccs 
Û 	In 1931 Pauli postulated that a particle, now called the antineutrino v, is also emit- 

ted in the electron emission process, but it is not normally detected because its inter-
action with matter is extremely weak. He also postulated that the antineutrino has (1) 
zero charge, (2) intrinsic spin s = 1/2, and (3) zero rest mass. The first property permits 
charge conservation to be maintained in electron emission. The second property 
allows angular momentum to be conserved. Consider the nucleus Z, A emitting an 
electron to become the nucleus Z + 1, A and assume, for example, that A is even. 
Then the nuclear spin i is an integer for both the initial and final nuclei. If only the 
electron with intrinsic spin s = 1/2 were emitted, it would be impossible to conserve 
angular momentum, because the sum of a half-integral angular momentum (the elec-
tron) and an integral angular momentum (the final nucleus) can only be half-integral. 
If an antineutrino with s = 1/2 is also emitted, the difficulty is removed. The third 
property was postulated to agree with measurements showing that the end point 
K '  of the electron spectrum equals the decay energy E, to the accuracy of the 
measurements. When an electron happens to be emitted at the end point, it carries 
away all the decay energy and none is left for rest mass energy of the antineutrino. In 
positron emission and electron capture, the particle that is emitted, but very difficult 
to detect, is called the neutrino v. It has the same zero charge, spin 1/2, and zero rest 
mass as the antineutrino. 

The relation between neutrinos and antineutrinos is explained by Dirac's relativistic quan-
tum mechanics. This theory shows that every particle with intrinsic spin s = 1/2 has its anti-
particle. A familiar, and closely related, example is the electron and its antiparticle called the  

positron. (Unrelated examples are the proton and antiproton, and neutron and antineutron.)  

The theory also shows that when a particle is produced a related antiparticle must be produced.  

The familiar example is, again, the electron and positron, which are produced in pairs. This  

is also found in the three 13-decay processes. In electron emission a particle (electron) is pro-
duced with an antiparticle (antineutrino), while in positron emission a particle (neutrino) is  

produced with an antiparticle (positron). Electron capture fits into this scheme since in the  

Dirac theory the destruction of an electron is identical to the creation of a positron.  

Figure 16-11 schematically illustrates electron and positron emission in terms of Dirac  

energy-level diagrams for the related particles, electrons and neutrinos. We saw in the discus-
sion of Figure 2-15 that in pair production the energy of an absorbed photon makes possible  
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Figure 16-11 Electron and neutrino Dirac energy-level diagrams illustrating pair pro-
duction, electron emission, and positron emission. 

the transition of an electron of rest mass m from one of the all pervading sea of filled electron  

levels that extend downward from — mc 2  to one of the empty levels that extend upward from  

+ mc2 . The result is an electron in a positive energy level, and a hole in a negative energy  

level, which is a positron. Such a transition could be represented by a vertical arrow connecting  

the lower and upper electron levels. In a similar way, an electron emission transition can be  

represented by a diagonal arrow connecting a filled neutrino level with an empty electron level,  

as shown in Figure 16-11. The energy made available by the difference in the nuclear masses  

converts a neutrino from the neutrino sea into an electron, leaving a hole in a neutrino level,  

which is an antineutrino. The diagonal arrow connecting a filled electron level with an empty  

neutrino level represents positron emission since the result is a hole in an electron level, or  

positron, and a neutrino. Note that there is no gap separating the filled and empty neutrino  

levels because neutrinos are postulated to have zero rest mass. Also note that the minimum  

energy that the nuclear mass difference must provide to make either fl-decay process possible  

is one electron rest mass energy, mc 2, in agreement with (16-7a) and (16-9a).  
There is an obvious distinction between a particle and its antiparticle if they are charged,  

because their charges are of opposite sign. The distinction is more subtle if the particle and  

antiparticle are neutral, like the neutrino and antineutrino. Nevertheless, there really is a dis-
tinction. Recent evidence that we shall discuss soon shows the component of intrinsic spin  

angular momentum along the direction of motion is always — h/2 for a neutrino and always  

+ h/2 for an antineutrino.  

The problem concerning the emission of electrons with a spectrum of energies is re-
solved by the postulate that an antineutrino is also emitted in the fl decay, since then  
the decay energy E can be shared between the electron kinetic energy K e  and the  
antineutrino kinetic energy K. That is  

K e  + Kv  = E 	 (16-11)  
where we neglect the nuclear recoil energy. As there are very many ways in which this  

energy division can be made, the values of K e  form a spectrum. Detailed agreement  

with the measured forms of the f3-decay spectra can be obtained if the argument is  

made quantitative. This involves the use of statistical procedures, similar to but some-
what more complicated than those used in Chapters 1 and 11, to determine the num-
ber of energy divisions in each range of K e . (See also Appendix K.)  

The results are most conveniently expressed, and explained, in terms of the momen-
tum spectrum R(p e), which is the rate of emission of electrons with linear momentum  

Pe  per unit time and per unit momentum. It is found that  

[(E — Ke) 2p ( N  r é  1 
R(pe) L 27L3^1'c3 ]

M*M  (16-12)  
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where M is the  fl-decay matrix element 

M = J  

In (16-12) the term (E — K e) 2  = Kv is proportional to pÿ , the square of the anti-
neutrino linear momentum. So the rate R is proportional to the product of two 
factors, each of which is the square of the momentum of one of the particles emitted 
in the f3 decay. These p2  factors are just measures of the number of quantum states per 
unit momentum interval into which the antineutrino, or electron, can be emitted in 
the decay. Both can be obtained by a trivial modification of the argument in Example 
1-3. If the allowed wavelength 2 in Figure 1-7 is taken to be the de Broglie wavelength 
of a particle in a box, then (1-15) can immediately be converted from the form 
N(r) cc r2  to the form N(p) cc p 2  since the quantity r in that equation is inversely 
proportional to 2 and, according to de Broglie, 2 is inversely proportional to the 
particle's momentum p. Thus we see that N(p), the number of allowed states per unit 
momentum interval for an antineutrino or electron of momentum p, which is confined 
to a box, is proportional to p2 . The box is a mathematical one that is used to nor-
malize the free particle eigenfunctions representing the emitted antineutrino, or elec-
tron, as discussed in Section 6-2. 

In other words, if a particle is confined to a box (of arbitrarily large dimensions) 
so that its eigenfunction can be normalized, it is no longer strictly a free particle and 
thus has a discrete (albeit arbitrarily closely spaced) set of quantum states available 
to it. The number of these states per unit momentum is proportional to the square 
of its momentum. If we then make the usual statistical assumption that all possible 
divisions of energy, or momentum, occur with the same probability, the rate for a f3 
decay with a particular division will be proportional to the total number of states 
for that division, which is the number of states for one particle times the number of 
states for the other. Thus the rate R will be proportional to the momentum density 
of states factor for the antineutrino times the momentum density of states factor for 
the electron. So we see how the shape of the electron momentum spectrum is gov-
erned by the bracketed terms of (16-12). Crudely speaking, the spectrum is symmet-
rical about a maximum at the momentum which represents equal momentum sharing 
between the electron and antineutrino. The reason is that if one of these particles 
takes more momentum in the decay, the other must take less, and this will decrease 
the value of the product of the two density of state factors. 

The term M*M in (16-12) governs the magnitude of the momentum spectrum, and 
therefore the overall rate of emission of electrons in the  13 decay. Equation (16-13) 
shows that M depends on the value of a quantity f3, which will be identified in the 
following paragraphs. It also depends on the eigenfunction i/i t  of the /3-decaying 
nucleus in its initial state (before the decay) and on the complex conjugate of the 
eigenfunction Of  of the nucleus in its final state (after the decay). We shall see that the 
f3-decay matrix element M is really a measure of how easy it is for the nucleus to 
change from the initial to the final state. 

Equations (16-12) and (16-13) are analogous to (8-42) and (8-43), which we derived 
for the rate of emission of photons in the decay of an excited state of an atom. In 
particular, the /3-decay matrix element is analogous to the electric dipole moment 
matrix element 

(16-13) 

J t/i fertli i  dz 

that enters in the theory of the "photon decay" of atoms. The /3-decay matrix element 
is a volume integral of the quantity f3, taken between the eigenfunction of the nucleus 
in its initial state and the complex conjugate of the eigenfunction of the nucleus in its 
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final state. So M is something like an average of the quantity /3, evaluated while the 
nucleus is in the process of decaying and is in a mixture of the two states. Thus fi  plays 
a role in governing the rate of 13 decay much like the role played by the electric dipole 
moment, er, in governing the rate of photon decay by atoms. 

Equations (16-12) and (16-13) were first obtained by Fermi, under the simplifying 
assumption that the Coulomb interaction between the nuclei and the emitted elec-
trons could be neglected. He also assumed that fi  is a universal constant, called the 
fl-decay coupling constant. Then the /3-decay matrix element M immediately reduces 
to 

M=fi J  fi ii i ch= f3M' 
	

(16-14) 

where M' is the so-called nuclear matrix element 

M' = f 
	

(16-15) 

Fermi's theory of electron emission from nuclei is closely related to the theory of 
photon emission from atoms. Perhaps the biggest difference is that Fermi's theory is 
complicated by the fact that two particles are emitted and share the available energy. 
Certainly the biggest similarity is that in both theories none of the particles emitted 
are considered to have prior existences—they are created at the time of emission. 

It should be emphasized that /3  decay is not a consequence of the nuclear force, or 
interaction. Instead, f3 decay is a consequence of an interaction that we have not 
previously encountered in our study of quantum physics—the fl-decay interaction. 
This is one of the four interactions of nature. The other three are the nuclear, elec-
tromagnetic, and gravitational interactions. In the next section we shall study the prop-
erties of the fl-decay interaction, and we shall find that it is set apart from the other 
interactions observed in nature by the very different magnitude of its strength, which 
is governed by the value of the f3-decay coupling constant /3. We shall als6 find that 
the f3-decay interaction has properties concerning parity which are strikingly different 
from the other interactions. 

The function R(p e), of (16-12), is the momentum spectrum of the emitted electrons. 
It also applies to positron emission. The equation predicts that a plot of [R(p e)/pe] 112  
versus (E — K e), or simply versus K Q7  should yield a straight line. Figure 16-12 shows 
such a Kurie plot for the simplest of all electron emission processes 

on 1 , 1H1 + e + v 	 (16-16) 
the decay of a free neutron ont  into a proton 1 H 1  plus an electron e and an anti- 
neutrino P. The neutron decays because [M0,1 — Ml,1]c 2  = +0.78 MeV, and the 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Ke  (MeV) 

Figure 16-12 A Kurie plot for the /3 decay of the neutron. 
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lifetime T of the decay is about 1000 sec. (A neutron in a stable nucleus does not f  

decay into a proton because it is prevented from so doing by the nuclear interaction,  

which is much stronger than the fl-decay interaction.) The comparison in Figure  

16-12 is typical of the good agreement obtained between the theory and experiment  

for the /3  decay of nuclei of low Z. Small downward deviations of the experimental  

data at low energies are sometimes seen, but they usually represent experimental  

problems with self-absorption of low-energy electrons in the source of f3-decaying  

material.  
For nuclei of high Z, there are real deviations between the predictions of the Fermi  

theory and experiment. They are due to the neglect of the Coulomb interaction  

between the final nucleus and the emitted electron, or positron. This interaction  

decelerates the electrons, or accelerates the positrons. Its effect is to enhance the  

low-energy or momentum end of the electron spectra, or to deplete that end of the  

positron spectra.  
By integrating the momentum spectrum of (16-12) over all electron momenta up  

to the maximum momentum ',Tax, an expression is obtained for the total rate of emis-
sion of electrons. Since this is just the decay rate R, according to (16-4) its reciprocal  
is the lifetime T. The results are  

3  
R = 

T 273h7 
(3 2M'*M'F 	 (16-17)  

where F is a function of the maximum momentum pe aX, or of the corresponding  

maximum kinetic energy which is the end point energy Ké  aX  In Figure 16-13, F is  
plotted as a function of Ké  aX.  Note that F increases fairly rapidly with increasing  

Ké  ax.  Corrections made to the theory to account for the effect of the Coulomb inter-
action on the emitted electron change the values of F. For small Z the change in F is  
negligible. But for Z = 100, and Ké ax =  1 MeV, F is increased by about a factor of  

100 for electron emission, or decreased by about a factor of 10 for positron emission.  

We see from (16-17) that the lifetime T of a fl-decaying nucleus decreases fairly  

rapidly with increasing end point energy KT", or decay energy E = Ke aX,  because  
of the increase in the value of F with increasing energy. For naturally occurring  

f3-decaying nuclei, T ranges from —1  sec for E around several MeV, to —10 8  sec for  
E around several hundredths of an MeV.  

We also see from (16-17) that the quantity  

2rc 3 h 7  1 	1  
^sc4 o2.  

0.02 0.04 	01 02 04 0.6 1  
End point energy KT  ax  (MeV)  

Figure 16-13 A base-10 logarithmic plot of the function F versus the end point energy  
Ké aX  of the /3 decay of nuclei of very small Z. The decay rate is proportional to F. Thus  
as F increases with increasing end point energy, the decay rate increases and the lifetime  

decreases.  

FT  (16-18)  
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depends on a collection of universal constants, and on the value of the nuclear matrix 
element 

M' = J ^z ±1,A ►^z,A dz 	 (16-19)  

This expression for the nuclear matrix element is just (16-15), with the subscripts on 
the initial and final eigenfunctions rewritten to indicate that the theory applies to both 
electron and positron emission. The quantity FT is sometimes called the comparative  
lifetime. It can be used to compare /3 decays of different decay energy, and rank them 
according to the lifetimes they would have if they all had the same decay energy. 
That is, multiplying T by F removes the energy dependence, and so produces a quan-
tity whose value depends only on a collection of universal constants and on the value 
of the nuclear matrix element. Since the matrix element contains the eigenfunctions 
for the nuclear states involved in a f decay, it is apparent that the FT value for the 
decay can provide information about those nuclear states. 

Example 16 -4. One of the simplest /3 decays is  
1 H 3 -> 2 He3 + e+ v 

The measured values of the decay energy and half-life are E = 0.0186 MeV and T1/2 = 12.3  
yr. Calculate the value of FT. 
► Since Z is very small, we can evaluate F from Figure 16-13, using K' = E = 0.0186 MeV.  
We find  

log F -5.7  
or  

F^ 2.1x10 -6  
Converting T1/2 in years to the lifetime T in seconds gives  

T1^2 12.3 yr x 365 day/yr x 24 hr/day x 60 min/hr x 60 sec/min 	s T 	= 
0.693 	 0.693 	

5.6 x 10 sec  

so  

FT 2.1 x 10 -6  x 5.6 x 108  sec = 1.2 x 10 3  sec  
This is one of the smallest FT values observed. In other words the /3 decay is inherently fast 
because its lifetime T is small, in consideration of the value of F dictated by the value of the 
decay energy E. In Example 16-5 we shall see that this fact has some important theoretical 
consequences. 

It also has some important practical consequences. Uncontrolled testing of hydrogen bombs 
in the 1950s produced large amounts of 1H3  (also called tritium) in the atmosphere. Since the 
/3 decay of this radioactive isotope is inherently fast, most of it has by now decayed into the 
harmless stable isotope 2He3. 4 

Since (16-18) shows that the FT value is inversely proportional to the value of  

M'*M', the nuclear matrix element times its complex conjugate, we see that FT is a  
minimum when M'*M' is a maximum. This happens when the initial nuclear eigen-  
function >/iz ,A is identical to the final nuclear eigenfunction z±1,A,  because then the 
normalization condition for eigenfunctions requires that (16-19) yield M' = 1. If the 
eigenfunctions are not identical, M'*M' < 1, and it becomes smaller as the eigen-
functions become less similar. In fact, M', and therefore M'*M', is exactly zero if 
Wz,A and tfrz ± 1,A  are so dissimilar as to correspond to different values of nuclear spin  

i, or opposite nuclear parities. These two properties immediately give the Fermi 
selection rules: 
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Ai = 0  
The nuclear parity must not change  

If either is violated the /i decay will not take place, according to the Fermi theory.  

The first restriction reflects the fact that no allowance is made in the theory for the  

(16-20)  



N
U

C
LE

A
R

 D
E

C
A

Y
  A

N
D

  N
U

C
LE

A
R

  R
E

A
C

T
IO

N
S

 
emitted particles to carry angular momentum, so the conservation law demands there 
be no change in the nuclear angular momentum. The second restriction arises because 
the integrand will be of odd parity if the eigenfunctions have opposite parity, and 
then the contribution to the integral from the point x, y, z will be canceled by 
the contribution from the point — x, — y, — z. (Recall the arguments at the end of 
Section 8-7.) 

A theory developed later by Gamow and Teller takes into account the spins of 
the emitted particles, and it shows that the first Fermi selection rule is too restrictive. 
The Fermi theory restriction arises from the circumstance that the matrix element 
in (16-13) does not involve spins. In the Gamow-Teller theory the corresponding 
matrix element contains the spin of the neutron that is being converted into a proton, 
and the spin of the neutrino that is being converted into an electron, in the /3  decay. 
If the two particles emitted in the decay have their s = 1/2 intrinsic spins essentially 
parallel, Ai = ± 1 is also allowed. Thus we have the Gamow-Teller selection rules: 

Ai = 0, + 1 	(but not i. = 0 if  = 0) 	
(16-21) 

The nuclear parity must not change 

The reason why Ai = 0 is allowed by the Gamow-Teller rules is that it is possible 
for the two particles to be emitted with essentially parallel spins in a Gamow-Teller 
decay, thereby carrying away one unit of angular momentum, with the nucleus 
changing the orientation in space, but not the magnitude, of its spin. But this is not 
possible if the nuclear spin is zero, as is indicated by the qualification in parentheses. 
In a Fermi decay the particle spins are "antiparallel," and the nuclear spin may be 
zero. 

Even if Ai is larger than one, fi decay still can occur in such a way that angular 
momentum is still conserved, since the particles can be emitted with orbital angular 
momentum. But the decay rates for these forbidden processes are much smaller than 
for the allowed processes that satisfy the Fermi or Gamow-Teller selection rules. The 
decay rate decreases by something like a factor of 10'    for each unit of orbital 
angular momentum carried away by the particles. These inhibition factors result from 
the low probabilities of emitting a particle with orbital angular momentum of one 
or more h units from a system of radius as small as that characteristic of a nucleus, 
if the particle has linear momentum as small as that characteristic of fi  decay. 

For many nuclear physicists /3 decay is a favorite field of investigation because it 
provides valuable information about the nuclei involved in the decay. A measurement 
of the end point  KT", or of the atomic masses to determine the decay energy E, 
is used to obtain the value of F from a curve like Figure 16-13, if Z is small. If 
Z is not small, the value of F is obtained from tables that are available of F versus 
Ké 

 
ax  and Z. Next, FT is calculated from the measured value of the half-life, or 

lifetime, as in Example 16-4. Then (16-18) is used to evaluate the nuclear matrix 
element M'. The order of magnitude of M' is often enough to give information about 
the spins and parities of the nuclear states participating in the decay, and more 
accurate values of M' can give details about the eigenfunctions of these states, through 
(16-19). Of course, it is first necessary to know the value of the fi-decay coupling 
constant /3. This quantity is evaluated experimentally from fi  decays involving certain 
very simple nuclear states, for which M' is already known from other considerations 
to be discussed next. 

16-4 THE BETA-DECAY INTERACTION 

The fi-decay interaction is the least familiar of the four interactions (nuclear, electro- 
magnetic, /3 decay, gravitational) that govern the operation of everything in the 
universe. In this section we shall explore some of its properties. We begin by using 
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Figure 16-14 Shell model descriptions of the ground states of the pair of nuclei 1H3  

and 2 He 3 .  

the iH3  to 2He 3  /3 decay, considered in Example 16-4, to determine the value of the 
fl-decay coupling constant, f3, which specifies the strength of the interaction. 

Since we found in Example 16-4 that the FT value for the i decay 'H 3  -+ 2He3  + 
e + v is particularly small, the inverse proportionality between FT and M'*M', of 
(16-18), tells us that the nuclear matrix element M' is particularly large for this decay. 
In fact, there is reason to believe that it assumes the maximum value allowed by the 
normalization condition, M' = 1. Figure 16-14 gives the shell model description of 
the ground states of the two nuclei, which are the states involved in the f3 decay. 
Since the nucleons are in the 1s 1/2  subshell, which has j = 1/2 and even parity, 
according to the shell model both ground states should have nuclear spin i = 1/2 
and even parity. These predictions are confirmed by independent measurements of 
the spins and parities. Thus the f3 decay between these states is certainly allowed by 
the Fermi selection rules. But the shell model makes the even stronger prediction that 
M' = 1, almost exactly, in this decay. Since all the nucleons are in the same subshell, 
the eigenfunctions for the two nuclei can differ only if the Coulomb, or nuclear, inter-
actions between the nucleons differ. The Coulomb interactions do differ for the two 
nuclei, but they are negligible compared to the strong nuclear interactions. And there 
is much other evidence that the nuclear interactions are the same because they are 
charge independent and so make no distinction between neutrons and protons. Thus 
the two eigenfunctions should be essentially identical and, if the eigenfunctions are 
properly normalized, the integral will yield 

M' = J ,3i , 3 dr = J 4,301,3 ch = 1  

Knowing the value of M', we can then use the measured FT value to evaluate f3, the  

f3-decay coupling constant. It should be emphasized that the conclusion that M' =1  

depends on the particular symmetry found between the behavior of the neutrons and  

protons in the two nuclei involved in the decay. In the first nucleus there are a pair  

of nucleons of one species and an unpaired nucleon of the other species in the same  

subshell—in the second nucleus exactly the same is true, although the species of the  

nucleons are reversed.  

Example 16-5. Use the FT value for the f3 decay of Example 16-4, plus the conclusion that  

M' = 1 for that decay, to evaluate the f3-decay coupling constant, fi.  
•Equation (16-18) gives  

So we have 

2 N 	 271 3(1.05 x 10 -34  joule-sec) 7 	1 
a 	1.2 x 103  sec x (0.91 x 10 -30  kg) 5  x (3.0 x 108  m/sec)4  1  
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or  
)6 2  — 1.4 x 10 -123  joule 2 -m 6  

Thus 

/3 ^ 3.7 x 10 -62  joule-m 3 	 •  

There are several other pairs of nuclei whose ground states have shell model 
descriptions with the same kind of symmetry between neutrons and protons as in 
Figure 16-14. An example of such a pair is 3 Li 7  and 4Be 7. One member of each pair  
f decays into the other, with a nuclear matrix element M' that must certainly be  

almost precisely equal to 1. The measured FT values of these decays lead, through  

calculations like the one in Example 16-5, to values of /3 which are in good agreement  

with the value obtained there. Thus we conclude that the /3-decay coupling constant  

has the very small value  
/3 — 10 -62  joule-m 3 	 (16-22)  

If we divide /3 by the volume of a typical nucleus, — (10 -14  m)3 10 -42  m 3 , we  
obtain 10 -62  joule-m 3/10 -42  m 3  = 10 -20  joule ^ 10 - ' MeV. We can then make a  
comparison of this characteristic energy to the energy of the order of 1 MeV that  
characterizes the nuclear interaction. As it is the square of the /3-decay coupling con-
stant that enters into measurable quantities, such as the FT value, it is appropriate  
to say that the f-decay interaction is weaker than the nuclear interaction by a factor  
of 10 -14  

Since the nuclear interaction is only about two orders of magnitude stronger  

than the electromagnetic interaction (see Section 15-2), the /3-decay interaction is  

also very much weaker than the electromagnetic interaction. On the other hand, the  

gravitational interaction is weaker than the nuclear interaction by about 40 orders  

of magnitude (see also Section 15-2), so the f-decay interaction is stronger than the  

gravitational interaction by about 26 orders of magnitude. Thus there are extremely  

pronounced differences in strength between the /3-decay interaction and the other  

interactions observed in nature. These matters will be discussed at more length in the  

following chapters where it will be seen, for instance, that the gravitational interaction  

is the most obvious one in the everyday world, despite the fact that it is inherently  

the weakest by far, because it has a long range and always has the same sign.  

The range of an interaction is a characteristic as important as its strength. The  

gravitational interaction has a long range since the gravitational interaction energy  

between two massive objects decreases quite slowly as their separation r increases  
(in proportion to 1/r). The electromagnetic interaction also has a long range since  

the interaction energy between two charged objects has the same slow dependence  

on their separation. The nuclear interaction has a short range because the interaction  

energy cuts off abruptly when two nucleons are separated by more than about 2 F.  

The /3-decay interaction has an extremely short range. Some evidence for this is found  

from the following considerations. The form for the f-decay matrix element M used  

in the Fermi theory, (16-14)  

M=fI(PfC d^ 

is obtained from the assumption that the extension in space of the /3-decay inter-
action is very small compared to the dimensions of the nucleus. Without this assump-
tion, the integrand in M would not be'I /I , but 41/ ii  averaged over a volume of  

dimensions equal to the range of the interaction. If this were the case, M would be  

affected in such a way as to change the predictions of the theory for the shape of the  

momentum spectra of the electrons emitted in the f decay. But the observed momen-
tum spectra are in good agreement with the theoretical predictions as they stand.  



Thus the assumption of a very short range /3-decay interaction, which the predictions 
stand upon, is probably correct. Additional evidence supporting this conclusion will 
be presented in the following chapters. 

The very small value of /3 is responsible for the fact that neutrinos and antineu-
trinos interact so weakly with matter that they are very difficult to detect. Calcula-
tions show that when they are produced in /3 decay following nuclear reactions in 
the center of the sun, they can travel all the way to the surface with little chance of 
being absorbed. This has an effect on the production of solar energy. The fi-decay 
interaction of electrons and positrons is equally weak, but since these particles also 
interact with matter through the electromagnetic interaction they are easy to detect. 

Despite the obvious difficulties due to the extreme weakness of their interaction 
with matter, antineutrinos were detected in 1953 by Reines and Cowan. They used 
the reaction 

1H1 —>  On' +é 

where the symbol é stands for a positron. This is the inverse of the reaction 
1 H ' +v 

which is the alternative form of neutron decay, (16-16) 
on 	1H1 + e +V 

(Note that the two forms of neutron decay indicate the equivalence of the destruc-
tion of an antiparticle, the positron, and the creation of the associated particle, the 
electron. In the Dirac theory the processes are identical.) The Reines-Cowan reac-
tion took place in the hydrogen of a very large hydrogenous scintillation counter (a 
modern version of Rutherford's ZnS counter, using photocells instead of eyes to de-
tect the light flashes). The counter was exposed to the enormous flux of antineutrinos 
emitted from the fission induced /3 decays in a nuclear reactor, and the positrons were 
detected by the scintillations they produced in the same counter. Elaborate methods 
were required to minimize background scintillation. This was necessary because only 
about one reaction per minute was obtained, despite the intense flux of antineutrinos 
and the huge size of the target, due to the weakness of the /3-decay interaction. 

Now we shall briefly discuss two other experiments, performed in the 1950s, that 
tell us about a unique property of the /3-decay interaction. Wu, and collaborators, 
studied the decay 

27Co°° —  28Ni6° + e + v 
by measuring the direction of emission of the electrons relative to the orientation 
of the magnetic dipole moments of the 'Co" nuclei. The magnetic dipole moments 
were aligned by using a very strong external magnetic field, and a very low tempera-
ture to minimize thermal disorder. Figure 16-15 is a schematic drawing of the experi-
ment, showing a typical nucleus and a typical emitted electron. To make the drawing 
closer to physical reality, a current loop of positive charge is used to indicate the ori-
entation of the magnetic dipole moment. Wu found that the electrons are not emitted 
symmetrically with respect to the plane of the current loop. Instead, there is a pre-
ferred direction of emission that is related to the circulation of the current loop in the 
same way as the direction of advance of a left-hand screw is related to its rotation. 
The figure also shows the experiment, as seen when looking in a mirror. The preferred 
direction of emission appears to be the same, but the circulation of the current loop 
appears to have reversed. As viewed in the mirror, the results of the experiment are 
described by saying the relation between the direction of the typical electron and the 
circulation of the current loop is like that of a right-hand screw. Thus a description 
of this /3 decay (and others) is not the same as a description of the mirror image. This 
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Preferred direction 
of electron 
emission 

Circulation of 
positive charges 
in current loop 

Normal view 

Figure 16-15 A schematic drawing of the experiment which proved that parity is not 
conserved in fi  decay. Also shown is a mirror image of the experiment. 

seems to be a property unique to the I6-decay interaction, among all the observed 
interactions of nature (nuclear, electromagnetic, i3  decay, and gravitational). For in-
stance, charges circulating around a macroscopic current loop emit photons by the 
electromagnetic interaction, because the charges are accelerating. But the photons are 
emitted symmetrically with respect to the plane of the loop, so the mirror descrip-
tion of this process cannot differ from the normal description. Since the operation 
of taking a mirror image is related to the parity operation in the manner illustrated 
in Figure 16-16, it is said that 16 decay is not invariant to the parity operation, or that 
parity is not conserved in fi decay (but it is in the electromagnetic interaction). 

z 

 

P 
x1(— x, —y, —z) 

Before parity 
operation 

After parity 
operation 

  

Figure 16-16 The parity operation (x,y,z) —* (—x,—y,—z). In this figure the operation is 
carried out by reversing the direction of each of the coordinate axes, keeping the location 
of the representative point P fixed (compare with Figure 8-15). Before the operation we 
have a set of right-hand axes, i.e., a right-hand screw, rotated in the sense that would 
carry the x axis into the y axis, would advance the screw in the direction of the z axis. 
After the parity operation they become a set of left-hand axes. This change can also be 
obtained by the operation of taking a mirror image, which converts right-hand axes into 
left-hand axes. So the mirror image operation is related to (but not identical to) the 
parity operation. 



Direction of spin 
angular momentum 

Direction of 
advance and of 

linear momentum 

Direction of 
advance and of 

linear momentum 

Direction of 
spin angular 

Right-hand screw 
	 momentum 	Left-hand screw 

(antineutrino) 	 (neutrino) 

Figure 16-17 The helicities of a right-hand screw and a left-hand screw. 

Measurements of Goldhaber, and collaborators, have shown that the so-called 
helicity of the antineutrino is responsible for the results of the Wu experiment. The 
method is a little too complicated to explain here. But they found that in the normal 
view of nature the spin angular momentum of an antineutrino is, within the accuracy 
of their measurements, always essentially parallel to the direction of its linear momen-
tum. It is said that the antineutrino has the helicity of a right-hand screw, depicted in 
Figure 16-17. They also found that the neutrino has the helicity of a left-hand screw; 
i.e., within experimental accuracy its spin angular momentum is always essentially 
antiparallel to its linear momentum in the normal view. Now the fj decay studied 
by Wu is between an i = 5, even parity, ground state of 27Co60, and an i = 4, even 
parity, excited state of 28Nî60 . So it is a Gamow-Teller allowed transition in which 
angular momentum conservation requires the antineutrino and electron to be emitted 
with their spin angular momentum vectors essentially parallel to that of 'Co", or 
to a vector representing its magnetic dipole moment. Furthermore, in such a transi-
tion the antineutrino and electron tend to be emitted with linear momentum vectors 
in opposite directions. Figure 16-18 shows how these relations between the vectors, 
plus the parallel relation between the spin and linear momentum vectors of the anti-
neutrino demanded by its helicity, cause the typical electron to be emitted in the 
direction described. As viewed in a mirror, the helicity of the antineutrino changes, 
just as the helicity of a real screw changes, and this leads to the change in the mirror 
image description of the Wu experiment. 

It should be noted that there is no violation of parity conservation by the nuclei in the 
27

C0 60  to 28Nî6°  decay. Both nuclear states involved are of even parity so there is no nuclear 
parity change, in agreement with the Gamow-Teller selection rules. 

It should also be noted that it is not possible for an antineutrino, or neutrino, to have a 
definite helicity in the normal view of nature unless its rest mass is zero. If it had a nonzero rest 
mass, it would travel with velocity less than c, and we could always find a moving frame of 
reference in which its linear momentum would be reversed in direction. As its spin would be 
unchanged by such a transformation, its helicity would be reversed. But the Goldhaber experi-
ment shows that antineutrinos and neutrinos do have definite helicities, and this would not 
be possible if their helicities depended on the motion of the reference frame from which they 
are viewed. So we can conclude that their rest masses are zero, within the accuracy of the ex-
periment. Direct measurements of the rest masses of these particles confirm this conclusion. 
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Figure 16-18 The ,8 decay of aligned 27 Co60 . The 
vectors give the directions only of p and I, Sv  and py , and 
Se  and  Pe , which are the nuclear magnetic dipole mo-
ment and spin, the antineutrino spin and linear momen-
tum, and the electron spin and linear momentum. Parity 
is not conserved because S, and pv  are always essen-
tially parallel. /4 	I 	S 	Pv Se 	Pe 
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16-5 GAMMA DECAY 

There are y rays emitted from many of the nuclei of the radioactive series. These are 
photons of electromagnetic radiation that carry away the excess energy when nuclei 
make y-decay transitions from excited states to lower energy states. As the energy 
differences in nuclear excited states range upwards from — 10' 3  MeV, y rays have 
energies greater than — 10' 3  MeV (see Figure 2-4). Most typically, y decay will arise 
when a preceding fi decay has produced some of the daughter nuclei in states of 
several MeV excitation, because the fl-decay selection rules prevent the decay from 
obeying the tendency, imposed by the energy dependence, for transitions to go over-
whelmingly to the ground state. An example is shown in the "Cl" decay scheme 
of Figure 16-19. There are also many other ways to produce nuclei in excited states, 
which subsequently y decay. For instance, states of excitation energy around 7 or 8 
MeV are produced when this much binding energy is liberated by the capture of a 
low-energy neutron in a nucleus. 

The most accurate technique for measuring the energy of y rays is to study their 
diffraction from a crystal lattice of known lattice spacing. This is exactly the technique 
of x-ray diffraction, but since y rays have somewhat higher energies than x rays, their 
wavelengths are somewhat shorter, and this forces the use of diffraction apparatus of 
inconveniently large dimensions in order to measure accurately the small diffraction 
angles. The most widely used technique for measuring y-ray energies involves letting 
the photons transfer their energies to electrons by one of the processes described in 
Chapter 2, namely, the Compton effect, the photoelectric effect, or pair production. 
The energies of the electrons are measured by using a NaI scintillation counter, or a 
semiconductor counter, which has a response proportional to the energy a charged 
particle deposits in it. The measured energy spectrum of y rays emitted in transitions 

(3, odd) 

(2, even) 

(0, even) 
18A38 

Figure 16 -19 The decay scheme of 17 C1 38 . The half-life, spin, and parity of the ground 
state of this f-unstable nucleus are shown as well as the energy of the state relative to 
the ground state of 18A38.  Also shown are the energies, spins, and parities of the ground 
and first two excited states of 18A38,  and the relative probabilities that the /3 decay goes to 
each of these states. When the excited states are populated, they y decay to the ground 
state. The /3 decay to the (3, odd) state is allowed by the Gamow-Teller selection rules, 
while the other /3 decays are both forbidden by these and the Fermi selection rules. They 
nevertheless occur with appreciable probabilities because of the way the rates for all 
decays, allowed and forbidden, increase rapidly as the decay energy increases. 



between the excited states of a nucleus is used to determine the energies of these 
states just like the spectrum of photons emitted from an atom is used to determine 
the energies of atomic states. Of course, this provides very valuable information about 
the nucleus. 

Another valuable source of information is the y-decay transition rate R of each 
excited state. In some cases R can be measured directly. In other cases it can be 
obtained indirectly by measuring the lifetime T of the state. If the state makes only 
a single transition to a lower energy state, (16-4) tells us T = 1/R (after correction is 
made for the "internal conversion" process to be discussed at the end of this section). 
When T > 10 -10  sec, it can be determined by electronically timing the average delay 
between the excitation of a state and its decay. When T is shorter than this figure, in 
some cases it can be determined by using the Mössbauer effect (discussed in the next 
section) to determine the energy spread, or "width," of the state, and then employing 
the energy-time uncertainty principle. With these different techniques, transition rates 
have been observed ranging from R — 10 -8  sec - 1 to R 10 18  sec". 

The energies of the excited states of nuclei will be considered in a subsequent 
section. Here we shall consider their transition rates for y decay. As we shall use the 
ideas developed in treating optical transitions of atoms in Section 8-7, the student 
certainly should review that material before proceeding. 

For an atom, only electric dipole radiation is important. This is the radiation pro-
duced by oscillations in its electric dipole moment. In principle, radiation can be 
emitted by a more complicated behavior of the atomic electrons, such as an oscilla-
tion of the magnetic dipole moment or of the electric quadrupole moment. In practice, 
for an atom such radiation can be ignored because the transition rate is very much 
smaller than for electric dipole radiation. Electromagnetic considerations show that 
the transition rate for magnetic dipole radiation should be smaller than for electric 
dipole radiation by a factor of the order of (v/c) 2  — (10 -2)2 = 10 -4, where y  is the 
typical velocity of the electrons and c is the velocity of light. Geometrical consider-
ations show that the transition rate for electric quadrupole radiation should be small-
er than for electric dipole radiation by a factor of the order of (r'/2) 2  — (10 -10  m/ 
10 -7  m)2  = 10 -6 , where r' and 2 are typical values of the atomic radius and the wave-
length of the radiation. If the selection rules prevent an atom from emitting electric 
dipole radiation, it is almost always deexcited by hitting some other atom long before 
it can emit magnetic dipole or electric quadrupole radiation. 

For a nucleus the same factors suppress the transition rates for magnetic dipole and 
electric quadrupole radiation, but their values are not so small: (v/c) 2  — (10-1)2 = 
10 -2; (r'/2)2  — (10 -14 m/10 -12  m)2  = 10 -4. Furthermore, the Coulomb barrier keeps 
nuclei from getting close enough to deexcite each other. So if the selection rules 
prevent a nucleus with several MeV of excitation from emitting electric dipole radia-
tion, it must wait until it can decay by emitting some other electromagnetic radiation 
(or by the related process of internal conversion). 

The transition rates for various types of electromagnetic radiation can be calcu-
lated by extensions of the procedure developed in Section 8-7. Since the calculations 
are very sensitive to the detailed behavior of the nucleons in the states involved in the 
decays, and since the nuclear models only provide approximate descriptions of this 
behavior, the results can only be expected to give rough ideas of general trends. Table 
16-1 shows transition rates obtained by Weisskopf from calculations, based on the 
shell model, for a nucleus of radius r' = 7 F. The integer L labels the multipolarity of 
both the electric and magnetic transitions; it is 1 for dipole, 2 for quadrupole, 3 for 
octupole, etc. Note that for 1 MeV y rays, predicted rates for magnetic transitions are 
smaller than for electric transitions, of the same L, by about 10 -2  — (v/c) 2 . At that 
typical energy, predicted rates for both types of transitions decrease by about 10 -4  —
(r'/2) 2 , for each unit increase of L. Also note that the dipole transition rates have 
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co 	Table 16-1 Shell Model 7-Decay Transition Rates in sec -1  for a 
Nucleus of Radius r' = 7 F 

Transition L 10 MeV 
y-Ray Energy 

1 MeV 0.1 MeV 

Elec. dipole 1 2 x 10 18  2 x 1015  2 x 1012  

Mag. dipole 1 2 x 10 16  2 x 10 13  2 x 101°  
Elec. quadrupole 2 1 x 10 16  1 x 10 11  1 x 106  
Mag. quadrupole 2 1 x 10 14  1 x 109  1 x 104  
Elec. octupole 3 1 x 10 13  1 x 106  1 x 10 -1  
Mag. octupole 3 1 x 10 11  1 x 104  1 X  10 -3  
Elec. sixteenpole 4 1 x 10 1°  1 x 10 1  1 x 10 -8  
Mag. sixteenpole 4 1 x 108  1 x 10 -1  1 x 10 -10  

approximately an E 3  cc y3  dependence on the energy or frequency of the emitted 
y ray. We have seen this y 3  dependence before in the electric dipole transition rates 
for atoms, (8-43). Since (r'/2)2  cc y 2  cc E2 , the quadrupole transition rates depend 
approximately on E5  and the octupole transition rates depend approximately on E7 . 

The calculations also show that the y-decay selection rules are: 
For electric transitions 

The nuclear parity must change if L is odd, 	 (16-23) 
and it must not change if L is even. 

For magnetic transitions 

 —i f l < L<ii +if 	(but not i i  = 0 to if  = 0) 
The nuclear parity must change if L is even, 	 (16-24) 
and it must not change if L is odd 

In these expressions, ii  is the nuclear spin of the initial state and  if  is the nuclear spin 
of the final state of the decaying nucleus. The decay will, of course, always proceed 
by the allowed transition having the largest transition rate. Because of the strong L 
dependence of the transition rate, it follows that the dominant transition will have 
L = — if I.  If this value of L is odd, it will be an electric transition when the initial 
and final states are of the opposite parity, and a magnetic transition when these states 
are of the same parity. If this value of L is even, it will be an electric transition when 
these states are of the same parity, and a magnetic transition when they are of the 
opposite parity. 

Example 16-6. Use the information in the decay scheme of Figure 16-19 to determine the 
types of radiation emitted by 18A38  in the y decays between its three lowest energy states. 
•In the decay between the states of i = 3, odd parity, and i = 2, even parity, we have 

— if l = 1 = L. Since this value is odd, and since the nuclear parity changes, the radiation 
is electric dipole. 

In the decay between the states of i = 2, even parity, and i = 0, even parity, we have 
— if l = 2 = L. Since this value is even, and since the nuclear parity does not change, the 

radiation is electric quadrupole. 	 • 

By running the arguments of Example 16-6 in the reverse direction, information 
about the spins and parities of the nuclear states can be obtained if the types of radia-
tion emitted in transitions between the states are known. The types of radiation can 
be identified from approximate measurements of the transition rates (or from mea-
surements, described later, of internal conversion). Since the transition rates are very 
sensitive to the behavior of the nucleons in the nucleus, their accurate measurement 
provides information that is currently being used to improve the nuclear models. 

cc.  

j lii — if l<L<ii + if 	(but not i i  = 0 to if  = 0)  



The parts of the selection rules relating L to the nuclear spins arise from the re-
quirement that angular momentum be conserved in y decay. The student can verify 
this with ease, if he will accept a result obtained from quantum electrodynamics: a y 

 ray emitted in a transition, of multipolarity L, carries L units of angular momentum. 
(Since it is not possible for a system of particles to have an oscillating electric mono-
pole moment, or to have any magnetic monopole moment at all, it immediately 
follows from this result that there is no way to produce an L = 0 y ray, or an L = 0  
photon in any region of the electromagnetic spectrum Thus we see why all photons 
must carry at least one unit of angular momentum.) 

The parts of the selection rules relating L to the nuclear parities arise from sym-
metry properties of the matrix elements for the transitions. In Example 8-6, we saw 
that the electric dipole matrix element can be broken into components, the first of 
which is 

M oc J frf*x f/i dz  	 (16-25)  

The factor x enters because it is proportional to the x component of the electric dipole  

moment. Calculations show that the first component of the electric quadrupole ma-
trix element is  

M cc J Ix2 ,dt  	 (16-26)  

The factor x2  is proportional to one of the components of the electric quadrupole  

moment. (There are generally more than three since a quadrupole generally must be  

described in terms of a tensor.) For the magnetic dipole matrix element, the first com-
ponent turns out to be  

M cc J /i*LfJ dr  
 

where Lx  is the x component of orbital angular momentum. This factor enters because 
it is proportional to the x component of the magnetic dipole moment (if we assume, 
for simplicity, that it is purely orbital). Since 

dz 	dy 
Lx = (r x P)x=ypZ— zpy =m(yvz— zvy) = m(y

dt 
— z 

dt  
the magnetic dipole matrix element component can also be written  

M cc  ^f (Y dt —  z  dt)  i di 	 (16-27)  

At the end of Section 8-7 we proved that the integral in (16-25) yields zero unless 
/ i  and Of  have opposite parities. We leave it to the student to prove from similar 
arguments that the integrals in (16-26) and (16-27) yield zero unless ii i  and Of  have 
the same parities. These results are precisely the parity selection rules for the three 
transitions we have taken as examples. 

In many y decays, several groups of monoenergetic electrons are emitted along 
with the y rays. (If there is a preceding 16 decay these groups will be superimposed 
on the continuous fl-decay spectrum.) The energies 6' of these electrons are found to  

be related to the decay energy E by the equation  

e _ E — W 	 (16-28)  
where W for the most prominent group equals the binding energy of a K shell elec-
tron of the y-decaying atom, and W for the other groups equals the binding energies  

of electrons in the L, M, etc., shells. The process involved is called internal conversion.  
It consists of a direct transfer of energy through the electromagnetic interaction be-
tween a nucleus in an excited state and one of the electrons of its atom. The nucleus  
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decays to a lower state, without ever producing a y ray. But the decay is still electro-
magnetic, depending on an interaction between the electron and the longitudinal 
components of the electric field produced by the oscillating multipole moment of the 
nucleus. The transverse components are responsible for y decay (see Appendix B). 

Figure 16-20 shows calculated values of the K shell internal conversion coefficient, 
aK , for the "Zr atom. This is the ratio of the probability that a K electron will be 
emitted, in a decay of its nucleus, to the probability that a y ray will be emitted. The 
calculations should be very accurate because factors involving not too well known 
nuclear properties cancel out of the ratio. Since the chances for internal conversion 
increase rapidly as the value at the nucleus of the bound electron eigenfunction in-
creases, aK  rapidly becomes larger as the Coulomb attraction becomes larger with 
increasing Z. For the same reason, at a given Z and E, the quantity aK  is usually 
larger than the quantity ocL . Furthermore, at a given Z and E, the quantity aK/aL  
depends strongly on the L value of the y-ray transition, and on whether it is electric 
or magnetic. Accurate measurements of aK/aL , which are relatively easy to make, 
therefore provide a good method of identifying the type of transition, and of deter-
mining thereby the relative spins and parities of the nuclear states involved. 

Internal conversion does not compete with y-ray emission in the sense that one 
process inhibits the other. The processes are independent alternatives, so the total 
rate R 1  for transitions between the initial and final nuclear states is the sum 

Ç 	 R, = R + Rte 	 (16-29) 

where R and R IS  are the transition rates for y emission and for internal conversion. 
This can be written as 

R 1 =R+atR=R(l+at) 

where at  = aK  + aL  + am  + • • • is the total internal conversion  coefficient.  If the ini-
tial state can decay only to a single final state, as is usually true for longer lifetime 
decays, then from (16-4) 

R, R(1 + at) 

The experimental values of the lifetime T can thus be used to obtain the transition 
rate R, since at  can be accurately calculated. 
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Figure 16-20 K-shell internal conversion 
coefficients for 40Zr. The solid curves are 
for electric transitions and the broken 
curves are for magnetic transitions. The 
numbers refer to the multipolarity L. 
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Figure 16-21 Lifetimes for a group of magnetic sixteenpole y-decay transitions. The base-
10 logarithm of the product of the lifetime T (in sec) and the sixth power of the nuclear  

radius r' (in F) is plotted as a function of the energy of the y ray (in keV). The points  
are experimental and the straight line is the prediction of the shell model.  

Figure 16-21 is a comparison of the transition rates so obtained, and the predic-
tions of the shell model calculations, for a group of transitions that have been identi-
fied as magnetic sixteenpole (L = 4, parity change). The agreement is fair. Inspection 
of the shell model diagram of Figure 15-18 will demonstrate that all such transitions 
are between states quite near those filled at the magic numbers. So this is where the 
calculations should be at their best. For other transitions shell model predictions are 
in poor agreement with measurement. But collective model predictions can be used in 
these cases to obtain good agreement since the collective model can describe quite 
accurately the complicated oscillations in the charge, or current, distributions that 
are responsible for the emission of electric, or magnetic, radiation. 

The lifetime of an excited state is frequently expressed in terms of its width. Ac-
cording to the energy-time uncertainty principle, if an average nucleus survives in an 
excited state only for the lifetime T of the state, then its energy in the state can be 
specified only within an energy range F, satisfying approximately the relation  

	

F = T 	 (16-31)  

Excited states are, therefore, not perfectly sharp. Instead, they are spread over an  

energy range of width F. A detailed treatment shows that (16-31) is actually satisfied  

exactly, providing F is the full width at half-maximum of the energy profile of the  

state indicated in Figure 16-22.  

Let us estimate the width of a typical y-decaying state of lifetime T 10 -10  sec.  
We find  

	

h 	10 -15  eV-sec 

	

r= - 	 = 10 5  eV ^  

	

T 	10 -10  sec  

Figure 16-22 The width F of an excited state. A mathe-
matical expression for the shape shown in this figure is  
given in (16-32).  Energy  
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In comparison to the typical energy E = 1 MeV of such a state, I' is extremely small.  
In fact, the minute value of the ratio  

F' 10-5  eV _  10 _ 11  
E 

ti 

 106  eV  
explains why we have hitherto neglected the widths of the lower energy states that  

are excited in radioactive decay. When we consider the higher energy states excited  

in nuclear reactions, we shall see that some of them have widths that are too large  

to be neglected.  

16-6 THE MeISSBAUER EFFECT  

In 1958 a graduate student named Mössbauer made a discovery that allows the extremely  
small width to energy ratio of low-lying excited states to be used in many different applications  
as an energy spectrometer of extremely good resolution. The basic idea of the Mössbauer effect 
is illustrated in Figure 16-23. A source nucleus in an excited state makes a transition to its  
ground state, emitting a y ray. The y ray is subsequently caught by an unexcited absorber  
nucleus of the same species, which ends up in the same excited state. The potentialities as an  
energy spectrometer become clear when it is realized that changes in the source energy, the  
absorber energy, or the energy of the y ray in flight, will destroy the "resonant" absorption—
even if the energy change is only a few parts in 10 11 ! For some years physicists had been  
attempting to utilize these potentialities, but with little success. The problem had to do with  
recoil of the nuclei upon emission and absorption of the y ray, as we see in the following  
example.  

Example 16-7. Mdssbauer's original resonant absorption experiments used y rays emitted  
in transitions from the 0.129 MeV first excited state to the ground state of 771r 191 .  (a) Con-
sider the recoil of the nucleus, assumed to be free, when it emits the y ray, and determine the 
downward shift in the energy of the y ray that results from the energy taken by the nuclear 
recoil. (b) Then compare this energy shift to the width of the first excited state of 771r 191  
which has a measured lifetime of T = 1.4 x 10 -1°  sec.  
■ (a) Since the total linear momentum of the decaying nucleus is zero before emitting the y  
ray, the magnitude of the nuclear recoil momentum p„ after the emission must equal the  
magnitude of the momentum p y  carried by the emitted y ray. As the nuclear mass M is high,  
its recoil velocity is low, so we may use the classical expression  

p„ = V2MK 

to relate p„ to the kinetic energy of nuclear recoil K. The y-ray momentum py  is related to its  
energy E by the relativistic expression  

E 
Py  =  

Thus we have  

 = ^/2MK Py = —c =P„ —  

or  

E2  
C2  

= 2MK 

E2  

K =2Mc2 

Figure 16-23 Resonant absorption, the basis of the  
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Since the sum of the y-ray energy E and the nuclear recoil energy K must equal the energy  
available in the y decay, i.e., the 0.129 MeV energy of the first excited state of the decaying  

nucleus, we see that E is less than the energy of the first excited state by an amount K. This  
is the downward shift AE in the energy of the y ray due to nuclear recoil. That is  

E2  

2Mc2  
Because M is so large, AE is very small compared to E, and we may evaluate it approximately  

by setting E = 0.129 MeV. Using the relation 931 MeV = uc2  to express the nuclear rest mass  
energy Mc 2  in MeV, we have  

(0.129)2  MeV2 	 $ 
AE 	

_ 
 2 x 191 x 931 MeV 

—4.7 x 10 MeV  

= —4.7 x 10 -2  eV  
The same result could be obtained by considering the y ray to be emitted from a moving  
source, the recoiling nucleus, and using the longitudinal Doppler shift formula of Example  

2-7 to evaluate the downward shift in its frequency, or energy.  

(b) If the lifetime of the first excited state of 77Ir191  is T = 1.4 x 10 -10  sec, its width is  

h 6.6 x 10 -16  eV-sec  
t= = 	 4.7x10 -6  eV  

T 	1.4 x 10 -10  sec  
Clearly, the y ray emitted by the decay from the first excited state of the 771r191  source nucleus 
cannot excite a 77Ir 191  absorber nucleus from its ground state to its first excited state. The 
nuclear recoil shift of the y ray is larger by a factor of 10 4  than the width of the state it is 
supposed to excite. So the y ray is thrown completely out of resonance, and the resonant 
absorption is destroyed. (If there actually were an absorption, there would be two sources 
of the total recoil shift, one due to recoil of the emitting nucleus and the other due to recoil 
of the absorbing nucleus. This is because to be absorbed by a free nucleus, the y ray must 
have an energy that is greater than the energy difference of the nuclear states by the amount 
AE = + K. There would also be two sources of the total width of the resonance, one due to 
the width of the state emitting the y ray and the other due to the width of the state absorbing 
it.) 4 

If the emitter nucleus is bound in a solid, the solid recoils as a whole: the momentum of 
the solid is equal in magnitude and opposite in direction to the momentum of the emitted 
photon. Because the mass of the solid is so large, the kinetic energy of recoil is extremely small 
and can be neglected. An estimate of the recoil energy can be obtained by substituting a mass 
of a few grams into the equation for AE developed in the preceding example for a single 
nucleus. 

That the recoil energy is so small does not necessarily mean that the photon energy is the 
same as the energy difference of the excited and ground states of the nucleus. The emitting 
nucleus interacts with atoms of the solid and participates in the lattice vibrations. As explained 
in Section 11-9, lattice vibrational energy is quantized in units of hv p , called phonons. Here h  
is Planck's constant and vp  is the frequency of vibration. Upon emission of a photon, a phonon 
may also be emitted or absorbed and, in these cases, the photon energy is greater than or less 
than the energy difference of the nuclear states by hv p .  

It is of prime importance that some photon emission events occur without the emission or 
absorption of a phonon. This is the Mössbauer effect. A typical emission spectrum might look 
like that shown in Figure 16-24(a). There is a distribution of photon energies, on the order 
of a few tenths of an electron volt wide, because, in different events, phonons with different 
energies are created. This is called the phonon wing. The zero phonon or Mössbauer peak is 
sharp. These are the events for which no phonons are created and the photon energy is the 
same as the energy difference of the nuclear states. The peak does have width, given by h/T,  
where T is the lifetime of the excited state, but it cannot be seen on the scale of the drawing. 
There is also a small number of events for which a phonon is absorbed and the photon energy 
is greater than the energy difference of the nuclear states. 

A typical absorption spectrum is shown in Figure 16-24(b). Again there is a sharp peak at 
the energy corresponding to the nuclear transition energy and at higher energy there is a 
phonon wing. For photon energies in this range, a phonon is created during the absorption 

AE= — K=  
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(a) 	 (b) 

Figure 16 -24 (a) Emission spectrum and (b) absorption spectrum for a nucleus bound in a 
solid. The quantity E is the photon energy and E0  is the energy difference of the nuclear 
states. 

process and the photon must have a correspondingly higher energy to be absorbed. Note that 
the emission and absorption spectra overlap only for the Mössbauer events and for a few 
events involving low energy phonons. Without this overlap the photons emitted would not 
be absorbed and the absorber levels could not be used as a photon detector. 

The fraction of events which occur without phonon emission or absorption depends on 
the temperature. At high temperatures there are fewer such events and the Mössbauer peak 
becomes indistinguishable from the phonon wing. Most Mössbauer experiments are performed 
at the temperature of liquid helium. 

The Mössbauer peak can be scanned by placing the emitter and absorber in different solids 
and moving them relative to each other. Since the relative velocity y  is much less than the 
velocity of light c, the photon energy in the reference frame in which the absorber is at rest is 
given by 

E = 4(1 + -v  

a result which follows from the Doppler shift of the photon frequency (see Example 2-7). Here 
E0  is the energy in the frame in which the emitter is at rest and the relative velocity is positive 
if the absorber and emitter are moving toward each other. This is equivalent to shifting the 
emission spectrum shown in Figure 16-24(a) to the right by AE = E0 v/c. Photons which pass 
through without being absorbed are counted and the fraction absorbed is displayed as a 
function of the relative velocity. Relative motion is usually obtained by mechanically driving 
the emitter toward and away from the absorber with a variable velocity. The motion is re-
peated many times to obtain a large number of counts. 

A typical result is shown in Figure 16-25. The central 'region is due to the overlap of the 
Doppler shifted Mössbauer emission peak and the Mdssbauer absorption peak. The tails of 
the curve show some emission and absorption in the phonon wings. More of the phonon wings 
can be seen if higher relative velocities are used but, for most applications, it is the Mössbauer 
peak itself which is important. Note that the peak occurs for y = 0, indicating that the nuclear 
states in the emitter and absorber have the same energy difference. Its full width at half max-
imum is about 10 x 10 -6  eV. This agrees well with the expectation that it should be twice 
the width F of the two nuclear states involved, since their measured lifetimes of T = 1.4 x 
10 -1°  sec yield F = 4.7 x 10 -6  eV. The agreement also verifies (16-31), used to calculate F 
from T, and therefore verifies the energy-time uncertainty principle! 

Example 16-8. For 77 Ir 191  what range of emitter speeds must be used to scan the Mössbauer 
peak? 
► At the half intensity points AE is the sum of the emission and absorption widths or 2 x 
4.7 x 10 -6  eV = 9.4 x 10 -6  eV. The emitter speed is given by v/c = AE/E °  = 9.4 x 10 -6  eV/ 
0.129 x 106  eV = 7.3 x 10 -11  or y = 0.022 m/sec. So the velocity must range from — 0.022 
m/sec to +0.022 m/sec, as can be seen in Figure 16-25. 1 

Most applications of the Mössbauer effect deal with situations for which the emitter and 
absorber are in different environments, so that the emission and absorption peaks do not occur 
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Figure 16-25 The Mössbauer effect in 771r191  at 88°K. Note the extremely low source 
speeds and extremely small resulting Doppler shifts which are sufficient to eliminate the 
resonant absorption. 

at precisely the same energy. The relative velocity required to obtain maximum absorption is 
measured and the results used to study the environment of the emitter or absorber. 

For example, the position of the peak on the Mössbauer curve depends on the electronic 
configuration around the emitter and absorber nuclei. Wave functions for electrons in s sub-
shells do not vanish at the nucleus and there is a probability that such an electron is inside 
the nucleus, where it interacts strongly with the protons and changes the nuclear energy levels. 
The shift in energy is proportional to p(r 2)av , where p is the electron probability density at 
the nucleus and (r 2)a, is the mean square radius of the proton distribution. Both the excited 
and ground states are shifted and if the proton distribution radii are different, the energy of 
the Mössbauer peak is changed by Apl(ri)av - (r(2,)avl• Here the subscript 0 refers to the 
ground state, the subscript 1 refers to the excited state, and the quantity A is a constant of 
proportionality. Furthermore the emitter and absorber can be placed in different host solids 
for which the electron probability density is different. Then the Mössbauer peaks for emission 
and absorption differ by 

AE = A(Pe - Pa)I(rl)av - (r0)avl 
where Pe  refers to the emitter and p a  to the absorber. 

To match the Mössbauer absorption peak the frequency of the photon must be Doppler 
shifted and the peak of the Mössbauer curve occurs for relative velocity y = cAE/E o , not for 
y  = O. A measurement of the relative velocity which tunes the system to maximum absorption 
can be used to investigate either pe  - Pa or (ri)av - (rô)av, provided the other quantity is 
known. The first quantity is of interest to solid state physicists and chemists who want informa-
tion about the electron distribution in a solid while the second is of interest to nuclear 
physicists who want to know if the proton distribution changes when a nucleus is excited. 
The change in the position of the Mössbauer peak is known as the chemical (or sometimes 
isomer) shift. 

By placing the emitter in various solids and measuring the chemical shift for each situation, 
it is possible to obtain information about the charge state of an ion and about changes in the 
electron distribution brought about by changes in bonding. Even if it is chiefly the distribution 
of electrons in p and d subshells which change, as in covalent or partially covalent bonds, 
these influence the s subshell electron distribution and the chemical shift. 

Mössbauer experiments are also used to study the internal magnetic fields of solids. For this 
purpose, one of the most widely used nuclei is 26Fe 57 . Unstable 27 Co 57  nuclei, implanted 
in the sample, decay by means of electron capture to the first excited state of 26Fe57  and many 
of the iron nuclei decay to the ground state by y emission. The two 26Fe 57  states of interest 
are separated in energy by 14.4 keV and the width of the excited state is on the order of 
10 -9  eV. The nuclear ground state has spin io  = 1/2 and the first excited state has spin i 1  = 3/2. 
In magnetic field B a nuclear Zeeman effect occurs, with the result that the ground state splits 
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into 2 levels and the excited state splits into 4 levels. The splitting is proportional to It • B, 
where µ is the magnetic dipole moment of the nucleus. The magnetic dipole moment may be 
different for the ground and excited states. Since Am i  = + 2 transitions are very slow, y rays 
with 6 different values of energy are produced, in different events. For splitting to occur it is 
necessary that the magnetic field remain constant over periods which are longer than the 
precession period of the magnetic dipole moment and it is usual to place the absorber in a 
host for which the internal field fluctuates rapidly. The absorber then has a single narrow 
Mössbauer absorption peak, which is used to scan the 6 peaks of the emission spectrum. 

Both the local magnetic field at the site of the nucleus and the ratio of the magnetic 
dipole moments of the excited and ground states can be calculated from the positions of the 
Mössbauer peaks. The Mössbauer effect is particularly useful for the study of the magnetic 
field in ferromagnetic materials. For example, the transition to a paramagnetic state can be 
investigated. The effect is also used to study the environment of iron atoms in biological 
materials. 

Splitting of nuclear levels also occurs if the nucleus has an electric quadrupole moment 
and is situated in a spatially varying electric field. Then measurements of the Mössbauer peak 
separation can be used to obtain information about the electric field gradient at the nucleus. 
This information, in turn, provides knowledge of the distribution of charge around the nucleus. 
Mössbauer studies have been used to determine the number of bonds formed by atoms in 
solids, for example. 

One important use of the Mössbauer effect has been to verify the prediction of relativity 
theory that the frequency of electromagnetic radiation is dependent on the strength of the 
gravitational field. Suppose the emitter is a distance d above the absorber in a uniform gravita-
tional field. When it is in the ground state, the mass of the nucleus is in = Eo/c 2. Compared 
to the absorber it has an additional potential energy mgd = Eogd/c 2 , where g is the accelera-
tion due to gravity. Similarly, when it is in the excited state the nucleus has an additional 
potential energy Elgd/c 2 . The energy 'difference of  the  emitter states is now 

E1 ( 1 + gd) — Eo ( 1 + d) = AE( 1 + 9d I 
c 	 c 	 c 

where AE is the energy difference of the absorber states (or of the emitter states in the absence 
of a gravitational field). The photon energy is now 

by = hvol 
n 
 1 + gd) 

where hv o  is the energy of a photon which will cause a transition in the absorber. The photon 
energy is greater than the energy of the absorption peak and the absorber must move away 
from the emitter for absorption to occur. If the emitter is below the absorber, the energy of 
the photon is less and the absorber must move toward the emitter. The experiments were first 
carried out by Pound and Rebka, around 1960, and excellent agreement with theory was 
obtained. Mössbauer was awarded a Nobel prize in 1961. 

16-7 NUCLEAR REACTIONS 

We turn now from nuclear decay to nuclear reactions. One important reason why 
nuclear reactions are studied is that they provide information about the excited states 
of nuclei which supplements that provided by the study of nuclear decay. Other 
important reasons will become apparent when we discuss nuclear fission and fusion 
in subsequent sections. And, of course, the energy balance in nuclear reactions is 
studied with real justification because it tells about the masses of the participants in 
the reactions. 

In our treatment in Section 15-4 of the energy balance in nuclear reactions we 
have already considered the application of the total relativistic energy, linear momen-
tum, and charge conservation laws to the initial and final states of a reaction. By 
way of summary, we shall list these conservation laws and also others that apply to 
any reaction, and then use them in an example. In any nuclear reaction the following 
quantities must be conserved: (1) total relativistic energy, (2) linear momentum, (3) 
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angular momentum, (4) charge, (5) parity, and (6) the number of nucleons. In all the 
reactions we discussed before the number of nucleons was conserved, i.e., the total 
number of nucleons present before the reaction equals the total number present after. 
It is found that this is true of any nuclear reaction. We did not consider the conser- 
vation of angular momentum or parity at all in Section 15-4 because these quantities 
do not affect the energy balance. But they do affect the rates, or cross sections, for the 
reactions, as we shall indicate later. It is clear that angular momentum must be 
conserved in a nuclear reaction. Parity is conserved because the interaction involved 
in a nuclear reaction is the strong parity conserving nuclear interaction, not the weak 
parity nonconserving fl-decay interaction. 

Example 16-9. When 50.0 MeV protons in the external beam of a cyclotron strike a beryllium 
target, it is found that copious numbers of high-energy neutrons are emitted from the target. 
The highest energy neutrons are emitted in the same direction as the incident protons, and 
their energy is 48.1 MeV. In order to increase the number of neutrons produced, so that they 
can be more easily used in other experiments, it is decided to put the beryllium target inside 
the cyclotron where it will be bombarded by the much more intense internal beam. In this 
configuration neutrons produced at 30° to the direction of the bombarding protons will have 
a clear path out past the external parts of the cyclotron. (a) Use the conservation laws to find 
the residual nucleus in the reaction in which a proton 'Hi  is the bombarding particle, a 
neutron 0n 1  is the product particle, and 4Be9  is the target nucleus. (b) Then apply the con-
servation laws to predict the maximum energy neutrons produced at 30° to the direction of 
the 50.0 MeV bombarding protons. 
► (a) The reaction is 

1H1 + 4Be9 — ZXA + on i 

where ZX A  represents the unknown residual nucleus. Conservation of charge requires that the 
sum of the Z values on the left side of the reaction formula equal the sum of the Z values on 
the right side. That is 

1+4= Z +0 
or 

Z= 5 
Conservation of the number of nucleons requires that the sum of the A values on the left side 
equal the sum of the A values on the right side. Therefore 

1+9=A+1 
or 

A= 9 
Thus we have identified the residual nucleus as 5 B 9, and the reaction is 

'Hi + 4Be9 -+ 5B9 + on i 

(b) To calculate the energies of neutrons emitted at various angles, we use the conservation 
of total relativistic energy and linear momentum, combined in the form of the Q-value formula 
of (15-16) 

Q = Kb C1 + m
B/ 

— Ka Cl — m
a 

 — B (KaK bmamb) 1 I2  cos 0 

where Ka  and ma  are the kinetic energy and mass of the proton, Kb and m b  are the kinetic 
energy and mass of the neutron, m B  is the mass of 5B9, and 9 is the angle of emission of the 
neutron relative to the direction of the proton. Since we are always dealing with the maximum 
energy neutrons emitted, the Q value always pertains to a situation in which the residual 
nucleus is in its ground state. 

First we determine the Q value by setting Ka  = 50.0, Kb = 48.1, and 0 = 0, where we use 
MeV for the unit of energy. Since to a very good approximation  m a/m B  = mb/mB  = 1/9, we have 

Q = 48.1 x 
 9  —

50.0x9-2 	150.0x48.1x9x9 

= 53.4 — 44.4 — 10.9 = —1.9 
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or  

Q = —1.9 MeV  

Note that Q is just equal to Kb — Ka . But this is only true when m a  = mb , 0 = 0, and IQ!  is 
small compared to K a .  

Knowing the Q value, we find Kb when 0 = 30° by again using (15-16). We have, since 
cos 30° = 0.866  

—1.9 = Kb x 9— 50.0 x 9— 9 1/50 .0 x 0.866 1/K b  

We write this as 
1.11(1/K b ) 2  — 1.36 1/Kb  — 42.5 = 0  

to make it easier to apply the standard solution of a quadratic equation in the unknown 1/K b .  
This gives  

	 1.36 ± 1/(1.36) 2 +4 x 1.11 x 42.5 _  1.36  ±  13.79 
^Kb 	2 x 1.11 	 2.22  

The equation is not a quadratic in Kb, and has only one valid solution. We may easily show 
that it is obtained for the plus sign. Using that sign, we find 

1/Kb = 6.82  

or  
Kb= 46.5 

Thus the maximum neutron energy produced at 30° is 
Kb = 46.5 MeV 

The subject of nuclear reactions is a vast one because there are so many different  

types of reactions. Any stable nuclear particle can be the bombarding particle; any  

stable nucleus can be the target nucleus; and a wide variety of particles can be emitted  

from the reaction as product particles. The residual nucleus can be either stable or  

radioactive. Typically it will be stable if the reaction does not change the Z-to-A  

ratio of the residual nucleus very much from the stable Z-to-A ratio that the target  

nucleus has. An example of a reaction that often leads to a stable residual nucleus  

is (d,a), where the notation means that a deuteron, 'H 2 , is the bombarding particle  
and an a particle, 2He4, is the product particle. If the reaction significantly decreases  

the Z-to-A ratio of the residual nucleus, it is usually radioactive and decays by elec-
tron emission to raise its Z-to-A ratio back to a stable value. An example of a reaction  

that often leads to an electron emitting residual nucleus is (n,p), in which there is a  
bombarding neutron, °n', and a product proton, 'H'. Reactions such as (p,n) fre-
quently lead to radioactive residual nuclei which are positron emitters or electron  

capturers, since the reaction raises the Z-to-A ratio of the residual nucleus over the  

stable value that this ratio has for the target nucleus. Thus nuclear reactors, which  

produce intense fluxes of neutrons, are usually employed to produce radioactive  

nuclei for diagnostic work in medicine, and other fields, as "tracers," if the required  

nuclei are electron emitters. Cyclotrons, which produce intense fluxes of protons or  

more highly charged particles, are usually the sources of radioactive tracers that are  

positron emitters or electron capturers.  
We present in this section examples of the most important types of nuclear reac-

tions by discussing the processes that can occur when a 50-MeV proton from a cyclo-
tron beam is incident on a target nucleus, of average characteristics, contained in  

a foil placed in the beam. We describe what happens during these processes—and  
not just what the situation is like before and after, as we have done in our earlier  

considerations of the mass-energy balance in nuclear reactions.  

First we shall give a quick summary of the processes that can occur. The proton,  

of representative energy 50 MeV, will be scattered away from the typical target nu- 



cleus by the Coulomb potential, unless it happens to be traveling almost in the direc-
tion of the nuclear center. It can also be scattered by the nuclear potential, if it 
approaches close enough to feel this potential. If it enters the nucleus, it will probably 
collide with a nucleon in the nucleus after traveling part way through. Either it or 
the struck nucleon may escape immediately, in a so-called direct interaction, taking 
away most of the energy it carries (as in the reaction treated in Example 16-9). But at 
least one of these nucleons will probably be reflected back into the nucleus by the 
change in nuclear potential at the surface in much the same way a light wave would 
be internally reflected by a change in refractive index. (See the discussion connected 
with (6-53).) This nucleon will collide with another nucleon, each of them will make 
further collisions, etc., forming a cascade of collisions. Before long, the energy is 
shared among the excitation of many nucleons in what is called the compound nu-
cleus. At this point, no nucleon has enough excitation to allow it to escape its 

8 MeV binding to the nuclear potential. After some time, a fluctuation in the energy 
sharing will make energetically possible the escape of a nucleon. This will happen, if 
internal reflection at the nuclear surface does not make it necessary to wait for an-
other fluctuation. Eventually, several nucleons are "evaporated," and their binding 
energies are largely responsible for removing most of the excitation energy of the 
compound nucleus. They will almost always be neutrons, since the Coulomb barrier 
acts to retain the protons. When the excitation energy is below the neutron binding 
energy, the relatively slow process of y decay takes over and allows the system to 
finally end up in its ground state. 

We begin a more detailed discussion of these processes by pointing out that the 
de Broglie wavelength of a 50 MeV proton moving through a 50 MeV deep nuclear 
potential is 3 F, and the range of nuclear forces is a little smaller. Since both 
are about one-third of a typical nuclear diameter, in a crude first approximation we 
may think of the proton as traveling a fairly well-defined trajectory, and not inter-
acting at a distance. Thus the behavior of the proton is something like that of a 
classical billiard ball. To an even lesser extent, this approximation also applies to the 
nucleons that the proton collides with. Of course, the wavelike aspects of these 
particles will make important corrections to the approximation. 

Since Coulomb scattering has been discussed at length in Chapter 4 and Appendix 
E, there is little we need to say about it here, except to comment that the differential 
scattering cross section da/df2 of (4-9), obtained from Rutherford's classical -theory of 
the scattering by a Coulomb potential, is identical with the da/dS2 obtained from 
quantum mechanics for that potential. This remarkable situation is true only for a 
potential corresponding to an inverse square law of force, and it arises in the following 
way. From dimensional analysis it can be shown that if the force exerted on a particle 
varies according to r", then the probability of scattering must vary according to h4+ 2".  

For the inverse square law n = — 2, the scattering probability is independent of the 
value of Planck's constant h, and this requires that the quantum mechanical and 
classical calculations lead to the same results. 

Figure 16-26 shows the probability of elastic scattering (scattering without energy 
loss except to the recoil of the residual nucleus), as a function of scattering angle 0, 
for a 50 MeV proton incident on a typical nucleus. At small scattering angles, the 
differential cross section follows the rapid but smooth decrease in proportion to 
1/sin4  (0/2) of Coulomb, or Rutherford, scattering. The reason is that these angles 
correspond to collisions in which the proton passes through the Coulomb potential, 
but misses the nuclear potential. At large scattering angles, the scattering probability 
shows a diffractionlike structure superimposed on a continued decreasing trend. The 
reason is that protons scattering at these angles make close enough collisions to feel 
the abrupt onset of the nuclear potential. The diffraction structure of this so-called 
nuclear potential scattering arises from the interferences between the incident wave 
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Figure 16-26 The differential cross section for the elastic scattering of 50 MeV protons 
from a hypothetical nucleus of typical properties. The cross section unit is the barn; 
1 bn = 10 -24  cm 2 . 

function and the various parts of the wave function reflected from various regions of 
the nuclear potential. 

A quantum mechanical analysis of the elastic scattering measurements can be used 
to determine the nuclear potential acting on the high-energy scattered nucleon. The 
potential is found to be essentially the same as the shell model potential acting on a 
nucleon in the ground state of the target nucleus, with one important exception. The 
potential acting on an unbound nucleon, called the optical model potential, is partly 
absorptive. The absorption represents the fact that such a nucleon has enough energy 
to collide with a nucleon in the nucleus, and thus be absorbed from the incident beam. 
(It is absorbed in the sense that it no longer has the same energy, or de Broglie wave-
length, so there can be no interferences between its wave function and the wave func-
tion for the incident nucleon.) Collisions are possible since the exclusion principle 
does not have its usual inhibiting effect if the incident nucleon brings in enough 
energy that both it, and the struck nucleon, can easily find unfilled states to occupy. 
The incident nucleon can, of course, also scatter from the more familiar nonabsorp-
tive part of the potential. (That is, it can also interact with the nucleus as a whole, 
represented by the usual attractive potential, without colliding with an individual 
nucleon of the nucleus.) The optical model is essentially a generalization of the shell 
model which applies to nucleons of any energy—not just to nucleons of energy such 
that they are bound in a nucleus. 

If the scattering probability is measured as a function of the energy of the incident 
particle, very broad maxima are sometimes seen at certain energies. These are called 
size resonances, or single particle states. As the two names imply, they can be thought 
of in two different ways: (1) constructive interferences between the part of the incident 
particle wave function scattered from the front surface of the nuclear potential and 
the part scattered from the back; (2) energy levels of the incident particle in the nuclear 
potential. The first point of view is related to one developed in our discussion of the 
Ramsauer effect in Section 6-5, but here we shall find the second point of view more 
useful. The maxima are broad because the single particle states are very wide. If we 
evaluate the time required for a 50 MeV nucleon to travel a typical nuclear diameter, 
we find T = Div — 10 -14  m/108  m-sec 1 = 10 -22  sec. Since this time also character-
izes the duration of the nuclear potential scattering process, or the lifetime of the 
particle in the single particle state, the width F of the state is, typically, F = b/T 
10 -15  eV-sec/10 -22  sec = 10' eV = 10 MeV. Note that the width of a typical high-
energy single particle state is some 12 orders of magnitude greater than the width of 
a typical low-energy y-decaying state considered at the end of Section 16-5. 
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Figure 16-27 The energy spectrum of protons emitted at a forward angle when 50 MeV 
protons are incident in the bombardment of a hypothetical nucleus of typical properties. 
The low-lying energy levels of the residual nucleus show up in the high-energy inelastic 
groups. As these levels fuse into a continuum, so does the inelastic spectrum. The cutoff 
in the spectrum at about 10 MeV represents the effects of internal reflection and of the 
Coulomb barrier in preventing the escape of protons. 

Now we reconsider the collisions between the incident proton and nucleons of the 
nucleus. Before colliding, the linear momentum of the proton is approximately in the 
direction of the beam, and it is of much larger magnitude than that of any nucleon 
in the nucleus. Linear momentum conservation thus demands that after the first col-
lision both the nucleons tend to move off in the general direction of the beam, and 
this is particularly so of a nucleon if it happens to be carrying most of the incident 
momentum or energy. A higher energy nucleon is the one most likely to escape inter-
nal reflection at the nuclear surface, and be emitted in what is called a direct inter-
action. It will preserve its tendency to move in the general direction of the incident 
beam, even though it is refracted somewhat in passing through the surface. 

Figure 16-27 shows the spectrum of high-energy protons emitted, at some fixed 
angle, from a typical nucleus. The group of highest energy contains the elastically 
scattered protons. They have the same energy as the incident protons (except for the 
small amount of energy lost to the recoil of the residual nucleus), and they are the 
result of Coulomb and nuclear potential scattering. The group of next highest energy 
contains inelastically scattered protons, which come from direct interactions. When a 
proton is emitted in this group, the residual nucleus remaining is in its first excited 
state. When a proton is emitted in the group of next lowest energy, that nucleus is in 
its second excited state, etc. Thus the energy spectrum gives immediately the locations 
of the excited states of the nucleus. 

e 
Figure 16-28 The differential cross section d6/dS2 for the highest energy group in the 
inelastic scattering of 50 MeV protons from a hypothetical nucleus of typical properties. 
The general preference for forward angles of emission is characteristic of the direct inter-
action process, but do-/a2 is suppressed at very small angles if orbital angular momentum 
is transferred to the nucleus in the reaction. The figure represents da/dS2 for a reaction in 
which the state excited has orbital angular momentum one unit higher than the ground 
state. 
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Figure 16-29 Illustrating the relation between the linear and orbital angular momenta 
transferred to a nucleus in a direct interaction inelastic scattering leading to its first 
excited state. The linear momentum of the incident nucleus is p i . It leaves the nucleus at 
angle 0 with linear momentum p f . Since it is emitted with almost as much energy as it had 
when incident, pf  ^ pi ^ p, and the momentum Ap = pi — pf  is transferred to the nucleus 
primarily because the direction of pi- differs from the direction of p i . The figure shows the 
interaction occurring near the edge of the nucleus of radius r', where it will be most effective 
in transferring angular momentum AL to the nucleus. Since AL = r' x Ap, we have AL = 
r' Ap sin a r'Apa, because the angle a = 0/2 defined in the figure tends to be small 
in a direct interaction. The figure shows that Ap 2pia 2pa. So AL 2r' pa' . For 
a case in which one unit of orbital angular momentum is given to the nucleus, we have 

AL = J1(1+1)h=1.4h 

Thus we obtain a 2  ^ 1.4h12r'p = 1.4h/2r'(h/.1,) = 1.4/4ir(r'/,1) where 	is the de Broglie 
wavelength of the proton. As indicated in the text, r'/.l ^E 5/3 for a 50 MeV proton 
moving through the 50 MeV deep potential of a nucleus of typical radius r' = 5 F. So 

a2  ^ 1.4/4ir(5/3) 	6 x 10 -2  

or a 2.5 x 10 -1  rad 	15°. Thus the emission angle 0, that this semiclassical calculation 
predicts would lead to a transfer of one unit of orbital angular momentum, is 0 = 2a ^ 30°. 
For angles much smaller than this the reaction would not be possible. If an even larger 
orbital angular momentum must be transferred to the nucleus, because of the difference 
between the spins of its ground and first excited states, an even larger angle of emission 
is required. 

The general tendency for small angles of emission of the higher energy nucleons 
coming from direct interactions is shown in Figure 16-28. This represents the differen-
tial cross section daldS2 for the protons emitted in the highest energy inelastically 
scattered group, for the typical case of the previous figure. Also indicated in the figure 
is the tendency for d6/dS2 to be suppressed at very small angles, if orbital angular 
momentum must be transferred to the nucleus from the incident proton in the reac-
tion because the state excited has orbital angular momentum different from that of 
the ground state. The semiclassical argument of Figure 16-29 shows that this tendency 
reflects the fact that it is difficult for a particle, which experiences only a very small 
decrease in the magnitude of its linear momentum in interacting with a target of 
restricted radius, to transfer orbital angular momentum to the target unless it changes 
its direction of motion enough to produce a sufficient change in the vector describing 
its linear momentum. 

Of course the billiard ball arguments, which predict the general trends, fail to 
predict the oscillations about them seen in Figure 16-28. These arise from inter-
ferences between parts of the emitted nucleon wave function that originate in different 
regions of the nucleus. The structure of the differential cross section curve can be 



analyzed to yield information about the nuclear spin and parity of the state of the 
residual nucleus that is excited in the emission of the inelastically scattered group. 
The procedures used in the analysis are a little too complicated to go into here, but 
it should be said that they also confirm that parity is conserved in the nuclear inter-
action. 

Although an incident proton has about a 90% chance of making a collision with a 
nucleon in traversing the nucleus, in only about 10% of these events will there be a 
direct interaction nucleon emitted. Usually, both the incident proton and the nucleon 
it hits are trapped in the nucleus by internal reflection. In about 1% of the events, both 
the incident proton and the struck nucleon escape. If their linear momenta are mea-
sured, valuable information can be obtained about the initial momentum of the 
struck nucleon when it was in the nucleus (after correcting for refraction and absorp-
tion as the protons leave the nuclear optical potential). This has become an important 
research technique. 

The time required for the first collision is —10' 2    sec, since this is how long it takes 
for a nucleon of typical velocity to travel a distance equal to a typical nuclear diam-
eter. The subsequent steps in the cascade of collisions occur at intervals of roughly 
the same time. In the first two or three steps, there is a chance that one of the nucleons 
that has collided will escape, but the chance diminishes rapidly because the collisions 
lead to a sharing of energy. Internal reflection in the nuclear potential becomes more 
likely as the energies of the individual nucleons decrease, and soon an even stronger 
inhibition sets in because the excitation energies of the nucleons become less than 
their binding energies. After perhaps 10 steps of the cascade, which takes —10 -21  sec, 
the energy is well distributed over all the nucleons of the nucleus. None of these 
nucleons has enough energy to escape; instead they exchange energy in a kind of 
thermal equilibrium. This equilibrium system is called the compound nucleus. 

Because the equilibrium system does not contain a very large number of particles 
(A — 100), big fluctuations in the energy sharing can occasionally happen. If some 
nucleon accumulates about ten times as much excitation energy as it has on the aver-
age it will have the equivalent of its binding energy, and it can try to escape. Typically, 
this 'takes about 10 -16  sec, and typically the nucleon will not succeed because it is 
internally reflected. But eventually a nucleon will escape, carrying away a little more 
than its binding energy. The elapsed time at this point is something like 10 -15  sec, 
on the average. After several nucleons have escaped, there is no longer enough excita-
tion energy in the nucleus to provide the — 8 MeV required to emit another nucleon. 
As we have mentioned, y decay is used to dissipate the final few MeV of excitation 
energy, and as we have also mentioned, almost all of the nucleons that are evaporated 
in fluctuations from equilibrium are neutrons. Protons generally cannot accumulate 
enough energy to overcome the Coulomb barrier acting on them. 

In a compound nucleus the excitation is distributed over many particles. The ex-
cited states of the nucleus are consequently called many particle states. In contrast to 
the very broad single particle states, the many particle states are fairly narrow. Since 
it takes the compound nucleus T ' 10 -15  sec to decay by neutron emission, the width 
I' of a typical one of its states is given in terms of this lifetime by 

F= h/T — 10 -15  eV-sec/10 15  sec = 1 eV  

These narrow states can be observed by measuring as a function of the nucleon 
energy the probability, or total cross section defined in (2-18), that an incident nucleon 
will form a compound nucleus. As the separation between the many particle states 
rapidly decreases, and their width increases, with increasing excitation energy, it is 
easiest to see them if an incident nucleon of the lowest possible energy is used. Figure 
16-30 is an example of the many particle states, or compound nucleus resonances, ob-
served when very low-energy neutrons are incident on a typical nucleus. 
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Figure 16 -30 The total cross section for an incident neutron of very low energy to 
undergo any reaction other than elastic scattering with a hypothetical nucleus of typical 
properties. The many particle states of the compound nucleus of excitation energy about 
8 MeV (the binding energy brought in by the incident neutron) are seen directly in such 
data. 

The shape of any individual cross-section resonance in Figure 16-30 is given by 
the Breit- Wigner formula 

F„Fr   6r(E) = n(212702)2 
(E — Ei) 2  + F2/4 	

(16-32) 

where the total reaction cross section G r(E) is the cross section for the formation of a cts 
compound nucleus which decays by any process other than emission of a neutron of 
the same energy as the incident one; E is the energy of that neutron and .1 is the 
corresponding de Broglie wavelength; Ei  is the resonance energy; F is the full width at 
half-maximum of the resonance; and F,,, or F r , is F times the ratio of the probability 
of decay of the compound nucleus by emitting a neutron of the same energy as the 
incident neutron, or by any other process, to the total probability of decay by all 
processes. The same formula, with F r  replaced by Fn , gives the total cross section for 
the formation of a compound nucleus which subsequently decays by emitting a 
neutron of the same energy as the incident neutron, i. e., the compound nucleus elastic 
scattering cross section a (E). A similar formula describes the shape of the y-ray reso-
nances in Figure 16-22 and Figure 16-25. In fact, the same basic form is found for the 
resonance curve in any type of damped wave or oscillatory motion. The student may 
have seen a derivation of it in the case of a damped pendulum or a resistive resonant 
circuit. 

A very interesting feature of (16-32) that is particular to the case of low-energy 
neutron resonances is the factor 7r(),./2n) 2, which determines the maximum possible 
value of the total neutron cross sections at the peak of a resonance. It is the area of 
a circle of radius equal to the neutron de Broglie wavelength A divided by 2ii, and not 
the area of a circle of nuclear radius r'. Since A » r' for sufficiently low-energy neu-
trons, the total reaction, or scattering, cross section at a resonance peak can be very 
much larger than the projected geometrical cross section, nr'2 , of the nucleus. This is 
possible because the low-energy neutron acts like a wave, not a classical particle, and 
at resonance it can interact with the target nucleus whenever the expectation value of 
its position passes within a distance of about A,/27r of the nucleus. Later we shall see 
that this property is very important in the operation of a nuclear reactor. 

Another characteristic of a compound nucleus is that in its relatively long lifetime 
it forgets the details of how it was formed. For instance, since the original linear 
momentum of the incident particle becomes distributed over the many particles that 
are excited in the compound nucleus, there cannot be a preference for the neutrons to 
be emitted in the beam direction. Figure 16-31 shows an example of the isotropic 
differential cross section for emission that characterizes the low-energy neutrons 
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Figure 16-31 The differential cross section for the compound nucleus evaporation of 
low-energy neutrons following the 50 MeV bombardment of a hypothetical nucleus of 
typical properties. The lack of a preferred direction of emission is characteristic of the 
compound nucleus process. 

produced in nuclear reactions. These are the neutrons evaporated from compound 
nuclei. 

Example 16 -10. The measured differential cross section for the emission at 40° of the 
highest energy inelastically scattered proton group from 26Fe 54  bombarded by 60 MeV 
protons is da/dûû = 1.3 x 10 - 3  bn per unit solid angle. These inelastic protons leave the 26Fe54 

residual nucleus in its first excited state at 1.42 MeV. Calculate how many events per second 
are recorded in a measurement of the inelastically scattered protons made with a detector of 
area 10 -5  m2  located 10 -1  m from a pure 26 Fe 54  foil, of mass per unit area 10- 1  kg/m2, which 
is bombarded by a 10 -7  amp proton beam. (In nuclear physics, the unit of area for cross 
sections is called the barn, written bn; 1 bn = 10 -28  m2 .) 
► The number n of nuclei, or atoms, contained in a unit area of the target is the mass per unit 
area of the target divided by the mass of a 26Fe 54  atom. Since this is almost exactly 54 times 
the mass of a 1 H 1  atom, we have 

10 -1  kg/m 2 	 24 	2 

	

n = 	 = 1.1 x 10 nuclei/m 
54 x 1.66 x 10 2  kg/nucleus 

The solid angle dQZ subtended by the detector at the target is its area divided by the square 
of its distance from the target. So 

10-5 m2 
dS1= (10_1m)2 =10-3 sr  

(A unit solid angle is called a steradian, written sr; 1 sr = solid angle subtended by 1 m 2  at 
1 m.) 

The product of the differential cross section du/dSZ for the events of interest times the solid 
angle dS2 subtended by the detector gives an area per nucleus that is effective in leading to the 
detected events. This effective area per nucleus da is 

bn sr 
da = 1.3 x 10 -3 	 x 10 -3  sr = 1.3 x 10 -6  bn/nucleus = 1.3 x 10 -34  m2/nucleus 

nucleus 

The product of the effective area per nucleus, da, times the number of nuclei per unit area, 
n, equals the probability that one incident proton will produce a detected event. This 
probability P is 

P = dun = 1.3 x 10 -  
That is 

P = 1.4 x 10 -1°  event/proton 

The number of protons per second I in the incident beam is the charge per second in the 
beam divided by the charge per proton, or 

I = 	
10 coul/sec 	

= 6.2 x 10 11 roton sec 
1.6 x 10 -19  coul/proton 	 p 	/ 

34  m2/nucleus x 1.1 x 1024  nuclei/m 2  = 1.4 x 10 -10  
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Multiplying the number of protons per second I by the probability P that a proton will  
produce a detected event, we obtain the number of events detected per second. This is  

dN = IP = 6.2 x 10 11  proton/sec x 1.4 x 10 -10  event/proton = 87 event/sec  

Note that the preceding equation can be written as  

dN=IP=I do-  n =d^  In (K2  

in agreement with (4-8), the definition of a differential cross section. 	 4 

16-8 EXCITED STATES OF NUCLEI  

Figure 16-32 reviews information about the excited states of nuclei obtained from the  

study of nuclear decays and nuclear reactions. The energy-level diagram represents  

energy states of the entire nucleus, and not of individual nucleons in the nucleus. Up  

to an excitation of — 8 MeV, the states y decay to the ground state. Above —8 MeV,  

nucleon emission becomes energetically possible, and this process soon becomes the  

dominant decay mode since it has a much shorter lifetime or much higher transition  

rate. This is the region of the many particle states. They are very closely spaced  

because there are a large number of different divisions of energy between the many  

particles of the nucleus that lead to almost the same total nuclear excitation energy.  

Continuum of  
unbound states  

Nucleon  E__#  
emission  

^ m = ^^^—^—.  ^ 	amommwm  •••••••••■■■IM  
mA^^a^'^'^^^^■ 
^.^.^^.^..^^^  

EMU 
^'8 MeV  

First excited state  

ground state  

y emission  

Figure 16-32 An over-all view of the excited states of a typical nucleus.  



(3/2, even) 

(3/2, odd) 

(7/2, odd) 

(1/2,odd) 	Figure 16-33 The low-lying excited states of 80 17 . 
Excitation energies, spins, and parities are shown. 
The spin and parity of the first excited state are cor- 
rectly predicted by the shell model as are, of course, 

(1/2, even) 
the spin and parity of the ground state (see Figure 
15-18). The energy of the first excited state is not 

(5'2,even) predicted by the model, nor are any of the charac- 
teristics of the higher excited states. 

The spacing decreases with increasing A because more divisions are possible. It also 
decreases as there becomes more excitation energy available to divide among the 
particles. Thus the many particle states soon fuse together into a continuum of 
allowed nuclear energy states, but the continuum maintains some structure since the 
many particle states tend to group together into the very wide single particle states 
through which they have been excited. Each many particle state in a group has the 
same angular momentum and parity as the original single particle state. 

Now let us look more carefully at the low-lying excited states. The simplest case is 
for a nucleus whose ground state consists of a core of filled magic number subshells, 
plus one nucleon. In the first excited state, the extra nucleon jumps to the next highest 
energy subshell, and the core remains undisturbed. Figure 16-33 shows, as an ex-
ample, the low-lying excited states of 8 0 17 . The spin and parity of the first excited 
state agree with the predictions of Figure 15-18 of the shell model, but its energy 
is not predicted by the model. If the ground state of a nucleus consists of a core of 
filled magic number subshells, plus one hole, its first excited state is the shell model 
state of the hole. But in both these cases, usually even the second excited state has 
unpredicted spin and parity. 

Between magic numbers, the first few excited states of nuclei often show regularities 
expected from the collective model. An example is the even-even nucleus 92U238 

illustrated in Figure 16-34. On the right are the observed energy levels, and on the left 
are the predictions of the quantum mechanical formula 

E 	l( 2± 1) h 2 	i= 0,2,4,6,... (16-33) 

for the allowed values of total energy E of rotation of a symmetrical rotator, such 
as an ellipsoid rotating with rotational inertia, or moment of inertia, f, about an axis 
perpendicular to its symmetry axis. Equation (16-33) is the same as (12-1) that we 
derived while treating the rotational spectra of diatomic molecules, except that (1) 
the quantum number we must use here is i, instead of r; (2) we therefore avoid con-
fusion by using the symbol 5, instead of I, for the rotational inertia; and (3) since 
we deal with a symmetrical rotator, only even values of the rotational quantum 
number i will arise. The reason for the last statement is that the rotational eigen-
function for the system has the parity of (-1)`, and thus will be odd if i is odd, and 
even if i is even. It can be shown to follow from the symmetry of the rotator that it 
can have no angular momentum in the direction of its symmetry axis, and that all 
of its states must have the same parity. Since an even-Z even-N nucleus has an even 
parity ground state, we therefore see that its excited states must also have even parity. 
Thus the odd values of i must be deleted in (16-33). Inspection of the excellent agree-
ment between (16-33) and the low-lying states of 92U238 , shown in Figure 16-34, 
makes it clear that collective effects in that nucleus deform it into an ellipsoidal 
shape. In particular, the evidence is that it has essentially the same shape in all of 
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(12, even)    (12, even)  

(10, even)    (10, even)  
a) 
a^ 

(8, even) 	  0.5 — > 	  (8, even)  
a)  

(6, even)    (6, even)  

(4, even)    (4 even)  
(2, even)     (2, even)  
(0, even) 	

Symmetrical 	0 	92 238 	(0, even) 

rotor  

Figure 16-34 The low-lying excited states of 92U238.  Right: The data. Left: The predic-
tions for the rotational states of a symmetrical ellipsoid of rotational inertia f. The value  
of 5 was chosen to give the best fit to the experimental energies, the value being 2940u-F 2 .  
The average discrepancy in the fit is only 0.0204 MeV, which indicates the success of the  
model. Most of this discrepancy is in the form of very small downward displacements of  

the higher rotational states from the predicted values. It can be understood as a small  

increase of 5 in these states due to centrifugal effects.  

these states, including the ground state, because the predictions of (16-33) are ob-
tained by using a constant value of the nuclear rotational inertia J.  

Of course, we already know, from the discussion of the collective model and nuclear  

electric quadrupole moments in Section 15-10, that even-N, odd-Z or odd-N, even-Z  

nuclei, with N and Z between the magic numbers, are usually ellipsoidal in shape.  

The tendency for an ellipsoidal shape is particularly strong for such nuclei in the  

region of the rare earth elements (the lanthanides), and it is fairly strong for nuclei  

in the region of uranium and the elements just above it in the periodic table (the  

actinides), since in these regions both N and Z are far from magic numbers. What  
is new here is the evidence for the ellipsoidal shape of the even-N, even-Z nucleus  

92U238. Recall that in Section 15-2 we concluded that if a nucleus has zero nuclear 
spin in its ground state, as is the case for 92U238  and all other even-N, even-Z nuclei, 
then it would not be possible to observe an ellipsoidal shape in its ground state, even 
if it actually has such a shape, in averaged measurements like the hyperfine splitting 
determinations of the electric quadrupole moment. The measurements on nuclear 
decay and nuclear reactions that lead to the 92U238  energy levels of Figure 16-34 
are sensitive to the actual shape of the nucleus—not to just the average of all 
possible orientations of the shape as is true of the hyperfine splitting measurements 
on zero spin nuclei. These more sensitive measurements show that the nucleus is 
ellipsoidal. Similar measurements show that this is generally true of all nuclei, no 
matter whether N and Z are even or odd. The only exceptions are nuclei with N  
and Z at or very near the magic numbers, where collective effects are insignificant. 
Such nuclei are truly spherical. 

Since the deformation of nuclear shapes from spherical to ellipsoidal is a conse-
quence of collective effects, nuclei where these effects are strong because both N and 
Z are far from magic numbers have, in their low-lying energy states, relatively large 
and essentially rigid deformations, like 92U238.  These states consist of the various 
rotations allowed by quantum mechanics. Nuclei in which N and/or Z are not very 
far from magic numbers have deformations that are not very large, and that are not 
rigid. The low-lying states of such a nucleus involve vibrations of its shape back and 
forth between an ellipsoid elongated in the direction of its symmetry axis and an 
ellipsoid shortened in that direction. The motion is further complicated by the fact 
that the nucleus can also rotate. Nevertheless, the first few energy levels of nuclei of 
this type are rather evenly spaced, like the energy levels of a simple harmonic oscil- 
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Figure 16-35 	The low-lying excited states of 78 Pt
192 .  

For these states the nuclear shape is both vibrating and  
rotating.  

(3, even) 

(4, even) 

(2, even) 

(2, even) 

78
Pt

192  
(0, even) 

lator. An example is found in the low-lying excited states of 78 Pt 192, shown in Figure 
16-35. Note that the lowest collective states of ellipsoidal nuclei, whether rotational, 
vibrational, or a combination of both, have much smaller excitation energies than the 
lowest shell model states of spherical nuclei. This can be seen by comparing Figures 
16-34 and 16-35 with Figure 16-33. 

Another regularity of low-lying excited states is found in comparing these states in 
certain pairs of nuclei whose shell model descriptions are identical, except that the 
neutrons and protons are interchanged. An example of such a so-called mirror pair of 
nuclei is 'H3  and 2He 3 , whose ground state shell model descriptions were shown in 
Figure 16-14. Another example is 3Li7  and 4Be'. In general, two nuclei form a mirror 
pair if they contain the same number of nucleons, and if the number of protons in 
one equals the number of neutrons in the other. We have found that mirror pairs 
play an important role in allowing the experimental determination of the f-decay 
coupling constant. The reason is that since the charge independent nuclear forces do 
not distinguish between neutrons and protons their ground state eigenfunctions are 
identical, except for the effect of the small difference in the relatively weak Coulomb 
forces in these very low-Z nuclei. For the same reason, their ground state eigenvalues 
are almost identical. That is, their ground state energies, or masses, are very nearly 
the same. Furthermore, the eigenfunctions and eigenvalues of the low-lying excited 
states of a mirror pair should be essentially the same if nuclear forces are charge 
independent. Thus there should be a close correspondence between the spins, parities, 
and energies of these states in the two members of a mirror pair. This is found to be 
the case. An example is shown in Figure 16-36, which presents the low-lying excited 
states of 3Li' and 4Be'. More complicated relations are found between the lower 
excited states of mirror triads, such as 5B12 ,  6C12 ,  7N12,  and of even larger sets of 
isobars (nuclei with common values of A). These relations will be discussed briefly 
in the following chapter in the section titled Isospin. 
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(5/2, odd)  

(5/2, odd)  

(7/2, odd)  
4  

(1/2, odd)  
(3/2, odd)  

    

(1/2, odd)  
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0 
3 Li 7 	 4 Be7  

Figure 16-36 The low-lying excited states of the mirror pair 3 Li 7  and 4Be 7 . The ground  
state energy of 4Be 7  is actually about 0.5 MeV above the ground state of 3 Li 7  due to the  
extra Coulomb repulsion energy in the former.  
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16-9 FISSION AND REACTORS 

Fission was discovered by Hahn and Strassman in 1939. Using chemical techniques, 
they found that the bombardment of uranium by neutrons produces elements in the 
middle of the periodic table. It was immediately realized that a very large amount of 
binding energy would be released in the fission of a nucleus of large Z, into two nuclei 
of intermediate Z, because of the consequent reduction in the positive Coulomb 
energy. Measurements soon showed that an energy of around 200 MeV per fission 
was released, and carried away largely by the kinetic energy of the two fission frag-
ments. Measurements also showed that two or three neutrons were emitted in each 
fission. This suggested to several people the possibility of using these neutrons to 
induce other uranium nuclei to fission, using the neutrons that would be emitted 
from those fissions in the same way, and so forth, in a chain reaction. A trivial calcu-
lation showed that if all the nuclei in a block of uranium could be made to fission 
in a chain reaction, the energy liberated would be -'10 6  times larger than in burning 
a block of coal, or exploding a block of dynamite, of the same mass. (This is the usual 
factor of 10 6  obtained when comparing nuclear to atomic, or molecular, energies.) 
Because of the extremely short time scale characterizing nuclear processes, the energy 
would be expected to be released much more rapidly than in a chemical explosion. 
The potentialities as a weapon were obvious, particularly because of the imminence 
of World War II. The events that followed dominate the history of this century, but 
here we shall be concerned with the peaceful applications of fission. 

In a nuclear reactor, fission proceeds at a carefully controlled rate. A continuous 
source of power is obtained from the thermal energy produced when the fission 
fragments come to rest in the materials of the reactor. After many years of techno-
logical development, nuclear reactors have become sources of power which are very 
competitive, economically, with coal or oil. They are also important sources of un-
stable isotopes, not normally found in nature, that are used as tracers for diagnosing 
the operation of a variety of processes of interest to medicine, biology, chemistry, and 
engineering, or used for radiation therapy. The isotopes are produced in nuclear 
reactions induced by the intense flux of neutrons present in a reactor. 

Fission occurs in nuclei of large Z because the total Coulomb repulsion energy 
of the protons in a nucleus is considerably decreased if the nucleus splits into two 
smaller nuclei. The nuclear surface energy increases in the process, but its magnitude 
is much smaller than the magnitude of the Coulomb energy, so the increase in surface 
energy does not alter the fact that it is energetically favorable for a large Z nucleus 
to fission. The Coulomb energy is minimized if the nucleus splits into two fission 
fragments that contain equal numbers of protons, but usually the splitting is not 
completely symmetrical because of the preference for magic numbers. In Example 
15-6 we used the binding energy data to show that the energy associated with fission 
of 92U238  is close to 200 MeV. This value is also fairly typical of the fission energy 
for other isotopes of uranium. 

The steps involved in fission are indicated schematically by the set of drawings in 
Figure 16-37. These define a parameter s which characterizes the progress of the fis-
sion by specifying (somewhat unprecisely) the elongation of the fissioning nucleus, 
and then the separation of the two fission fragments. Figure 16-38 is a schematic 
plot of V(s), which is the part of the energy of the system that depends on s. Starting 

PRE2TTT 
Figure 16-37 A schematic representation of the steps involved in the process of 
nuclear fission. 
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Figure 16-38 An energy diagram for a fissionable nucleus.  

at small s, there is relatively little change in the Coulomb repulsion energy with in-
creasing s, but the surface area of the nucleus increases rapidly. According to the 
liquid drop model, the increase in surface area produces an increase in the surface 
energy. Thus V(s) increases with increasing s, for small s. As s continues to increase, 
a surface tension effect produced by the surface energy causes the nucleus to assume 
the form of two regions connected by a narrow neck. And eventually the nucleus 
splits. After it splits, the surface energy no longer changes with s, and V(s) decreases 
with increasing s, following the decrease in the Coulomb repulsion energy of the two 
fission fragments. Since V(s) first goes up and later comes down, it necessarily must 
pass through a maximum. Calculations, based on the liquid drop model, show that 
for a typical nucleus of large Z this maximum is about 6 MeV above V(0). We already 
know that V(0) is about 200 MeV above V(co). Thus we see that nuclei are normally 
stable to decay by fission since they are sitting, with total energy E = V(0), at the 
bottom of the depression in the potential V(s). The process can take place by barrier 
penetration but, because the mass entering in the exponent of (6-55) for the barrier 
penetrability is very large, the probability of barrier penetration is extremely small. 
If 92U238  decayed only by this spontaneous fission process, its lifetime would be 
—10 16  yr. 

A process of much more importance is induced fission. Usually this is brought 
about by the nucleus capturing a low-energy neutron. As the binding energy E„ of 
the last neutron in a nucleus of large Z is around 6 MeV, in favorable cases the 
capturing nucleus receives enough energy to put it over the top of the fission barrier. 
Very often this high excitation energy actually does go into collective vibrations in 
which it becomes sufficiently elongated to fission. It is like a highly excited compound 
nucleus, with most of its excitation energy in the form of violent vibrations. Induced 
fission is perhaps the best example of the collective motions that are implied by the 
liquid drop model, and form the basis of the collective model. The process is indi-
cated in terms of an energy diagram in Figure 16-39. As we saw in Example 15-7, 
for 92U235  the neutron binding energy En , made available when a neutron is captured,  

is about 6.5 MeV, so that fission can take place even if the neutron brings in no  

kinetic energy. This is also true for 92U233.  But when 92U238  captures a neutron  
only about 5 MeV of binding energy is made available, so a neutron must have a  

kinetic energy of about 1 MeV to cause fission in this nucleus. The difference between  

the behavior of these isotopes arises from the difference in the pairing energy, as  

explained in Example 15-7.  

We have oversimplified our discussion of fission by speaking as if the fissioning nucleus is 
spherical in its ground state. In fact we saw in Section 16-8 that uranium nuclei are ellipsoidal 
in their ground states. Even before receiving any excitation energy the nucleus is somewhat 
elongated. When it receives about 6 MeV of excitation from capturing a neutron, it further 
elongates, goes over the top of the fission barrier, and then fissions. 
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Figure 16 -39 An energy diagram illustrating induced fission.  

Evidence has been accumulated which indicates that the fission barrier V(s) shown in Fig-
ures 16-38 and 16-39 is probably also an oversimplification, and that the barrier actually has  

a double hump something like that shown in Figure 16-40. In its ground state the nucleus is  

very near the bottom of the deeper depression with its ground state elongation s', and stable  
except for the highly improbable process of barrier penetration. Calculations based on the  

collective model, i.e., on a combination of the liquid drop and shell models, predict that there  

is a second shallower depression in V(s) at the larger elongation s". At this elongation the  
nucleus would also be stable, except for barrier penetration, if it had no excess energy. One  

prediction of these calculations is that it should be possible to put a fissionable nucleus into  

a state with the elongation s", where it would remain for a long time. Some spontaneous fis-
sion experiments give strong indication that this is true. Because these calculations are also  

the ones that lead to the prediction of the Z = 114 magic number, mentioned at the end of  

Section 16-2, the spontaneous fission experiments have made physicists take the prediction  

concerning Z = 114 seriously. As far as induced fission is concerned, the presence of the  

shallower depression in V(s) would probably not make very much difference.  

The possibility of using fission to produce power in a chain reaction arises from  

the fact that two or three neutrons are emitted in each fission process. An idea of why  
it happens can be obtained by considering Figure 16-41. The figure shows the Z  
and N values of the nuclei which are the most stable for each value of A (as in Fig-
ure 15-11). These nuclei are represented by the curve of stability. The large dot indi-
cates the fissioning nucleus, and the two small dots indicate the fission fragments.  

The fragments are usually not symmetrical. Instead one of the fragments has Z and  
N values near the magic numbers 50 and 82, presumably because this is favored  

energetically. But both fragments have nearly the same Z/N ratio as the fissioning  
nucleus. Since their A values are much smaller, their Z/N ratios are smaller than  

those of stable nuclei with these A values. The fission fragments tend to have rela-
tively too many neutrons. Most of the necessary readjustment slowly takes place  

T 
a 
114  
^ 
C 
W 

O  s' s"  
s --^ 

Figure 16 -40 A double hump fission barrier.  
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Figure 16-41 Illustrating that fission fragments tend to have relatively too many neutrons.  

by the fission fragments going through a succession of  16 decays, but some of the 
readjustment is achieved promptly at the time of fission. Part of the decay of the 
fissioning compound nucleus takes place through the evaporation of two or three 
neutrons, of several MeV kinetic energy. Figure 16-42 provides more information 
about the asymmetry of the fission fragments, by plotting the distribution of their 
A values. 

Another process leading to the emission of neutrons, which is of small probability 
( 1% of the probability for the prompt emission of neutrons by evaporation from 
the excited compound nucleus) but of great importance in making it easier to control 

132 = 50 + 82  

80 	90 	100 110 120 130 140 150 	160  
Mass number A  

Figure 16-42 The mass spectra of fragments produced in the low-energy neutron in- 
duced fission of 92 0233 92U235 and 94PU239. 
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a reactor, is that of delayed neutron emission. As an example, consider the electron 
emitting fission fragment 35Br87. Because of the fl-decay selection rules, this nucleus 
occasionally decays to a state of its daughter 36Kr 87  that is sufficiently excited to 
allow it to emit a neutron, leaving the stable nucleus 36Kr 86 . Neutrons are emitted in 
this process, with a delay characteristic of the 55 sec half-life of 35Br 87 . Another im-
portant example involves delayed neutron emission from 54Xe 137 . For 36Kr 87  or 
54Xe 137  the neutron number N equals a magic number, 50 or 82, plus one. Thus 
the process depends on the unusually small neutron binding energy that the shell 
model would predict in such cases. 

In a reactor, the chances for the neutrons emitted in one generation of fission ul-
timately inducing the next generation of fission are enhanced because the neutrons 
scatter from low mass nuclei in the moderator surrounding the pieces of uranium. 
They rapidly lose energy to the recoil of these nuclei, and they are no longer able to 
induce fission in 92U238.  But they are not lost to non fiss ion 92U238  capture since 
moderation occurs outside the uranium pieces. The moderator is usually 6C12,  in the  
form of graphite, or 'H2, in the form of deuterium oxide (heavy water). It is possible  

to use 'H1,  but only if the uranium is highly enriched in 92U235.  The reason is 
that 'H1  has a large cross section for capturing neutrons to form 'H2,  and these 
neutrons are lost from the chain reaction. The purpose of the moderator is to reduce 
the velocities of the neutrons to the lowest values possible, so that their de Broglie 
wavelengths 2 will be as long as possible. Because of the wavelike properties of neu-
trons, their cross section for capture by a nucleus of radius r' is limited by the value 
of A, and not by the value of r' (see (16-32)). The moderator brings the neutrons into 
thermal equilibrium at the operating temperature of the reactor, which makes 2 » r' 

 and thereby increases the 92U235  capture cross section for neutrons diffusing back 
into the uranium pieces. The cross section must be large enough that the probability 
of one of the two or three neutrons from each fission subsequently inducing another 
fission be at least equal to 1. When the reactor is starting up, this probability is 
made to be slightly bigger than 1. It is gradually reduced to be precisely 1 when the 
reactor attains equilibrium at its operating level. Adjustments are made by varying 
the lengths of control rods inserted into the reactor. These contain nonfissionable 
nuclei like 48Cd 113 , which have extremely large capture cross sections for thermal 
energy neutrons, because of fortuitiously located compound nucleus resonances. The 
delayed neutrons facilitate the control of a reactor by introducing some neutrons in 
the chain reaction that are emitted with a reasonably long time constant. The kinetic 
energy given to the fission fragments in the fission process is converted into thermal 
energy as these fragments come to rest in the materials of the reactor. Typically, this 
heat is used to make steam which drives turbines that operate generators producing 
electrical power. 

Breeder reactors utilize the 99% abundant 92U238.  These nuclei capture low-energy 
neutrons. They cannot fission in low-energy neutron capture, but the resulting unsta-
ble 92UZ39  nuclei undergo two successive ,6 decays, turning into the stable nuclei 
94Pu239 . This end product has the same ability to fission in low-energy neutron 
capture as does 92U235 .  

Example 16-11. The average time lapse between the emission of a prompt neutron in a fission  

taking place in a nuclear reactor, and the capture of that neutron to induce the next generation  

of the chain reaction, is of the order of 10 -3  sec. (Most of the time is required by the moderator  

to bring the neutron into thermal equilibrium.) Use this figure to estimate the number of free  

neutrons present in a reactor operating at a power level of 10 8  W.  
► In Example 15-6 we found that the energy release in the fission produced by one neutron  

is about  
200 MeV 1.6 x 10 -13  joule 	_ 11 . E ^^ 200 MeV = 	x 	 — 10 	joule/neutron  
neutron 	MeV  



If one free neutron has a lifetime before capture of —10 -3  sec, and if on capture it produces 	ô 
a fission energy of —10 -11   joule, one free neutron produces a power of 

10 -11  joule/neutron s 	 m p — 	 — 10 W/neutron 	 0  
10 

3 
 sec 1 

So if the power level of the reactor is P = 108  W, the number of free neutrons is 	 rn  
0 s 

N = P  ^ 	
10 W 	,r1016  neutron 

p 10 s  W/neutron 
The large number, or flux, of free neutrons present in a reactor makes the device very useful 

for producing unstable isotopes on the low-Z side of the curve of stability (electron emitters). 
This is done by placing probes containing appropriately chosen stable isotopes into the interior 
of the reactor. The unstable isotopes are formed when the isotopes in the probes capture 
neutrons. 4 

16-10 FUSION AND THE ORIGIN OF THE ELEMENTS 

We close our study of nuclear physics with a discussion of nuclear fusion, and its 
part in the production of stellar energy and of the chemical elements. Fusion involves 
two nuclei of very low A amalgamating to form a more stable nucleus. The increased 
stability arises because the A value of the nucleus formed is nearer the value A 60 
where the binding energy per nucleon maximizes (see Figure 15-10). From the point 
of view of the liquid drop model, the situation would be explained by saying that 
nuclei of very low A have too much surface, relative to their volume, for maximum 
stability. The Coulomb energy increases in fusion, but its magnitude is too small to 
prevent the process from happening because nuclei of low A also have low Z. 

It is fair to say that fusion is the most important phenomenon in nature. Fusion 
of low-A nuclei in thermal motion is the source of energy of the sun. So it is ultimately 
the source of energy for all the natural physical and biological processes on the earth. 
And there is reason to hope that some day fusion will be usable directly on earth to 
produce energy in a fusion reactor. Because much of the earth is covered by seas con-
taining the hydrogen isotopes  1 11 1  and 1 H2, the fuel supply of low-A nuclei would 
be almost inexhaustible. One of the several potentially useful reactions for a thermal 
fusion reactor is 

1 H2 + 1 H2 2He3 + ° n 1  + 3.2 MeV 	 (16- 34) 
where the energy is the Q value of the reaction. But it is much more difficult to build 
a fusion reactor than to build a fission reactor. The problem lies in the repulsive 
Coulomb barrier acting between two nuclei, which must be overcome, or at least 
penetrated, before they can get close enough to allow the short range nuclear forces 
to come into play and fuse them together. 

Figure 16-43 plots the cross section for the reaction of (16-34), as a function of the 
kinetic energy of the bombarding particle. The cross section does not attain a mea-
surable value until the kinetic energy exceeds — 10 4  eV. And even at that energy the 
cross section is very small because the reaction takes place by penetration of the 
Coulomb barrier acting between the nuclei, which is — 10 6  eV high. Unless the kinetic 
energy is appreciably higher than — 10 4  eV, the cross section, and therefore the rate 
of the reaction, is much too small to be of practical use in a fusion reactor. In the 
interior of the sun similar reactions do occur, with the kinetic energy of the bom-
barding particles coming from their thermal energy. This energy is — kT, where k is 
Boltzmann's constant — 10 -4  eV/°K, and T is the interior temperature of the sun 
ti 10' °K. Thus the thermal or kinetic energy at the temperature of the interior 
of the sun is only - 103  eV, and fusion reactions proceed there at an extremely slow 
rate. Of course, the sun produces large amounts of energy, but only because it is so 
large that it makes up for the very slow rate of the individual reactions. An efficient 
thermal fusion reactor of dimensions possible on the earth would have to have a 
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Figure 16-43 The cross section for the reaction in which two deuterons fuse to form 
2 He 3 plus a neutron. 

much higher rate for the individual reactions. Thus its temperature would have to 
be higher—at least an order of magnitude higher than the internal temperature of 
the sun! There are ways of achieving such a temperature, if ways can be found to 
produce a container that would not be destroyed by the temperature. The sun is so 
massive that gravitational fields provide a container automatically. On earth, it might 
be done by using magnetic fields acting on the charged nuclei to contain them. 
Attempts have been made to build such a container, fill it with hydrogen, and then 
heat the contents by, for instance, firing in a laser beam. There have even been some 
indications of success, but only for very short times before the container fails. Another 
approach is to use extremely powerful lasers to add enough thermal energy to small 
pellets of fusible material to cause them to react. In such a procedure, energy would be 
produced in a sequence of miniature explosions, and it would be absorbed within a 
very strong metallic container that would be heated as a consequence. Obtaining 
thermal fusion for energy production on earth remains one of the great challenges 
to science and engineering. 

There are no difficulties in obtaining fusion on earth by nonthermal means. It can 
be done with ease by using a cyclotron, or other accelerator, to give the bombarding 
nucleus enough energy to overcome the repulsive Coulomb barrier it sees surround-
ing the target nucleus; but the amount of energy liberated in the relatively few fusions 
that can be produced in this way is very small, and microscopic compared to the 
energy that goes into running the accelerator. So there seems to be no hope of using 
nonthermal fusion as an efficient energy source. 

Efficient thermal fusion has, however, been taking place for a long time in the stars. 
It is responsible for the energy produced in all stars, and also for the production in 
the stars of all the elements through iron. It is believed that stars are initially formed 
from the extremely low-density ( 1 atom/cm 3) gas that is known to be distributed 
throughout interstellar space. The gas is primarily hydrogen, but it contains also 
about 10% helium that is thought to have been made by fusion from hydrogen in 
the "big bang" that occurred when the universe started some 10 1 o  years ago, plus 
small amounts of higher Z elements present in certain regions for reasons that will 
be explained later. 

In the well-accepted big-bang theory, the electrically neutral universe would have 
started from a region containing neutrons compressed to an extremely high density. 
In the first few moments, the following set of processes would take place 

ow_ _,1H1 + e +v 
1 H 1 — °n 1 +é 

1H1 
+ on11H1 + 0n' 

+ y 

e+ë—y+y 

y—>e+é 
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^ 1Hz+y  
zHe3 + on " 

 1H3 + 1 H 1  

1 H3 + 'H'  

2 He4 + on "  

1H1 +  on 1  

1 H z + 1 H2 -*  

2He3 + °n 1  
1 H 3 +  1H2  

and there was an equilibrium, at very high temperatures, between neutrons, protons, 
electrons, positrons, antineutrinos, and y radiation. The radiation, "cooled" by re-
peated Doppler shifts in the subsequent expansion of the system, would now consti-
tute the isotropic 3°K blackbody radiation whose recent detection provides some of 
the experimental evidence for the validity of the big-bang theory (see Section 1-5). 

In the high-density equilibrium distribution that existed for a short time before the 
system blew itself apart, helium would be formed by the reactions 

Detailed calculations, involving the cross sections for all the reactions in both sets,  

show that enough helium could be formed to account for the approximately 10% 
abundance now observed in interstellar space. The remaining 90% of the matter there 
would, in agreement with observation, essentially all be in the form of hydrogen, most 
of the protons being formed from the )6 decay of the neutrons that found themselves 
in free space after the big bang. 

According to our present understanding, the first stage in the formation of a star 
from the very tenuous gaseous material of interstellar space involves some sort of 
upward fluctuation in density over a very large region. In such a fluctuation, the gas 
collects into a cluster. If it is large enough it stabilizes itself because of the gravita-
tional attractions between the atoms it contains, and it begins to grow by attracting 
more atoms. As a cluster grows, the increasing strength of the gravitational attrac-
tions causes the interior pressure, and therefore the interior temperature, to build 
up. When the temperature in the core exceeds about 10 5  °K the hydrogen atoms in 
that region are completely ionized into a plasma of protons and electrons. And when 
the temperature exceeds about 10' °K the protons have enough kinetic energy due 
to their thermal motion to have a small probability of penetrating the repulsive Cou-
lomb barriers that tend to keep them apart. (The 10% helium present does not partici-
pate at this stage because the temperature is too low for penetration of the higher 
Coulomb barriers surrounding these nuclei.) Then two protons can fuse together and 
form a deuteron, according to the reaction 

1 H 1 + 'H 1 _÷ 1 H2 +é +v+ 0.42 MeV  

where the energy is the energy liberated in the process. Since the process requires 
both barrier penetration and the weak )3-decay interaction, it occurs at an extremely 
low rate. The necessity of /3 decay arises from the fact that nuclear forces are not 
able to make the system 2 He2  (the diproton) be bound, for reasons that will be ex-
plained in the next chapter. Although the rate for the deuteron forming reaction is 
very low, when enough deuterons are present large concentrations of helium can be 
formed by processes that have relatively high rates because they involve the strong 
nuclear interaction. 

Helium is formed in a star in a cycle of reactions, called the proton-proton cycle,  
consisting of two of the preceding reactions, followed by two of the reactions 

1 Hz+ 1 H 1 —, zHe 3 +y+5.49MeV 

and then by one reaction in which the two 2He3  nuclei that have been formed fuse as 
follows 

2He3  + 2He3 2He4  + 'H'  + 'H'  + 12.86 MeV  

Counting the 1.02 MeV liberated each time one of the two positrons annihilates with 
an electron, the total energy liberated in one cycle is 26.72 MeV. But a little more 
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than 1% of this energy is carried completely away from the star by two neutrinos. The  

remainder, plus gravitational contraction, continues to heat the core.  

When the density of helium (including the helium initially present) in the core of  

the cluster that has turned into a star becomes high enough, carbon can be formed.  

What happens is that two 2He4  nuclei combine to form 'Be. This nucleus can then  
combine with another 2He4  nucleus, to form 6C12 , providing it does it almost imme-
diately. The point is that 'Be is not stable, and it will decay back into two 2He4  
in about 10' sec if it does not capture the third 2 He4  nucleus. The rate for this  
improbable sounding reaction would be essentially zero if it were not for the existence  

of an excited state in 6 C 12  at an energy of about 7.65 MeV. When the temperature  

is —108  °K, there is a resonance in the reaction, which makes its cross section rea-
sonably large, because the kinetic energies of the three combining 2He4  nuclei plus  
the Q value equals the energy of the excited state in 6 C 12 . Straightforward processes  
involving the successive addition of nucleons to 2He4  could not be used to form  
elements with A greater than 4 because such processes are blocked by the complete  

instability of nuclei with A = 5.  
When enough carbon has been formed in the core of the star, the principal source  

of energy production is through the carbon cycle, in which carbon plays the role  
of a catalyst (i.e., it reappears at the end of the cycle) to aid in the fusion of four 'H'  

into one 2 He4, plus assorted positrons, neutrinos, and y rays. The carbon cycle con-
sists of the set of reactions  

60.3 +  1H1 7N14 • y + 7.55 MeV  
7N14+'H1+>8015 + y + 7.29 MeV 
80 15 -* 7N 15

+é+ v + 1.73 MeV  
7N15 +  1H1 -* 60.2 + 2 He4  + 4.96 MeV  

Counting the energy liberated in the annihilation of the two positrons, the total  

energy liberated in one cycle is 26.72 MeV, just as in one proton-proton cycle. In  

the carbon cycle a little more than 5% of the energy is lost from the star by the two  

neutrinos emitted in the higher energy /3 decays. The rate at which the carbon cycle  

occurs is much higher than the rate for the proton-proton cycle, because no step in  

the carbon cycle is anywhere as near as slow as the first step in the proton-proton  

cycle. The sun has not yet reached the stage in its development where the carbon  

cycle dominates the energy production, although there is some carbon cycle going  

on. In a star with a mass greater than about two sun masses, the gravitational con-
traction is very rapid and the core temperature rapidly reaches the value — 10 8  °K  
required for carbon formation and the carbon cycle.  

As the concentration of the stellar core continues, its temperature increases and  

elements heavier than carbon are formed. At first this is done by the successive  

captures of 2He4  by 6 C 12, forming 8016, then 10NeZ0, and then 12Mg24.  But when  
the temperature is — 10 9  °K these nuclei have enough thermal energy to penetrate  

their Coulomb barriers, directly forming nuclei of even A through 26Fe 56 . Nuclei of  
comparable but odd values of A can be formed if the even-A nuclei are forced by  

turbulence out of the stellar core into the surrounding cooler zone where the proton-
proton cycle is still going on. In this zone reactions can occur such as  

1 0Ne2o + 1H1  "Nall  + y  
11Na21 -*  loNe21  + é + v 

Some of these odd-A nuclei can then participate in reactions which lead to the pro-
duction of neutrons. An example is  

loNe21 +  2He4 -*  12Mg24 +  on1  

Ci.  

U 	 6012 + 1111 --÷ 7N13 + y + 1.94 MeV  
7N13 ^ 6C13  + e+v+ 1.20 MeV  



The elements heavier than iron are not formed by fusion because the A values 
exceed the value A ^ 60 where the binding energy per nucleon maximizes; beyond 
A 60 the Coulomb repulsion of the protons becomes so large that it is no longer 
energetically favored for a nucleus to capture another nucleus. However, it is certainly 
favored for a nucleus to capture a neutron since this releases the neutron binding 
energy of • 6 MeV. Nuclei through 83Bi2o9  are formed by a succession of neutron 
captures and f3 decays, starting from 26 Fe 56 . The neutrons come from reactions such 
as the example given in the preceding paragraph, and the /3 decays take place when 
necessary to adjust the Z-to-A ratio of a nucleus to a stable value. The abundances 
of the nuclei that are built up in the succession of neutron captures are inversely pro-
portional to their neutron capture cross sections, averaged over the very high temper-
ature thermal distribution of neutron energies. This is true since, if a nucleus has a 
large neutron capture cross section, there is only a small chance that it will not cap-
ture a neutron and be converted into some other nucleus. The abundance of elements 
in the solar system is inferred primarily from the composition of the sun seen in 
atomic spectra measurements, and from solar produced cosmic rays intercepted on 
the earth. Data are also obtained from meteorites, and from the composition of the 
earth itself. The abundance curve from iron to bismuth was presented in Figure 15-1. 
It is very nearly the reciprocal of the neutron capture cross-section curve. On the aver-
age, the cross sections increase (and the abundances decrease) as the A value of the 
nucleus increases, simply because the nucleus becomes larger. But there are some pro-
nounced departures from the average due to the effect of filled subshells on neutron 
affinities and binding energies which, in turn, affect the neutron capture cross sections. 

The heaviest element that can be formed in the neutron capture processes discussed 
here is bismuth. The reason is that when 83 Bi209  captures a neutron it becomes 
83 Bî210 , which a decays into 81Tî206  with a half-life of only five days. This decay is so 
rapid that it takes place before there is time for further neutron capture by 83 Bi210  in 
the moderate flux of neutrons that normally exists in a star. 

When some stars come to the end of their life because they have almost depleted 
their supply of hydrogen, not enough "nuclear heat" is generated in the core to 
prevent very rapid gravitational collapse. They then explode in a matter of a few 
seconds with tremendous violence, and they produce a tremendous flux of neutrons. 
The most spectacular example in recorded history of such a supernova is a star that 
was observed in 1054 A.D. to flare up to a brightness that allowed it to be seen for a 
short time in full daylight. Its remnants are now called the Crab nebula. The elements 
heavier than bismuth are believed to be made in successive neutron captures, starting 
from S3Bi209 , and using the intense neutron flux present in a supernova. The process 
happens so rapidly that the a decay of 83Bi21°  is of no consequence. 

The preceding discussion of the life history of a star assumed that its original 
composition was purely the primordial 90% hydrogen plus 10% helium mixture. 
There are many examples of such "first-generation" stars. And there are also many 
examples of "second-" or "third-generation" stars, which are thought to have been 
originally composed partly of supernova remnants; the sun is one example. In these 
stars heavy elements will be present, and in fact reasonably abundant, even before the 
stage is reached where the carbon cycle is the dominant source of energy. 

QUESTIONS 

1. Give a qualitative explanation of why an a particle can penetrate a Coulomb barrier. 

2. What would be the effect on the a-decay lifetimes, and thus on the terrestrial abundances, 
of the elements between A = 200 and A = 260 if there were no magic numbers so that the 
a-decay energies of Figure 16-1 followed the general trend predicted by the semiempirical 
mass formula? 
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3. Is there a 4n + 4 radioactive series? 
4. Where would be a likely place to look for traces of the predicted superheavy element 

Z = 110, A = 294? 
5. Construct a figure illustrating a case in which there are three /3-stable nuclei with the 

same even-A value. 
6. Explain why the emission of a particle, with the properties postulated by Pauli, removes 

the difficulties with angular momentum in /3 decay. What about linear momentum? 
7. Just how do neutrinos and antineutrinos differ from photons, which also have no charge 

or rest mass? 
8. How do you justify the fact that electrons are emitted from nuclei in /3 decay, when in 

Example 6-6 we showed that electrons cannot be contained in nuclei? 
9. In the Wu experiment, what is the direction of the magnetic field applied to align the 

nuclei, from the normal point of view, and as seen in the mirror? What about the direc-
tion of the current flow in the windings of the magnet that produces the field? 

10. Consider viewing the Wu experiment in a mirror located below the nucleus (the mirror 
being horizontal) instead of in a mirror located to one side of the nucleus (the mirror 
being vertical). Explain how the arguments in the text would be modified, but in such a 
way as to lead to the same conclusions. 

11. Sugar molecules have a definite helicity. What do you think is responsible? 
12. Consider the electric and magnetic monopole, dipole, and quadrupole moments of a 

nucleus. Are each of these ever found with a constant, nonzero value? With an oscillatory 
value? Explain why some of these cases do not occur, and what the nucleons are doing 
in cases that do occur. 

13. Electric dipole radiation is emitted with a characteristic spatial pattern (see Appendix B). 
Does this suggest an experimental technique for determining the type of radiation emitted 
in a y decay? What would be the difficulty in using such a technique? 

14. In y decays from states of excitation energy around 1 MeV, or less, to ground states, 
electric dipole radiation is almost never observed. Use the shell model to explain this. 

15. Predict, from the shell model, the regions of the periodic table in which the first excited 
states of nuclei have particularly long lifetimes for y decay. 

16. A hyperfine splitting measurement tells you that the ground state spin of a nucleus is 
i = 3/2. What are the possible 1 values of the subshell occupied by the nucleon responsible 
for the spin? What other information would tell you which of these is the actual 
value? What could you measure to obtain this information? 

17. Explain exactly why the optical model potential which a nucleus exerts on a bombarding 
nucleon of energy 50 MeV is different from the shell model potential which it exerts on 
one of its own nucleons. What would you expect the optical model potential to be like for 
a bombarding nucleon of energy 5 MeV? 

18. Why is it easier for an incident nucleon to enter a nucleus than it is for either of the 
nucleons, resulting from its first collision, to escape? 

19. What are the differences between single particle states and many particle states? How are 
they related? What about y-decaying states? 

20. If the compound nucleus 30Zn64  forgets the details of how it was formed, it should make 
no difference if it were excited by bombarding 29Cu63  with protons, or 28Ni60  with a 
particles, providing the same many-particle states are excited. Devise an experiment to 
test this prediction. 

21. What difference (if any) is there between a permanent nuclear ellipsoidal deformation, 
as seen in the ground and low-lying states of many even-Z, even-N nuclei, and a nuclear 
electric quadrupole moment? 

22. Why is it reasonable to expect that the space distribution of protons in a nucleus is 
approximately the same as the space distribution of neutrons? 

23. Nuclear reactors are particularly suited to power submarines. Give reasons why this is so. 
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24. Can you devise a configuration of magnetic fields that could, at least from a naive point  

of view, contain nuclei in a thermal fusion reactor?  

25. Why is it impossible for two protons to fuse, as in the first step of the proton-proton  

cycle, without a /3 decay simultaneously taking place?  
26. What happens to the y rays that are emitted in stellar nuclear reactions of the proton-

proton or carbon cycle?  
27. How would it be possible to use a neutrino detector on the earth to tell whether the  

dominant reactions in the center of the sun are in the proton-proton cycle or in the  

carbon cycle?  

PROBLEMS  

1. (a) Use the semiempirical mass formula to predict the a-decay energy of 83 Bî210 . (Hint:  
Take the atomic mass of 2 He4  directly from Table 15-1.) (b) Compare your results with  

the cc-decay energy shown in Figure 16-1.  

2. Derive (16-4), relating lifetime to decay rate.  

3. Derive (16-5), relating lifetime to half-life.  
4. Unstable nuclei, of decay rate R, are being produced at a constant rate I in nuclear  

reactions caused by a cyclotron bombardment. If the production process commences at  

t = 0, calculate the number of these nuclei that will be present at t = t'. (Hint: The equa-
tion to be solved is obtained by rewriting (16-2) in the form dN/dt = —NR, and then  
adding I to the right side. Can you justify this?)  

5. Prove the validity of (16-6), the relation between the numbers of decaying nuclei and their  

decay rates, in radioactive equilibrium. (Hint: Write a set of equations comparable to  

(16-2). The first of the set is exactly like it, and the others contain two similar terms on the  

right side. Then show immediately that (16-6) is a solution to these equations providing  

the decay rate of the parent is very small compared to the decay rates of the daughters.)  

6. 90Th232  cc decays to its first daughter 88Ra228.  It is observed that a very thin foil con-
taining 1.0 g of 90Th232  emits a particles from this decay at the rate of 4100/sec. Use 
these data to show that the half-life of 90Th232  is 1.4 x 10 10  yr. 

7. 82pb2°8  

Figure 16-5). The half-life of the parent is 1.4 x 10 10  yr. A piece of thorium ore con-
taining 1 kg of 90Th232  is found to also contain 200 g of 82Pb208. (a) Assuming that all 
of the 82Pb208  in the rock came from the decay of 90Th232, and that none of it has been 
lost, calculate the age of the rock; that is, calculate how many years have passed since 
thorium was concentrated in the minerals in the rock and the equilibrium decay began. 
(b) There are a total of six  cc  particles emitted in the decay of the radioactive series. 
Assuming that a negligible number of them could have escaped from the rock because 
it is so thick, calculate how much helium originating from the a decays should be in the 
rock. (c) The first daughter of the series, 88Ra228,  decays with half-life 5.7 yr into the 
second daughter, 89Ac228.  Calculate how much 88Ra228  should be in the rock. 

8. For a three-atom decay sequence A -> B — C with C stable, show that, assuming an 
initially pure sample of A atoms, the number of B atoms at any subsequent time is given 
by  

is the stable final daughter of the radioactive series whose parent is 90Th232  (see 

N = NA°^`A 
 [e

- .1At -  e  - ABt] 
NB 213 —  2A  

9. 92U234  decays to 90Th230  which in turn decays to 88Ra226.  The half life of this uranium 
isotope is 24.7 x 104  years, and of the thorium isotope 8 x 10 4  years. (a) How many  
grams of 92U234  and (b) how many grams of 90Th23°  will be present after a 20 g sample 
of pure 92U234  has decayed for 15 x 10 4  years? 

10. (a) Use the semiempirical mass formula to evaluate the points on the A = 27 mass parab-
ola for the only three values of Z that are found with this value of A, namely Z = 12, 13, 
14. (Hint: It is only necessary to evaluate the terms of the formula that depend explicitly 
on Z.) (b) Which value of Z corresponds to the stable nucleus? (c) Find the types of decay, 
and the decay energies, for the fi decays of the two unstable nuclei. 
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11. Example 16-3 showed that the fi  decay of 4Be 7  to 3Li7  proceeds only through electron 

capture because the atomic mass difference is 0.00093u, which is less than two electron 
rest masses. Consider a 4Be7  nucleus, initially at rest, that captures a K electron and 
emits a neutrino. (a) Estimate the recoil velocity of the nucleus after the process is com-
pleted. (Hint: The recoil energy of the nucleus is negligibly small.) (b) Suggest a technique 
for detecting electron capture. 

12. The table here lists three points of the measured momentum spectrum, R(p e), of electrons 
emitted in the fi  decay of a nucleus of small Z. 

Pe  
mc 

2.8 4.9 6.9 

R(p e) 375 500 250 

(a) Make a Kurie plot of these points. (b) Then extrapolate to find the end point  Km," of 
the spectrum, and so determine the decay energy E. 

13. Several examples of the initial and final nuclei in f decays, and their ground state spins 
and parities, are listed here. For each decay between ground states, determine if it is 
allowed by the Fermi or Gamow-Teller selection rules. If it is forbidden, estimate roughly 
the factor suppressing the decay rate. (a) 2 He6  (0, even) 3 Li6  (1, even); (b) 4Be10 (0,  

even) --> 5 B 1°  (3, even); (c) 16S35  (3/2, even) -> 17 C135  (3/2, even); (d) 39191  (1/2, odd) - 
40Zr91 (5/2, even). 

L 14. (a) By using the information given after (16-16), which represents the fi decay of the 
v neutron, calculate the FT value for the decay. (b) Compare with the value calculated in 

Example 16-4. 
15. (a) Use the FT value obtained in Problem 14 to estimate the value of the /3-decay coupling 

constant. (b) Compare with the estimate obtained in Example 16-5. (c) What justification 
is there for assuming that the nuclear matrix element is essentially equal to one for the 
/3 decay of the neutron? 

16. Consider a set of positive charges moving in a confined region, like protons in a nucleus, 
and interacting with an external field of electromagnetic radiation. The charge density is 
p, so the current density is - pv, where v is the characteristic velocity of the moving 
charges. Show that the energy of interaction between the magnetic dipole moment of the 
charges and the external magnetic field is smaller by a factor of - v/c than the energy of 
interaction between the electric dipole moment and the external electric field. Since the 
values of the matrix elements for magnetic dipole and electric dipole radiation are pro-
portional to these interaction energies, and since the transition rates are proportional to 
the "squares" of the matrix elements, the magnetic dipole transition rate is smaller than 
the electric dipole transition rate by a factor of - (v/c) 2 . (Hint: (i) Show that the ratio 
of the interaction energies equals the product of the ratio of magnetic to electric dipole 
moments times the ratio of the magnetic to electric field strengths. (ii) Argue that the 
ratio of the magnetic to electric dipole moments equals the ratio of the current density 
to the charge density. (iii) Evaluate the ratio of the magnetic to electric field strengths 
for electromagnetic radiation in a vacuum.) 

17. Consider a set  of  positive charges q moving in a region of linear dimensions  -r', and 
interacting with the electric part of an external field of electromagnetic radiation of 
wavelength 2. Show that the energy of interaction between the electric quadrupole 
moment of the charges and the external electric field is smaller by a factor of - r' /A than 
the energy of interaction between the electric dipole moment and the external electric 
field. For the reasons explained in Problem 16, this leads to the conclusion that the 
electric quadrupole transition rate is smaller than the electric dipole transition rate by 
a factor of - (r'/2)2 . (Hint: (i) Consider a sinusoidal electric field E = E0  sin 2n(x/2 - vt). 
(ii) The energy of the electric dipole is E times its dipole moment - qr'. (iii) The energy 
of the electric quadrupole moment is OE/ax times its quadrupole moment - qr'2 .) 

18. The spins and parities of the ground state, first excited state, and second excited state of 
62Sm152 are (0, even), (2, even), and (1, odd). Determine the types of radiation emitted in 
the y decays between these states. 



19. Verify that the parts of the y-decay selection rules relating L to the nuclear spins repre-
sent angular momentum conservation requirements. Use the fact that a y ray from a 
transition of multipolarity L carries L units of angular momentum. 

20. Prove that the integrals in (16-26) and (16-27), which represent components of the electric 
quadrupole and magnetic dipole matrix elements, yield zero unless the initial and final 
nuclear states have the same parity. 

21. Consider carrying out a resonance absorption experiment with the source and absorber 
not at a low temperature, using the transitions between the first excited state and the 
ground state of 771r191  considered in Example 16-7. (a) Calculate how much velocity 
would have to be given to the source to obtain enough Doppler shift to compensate for 
the recoil of the source and absorber nuclei, so that resonant absorption would be ob-
tained. (b) Would it be possible to get the required velocity by mounting the source on 
the rim of a centrifuge? (c) Would an extremely sharp resonance be obtained in this 
manner? 

22. A series of Mössbauer experiments is performed with the same emitter and absorber but 
with the emitter placed in various host materials. The absorber is always in the same host. 
(a) Show that the chemical shift (the absorber velocity corresponding to the center of 
the spectrum) is a linear function of the electron probability density p at the site of the 
emitter and so is given by v = ap + b, where a and b do not depend on the sample in 
which the emitter is placed. (b) The following data was recorded for four samples : v 1  = 
1.42 mm/sec, v 2  = 0.23 mm/sec, v 3  = 0.37 mm/sec, and v4  = 0.95 mm/sec. For the first 
two samples p was found using other experimental data, with the results p 1  = 8.0248 x 
1034  m - 3  and P2  = 8.0286 x 10 34  m - 3 , respectively. Find the values of a and b, then find 
the electron probability densities for samples 3 and 4. 

23. 26Fe 57 , in a ferromagnetic iron sample, is used as an emitter in a Mössbauer experiment. 
The absorber is in stainless steel and has a single narrow Mössbauer peak in its absorp-
tion spectrum. The emitter is in a steady magnetic field so the first excited state splits 
into 4 levels, identified by m e  = - 3/2, -1/2, + 1/2, or + 3/2, while the ground state splits 
into 2 levels, identified by m g  = -1/2 or + 1/2. The energies of the excited states are 
given by Ee  + 2peBme/3 and those for the ground states are given by Eg  - 2pgBmg, 
where Ee  and Eg  are the energies in the absence of a magnetic field. The magnetic dipole 
moments of the states are µ e  and pg, respectively. The signs in the energy equations are 
different because the moments are in opposite directions for the excited and ground states. 
(a) Neglect any chemical shift and show that the Mössbauer peaks occur for absorber 
velocities given by 

cB  C2

Ee  - Eg  3 
v(m e  mg) 	 genie + 2pgmg) 

(b)Show that the ratio of the magnetic dipole moments is 

11e - 3 
	

v(3/2 -> 1/2) - v(1/2 -> 1/2) 
- pg  	v(1/2 -> 1/2) - v(1/2 --> - 1/2) 

(c)Once the chemical shift is subtracted, typical experimental values are v(3/2 -> 1/2) = 
- 5.57 mm/sec, v(1/2 -> 1/2) = - 3.14 mm/sec, and v(1/2 ---> -1/2) = + 1.04 mm/sec. Cal-
culate the magnetic dipole moment ratio and the magnetic field at the site of the emitter. 
Take pg  = 4.56 x 10 -28  joule/tesla. 

24. The reaction 1H1  + 3 Li 7  -i 4Be 7  + 0 n 1  is sometimes used to produce monoenergetic 
neutrons from a source of monoenergetic protons. The Q value of the reaction is -1.64 
MeV. If a 3 Li7  target is bombarded by a beam of 5 MeV protons, at what angle to the 
beam are 2.5 MeV neutrons emitted? 

25. Use the Q values of the three reactions listed as follows to calculate the energy available 
for the f decay of 14Si31 

1H2 + 15P31 	14S1 29 

1H2 + 14Si29 — 14
Si30 1 H 1 	Q = 8.388 MeV 

1H2 + 14Si30 —+ 1451 31  + 1 H 1 	Q = 4.364 MeV 

+ 2 He4 	Q = 8.158 MeV 
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26. Consider a one-dimensional traveling wave eigenfunction  

li(x) = e`kx 	where k = -\/2m(E — V)/h  

Take the potential energy V to be complex, so that it can be written V = VR + iV I . 
(a) Show that k becomes complex and can be written k = kR  + ik1 . (b) Then show that  
the amplitude of the traveling wave is a decreasing exponential function of x. Eigen-
functions such as this are used to describe the absorption of particles traveling through  

the complex optical model potential. (c) In what distance would the associated probability  

density decrease by a factor of 1/e?  

27. The total cross section for fission of 92U235  by incident neutrons of energy 1 MeV is  
about 1 bn. If such a neutron passes through a uniform slab of 92U235  of mass per unit  
area 10 -1  kg/m2 , what is the probability that it will produce a fission?  

28. When a 10 -8  amp beam of 17 MeV protons is incident on a 29 Cu 63  target foil of mass  
per unit area 10 -2  kg/m2 , it is observed that a counter of area 10 -5  m2  at 1 m from the  
target detects 240 elastically scattered protons per minute if it is placed at an angle of 30°  
to the incident beam. Determine the value of the differential cross section.  

29. In considering the effects of radiation on the human body, it is necessary to define units  
for the amount of radiation absorbed. One of these is the rad (radiation absorbed dose):  
1 rad indicates an average of 0.01 joule of absorbed energy per kg of body tissue, regard-
less of which part of the body actually was exposed. A 75 kg worker at a hospital radiol- 
ogy lab inadvertently swallows a capsule containing 5 mg of 88 Ra226  (half-life = 1600  
years). This isotope of radium undergoes alpha-decay, each a particle carrying an energy  
of 4.87 MeV. If 90% of these particles are stopped inside the man's body, what radia-
tion dose does he receive in 12 hours?  

30. There is a resonance in the cross section for neutrons incident on 92U235  with the follow-
ing set of measured Breit-Wigner parameters: E 1  = 0.29 eV; F = 0.140 eV; I,,, = 0.005  
eV. (a) Show that F = I'„ + F r, and then evaluate Fr . (b) Calculate the total reaction 
cross section at the peak of the resonance, 6,.(Ei). Measurement shows that about 75% of 
ur(E 1) goes into fission. (c) Calculate the lifetime of the compound nucleus formed in 
this resonance. 

31. The energies and spins of the first four excited states of 72Hf 180  are: 0.093 MeV, i = 2; 
0.309 MeV, i = 4; 0.641 MeV, i = 6; 1.085 MeV, i = 8. (a) How well do the ratios of 
these energies agree with the predictions of (16-33)? (b) Use that equation to evaluate the 
rotational inertia of the nucleus. 

32. (a) Use (15-16) with Q = 0 to calculate the energy lost by a 1 MeV fission neutron to the 
recoil of 6 C 12 , if it scatters elastically at the typical angle 90° from such a nucleus in the 
moderator of a nuclear reactor. (b) How much energy does it lose in a 90° scattering 
if its energy has been reduced to 0.001 MeV? (c) How much energy does it have, on the 
average, if it is in thermal equilibrium at an operating temperature of 500°K? (d) Estimate 
the number of scatterings required to bring the neutron into thermal equilibrium. 

33. Compare the energy release, per kilogram of fuel consumed, in the thermal fusion reaction 
of (16-34) to the same figure of merit for the fission of 92U235  

34. A hypothetical H-bomb with the explosive power of 50 Megatons of TNT uses the  

reaction  
1H2 +  1 11 2  — 2He3 +  0n 1  

(Atomic masses are: H 2, 2.014102u; He 3 , 3.016029u.) The required A-bomb "trigger" is  
rated at 2 Megatons (included in the 50 above). One ton of TNT produces 2.6 x 10 22  

MeV of energy. (a) How much energy does each fusion produce? (b) How much hydrogen  

does the bomb contain?  
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17-1 INTRODUCTION 

This chapter begins with a qualitative, but rather complete, discussion of the nuclear 
forces that act between two nucleons. The subject is at the border between the fields 
of nuclear physics and elementary particle physics, and its study will lead us in a nat-
ural way into the study of all the elementary particles. Along the route we shall also 
obtain a comprehensive view of the basic properties of, and interrelations between, 
the fundamental interactions and conservation laws of nature. 

The history of quantum physics can be viewed as a sequence of probings, with ever 
increasing resolution, into the microscopic structure of matter. The first step was the 
discovery that matter is composed of about 90 different atoms. At that time atoms 
were considered to be the elementary particles. (The word is from the Greek atomos = 
indivisible.) Then it was found that atoms are composed of nuclei and electrons. 

Q Later it was dicovered that nuclei consist of neutrons and protons. At this stage there 
co was a very satisfactory situation—all matter appeared to be composed of various 

combinations of a small number of elementary particles: the neutron, the proton, and 
the electron. But then it was found that there are also muons and n mesons. Their 
discovery was followed by the discovery of many other related mesons, and an even 
larger number of particles related to neutrons and protons themselves. The number 
of such particles became so large again that it was likely that they could be com-
posed of various combinations of a small set of more elementary ones, as was the case 
for atoms. We will take up that even finer division of matter in the next chapter. 

17-2 NUCLEON FORCES 

In our study of nuclei we have obtained some information about the nuclear forces 
acting between nucleons, which we shall call nucleon forces. Since nuclei are studied 
in terms of models, and since models do not involve the detailed behavior of these 
forces, we have learned only about certain of their general features. These are: 

1. Nucleon forces are strong. The energy associated with the force is larger than 
that associated with electromagnetism by about 2 orders of magnitude, larger than 
that associated with /i decay by about 14 orders of magnitude, and larger than that 
associated with gravitation by about 40 orders of magnitude. More complete discus-
sions of the meaning of these comparisons will be given later. 

2. Nucleon forces are short range. They cut off in a distance of about 2 F, so that 
two nucleons passing each other at a larger distance do not interact by the nucleon 
force. 

3. Nucleon forces are attractive in their over-all effect. Otherwise nuclei would not 
exist since the nucleons would not bind together. 

4. Nucleon forces are charge independent. That is, they make no distinction be-
tween protons and neutrons. Evidence for this is seen in the tendency of small-Z 
nuclei to have N = Z, and in the similarities of the low-lying energy levels of pairs 
of mirror nuclei. 

5. Nucleon forces saturate. The term describes the fact that a nucleon in a typical 
nucleus experiences attractive interactions only with a limited number of the many 
other nucleons. This must be true since otherwise the average binding energy per 



nucleon, AE/A, would be proportional to A instead of being approximately inde-
pendent of A. 

Most of the information about nucleon forces that can be obtained from the study 
of systems as complicated as a typical nucleus is listed above. More detailed infor-
mation is obtained by studying simpler systems containing only two nucleons where 
the nucleon forces have their most directly observable effects. The simplest of these 
systems is the ground state of the deuterium nucleus 1 H 2 , or deuteron, consisting of a 
neutron and a proton bound together by the nucleon force. In this section we shall 
study this system, and other systems containing two unbound nucleons. To avoid 
complicated quantum mechanical calculations, we shall keep the discussion largely 
qualitative. But we shall, nevertheless, be able to see how the analyses of certain 
critical experiments have been used to determine the properties of nucleon forces. At 
the end of the section we summarize by presenting a quantitative description of the 
most important of these properties. In a subsequent section we consider the meson 
theory of the origin of nucleon forces. 

The ground state of the deuteron is characterized by the following measured 
quantities: 

Binding energy: AE = 2.22 MeV 
Nuclear spin: i = 1 
Nuclear parity: even 
Magnetic dipole moment: ,u = +0.857µ n  
Electric quadrupole moment: q = + 2.7 x 10'    m2 

Charge distribution half-value radius: a = 2.1 F 
The fact that the deuteron has an electric quadrupole moment q means that its 

probability density function is not spherically symmetrical. This immediately tells us 
that the nucleon potential, which specifies the force acting between the two nucleons, 
is, itself, not spherically symmetrical. The point is that all spherically symmetrical 
potentials have  1 = 0 eigenfunctions for their ground states, and the probability 
density functions for such eigenfunctions are all spherically symmetrical (an example 
is the Coulomb potential and the spherically symmetrical ground state of a one-
electron atom). But the observed departure from spherical symmetry is not large. 

A measure of the departure is the quantity q/r'2  (see Figure 15-20), which has a value 
of about 6% if we take r' equal to the charge distribution half-value radius a. Calculations 
show that the measured electric quadrupole moment is obtained if the ground state of the 
deuteron is a mixture in which 96% is an 1 = 0 state and 4% is an 1 = 2 state. Such a mixed state 
will also have the measured even parity since for both of its component states 1 is even. Since 
the ground state nuclear spin is measured to be 1, both component states must have j = 1. 
The vector addition diagrams of Figure 17-1 illustrate the relations between the 1 and j quan-
tum numbers in both states, and they show that, for both, the intrinsic spins of the proton and 
neutron are essentially parallel and the quantum number specifying the total intrinsic spin 
angular momentum is s = 1. In spectroscopic notation, the dominant state is 3 S 1  and the less 
probable state is 3D 1 . (The superscript gives the value of 2s + 1; the letter gives the value of 1, 
with S meaning l = 0, P meaning 1 = 1, D meaning 1 = 2, etc.; the subscript gives the value of 

s = 1 

l =2  

j= 1 

3D1 

Figure 17-1 Vector addition diagrams show-
ing the spin, orbital, and total angular mo-
mentum quantum numbers s, 1, and j in the 
two component states of the deuteron. In the 
dominant state, I = 0. Since j = 1 it is neces-
sary that s = 1 in this state which, in spectro-
scopic notation, is designated 3 S 1 . In the 
less probable state, I = 2. Since j = 1, it is 
also necessary in this state that s = 1. The 
state is designated 3D 1 . 
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j.) Calculations also show that this mixture of states leads to the measured magnetic dipole  

moment u = +0.857 tc,,. The value differs by about 3% from what would be obtained if the  

deuteron were in a pure 3S,  state, with the proton and neutron intrinsic spin essentially paral-
lel and no orbital motion, since in that state u  would be just the sum of the proton and neutron  
magnetic dipole moments, +2.7896f.t, — 1.9103,1„ _ +0.8793 µ,,. We conclude from all these  

considerations that the nucleon potential is not precisely spherically symmetrical, since it does  

not lead to a pure S ground state for the deuteron. But since the amount of D state it mixes in  
is small, the asymmetry of the potential must be small. For most purposes the asymmetry can  

be ignored.  

Thus we consider the deuteron as a system in which the nucleons are bound in a  

3S 1  state of a spherically symmetrical nucleon potential V(r), where r is the distance  
between their centers. This potential specifies the force acting between the two nu-
cleons. Some information about it is obtained by demanding that the energy of its  

ground state yield a binding energy equal to the measured value AE = 2.22 MeV.  

Additional information is obtained by demanding also that the ground state eigen-
function yield a charge distribution half-value radius equal to the measured value  

a = 2.1 F. These two pieces of data are not enough to determine the form of the  

nucleon potential, i.e., the radial dependence of the function V(r). However, if V(r)  
is assumed for simplicity to have the form of a square well as in Figure 17-2, then the  

radius r' and depth Vo  are determined to be about 2 F and 40 MeV. Precise numbers  

will be quoted later after we have introduced additional experimental information that  

does determine something about the form of the potential. It can also be determined  

that a potential which fits the measured values of both AE and a has the property that  
its ground state is its only bound state, as indicated by the single bound energy level  

in Figure 17-2. This agrees with the fact that the deuteron is observed to have no  

bound excited states.  
Now the spins of the proton and neutron are essentially parallel in a 3S, bound  

state of the deuteron. We know that there are no bound deuterons with nucleon spins  

essentially antiparallel, i.e., in a 'S o  state, since none is ever found with the nuclear  

spin 0 that would be obtained in such a state. What is the reason for the absence of  

a bound 'S0  state? An explanation is that the nucleon potential is spin dependent, being  

appreciably weaker when two nucleons interact with essentially antiparallel spins (in a  
singlet state). If the potential is sufficiently weak to prevent the nucleons from binding  

stably together, the absence of the 'S o  bound state is explained. (A one-dimensional  
potential has at least one bound state, no matter how weak the potential, because the  

eigenfunction can extend very far into the classically excluded regions on both sides  

of the binding region. But due to the different geometry of the eigenfunction, a three-
dimensional potential can only have a bound state if it is sufficiently strong. This can  

be seen by inspecting the form rR(r) for the lowest S state of a three-dimensional  

DE  

r'  
r o 

^ 

V(r)  

^ 

a)  
w  

—Vo  

Figure 17-2 A square well potential of radius r'  
and depth Vo , and its ground state eigenvalue of  
binding energy AE. For the deuteron this state is  
the only bound state of the potential.  
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square well, displayed in Figure 15-17. Since rR(r) = 0 at r = 0, that function must 
have enough curvature within the binding region to allow it to match on to a de-
creasing exponential in the excluded region. This, in turn, requires that for a given 
breadth the binding region be sufficiently deep.) Additional qualitative evidence in 
support of the idea of spin dependence of the nucleon potential is found in the absence 
of a bound state for a system of two protons or, particularly, a system of two neutrons. 
In both systems the exclusion principle would require it to be a 'S0  state, where the 
spins of the two identical nucleons are essentially antiparallel. In this state the poten-
tial is, presumably, too weak to lead to binding. 

Quantitative evidence for the spin dependence of the nucleon potential is obtained 
from the analysis of the scattering of unbound neutrons from protons. The total 
cross section for scattering, 6, which is proportional to the total probability that a 
neutron is scattered by a proton, is shown in Figure 17-3. This cross section is made 
up of a fixed mixture of neutron-proton interactions in the 'S0  and  3S,  states. If the 
orientations of the spins of the neutrons in the incident beam and the protons in the 
scattering target are random, then the four possible spin states of the two-nucleon 
system will be equally probable. There are three 3S,  states, the triplet states in which 
the nucleon spins are essentially parallel, and the total spin of the two-nucleon system 
can have three different z components: — h, 0, + h. One time out of four the nucleons 
will interact in the iS0  state, the singlet state in which the nucleon spins are essentially 
antiparallel, and the total spin can have only a single z component equal to O. Because 
of the fixed 3:1 ratio of the 3 S 1  and 1S0  interactions, the relative strengths of each 
cannot be determined from the total cross section. To separate the contribution of 
3 S 1  and 'S0  scattering, very low-energy neutrons (much lower than shown in Figure 
17-3) are scattered from ortho- and parahydrogen. An orthohydrogen molecule has 
total proton spin of 1, whereas a parahydrogen molecule has total proton spin of O. 
The slow neutron has a de Broglie wavelength which is much larger than the distance 
between the protons in the H2 molecule, so that in one interaction the scattering of 
the neutron from the two protons is coherent and the amplitudes add. Since the scat-
terings from the ortho- and parahydrogen have different mixtures of 3S,  and  'S0 
interactions, the strengths of the two spin states can be separated by comparing the 
two measurements. These data show that the singlet state potential is about 40% 
weaker than the triplet state potential. That is, if both are square wells of the same 
radius, the depth of the potential is about 40% less in the singlet state. Hence we 
conclude that the nucleon potential really does depend on the relative orientation of 
the spins of the two interacting nucleons. 

This quantitative information about the spin dependence is confirmed by analyzing 
the scattering of low-energy protons from protons. And that analysis also provides 
additional evidence that the nucleon potential is charge independent; i.e., it makes no 

Figure 17-3 Measured values of the total 
0 	 cross section a for the scattering of neutrons 

10 2 	103 	10 4 	105 	106 	by protons as a function of the energy of the 
Energy (eV) 	 incident neutron. 

101  
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distinction between protons and neutrons. The evidence is that a nucleon potential 
which agrees with the measured neutron-proton scattering cross section also agrees 
with the measured proton-proton scattering cross section. This does not mean that 
the cross sections are the same. In proton-proton scattering, the Coulomb potential, 
which is present in addition to the nucleon potential, affects the small angle scat-
terings, and the exclusion principle affects all the scattering by suppressing certain 
quantum states. 

The scattering of a low-energy nucleon from a nucleon does not give information 
about the form of the nucleon potential. As measured in a frame of reference in which 
the center of mass of the system is stationary, the scattering is independent of angle, 
or isotropic. Thus the differential cross section for scattering, du/dS2, which is propor-
tional to the probability for scattering at various angles, is the same at all angles in 
this reference frame. The constant differential cross section provides only one piece of 
experimental data—the measured value of da/dS2. This single measured quantity can 
be used to determine only a single theoretical quantity. The quantity determined is 
the strength of the potential. (This is Vor'Z  for a square well potential.) The reason why 
the scattering is isotropic in the so-called center-of-mass frame of reference is that at 
low energies the de Broglie wavelength ), of the wave, which describes the nucleon 
scattering, is very large compared to the radius r' of the potential, which describes the 
forces which produce the scattering. If ,. » r', then the separation in the scattering 

en 	angle between adjacent minima in the diffraction pattern is, according to (15-4), 
0 ^ /r' » 1. Since the entire range of scattering angle is only it, the inequality is 
essentially telling us that there are no minima. In other words, the potential looks to 
the wave like a point, which can only scatter it isotropically. But if the energy of the 
scattered nucleon is high enough for 2 to be smaller than r', then 0 	< 1. The 
scattering pattern has structure in these circumstances, and da/dS2 contains informa- 
tion about the form of the potential that causes the scattering. Thus, only high-energy 
nucleons have enough resolving power to be effective as probes in studying the form of the 
nucleon potential. We shall show in Example 17-2 that if the radius of the potential is 
taken as 2 F, the differential cross section for scattering, d6/dS2, can be expected to 
depart from isotropy when the kinetic energy of the incident nucleon exceeds about 
40 MeV. 

The first high-energy neutron-proton scattering experiments were performed at an 
incident neutron kinetic energy of 90 MeV. It was expected that they would provide 
information about the radial dependence of the nucleon potential, but, as we shall 
see, they actually taught us about a different aspect of the form of the nucleon poten-
tial. It was also expected that the differential cross section for scattering, da/dS2, would 
have the shape of a rudimentary diffraction pattern, with da/dS2 generally increasing 
for decreasing scattering angle. The reason why it was thought there would be a prefer-
ence for scattering at small angles into forward directions is indicated in Figure 17-4. 
If the depth of the nucleon potential V(r) is significantly smaller than the kinetic 
energy of the incident neutron, the maximum momentum that the potential can trans-
fer to the neutron has a magnitude which is significantly smaller than the magnitude 
of its initial momentum. (This can be seen from the following order-of-magnitude 
calculation, which uses the impulse-momentum and work-potential energy relations: 

Final momentum 

i Scatter 

Initial momentum 

Momentum 
transferred 

Figure 17 -4 Illustrating why the scattering 
angle should be small if a nucleon is scattered 
by a potential that can transfer to the nucleon 
only-a momentum of magnitude small com-
pared to the magnitude of its initial momentum. 
This is the situation that would be expected if 
the kinetic energy of the nucleon is large com-
pared to the depth of the potential. 
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Figure 17-5 Measured values of the differential cross section do/dS2 for scattering of 
neutrons of incident energy 90 MeV by protons. The data are actually obtained in a frame of 
reference where the target proton is initially stationary. Here they have been transformed 
to a frame of reference in which the center of mass of the system is stationary. The quantity 

0,,,cM  is the neutron scattering angle in that system. 

Ap/p ti  FAt/p ' F(r'/v)/mv ' Vo/mv 2  ' Vo/K. Here p, m, y,  and K stand for the neu-
tron's momentum, mass, speed, and kinetic energy; F is the force exerted on it for 
time At as it passes through the nucleon potential of width r' and depth Vo .) In these 
circumstances, a large change in the direction of the neutron momentum would not 
be possible. Figure 17-5 shows the measured do/dfl for 90 MeV neutron-proton scat-
tering. Following convention, these results are expressed in a frame of reference in 
which the center of mass of the neutron-proton system is stationary. The top part of 
Figure 17-6 indicates that in this center-of-mass frame of reference the argument we 
have just gone through leads to the expectation of a preference for small scattering 
angles. But the measurements show that da/dfl for neutron-proton scattering is approx- 

n 

n 	 n, CM 

Range of nucleon force 

0n, CM 

Figure 17-6 Top: Neutron-proton scattering as seen in a frame of reference in which the 
center of mass of the system is stationary. If the kinetic energies of the nucleons are large 
compared to the depth of the nucleon potential, the momentum transfers are small and the 
neutron and proton scattering angles are small as well. Bottom: The same, for a scattering in 
which the neutron changes into a proton and vice versa when they interact. Although the 
momentum transfers are still small, because of the exchange the scattering angles are large. 
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imately symmetric about a scattering angle of 90°. Thus there is an equally pro-
nounced preference for large scattering angles. 

The bottom part of Figure 17-6 represents the physical interpretation of the origin 
of the observed preference for large scattering angles. In approximately half the scat-
terings, the neutron changes into a proton and the proton changes into a neutron, when 
the two nucleons are very close. Although the momentum transfer in every scattering 
is small, when the exchange occurs it has the effect of producing a large angle scatter-
ing. In a later section we shall see that a neutron can change into a proton by emit-
ting a charged meson, and a proton can change into a neutron by absorbing that 
meson. 

A more formal interpretation of the results of the neutron-proton scattering experi-
ments is that the nucleon potential V that produces the scattering has a form which 
can be written approximately as 

V _ V(r) + V(r)P 	
(17-1)  

2  
where P is an exchange operator that changes a proton into a neutron and a neutron 
into a proton, and V(r) is the ordinary nucleon potential we have previously dis-
cussed. Now the nucleon potential V enters expressions for the scattering cross sec-
tion through the matrix element 

JfvvJi  
where 0, is the eigenfunction for the initial neutron-proton system (before scattering), 
and i fi f is the complex conjugate of the eigenfunction for the final neutron-proton 
system (after scattering). Thus it is of interest to consider the quantity 

	

[V(r) + V(r)P1 ,, _ V(r) ,,//^^ 	V(r)  ,/, 
2 	" - 2  Y'i + 	2  PO.  

We write this as  

VIPs ^' V(r) Oc + VZr)  Ptfri 	 (17-2)  

using the quantum number 1 to label the orbital angular momentum of the initial 
system. Since an exchange of the equal mass neutron and proton is equivalent to an 
exchange of the signs of the coordinates specifying their locations relative to an origin 
at their center of mass halfway between them, the exchange operation is equivalent 
in these particular circumstances to the parity operation. Therefore the usual relation 
between the orbital angular momentum quantum number and parity, (8-47), is appli-
cable, and tells us that 

PO/ =( -1 )l i  
That is, the parity of an eigenfunction of a spherically symmetrical potential, 1/i i , is 
even if l is even and odd if  1 is odd. Thus the parity (or exchange) operator leaves the 
eigenfunction unchanged in the second term on the right side of (17-2) if  lis even, and 
multiplies it by minus one if 1 is odd. So we have 

V i ~ V(

2
r)^l+v2r)Ptkz_[1+ — 

2 
11

V(r)0i  
From this result we can see that the nucleon potential may be written approximately, 
without using the exchange operator, in a form called the Serber potential  

	

V  _ [1 + (-1)I] 
 V(r) 	 (17-3) N 	2  

Note that V ^ 0 if  1 is odd. We conclude that the nucleon potential depends strongly  
on the orbital angular momentum of the two interacting nucleons, relative to their  



0) 
N  
V1 

Figure 17 -7 Two nucleons, each with linear momentum of  
magnitude p, passing each other at a distance r'. Each has an 	en 
orbital angular momentum pr'/2 in magnitude relative to the  
center of mass. The magnitude of the orbital angular momen- 
tum of the two nucleon system is L = pr'.  

center of mass. The potential is approximately zero when the orbital angular momentum 
quantum number 1 has an odd value. (Later we shall see that 0 for an odd l only 
if its effect is averaged over all the quantum states for that value of 1, as is the case 
in most situations.) 

A classical argument, illustrated in Figure 17-7 in the center-of-mass frame of 
reference, shows that there is a relation between the maximum possible value of the 
orbital angular momentum L for a system of two interacting nucleons of linear 
momenta p. The relation is L pr', where r' is the maximum separation at which 
the nucleons can interact, which is the range of the nucleon force or the radius of the 
nucleon potential. Since L is related to the quantum number 1 by the equation L =  
V1(1 + 1)h, it is easy to estimate, for an assumed value of r', the maximum possible 
value /max  of the quantum number in terms of the momenta or kinetic energies of  

the nucleons.  
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Example 17 -1. Two nucleons interact with nucleon force of range r' = 2.0 F, in a state in  
which the angular momentum quantum number assumes its maximum possible value. If this  

value is /max = 1, what must be the kinetic energy of each nucleon in the center-of-mass 
frame of reference? The total kinetic energy in that frame of reference? The kinetic energy 
of the incident nucleon (in a beam) in a frame of reference where the nucleon with which 
it interacts is initially stationary (in a target)? 
►  We have 

with 1 = imax  = 1. So  

Also  

or  

L=0(l+1)h  

L=V1(1+ 1)h =fh  

L^ pr'  

L .\/2 h  
P r 	r  

Thus the kinetic energy of each nucleon in the center-of-mass (CM) frame is  

p2 	2h2  _ K 
2M 2Mr'2  

	

(1.05 x 10 -34  joule-sec)2 	 12 

	

is 	2 = 1.6 x 10 	joule 2^ 1.7x10 	kg x (2.0 x 10 	m)  
= 10 MeV  

The total kinetic energy in that frame of reference is just  

Ktotal CM = 2K 20 MeV  
It is easy to show that, because the two interacting particles have the same mass, the  

kinetic energy of the moving one, in a frame of reference in which the other one is initially  

stationary, is twice the total kinetic energy in the center-of-mass frame of reference. Thus the  

kinetic energy of the incident nucleon is  

= 2Ktotal CM  •• 40 MeV Kincident 	 4 
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Example 17-2. Show that the condition lmax = 0 is equivalent to the condition 0 ^ ).lr' » 1  
which requires the differential scattering cross section da/dû to be isotropic.  
•Referring to the calculation in Example 17-1, note that -if the kinetic energy K of each  
nucleon in the center-of-mass frame is less than about 10 MeV, then each will have a mo-
mentum p which is  

-\11h 	h  

	

p<  , 	̂ 

	

r 	VG7cr'  
or  

h >-\127c  
pr  

Using the de Broglie relation to evaluate 2, the nucleons' wavelength, from their momenta p,  
we obtain  

or  
A  
;
r

»1 

According to (15-4), or Appendix L, the separation between adjacent minima in the scattering  

As we mentioned several pages ago, this inequality means that there are no minima, and the  

differential scattering cross section dc/dn is isotropic. But we saw in Example 17-1 that  

K ^ 10 MeV is the condition for having /max = 1 (assuming the range of nucleon forces is  

r' = 2 F). So for K < 10 MeV, we can have only /max = 0. Thus we have shown that /max = 0  
is equivalent to 0/r' » 1.  

We concluded in Example 17-1 that when the kinetic energy of each nucleon in the center 
of mass frame is about 10 MeV the kinetic energy of the incident nucleon, in the frame in 
which the target nucleon is initially at rest, has a value of about 40 MeV. So we can also 
conclude that da/dn can be expected to depart from isotropy only when the kinetic energy 
of the incident nucleon equals, or exceeds, about 40 MeV. 

Example 17-1 shows that, for a nucleon potential of radius r' = 2 F, we have  
lmax = 0 unless the kinetic energy of each nucleon of an interacting pair exceeds 
about 10 MeV in the center-of-mass frame of reference. Similar calculations show 
that lmax = 1 unless these energies exceed about 30 MeV, and /max = 2 unless they 
exceed about 60 MeV. (All these figures are only approximations since they are ob-
tained from a semiclassical argument.) Now, if we consider a pair of nucleons in a 
nucleus, their kinetic energies in a frame of reference fixed to their center of mass 
generally do not exceed 30 MeV. Thus they can usually interact with each other only 
in  1 = 0 and l = 1 states. But the Serber potential, (17-3), is approximately zero for 
/ = 1. So the nucleons in a nucleus actually interact strongly with each other in only 
half of the quantum states that angular momentum considerations (and exclusion 
principle considerations if they are of the same species) would otherwise allow to 
contribute to the total interactions. This property of the nucleon potential helps make 
nucleon forces saturate by suppressing the attractive nucleon forces in half of the 
interactions; but it is not enough. To obtain saturation—a feature that we indicated 
at the beginning of this section is responsible for one of the most basic properties of 
nuclei—it is necessary that some of the nucleon forces be repulsive. That is, there 
must be a repulsive part in the nucleon potential. 

The study of proton-proton scattering at high energies showed that the radial 
dependence of the nucleon potential is such that it has a repulsive region in its 
center. Figure 17-8 gives the measured center-of-mass reference frame differential 

ti 
pattern is 0 ^ A/r', so we have  

^  
v 	 Y 

0 ;»1 
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Figure 17-8 Measured values of the center-of-mass differential cross section do/dS1 for 
proton-proton scattering. The energy of the incident protons is 330 MeV. 

cross section, d r/dfl, for scattering of incident protons of kinetic energy 330 MeV 
from a target of protons. Only scattering angles from 0° to 90° are plotted. The 
symmetry of the two proton system demands that d6/dS2 be symmetric about 90°, no 
matter what the form of the nucleon potential, because if one proton is scattered 
at the angle 0 the other one must be scattered at the angle 180° — O. At angles 
smaller than about 10°, do'/dS2 has the very rapid angular dependence of Coulomb 
scattering. In this angular range the distance of closest approach in the scatterings 
is greater than the range of nucleon forces. At larger angles, the scatterings involve 
close collisions in which nucleon forces dominate, and da/dI2 for proton-proton 
scattering is found to be essentially isotropic. 

The surprising isotropy of high-energy proton-proton scattering was shown by 
Jastrow to imply that there is a strong repulsive core in the nucleon potential. That 
is, the potential has a radial dependence something like that indicated in Figure 17-9. 
It is not difficult to understand qualitatively the essential points in Jastrow's argu-
ment. At an incident kinetic energy of 330 MeV the kinetic energy of each of the 
protons in their center-of-mass frame is 82 MeV, and L ax  = 3. Thus the two protons 
in the scattering can interact only in states of orbital angular momentum given by 
1= 0, 1, 2, 3. But since the Serber potential is approximately zero for  1= 1 and 3, 
significant interactions can occur only in  1= 0 and 2 states. If only the  1 = 0 state 
were involved, da/dfl would indeed be isotropic because the scattering would be the 
same as if we had /max = 0, which means B ^ 2/r' » 1. However, in this case the 

CO  

V ( r) 

Figure 17-9 A nucleon potential with an infi-
nitely strong repulsive core inside an attractive 
square well. 
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rR (r) 

0 

Figure 17-10 The effect of a repulsive core potential on the radial dependence of the radial 
coordinate, r, times the radial part of the eigenfunction, R(r), for the I = 0 state eigenfunction 
for high-energy proton-proton scattering. The solid curve shows rR(r) in the presence of the 
potential and, for comparison, the dashed curve shows what it would be like in the absence of 
the potential. Because the energy of the incident proton is large compared to the depth of the 
attractive region of the potential, the effect of the repulsive core dominates and rR(r) is 
pushed out. 

magnitude of  &a/d12 could be only about half as large as the magnitude actually 
observed. In fact, the isotropy of da/dS2 is a result of a destructive interference 
between waves scattered in an l = 0 state interaction and waves scattered in an 1 = 2 
state interaction. The interference suppresses the tendency, discussed above, for do/dI2 
to be large at small angles. Figure 17-10 indicates how a potential with a repulsive 
core, of height which is very much larger than the kinetic energy of the incident 
proton, affects the l = 0 state eigenfunction. The repulsive region "pushes out" the 
eigenfunction as at the edge of an infinite well, and the attractive region "pulls in" 
the eigenfunction because it increases the curvature. If the incident proton energy is 
large compared to the depth of the attractive region, the effect of this region is 
small and the net result is that the l = 0 state eigenfunction is pushed out. Figure 
17-11 shows what the potential does to the l = 2 state eigenfunction. Since for small 
r all these eigenfunctions have the r' behavior given by (7-32), the l = 2 eigenfunction 
has such a small value throughout the repulsive region near r = 0 that the repulsive 
region can have practically no effect on it. This eigenfunction is very small for small 

rR (r) 

Figure 17-11 The effect of a repulsive core potential on rR(r) for the I = 2 state eigenfunction 
for high-energy proton-proton scattering. The solid curve shows rR(r) in the presence of the 
potential, and the dashed curve shows what it would be like in the absence of the potential. 
Since rR(r) is negligibly small at the core radius even in the absence of the potential because 
R(r) cc r', the effect of the repulsive core is negligible. Thus the attractive region dominates 
and rR(r) is pulled in. 
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r whether or not the repulsive region is present. Consequently, the attractive region 
is the only one that has much effect on the  1 = 2 state eigenfunction, and so the 
eigenfunction is pulled in by the potential. The destructive interference leading to 
the isotropic da/dS2 is due to the  1 = 0 state eigenfunction being pushed out while 
the  1 = 2 state eigenfunction is pulled in. If the nucleon potential were purely at-
tractive, both eigenfunctions could only be pulled in. 

Experiments on the scattering of high-energy electrons from deuterons provide completely 
independent evidence of the existence of a strong repulsive core in the nucleon potential. The 
experiments show that there is a hole in the center of the deuteron charge distribution. This 
means that the proton avoids the center of the deuteron, presumably because of the very strong 
repulsion it feels if it tries to get too close to the neutron. Analysis of both the electron-
deuteron and proton-proton scattering experiments indicates that the radius of the repulsive 
core is about 0.5 F. 

The repulsive core in the nucleon potential is the most important factor responsible 
for the saturation of nucleon forces. In a nucleus, the cores in the nucleon potentials 
add large positive contributions to the total energy if the nucleons are too closely 
packed. This is why the nucleons maintain an average center-to-center spacing, given 
by the measured nucleon mass density, of about 1.2 F. At this spacing, any one nu-
cleon can interact only with a limited number of other nucleons, since the range of 
nucleon forces is about 2 F, and so the nucleon forces saturate. If there were no 
repulsive region in the nucleon potentials, the attractive regions would cause the 
nucleus to collapse until its linear dimensions were about equal to the range of nu-
cleon forces. Then each nucleon would interact with all the other nucleons, and the 
binding energy per nucleon, AE/A, would be approximately proportional to A. 

We found that the nucleon potential depends on the quantum number s specifying 
the spin angular momentum of a system of two nucleons (i.e., whether they are in a 
singlet or triplet state), and that it also depends on the quantum number 1 specifying 
the orbital angular momentum of the system. Certain experiments show that the po-
tential even depends on the quantum number j specifying the total angular momen-
tum of the system. Another way of saying this is that the potential depends not only 
on the spin angular momentum S and on the orbital angular momentum L, but also 
on their dot product S • L which determines the magnitude of the total angular mo-
mentum J. Thus the nucleon potential contains a spin-orbit term, proportional to S • L. 
The term makes the nucleon potential more attractive if S • L is positive, and more 
repulsive if it is negative, just as is the case for the spin-orbit term of the shell model 
nuclear potential. The experiments referred to basically involve scattering a beam of 
nucleons with aligned spins from a target of nucleons with aligned spins. This allows 
the interactions in different quantum states, with different spin, orbital, and total 
angular momenta, to be investigated separately. 

The spin-orbit term in the nuclear potential, which plays such an important role 
in the shell model, has its origin in the spin-orbit term of the nucleon potential. To 
understand what happens, first focus interest on a nucleon moving through the in-
terior of a nucleus. Every time it passes near another nucleon it experiences a spin-
orbit interaction. When the nucleon it passes is on a particular side of its trajectory 
the orbital angular momentum of the two interacting nucleons about their center of 
mass will have a particular orientation. When the nucleon of interest passes near an-
other nucleon on the opposite side of its trajectory this orbital angular momentum 
will have the opposite orientation. Since on the average it will pass an equal number 
of nucleons on each side of its trajectory, because it is in the interior of the nucleus, 
there will be a cancellation and it will experience no net spin-orbit interaction. How-
ever, if the nucleon of interest is moving near the surface of the nucleus, then most of 
the nucleons it passes will be on the same side of its trajectory, and so most of the time 
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the orbital angular momentum of the two interacting nucleons will have the same 
orientation. The individual spin-orbit interactions will therefore combine to produce 
a net spin-orbit interaction on the nucleon of interest. The sign of this spin-orbit 
interaction is evidentally the same as that of the individual spin-orbit interactions, 
in accord with the sign required in the shell model. And calculation shows that its 
magnitude is in reasonable agreement with that used in the shell model. 

We conclude this section by summarizing what is known about nucleon forces. 
Certainly the first thing to say is that they are very complicated. When a nucleon of, 
say, 200 MeV kinetic energy interacts with another nucleon, the system can be in any 
one of the following quantum states: 'S 0 , 3 S 1 , 'P 1 , 3P0, 3P,, 3P2 , 'D2, 3D,,  3D2, 

3D 3 . The nucleon potential is different in each of these states, and in each, its form 
involves a fairly complicated radial dependence, as well as departures from spherical 
symmetry. The only simplifications are: 

1. The nucleon potential is charge independent, so it does not depend on the 
species of the interacting nucleons. 

2. The exclusion principle prohibits interaction in certain quantum states between 
nucleons of the same species. In particular, the 3S,, 'P,, 3D,, 3D 2 , 3 D 3  states are ex-
cluded from the list just quoted in the neutron-neutron or proton-proton interactions. 
The reason is that if the space eigenfunction for a system of two identical nucleons is 
symmetric in a label exchange (even l), then the spin eigenfunction must be antisym-
metric in such an exchange (singlet); and if the space eigenfunction is antisymmetric 
(odd l), the spin eigenfunction must be symmetric (triplet). 

3. The net effect of all the P state interactions is very small. But the aligned spin 
experiments show this is partly due to destructive interferences in the interactions 
from the different P states, and that the interactions in individual P states are not so 
small. 

If we are content to describe approximately only their most important properties, 
however, nucleon forces are not too complicated. Figures 17-12 and 17-13 give 
quantitatively the radial dependences of nucleon potentials for even-/ quantum states. 
The first figure shows the potential for singlet states (nucleon spins essentially anti-
parallel), and the second shows the stronger potential for triplet states (nucleon spins 
essentially parallel). With these two potentials, and zero potential for all quantum 
states with odd 1, results are obtained in reasonable agreement with all the properties 
of the deuteron (except its electric quadrupole moment) and all the nucleon scattering 
data up to several hundred MeV (except the aligned spin data). 

Figure 17-13 shows also the eigenvalue and the radial dependence of the eigen-
function for the only bound state of the triplet potential, i.e., the deuteron. Note that 
the attractive region is just barely strong enough to overcome the effect of the re-
pulsive core and lead to binding. As a consequence, there is a high probability that 
the two nucleons in the deuteron have a separation larger than the range of nucleon 
forces. 

CO  
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Figure 17 -12 The radial dependence of a sin-
glet even-/ nucleon potential in reasonable 
agreement with experiment. 
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Figure 17-13 The radial dependence of a triplet even-/ nucleon potential in reasonable  
agreement with experiment. Also shown are the eigenvalue and the quantity rR(r) for  
the eigenfunction of the single bound state of the potential at —2.22 MeV. This state, which  

is the deuteron, is just barely bound and rR(r) just barely reaches a maximum inside the  

attractive region (compare with Figure 17-10). The square of rR(r) is r2R*(r)R(r) which is  
proportional to the radial probability density that specifies the probability of finding the  
two nucleons in the deuteron with a separation in the vicinity of r.  

Of course, the nucleon potentials in nature cannot have the abrupt radial depen-
dence of the simplified potentials displayed in Figure 17-12 and 17-13. In a subsequent  
section we shall see that meson theory predicts something about the behavior of the  

potentials for relatively large radii, and that it shows that the onset of the attractive  

region should actually be fairly gradual.  

17-3 ISOSPIN  

Figure 17-14 shows schematically the lowest energy levels for the three possible two  

nucleon systems: the dineutron °n2 ; the deuteron 1 H2; and the diproton 2He2. The  
exclusion principle allows only the deuteron to have a triplet spin level, labeled s = 1,  
and because of the spin dependence of the nucleon force only this level is at a low  

enough energy to be bound. But all three systems have a slightly unbound singlet  

spin level, labeled s = 0. Because of the charge independence of the nucleon force,  

the s = 0 level is at the same energy in all of the .systems, except for the small effect  

of the Coulomb repulsion energy that is present in the diproton only. The symmetry  

that is apparent in this set of energy-level diagrams, and that is even more apparent  

in other sets we shall consider later, can be described in a very convenient way by  

means of the concept of isospin, T.  
As its name implies, isospin has mathematical properties that are similar to those  

we have become familiar with in dealing with spin. But it has no direct physical re-
lationship to spin. It is used to identify related energy levels, or quantum states, in  

s=0,T=1  

s=1,T= 0 
On2 	1 H 2 	2 He 2  

^ 	o 	+ 
u 	u 	n 

Figure 17-14 Illustrating the pattern formed by the low-
est energy levels of the three possible two-nucleon  
systems.  
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sets of isobars; i.e., in sets of systems that all have the same number A of nucleons. 
For the set shown in Figure 17-14, the lowest level is said to be an isospin singlet, 
labeled T = 0, and the three related levels are said to form an isospin triplet, labeled 
T = 1. The word triplet is appropriate because there are three related levels, and 
because associated with T is a component, written TZ , that can assume the three 
values T..= —1, 0, + 1 when T = 1. The component TZ  is used to identify a particular 
level of an isospin multiplet by specifying the relation between the number Z of pro-
tons and the number N of neutrons for the particular isobar that the level belongs to. 
The relation is 

TZ = Z 	2 
N 	

(17-4) 

In Figure 17-14 the three T = 1 levels are labeled by T_ = (0 — 2)/2 = —1 for the 
dineutron, TZ  = (1 — 1)/2 = 0 for the deuteron, and T. = (2 — 0)/2 = + 1 for the 
diproton. For the isospin singlet level, T = 0, there is only one possible value of T Z , 
namely the value TZ  = 0 corresponding to the deuteron. 

In general, the relation between the value of T and the possible values of T Z  is 
TZ =—T,—T+1,...,+T-1,+T 	 (17-5) 

This is, of course, very analogous to the mathematical relation between the quantum 
number describing any angular momentum vector, including the spin vector, and the 
possible values of the quantum number describing its z component. It should be 
emphasized, however, that isospin is not a vector in any physical space, with a com-
ponent along a coordinate axis of that space. Instead it is a mathematical construct 
that exists only in some imagined space. It is, nevertheless, very useful in describing 
the symmetrical properties of systems containing the same number of nucleons, which 
result from the symmetrical way the exclusion principle treats identical nucleons of 
either species, and the symmetrical way the charge independent nucleon force treats 
all nucleons. 

A system containing a single nucleon has T = 1/2, with the two possible values of 
TZ  being TZ  = —1/2, + 1/2. According to (17-4) the first possibility describes the neu-
tron for which (Z — N)/2 = (0 — 1)/2 = —1/2, and the second describes the proton 
for which (Z — N)/2 = (1 — 0)/2 = + 1/2. Thus isospin allows us to speak of the neu-
tron and proton as two related manifestations of the same particle, the T = 1/2 nu-
cleon. In one, called the neutron, TZ  = — 1/2; in the other, called the proton, T.. = 
+ 1/2. This is like saying that a proton with spin "up" is the ms  = + 1/2 manifestation 
of the s = 1/2 proton, and the proton with spin "down" is the m s  = —1/2 manifes-
tation of that particle. From this point of view the quantum mechanical label exchange 
properties of a system containing several nucleons may be expressed in a very general 
way by saying that if the total eigenfunction for the system is a product of a space 
eigenfunction, a spin eigenfunction, and an isospin eigenfunction, the symmetry of 
each in an exchange of any two particle labels must be such as to make the total 
eigenfunction be antisymmetric because nucleons are fermions. As applied to the two 
nucleon system levels of Figure 17-14, since for all of these levels 1 = 0, all of the 
corresponding states have symmetric space eigenfunctions. So for each of them a 
symmetric spin eigenfunction must be associated with an antisymmetric isospin eigen-
function, or vice versa. Because of their analogous mathematical properties, for both 
spin and isospin a singlet state is described by an antisymmetric eigenfunction and a 
triplet state is described by a symmetric eigenfunction. Thus levels of singlet spin 
(s = 0) should have triplet isospin (T = 1), and the level of triplet spin (s = 1) should 
have singlet isospin (T = 0), as inspection of the figure will demonstrate to be the 
case. 

The power of isospin in identifying related quantum states in sets of systems con-
taining a large number of nucleons is shown in Figure 17-15. The figure shows sche- 
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Figure 17-15 The low-lying energy levels of the  
A = 14 isobars. Note that the positions of the  
ground state energy levels trace out the parab-
olas, for the ground state masses of the A = 14  
nuclei, that are discussed in connection with $ 
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matically some low-lying energy levels of the set of isobars 5 13 14,  6C14,  7N14,  80 14,  
and 9F14. The so-called isobaric analogue levels of a particular isospin multiplet are 
labeled by T and TZ  as before. Except for the small systematic increase in their en-
ergies with increasing TZ , due to the increase in the Coulomb repulsion energy with 
increasing Z, all isobaric analogue levels have the same energy. The reason is that 
the corresponding total eigenfunctions of each system are all identical solutions (if 
we ignore Coulomb effects) to a Schroedinger equation for the same nucleon forces, 
since the nucleon force does not depend on T Z  as it is charge independent. But the 
nucleon force does depend on T as it is spin dependent. We first learned of this as a 
dependence on the spin; we now realize that the label exchange requirements mean it 
is also an isospin dependence. The nature of the spin dependence is such as to make 
the state of lowest T have the lowest possible energy level for the set of systems. This 
can be seen in both Figure 17-15 and in Figure 17-14. 

The statement that energies resulting from the nucleon force, or interaction, do not 
depend on TZ  but only on T is consistent with the statement that the isospin T is 
conserved in processes involving this interaction. To see this, compare the statement 
that the total angular momentum J is conserved in processes involving a spherically 
symmetrical interaction V(r), with the statement that energies resulting from this 
interaction do not depend on its component JZ  but only on its magnitude J. However, 
the conclusion that isospin is conserved in the nucleon interaction is of greater 
generality than the conclusion, based on the charge independence experiments, that 
the nucleon interaction depends on T but not T. So it requires additional experi-
mental verification. Evidence from nuclear physics is found, for example, in the 
reaction 

1 H2 + 8016 _> 7N14 + 2He4  

In all experimental situations, the incident and target nuclei 'H2  and 80 16  are in 
their ground states. If the bombarding energy of the incident nucleus is not too high, 
the product nucleus 2 He4  must also be in its ground state because its first excited 
state lies at an energy above 20 MeV. All three of these nuclei have T Z  = 0 in all 
states, and in their ground states they have the lowest value of T consistent with 
this TZ9  namely T = 0. The same is true for the ground state of the residual nucleus 
'N14. But, as we see in Figure 17-15, the first excited state of 7N 14  has T = 1. As  
far as the conservation of energy, angular momentum, or parity is concerned, the  

reaction could produce 7N14  in either its ground or its first excited state. The experi-
mental observation that it is produced only in the ground state provides strong  

evidence for the conclusion that the nucleon interaction conserves the isospin T. This  
statement tells us something new about the nucleon interaction, whereas the fact that  
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the nucleon interaction also conserves TZ  is simply a consequence of charge conserva-
tion, as can be seen from (17-4). 

We shall see that particle physics provides much verifying evidence for the con-
servation of isospin. We have noted already the assignment of isospin to the nucleon, 
and we shall learn shortly about its assignment to other strongly interacting particles. 
In the application to particles we shall find that isospin takes on a broader signifi-
cance than its use in the classification of nuclear states. Finally, in the next chapter 
we shall understand the basis of isospin and why it is conserved. 

17-4 PIONS 

In preceding sections we presented a description of properties of nucleon forces that 
are observed in experiment. Although theory was used in the description, it was used 
essentially to correlate the experimental observations, and not to explain their basic 
origin. But there is a theory that is successful in explaining how certain properties 
of nucleon forces arise from more fundamental attributes of nature. This is the meson 
theory, which originated with the work of Yukawa in 1935. 

Yukawa proposed that a nucleon frequently emits a particle with an appreciable 
rest mass, now called a n meson or pion. This particle hovers near the nucleon in 
the so-called n-meson field for a very short time, and then is absorbed by the nucleon. 
During the process the nucleon maintains its normal rest mass, and so while it is 
happening there is a violation of the law of mass-energy conservation because there 
is more rest mass present than there is before the n meson is emitted or after it is 
absorbed. The energy-time uncertainty principle shows, however, that such a viola-
tion is not impossible if it lasts for a sufficiently short time. Of course, the it meson 
cannot permanently escape the nucleon because that would permanently violate the 
mass-energy conservation law. Such a pion is called a virtual particle because it has 
a very short existence limited by its violation of mass-energy conservation. 

If two nucleons are close enough for their meson fields to overlap, it is possible 
for a it meson to leave one field and join the other, without permanently changing 
the total energy of the system of two nucleons. Such an interaction between the 
fields is pictured crudely in Figure 17-16. In the interaction, the momentum carried 
by the n meson is transferred from one field to the other, and therefore from one 
nucleon to the other. But if momentum is transferred, the effect is the same as if a 
force is acting between the nucleons. Thus the exchange of a virtual pion between 
two nucleons leads to the nucleon force acting between them, according to Yukawa. 
(We came across a similar idea before when discussing, in Section 14-1, the exchange 
of a phonon between two electrons in a Cooper pair.) 

In making his proposal, Yukawa was guided by two analogies available to him 
at the time. One is the covalent binding in the H 2  molecule and other organic 
molecules (discussed in Section 12-3). In this process, a force arises from the sharing, 
or exchange, of an electron between two atoms. An even closer analogy is the 

Before 	 After 

Figure 17-16 A very crude representation of the exchange of a n meson between the fields 
of two interacting nucleons. 



Coulomb force acting between two charged particles. According to the very successful 
theory of quantum electrodynamics (mentioned in Section 8-7), surrounding each 
charge is a field of photons, and the Coulomb force actually results from an exchange 
of a virtual photon between the fields. 

Quantum electrodynamics shows that the long range of the Coulomb force is a 
consequence of the fact that photons have zero rest mass. Yukawa adapted the 
theory to the case of two nucleons, interacting with a short range nucleon force, 
by assuming that the particle exchanged has a nonzero rest mass. When he made his 
proposal, pions had not yet been detected, but Yukawa was able to estimate the 
rest mass that would lead to the observed range by performing a calculation similar 
to the one in the following example. 

Example 17-3. Use energy conservation, as modified by the energy-time uncertainty prin-
ciple, to establish a relation between the range r' of the nucleon force and the rest mass  

m,r  of the ir meson whose exchange produces the force. Then use the relation to estimate the  

value of m,r , assuming r' = 2 F.  
•The range of the nucleon force is of the order of the radius r' of the n-meson field sur-
rounding a nucleon, since two nucleons experience that force only when their meson fields  

overlap. To estimate the radius of the field, consider a process in which a nucleon emits a  

meson of rest mass m„, which travels out to the limits of the field, and then returns to the  

nucleon where it is absorbed. In this process, the it meson travels a distance of the order of r'.  

While it is happening there is a violation of the conservation of mass-energy. The reason is  

that the total energy of the system equals one nucleon rest mass energy before and after the  

process, and one nucleon rest mass energy plus at least one n-meson rest mass energy during  

the process. But the energy-time uncertainty principle shows that a violation of energy con-
servation by an amount  

AE m,tc2  

is not impossible if it does not happen for a time longer than At, where  
AEAt — h  

The reason is that such a violation could not be detected because the energy cannot be  

measured in a time At more accurately than AE. Since the speed of the pion can be no  

greater than c, the time required for it to travel a distance of the order of r' is at least  
r' 

At —  
c 

These three relations give  
2 	h he 

e — —
At 

 — 
r'  

or  
i^ 

mir  ti  ,— 

rc 
(17-6)  

If we take r' = 2 F, (17-6) gives us an estimate of the n-meson rest mass  
h 	1 x 10 - 34  joule-sec  

m 	
r'c 2 x 10 -15  m x 3 x 108  m/sec  

This can also be written  
mn  — 200 m — 100 MeV/c 2  

where m is the rest mass of an electron which has the value m = 0.511 MeV/c 2 .  

It is worthwhile restating the argument used in Example 17-3. A meson of rest  
mass m„ ' h/r'c leads to a nucleon force of range ' r' because the nucleons could  
not exchange the meson if they were separated by a much larger distance, since its  

flight time would be so long that the uncertainty principle would allow an accurate  

— 2 x 10 -28  kg  
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enough determination of the total energy of the system to make the violation of 
energy conservation detectable. This argument also explains how the Coulomb force 
can have a long range. Since a photon has zero rest mass, there is no lower limit 
to the total energy it can carry. When two charged particles are separated by a very 
large distance, they can exchange a photon of very low kinetic energy without vio-
lating the energy-time uncertainty principle. Of course, such a photon will carry very 
low linear momentum. Therefore, the force it produces is very weak, in agreement 
with the well-known decrease in the strength of the Coulomb force as the separation 
of the charged particles increases. 

At the time of Yukawa's proposal, there were no known particles of rest mass 
between the electron rest mass 0.5 MeV/c 2  and the proton rest mass which equals 
938 MeV/c 2. The n+  mesons, which have a positive charge equal in magnitude to 
that of the electron, and the n -  mesons, which have a negative charge of the same 
magnitude, were first detected in 1947 by Powell and collaborators. They were found 
as a component of the cosmic radiation, which is constantly bombarding the earth. 
Shortly after, the charged n mesons were produced artificially at a large cyclotron 
in collisions between nucleons of very high energy and nucleons in a target. Cosmic 
radiation mesons are also initially produced in high-energy collisions. Measurements 
show that the n+  and n -  mesons have the same rest mass 

m,, - = 140 MeV/c 2 	 (17-7) 

This is certainly close enough to Yukawa's prediction m, — 100 MeV/c 2 . Neutral 
n°  mesons were first observed by Moyer and coworkers in 1950, as products of 
high-energy collisions. Their rest mass is found to be 

moo = 135 MeV/c 2 	 (17-8) 

The free n mesons, which are observed in these experiments, are liberated from 
the n-meson fields surrounding the colliding nucleons by the energy made available 
in the collision. They are the same particles as the mesons discussed in the meson 
theory of nucleon forces. The only difference is that Yukawa's mesons are bound 
before the nucleons interact by requirements of energy conservation. That is, the free 
pions are not virtual particles. As is obviously true of the virtual pions that produce 
the strong force between two nucleons, the interaction of free pions with nucleons is 
strong. This was indicated in various ways in the early experiments with cosmic ray 
and cyclotron pions, which showed that the cross section for interaction of a short 
de Broglie wavelength pion with a nucleus is close to its maximum possible value, 
the projected geometrical cross-sectional area nri2 , the quantity r' being the nuclear 
radius. The interaction is also particularly violent; when a pion enters a nucleus most 
of its rest mass energy goes into splitting the nucleus into fragments which fly apart 
energetically. Of course, the detection of free pions provided a striking verification 
of the validity of the meson theory. 

Experimental evidence for the exchange of pions between two interacting nucleons 
is found in neutron-proton scattering. As we discussed in a preceding section, the 
approximate symmetry about 90° of the scattering differential cross section implies 
that in about half the scatterings the neutron changes into a proton and the proton 
changes into a neutron, when the nucleons interact. One way this can happen is 
indicated by the set of reactions. 

n —+ p+n- 	then 	n - +p — n 

That is, the neutron emits a negatively charged 7C -  meson into its field, becoming a 
proton. Then the n -  meson joins the field of the proton, and it is absorbed by the 
proton which becomes a neutron. The scattering process can also happen through 
the set of reactions 

p—+n+ir+ 	then 	n +  -Fn—>p 



In this case the proton emits a positively charged n+  meson, which is subsequently 
absorbed by the neutron. Thus, in about half the neutron-proton scatterings a meson 
transfers charge as well as momentum between the two interacting nucleons. 

Because the neutron-proton scattering differential cross section is approximately 
symmetric about 90°, in about half the scatterings the neutron and proton do not 
exchange identities when they interact. But they still must exchange a meson which 
carries the transferred momentum. The two sets of reactions which occur are 

n—> n+Tc° 	then 	° + p—p 

and 
p —* p n° 	then 	no + n —+ n 

The neutral ic°  meson transfers momentum, but no charge, between the interacting 
nucleons. 

This interpretation implies that an isolated proton should be surrounded by a 
meson field which will sometimes contain a Tr °  meson and sometimes contain a Tc+ 
meson. The reactions that take place when the meson is emitted by the nucleon are 

ppno 	or 	p—*n+7r +  

Of course the nucleon must absorb the meson it has emitted within a very short time, 
but then it can emit another one. The meson field surrounding an isolated neutron 
should sometimes contain a Tr °  meson and sometimes contain a 7r -  meson, which 
are emitted through the reactions 

n — n+ic° 	or 	n —>p+ar 

But the proton field cannot contain a rc - meson and the neutron field cannot contain 
a n+  meson. Very direct experimental verification of these predictions is provided 
by electron scattering measurements of the charge distribution of the proton and of 
the neutron. Figure 17-17 shows the radial dependence of the charge densities of the 
two species of nucleons. The charge density of the proton is everywhere positive, and 
extends out to a distance r of about 2 F. At the larger r within this limit (in the field) 
the charge is carried by a n+  meson. The neutron charge density is not everywhere 
zero. At smaller r (near the center where the p from p + nr - dissociation would be) 
it is positive, and at larger r (in the field where the rc -  would be) it is negative. The 
volume integral of the charge density is, however, zero, since the neutron is neutral 
and so has no net charge. 

Meson theory also provides an explanation of how the neutron can have an intrin-
sic magnetic dipole moment, even though its net charge is zero. It sometimes becomes 
a proton plus a n - . The proton has an intrinsic magnetic dipole moment, and the rr -
meson can produce a current which makes an additional contribution to the magnetic 
dipole moment. 

At values of r approaching 2 F, the nucleon charge densities are proportional to 
some measure of the intensity of their meson fields. Both are decreasing fairly grad-
ually as r increases. The nucleon force, which acts between two nucleons when their 
meson fields overlap, also therefore decreases fairly gradually as their separation in-
creases. Thus the onset of the attractive part of the nucleon potential, describing the 

r (F) 
Figure 17 -17 The radial dependence of the 
charge density of the proton and of the neutron. 
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nucleon force acting when the two nucleons are beginning to get close enough to 
interact, is fairly gradual. It is not abrupt as in the simplified nucleon potential of 
Figures 17-12 and 17-13. In fact, we shall indicate in Example 17-4 that for large 
values of the separation distance r the nucleon potential should follow the Yukawa 
potential 

V(r) = -g2  r 

where 
h  

r'= 	 1.5F 
mire  

The range r' of the potential is specified by the theory to have a value which 
agrees with the simple argument of Example 17-3, and with experiment. The over-all 
strength of the potential depends on the constant g2 , whose value is not determined 
by the theory but can be by finding the value of g 2  that gives best agreement with 
experiment. In terms of the dimensionless quantity g2/tic, the value so determined is 

g 2/tic ^ 15 (17-10)  

Figure 17-18 plots the Yukawa potential. Note that V(r) cc e - r/r,/r decreases in mag-
nitude with increasing r fairly gradually, but the decrease is very much more rapid  
than that of the long range Coulomb potential V(r) cc 1/r.  

At values of r small compared to 2 F, the nucleon potential deviates markedly  

from the Yukawa potential. In fact, we know it becomes repulsive at -0.5 F. The  

repulsive core of the potential may arise from the exchange of mesons that we shall  

meet later, whose rest masses are considerably larger than that of the n meson. But  

there are other competing explanations for the origin of the repulsive core.  

Example 17 -4. Write a relativistic wave equation for it mesons, and then show how the  

Yukawa potential, (17-9), can be obtained from that equation.  

► A relativistic wave equation for it mesons can be obtained by writing the relativistic energy  
equation  

E2  = c2p 2  + m2c4  R 
 

where  

p2  = +pÿ +pz  
replacing the total energy and the momentum components by the associated operators of (5-32)  

E —> ih a/at 	pX  , — ih a/ax 	pi, i —iii al aY 	pZ — 
 iii a/az  

and then allowing the operator equation thereby obtained to operate on the function `Y. The  

result is  
2 	z 	z  

h2 	
z 

at̂  = 
— c2h2 ( 	

ax  f  + a 

^ 
 + 	az^)  m2c4^ 

Y  

e  - r/r  
(17-9)  

 

Figure 17-18 The Yukawa potential. For r 
 comparable to or larger than r' = htm,,c  

1.5 F, the nucleon potential should have this 
form. 



or  

v2ip 1 0
21P mc2 

 

c2  at2 	h2  

which is called the Klein-Gordon equation. It plays an important role in the quantum electro-
dynamics of bosons. For instance, for m„ = 0 it reduces to the classical wave equation 

a  2  2_ 	t" 
v 	c2  at2  

for photons, the so-called quanta of the electromagnetic field.  
The classical wave equation has a static solution of the form  

— 	e 2  1 	
r > 0  

4i€°  r  

as can easily be verified by substitution, using the relation  

V21p_  

^ _ 
_ g  2 e  

r 

where  

, 	 h  
m,rc  

as can also easily be verified by substitution. Since the solution to the wave equation for zero  

rest mass quanta (photons) gives the Coulomb interaction potential for the electromagnetic  

field, the solution for nonzero rest mass quanta (pions) is assumed to be the interaction poten-
tial for the meson field, that is, the Yukawa potential of (17-9).  

The constant g2  determines the strength of the Yukawa potential, just as the constant e 2  
(the square of the electron charge) determines the strength of the Coulomb potential. Note  

that the dimensionless quantity g 2/hc has the value =15, whereas the dimensionless quantity  
e2/4rcE°hc (the fine-structure constant) has the value =1/137. This is an indication of the  

strength of the nucleon force. •  

Single free pions can be created in high-energy collisions between nucleons, e.g.  

p + p rt+  + d (17- 11)  
where d is the deuteron, or destroyed in collisions between pions and nucleons, e.g.  

	

rc + +d -gyp+p 	 (17- 12)  

From this we can immediately conclude that pions cannot be fermions. The reason is  
that the number of fermions in an isolated system always remains constant, in the  

sense that if a fermion is produced, or destroyed, it always happens in conjunction  

with the production, or destruction, of an antifermion. Examples are electron pair  

production, or annihilation. Pions are bosons, just as photons are bosons, that can be  

emitted or absorbed singly. As bosons, pions must have integral spin; that is s = 0,  
or 1, or 2, .... Measurements show that for all three cases, i , a°, and rr+, the pion  
spin is O. The first of these measurements involved applying the principle of detailed 
balancing (see the discussion of (11-4)) to the observed ratio of the cross sections for 
the forward and backward reactions of (17-11) and (17-12). The value of the rr +  spin 
influences the cross section for the forward reaction because the reaction rate is 
proportional to the density of states that can be populated, and this is proportional 
to the spin degeneracy factor (2s + 1). The cross-section ratio showed that s = O. 

A very interesting property of pions is that pions have odd intrinsic parity. The 
initial evidence came from the reaction 

	

+d—>n+n 	 (17-13)  

1 d( 2 d`Y^ 
r2  dr 

r 
 dr  

for `I' = YJ(r). For m,, 0 0 the Klein-Gordon equation has a static solution of the form 
- r/r'  

r >0  
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The negatively charged pion is captured by the deuteron after dropping through a 
sequence of atomic electronlike states to the 1 = 0 state, where its wave function has 
a large overlap with the deuteron. Thus the total angular momentum on the left of 
(17-13) is that of the spin 1 ground state of the deuteron. So angular momentum 
conservation allows the two neutrons to be emitted either with total orbital angular 
momentum 1 = 0 or 2 and "parallel" spins, or with 1 = 1 and "antiparallel" spins. 
The first possibilities are ruled out because they would result in a symmetric total 
eigenfunction for the system of two fermions. Therefore the neutrons are emitted in a 
state in which the total orbital angular momentum is 1 = 1. The parity of such a state 
is odd, according to the usual rule that parity is governed by (-1) 1. Therefore, since 
parity is conserved by the nuclear, or nucleon, interaction, the parity of the system 
n + d must be odd. Since it has even orbital angular momentum, the parity of the 
ground state of the deuteron is even, and the (-1) 1  rule also says that the parity as-
sociated with the l = 0 motion of the captured n -  is even. Thus the  n -  meson must 
have an intrinsic parity which is odd. The same is true of the other pions. As the 
number of nucleons present is unchanged in the reaction, the intrinsic parity of the 
nucleon is undetermined. The number of nucleons is unchanged because single fermi-
ons cannot be created or destroyed, and this also makes it impossible to determine 
the nucleon parity. By convention, the nucleon intrinsic parity is taken as positive. 

The triplet of pions have similar masses, identical quantum numbers, and partici-
pate equally in the nucleon interaction. It is therefore natural to say that the pion is 
an isospin T = 1 particle, that has a TZ  = —1 manifestation called the n , a TZ  = 0 
manifestation, the n°, and a TZ  = +1 manifestation, the n +. In so doing we are 
generalizing the relation between TZ  and electric charge. The form that we originally 
used for nucleons, (17-4), is equivalent to the relation 

Q = Tz  + 1/2 	(nucleons) 	(17-14a) 
where Q is the charge in units of the magnitude of the electron charge. For example, 
this yields Q = 0 for the TZ  = — 1/2 neutron and Q = 1 for the TZ  = + 1/2 proton, 
as before. For pions the relation is different, since 

Q = Tz 	 (pions) (17-14b) 

However, we may incorporate both of these relations into one form by writing 

Q = TZ  + B/2 (nucleons and pions) 	(17-15) 
where B, called the baryon number, has the value 1 for a nucleon and 0 for a pion. A 
baryon is a fermion that participates in the strong interaction. 

The quantity B, introduced here to generalize the relation between charge and iso-
spin, is quite important because it is a conserved quantity. For instance, the proton 
p antiproton p pair production reaction 

p+p—p+p+p+p 	 (17-16) 
is a very good example of the baryon number conservation law 

B = const 	 (17-17) 
where the baryon number B has the value + 1 for a nucleon and —1 for an anti-
nucleon. We already know that the total number of fermions in an isolated system will 
remain constant. But (17-17) tells us something more. It says that the number of 
fermions of a particular type, called baryons, will remain constant and that, for 
example, a proton will not turn into an electron. Other baryons will be introduced 
soon, displaying the further importance of this conservation law. Before leaving the 
topic, note that reaction (17-16)—the form of which is forced by (17-17)—also tells 
us that T2, which is + 1/2 for the proton, must be —1/2 for the antiproton in order 
to conserve isospin. It is generally the case that TZ  for an antiparticle must be op-
posite to T Z  for the corresponding particle. Notice that we have already encountered 
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this for the pion, since the particle, n + , has TZ  = + 1, and the antiparticle, i - , has  
TZ  = —1. The 7t° , having TZ  = 0, is its own antiparticle. Such particles, which have  
no quantum number that could distinguish particle from antiparticle, are said to be  
self-conjugate.  

Another property of the pion is its instability. The n °  decays spontaneously by an  
electromagnetic interaction with a lifetime of about 10 -16  sec into two high-energy  
photons  

ir° y + y  
or else, rarely, into an electron-positron pair and one photon. Although this sounds  
like a very short decay time, it should be compared to the time 10 -23  sec that would  
characterize the decay if it took place through the strong nucleon (or nuclear) inter-
action. The value 10 - 23  sec is just the time that particles moving with relative velocity  
c 108  m/sec would overlap within a distance of the range of nucleon forces r'  
10 -15  m. The facts first used to identify the electromagnetic nature of the n°  decay are  
that photons participate only in the electromagnetic interaction and that the decay  

lifetime is much longer than the time 10' 23  sec that would suffice if it could go by the  

stronger interaction.  
The other pions do not decay in the same ways as the neutral pion. Instead, the  

n+  decays with the even longer lifetime of about 10 -8  sec, according to the scheme  
n + —> µ + +vµ  (17-19)  

where µ + represents the positively charged muon, and v^  is the muonic neutrino. The  
n+ decays with the same lifetime according to the scheme  

n msµ -  +v 	 (17-20)  

where ji - is the negatively charged muon, and v,, is the muonic antineutrino. The  

positive muon is the antiparticle of the negative muon, just as the positron is the anti-
particle of the electron. In fact, in essentially every regard, except for their higher rest  

mass, muons are like electrons. The charged pion decays involve an interaction which  

is related to the /3-decay interaction of nuclear physics. The fact that the lifetime of  

charged pion decay is much longer than for electromagnetic decay of the neutral pion  

is a reflection of the fact that the interaction involved in the decay is much weaker  

than the electromagnetic interaction. The student will recall that we made a similar  

comparison in the case of fi  decay. For these reasons, both the decay of a neutron  

into a proton plus an electron and (what we now call) an electronic antineutrino, and  

the decay of a positive or negative pion into a positive or negative muon and a  

muonic neutrino or antineutrino, are said to take place via the weak interaction. This  
terminology leads to the nucleon interaction being called the strong interaction. Partic-
ularly in particle physics, the terms strong interaction and weak interaction are used  

to identify what are usually called the nucleon (or nuclear) interaction and the /3-decay  

interaction in nuclear physics.  

17-5 LEPTONS  

Muons have no part in Yukawa's theory of the origin of the strong interaction, al-
though this was not appreciated until some time after their discovery in 1936 by  

Anderson and Neddermeyer. These investigators found the particles as components  

of the cosmic radiation, and they showed that their rest mass is intermediate between  

the rest mass of an electron and the rest mass of a proton. We now know that they  

are produced in cosmic radiation mainly from the decay of pions. But, in 1936, pions  
had not been discovered, and it was naturally assumed that the le and µ- were  

Yukawa's mesons (in fact they were originally called it mesons). An ever increasing  

accumulation of evidence showed, however, that the interaction of muons with matter  

(17-18)  
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is very weak. For instance, the muons in cosmic radiation can penetrate great thick-
nesses of solid matter with little attenuation, since they can be detected in deep mines.  
This being the case, muons can hardly be the particles responsible for the strong  
interaction, despite the fact that their rest mass  

m„ +  = m^ _ = 106 MeV/c 2 	 (17-21)  
is quite close to the value predicted by Yukawa.  

This situation was the source of considerable confusion in the ten years before the  
discovery of pions, but, after their discovery, it was immediately assumed that pions  
are Yukawa's mesons since the early evidence indicated that their interaction with  
matter is strong. Thus pions are closely associated with nucleons and interact via the  
strong interaction. Muons are closely associated with electrons and interact via the  
weak interaction.  

The muon and electron, the muonic and electronic neutrinos, and the antiparticles  
of each, are collectively called leptons. One of the pieces of evidence for the association  
between the negative muon and the electron is that both are  fermions, both have charge  
— e and spin 1/2, and both have magnetic dipole moments corresponding to a spin g  
factor of 2. Their antiparticles, the positive muon and the positron, have charges and  
magnetic dipole moments of reversed signs. Muonic and electronic neutrinos are also  
spin 1/2 fermions, but they are uncharged and presumably have no magnetic dipole  
moments. They are distinguished physically from their antiparticles by their helicities  
(see Section 16-4), which are left handed for neutrinos and right handed for antineutri-
nos. It is not appropriate to define either an intrinsic parity or the usual isospin for  
any of these particles which participate in the weak interaction. The reason is that  
parity is not conserved in that interaction, as we saw in Section 16-4, and isospin is  
also not conserved in the weak interaction, as we shall see in a subsequent section.  

A new family of leptons, the tauons, was discovered in 1975. The quite massive  
(1784 MeV/c 2) T +  and T -  are presumably accompanied by a tauonic neutrino and 
antineutrino. This family has all the characteristics given above for the electron and 
muon families. 

The electron is stable because there are no less massive particles into which the 
conservation laws allow it to decay. But muons do decay via the weak interaction, 
according to the following schemes 

e +  + ve  + vu 	 (17-22)  
µ 	e + ve  + v 	 (17-23)  

where we use  e +  for the positron and  e -  for the electron. The lifetime for both decays 
is the same, and it has a value of about 10 -6  sec. The need for a distinction between 
the electronic neutrino y e  and the muonic neutrino v u  was demonstrated experimen-
tally in 1962 by showing that the muonic neutrinos obtained from pion decay, (17-19) 
and (17-20), will produce muons but not electrons. 

Because of their much greater masses, charged tauons can have a variety of decays. 
For instance, they have purely leptonic decays into electrons and neutrinos like 
(17-22) and (17-23), or corresponding decays into muons like 

T
+ µ+ + vµ  + vi 	 (17-24)  

Tauons can also have semileptonic decays into leptons and strongly interacting  

particles, as for example 
T — --* n +  v Z  (17-25)  

With its large mass and many possible decay modes, the T has quite a short lifetime,  
being about 10 -13  sec.  

Since leptons are fermions, they are created or destroyed in particle, antiparticle  
pairs. Consequently, the number present in an isolated system will remain constant,  
if each particle makes a positive contribution to the count and each antiparticle  



makes a negative contribution. Because of the distinction among electronic, muonic 
and tauonic leptons, each type separately satisfies a lepton number conservation law. 
These can be written 

E Le  = const 	 (17-26) 

E L u  = const 	 (17-27) 

E LT  = const 	 (17-28) 
The electronic lepton number Le  is + 1 for an electron and —1 for the positron; it is 
+ 1 for an electronic neutrino and —1 for an electronic antineutrino. The muonic 
lepton number Lµ  and the tauonic lepton number L., are similarly defined so that the 
lepton number is + 1 for a particle and — 1 for its antiparticle. The student should 
note that the muon and tauon decay schemes of (17-22) through (17-25), as well as 
the electronic beta decays discussed in Chapter 16, all satisfy these conservation laws. 
It will also be noted that these laws are of the same form as (17-17) for baryon number 
conservation, because baryon and the various lepton numbers are, like charge, addi-
tive quantum numbers. However, parity is a multiplicative quantum number. That is, 
the parities in an initial state are multiplied and, if parity is conserved, the product 
is equated to the product of the parities in the final state. 

The existence of these separate lepton numbers and the mass differences among 
the e, µ, and r are the only distinctions we know among these otherwise identical lep-
tons. We also know from experiments that, unlike the strongly interacting particles 
(nucleon, n, etc.), they have no spatial extent down to at least 10 -18  m (10 -3  F!). With 
no structure to distinguish them, the point-like leptons are now considered to be 
truly fundamental particles. In the next chapter we shall see how these fundamental 
particles may relate to the strongly interacting particles discussed in this chapter. 

And more will be said about the nature of the weak interaction in the next chapter. 
But here it is desirable to mention at least that like the electromagnetic and strong 
interactions as manifested in nuclei, the weak interaction should be carried by a field 
quantum. This field quantum, or intermediate boson, is actually expected to appear 
in three forms, the W + , W- , and Z°. Indeed, in 1983 evidence was obtained for the 
W's, as well as for the Z ° . These spin 1 particles are quite massive, with the W's hav-
ing a mass of about 80 x 10 3  MeV/c2  = 80 GeV/c 2  and the Z° having a mass of 
about 90 GeV/c2 . Just as we saw that the massless photon gives the electromagnetic 
interaction a long range, and the —140 MeV/c 2  pion gives the strong interaction a 
short range, so we see that the massive intermediate bosons give the weak interaction 
an extremely short range. In fact, the weak interaction is not intrinsically weak; it is 
the very large mass of its field quanta which makes it appear so. 

17-6 STRANGENESS 

In the same year, 1947, that the pion was discovered in cosmic rays, some peculiar 
cosmic ray events were seen giving V-shaped tracks in cloud chambers. Because the 
initial work had to be done only with cosmic rays, it took time to learn about these 
particles. But it was clear that they were produced by strong interactions, since the 
process had a large cross section, and yet they decayed by weak interactions because 
their lifetimes were long. For example, a typical observation was 

+ p (strong) —* V °  -* n - + p (weak) 	 (17-29) 
The V°'s measured lifetime of 10 -10  sec is to be compared with the expected lifetime 
of 10 -23  sec, if the decay process involves the strong interaction just as the production 
process does. Except for the lifetime, the production reaction appears to be just the 
reverse of the decay reaction and hence, by detailed balancing, if the production is 
strong the decay ought to be also. Instead, the decay rate is 10 -13  of the production 
rate. This is why the V°'s were called "strange" particles. 
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It was not until 1953 when they could be produced in an accelerator, the Brook-

haven Cosmotron, that it was proved that two of these particles were produced in  

association with each other, and the idea of Gell-Mann and Nishijima was borne out  

that their behavior could be understood in terms of a new additive quantum number.  

The point is illustrated by a typical reaction for producing strange particles  

+ p—*A ° + K° 	 (17-30)  

where A°  and K °  are symbols now used for two of the strange particles. If we assign  

the new additive quantum number, called the "strangeness" S, values such that S = 0  
for the ordinary particles n and p, but S = + 1 for the K °  and S = —1 for the A ° ,  
then S will be conserved in this strong interaction. On the other hand, the typical  

decay, which is really that of (17-29) in modern notation  

A°  —> rc + p 	 (17-31)  

will not conserve S. Hence it cannot occur by the strong interaction, but must involve  

the weak interaction.  
To recapitulate, A °  and K °  particles are produced in association at a high rate  

(large cross section) in processes involving the strong interaction. They each decay  

independently, because they have flown apart, in processes involving the weak inter-
action. The decays occur at a low rate (long lifetime) because changing S requires  
the interaction to be weak. Because of the long decay lifetimes and also because of  

some neutral decay modes, both strange particles in one interaction were not seen  

in the original cosmic ray observations that used small gas cloud chambers. A more  

modern visualization of the production reaction (17-30) is shown in Figure 17-19,  

which is a photograph of tracks in a large liquid hydrogen bubble chamber. An inci-
dent rc -  strikes a p in the hydrogen, producing a A °  and K °, with the A°  decaying  
into a p and i - , as in (17-31), and the K °  decaying into a Tc +  and 7r - , as we shall  
discuss later.  

What is now called the A °  particle, since that is a V (the appearance of its decay  

mode in a cloud chamber) upside down, has the rest mass  

m,,, = 1116 MeV/c 2 	 (17-32)  
This may be compared with the neutron and proton rest masses of 940 and 938  

MeV/c2 . The value of this mass, as well as the need to conserve baryon number in  

the reaction (17-30), suggests that the A °  is a strange version of the nucleon; i.e., a  

baryon. Experiment has shown that like the neutron, the A°  particle is a neutral spin 
1/2 fermion. Also like the neutron, the A °  parity is taken to be positive by convention,  
since S-conservation prevents determining the relative neutron-A °  parity. Because  
there is no other particle of similar rest mass, the A °  is the only member of an isospin  
singlet, i.e., the A °  has T = 0 and TZ  = 0.  

Having discussed the baryon A °, we turn to its associatively produced K meson. 
Experiments have shown that there are four K mesons, the positively and negatively  

charged K +  and  K -  ,  and the neutral K °  and K ° . Like the is mesons, the K mesons 
are all spin 0 bosons of odd intrinsic parity, where the parity has been measured relative  

to that of the A ° . Their rest masses are  

m K + = mK - = 494 MeV/c 2 	 (17-33)  
and  

mKo = mKo = 498 MeV/c 2 	 (17-34)  
Assuming that, as in nuclear physics, isospin and its z component are conserved  

in strong interactions involving strange particles, we can use the production reaction  

(17-30) to assign quantum numbers to the K mesons. Since T = 1 for the 7r — , T = 1/2  
for the proton p, and T = 0 for the A°, the only possibilities for the K °  are T = 1/2  
or T = 3/2. If the latter were true, there would be a quartet of T Z  values and the K  
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Figure 17-19 The associated production of a A °  and a K°  in a hydrogen bubble chamber. 
An incident Tr -  interacts with a p of the liquid hydrogen filling the chamber. The 
K°  decays into a Tc

+  and a Tr - . The A°  decays into a p and a i - . The production takes 
place through the strong interaction, but the decays each utilize the weak interaction. The 
curvature of each particle in the applied magnetic field is used to identify the particle. 
(Courtesy Lawrence Berkeley Laboratory) 

meson family would have to span a range of four different electric charge states. But, 
in fact, there are only three charge states: Q = —1, 0, + 1. Therefore T = 1/2 for the 
K °  and the other K mesons. Note also that since Tz  has the values —1 for the 7E - , 
+ 1/2 for the p, and 0 for the A°, it must have the value Tz  = —1/2 for the K°. In 
consideration of the way Q depends on Tz  in other situations, we naturally say that 
the K meson with T = 1/2, Tz  = + 1/2 is the K + . The  K -  is the antiparticle of the 
K +, and the K °  is the antiparticle of the K °, so the K -  and K °  have values of Tz  
opposite to those of the K +  and K °, respectively. Thus the K +  and K °  form one 
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isospin doublet and the  K+ and K °  form another. Note that, unlike the n °  which is  
identical to it ° , the K °  and K °  are quite different particles. The reason is that the  
value of S for an antiparticle is the negative of its value for the particle, just as is the  
case for the quantum numbers B, L e , L M , and L. Thus S = +1 for the  K +  and K °  
and S = —1 for the  K -  and K ° . This difference in the value of S has many experi-
mental consequences. For example, the reaction  

K° + p ^ A° + rc +  
is possible (i.e., it conserves Q, B, T, and S), but no similar reaction can take place  

with a K ° .  
Notice that the nucleon, which is a baryon, has half-integer isospin and the pion,  

which is a meson, has integer isospin; but the baryon A has integer isospin and the  

meson K has half-integer isospin. Clearly the existence of strangeness changes the  

relationship (17-15) among charge, baryon number, and isospin. If we are to include  

all particles introduced so far, (17-15) now becomes  

B+S  
2  

For pions and nucleons, which have S = 0, this reduces to (17-15). But for the A °  it  
properly tells us that TZ  is 0, while for the K's it predicts correctly that T Z  is either  

a  
`cs 

	

	Example 17-5. Verify the statements made immediately above about the A °  particle and the  
K mesons, and determine the value of TZ  for each K.  
■ The A°  has Q = 0, B = + 1, and S = —1. Hence (17-36) becomes 

1-1  
0 = TZ  +  2  

or  
TZ = O  

For the K + , these values are Q = +1, B = 0, and S = +1. So 
1  

1= TZ +  
2  

or  
TZ  = +1/2 

For the K -  they are Q = —1, B = 0, and S = —1, giving 
—1  

—1= T+ 	2  

or  
TZ  = — 1/2  

The K°  has Q= 0, B = 0, and S = +1. Hence 
1  

O =TZ + 2  

yielding 
Tz  = —1/2  

Finally, the K °  has Q = 0, B = 0, and S = —1. Thus 
—1  

O= TZ +  
2  

and  
TZ =+1/2 	 •  

The Gell-Mann-Nishijima relation (17-36) also tells us that in deciding whether a 
strong interaction takes place we need to check only three out of four quantities, Q,  

(17-35)  

Q =TZ +  (17 -36)  

ti 
+1/2  or —1/2.  



TZ , B, and S, since all must be conserved but are related through (17-36). For example, 
once we know the TZ  assignments for particles of given Q and B, we do not have to 
be concerned about S. Applying this to particle decays, we have seen from (17-31), 
or the closely related decay 

A° ^ n + 71
°  (17-37)  

that S is not conserved in weak processes. Rather, in weak interactions when S is  
nonzero, it changes by one unit, so that AS = 1. This rule could also be expressed as 
ATZ  = 1/2 in weak strange particle decays. That is, the A°  with TZ  = 0 decays into a 
neutron n with TZ  = —1/2 and a 7c°  with TZ  = 0, corresponding to a total change 
of the z component of isospin of one-half. Not only are S and TZ  not conserved in 
the weak decay, but T is not conserved either. In (17-37), T = 0 initially and T = 1/2  
or 3/2 in the final state since T = 1/2 for the nucleon and T = 1 for the pion. De-
tailed consideration of the decay rates show that the predominent decay occurs for 
AT = 1/2, so in this case the pion-nucleon system is formed in the T = 1/2 state. 

The same rules of course apply to K decays. For example 
K°  7c -  + i + 	 (17-38)  

has AS = 1, ATZ  = 1/2 (i.e., —1/2 —> —1 + 1), and A T = 1/2 (1/2 0 or 1, but not 2). 
Notice that the strange particle decays we have discussed so far, (17-31), (17-37), and 
(17-38), are unlike any previous weak decay in that only strongly interacting particles 
are involved. These nonleptonic processes are weak decays because strangeness is 
not conserved, and they do not have to involve leptons because the particle decaying 
does not possess lepton number. However, strange particles also have semileptonic 
decays, such as 

K + —>n° +e+ +ve 	 (17-39)  

This again displays AS = 1, AT Z  = 1/2 (1/2 --> 0), and A T = 1/2 (1/2 —> 1), since only 
the K +  and 7E°  have nonzero T. There are also purely leptonic decays, like 

K +  —> µ+ + vµ 	 (17-40)  

We shall discuss the K °  lifetime separately, since it is unusual. But the decay of (17-38) 
has a lifetime of about 10 -10  sec, while the  K +  or  K -  has a lifetime close to that of  

the pion, about 10 -8  sec, quite a lot longer than the 10 -1°  sec lifetime of the A °  or 
K ° . The reason the decay 

K +  	7t +  + 7L ° 	 (17-41)  

has a lifetime two orders of magnitude longer than the decay (17-38) is that in (17-41)  

AT = 1/2 is not possible. Note that the i + ir°  state has TZ  = + 1 so it cannot have  
T = 0. And since the it's have spin 0, the spin part of the eigenfunction is symmetric,  

as is also the (-1)` space part, because the zero spin of the K forces the orbital  
angular momentum to be zero. Thus the isospin part of the eigenfunction must be  

symmetric too, and this is the T = 2 state because two parallel vectors are symmetric  

with respect to label interchange. Since the decay involves T = 1/2 T = 2, it is  
inhibited because AT = 3/2.  

In the decays (17-38) or (17-41), we have noted that since both the K and it mesons  
have zero spin, angular momentum conservation requires that the two n's be emitted  
in a state of zero orbital angular momentum. Thus the parity of the final state is the  

product of the negative intrinsic parities of the two pions times the orbital factor of  

(-1) 1, where 1 = 0, giving an overall positive parity. As the K meson was discovered  
prior to 1957 when parity violation in the weak interaction became known, it was  

thought that it, then called the B, had positive intrinsic parity. On the other hand,  
a particle of similar mass and lifetime, then called the r (not to be confused with the  

much more recently discovered lepton which now goes by that symbol), was observed  

to decay into three pions.  
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Now if the i like the 0 has zero spin, for which there was evidence, then it must  
have negative intrinsic parity to be a different particle from the 0, if parity is con-
served. To understand why the z would have negative intrinsic parity requires a more  
detailed explanation. That the product of the intrinsic parities of the three pions in  
the final state would give an overall negative parity is clear; the question is how to  
handle the possible orbital angular momenta of the three particles. Consider, for the  
sake of definiteness, the z + in the reference frame in which it is at rest. Whatever  
motion the three particles into which it decays has in its rest frame, their orbital  
angular momenta can be broken up into that (call it L) of the rc +ir +  system and that  
(call it 1) of the rc -  about the center of mass of the two ir + 's. The overall parity of  
the final state is then  

(- 1) 3( - 1)1 ( -1)r  = — ( —1)21 = —1 	 (17-42)  
The first equality depends on the fact that the vector sum of I and L must add to  
zero to conserve angular momentum, so their magnitudes must be equal and l = L. 

As the properties of the z and 0 were found experimentally to be more and more  
alike, it became ever more difficult to believe they were not the same particle. Inspired  
by this, Lee and Yang analyzed past experiments and found that there was no com-
pelling evidence for parity conservation in weak interactions. They proposed tests,  
one of which is discussed in Section 16-4, which proved that indeed parity is not  
conserved in these interactions. The z and 0 then became the same particle, called  
the K meson.  

Since weak interactions do not conserve parity, strong interactions must always  
be employed in determinations of particle intrinsic parities. However, because of  
strangeness conservation, no strong interaction will involve just a single strange par-
ticle. Therefore, it is impossible to determine the parity of a strange particle relative  
to nonstrange particles. Thus the intrinsic parity of the A is defined to be even and,  
with respect to that definition, the parity of the K is odd.  

While the K and A were the first strange particles observed, a large number are  
now known. We shall discuss just a few of these, starting with those which are strong-
ly interacting fermions (i.e., baryons) that decay via the electromagnetic or weak inter-
actions. Any baryon possessing strangeness is also called a hyperon. The hyperons  
can be classified according to their strangeness, with values of S = —1, — 2, and — 3  
being possible. Like the A°, the E hyperon has S = —1. But instead of being an  
isospin singlet, it is an isospin triplet with the E - ,  E°, and E + having T = 1 and T.. =  
—1, 0, and + 1, respectively. The three E particles have nearly the same mass  

mE  ^ 1190 MeV/c2 	 (17-43)  
and spin 1/2 with even parity. The S = —2 hyperons constitute an isospin doublet  
that are called E particles. The E°  with TZ  = + 1/2 and the E - with T Z  = —1/2 have  
roughly the same mass  

m^ ^ 1320 MeV/c 2 	 (17-44)  
and spin 1/2 with even intrinsic parity. Finally, there is an S = — 3 isospin singlet,  
the f - particle of rest mass  

mo - at 1670 MeV/c 2 	 (17-45)  
This T = 0, TZ  = 0 particle has spin 3/2 and even intrinsic parity.  

Each of the E, E, and 0 particles are produced in a high-energy collision through  
the strong interaction in association with other particles in such a way as to conserve  
strangeness. For instance, the E - with S = — 2, which was first discovered in cosmic  
rays, is produced in association with two K mesons that both have S = + 1. With  
one exception, these hyperons decay by the weak interaction. As an example, the E -
decay  

8 -  —> A °  + 	 (17-46)  



has a lifetime of about 10 -10  sec, which we have seen is typical of a weak interaction. 
Because of the sequential decays, (17-46) followed by especially (17-31), the E is often 
called the cascade hyperon. 

The exceptional hyperon decay is that of the E °, which decays electromagnetically 
according to the scheme 

E°  A°  + y 	 (17-47) 

with a lifetime of about 10' 9  sec. Note that in this electromagnetic interaction the 
z component of isospin is conserved since TZ  = 0 for the photon, the E ° , and the 
A° . But this is required by the Gell-Mann-Nishijima relation, (17-36), and the ob-
vious conservation of strangeness in the decay (17-47). It is generally true that T  
and hence S are conserved in the electromagnetic interaction. It is TZ  or S conserva-
tion and the values of the masses (i.e., K's cannot be produced to carry off S) which 
prevent the E or S2 decays from proceeding relatively rapidly by the electromagnetic 
interaction. 

Unlike the strong interaction, however, the electromagnetic interaction does not 
conserve T. Recall that isospin conservation in the strong interaction is a way of ex-
pressing its charge independence. Since the electromagnetic interaction is obviously 
not charge independent, it cannot conserve isospin. Another way of saying this which 
will be useful later is that although the photon has TZ  = 0, it is a mixture of T = 0 and 
T = 1, so in interactions involving a photon T does not have a definite value. 

In addition to the A, E, E, and SI hyperons which decay via the weak or electro-
magnetic interactions, there are known a large number of strange particles, both 
mesons and hyperons, which decay via the strong interaction. Although these par-
ticles exist only very briefly ( 10 -23  sec), they are in every other way equivalent to 
the baryons and mesons we have discussed. It is just an accident of their higher mass, 
permitting them to decay into other strongly interacting particles, which makes them 
seem so different. There are many nonstrange particles which decay strongly also. 
We shall discuss them further in the next section, but here we shall simply mention 
the classes of short-lived strange particles. 

At the time of writing, about 14 A-like particles (S = —1, T = 0) were known, 
ranging in mass up to about 2600 MeV/c 2 . There were about 12 E-like particles 
(S = —1, T = 1) going up to about the same mass. While only the one S = -- 3 
particle was known, there were at least four E-like particles (S = —2, T = 1/2). In 
addition to these hyperons, there were about 7 K-like mesons (S = +1, T = 1/2) 
which decay strongly, with masses ranging up to about 1800 MeV/c 2. As an example 
of a strong decay involving strange particles, consider the K* meson which has a mass 
of about 890 MeV/c 2, allowing the decay 

K* +  K +  + 7C° 	 (17-48) 

with lifetime —10 -23  sec because S (or Te), T, and Q are conserved. 

17-7 FAMILIES OF ELEMENTARY PARTICLES 

Table 17-1 lists the particles we have discussed that are stable, or else decay only 
by the electromagnetic or weak interactions. Related particles are grouped into fam-
ilies: the photon, the leptons, the mesons, and the baryons. Both the leptons and 
the baryons are fermions, and both the photon and the mesons are bosons. The 
mesons and baryons, i.e., the particles that participate in the strong interaction, are 
called collectively hadrons, and this term is widely used. The entries in the table are: 
family name; particle symbol; rest mass; lifetime; charge Q; intrinsic spin s; lepton 
number L e , or Lu , or LL ; baryon number B; and, where appropriate, intrinsic parity 
P; isospin T; isospin z component TZ; strangeness S. 
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n cO) Table 17-1. Particles that are Stable or Decay either Weakly or Electromagnetically 
0 

Generic 
Name 

Particle 
Symbol 

Rest Mass 
(MeV/c 2) 

Lifetime 
(sec) 

Charge 
Q 

Intrinsic 
Spin s 

Lepton 
Number 

Le , Lµ , or Lt  
Baryon 

Number B 
Intrinsic 
Parity P 

Isospin 
T 

Isospin z 
component T., 

Strangeness 
S 

Photon y 0 stable 0 1 0 0 Odd 0, 1 0 0 

ye  0 stable 0 1/2 +1 0 
vµ  0 stable 0 1/2 +1 0 

Leptons v T  0 stable 0 1/2 +1 0 
e -  0.511 stable —1 1/2 +1 0 
µ- 105.7 2.2 x 10 -6  —1 1/2 +1 0 
z -  1784 5 x 10 -13  —1 1/2 +1 0 
n+ 139.6 2.6 x 10

-8  
+1 0 0 0 Odd 1 +1 0 

no 135.0 8 x10 -17  0 0 0 0 Odd 1 0 0 
n -  139.6 2.6 x 10 -8  —1 0 0 0 Odd 1 —1 0 

K +  493.8 1.2 x 10 -8  +1 0 0 0 Odd 1/2 +1/2 +1 
Mesons K° 

 _ 
497.8 8.9 x 10 -11 

 and 
0 0 0 0 Odd 1/2 —1/2 +1 

K °  497.8 5.2 x 10 -8  0 0 0 0 Odd 1/2 +1/2 —1 
K -  493.8 1.2 x 10 -8  —1 0 0 0 Odd 1/2 —1/2 —1 
I/ o  549 8 x 10 -19  0 0 0 0 Odd 0 0 0 
n' 958 2 x 10 -21  0 0 0 0 Odd 0 0 0 

p 938.3 stable  +1 1/2 0 +1 Even 1/2 + 1/2 0 
n 939.6 925 0 1/2 0 +1 Even 1/2 —1/2 0 

A°  1116 2.6 x 10 -10  0 1/2 0 +1 Even 0 0 —1 
E +  1189 8.0 x 10 -11  +1 1/2 0 +1 Even 1 +1 —1 

Baryons E °  1192 6 x 10 -2°  0 1/2 0 +1 Even 1 0 —1 
E -  1197 1.5 x 10 -10  —1 1/2 0 +1 Even 1 —1 —1 
,° 1315 2.9 x 10 -10  0 1/2 0 +1 Even 1/2 +1/2 —2 

1321 1.6 x 10 -1°  —1 1/2 0 +1 Even 1/2 —1/2 —2 
n -  1672 8.2 x 10 -11  —1 3/2 0 +1 Even 0 0 —3 



The leptons and baryons all have antiparticles, although they are not shown in 
the table. Compared to a lepton or a baryon, the "quantum numbers" of its anti-
particle have values with: opposite Q; same s; opposite Le , or Lk, or L„ or B; and, 
for baryons, opposite P; same T; opposite TZ;  opposite S. An antiparticle has the 
same rest mass, and also the same lifetime, as the particle. The reason for these two 
equalities will be discussed in the next section. 

The antiparticles of the mesons are shown in the table. We have already discussed 
the fact that the K -  and K °  are, respectively, the antiparticles of the K +  and K ° . 
Inspection of the table will confirm that the relation between the quantum numbers 
of the K +  and K , and of the K °  and K ° , agree with the particle, antiparticle rules 
quoted earlier for leptons and baryons, except that the intrinsic parity does not 
change in the K, anti-K case. The predicted (and experimentally confirmed) particle, 
antiparticle parity rules reflect the facts that mesons are bosons, and that baryons are 
fermions. Similarly, the it + and it are particle and antiparticle, while the 7r °  is its 
own antiparticle, as we have already discussed. 

Two entries in the table have not been mentioned yet; they are the n°  and n ' mesons. 
Like the it° , these nonstrange mesons decay electromagnetically and are their own 
antiparticle. They are very like the lr ° , except that they have T = 0 and greater 
masses. The main decay of the n °  is, again like the n° , into two photons. But its 
larger mass gives the n°  a much shorter lifetime. Since the n' is even more massive, 
it has a still shorter lifetime. However, its large mass makes the decay into an n°  
and two it's more favorable than the decay into photons. 

Omitted from the table are the graviton, W + , W- , Z° , and the extremely numer-
ous particles which decay via strong interactions. It should be emphasized again that 
the short-lived particles are in every way equivalent to the other particles, except for 
their lifetimes; they are excluded only to avoid making the table too long. But a few 
of the short-lived particles need to be discussed, since they are quite important. 

The first short-lived particle found was not immediately recognized as such. In 
pion-nucleus scattering experiments performed by Fermi and others in 1952 it was 
found that there is a strong resonance in the cross section at a pion bombarding 
energy of 195 MeV. Figure 17-20 shows the rc tp elastic scattering cross section 
as a function of the quantity s, the square of the total center-of-mass energy of the 
system including the pion and nucleon rest masses. Since the n +  has T = 1, Tz  = +1 
and the p has T = 1/2, TZ  = + 1/2, the system is in the T = 3/2, TZ  = 3/2 state. (The 
7r - p system in the T = 3/2, TZ  = —1/2 state shows the same kind of cross-section 
resonance at the same energy, providing thereby additional evidence for the conclu-
sion that, while the strong interaction depends on T, it does not depend on TZ .) The 
full width at half-maximum, F, of the resonance, whose peak occurs at a total energy 
of 1232 MeV, is about 120 MeV. This means that the pion and proton must tem-
porarily form a composite entity that holds together for a time t h/F — 10' s 

eV-sec/10 8  eV — 10 -23  sec. If moving at a characteristic velocity of c/3, the entity 
would maintain its existence over a distance d — et/3 — 108  m/sec x 10 -23  sec —
10 -15  m, which is the range of the strong interaction. It is therefore not unreasonable 
to speak of a pion and a proton forming a very short-lived particle, which is called 
the A(1232). It has a definite set of quantum numbers: s = 3/2, B = 1, P = even, T = 
3/2, S = 0. But its mass is not definite, and it would be best expressed as 1232 + 60 
MeV/c 2 . The indefiniteness of the mass is just what would be expected from the 
uncertainty principle, the energy uncertainty of 120 MeV corresponding to the time 
uncertainty of —10 - 23  sec. 

Many more pion-nucleon resonances were later found. Some, like the A(1232), have 
T = 3/2 and some, like the N(1440) have T = 1/2 just as does the nucleon. At the 
time of writing about 13 of the T = 3/2 particles called A's were known, ranging 
in mass up to about 3200 MeV/c 2  and in spin up to at least 11/2. Above the nucleon 
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Figure 17-20 The elastic scattering cross section for 7E
+ 
 mesons on protons, as a function 

of the square of the total center-of-mass energy of the system. Note the peaks in the cross 
section which are the pion-nucleon resonances—or short-lived baryons—described in the 
text. 

in mass, and going up to about 3000 MeV/c 2 , there were around 17 known T = 1/2 
particles, the N's with spins again as large as 11/2. 

Just as in the strange particle case, there are short-lived mesons as well as baryons. 
One particularly important class is the vector mesons. They are so called because 
they have spin 1, which has three components just as does any spatial vector that 
has the three components x, y, and z. The first short-lived meson found was the p 
meson. It could be seen as a resonance in 7E-7E scattering, although this required 
some interpretation since one pion is not free but is in the field around a nucleon. 
The existence of a particle such as the p can be more directly inferred just by 
measuring the momenta of its decay products and reconstructing from that informa-
tion the mass of the parent particle. In the case of the p this can be viewed as a two-
step process 

7E +p —>p° +n —>n+ + 7c + n 	 (17-49) 

all of which takes place very rapidly. The momenta and rest masses of the two pions 
give a p rest mass of 769 + 77 MeV/c 2 . Thus the mass uncertainty, or mass width, 
is about the same as for the A(1232), and hence the lifetimes are also about the same. 
The quantum numbers of the p meson are s = 1, B = 0, P = odd, T = i, S = 0. 
Another short-lived meson, the w, has the same quantum numbers except that T = 0. 
Its rest mass is 783 + 5 MeV/c 2 , and it decays mainly into three pions. Yet another 
vector meson, which has quantum numbers identical to the co, is the 0, with a mass 
of 1020 + 2 MeV/c 2 . The 0 decays predominantly into two K mesons of the opposite 



^ 

01  w 
strangeness. Since there is barely enough energy for that decay to occur, there is very 
little volume in phase space available—that is, very few final states which the decay 
can populate. This reduces the decay rate and so makes the width narrower. The 
reason the  4) does not decay into pions will be discussed in the next chapter. 

There are still heavier vector mesons, but the p, w, and 4) are the most important. 
One importance is the role the vector mesons, especially the w, are believed to play 

 in producing the short-range repulsive core in the nucleon potential. Another in-
teresting way in which vector mesons appear is in the high-energy interaction of 
photons. Except for having T = 0 and 1, photons have exactly the same quantum 
numbers as the vector mesons. Thus photons can become vector mesons for times 
short enough to satisfy the uncertainty principle, just like the pions which are emitted 
and absorbed by nucleons in the manner described in Section 17-4. Since the vector 
mesons interact strongly, this is the predominant way in which a high-energy photon 
interacts. In this sense, the electromagnetic interaction becomes like the strong inter-
action at high energy. But photon cross sections for interaction with nucleons are 
still only about 1/200 that of pion cross sections because the photon infrequently 
turns into a vector meson. 

There are many other strongly decaying mesons which we shall not discuss, such 
as those having spin 2. Table 17-1 does not list them or other strongly decaying 
particles. And there are even weakly decaying particles not listed there. Many of these 
will be discussed in the next chapter, where we will learn that some particles can 
have strangeness-like quantum numbers which we have not encountered yet. With 
so many particles existing, it is not surprising that they cannot all be considered 
elementary; that subject will also be taken up in the next chapter. 

17-8 OBSERVED INTERACTIONS AND CONSERVATION LAWS  

Particles which decay by the strong, eletromagnetic, and weak interactions have been 
introduced, and many of their properties have been discussed. These three inter-
actions, plus the gravitational interaction, constitute the four interactions observed 
in nature as we normally perceive them. (In the next chapter the true character of 
these interactions will be introduced.) Table 17-2 summarizes the properties of the 
four observed interactions. In the table, the intrinsic strength comparison depends to 
a certain extent on the choice of exactly what attribute of the strength is to be com-
pared; the numbers quoted are obtained from comparisons made in the manner of 

Table 17-2. The Observed Interactions 

Intrinsic  
Field Quantum 

Name  Strength  Name 	Rest Mass Spin Range Sign  

Strong  1  Pion —10 2  MeV/c 2  0 '-10 -15 m  Attractive overall  
(nuclear)  (with heavier 

mesons for 
repulsive core) 

(with smaller 
repulsive core) 

(but with  
repulsive core)  

Electro  
magnetic  

0 -2  Photon 0  1  Long  
(cc 1/r)  

Attractive or  
repulsive  

Weak  
(/3 decay)  

10 -14  Intermediate 
boson 

—105  MeV/c2  1  —10 -18 m  Not applicable  

Gravitational  10 -40  Graviton 0  2 Long  Always attractive  
(cc 1/r)  
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Section 16-4. All of the entries in the table have been discussed previously, except 
for the characteristics of the quantum of the gravitational field. 

The gravitational field quantum is called the graviton. Its rest mass must be zero since the 
gravitational interaction has the same long range as the electromagnetic interaction, whose 
quantum is the zero rest mass photon. The spin of the graviton is known to be 2. The reason 
is the absence of negative gravitational mass, which prevents the existence of the oscillating 
gravitational dipole that would be required to radiate a spin 1 graviton. The lowest possible 
multipolarity oscillating gravitational source is a quadrupole (a distribution of mass oscillating 
between a prolate and oblate ellipsoidal shape), and a quadrupole source emits a spin 2 
quantum. This is essentially the same argument as the one we used in Section 16-5 to con-
clude that a photon has spin 1 because there are no oscillating electromagnetic monopoles. 
While there is indirect astronomical evidence for gravitons, the laboratory searches have not 
yet yielded direct proof of their existence. These are extremely difficult experiments because 
the effects that can be studied on a laboratory scale are so small. However, the gravitational 
interaction is the only one of the four that is both long range and always of the same sign. 
Therefore its effects are cumulative so that, despite its intrinsic weakness, gravity is by far 
the most obvious of the interactions on the scale of the macroscopic world. 

Table 17-3 lists the three interactions of the microscopic world, i.e., of quantum 
physics, and all of the quantities that are conserved in certain interactions. The 
entry yes, or no, means that a quantity is, or is not, conserved. We have discussed 
all of the entries in this table, except those referring to charge conjugation and time 
reversal, which will be discussed shortly. However, the basis for some of the other 
entries will be taken up first. 

The conservation of energy, linear momentum, angular momentum, and parity all 
relate to symmetries of space and time. Each of these conservation laws implies an 
invariance principle, which results from a symmetry. For example, conservation of 
linear momentum comes from the invariance of the system to a spatial translation, 
and that invariance is a result of the homogeneity of space. That is, if one part of 
space is like another, then it does not matter where in space the system is located. 
If that is true, momentum will be conserved since there are no external forces. 
Similarly, angular momentum conservation occurs when there is invariance to the 
rotation of the system, which will be the case if space is isotropic. Energy is conserved 
if there is invariance to translation in time, which will occur if time is homogeneous. 

Table 17-3. Applicability of the Conservation Laws to the Observed Interactions 
("yes" Means Conserved;  "no" Means Not Conserved) 

Quantity 	 Electro- 
Conserved 	Strong 	magnetic 	Weak 

Energy 	 yes 	yes 	yes 
Linear momentum 	 yes 	yes 	yes 
Angular momentum 	yes 	yes 	yes 
Charge 	 yes 	yes 	yes 
Electronic lepton number 	yes 	yes 	yes 
Muonic lepton number 	yes 	yes 	yes 
Tauonic lepton number 	yes 	yes 	yes 
Baryon number 	 yes 	yes 	yes 
Isospin magnitude 	 yes 	no 	no (A T = 1/2 for nonleptonic) 
Isospin z component 	yes 	yes 	no (A TZ  = 1/2 for nonleptonic) 
Strangeness 	 yes 	yes 	no (AS = 1) 
Parity 	 yes 	yes 	no 
Charge conjugation 	yes 	yes 	no 
Time reversal (or CP) 	yes 	yes 	yes (But 10 -3  violation in K °  decay) 



All three of these relations among conservation laws, invariance principles, and sym-
metries can be proved classically or quantum mechanically. Parity conservation, 
which generally is a useful concept only for quantum mechanical systems, results 
from reflection invariance arising from a symmetry between left and right. 

The familiar conservation of charge results from a different kind of invariance 
principle, called gauge invariance. While the student may be familiar with gauge in-
variance from the study of electromagnetism, he probably will not have learned of its 
relation to charge conservation, to be explained next. 

In its simplest application, gauge invariance means that only differences of electric 
potential can have physical significance, and that a unique value cannot be assigned 
to a single potential. Wigner has given a simple demonstration of the relationship 
between gauge invariance in this sense and the conservation of charge. He supposes 
that charge is not conserved and that a charge creating and destroying device exists 
at a potential V which creates a charge Q, requiring an amount of work W to do so. 
Next the charge and the device are transferred some distance to a place where the 
potential is V', with V' < V. The charge and the device gain an amount of energy 
Q(V — V') in this transfer. At the new position the device is used to destroy the 
charge, regaining the energy W expended in its creation. This is possible because 
regaining W is independent of the particular value of the potential as a consequence 
of gauge invariance. Now the chargeless device can be brought back to the initial 
position where the potential is V without doing any work against the electric field 
associated with the potential difference between the two positions. In this cycle there 
has been a net gain in energy of Q(V — V'). Thus if gauge invariance and the non-
conservation of charge are assumed, energy conservation is violated. 

The various lepton numbers and baryon numbers are chargelike quantum num-
bers. However, there is no known gauge principle which assures their conservation 
and hence lepton and baryon number conservation may not be absolute conservation 
laws, but only extremely good approximations. This issue is taken up in the next 
chapter. Also in that chapter is a discussion of the reasons for the conservation of 
isospin and strangeness and the introduction of other strangeness-like conservation 
laws. 

Concerning the new entries in Table 17-3, charge conjugation is the process of 
changing every particle of a system into its antiparticle. As an example, the charge 
conjugate of the ground state deuterium atom contains a nucleus with an antineutron 
and an antiproton, and an atomic positron. All available experimental evidence is 
consistent with the conclusion that the operation of both the strong and electromag-
netic interactions is unaffected by, or invariant to, charge conjugation. For instance, 
such invariance is found experimentally in the strong interaction annihilation of a 
proton and an antiproton into the particle antiparticle pair K +  K- , plus other par-
ticles, and is also found in measurements of the electromagnetic decay of the pi ° 

 meson. Therefore, we believe that the nucleus of the antideuterium atom (whose 
behavior is governed by the strong interaction) and also the positron (whose behavior 
is governed by the electromagnetic interaction) would act in the same way, because 
they are in the same quantum state at the same energy as the nucleus and the electron 
in the normal deuterium atom. So we may say, as indicated by the "yes" symbols in 
the table, that charge conjugation is conserved in the strong and electromagnetic 
interactions because the description of a system governed by either of these inter-
actions is invariant to the operation. This is parallel to the terminology we use when 
we say by the "no" symbols in the table, and elsewhere, that parity is not conserved 
in the weak interaction because a description of a system whose behavior it governs 
is not invariant to the parity operation. 

In fact, the experimental evidence for the "no" symbol in the table that indicates 
charge conjugation is not conserved in the weak interaction, i.e., that the weak 
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interaction does distinguish between a system and its charge conjugate, is the same as  

the experimental evidence for parity nonconservation in that interaction. This can be  

understood quite simply from the pion decay of (17-19) or (17-20), which is shown  

schematically in Figure 17-21 for a frame in which the pion is at rest. In that frame  

the µ and  y  go off in opposite directions with equal magnitude of momentum p.  

Because the 2t has zero spin, the spin —1/2 u  and y must have their spins essentially  
parallel or antiparallel to their directions of motion so that the two spin angular  

momenta add to zero. The parallel case (# 1) is shown above a mirror and the anti-
parallel case (# 2) is shown below the mirror. Each is a mirror reflection of the other.  

This is true because in such a reflection—or parity operation—the linear momenta  

reverse direction but the angular momenta do not because they describe circulations  

which do not reverse their sense. (Compare the situation here with the one illustrated  

SZ  = +1/2 	 p2 > 0  

C-›) •  

Case #1 	Sz = 0 	• 	pz  = 0  
IT  

positive z  

CD  •  
S=—½  l ^ 

pz  < 0 

Mirror / 

Figure 17-21 The decay it—> µ + y in the rest frame of the ir. The directions of the linear  
momentum of the  it and of the  y  are indicated by arrows labeled by the signs of their z com-
ponents, such as pz  > O. The directions of their angular momenta are indicated by straight  

arrows labeled with the values of the z components, such as Sz  = +1/2, and also by curved  
arrows showing the senses of the corresponding circulations. Since reflection in a mirror  
whose plane is parallel to the plane of circulation does not change its sense, the reflection  

does not change the directions of the angular momentum vectors. But reflection in a mirror  

whose plane is perpendicular to the direction of motion reverses that direction. Therefore . 
the linear momentum vectors are reversed by the reflection. The two possible cases which  
conserve both linear and angular momentum in the decay are shown, and labeled #1 and  
#2. Each is the parity inversion (mirror reflection) of the other. For 7r µ + v u , only case  
#1 is seen in nature, while for 7r

+ 
 -) µ+ + v, only case #2 is seen. These observations  

show that neither parity nor charge conjugation are conserved in the decay.  



in Figure 16-15, being sure to take into account the difference in orientation of the 
mirrors in the two figures.) Since parity is not conserved in this weak decay, # 1 or  
# 2 will be observed, but not both equally. If charge conjugation were conserved and 
parity not conserved, whichever of the decays # 1 or # 2 dominated, the same one 
would have to dominate if the system (say, 7c+ p+ + vii) were charge conjugated 
(to n -  —> u-  + I,L ). That is not observed. Instead, # 1 dominates for n -  decay and # 2 
for n+ decay, showing that both parity P and charge conjugation C are not con-
served. Thus the entries for both of these should, in fact, be the "no" symbols shown 
in the weak interaction column of Table 17-3. 

The combination of P and C violation can be expressed by saying that particles  
are left-handed. That is, the y has its momentum and angular momentum antiparallel, 
as would a left-handed screw, while the antiparticle v is like a right-handed screw 
with its momentum and angular momentum parallel. This handedness, or helicity  
(which was introduced in Section 16-4), is at or near a maximum for the  y  or v because 
these particles are traveling at or near the velocity of light since their mass is zero 
or close to it. Angular momentum conservation forces the y+  or ,u -  to have helicity 
opposite to what it would like to have (i.e., the particle y is naturally left-handed 
and the antiparticle µ+ naturally right-handed), and this suppresses the rate of n  
decay by a factor of 10 5 . But n decay occurs at all only because the y has mass and 
is traveling at y  < c. It is possible to have a reference frame traveling faster than a 
particle of finite rest mass. In such a frame the helicity is reversed since the spin is 
unchanged but the particle appears to be moving in the opposite direction. A zero rest 
mass particle travels at y = c, and it is not possible to have a more rapidly traveling 
reference frame. So the helicity cannot be reversed unless the rest mass is nonzero. 

When P and C were found to be not conserved in the weak interaction, the hope 
was that the combined operation CP (that is, performing in sequence each of the two 
operations) would leave invariant the description of a system governed by this inter-
action. For example, if such CP conservation were valid it would require that if decay 
# 1 in Figure 17-21 occurs for the  n -  then decay # 2 would occur for the n + . This is just  
what is observed. Indeed, experimental tests show that CP is conserved to at least  

the 1% level in weak interactions. We shall see shortly that CP is closely related to 
time reversal. 

Time reversal is the process of changing the time variables describing the evolution 
of a microscopic system into their negatives. In other words, it changes the direction 
of flow of time, like running a motion picture backwards. Application of time reversal 
to Figure 17-21 is not interesting because it leads to a description of the improbable 
situation in which a y and a y collide to form a n. It is worthwhile noting, however, 
that time reversal preserves helicity. To see this, take the y as an example. Time re-
versal reverses the direction of the vector describing the linear motion; but it also 
reverses the sense of circulation so that the spin vector reverses as well, keeping the 
particle left-handed. 

Time reversal invariance cannot be tested by measuring the rates for forward and 
backward weak interactions because one of the rates would be too small to measure. 
But that method has been used for the strong and electromagnetic interactions. An 
example is p + p < n+  + d, which can be observed in both directions as was discus-
sed in Section 17-4. Another example of a time reversal experiment for the strong 
interaction is a comparison of the cross section for a reaction such as 

12Mg24 +  2He4 -* 13Al27 +  1H1  

and the cross section for its inverse 
13 Al27 +  1H1 

--^ 
 12Mg24 +  2He4  
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with the momentum vectors of the bombarding and target nuclei in the second reac- 
tion adjusted to be equal but opposite to ttlose of the product and residual nuclei of 
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the first reaction. Time reversal T (not to be confused with isospin) is found by such 
experiments to be a good symmetry for strong and electromagnetic interactions. In 
somewhat more complicated experiments (involving trying to observe processes de-
scribed by an odd number of momenta and angular momenta vectors which would 
change sign under the time-reversal operation), invariance to T is found in weak 
interactions to the 1% level. 

Although testing time-reversal inva riance directly to a high degree of accuracy for 
the weak interaction is difficult, a sensitive indirect test is available by using the so-
called CPT theorem. This is a very general theorem of relativistic quantum mechanics 
which shows that, for any system governed by any interaction conforming to the rela-
tivistic requirement that cause must precede effect, the result of successively carrying 
out the charge conjugation operation C, the parity operation P, and the time-reversal 
operation T is to leave the essential description of the behavior of the system un-
changed. As a consequence of the CPT theorem, the observed violation of P in the 
weak interaction requires that C and/or T be violated as well. Direct experiments 
show that C is violated, as was discussed above. If T is also violated then the CPT 
theorem demands that CP be violated. Hence if the CPT theorem is correct—and not 
only would its failure destroy the basic theoretical structure of much of physics, but 
also it has been tested extensively by experiment—then a test of CP is also a test 
of T.  

As this is being written there is only one particle known whose properties provide 
sufficient sensitivity to test for small effects of the nonconservation of CP or T, and 
that is the K ° . In a rather amazing demonstration of quantum mechanics, the K ° 

 that is produced in a strong interaction is not the same particle as the one which 
subsequently decays by the weak interaction. The particle produced by the strong 
interaction, which conserves strangeness, must be described by an eigenfunction of 
a strangeness operator whose eigenvalue is one or the other of the two possibilities for 
the K, namely + 1 or —1. That is, either the K °  with S = +1 or the K °  with S = —1 

 is the produced particle. But since strangeness is not conserved by the weak inter-
action responsible for the decay of the K, the particle that decays is not required 
to be described by an eigenfunction of the strangeness operator. Now the neutral K 

 is observed to decay into n+  + i , a system described by an eigenfunction of the 
CP operator with eigenvalue + 1. This can be seen simply from Figure 17-22, where 

• I 	•  vrf 	x = 0 	zr - 

l^ 
• I 
	•  

a- 	x=0 	 ar+  

• I 	•  �+ 	x = 0 	a- 

Figure 17-22 The diagram on the top represents a m +  and a 7E —  of  
zero angular momentum from K °  decay. They are located on the  
x axis on each side of its origin and at equal distances from it. When  
the parity operation P is carried out by interchanging the signs of the  

coordinates of the two pions, the diagram in the center is obtained.  

When the charge conjugation operation C is carried out on the  
center diagram by interchanging the signs of the charges of the two  

pions, the diagram on the bottom is obtained. Since it is identical  

to the diagram on the top, the combined effect of the two operations 
is to make no change in the system. 



the parity operation interchanges the 7r +  and it and the charge conjugation opera-
tion changes them back again. The result is to leave the i + 7c -  system just as it was  
in the beginning; in other words, the eigenvalue of the operator CP for the eigenfunc-
tion describing the decay has the value + 1. Now if CP is conserved by the weak  
interaction, then the neutral K which decays to 7r +  + ,r -  must also have eigenvalue  
+ 1. However, neither the K °  nor the K °  are described by eigenfunctions of the CP  
operator because charge conjugation of the K °  gives the K ° , and vice versa—a  
change which cannot be undone by the subsequent parity operation. Since the same  
state is not obtained after the CP operation on a neutral K, the state cannot be an  
eigenfunction of CP.  

How can we create eigenfunctions of CP in the neutral K system? First we note  
that the CPT theorem requires that particle and antiparticle have the same mass.  
Thus the K °  and K °  are degenerate in energy. But if these degenerate states suffer  
a small perturbation then we can consider them to be linear combinations of per-
turbed states which do not have quite the same energy. (See Appendix J.) The ex-
tremely small perturbation comes about through the process  

K ° ±27r4 K ° 	 (17-50)  

which has a particularly low rate because it involves two successive weak interactions.  
The process gives the perturbed states, called K° and K2, slightly different masses.  
The K° and K° are then described by eigenfunctions of CP, constructed as follows  

1 K° _ 	[K°  + CP(K°)] _ 	(K°  + K°) 	(17-51)  
1 

K2 = 	[K°  — CP(K °)] _ 	(K°  — K °) 	 (17-52)  
where the symbols represent the eigenfunctions for the corresponding particles and  
1/4 gives the correct normalization. By applying CP to (17-51), the student will see  
that this operator gives the same eigenfunction back again, so that the corresponding  
eigenvalue is + 1. In the same way he can see that (17-52) is an eigenfunction of CP  
with an eigenvalue of —1. (The careful student may note that these statements seem  
apparent when using just C, as did Gell-Mann and Pais when they first investigated  
this subject, but that P introduces a bothersome minus sign. However, the charge  
conjugation operation has an undetermined phase which can be taken to be —1, so  
the original Gell-Mann-Pais convention can be retained.) Thus to conserve CP it is  
necessary to have  

K° î+  + 7r - 	but 	K° n +  + it 	(17-53)  
The K° can decay into a 7C +  and 7r - , but the K2 cannot.  

Since the 7c°  is its own antiparticle, under charge conjugation it goes into itself  
and has a C eigenvalue of + 1. Its P eigenvalue is —1. Hence a system of three nc ° 's  
has a CP eigenvalue of (+ 1) 3(-1) 3  = —1. Therefore  

K2 -+  7r °  + 	+ n:° 	but 	K° 	+  It° +  rc° 	(17-54)  
All of the possible decays of the K2 have at least three particles in the final state.  
This means that the volume occupied in phase space is small, making the decay much  
slower than that for the K°. Thus the K° has a lifetime of about 10 -10  sec, while  
the K2 has a lifetime of about 5 x 10 -8  sec, which is why it was not observed in the  
early cosmic ray experiments. Note that if (17-51) and (17-52) are added or subtracted  

the result is  
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K° = ^  (K° + K2)  (17-55)  
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or 

= 	(K° — K3) 	 (17-56) 

Thus, if a K °  or K° is produced, half of the decays will occur through the short-
lifetime mode K° and half through the long-lifetime modè K. 

A casual glance at (17-51), (17-52) and (17-55), (17-56) gives us an interesting, 'if 
somewhat oversimplified, view of the time evolution of the K°. Say a K °  is produced. 
It corresponds to an eigenfunction of the S operator, but not of the CP operator, 
being half K° and half K. However, the K° component decays quickly, leaving 
just KZ which corresponds to an eigenfunction of CP but not of S, consisting of half 
K° and half K ° . Now suppose the K2 goes through matter. Because the K° has 
S = — 1, just as do the hyperons, there are many reactions it can undergo, as we have 
already noted in connection with (17-35). Hence the K °  component can be absorbed 
out, leaving just the K° with S = + 1. The process is called regeneration. We see that 
either allowing the system to evolve in time, or to pass through matter, changes the 
nature of the particle. This means that, if the S eigenvalue is measured, information 
on CP is lost, and vice versa. The situation is analogous to determining the com-
ponents of angular momentum in a Stern-Gerlach experiment. 

The above description of the time evolution is not quite accurate because the small mass 
difference between the  K? and K° causes the relative phase of the two corresponding wave 
functions to change with time, changing the K °K °  mixture. This actually produces oscillations 
in the amount of K°  and K°  present. By measuring the wavelength of these oscillations, the 
K?—K? mass difference Am can be found. Since Am arises from the process (17-50), we might 
expect by the uncertainty principle to have 

	

AEAt = (Amc 2)(At 1 ) — h 	 (17-57) 

where At 1  is the K° lifetime, or Am — h/At 1 c 2 . Measurements give about half this value, or 
about 4 x 10 -6  eV/c2 . Since Am has been measured to better than 1%, and since the value of 
m is about 5 x 10 2  MeV/c2, the inaccuracy in the mass difference is smaller than the mass 
itself by 16 orders of magnitude! 

The discussion of the K °  began with the question of CP conservation. Clearly 
(17-53) and (17-54) test its validity. In 1964 Christenson, Cronin, Fitch and Turley 
found, at such a distance from the K° production point that the K°'s had all decayed, 
about 0.1% of the K°'s decayed by the CP-violating 2n decay. Thus to this miniscule 
degree CP conservation and hence, by the CPT theorem, T invariance are violated. 
Other experiments on the K° system have shown directly that it is T, and not CPT, 
which is not conserved along with CP. That is, there is evidence that through the 
rare mode in the weak interaction decay of the long-lived component of the K °K °  
system nature can distinguish at a microscopic level the direction of flow of time. This 
startling result would seem to be of great significance. In the next chapter we shall 
return to the issue while discussing gauge theories of particle interactions. 

Example 17-6. Discuss each of the following reactions in terms of the conservation laws listed 
in Table 17-3 and the particle quantum numbers listed in Table 17-1. 

(a)i - 	+K 
► This reaction is impossible because it requires a strangeness change of 2. 	 • 

(b) K - +p S.  +K+ + K°  
110-This is the reaction in which the SF, which has S = —3, was first produced. It is strangeness 
conserving since S = +1 for the  K +  and K°, while S = —1 for the  K -  .  Charge and baryon 
number are conserved. So are angular momentum and parity because the final state can have 
one unit of orbital angular momentum. (Recall that the parity associated with orbital angular 
momentum is given by (— 1) 1.) Since isopin and its z component are also conserved, we see 



that the reaction can proceed via the strong interaction. If this were not the case, the cross 
section would be too small for it to be observable. 	 • 

(c)52 - ->E° + it 

■Here charge and baryon number are conserved. Angular momentum and parity are also con-
served by the final state containing one unit of orbital angular momentum. Since the values 
of T are 0 for the S2 - , 1/2 for the E °, and 1 for the it we see that there must be an isospin 
change of at least A T = 1/2. Also, T is 0 for the 0 , + 1/2 for the E°, and —1 for the n - , 
so the z component of isospin changes by A TZ  = 1/2, which is equivalent to AS = 1. These 
quantum number changes do allow the decay to proceed by the weak interaction, but they 
prohibit it from proceeding more rapidly by the electromagnetic or strong interactions. 4 

(d)m + +p—*p+p+n 
■First we must determine the quantum numbers of the antineutron n. Applying the quoted 
rules to the table, we find: Q = 0, s = 1/2, B = —1, P = odd, T = 1/2, TZ  = + 1/2, S = O. In-
spection demonstrates that all quantum numbers are conserved by the reaction, so it can take 
place by the strong interaction. 	 4 

(e) 	+e+ +ve  
► If this goes at all, it must be by the weak interaction since v e  does not participate in any 
of the others. Charge is conserved since Q = —1 for the p. The total baryon number equals —1 
before and after, so it is conserved also. Electronic lepton number is conserved because it has 
the values —1 for the  e +  and + 1 for the ye . Angular momentum can be conserved. Parity 
is not defined for leptons, but parity is not a significant consideration for a weak interaction 
involving leptons. The same is true for isopin and strangeness. So the reaction can take place 
by the weak interaction. Note that it is just the charge conjugate of the /3 decay of the neutron. 

• 
(f)A° --► n+y 

► This reaction, if it can occur, obviously must be electromagnetic. Since TZ  = 0 for the A°  and 
y, while TZ  = — 1/2 for the n, we see that it cannot occur because TZ  is conserved in the elec-
tromagnetic interaction. This conclusion agrees with experiment, and it is one of the reasons 
why TZ  = 0 is assigned to the photon. The same conclusion could be reached by considering 
S; the student should do so. 	 • 

QUESTIONS 

1. Why is 3 P 1  not a component of the ground state of the deuteron? What about '5 0? 
2. What experiments can be performed to test for the existence of a stable system of two 

protons? Of two neutrons? 
3. In the center-of-mass frame of reference the differential cross section for neutron-proton 

scattering is isotropic at low energies. Describe qualitatively the behavior of the differ-
ential cross section in a frame of reference in which the target proton is initially stationary. 

4. In considering the quantum mechanical behavior of a system of two identical particles, 
we talk of exchange of the labels of the particles. In considering neutron-proton scattering, 
we talk of exchange of the particles. What is the reason for this difference? 

5. Why is the proton-proton scattering differential cross section necessarily symmetric about 
90° in the center-of-mass frame of reference? 

6. Explain why the scattering differential cross section is isotropic if only the  1 = 0 state 
participates in the interaction that produces the scattering. 

7. A very large part of what we know about the forces acting in atoms is obtained from 
the study of the bound states of the simplest atom, hydrogen. Why is only a small part 
of what we know about the forces acting in nuclei obtained from the study of the bound 
states of the simplest nucleus, deuterium? 

8. Why is the name isospin an appropriate one to use for the concept discussed in Section 
17-3? 

9. Can the exclusion principle be expressed in terms of isospin? See Figure 17-14. 
10. Is there a physical picture of how the momentum of a zc meson transferred between the 

fields of two nucleons leads to an attractive force between them? From the point of view 
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of the position-momentum uncertainty principle, is it realistic to expect to be able to 
construct such a picture? 

11. What species of it mesons are exchanged in proton-proton scattering? In neutron-neutron 
scattering? 

12. What particle would remain if a proton emitted a it  - meson? If a neutron emitted a 7r + 
meson? Why is it that the proton field cannot contain only a it - meson, and the neutron 
field cannot contain only a i+  meson? 

13. Why is it believed that the repulsive core of the nucleon potential arises from the exchange 
of mesons heavier than the pion? 

14. What examples have been considered in earlier chapters of the conservation of the num-
ber of fermions, and the nonconservation of the number of bosons, in an isolated system? 

15. Exactly what is meant by the statement that a pion has odd intrinsic parity? 

16. Comparison of the decay rate of cosmic ray muons in flight with the decay rate of muons 
at rest provided the first experimental verification of relativistic time dilation. What would 
be a possible way to carry out such a comparison? 

17. Cosmic ray muons have been used in an attempt to discover hidden burial chambers in 
Egyptian pyramids, in much the same way that x rays are used to discover internal imper-
fections in a metal casting caused by gas bubbles. Why were muons used? 

18. Are there any particles other than neutrinos and antineutrinos which have definite heli- 
T 	cities? Explain. 

20. There are four distinctly different K mesons. Why do we not assign to them the isospin 
quantum number T = 3/2 so that they would constitute an isospin quartet? 

21. Exactly what does the strangeness quantum number S specify? 
22. Why is the copious production of A °  and K particles very difficult to reconcile with their 

slow decay, without the concept of strangeness? How does strangeness provide a rec-
onciliation? 

23. Is there a conflict between the statement that isospin magnitude is not conserved in the 
electromagnetic interaction, and the statement that isospin z component is conserved in 
that interaction? 

24. Consider viewing the fl-decay experiment illustrated in Figure 16-15 in a mirror located 
below the nucleus (the mirror being horizontal) instead of in a mirror located to one side of 
the nucleus (the mirror being vertical). Explain how the arguments in the text concerning 
the appearance of the mirror image of the charge conjugate would be modified, but in 
such a way as to lead to the same conclusion. 

25. Give an example of a macroscopic system whose behavior is invariant to time reversal, 
and of a macroscopic system whose behavior is not invariant to this operation. 

26. Why can we say that the 7r °  meson is its own antiparticle? Do all particles have anti-
particles? What about the photon? 

27. Does it seem reasonable to you to say that a meson or baryon resonance is an elementary 
particle? Just what is an elementary particle? 

28. Suppose a virtual particle and a real particle that decays by the strong interaction have 
about the same lifetime. What is the difference between them? To what mass or energy does 
their lifetime relate (through the uncertainty principle) in each case? 

â 
c 	19. Why must all field quanta be bosons? 
U 

PROBLEMS 

1. Consult the discussion of the centrifugal potential in Section 15-8, and then: (a) Write the 
equation which determines the radial dependence R(r) of the deuteron eigenfunction, by 
evaluating (7-17) for l = O. (b) Show that it can also be written 

h2 d2u(r) 
+ V(r)u(r) = Eu(r) 

2µ dr2  



where  
u(r) = rR(r) 

(c) Compare this with the time-independent Schroedinger equation for one-dimensional  
problems. (d) Give a physical interpretation of u*(r)u(r). (e) Evaluate, and give a physical  
interpretation of, the reduced mass  u. 

2. (a) In the equation obtained in Problem 1, take the nucleon potential V(r) to be a square  
well of radius r' and depth V0 , as in Figure 17-2. (b) Show by substitution that the general  
solution to the equation obtained is  

u(r)=A  sin k ir +B cos k i r  

u(r) = Ce- k2r + Dek2 r  

(c) Evaluate k 1  and k2  in terms of p, Vo , and the deutron binding energy AE.  
3. (a) Apply to the general solution obtained in Problem 2 the conditions that R(r), and  

therefore u(r), must be finite, continuous, and single valued, and have first derivatives  
with the same properties. (b) Show that the application of these conditions at r = 0, r = r', 
and r -> oo leads to the relation  

V2µ(V
h
- AE) 

cot [J2 u(Vo^ -  AE)  r ,1 _ N/2^4E  

4. Show, by substitition, that the relation obtained in Problem 3 has a solution with  
AE = 2.2 MeV, the observed deuteron binding energy, when the potential has a radius  
and depth of r' = 2.0 F and Vo  = 36 MeV.  

5. (a) Use the calculations in Problems 1 through 4 to evaluate the radial dependence of the  
eigenfunction for the ground state of the deuteron in a potential of radius 2.0 F and depth  
36 MeV. (b) Sketch the potential V(r) and the function u(r) = rR(r). (c) Also sketch the  
radial probability density P(r). 

6. A nucleon is incident on a nucleon which is initially stationary. Its kinetic energy, which  
is also the total kinetic energy of the system in that frame of reference, is K. Show that  
the total kinetic energy of the system, in a frame of reference in which the center of mass  
of the system is stationary, is K/2.  

7. (a) Show that, for a nucleon potential of radius r' = 2 F, the maximum value of the orbital  
angular momentum quantum number is lmax = 1 unless the kinetic energy of each nu-
cleon exceeds about 30 MeV in the center-of-mass frame of reference. (b) Also show that  
/max = 2 unless the kinetic energies exceed about 60 MeV.  

8. (a) Calculate the value of /max  for a 50 MeV proton incident on a nucleus of atomic  
weight A = 100. Take the radius r' of the optical model potential acting on the proton  
as the sum of the half-value charge distribution radius a = 1.07A"3  F and the range of  
nucleon forces 2.0 F. (b) Also evaluate 8 1/r', and compare with the angle between  
adjacent minima in the differential scattering cross section shown in Figure 16-26.  

9. (a) Use the results of the electron scattering measurements, presented in Figure 15-6, to  
calculate the total number of nucleons per unit volume in the interior of a typical nucleus.  
(b) Then calculate the average center-to-center spacing of the nucleons. (c) Compare this  
with the radius of the repulsive core of the nucleon potential, and with the range of the  
nucleon force.  

10. The position-momentum uncertainty principle produces an effect which tends to prevent  
the collapse of a nucleus that would occur if the nucleon potentials had no repulsive  
regions. (a) Show that this principle demands the kinetic energy of a typical nucleon  
confined to a nucleus of radius r' must be a least K, where  

1  
K cc + 

 Although K becomes more positive as  r' decreases, the potential energy V of the  
typical nucleon becomes more negative if the nucleon potentials are purely attractive and  
the nucleus is sufficiently collapsed to make the separation between all pairs of nucleons  

r < r'  
r  > r'  

sw
31

8
oa

d
 



IN
T

R
O

D
U

C
TI

O
N

 T
O

 E
L

E
M

E
N

T
A

R
Y

 P
A

R
T

IC
L

E
S

 
less than the range of the nucleon potential. Show that, in these circumstances 

1 
Vcc —r3  

(c) Then show that the total energy of the typical nucleon, E = K + V, would become 
more negative as r' decreases further so that the nucleus would continue to collapse, 
despite the uncertainty princple, if the nucleon potentials had no repulsive regions. 

11. Use information contained in Figure 16-14 and 16-36 to assign values of T and TZ  to the 
isobaric analogue ground state levels of: (a) 1H3 and 2He3 ; (b) 3 Li 7  and 4Be7 . 

12. (a) Estimate the maximum time that a it meson can exist in the field of an isolated nucleon 
before it is absorbed by that nucleon. (b) Estimate how many it mesons there can be at 
any instant in the field at distances from the nucleon about equal to the range of the 
nucleon force, 2 F. (c) Estimate how many there can be at distances about equal to the 
radius of the repulsive core, 0.5 F. 

13. The it°  lifetime has been determined by studying the decay from rest of the K +  meson 
in the mode K +  -* it°  + 7E +. The average distance traveled by the i°  in a block of photo-
graphic emulsion before it decays in the easily observable mode it —> e +  + e—  + y is 

measured, and from the calculated velocity of flight of the rc °  its lifetime is obtained. 
Given that the lifetime is 0.8 x 10 -16  sec, predict the average distance traveled by a 7r ° 

 before it decays. 
14. In the laboratory (LAB) frame of reference, particle 1 is at rest with total relativistic 

energy E 1 , and particle 2 is moving to the right with total relativistic energy E2 and 
r 	momentum p2 . (a) Use the relativistic momentum-energy transformation equations U 

i  
 Px — 	(Px — vE/ C 2) 

 — v2/c2 

py = pv 
PZ = PZ 

1  
E'= 

	

	(E— vPx) — v2/c2 

to show that the frame in which the center of the relativistic masses of the system is at 
rest is moving to the right with velocity 

v = c 
cp2  

E1 +E2 

relative to the laboratory frame, and show that the total momentum of the system is zero 
in this center-of-mass (CM) frame. (b) Now let the two particles have the same rest mass 
m° , and let the total relativistic energy of the system in the laboratory frame be ELAB. 
Evaluate ECM, the total relativistic energy of the system in the center-of-mass frame, and 
show that 

ECM = 2m°C 2 FLAB 

15. Use the relation quoted in Problem 14b to evaluate the kinetic energy in the laboratory 
frame of the bombarding proton at which the proton, antiproton pair production process, 
(17-16), becomes energetically possible. 

16. (a) Estimate the cross section for a 1 MeV electronic antineutrino incident on a proton to 
produce the reaction 

v e +p—>n+e+  

(Hint: (i) Assume there is some probability of the reaction occurring when the distance 
between the v e  and p is within the v e  de Broglie wavelength ). Then estimate the time 
interval during which they can be that close. (ii) Estimate the probability P as the ratio of 
that time interval to the characteristic time —10 3  sec for the reaction. (It is the inverse of 
n + e +  —> p + ie , which is an alternative to n —> p + e + ve; detailed balancing requires 
that all three have the same characteristic time which, we see, is just the neutron f-decay 
lifetime.) (iii) Take the cross section to be — P). 2 .) (b) Use the estimate to evaluate the 



mean free path of a 1 MeV v e  in lead, by justifying the assumption that the cross section 
for its interaction with a lead nucleus is —10 2  times larger than the cross section for 
its interaction with a proton. 

17. (a) Why is the p °  meson not allowed to decay into two n °  mesons? (b) Assuming that the 
incident deuteron has sufficient energy, why is the reaction d + d --+ 2He4  + 7Z°  not 
allowed? (c) Why is the decay of a ir +  meson into an e +  and a y not possible? (d) What 
prevents the reaction n —* p + e -  + ve  from taking place when the neutron is part of a 
deuteron? 

18. For each of the following reactions state the fastest interaction through which the 
conservation laws allow it to proceed. If the reaction is forbidden by all interactions, 
state why. 
(a) p—*7r + +e+ +e  
(b)A°  —> p + e  
(c)p  --> e + ve  + vµ  
(d)n+p-*E + +A°  
(e)p+pay+ y  

(f) p +p —>n +E° +K°  
(g)K°

^ n+ + n —  + n° + n°  
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MORE ELEMENTARY 

PARTICLES 

	

18-1 	INTRODUCTION 

particles that are more elementary; the new strong interaction; unification 
of electromagnetic and weak interactions 

	

18-2 	EVIDENCE FOR PARTONS 

partons, or pointlike constituents of hadrons; evidence from neutrino-
nucleus scattering and electron-proton deep inelastic scattering 

	

18-3 	UNITARY SYMMETRY AND QUARKS 

composite particles on the basis of isospin, or SU(2); including strangeness 
or hypercharge to make SU(3); quarks from SU(3); u, d, and s quark prop-
erties and multiplets; basis of isospin and strangeness conservation 

	

18-4 	EXTENSIONS OF SU(3)—MORE QUARKS 

a fourth quark flavor, c;  e +  e -  colliding beam production of  ce states; 
Zweig-forbidden decays of quark- antiquark states; charmonium spectrum; 
particles with charm; c, b, and t quark properties; the T states of bb; 
quark masses; evidence for new quarks from 6(e +  + e-  — hadrons)/ 
6(e + +e —>µ+µ ) 

	

18-5 	COLOR AND THE COLOR INTERACTION 

necessity for the color quantum number; evidence for color; color charge 
as the source of the true strong interaction; gluons; interquark gluon po-
tential; asymptotic freedom and color confinement; gluon flux tube and 
hadronic energy density; magnitude of the color force 

	

18-6 	INTRODUCTION TO GAUGE THEORIES 

gauge theories for all the fundamental interactions; converting a global 
gauge symmetry into a local one in classical electromagnetism; electromag-
netic gauge invariance in quantum mechanics; application to relativistic 
quantum mechanics; Yang-Mills gauge theory; Abelian and non-Abelian 
theories 

	

18-7 	QUANTUM CHROMODYNAMICS 

SU(3) of color; changing global color symmetry to local color symmetry; 
properties of gluons; evidence for gluons; gluon couplings to give quark-
antiquark and three-quark binding; gluon masslessness and confinement; 
running coupling constant ; and antiscreening 

	

18-8 	ELECTROWEAK THEORY 

from Yang-Mills theory to electroweak theory; renormalization; spontane- 
ous symmetry breaking; Goldstone and Higgs mechanisms; weak isospin; 
gauge bosons; Higgs particle; role of the W ±  and Z°; neutral currents; 
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Cabibbo quark mixing; GIM mechanism; lepton-quark symmetry; masses 
and discovery of the W ± and Z °; relation between weak and electromag-
netic interactions; apparent weakness of the weak interaction 

18-9 	GRAND UNIFICATION OF THE FUNDAMENTAL INTERACTIONS 
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unification of the coupling constants; SU(5) unification of strong, electro-
magnetic, and weak interactions; experimental tests of unification (proton 
and double beta decays); neutrino mass searches; other unification schemes; 
cosmological consequences (dark mass, baryon-antibaryon ratio) 

QUESTIONS 
	

710 
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18-1 INTRODUCTION 

In the previous chapter a large number of particles have been introduced, and the 
existence of many more has been mentioned. As ever increasing numbers of particles 
were discovered, it became more and more apparent that all of these could not be 
elementary. Once again by probing with finer resolution, which means higher energy, 
it was possible to discover particles which were more elementary. However, this time 
these constituent particles could not be separated and studied directly, so their dis-
covery and the elucidation of their hidden properties makes an impressive detective 
story. This in turn has led to a completely new understanding of the strong, electro-
magnetic, and weak interactions. The strong interaction is not at all what it has 
seemed to be, and the electromagnetic and weak interactions are closely related to 
each other. Further unification of all the fundamental interactions appears likely. 
The 1970's produced a true revolution in fundamental physics, and it is the purpose 
of this chapter to present in an introductory way the consequences of that revolution. 

18-2 EVIDENCE FOR PARTONS 

The proliferation of particles led to the general feeling that most, if not all, must be 
composites of other, more elementary particles. In addition, some theoretical models 
(of which the most important will be discussed in Section 18-3) suggested this com-
posite nature. Additional impetus for this belief then came from experiments. In this 
section two of these experimental results will be discussed and their interpretation 
in terms of the parton model will be introduced. Parton is the name given to whatever 
are the constituents of hadrons such as the proton. Partons are pointlike (i.e., having 
no detected size), quasi-free constituents, only some of which will turn out to be the 
quarks discussed in the next section. 

One demonstration that hadrons have pointlike constituents is provided by the 
total cross section, as a function of energy, for neutrino-nuclear scattering. This 
statement requires considerable explanation. But first the utilization of neutrinos 
should be explained because the neutrino seems an unlikely particle to use for this 
purpose. It has only the weak interaction, which means for example that neutrinos 
from beta decays in the sun have about one chance in a million of interacting with 
anything even if they pass through the earth along a diameter. Thus doing experi-
ments with these particles requires large numbers of them and very massive detectors. 
To produce neutrino beams, protons from a high-energy particle accelerator strike a 
nuclear target, creating r and K mesons. These mesons are focused by magnetic fields 
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Figure 18-1 Electronic neutrino detectors (of the CDHS and CHARM groups) at the CERN 
laboratory, Geneva, Switzerland. This illustrates the massiveness of detectors required to 
measure the scattering of these weakly interacting particles. 

so as to create beams that go long distances, allowing decay, principally into muons 
and neutrinos (see (17-19), (17-20), and (17-40)). While the muons are also weakly 
interacting particles, they possess charge and hence undergo electromagnetic inter-
actions, enabling them to lose energy by collisions with electrons in matter. By inter-
posing sufficient shielding material (often iron or earth), the muons can be stopped. 
Those mesons which have not decayed interact strongly in this shielding material, 
and hence only neutrinos are left to enter the detector. Figure 18-1 shows a large 
electronic neutrino detector. Such a detector can identify each neutrino interaction 
and hence determine a total cross section. By changing the incident meson beam 
energy, the total neut rino cross section a as a function of neutrino energy E can be 
determined, and typical results are shown in Figure 18-2. It is seen that the cross 
section has the behavior a cc E. This proportionality is the result expected if the 
apparently complicated process of the neutrino interaction, which produces many 
hadrons as well as a muon, is basically just the elastic scattering of a neutrino by a 
single pointlike particle. 

The promised explanation of this last statement will now be given. If the point-
like neutrino and a pointlike constituent of the nucleon undergo an elastic scattering, 
the probability or cross section for this contact interaction would depend only on 
the strength of that interaction (given by /3, the weak interaction coupling constant; 
cf. Section 16-4) and by the volume in phase space available for the process. That 
is, /3 determines the rate for a transition to any particular final state, and the phase 
space volume determines the number of possible final states. Since the interaction 
occurs at a point, the coordinates are unique, and hence momentum space is the same 
as phase space. The phase space volume thus depends just on the momentum, p, of 
the two particles in the center of mass system. In momentum space, p is the length 
of a radius vector, and the volume available with a momentum between p and p + Ap 
is a spherical shell 4np2Ap. Thus a oc p2 . Now a relativistic calculation shows that 
p2  = mE/2, where E is the laboratory energy of the neut rino scattering elastically 
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Figure 18-2 Total neutrino cross section Q on nucleons as a function of neutrino labora-
tory energy E from experiments at CERN (Switzerland), Fermilab (U.S.A.), and Serpukhov 
(U.S.S.R.). The linear dependence of c on E over two orders of magnitude in E is a 
demonstration of pointlike constituents (partons) inside the nucleon. The measurement 
errors are shown only for a few points at the higher energies, but these are typical 
percentage errors, so they would not be visible at lower energies. 

from a pointlike target at rest of mass m. Therefore the experimental result that a cc E 
is to be expected for a contact interaction between a neutrino and a parton. 

While evidence for the existence of partons accumulated from different neutrino ex-
periments over a period of time, evidence for partons came from even the first experi-
ment on deep-inelastic electron-nucleon scattering at the Stanford Linear Accelerator 
Center (SLAC) in 1968. The term deep -inelastic scattering needs to be explained. In 
Section 17-4 the charge distributions of the proton and neutron as determined by 
elastic electron-nucleon scattering experiments were shown. These displayed the exis-
tence of the pion cloud and the nucleon core. To explore the latter in more detail re-
quired higher electron energy to get a smaller de Broglie wavelength. However, the 
elastic cross section drops rapidly with energy, making the measurements much more 
difficult. Furthermore, elastic scattering implies that the nucleon recoils as a whole 
object, whereas exploring its structure indicates breaking it apart. Thus inelastic 
electron-nucleon scattering, in which other hadrons are produced from the nucleon, 
proved to be the way to find the parton structure of the nucleon. The adjective "deep" 
implies that the collision is highly inelastic. 

We illustrate the difference between elastic and inelastic electron-proton scattering 
by the Feynman diagrams of Figure 18-3. These diagrams are actually prescriptions 
for making calculations of rates or cross sections. But they have become the language 
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Figure 18-3 Feynman diagrams for (a)  
elastic and (b) inelastic electron-proton 
scattering. The space coordinate is the 
ordinate and time is the abscissa. The e and  

p approach each other and exchange a  
virtual photon, after which the e goes off in 
one direction, and either (a) the p or (b) 

 some group of particles of net mass W go 
off in the other direction. In the inelastic 
case, the electron's energy changes in the 

W interaction from E to E', with the virtual 
photon carrying off the difference, E — E'.  

cu  

 

o 
o 
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Time  

     

     

of particle physics, and hence we introduce them in this present simple application. 
As drawn here, time increases along the abscissa and space, represented by a single 
coordinate, is the ordinate. Thus the electron and proton are pictured as coming 
together in their center of mass system, and then interacting electromagnetically by 
the exchange of a virtual photon. After the interaction the electron goes off in one 
direction and, for elastic scattering, the proton in the opposite direction. For inelastic 
scattering, the proton breaks up, producing other particles which recoil oppositely to 
the electron. In the original experiments, only the final state electron was measured; 
hence the nature of the other particles was not important. 

To provide a little more familiarity with Feynman diagrams, we shall interrupt the 
discussion of electron-proton scattering to give another example of using these 
diagrams. 

Example 18-1. Construct a Feynman diagram for neutron-proton scattering resulting from  

the exchange of a 7C meson.  
•Initially the neutron and proton approach each other, so lines are needed which start apart  

and converge. It does not matter whether the neutron or the proton is at the top, nor does it  

matter what kind of line is used. However, solid lines are most frequently used for baryons,  

just as the wavy line shown in Figure 18-3 is almost always used for the photon. For the  

exchanged pion a dashed line will be used to distinguish it more clearly from the baryons.  
Now we have a choice. The first possibility is that the proton emits a 7C + , turning into a  

neutron, and the 7r
+  is absorbed by the initial neutron, turning it into a proton, as shown in  

Figure 18-4a. The second possibility is that the neutron emits a i  turning into a proton,  
and the 7C —  is absorbed by the initial proton, turning it into a neutron, as shown in Figure  
18-4b. Note that the dashed lines for the pions have appropriately different slopes in the two  

cases, indicating the two different origins and time progressions. However, these two diagrams  

are completely equivalent. The reason is that these virtual pions exist for too short a time to  

permit, even in principle, any measurement which could distinguish Figure 18-4a from 18-4b.  

Since the it+  and  7E —  are antiparticles of each other, this illustrates the principle that an anti-
particle is equivalent to a particle going backward in time. (That is, the emission of an antipar-
ticle is equivalent to the absorption of a particle.) Because the distinction between (a) and (b)  

is meaningless, we shall frequently draw vertical lines for the extremely short-lived exchanged  

virtual particle. (The infinite slope of a vertical line does not imply that the particle travels  
with infinite speed.) •  
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Figure 18-4 Feynman diagrams for proton-neutron  
scattering through the exchange of a virtual n meson.  
In (a) the proton emits a 7C +  meson, becoming a  
neutron, and the neutron absorbs the it+, becoming  
a proton. In (b) exactly the same process is described  
as the neutron emitting a 7E -  to become a proton, and  
the proton absorbing the Tc -  to become a neutron.  

We now return to inelastic electron-proton scattering. A qualitative result of the 
inelastic electron-proton scattering is that there was an excess of electrons scattered 
at large angles, reminiscent of the Rutherford scattering of particles which indicated 
the existence of the nucleus, as explained in Sections 4-1 and 4-2. Thus the electrons 
appeared to be hitting small, hard objects. A more quantitative analogy can be drawn 
between the inelastic electron-proton scattering and the inelastic proton-nucleus scat-
tering discussed in Section 16-7. As discussed there and shown in Figure 16-27, the 
energy spectrum of protons emitted at a forward angle shows an elastic peak at high 
energy, followed by inelastic peaks at lower energy, corresponding to low-lying levels 
of the residual nucleus, and at still lower proton energy there is a continuum. The 
same features are shown in Figure 18-5a for electron scattering from a nucleus at 
forward angles, which means small momentum transfers from the electron to the 
nucleus. In terms of a diagram like Figure 18-3, the interaction is one in which the 
virtual photon transfers a small relativistic momentum. If the momentum transfer 
becomes large, as shown in the larger angle case of Figure 18-5b, the scattered elec-
tron spectrum becomes different. The elastic and inelastic peaks shrink, while the con-
tinuum becomes more important, being dominated by a broad bump. This bump is 
due to elastic scattering of the electrons from individual nucleons in the nucleus. It 
is not a sharp peak because the nucleons are in rapid motion due to their confinement 
in the nucleus. From the uncertainty principle, AxAp x  ti  h, if the nucleon is confined  
to a small region Ax it will have a large spread in momentum, Ap x . Sometimes this  
momentum, called the Fermi momentum, is directed toward the incident electron, giv-
ing a higher energy collision, and sometimes it is directed away from the electron,  

giving a lower energy collision. The result is an appreciable broadening of the elastic  

peak.  
For electron-proton scattering, we see in Figure 18-5c much the same features as  

in the electron-nucleus case. The proton elastic peak is followed at lower electron  

energy by inelastic peaks and then by a continuum. The inelastic peaks are due to  

the production of the short-lived nucleon-like N and A states (or pion-nucleon reso-
nances) which were discussed in Section 17-7. Their masses, W, can be read off a scale  

antiparallel to that of the scattered electron energies. The most interesting part of the  

spectrum is the continuum. It corresponds to elastic scattering from the charged par-
tons, which we shall identify as quarks in the next section. In this case the "bump"  

is too broad to be distinguished as such because the mass of the quark is about equal  
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 Elastic 

Inelastic peaks 
from excited states 

E' 
	

E 

(a)  

E' 

(b) 

E 
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(c)  E'(GeV) 
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Figure 18 -5 Approximate representation of the spectrum of energies E' of a scattered 
electron of initial energy E for scattering at (a) a forward angle from a nucleus, (b) a larger 
angle from a nucleus, and (c) a relatively large angle from a proton. In case (c) inelastic 
peaks are seen at mass W of 1.24, 1.51, and 1.69 GeV/c 2 , and the quark elastic peak is 
smeared over the continuum by Fermi momentum. 

to its Fermi momentum divided by c, resulting in a considerable spreading of the 
peak. In addition, the scattered electron energy E' is not the most appropriate kine-
matic variable to use to see the effect. Unlike the elastic and inelastic peaks, this con-
tinuum remains large as the momentum transfer is increased, which is characteristic 
of scattering from a pointlike object. 

Thus using both neutrinos and electrons, which are pointlike probes, to scatter 
from nucleons, it became increasingly evident in the late 1960s that the nucleons were 
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not elementary particles but that they had a structure. The results of these and other 
experiments could be explained to a surprising degree of accuracy by the simple par-
ton model proposed by Feynman in 1969. In this model the partons acted as almost 
free, pointlike constituents. The partons participating in the electron or neutrino 
scattering discussed above are those which interact electromagnetically or weakly. 
However, the lepton-nucleon scattering experiments also demonstrated that there 
are some partons which are inert to leptons. It was found that the partons which 
were responsible for the scattering of leptons made up only about half the energy-
momentum available in the nucleon. The nature of these inert partons will be dis-
cussed in Section 18-5. In that section also there will be an explanation of how the 
partons, which must have large binding energies and be relativistic, can act like al-
most unbound, nonrelativistic particles, as required in the parton model. 

18-3 UNITARY SYMMETRY AND QUARKS 

The experimental evidence for partons was obtained in a climate in which there had 
been proposed numerous theoretical models for composite particles. The first attempt 
along these lines was by Fermi and Yang in 1949. Although their model was not cor-
rect, it has in simplified form important features of a later successful model and hence 
will serve as a good introduction to that more complicated theory. 

If it is suspected that particles are composites, it is natural to assume that of the 
known particles a few are elementary and the rest are made up of combinations of 
those few. Taking this point of view, Fermi and Yang noted that the pion—the only 
other hadronic particle then established—could be considered a composite of the 
nucleon and the antinucleon. Another way of saying this, in terms of isospin T and 
its z component T2 , is that a particle of isospin 1/2 (the proton p or neutron n) can be 
combined with an antiparticle of isospin 1/2 (the antiproton p or antineutron n) to 
form a particle (the pion n) of isospin 1. Recalling that p and n have  T. = + 1/2 and 
p and n have  T. = —1/2, we have the triplet combinations which are just like those 
for spin in (9-18): 

TZ  = + 1 from (+ 1/2,+ 1/2) is equivalent to ph,  which makes n+ 

TZ  = 0 from [(+ 1/2, — 1/2) + (-1/2,+ 1/2)]/J is equivalent to 
(pp + nn)/V2, which makes n°  

T. = —1 from (-1/2, — 1/2) is equivalent to np, which makes It - 

The  n°  is the symmetric combination of isospins (ignoring charge conjugation sign 
conventions which are irrelevant here), with 1/ \/-2-  for correct normalization. The 
antisymmetric combination, (pp — nn)/-12-, would have T = O. This singlet could be 
associated with the n° meson, but that particle was not known in 1949. Note that if 
the nucleon and antinucleon have spins that are essentially antiparallel, the spin of 
the n is correctly 0 and its parity properly odd, since nucleon and antinucleon have 
opposite parities. 

To prepare for the more interesting and complicated model to be discussed shortly, 
we shall put the above results into the language of group theory, without actually 
using any group theory, which the student is not expected to know. Isospin plays a 
central role in making the particle combinations. Just as angular momentum con-
servation comes from rotational invariance in real space, so isospin conservation 
arises from isospin invariance in charge or isospin space. Now the rotational trans-
formations in either real or isospin space form a group called the SU(2) group, which 
stands for the Special Unitary group in 2 dimensions. Under such a transformation 
a nucleus of A nucleons, of which Z are protons and A — Z are neutrons, would be 
changed into one with Z' protons and A — Z' neutrons, without any change in its 
properties so far as the strong (nuclear) interactions are concerned. This is what is 
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meant by isospin invariance or rotational invariance in isospin space. The simplest  

representation of the group SU(2) is that having T = 1/2 and containing p and n.  
This is called the 2 representation from the number of components, since 2T + 1 =  

2(1/2) + 1 = 2. The other simple representation is called the 2 and contains p and  
n, and hence also has T = 1/2. The one result of group theory that we need is that  

larger representations of that group can be made from these simpler ones. We have  

just seen that the 2 and 2 representation can make a singlet and a triplet, or 2 Qx 2 =  

1 Q+ 3. The circles around the symbols indicate that although the results are like sim-
ple arithmetic, we are dealing with groups. The singlet and triplet are said to be  

irreducible because they cannot be transformed into each other. Thus (p,n) and (p,n)  
make the singlet r7° and the triplet ir +  n° , - . This is just a fancy way of saying that  

two spins 1/2 (with 2 components each) can add to give spin 0 and spin 1 (with 1 and  
3 components, respectively).  

Thus SU(2) classifies many of the hadrons just using T. However, when strange  
particles were discovered, SU(2) was obviously no longer adequate to classify the  

particles having strangeness. If it was to be useful at all, a group of greater dimen-
sionality was needed, and in 1961 Gell-Mann and Ne'eman independently proposed  

using the group SU(3). This permitted introducing another quantum number, which  

could be strangeness. However, a related quantity which is called hypercharge Y and  
is just the sum of strangeness S and baryon number B (i.e., Y = S + B) is more  
convenient, since it treats baryons and mesons on an equal basis. Just as the 2 and  

2 were the simplest representations of SU(2), so the 3 and the 3 are the simplest  

representations of SU(3), and we shall have much more to say about these shortly.  

For mesons the 3 and 3 can be combined to produce a singlet and an octet, or  

3 Qx 3 = 1 Q+ 8. The octet of mesons having spin 0 and odd parity is of particular  

interest, and it is shown in Figure 18-6, which plots the hypercharge Y against T... It  
will be noticed that the Tc °  and 17 °  both occupy the Y = TZ  = 0 position, but we have  
already seen that one has T = 1 and the other T = 0. The singlet is the a7 ° ' (958) with  
T= 0.  

Note that all the members of the multiplet have the same spin and parity. In the  

limit of exact SU(3) symmetry they would also all have the same mass. Since the ir,  
K, and n  masses are quite different, that symmetry is badly broken. This is our first  

example of what is called a broken symmetry, but we shall encounter more later.  

Regardless of the symmetry breaking, each such multiplet would have a different  

central mass. Several such multiplets are now known. One example is the spin-one,  

odd-parity vector mesons consisting of the p, w, and K* (1891).  
Baryons are formed in a different way, combining three 3 representations, or  

3 0 3 Qx 3 = 1 O+ 8 O+ 8 O+ 10. The octets have exactly the same TZ  and Y quantum  
numbers as for the meson octets, as Figure 18-7 shows in the case of the spin-1/2,  

+ 1  

Y o  

K° 	K +  

7r- 71 0  

0  71+  

K - 	K°  

I 	I 	I 	Figure 18-6 The odd parity, spin 0 meson octet in 
— 1 — 1/2 	0 +1/2 +1 a plot of hypercharge Y against the z component of  

TZ 	 isospin T..  
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Figure 18-7 The even parity, spin 1/2 baryon octet. 

even-parity baryons. Again, the A °  with T = 0 and E°  with T = 1 occupy the Y = 
TZ  = 0 position. Since this octet also has the nucleons and E, it includes most of the 
baryons we have discussed so far, but other octets with different spins and parities 
are now known. 

The 10 representation, or decuplet, is particularly interesting for learning more 
about the structure of the particles, as we shall see. It is shown plotted in Figure 
18-8. In the decuplet only the S2 -  decays by the weak interactions, while the rest of 
the multiplet consists of strongly decaying particles, of which the A(1232) has been 
specifically discussed in Section 17-7. All of the particles in the decuplet have spin 
3/2 and even parity. 

Even from this brief description we can see that SU(3) was useful in bringing some order out 
of the chaos of particles. However, this theory of unitary symmetry and, in particular, its 
specification of how SU(3) symmetry was broken, did much more in making successful pre-
dictions. Most impressive was the prediction of the quantum numbers and mass of the f2 -
before it was discovered in 1964. However, we no longer need to know about these details of 
the theory because it has been superseded by the hypothesis of quark constituents, and it is 
much easier to understand the successful result in terms of the quarks. 

In 1964 Gell-Mann and Zweig independently realized that the 3 representation 
could be more than a mathematical construct and could describe more fundamental 

+ 1 —  A - (1232) 	0 0 (1232) 	A + (1232) p+ (1232) 

0 — E - (1385) 	10(1385) 	i+  (1385) 

Y 

g- (1530)  ,1,7+  (1530) 

-2 st -  

I 	I 	I 	I 	I 	I 	I 
-3/2 -1 -1/2 	0 +1/2 	+1 +3/2 

T., 

Figure 18-8 The even parity, spin 3/2 baryon decuplet. 
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constituent particles. Gell-Mann called these particles quarks. Just as in the SU(2) 
case in which the 2 representation was a T. = + 1/2 particle (the p) and a T. = —1/2 
particle (the n), so in the SU(3) case the 3 representation gave three fundamental 
particles. Unlike the Fermi-Yang model, these constituents could not be known par-
ticles. For example, if three of them are needed to make a baryon, they must each 
have baryon number B = 1/3. The decuplet of Figure 18-8 will be used to determine 
other quark quantum numbers. Since the S2 -  has strangeness S = — 3, it must be 
made up of three quarks each having S = —1. Thus one of the quarks, which shall 
be called the s quark, has S = —1 and T. = 0, since the S2 -  has T = TZ  = 0. To make 
other members of the decuplet, the other two quarks, called the u quark and the d 
quark, must have S = O. To make the A ++ , which has T. = 3/2, would require three 
quarks each with T. = + 1/2; call this one the u quark. To make the A -  with T. = 
— 3/2 would require three quarks each with TZ  = — 1/2; call this one the d quark. If 
the quarks are really the constituents that make up these particles, they must obey 
the Gell-Mann-Nishijima relation, (17-36), just as the particles do. Using this, the 
charges of the quarks can be determined. The charge in units of the electron charge is 
given by the following: 
For the up (isospin direction) or u quark 	

11 

	

Q=TZ + 2(B+S)=2+2(3+01=+3 	( 18-1) 

For the down or d quark 	
jjjjj 

 

	

Q=TZ +2(B+S)= —
+ 2 (3+0 = — 3 	(18 -2) 

For the strange or s quark 

Q=0+2(3
-1) = — 3 	 (18-3) 

We therefore get peculiar fractional charges.  Experimental searches for quarks have 
sought this unique signature. Despite extensive attempts, the results have been gen-
erally negative. When QCD is discussed in Section 18-7, reasons will be presented 
for believing that quarks will never be detected directly, and that they are perma-
nently confined to the hadrons they make up. 

To show that these charge assignments work, consider the S2 -  which is sss (that 
is, it consists of three s quarks). Each s has charge —1/3, giving the correct total 
of —1. The A - is ddd, and again the —1/3 quarks add properly to —1. The A + + is 
uuu, and three charges of + 2/3 give the expected + 2. 

Example 18-2. Show that the quark quantum numbers give the corresponding quantities for 
the E0(1385) particle. 
► The E °(1385) has Q = 0, B = 1, S = —1 (hence Y = 0), T = 1, and TZ  = 0. It is made up of 
one of each kind of quark, or uds. Taking the u, d, and s properties in order, we have 

Q=+2/3-1/3-1/3=0 
B = 1/3 + 1/3 + 1/3 = 1 
S =0+0-1=-1 
T = 1/2 + 1/2 + 0 = 1 

TZ= +1/2 — 1/2+0=0 	 • 

To give appropriate spin to all the particles it is necessary that each quark have spin 
1/2. For instance, take the E °(1385), which has spin 3/2. In this case if the three quark 
spins are essentially parallel, they will give the proper value of 3/2. Because they 
cannot be determined relative to anything else, the s quark parity and the parity 



of either the u or d quark must be defined as even. Since the A , which is ddd, and 
A++, which is uuu, are two charge states of the same particle, they must have the 
same parity. Thus ddd and uuu have the same parity, so the u and d parities mus t. 
be  the same, or all three quarks have even parity. Because the spin of the E °(1385) or 
of the A can be made 3/2 from just quark spins, no relative quark angular momentum. 
is required. Thus there is no angular momentum factor (i.e., (-1) 1 ) in determining 
the E°(1385) or A parity. It will be just the product of the three even quark parities, 
in agreement with experiment. 

While the s quark is an isospin singlet, since no other quark possesses strangeness, 
the u and d quarks form an isospin doublet. This implies that the  u and d quarks 
are alike except for T. and Q. It would be more correct to turn this statement around. 
and say that the real basis of isospin is that there are two quarks which have, aside 
from electromagnetic effects, the same mass and interactions. Since isospin utilizes the 
well developed mathematics of spin, it is a very useful concept. But its content can 
always be reduced to this simple quark basis. Thus the proton and neutron have the 
same strong interaction because they are, respectively, uud and ddu, and substituting 
a d for a u quark makes no difference in the strong interaction. Understanding isospin 
and its conservation then means understanding why these two quarks exist which 
differ in just their electromagnetic properties, and so far there is no answer to that 
question. 

This similarity in the masses of the u and d quarks is apparent from the small mass 
differences among isospin multiplets, such as between p and n. The difference between 
the u or d quark mass and that of the s quark is responsible for the success, men-
tioned above, in predicting the mass of the S2 - . However, that was not known at the 
time, and the prediction was made on a different basis. In going from row to row in 
Figure 18-8, that is, from Y = + 1 to Y = — 2, each step means substituting an s 
quark for a u or d quark. Thus A has no s, /(1385) has one s, E(1530) has two s's, 
and Sr has three s's. Now strange particles are more massive than their ordinary 
particle counterparts, so the mass of the s quark must be greater than that of the u 
or d quark. Thus each step in Y means adding the mass difference between the s 
quark and a u or d quark. To avoid electromagnetic mass differences we can compare 
the differences between the masses of the A - , E - (1385), (1530), and S2 - . The first 
two give a mass difference of about 150 MeV/c 2, so in — m„ or d ^ 150 MeV/c2. We 
can then predict, correctly, that the Sr is more massive than the (1530) by about 
150 MeV/c2 . 

Detailed quark models have been constructed which predict the masses of essentially all the 
hadrons, based on just a few constants which have to be determined from measured masses. 
The constants include not only the quark masses, but also the details of the potential well in 
which the quarks are placed and the degree of such effects as spin-spin and spin-orbit inter-
actions. The process is very like that of finding nuclear binding energies in the shell model. 
The success of such models adds credence to the quark picture of hadrons. 

We close this section by discussing the quark content of mesons. In SU(3), mesons 
are combinations of 3 and 3. That is, they are combinations of a quark and an anti-
quark. For example, the n+ is ud. This is true since the antiquark, being a fermion, 
has opposite charge to the quark, so that d has Q = + 1/3 and hence T = + 1/2. 
This quark assignment correctly gives Q = + 1 and T. = + 1 for the n+, since u has 
Q = + 2/3 and .T  = + 1/2. The n -  is the charge conjugate ûd, while the it°  is a 
combination of uû and dd. Since the s will have S = + 1, opposite to that of the s, the 
K +  meson is us, and the K °  is ds. The quark-antiquark pairs forming these pseudo-
scalar mesons are in a 1 S0  state, whereas the same combinations in a 3S, state form 
the vector meson octet. 
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Figure 18 -9 Quark flow diagrams showing (a) 
strangeness conservation (production of an s§ 

 pair of quarks) in the strong reaction i + p --►  
A°  + K u  and strangeness violation in the weak  
decays (b) A° — p+n and (c)K° a rc +  + ir 
In the decays the weak interaction is repre-
sented by a circle, but this will be treated more 
completely in Section 18-8. 

Just as the meaning of isospin is simplified in the quark picture, so also is strange-
ness. The conservation of strangeness in the strong interaction, such as n + p — 

 A°  + K° , merely means that an ss pair must be created. This is a manifestation of 
the requirement that any fermion has to be created in a fermion-antifermion pair. 
The process is shown in Figure 18-9a, which is a Feynman diagram on the quark 
level. It represents the history of the quarks as a function of time, which increases 
to the right. Note that the u and û quarks annihilate and an ss pair is produced. 
Strangeness nonconservation in the weak interaction, such as A °  p + it  -  and 
K° --> rc +  + zr- , is then the conversion of the s or the s to a nonstrange quark. This 
is shown in an oversimplified way in Figures 18-9b and c, where it is seen also 
that in each case a uû pair must be created. In Section 18-8 on the electroweak 
interaction this conversion of one type of quark to another, which must involve the 
W intermediate boson, will be treated more correctly. 

18-4 EXTENSIONS OF SU(3) —MORE QUARKS  

The unitary symmetry theory of SU(3) was successful in classifying particles then 
known and in predicting the existence of others found later. It was particularly useful 
in introducing the u, d, and s quarks. In a development in 1967 which will be discussed 
in Section 18-8 yet another type of quark was needed to explain some experimental 
results. It was not until 1974 that direct evidence for the new quark was found. The 
new quark has to possess a property like strangeness which was called "charm." In 
other words, there needed to be a new quantum number making this c quark different 
from the others. The u, d, s, and c quarks are then of different types, or `flavors," as 
these properties are usually designated. 

The 1974 experiments actually detected a meson which was the combination cc 
 and hence did not itself possess charm, since c has the charm quantum number ' = +1 

and c has = —1. The ce is a vector (spin 1, parity odd, charge conjugation eigen- 
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Figure 18-10 Electromagnetic decay of the cc 
state IN into a p +  p -  pair. 

value negative) meson, just like the p, w, or çp, and just like those mesons it can decay 
electromagnetically (via a virtual photon) into a p + it -  pair. This is shown in Figure 
18-10 and was the means by which it, designated the J meson, was detected in an 
experiment at the Brookhaven National Laboratory. At about the same time an 
experiment at the Stanford Linear Accelerator Center (SLAC) also detected this par-
ticle, there designated the i/i meson, by quite a different means. 

At SLAC a colliding beam accelerator, called SPEAR, was used. In this device 
counter-rotating beams of e +  and e -  are guided in a ring by magnets, colliding at 
designated positions (two at SPEAR). Particle detectors in the interaction regions 
measure the products of the collision. These detectors have to be very large and 
complex to study the results of each collision, since the collisions are relatively few. 
The more usual type of accelerator, in which a beam hits a fixed target with an 
extremely large number of particles in it gives vastly more collisions. However the 
collisions are in the laboratory system, whereas they are in the center of mass system 
in a colliding beam accelerator. This makes a vast difference in the available energy. 
For example, an e +-e -  collider with 10 GeV (=10,000 MeV) per beam gives a col-
lision with 20 GeV in the center of mass. To get that same energy in the collision 
of an e +  with an e -  at rest would require a laboratory energy of about 4 x 10 5  GeV! 

When the e +  and e -  collide they produce a virtual photon, which then can turn 
into other particles. Because the tfi/J is a vector meson, it has the same quantum 
numbers as the photon, so it is readily produced. It can decay electromagnetically, 
as in Figure 18-10, but since it is so massive (3097 MeV/c 2) it would be expected to 
decay with a very short lifetime via the strong interaction into hadrons. Thus it would 
be expected to have a very large mass width ( 10 2  MeV/c2) like the strongly decay-
ing particles discussed in Section 17-7. Instead it has a strikingly narrow width, which 
is the reason it was discovered. The mass width, which can be deduced from measure-
ments although it is smaller than the experimental resolution, is only 0.06 MeV/c 2 . 
Why does such a small width occur? The problem is that the cc state could decay 
readily into two mesons, one containing a c and the other a c but the masses of even 
the least massive mesons (called the D meson and the D meson) with such constituents 
are too large. That is, MD + MD > Mop so the decay cannot occur. Any other 
hadronic decay, such as into 37t's, is greatly inhibited or, as it is said, Zweig forbidden. 
The e + -e -  production of the '/J and its subsequent Zweig forbidden decay into 
7C +  + ic -  + n°  is shown in_Figure 18-11. The forbiddenness comes from the difficulty 
in going from the cc annihilation to the unconnected uû (or dd—one is drawn in the 
figure but both occur) pair production. It was the narrowness of the /i/J peak that 
indicated a new quantum number was involved. 

Figure 18 -11 Production of the cc state electromagnetically by e + - e -  annihilation and 
its subsequent Zweig-forbidden strong decay into pions. 
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This same reason for the inhibition of a strong decay was actually encountered 

before, in Section 17-7. There it was mentioned that the cp °  vector meson did not 
decay into pions. The reason is that the (p °  is an ss state, so it can decay readily only 
into two mesons, one of which carries the s and the other the s. In this case the mass 
of the two K mesons is slightly smaller than the mass of the (p °  so such a decay is 
allowed. 

An excited state of cc, called >y', at 3685 MeV/c 2  was discovered in 1975 at SPEAR, 
and subsequently another state t/i" at 3767. Since the i/i" is massive enough to decay  

into D + D, it has a large mass width. Subsequently other so-called charmonium states  
(that is, states of cc), shown in Figure 18-12(a), were discovered. The t/i states are (like  

the other vector mesons) 3S 1  states of cc, whereas the x states shown are 3P and hence  
have opposite parity and charge conjugation quantum numbers. The II, state at 2976  
is a pseudoscalar ( 1 S ( ) cc combination. If the quark model is correct, then the cc states 
are analogous to those of the  e +  e -  in positronium (Sections 2-7 and 4-7)—both are 

(b)  

3s  
1 

n = 2  
3 

P  P 3 
0  
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3S  
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0 -+ 	1-- 	0++ 	 1++ 	2++ 	 JPC  

Figure 18-12 Energy levels of (a) charmonium (cd) and (b) positronium (e +  e - ). The rela-
tive energy of the level is plotted against its quantum numbers, which are designated as  
JPC , where J is the spin, P is the sign of the parity, and C is the sign of the charge conju-
gation quantum number. The angular momenta of the fermion-antifermion cd system is  
the same as that given in spectroscopic notation for the corresponding state in the e + e -
system. 
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fermion-antifermion pointlike particles in a potential well. Indeed Figure 18-12b 
shows that the positronium levels are remarkably similar, despite a difference in the 
energy scale of a factor of 10 8 ! This is strong evidence for the quark model. 

The charmonium (ce) states do not possess charm, and actual observation of a 
particle having that quantum number came later. Hints of the decay of such a particle 
were seen in a neutrino experiment at Fermilab, and one bubble chamber event at 
Brookhaven was interpreted as the A, particle. Charm was clearly seen at SPEAR 
in 1976 (the D°  meson) and then in photoproduction at Fermilab (the A c  baryon). A 
few more states have since been observed, but a large number are possible. 

If thought is given to extending SU(3) to SU(4) to include charm, the possible 
number of particles is greatly increased. Consider Figures 18-6, 18-7, and 18-8 made 
three-dimensional, with charm as the third axis. Because the c quark mass is much 
larger than those of the u, d, or s quarks, SU(4) is a much more badly broken sym-
metry than SU(3). Recall that the symmetry requires all the particles in a multiplet 
to have the same mass Thus it is better simply to consider the additional combina-
tions that can be made with the added freedom of including one to three c quarks 
in making baryons and a c or a ë in making mesons. As examples, the D +  is cd, the 
D°  is eû, the A c  is udc (i.e., like the A, but with c replacing s), and the F+  meson is 
cs. In making those combinations we note that the c quark must have Q = + 2/3, like 
the u quark. Since it has charm ' = + 1, the now extended Gell-Mann-Nishijima 
relation 

Q=TZ +(B+S+')/2 	 (18-4) 
would (with B = 1/3 again and S = 0) properly give TZ  = 0. The c quark must have 
TZ  = 0, since as a singlet (the only quark with 9) it must have T = 0. 

The much-amended equation which is presently (18-4) is still not complete, for 
there are at least two more flavors of quarks. Each of these two quarks possesses a 
separate quantum number, analogous to strangeness or charm. One quark is labeled 
b for bottom or "beauty" and the other is labeled t for top or "truth." Like strangeness, 
the W, <4, and „% quantum numbers are conserved in the strong and electromagnetic 
interactions and change by one unit in the weak interaction. This simply means that 
the number of quarks minus antiquarks for each of s, c, b, and t must remain constant 
in strong or electromagnetic interactions, while in the weak interaction there is a 
change of quark flavor with the preferred sequence being t —* b —p c —* s. Thus a 
favored decay is D°  K -  + n +, or cû -+ sû + ud, which has Ace = 1 and c —* s. 

Because of the uniqueness of their M or . quantum numbers, the b and t quarks 
must each be T = 0, hence TZ  = 0. As in the casë of other quarks, they each have 
baryon number B = 1/3. The b quark with i = —1 has Q = —1/3, and the t quark 
with .J = + 1 has Q = + 2/3. These assignments are compatible with 

Q=TZ +(B+S+ + +<%)/2 	 (18-5) 
which, hopefully, is the final form of that relation, and which should now apply to 
all hadrons. The quark quantum numbers are summarized in Table 18-1. 

The b quark is well established. In 1977 at Fermilab narrow resonances in the mass 
range of 9.5 to 10.5 GeV/c 2  were seen in the mass spectrum of muon pairs, similarly 
to the discovery of the narrow J at Brookhaven. It was deduced that two or three 
bb resonances were present. The lowest mass state was called the upsilon, or T, and 
the higher states the T' and T". One year later at the DORIS e + e_ collider in 
Hamburg the T and Y'' were clearly resolved, and later at the CESR collider (Cornell) 
the T" was observed distinctly, and a fourth state (T"') was also identified. These are 
all 3S 1  states of bb with different radial excitations, analogous to the principal quan-
tum number of atomic physics. The four states are at 9.46, 10.02, 10.35, and 10.57 
GeV/c 2, with energy spacings well predicted by the quark model. The first three states 
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Table 18-1 Quark Quantum Numbers, Utilizing 

Q= TZ +(B+S+W+.4+.%)/2 

Quantum Number d u 
Quark Flavor 

s 	c b t 

Charge, Q (in units of e) — 1/3 + 2/3 —1/3 + 2/3 —1/3 + 2/3 
Isospin, T 1/2 1/2 0 0 0 0 
Isospin z component, TZ  —1/2 + 1/2 0 0 0 0 
Baryon number, B 1/3 1/3 1/3 1/3 1/3 1/3 
Strangeness, S 0 0 —1 0 0 0 
Charm, ce 0 0 0 + 1 0 0 
Bottom (beauty), a 0 0 0 0 -1 0 
Top (truth), .9 0 0 0 0 0 + 1 

are very narrow; e.g., the Y has the same width as the iJi , 0.06 MeV/c2 . The fourth 
is quite broad, indicating that its mass is above that necessary for decay into a BB 
pair of mesons, where the B +  is bu and the B°  is bd. By running the CESR acceler-
ator at an energy corresponding to the peak of the Y' mass, the B meson has been 
identified, and it has a mass of 5.27 GeV/c 2 . 

Thus quark masses get rapidly heavier in going from one flavor to the next. We can get a 
rough idea of the effective mass of the quarks inside a hadron from the hadronic masses. Thus 
the u and d quarks must have a mass close to one-third the nucleon mass, or about 0.3 GeV/c 2 . 
From the mass differences in the baryon decuplet we have seen that m s  — mu  or  d = 0.15 
GeV/c 2 . Hence the strange quark mass is about 0.5 GeV/c 2 . We can check this since the 0 ° 

 meson (1.02 GeV/c2) is an ss state, so the s mass is about half of 1 GeV/c 2 . Similarly using 
the 0  masses, the c quark must be about 1.7 GeV/c 2. From the T mass the b quark must be 
about 5 GeV/c 2 . From this progression, the t quark can be expected to be quite heavy. Indeed, 
late in 1983 experiments indicated that it may be around 30 GeV/c 2 . One caveat must be intro-
duced: What is meant by a quark mass depends on the application, since quarks are not ob-
served in the free state. 

Although at the time of writing the evidence for particles possessing the t quark is not con-
clusive, there is strong reason to believe that this quark exists. The reason will be given in 
Section 18-8, but suffice it to say now that it has to do with a symmetry between quarks and 
leptons. Both classes of particles are, as far as it is known at present, pointlike and apparently 
elementary. The symmetry is that there should be equal numbers of quarks and leptons. There 
are 6 leptons (e, v e, µ, v µ , r, vt) and there then ought to be 6 quarks (u, d, s, c, b, t). 

One way that has been used to search for the t quark is to look at the total cross 
section for e+ + e-  —* hadrons, because this goes through an intermediate step in 
which the virtual photon from e +-e -  annihilation produces a quark- antiquark pair. 
This is shown in Figure 8-13a. The quark and antiquark subsequently become 
hadrons, which are observed experimentally. This process can be compared with 
e +  + e-  µ+ + µ-, shown in Figure 18-13b. The relative rates for these two pro-
cesses can be obtained by closer examination of the diagrams. The first part of both, 
e+-e -  annihilation to produce a virtual photon, is the same and hence does not 
enter into the relative rates for the two processes. In an electromagnetic interaction 
the photon coupling is to the charge, which is e for the muon and Qe for the quark, 
where Q is 1/3 or 2/3. The diagram represents an amplitude, and the probability or 
cross section is the square of the amplitude. Note in passing that e2 , which enters 
into the probability for a process, is usually expressed as the dimensionless coupling 
constant, e2/4rc€°hc, which is also called the fine structure constant. Hence the ratio 
of the cross sections for the two similar processes at a given energy will be just the 
ratio of their coupling constants (or the squares of the charges), that is Q 2 . The photon 
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(a) 

Figure 18-13 Annihilation of e +  with e -  to 
produce a virtual photon. In (a), the photon 
produces a quark-antiquark pair, which sub-
sequently forms hadrons. In (b) the photon 
produces a µ + f -  pair. The cross section 
for the process depends on the coupling of 
the photon to the charge of the fermion

-antifermion pair, which is therefore shown 
at each vertex. 

will couple to as many quarks as is allowed energetically. Thus at a given beam 
energy the ratio 

R = u(e
+  + e-  —> hadrons) 	 2 

	

6(e + + e-  u + + ,u -)

_ 
Qa 	 (18-6 ) 

is the sum of the squares of the quark charges for all quarks which can be produced. 
It follows that at the threshold energy for producing the t quark, R ought to increase 
by (2/3) 2  = 4/9. This is appreciable, since Q? for u, d, s, c, and b quarks is just 
2(2/3) 2  + 3(1/3)2  = 11/9. We shall see in the next section how well the latter predic-
tion is borne out. 

18-5 COLOR AND THE COLOR INTERACTION 

With six leptons and six quarks there are already an appreciable number of elemen-
tary particles, but even this is not sufficient. Consider the difficulty encountered when 
the quark structure of three members of the 3/2 +  baryon decuplet is examined closely. 
Recall that the A is made up of three d quarks, the A ++  of three u quarks, and the 

- of three s quarks. To get spin 3/2, the spins of all the quarks must be essentially 
parallel since the spin of each is 1/2. To then have even parity, the quarks must all 
have zero relative orbital angular momentum. Therefore, all the quarks would be in 
the same quantum state. Since the quarks are fermions, for them all to be in the 
same state would violate the Pauli exclusion principle. Each of the quarks must there-
fore have a different value of some new quantum number, and the quantum number 
must have at least three different values. Because this quantum number has never 
been observed, the A - , A + +, and û - must not possess it, even though their constit-
uents do. Thus the quantum numbers assigned to the three quarks have to cancel 
to give zero. 

These considerations suggest an analogy to color, since the three primary colors 
taken together are colorless. Then the observed A -, A + +, and 0 -, described as "color 
singlets," are "colorless," while each of their three constituent quarks possess a differ-
ent "color." The three possibilities for the quantum number "color" will here be des-
ignated as the subtractive primary colors red, yellow, and blue, since these three mix 
as pigments to give colorless black. Often red, green, and blue are used, since these 
additive primary colors when mixed as light give colorless white. Note that this color 
analogy works for mesons as well as baryons, since the color of a quark will just 
cancel the anticolor of the antiquark to which it is bound. Since the resulting particles 
must be colorless, there are just two combinations, quark-antiquark and three quarks, 
which achieve this, and hence only these combinations of quarks produce bound 
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states. Providing some understanding of the problem of binding and eliminating an 
apparent violation of the exclusion principle are both important gains. However, 
these gains are obtained at the cost of having 18 quarks (three colors of each of six 
flavors) and yet another quantum number. 

Is there experimental evidence for color? Returning to the subject at the end of the 
previous section, we see in Figure 18-14 measurements of R as defined in (18-6). At 
energies high enough to be above resonances for vector meson production (> 10 GeV 
center of mass beam energy), the measurements of R from the PETRA collider at 
DESY in Hamburg have the constant value of 11/3. At this energy the u, d, s, c, and 
b quarks can contribute, and the square of the charges adds to 11/9. However, if there 
are three times that number of quarks because of the color degree of freedom, then the 
value of 11/3 is expected. The excellent agreement between this expectation and the 
experimental result gives direct evidence for color. Note also from the figure that up 
to a mass value of about 37 GeV/c 2  the  tT state has not appeared. This could pro-
duce a resonance, but also it would surely increase R by 3 (2/3) 2  = 4/3. 

The existence of the quantum number which is conveniently called color has a sig-
nificance well beyond satisfying the exclusion principle or providing a rationale for 
the way in which quark combinations bind. The color quantum number is to the true 
strong interaction as the electric charge is to the electromagnetic interaction. Just as 
the electromagnetic interaction is the exchange of photons emitted and absorbed by 
electric charge, so the real strong interaction is the exchange of gluons emitted and 
absorbed by color "charge." This color interaction is to be distinguished from the 
interaction between hadrons, sometimes referred to as the nuclear interaction. The 
latter has been called the strong interaction, but the true strong interaction is that 
due to color. That which we have been calling the strong interaction is to the color 
interaction much as the van der Waals interaction (Section 13-2) between molecules 
is to the electromagnetic interaction. In other words, the basic strong interaction is 
that which binds quarks together to form particles, the exchange of which gives rise 
to the apparent strong interaction. It is ironic that because its manifestations are so 
indirect, the very existence of this fundamental interaction was not even guessed until 
the 1970s. 
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Figure 18 -14 The ratio R of the cross sections for e +  + e -  -> hadrons to e +  + e -> µ+ + 
p -  is plotted versus the energy E the e +  and e - provide in their center of mass collision. The 
positions of the sharp vector meson resonances (p, w, c-p, Ili, Ili', T, T', T") are shown. The data 
come from many storage ring experiments, with the points above 10 GeV from PETRA 
(Hamburg). In this upper energy region, if u, d, s, c, and b quarks, each with three colors, 
contribute, R should be 11/3. 
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Because of its importance as one of the four fundamental interactions of nature, 
it is obviously necessary to discuss the color interaction further. Important features 
of the color interaction will be described in this section, but the theory of that inter-
action will be taken up in Section 18-7 after necessary background information has 
been supplied in the next section. That theory is called quantum chromodynamics 
(QCD), combining the concept of color with guidance from the most successful theory 
in physics, quantum electrodynamics (QED). 

Since the theory will come later, let us seek the features of the interaction empiri-
cally, instead of deriving them from QCD. In Figure 18-12 the similarity between 
the energy levels of positronium and charmonium was seen. For this to be true it is 
necessary not only that the  e +  e -  and cc both be pointlike fermion-antifermion pairs, 
but also that the potential which describes their interaction be of similar form. For 
positronium that Coulomb potential is proportional to the square of the electric 
charges and inversely proportional to the distance between them. Since there is a 

 factor of 108  difference in energy scale between charmonium and positronium, the 
strength factor (square of the charges) is obviously irrelevant to the similarity of the 
spectrum. However, the 1/r distance dependence is crucial. A potential with a 1/r 
dependence is obtained only if the exchanged particle is massless, which means that 
the gluon must be massless like the photon. 

If instead of merely exploiting the similarity between positronium and charmonium 
energy levels, a detailed fitting of the charmonium levels is performed, the form of 
potential needed turns out to be 

V =  -
k l

+ kZr  (18-7) 

The first term is the expected Coulomb-like form due to the exchange of massless 
gluons, which are emitted and absorbed by color charge. The constant k 1  can be 
fixed from one level separation, and then it not only works for the other levels, but 
for those of the T states as well. The unexpected second term is all-important in 
providing the distinguishing features of the color force. First, being proportional to 
r, this term is small at small distances, a feature which is called asymptotic freedom. 
Thus the tli and T energy levels are determined mainly by the first term. The color 
potential is weak at small distances because k 1  is very small. This short-distance 
weakness is the feature that makes the parton model work. When they are close to-
gether, the quarks are in a rather weak potential, and hence they act as almost free, 
nonrelativistic particles. Another aspect of the parton model is now also explained: 
In Section 18-2 it was stated that the lepton-nucleon scattering experiments gave 
evidence for the existence of partons without weak or electromagnetic interactions. 
The gluons are those inert partons, since they possess color charge, but not weak or 
electric charge. Electrons and neutrinos cannot scatter from gluons. 

Returning to the term in (18-7) proportional to distance and going to large r, we 
find that the potential gets very strong. This is the feature that confines quarks and 
gluons to the hadrons. The quarks and gluons cannot escape to be detected in the 
free state, and hence color is never observed directly. Implicit in this statement is the 
information which will be discussed in Section 18-7 that gluons possess color. This 
is an important distinction between photons and gluons, since photons do not carry 
electric charge, while gluons do carry color charge. 

A qualitative picture can be given of the process by which quarks and gluons are confined 
and only colorless particles are detected. Consider trying to separate a quark from a proton. 
The gluon field binding that quark increases in energy as the quark moves away from the 
other two quarks. As that energy increases it becomes more likely that the gluon (which carries 
anticolor as well as color) will break up into a quark-antiquark pair. The new quark would 
reconstitute the proton, and the new antiquark would combine with the separating quark to 
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Figure 18-15 (a) Electric lines of force between a 
positive and negative charge. (b) Color lines of force 
between a quark and an antiquark. The color lines are 
pulled together because of the interaction among the 
gluons carrying the color force. (c) Crude model of a 
meson in which the color force lines are drawn 
together into a rotating tube of force. (c) 

form a meson. In this way, colorless particles are produced until all the available energy is 
dissipated, and the quarks and gluons remain confined and unobservable. 

The color potential providing confinement can become very strong indeed, as we 
shall see from a simple calculation in the next example. Because the gluon possesses 
color, there is a very strong interaction between gluons, giving a characteristic form 
to the color force field. This is best illustrated by contrasting it with the electric force 
field, such as that between two charges, which is shown in Figure 18-15a. Since 
the photon carries no charge, there is no interaction between electric lines of force. 
However, the lines of force between a quark and an antiquark, shown in Figure 
18-15b, look quite different. The gluon-gluon interaction pulls these together. As the 
separation between the quark pair increases, the interaction energy increases, and 
the color lines get closer together. This is analogous to the quarks being tied together 
by rubber bands which stretch as the distance increases. 

Example 18 -3. Determine k 2  in (18-7) from the energy in the color lines of force between 
a quark and an antiquark by determining the angular momentum of this meson. 
■ Suppose the color lines of force have been pulled together until they form a tube, and the 
interaction energy is then so high that the masses of the quarks can be neglected in comparison 
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to it. If this system is now considered to be rotating, we have a crude model for a meson with  

angular momentum. We can use this to deduce k 2 ,  which will be the energy per unit length  
of the force tube, and also the second constant in (18-7). For definiteness, assume the ends of  

the force tube rotate at velocity c and that the tube has a half length of p, as shown in Figure  
18-15c. The total mass M of the system is given by  

P 

k 2  dr  

o 
^1 — v2/c2  

This is true since k 2  dr is the  rest mass  energy of an infinitesimal length dr so that its total 
relativistic energy is k 2 dr/.J1 — v 2/c 2  (see Appendix A). At a distance r from the center of the 
tube the velocity will be y  = cr/p. Making this substitution in (18-8) gives 

Mc 2  = 2k2 	
dr 	= xk

2p 	 (18-9)  

	

— r2/p2 	

Now the angular momentum of  the infinitesimal mass at the distance r from the center where  
the velocity is y is vrk2  dr/c 2 ,J1 — v2/c 2 . Thus the total angular momentum of the tube in  

units of h is  

2 
J=  

h 	,1 
o 

P 

f 	vrk 2  dr 	2k2 
P 

r2  dr irk2p 2  (Mc2 
)

2  
(18-10)  

c2N11 — v 2/c2 	h 
o 

cp Ji — r2/p2 2hc 2nk 2hc  
Although this is a crude model, the result that J cc M2  is in agreement with experiment:. 

If the mass squared of mesons of the same structure but differing in angular momentum 
is plotted against that quantity, a straight line is obtained with the slope dJ/d(Mc2)2 =  

0.9 GeV -2 . A similar plot, Figure 18-16, for baryons is more spectacular because there are 

Mc2  = 2  (18-8)  
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Figure 18-16 Baryon spins versus the square of their masses for three sequences: A has  
T = 3/2, S = 0, and spin J and sign of parity, P, expressed as JP  = 3/2 + , 7/2 + , 11/2 + ; A has  
T = 0, S = —1, JP  = 1/2 + , 3/2 - , 5/2 + , ; and E has T = 1, S = —1, JP  = 3/2 + , 5/2 - ,  
7/2 +  .... Particles for which the spin-parity is not well established at the time of writing  
have a question mark with their mass value in MeV/c2 .  
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more known examples. Again, straight lines and the same slope are obtained. According to 
the model this slope has the value 

d(Mc 2)2 
 — 0.9 GeV - 2  = (2irk2 hc) -1  

Solving (18-11) for k2  gives 
k2  = [27(0.9 GeV -2)(0.2 GeV-F)] -1  = 1 GeV-F -1 

	
(18-12) 

where we have used the convenient value hic = 197 MeV-F. 
Is this result reasonable? Since the proton has a rest mass energy of about 1 Gev and a 

radius of about 1 F, this is indeed a correct order of magnitude energy density for a hadron. 
Accepting this value, we then find that at a distance of a typical hadron radius of 1 F the 
confinement energy of the quark is about 1 GeV, which is a hundred times nuclear binding 
energies. Put another way, the force, which is constant with distance, is 10 15  GeV/m (-10 5 

 newtons), or about 10 tons on each pointlike quark! • 

18-6 INTRODUCTION TO GAUGE THEORIES 

In the previous section some of the features of quantum chromodynamics were dis-
cussed. This theory has provided a remarkably successful explanation of hadronic 
interactions. It is an example of a gauge theory. Another gauge theory is quantum 
electrodynamics, which has given more precise predictions than any other theory. 
Yet another gauge theory is general relativity. We shall be discussing an additional 
gauge theory which combines the weak and electromagnetic interactions and also 
has been extremely successful. In short, all the fundamental interactions in nature 
are described by gauge theories. Hence it is important to have at least a qualitative 
understanding of the content and approach of such theories. Since gauge theories 
stem from the concept of gauge invariance in classical electromagnetism, this subject 
will be explained qualitatively. Then a description will be given of how the ideas are 
extended to the quantum domain. (A simplified quantitative treatment of classical 
and quantum mechanical gauge invariance is given in Appendix R.) The final subject 
of this section will be a short description of a pioneering attempt to construct a gauge 
theory of the strong interactions. This was unsuccessful but was important to the 
later successful work, and it illustrates some of the needed procedures. The following 
section will provide some more information on QCD, followed by a section on the 
electroweak gauge theory, and then finally a brief discussion of grand unified theories. 

To start on familiar ground, we begin with classical electromagnetism. The fact 
that charge conservation is assured by gauge invariance has already been discussed 
in Section 17-8. In that demonstration only electric fields were dealt with. The inde-
finiteness of the scalar potential V is what is known as a global gauge symmetry. 
Changing the value of V everywhere has no physical effect. A squirrel can walk as 
safely on a high voltage transmission line as on a grounded one; he must simply 
avoid a large difference of potential. This global symmetry assures global charge 
conservation: the total charge in the universe is a constant. 

Can this global symmetry be converted into a local gauge symmetry, assuring 
local charge conservation? That is exactly what Maxwell did in 1868. While the de-
tails are spelled out in Appendix R, a summary of this point and other aspects of 
gauge invariance in classical and quantum electromagnetism covered in that appen-
dix will be presented here. Maxwell noticed that Ampere's Law in differential form 
was not consistent with the continuity equation connecting current flow and the rate 
of change of electric charge. To restore charge conservation in an arbitrarily small 
volume, he had to add a term involving the electric field to Ampere's Law, which 
otherwise deals with just the magnetic field. In other words, to convert global charge 
conservation to local charge conservation it was necessary to couple together the 
electric and magnetic fields. 
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This result can be put in a different way. Recall that the indefiniteness of the scalar 
potential V is a global gauge symmetry and leads to global charge conservation (see 
Section 17-8). Since it was necessary to introduce another field to get local charge 
conservation, it is equivalently necessary to introduce another potential, the vector 
potential A, to produce the same result. Just as the electric field can be obtained 
from V, so the magnetic field can be obtained from A. Indeed, Maxwell's addition 
to Ampere's Law has its counterpart in changing the way the electric field is ob-
tained from the potential, since now A is involved as well as V. The result is a local 
gauge symmetry: A and V are not unique for the given physical electric and magnetic 
fields. The corresponding local gauge invariance is that the equations determining the 
electric and magnetic fields, which are the only physical observables, are unchanged 
despite quite arbitrary, but correlated, changes in A and V. The correlation between 
A and V is important. Now V can be made different at any point (local symmetry), 
not just changed everywhere at once (global symmetry) because a compensating 
change can be made in A. To change a global symmetry into a local symmetry a 
new field had to be introduced, either A with V, or equivalently the magnetic field 
with the electric field. 

Although we shall not go into it, relativity also follows this pattern. In brief, the global 
space-time coordinate transformations of special relativity are turned into local ones by the 
addition of a field, gravity. The result is the gauge theory of general relativity. 

We turn now to electromagnetic gauge invariance in quantum mechanics Akin to 
the indeterminacy of the absolute value of the potential V is the fact that thé absolute 
phase of a wave function cannot be measured. As discussed in Section 5-4, a physical 
observable is the expectation value O of an operator O o, given by 

Ô = 
	

I*(x,t)  O0  (x,t) dx 

where x stands for x, y, and z. It is invariant under a global phase transformation 
P(x,t) 	'P'(x,t) = eie 'P(x,t) 	 (18-13) 

This is a global phase transformation because 8 is any scalar, not dependent on x or 
t. To demand local phase invariance would require the transformation 

'P(x,t) —*'P'(x,t) = e` O( .t)P(x,t) 
It is left to the student to put P'(x,t) into a free particle Schroedinger equation, 
and show that Y''(x,t) will not satisfy that equation because of the space and time 
derivatives. 

How can local phase invariance be obtained? If the classical procedure is followed, 
this would be done by introducing a new field to provide compensating local changes. 
If that is done the appropriate Schroedinger equation will no longer be force free, 
and so will no longer describe a free particle. The invariance will be manifested in 
the inability to distinguish whether particle motion is due to the local phase change 
or the new field of force. The compensating field needed is just the electromagnetic 
field. In the phase transformation if 8 = Qx(x,t), where Q is the charge of the particle 
involved and x(x,t) is an arbitrary function, then 

P(x,t) 	''(x,t) = eiQxcx,tnp(x,t) 	 (18-14) 
Since the electromagnetic field is now included, it is necessary when (18-14) occurs 

to make the same correlated gauge transformation on the potentials A and V as in 
the classical case. If the gauge and phase transformations are made simultaneously, 
then the Schroedinger equation will be satisfied. That is, the Schroedinger equation 
will be invariant to these changes, and it is then said to be gauge invariant. However, 
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as promised, this is not the free-particle Schroedinger equation, but rather one which 
includes the electromagnetic field. This equation is obtained in Appendix R, but 
suffice it to say here that turning the free-particle Schroedinger equation into one 
containing the electromagnetic field involves inserting QA in the spatial derivatives 
and QV in the time derivative. This is important to note because a very similar sub-
stitution of derivatives works to insert the compensating fields in the other gauge 
theories we shall discuss. In fact, exactly the same substitution is needed in the 
relativistic wave equations, the Klein-Gordon equation (Section 17-4) and the Dirac 
equation (Section 5-2). 

To summarize in simplified form the procedure for setting up a gauge theory: 
(1) a global gauge symmetry (invariance) must be found which can be expressed 
by a transformation; (2) this global symmetry is converted to a local symmetry by 
changing the transformation so that it depends on space and time coordinates and 
contains something equivalent to a charge; and (3) the local transformation is com-

a° pensated by adding new fields which can be put into the field-free wave equation by 
a suitable substitution of derivatives. 

Since even the same substitution of derivatives works in relativistic wave equations, 
the relativistic quantum theory of electromagnetism follows along the same lines 
as the nonrelativistic case discussed above. This theory, quantum electrodynamics 
(QED), is interesting to understand qualitatively. The vector potential A becomes 
the wave function of the photon. The general idea is that a particle, say an electron, 
emits a photon and by that emission process the phase of its wave function changes. 
However, when that photon is reabsorbed by the same or a different electron, there 
is a compensating phase change. The photon emission and absorption correlates 
the phase changes, maintaining the overall symmetry because the electrons are 
indistinguishable. This process is directly equivalent in the nonrelativistic case to the 
simultaneous phase and gauge transformations. 

Since QED works so well, it was natural that it should be used as a guide in trying 
to develop a theory of the strong interaction. The pioneering work of Yang and Mills 
in 1954 is instructive to review in a brief, qualitative way. They sought to make a 
local symmetry out of the global symmetry of isospin invariance as a means of ar-
riving at a theory of the strong interaction. The global symmetry is that, in the 
absence of the electromagnetic interaction, changing all protons to neutrons and vice 
versa would leave the world unaltered. The global symmetry can be expressed as a 
phase transformation similar to (18-13). However, in this case the wave function must 
have two components, one for the protons and one for the neutrons. This is most 
conveniently expressed by putting each wave function in a column matrix 

(Wp 
 \kn  

The transformation then acts on both wave function components and so correlates 
the change in the number of protons and the number of neutrons. To make this 
transformation on a two-component wave function requires a 2 x 2 matrix instead 
of the simple phase angle of (18-13). 

This difference is important, making the electromagnetism case an Abelian gauge 
theory and the Yang-Mills theory a non-Abelian one. All subsequent gauge theories 
we discuss will be non-Abelian. An Abelian transformation is commutative: If two 
transformations are made in succession, the result is the same regardless of the order 
in which they are made. An example is a rotation in two dimensions; the angles add 
regardless of which comes first. Thus in the electromagnetic case successive phase 
shifts can be made without regard to order. Non-Abelian transformations are not 
commutative. An example is a sequence of three-dimensional rotations. An airplane 
flying horizontally which makes first a left turn and then dives downward will be 



traveling quite a different final direction than if it made first the dive downward and 
then the left turn. The Yang-Mills theory is non-Abelian because two isospin rota-
tions will usually lead to different final numbers of protons and neutrons, depending 
upon the order in which they were done. We shall see, especially in the case of QCD, 
that the non-Abelian nature of the theory has important physical consequences. 

Returning to Yang-Mills, the next step after setting up the transformation which 
expresses the global symmetry is to turn it into one expressing a local symmetry. As 
before in going from (18-13) to (18-14), the global transformation is altered by (1) 
inserting a "charge" and (2) making the transformation depend on space and time. 
The "charge" in this case is a coupling constant, but that is the role charge plays 
in electromagnetism (i.e., a = e2/4irEOhc). Also as before, fields have to be introduced 
to compensate for the equivalent of a local phase change. Introducing the fields into 
the wave equation is done in a manner quite similar in form to the substitution of 
derivatives previously discussed, except that 2 x 2 matrices are involved. Just as 2 x 2 
matrices are required for transforming the two-component wave functions, so also 
is it necessary in this case to introduce more than one compensating field. Recall 
from Section 18-3 that the symmetry group of isospin is SU(2) and that the simplest 
representations are 2 and 2. To compensate the phase changes in these simplest 
representations 2 ®x 2 = 1 Q+ 3 fields are needed. The singlet field is as in QED just 
A, which is the wave function of the photon. The triplet of fields are also massless 
like the photon. However, unlike the photon, these fields carry isospin, which means 
that they must have charges + 1, 0, and —1. This is the important distinction between 
an Abelian transformation and a non-Abelian transformation. In the Abelian case, 
as in QED, the result is a carrier of the field (photon) which does not possess the 
source of the field (charge). In the non-Abelian case, as in Yang-Mills, the carrier of 
the field also has the source of the field (isospin). 

The non-Abelian nature of the Yang-Mills theory destroys it, because charged 
massless fields or particles would have been detected, so they do not exist. However, 
it is just this feature which makes the theory valuable, since QCD and the electroweak 
theory, which build on this base, are non-Abelian theories. 

18-7 QUANTUM CHROMODYNAMICS 

Recall that the Fermi-Yang composite model of hadrons (Section 18-3) based on 
SU(2) of isospin had to be replaced by the unitary symmetry (and later quark) model 
based on SU(3) of flavor. Similarly the Yang-Mills theory of thè strong interaction 
based again on SU(2) of isospin had to be replaced by QCD based on SU(3) of color. 
Now SU(3) of flavor, underlying which are the u, d, and s quarks, is an inexact or 
broken symmetry because the s quark is more massive than the u or d quarks. How-
ever, SU(3) of color is an exact symmetry, because all three colors are equivalent. 

The global symmetry of color is that if every red quark became a yellow quark, 
every yellow quark became a blue quark, and every blue quark became a red quark, 
all hadrons would still be colorless. The symmetry is such that a total change in 
color can occur without its being observable. Once again this symmetry can be ex-
pressed as a transformation, but now three-component wave functions are needed, 
corresponding to the three colors. Therefore, 3 x 3 matrices are involved in the 
transformation itself. 

To convert the global symmetry to a local one the same prescription is followed 
as for electromagnetism or Yang-Mills. The transformation is altered to include a 
coupling constant and to make it a function of space and time. This transformation 
by itself would change the color of one quark without simultaneously altering others 
and hence give a hadron color. Thus, as before, compensating fields—called gauge 
fields —must be added. Once more the fields are included in the wave equation by a 
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substitution of derivatives in the manner described above, but now 3 x 3 matrices 
are involved. Since, as was discussed in Section 18-3, the simplest representations of 
SU(3) are the 3 (corresponding to the three colors) and the 3 (corresponding to the 
three anticolors), we expect 3 Qx 3 = 1 O+ 8 gauge fields. 

The octet of gauge fields are the gluons, which have already been discussed. Each 
gluon possesses a color (red = r, yellow = y, blue = b) and an anticolor (r, ÿ, b). There 
are nine combinations of color and anticolor, of which six are obvious: rÿ, rb, yr, yb, 

br, bÿ. The remaining three are not the obvious rr, y9, and bb, but rather the mixtures 
which form orthogonal eigenfunctions (see Appendix J), one of which has no net 
color and is the singlet. The other two combinations still have color and are 

(r? — yŸ)/-\/2 

 and 	 (18-16) 
(rr + yy — 2bb)/J 

This is like combining three spins of 1/2, and so is reminiscent of the familiar com-
bining of two spins of 1/2 to form spin 0 and 1. Recall that in the latter case the 
symmetric combination of spin up and spin down has spin 1 but zero projection on 
the z axis, while the antisymmetric combination has both projection and total spin 
of zero. For three combinations (of color and anticolor), the symmetry is opposite 
to that for adding two spins of 1/2. In the color case the singlet is the symmetric 
combination, (r? + yy + bb)/ 0, which would then violate the exclusion principle for 
the quarks in the A -  A ++ , and Q. Recall that color was introduced to prevent 
such a violation by making the total eigenfunction of these fermions antisymmetric, 
since the space, spin, and isospin parts are symmetric. 

How does the octet of gluons provide local color symmetry? This is illustrated in 
Figure 18-17 for a baryon. The red quark becomes a blue quark by emitting a red-
antiblue gluon. When a blue quark absorbs that gluon its blue color is canceled, and 
it becomes red. Since the quarks are indistinguishable, the baryon remains colorless, 
and there is no way to observe the transformation. Color can then be changed dif-
ferently at any point of space-time, and the gluon field restores the symmetry. The 
three colors of quark necessitate having eight gluons to bring this about. 

The gluons perform the necessary function of converting a global symmetry into a local one 
because they have color. That the carrier of the field possess the source of the field (color 
charge) is an attribute of a non-Abelian gauge theory, as was discussed in the Yang-Mills case. 
In Section 18-5 one of the physical consequences of gluons having color charge was stated. 
It was seen that the strong gluon-gluon interaction pulls the field lines together, unlike the 
electromagnetic case. This strong gluon-gluon force should produce binding, and meson-like 
glueballs probably exist. At the time of writing there are some candidates for glueballs, but it 

(a) 	 (b) 	 (c) 

Figure 18-17 Local color symmetry permits individual quarks to change color but leave 
the hadron colorless. In the illustration, the baryon is colorless because in (a) it has r, b, 

and y quarks. If the r quark changes to b by emitting a  r5 gluon, as in (b), the b quark will 
absorb that gluon, turning into an r quark and leaving the baryon colorless as in (c). Gluons 
are usually represented by a coil-like line, as shown here and in subsequent figures. 



is experimentally difficult to distinguish these from quark-antiquark mesons, or worse, from 
possible mixtures of the two kinds of structure. 

There is direct evidence for the existence of gluons. Mentioned in Sections 18-2 
and 18-5• was the indirect evidence for inert partons from lepton-nucleon scattering 
which could be interpreted as due to gluons. The PETRA (Hamburg)  e +  e -  colliding 
beam accelerator has yielded much more direct evidence for gluons. Recall Figure 
18-13a, in which the e +  and e -  collide to produce a virtual photon, which then 
makes a quark- antiquark pair. The quark and antiquark start off back-to-back to 
conserve energy and momentum, since the e +  and e -  have equal energies in their 
head-on collision. The quark and antiquark each soon form other particles. At high 
incident energies the number of particles formed can be quite large and, because 
they are produced with relatively small momentum transverse to the beam direction, 
these particles can be close together. Thus the quark forms one jet of particles, and 
the antiquark forms another jet. This two jet structure is shown in Figure 18-18. It 
is interesting to note that the angular distribution of the axis of the two narrow jets 
with respect to the colliding beam direction is the same as for the axis of the ,u + 

 pair from e +  + e -  —> µ+ + µ- (see Figure 18-13b). Since the ,u has spin 1/2, this is 
direct evidence that the quark also has spin 1/2. 

Figure 18-18 Example of a two-jet event in e + -e collisions in the TASSO detector at 
PETRA (Hamburg). This is a computer reproduction of the measured particle tracks 
projected onto a plane. The particle tracks are curved because they are in a mag-
netic field. A small three-dimensional representation of the event is also shown. 
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Figure 18-19 Gluon emission in e t -e -  production of a quark-antiquark pair. At large 
center of mass energies this process gives three jets of hadrons. 

Returning to the jet structure, as the energy of the beams is increased, one of the 
jets is increasingly often observed to be broad. This occurs because either the quark 
or antiquark radiates a gluon, from which another group of particles is formed. See 
Figure 18-19. As the beam energy is raised even more, this gluon-induced group of 
particles forms its own jet, and distinct three jet events are seen, as in Figure 18-20. 

36152 

Figure 18-20 Example of a three-jet event in e t -e -  collisions at PETRA (Hamburg), as 
found in the TASSO detector. 
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At even higher energies two gluons often are radiated, causing four jet events. The 
energy and angle distributions of the jets correspond closely to QCD calculations, 
quantitatively confirming the existence of gluons. 

The gluons provide a simple quantitative explanation for the formation of quark-
antiquark and three-quark hadrons but no other combinations. The qualitative ex-
planation given in Section 18-5 is that only these combinations are colorless, but it 
is possible to go a step further and show why it is that the colorless combinations 
bind and other combinations do not. To do this it is first necessary to figure out the 
probabilities for various couplings between quarks due to gluons. In the electromag-
netic cases associated with (18-6) we have seen that these probabilities depend on the 
charge involved. In the gluon case they will similarly depend on the color charge, 
which will be designated as x. The possible couplings are shown in Figure 18-21, 
where it will be noted that for an antiquark the color charge is denoted as — x, just 
as the sign of the electric charge reverses for an antiparticle. Starting with Figure 
18-21a, a red quark couples to a blue quark by emitting a red-antiblue gluon 
(reversing the colors of the two quarks), and the resulting coupling probability is 
given by just the product of the color charges x 2. For a red and blue quark inter-
acting without changing their color, as in Figure 18-21b, the coupling is provided 
by that color nonchanging gluon having both red and blue, which is the second 
combination in (18-16). At the upper vertex r —+ r, so the part of the gluon eigen-
function which contributes involves rr, which is 1/N/6 of the whole eigenfunction. 
This coefficient multiplies the color charge x at the upper vertex, giving x//  as the 
contribution to the coupling. At the lower vertex b —+ b and the bb part of the gluon 
eigenfunction has a coefficient of — 2/J. The lower vertex then contributes — 2x/J, 
giving a total color charge product of (x/N/6( — 2x/J) = —x 2/3. For a red quark 
coupling to a red quark, as in Figure 18-21c, both color nonchanging gluons can 
contribute. At the upper vertex the ri part of one contributes x/ Nii, and the rr part 
of the other contributes x/\. Since the lower vertex is just the same, there will 
again be x//  from one and x/J  from the other. Thus the color charge product is 
x212 from the exchange of one gluon and x 2/6 from the exchange of the other, for a 
total of x 2/2 + x2/6 = 2x2/3. Now the last three diagrams in Figure 18-21 involve 
the exchange of the same gluons as do the first three. So the color charge products 
are the same, but with opposite signs, since one vertex always involves antiquarks 
and hence has — x instead of x. 

We shall now use these results to calculate three examples. The first two will show 
that colorless combinations of three quarks bind and that a quark-antiquark pair 
bind. The last example will be of one simple case, a quark-antiquark combination 
with color, which does not bind. 

Example 18-4. Show that a baryon made of a colorless combination of three quarks does 
bind. 
• Since a baryon will have to have a totally antisymmetric color eigenfunction for its three 
quarks, it will be of the form 

[(rb — br)y + (by — yb)r + (yr — ry)b]/J 	 (18 - 17) 

Its antisymmetry can be seen by interchanging any two color labels. This eigenfunction is to 
be used to determine the interaction between quarks, which occurs by gluon exchange. Any 
one interaction must be between the two quarks exchanging the gluon, with the third quark 
not participating, but all possible two-quark interactions must be considered. The mathemati-
cal form expressing such an interaction involves the product of the initial state eigenfunction, 
the final state eigenfunction, and the interaction potential (it is a matrix element; see Appendix 
K). The part of the interaction potential relevant here is the gluon exchange color charge prod-
uct, given in Figure 18-21. Equation (18-17) is the form of both the initial and final state 
eigenfunctions. 
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Figure 18-21 Gluon coupling between quarks. All possible types of gluon exchange are 
represented by these six diagrams. That is, all other exchanges just involve a permutation  

of color labels. The color eigenfunction is given for each exchanged gluon. The relative  

probability for each type of exchange is given by the "color charge product," where x  is  
the color charge. 
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Consider first the interaction of an r and a b quark, with y not participating. This interaction 
comes from the first parentheses in (18-17), i.e., (rb — br). Since (18-17) appears in both the 
initial and final state eigenfunction, the interaction strength (or matrix element) involves the 
square of (18-17). Hence the interaction of the r and b quark is described by (rb — br)2 . We 
expand, and then investigate the two squared terms, each of which represents the process 
rb —> rb. This process involves the gluon exchange of Figure 18-21b, which has a color charge 
product of —x 2/3. This value is multiplied by (1/ / ) 2  from the square of the normalization 
factor in (18-17). Recalling that there are two squared terms, we find that the total contribu-
tion from rb —> rb is 2(1/6)(—x 2/3) = —x 2/9. The cross term in (rb — br) 2 , which contains a 
factor of —2, describes rb —> br, for which Figure 18-21a gives a color char e product of x2. 
When we include the square of the multiplicative normalization factor, 1/V6, the total contri-
bution from rb —> br becomes —2(1/6)x 2  = —x 2/3. This gives a total for both possible rb 
interactions of —x 2/9 — x 2/3  = — 4x2/9. However, the other two color combinations, by and 
yr in the second and third parentheses, have exactly the same couplings as in the rb case, 
differing only in color labels. Thus the net contribution from all three sets of two-quark inter-
actions is 3(-4x 2/9) = —4x 2/3. Just as —e 2  gives the strength of the coupling in the Coulomb 
potential between a positron and an electron, —e 2/4ire0r, so this result gives the strength of 
the Coulomb-like potential for quarks to be —4x 2/3r. The minus sign in both the positronium 
and the three-quark case shows that there is binding. 

Example 18 -5. Show that the gluon couplings give binding also for a colorless quark and 
antiquark. 
• Since the quark-antiquark pair, if bound, form a meson (which is a boson), it will have a 
totally symmetric color part to its eigenfunction 

(rr + yy + 	 (18-18) 
The first term, rr — > rr, contributes (1/ ,J)2(-2x 2/3) _ — 21 2/9 from Figure 18-21f, but each 
of the other two terms in (18-18) are identical in form with different color labels. All three 
then give a total of 3(— 2x 2/9) = —2x 2/3. Also rr bb or yÿ, each giving (1/\/) 2(— x2) from 
Figure 18-21d, for a total of —2x 2/3. However, yy —* rr or bb and  b6—> rr or yy, giving the 
same contributions as the rr. So the total is — 2x 2. The net coupling strength is 
— 2x2/3 — 2x 2  = — 8x2/3, giving a potential of — 8x 2/3r. Again, the minus sign indicates bind-
ing. But other quark combinations give positive signs and nonbinding potentials. 1 

Example 18 -6. Suppose a quark-antiquark pair possess color. Then it would have color-
anticolor like a gluon. For definiteness, say it is rb. Find the form of the potential. 
• The gluon exchange between r and b cannot involve swapping colors since r —> b is not 
possible because a quark cannot become an antiquark. Thus only a non-color-changing gluon 
can be involved. Of the two available, only one has both r and b color; it is (rf + yÿ — 2bb)/J. 
Thus only Figure 18-21e is involved. For that diagram, the red part  of the gluon couples 
at the upper vertex with color charge x/J. The antiblue part of the gluon couples at the 
lower vertex with color charge (— x)(— 2/ /) = 2x/ / . The color charge product is then 
(x/*)(2x/s) = x 2/3. This gives the positive, non-binding potential x 2/3r. 	 1 

In addition to the question of the sign of the potential, there is its 1/r dependence to 
explain. Recall from Section 18-5 that the 1/r nature of the potential which is required 
to give cc and bb energy levels means the gluon must be massless. That is indeed the 
result QCD gives for the same reason the photon from QED and the gauge fields 
from Yang-Mills are massless. Gauge invariance requires them to be massless, and 
producing a mass would require adding something new to the theory. In the Yang-
Mills case this masslessness was in fact the feature that made the theory surely in-
correct. However, for gluons the situation is different in two respects. First, in QCD 
the only gauge fields which get added to the free-particle wave equation are the 
gluons. There is neither electromagnetic nor weak interactions. Since the gluons do 
not possess such interactions, this helps make them unobservable. Second, the gluons 
are confined inside hadrons because they carry color charge, just as the colored 
quarks are confined. Since gluons cannot be observed directly, their masslessness is 
no problem. 
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Confinement and its accompanying feature at the other end of the distance scale, 

asymptotic freedom, have been discussed in Section 18-5 on the basis of an empirical 
term proportional to distance in the quark binding potential. These two features are 
absolutely essential to the success of QCD, and hence the origin of the k 2r term re-
quires explanation. Starting again with electrostatics, we consider a negative charge 
Q in a dielectric such as water. The polar water molecules near the charge line up with 
their positive end toward the charge, as shown in Figure 18-22a. This presence of 

(a) 

(b) 

Quark 

 

Antiquark 

Gluons 

(e) 

Figure 18-22 (a) A polarizable dielectric screens a free charge. (b) Vacuum polarization 
resulting from virtual positron-electron pairs screens the charge around a real electron. 
(c) Because gluons carry color, they have an antiscreening e ffect, enhancing the color field 
between a quark and an antiquark. As shown in the figure, the antiblue quark "sees" more 
red due to the gluons. This effect increases with distance, since more and more gluons 
appear. 
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positive charge decreases the effectiveness of the negative charge Q, reducing the elec-
tric field it produces. This could be described as saying that the effective magnitude 
of Q is reduced (say to Q'), provided the distance from Q at which the electric field is 
measured is larger than the size of a water molecule. For smaller distances the mag-
nitude of the effective charge quickly increases from Q' to Q. 

Going next to QED, we find that the same sort of effect will occur even with a 
charge in the vacuum by a process called vacuum polarization. This occurs because 
an electron is always emitting and absorbing virtual photons, and often these are 
energetic enough to create virtual positron-electron pairs. The  e +  e -  pairs align them-
selves with respect to the electron in the same manner as did the polar water mole-
cules. Again the effective charge of the electron is reduced by this screening of the 
charge, as shown in Figure 18-22b. Because of the distribution of e +e -  pairs with 
distance from the electron, the effective charge increases as distance to the electron 
decreases. 

The same vacuum polarization phenomenon occurs for the quarks, reducing the 
quark's effective color charge x,  or strong coupling constant as  = x2/4irhc (like a = 
e2/47tE O hc). This causes as  to increase as distance decreases. (Because its value de-
pends on distance, as  is sometimes called a running coupling constant.) However, the 
non-Abelian color field behaves differently from the Abelian electromagnetic field. 
Because the gluon carries color charge, unlike the photon with no electric charge, the 
gluons the quark emits and absorbs produce a dominating opposite effect, shown in 
Figure 18-22c. The farther apart the quarks get, the more the gluons (which attract 
each other) crowd together, as was described in terms of lines of force in Section 
18-5. This antiscreening effect increases as the distance between quarks increases. 
Thus the effective color charge, the coupling constant, and the potential become 
larger with distance, producing quark and gluon confinement. 

The fact that a s  changes in this way, giving asymptotic freedom at small distances, 
was first worked out by Gross and Wilczek and independently by Politzer in 1973. 
The smallness of the potential at small distances enables the use of perturbation 
methods (see Appendices J, K, and L), and these QCD calculations agree very well 
with experiment. Calculations become difficult as the potential increases, and the 
details of confinement had not been worked out at the time this was written. How-
ever, every indication at that time was that there is at last a successful theory of the 
strong interactions. 

18-8 ELECTROWEAK THEORY 

With successful gauge theories of the strong, electromagnetic, and gravitational in-
teractions, it is natural to suppose that such a theory must exist for the weak inter-
action as well. While such is the case, it is surprising that this theory is not just of the 
weak interaction, but it includes the electromagnetic interaction as well, giving a 
common origin to both. It is also rather unexpected that this electroweak theory 
would stem so directly from the Yang-Mills theory, which was an attempt to explain 
the strong interaction. 

Recall from Section 18-6 that the Yang-Mills theory produced four gauge fields. 
One of these could be identified with the massless photon. But the others had three 
values of isospin, + 1, 0, and —1, and hence three values of charge, also + 1, 0, and 
—1, like the pion. Such massless charged particles would have been detected, and hence 
the theory could not correspond to reality. The only way the charged particles could 
exist and not have been detected is if they were so massive that no accelerator yet had 
enough energy to produce them. The desired result of giving the gauge fields mass is 
doubly difficult. First, it cannot be done arbitrarily; a mechanism must exist to pro-
duce mass. Second, if a gauge boson did have mass, it would violate gauge invariance! 
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Figure 18 -23 A virtual photon is emitted and 
reabsorbed by an electron in a time At. As the 
photon loop and hence At is made smaller, the 
energy associated with this process, AE h/At, 
becomes larger. 

(Recall that gauge invariant electromagnetism has a massless photon.) Now gauge 
invariance is needed not just to have a gauge theory, but more importantly this gauge 
symmetry makes it possible to have a finite or renormalizable theory. 

A brief diversion is necessary to explain renormalizability. In the discussion of 
vacuum polarization in the previous section, the effect of virtual particles on the 
effective charge of the electron was described. The emission and reabsorption of vir-
tual photons also affects the mass of the electron. Consider the diagram in Figure 
18-23, in which a virtual photon is emitted and reabsorbed by an electron. The time, 
At, taken by this process limits the energy, AE, associated with it by the uncertainty 
principle, AEAt — h. As the photon loop gets smaller, At gets smaller and AE gets 
larger. As the loop size approaches zero, AE —> oo and the effective energy or mass 
of the electron can seemingly become infinite. This makes no sense physically, but 
such infinities appear in the calculation. The problem was finally solved for mass 
and charge infinities in QED in 1948, especially through the efforts of Feynman, 
Schwinger, and Tomonaga, who shared the Nobel Prize in 1965. This process, called 
renormalization, is to find one negative infinity for each positive infinity so that these 
cancel, leaving a finite residue which is defined as the observed mass or charge. The 
bare mass or bare charge of the electron are never observed, since the electron is al-
ways surrounded by a cloud of virtual particles. A highly symmetric theory is needed 
to get the canceling infinities, which is the importance of gauge symmetry in this 
connection. The previously available Fermi theory of the weak interaction was not 
renormalizable, but we shall return later to the problem of infinities in the weak 
interaction. 

It appears as if a miracle is needed to get a weak interaction theory. Consider the 
conflicting requirements. First, gauge invariance is needed to get a renormalizable 
theory. Second, the gauge bosons have to be sufficiently massive so they would not 
have been detected long ago. Third, massive gauge bosons break gauge invariance. 
Indeed a rather miraculous solution did appear in the form of what is called sponta-
neous symmetry breaking. This provided a mechanism for giving the gauge bosons 
mass as well as preserving gauge invariance. 

In mentioning SU(3) and SU(4), we have stated that they are broken symmetries 
because all quarks do not have the same mass. Now we are discussing a process that 
causes a symmetry to be broken spontaneously. To understand spontaneous sym-
metry breaking it is necessary to know about systems with hidden symmetries. A sim-
ple example is a rod under axial pressure. Although the equations describing this 
situation are symmetric under rotations about the axis of the rod, as the pressure 
on the rod increases it will suddenly buckle in some definite but arbitrary direction. 
Another example is a perfect ferromagnet. The spins of the atoms have a rotational 
symmetry above the Curie temperature (see Section 14-4), but as the magnet is cooled 
below the Curie temperature the spins of the atoms in a domain suddenly line up in 
a definite but arbitrary direction. In both of these examples it cannot be predicted 
which of the infinite number of equivalent nonsymmetric final states will be chosen, 
but all of them have a lower energy than the symmetric ones. The original symmetry 
of the equations of motion is hidden in observations of the final states. In both cases 
of hidden symmetry there exists a critical value of some quantity (pressure or tem-
perature in the cases just discussed) beyond which spontaneous symmetry breaking 
will occur. The spontaneous symmetry breaking holds out the hope that the gauge 



invariance can still exist in the theory, but that the solutions in breaking the gauge 
symmetry will allow massive gauge bosons. 

As a step along the way to the desired solution, in 1961 Goldstone investigated 
spontaneously broken global symmetry. Consider a potential of the form µYS*1 + 
2(`Y*`Y) 2  where and 2 are constants. This is plotted for the case p2 > 0 in Figure 
18-24a. It clearly is a symmetric potential, and the ground state at W = 0 is sym-
metric under a global phase transformation 'I' -* 'Y' = ei °W. However, as the pa-
rameter µ 2  is decreased, the critical value (like the pressure that breaks the rod, or the 
Curie temperature for the ferromagnet) is reached at µ 2  = O. For 122  < 0 (i.e., for it 
imaginary) the potential is still symmetric, as shown in Figure 18-24b. Now the 
phase transformation changes the relative amounts of the real and imaginary parts 
of W, which have become independent. There is now a ring of ground states, all non-
symmetric. Note that just like the ferromagnet or the broken rod, the system will 
be in a definite but arbitrary ground state, and the energy of any of the nonsymmetric 
states is lower than the symmetric one. Although the argument cannot be presented 
here, it is important to know that when the symmetry is broken the field `Y breaks 
up into two scalar fields, one of which is massless (the so-called Goldstone boson) 
but the other of which acquires a mass. 

The next step was taken by Higgs in 1964 when he investigated spontaneously 
broken local symmetry. He used a local phase transformation of the type discussed 
above for QED. It will be useful to note for later reference that the group of such 
transformations is the U(1) group, a unitary group in one dimension. The local phase 
transformation is compensated by a field which, like that of the photon, is a vector. 
Using the potential of Figure 18-24, Higgs again obtained from the spontaneous sym-
metry breaking two scalar fields, one with mass and one without, in addition to the 
vector field. Then came the amazing result: by a suitable gauge transformation, the 
massless Goldstone boson disappeared, and the vector field acquired a mass. This 
has been described as the vector particle eating the Goldstone boson and getting 
heavy. 

The form of the electroweak gauge theory was set up by Glashow in 1961, but he 
had no way then to make the gauge bosons massive. Independently in 1967 Weinberg 
and in 1968 Salam applied the Higgs mechanism to give mass to the gauge bosons 

V(T* 111) 

(a) 

V(T ) 

 

Figure 18-24 The potential V = ,u I* 111  + 
Aert11 ) 2  for the cases (a) µ 2  > 0 and (b) 

ft z  < O. Re stands for "real part of" and 1m 
stands for "imaginary part of." 
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and produced a consistent theory. In 1971 t'Hooft proved the theory was renormaliz-
able, after which it was taken more seriously. Glashow, Salam, and Weinberg received 
the Nobel prize in 1979 for their work on this topic. A qualitative account of the 
structure of the theory will now be given. 

The electroweak theory is based on the Yang-Mills theory already described. The 
latter theory was an attempt to make a local symmetry out of the global SU(2) sym-
metry of isospin. Since isospin is a property of the strong interaction only, what can 
this have to do with the weak interaction? Formally the two-component wave func-
tion for protons and neutrons, say (n), is like a similar two-component wave function 
for the electron and its neutrino, (ée) L . Here the subscript L denotes that only a left-
handed helicity for particles is considered, as required by parity nonconservation in 
the weak interaction. To introduce the equivalent of isospin for the p and n, a weak 
isospin Tw  is defined for the leptons, with y e  having Tw= = + 1/2 and e -  having Tw= = 
—1/2. This weak isospin has nothing to do with the usual isospin, but from the stand-
point of a Yang-Mills type of gauge theory it then makes (Qe)L  equivalent to (n). Of 
course, the other leptons can similarly be arranged in weak isospin doublets as 
and (2t)L, but only one of these need be dealt with, since the results for the others 
will be the same. 

While the weak interaction produces left-handed particles, the  e -  with a right-
handed helicity does exist and the theory cannot deal with one state and ignore the 
existence of the other. Since electromagnetism is not parity violating, it treats eL 
and eR on an equal footing. So to include eR , electromagnetism had to be built 
in. In the theory it is assumed that the neutrinos are massless, so there is then no vR  
possible (see Section 16-4). Thus a local phase symmetry with U(1) transformations 
as in QED was included, as well as a Yang-Mills-like local phase symmetry with 
SU(2) transformations. This is then often referred to as a U(1) x SU(2) theory. To 
compensate for these local changes, four gauge fields were needed; call them B (for 
the U(1) transformation), and W1 , W2 , and W3 (for the SU(2) transformation). The 
object to be identified with the massless photon is actually a combination of B and 
W3i call it A, where 

A = B cos ew  + W3 sin Ow 
The parameter O w, called the weak mixing angle, must be found from experiment. 
There is another linear combination of the B and W3 orthogonal to A called the Z° . 
It is 

Z° = W3 COS Ow - B sin Ow  
Like B, the W3 is electrically neutral, but W1  and W2 carry electric charge. The states 
of definite charge are the combinations 

W ± =W1 ±iW2  
Just as the field A is to be identified with the photon which carries the elec-

tromagnetic force, so are the W and Z fields to be identified with the particles which 
carry the weak force. In relativistic quantum mechanics the terms field and particle 
become interchangeable. 

The simplest way to give the particles W + , W- , and Z °  a mass via spontaneous 
symmetry breaking is to introduce four Higgs scalar fields, of which two are charged 
(+ and —) and two are neutral. The charged Higgs particles give the W ÷  and W 
masses, one of the neutral Higgs particles gives the Z °  a mass, and these three Higgs 
particles disappear with a suitable gauge transformation. The other neutral Higgs 
remains as a real particle. This remaining Higgs particle, the c °, plays an unusual 
role. Unlike any other known particle it has a nonzero vacuum expectation value. 
That is to say, normally the vacuum in its lowest energy state has no particle in it, 



but such is not the case for  the (1) ° . Instead, it costs energy to make the 0 °  dis-
appear from the vacuum. Because of this feature, which makes the vacuum grainy 
at a scale on the order of 10 -18  m, the hidden symmetry is preserved. The weak 
isospin direction is defined with respect to the T °  field direction, but the latter 
direction is arbitrary. 

To describe some of the consequences of the electroweak theory, we take up first 
the role of the weak gauge bosons. Recall in Section 18-2 that the neutrino-nucleon 
cross section was proportional to neutrino energy and that this was cited as evidence 
for the existence of partons. This is a useful result and causes no problems as far as 
measurements have gone, but it would be a disaster if such an energy dependence 
would continue. Not only would this weak interaction cross section soon become 
bigger than those for strong interactions, but it would continue to grow to infinite 
size, which hardly describes a nucleon. The infinity in the cross section arises because 
the weak interaction is assumed to occur at a point. Well before the development 
of the electroweak theory it was realized that a way to avoid such infinities was to 
have the weak interaction carried by a virtual particle, so as to spread out the inter-
action spatially. Because the range of the weak interaction is so small, this inter-
mediate boson had to be very massive indeed, in accordance with the uncertainty 
principle. In the electroweak theory the particles necessary for this purpose, the W + 

 and W- , are a consequence of the local gauge symmetry. These particles give the 
standard charge-changing weak interactions, such as beta decay, K decay or neu-
trino scattering. Quark-level diagrams for these processes are given in Figure 18-25a, 
b, and c. The second of these diagrams is the more complete K decay process 
promised in Section 18-3. Quarks are involved here, as well as leptons, and it is an 
interesting consequence of the theory that the coupling of the W +  to both quarks 
and leptons is the same. That is, quarks and leptons have equal strengths of weak 
interactions. This point will be explained more fully shortly. 

While the W +  and W-  coming out of the theory fulfilled their expected role, the 
Z°  was not anticipated. This gauge boson would mediate non-charge-changing weak 
interactions, and none had ever been observed. An example of such a so-called neutral 
current process is shown in Figure 18-25d. These were searched for and eventually 
found in a CERN (Geneva) bubble chamber experiment in 1973. This was obviously 
a triumph for the electroweak theory. However, neutral current processes also raised 
a severe problem for the theory. To understand this point it is necessary to know a 
little more about the coupling of the quarks to the intermediate bosons. 

Comparing rates for various types of weak decay, Cabibbo in 1963 found that if 
the Fermi decay constant for a purely leptonic process like /2 -   e -  + ve  + v is fi, 
then that for a non-strangeness changing process like ir -  —> µ + vg  is f3 cos 0,, and 
that for one in which AS = 1 like K µ + v is f3 sin O. Experimentally the 
Cabibbo angle 0, turns out to be about 0.23 rad. Thus the ratio of rates for AS = 0 
to AS = 1 decays, aside from phase space factors, is tan g  0, ^ 0.06. Going to the 
quark level, this means that the s quark does not couple to the W +  as strongly as, 
say, the u quark does. To be more specific, in the electroweak theory we have used 
two-component wave functions for the three lepton families, such as (ée) L , assigning 
weak isospin as (±iii). To determine their weak interactions, the quarks can be 
treated the same way. However, the doublet of particles is ( 1,0L, with u having weak 
isospin z component T,,, z = + 1/2 (and it also has isospin z component TZ  = +1/2) 

and de  having T11, =  = —1/2. Now d, is not the state d which has TZ  = — 1/2, but rather 
it is the mixture d cos 0, + s sin O. This then gives the correct Cabibbo couplings 
already discussed for AS = 0 and AS = 1 decays. 

This scheme works well with charged current weak interactions involving the W ± . 
However, the Z °  creates a problem. If the quark the Z °  interacts with is the u, there 
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(a) 

(b)  

(c) 

d 
(d) 

Figure 18-25 Quark diagrams for weak interactions, with (a) neutron decay, (b) 
K --> rc +  + m , and (c) vµ  + n -+ 1u + p, all charged current processes, and (d) 
v IL  + p -*  vu  + p, a neutral-current process. Double lines represent the exchanged bosons. 

is no difficulty, but if it is the d„ this mixes d and s quarks. That makes possible 
s d (strangeness changing) neutral current processes, and these are known experi-
mentally not to exist for ordinary weak interactions. A solution to this problem, now 
called the GIM mechanism, was proposed by Glashow, Iliopoulos, and Maiani in 
1970 when they suggested that if a c quark existed there would be another quark 
doublet (sc)L, and that this would cancel s — d processes. This saving cancellation 
would occur because se  = s cos 0, — d sin O is orthogonal to dc , and whenever one 
is present in a neutral current process the other can be also. When the c quark—the 
"charm" to ward off the evil strangeness-changing neutral current—was discovered 
in 1974, the electroweak theory and the GIM mechanism triumphed. 

When it was later found that there is another quark doublet, the ( bc)L, the mixing 
among quarks became more complicated. It was expressed in terms of a 3 x 3 matrix 
by Kobayashi and Maskawa in 1972, but it is worked out similarly to the GIM 
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mechanism so that there is no flavor-changing neutral current process. It is important 
to note that this quark-mixing matrix has a phase which gives CP violation. At the 
time of writing it is widely believed, although not experimentally proved, that this is 
indeed the way in which CP violation occurs in K decay, and hence CP violation 
would not be seen in leptonic processes. The corresponding effect of time-reversal 
violation, which by the CPT theorem must accompany CP violation, would then 
result from this quark mixing. 

The electroweak theory arranges the quarks and leptons in the following symmetric way, 
so far as their weak interactions are concerned: 

((Jul'  (a'  (a  
These are all weak isospin doublets, and the right-handed helicity components are all weak  

isospin singlets. As alluded to in Section 18-4, there is a reason to believe, aside from its esthetic  

appeal, that even if more leptons or quarks are discovered, this type of symmetry will be  

preserved. The reason is that a process called a triangle anomaly, illustrated by a diagram in  
Figure 18-26, can give devastating infinities unless the sum of all the charges of left-handed  

fermions add to zero. Each quark doublet has charge + 2/3 and —1/3, adding to + 1/3, but  

there are three colors of quark, so the total charge is + 1, just canceling the —1 of the  

corresponding lepton doublet. Each paired quark and lepton doublet is called a generation,  
so for each generation the charges add to zero. So long as this symmetry holds within  

each generation the triangle anomalies disappear. This ties together quark-lepton symmetry,  

fractional quark charges, and color!  

To the bigger successes of the electroweak theory, the discovery of neutral currents  

and the c quark, can be added the discovery in 1983 of the W and also of the Z °. It  
is not just that these necessary particles have been found, but that they apparently  

have about the right masses. The electroweak theory predicts the gauge boson masses  

to be  
e2  ,./i 	1/2 

MW} 
-=

(8/^ sin g  B ) 	sin Ow
GeV/c 2  = ML o cos  O w 	(18-19) 

Ow  

That is, the masses of the W ±  and the Z°  are related, and both depend on just the  

strengths of the electromagnetic (e) and the weak (fi) interactions and on their mixing  
(Ow). The angle OW , while an undetermined parameter in the theory, is measurable in  

many different kinds of experiments. It is an important test of the theory that the  

results for  Ow  agree well from these diverse determinations. Examples of experiments  

are for charged currents, v e-e -  scattering (involving only leptons) and v µ-nucleon  
scattering (leptons and quarks), and for neutral current processes the asymmetry  

measurements due to Z °-y interference in e +  + e-  —* p+ + u - (leptons) and electron-
deuteron scattering (leptons and quarks). The results of all of these give sin e  

0.23. Inserting that value in (18-19) gives a mass of about 80 GeV/c 2  for the W, in  
agreement with experiments with 270 GeV proton-antiproton colliding beams at  

CERN (Geneva). From the same experiments in 1983 there was also reported the  

discovery of the Z°  at about the expected mass of around 90 GeV/c 2 . At the time of  
writing, two accelerators (LEP at CERN and SLC at SLAC) are being built just to  

Figure 18-26 An example of a triangle anomaly  
graph. While any one graph would give infinity, the  

effects of graphs for each fermion within one gener-
ation cancel, if the sum of all left-handed fermion  
charges also add to zero. The solid lines are the  

fermions.  



M
O

R
E

 E
L

E
M

E
N

T
A

R
Y

 P
A

R
T

IC
LE

S
 

explore the large amount of physics that can be done with e +-e collisions at the  
Z°  mass. 

Much will undoubtedly be learned with the new accelerators, but already it is clear 
that the electroweak theory must be close to correct. The area about which there is 
the most uncertainty involves the Higgs particle t °. Unfortunately there is no 
prediction of its mass, but the (13 ,°  is actively being sought. 

Except for noting the existence of the gauge boson, A, in the theory and identifying 
this massless particle as the photon, little has been said about the electro part of the 
electroweak theory. All of QED comes out of the theory, but that is old stuff. What 
is new is that a surprising relation results between the electric charge e expressing 
the strength of the electromagnetic interaction, and the weak charge gw  expressing 
the strength of the weak interaction. It is remarkable that this works, since everything 
is determined once Ow  is known. The simple relation, already put in (18-19), is  

e = 2 \h  gw  sin Ow 	 (18-20) 
co This shows that the electromagnetic and weak interactions are of about the same 
c 	strength. What makes the weak interaction appear so weak are the large values of 

the masses M w . and MZo, making the range of the interaction so short. The fact  

is clearly shown when gw  is related to the Fermi weak interaction coupling constant  

f. The relation  

__ V"gw  
^ M2 

can be obtained by combining (18-19) and (18-20). The electroweak theory combines 
and relates, particularly through (18-20), the electromagnetic and weak interactions. 

18-9 GRAND UNIFICATION OF THE FUNDAMENTAL INTERACTIONS  

Although the results of the electroweak theory include a close relationship between 
electromagnetism and the weak interaction, that is a result of spontaneous symmetry 
breaking. The underlying symmetry of the theory, if not broken, would make these 
two the same interaction. At some high enough energy this symmetry should apply. 
To get some idea of the unification energy, we can look at the behavior with energy 
of the electromagnetic and weak coupling constants or charges. Instead of using the 
electric charge e appropriate to the photon (or gauge boson A) which results from 
symmetry breaking, it is more appropriate to use the corresponding coupling g' for 
the gauge boson B of the U(1) transformations before symmetry breaking. But 
g' = e/cos 9w , so the two are almost alike, except that the weak mixing angle Ow 

 increases slowly with energy Similarly, instead of using gw  appropriate to the W ±  and 
Z °  after symmetry breaking, the coupling g for the W1 ,  W2 ,  and W3 of SU(2) before 
the symmetry breaking is to be used. Again the two are closely related: g = 2 \ gw . 

 However, this means g starts out at low energy larger than g', since from the relations 
given above g' = g tan O w . Now g decreases as the energy increases, while g' increases 
slowly as Ow  increases with energy. Thus, g and g' approach each other as the energy  

increases. Note that this increase in energy corresponds to a decrease in distance. 
High energy behavior means short-distance behavior, as can be seen either from the 
uncertainty principle, Ax h/Ap x , or the de Broglie wavelength,). = h/p = hc/E (see 
Section 3-1 and Appendix A). 

Since the strong coupling constant a, also decreases as the distance decreases or  

the energy increases (see Section 18-4), it is interesting to find out if the strong  

interaction approaches the other two at high energy. Using x, (where we recall that  
aS  = x 2/4ihc) to obtain a chargelike quantity as are g and g', we see the remarkable  
result in Figure 18-27. At an energy of about 2 x 10 14  GeV the three come together.  

This energy corresponds to a distance which is best specified as )./2rc = hc/E =  

(18-21)  
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Figure 18-27 The coupling constants of the strong (color) and electroweak (weak with  

electromagnetism) interactions seem to extrapolate to a single value at about 2 x 10 14  GeV.  

0.2 GeV-F/2 x 10 14  GeV — 10 -30  m. At this extremely high unification energy or 
very small distance there is a strong possibility that all three interactions become 
the same. For this reason much effort has gone into developing grand unified theories 
(called GUTs for brevity) in which SU(3) of the strong color interaction, SU(2) of 
the weak interaction, and U(1) of the electromagnetic interaction result from a further 
symmetry breaking of a unified interaction. 

Many methods have been employed to incorporate the SU(3), SU(2), and U(1) 
symmetries into a more inclusive gauge symmetry. One such attempt used the larger 
group SU(5). This work of Georgi and Glashow (1974) is worth discussing briefly 
because it is the simplest to appear at the time of writing, although experimental 
evidence may rule it out. The procedure in obtaining this gauge theory is like that 
discussed before with the added complexity that there are 5-component wave func-
tions and gauge transformations involving 5 x 5 matrices. Thus 5 Qx 5 = 1 O+ 24  
gauge bosons are needed to compensate for the local phase transformations. As  

usual, the singlet is not of interest, but of the 24, 8 are the gluons for the color  

interaction, 4 others are the y, W ± , and Z °  and the remaining 12 are the so-called  

X and Y bosons. The X and Y bosons are also called leptoquarks and have anti-
particles X and Y. These four particles come in three colors, giving twelve particles  

in all. To give an idea of the relationship among the leptons and quarks, a typical  

5 representation of the group and schematic of the reactions among the particles is  

shown:  
ve  1 
e  1  

5 = dr  	 (18-22)  

db  )019.0  
dyl^ 

Of the reactions carried by gauge bosons between the 5 particles, two are as before:  

the ye  combining with a W -  to produce an e - , and a blue antidown quark emitting 
a blue-antiyellow gluon to become a yellow antidown quark. The new third reaction, 
carried by the X boson of charge —4/3, is between a quark d r  of charge + 1/3 and 
a lepton e -  of charge — 1; thus dr  + X —* e -  conserves charge. This last type of 
reaction would cause nucleons to decay, but the X and Y bosons have masses about 
equal to the unification energy, making this an extremely weak reaction. 

The SU(5) theory has a number of highly desirable features, some of which are 
shared by other unification theories. For example, the total electric charge of any 
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multiplet, such as the 5 given in (18-22), must add to zero. This condition, like that  

for eliminating triangle anomalies, works if the quarks have fractional charge and  

also have color. This would give a reason for the proton to have the same magnitude  

of charge as the electron. The leptoquark unification gives a reason for the weak  

lepton and quark doublet patterns, such as (ee)L  and (dc)L , and the fact that the 
difference in charge within each doublet is the same; i.e., Q(v e) — Q(e - ) = Q(u) — Q(dc).  
More quantitatively, the SU(5) theory predicts with remarkable accuracy the weak 
mixing angle Ow , the important undetermined parameter of the electroweak theory. 

Unfortunately the theory has two serious difficulties. The first is called the hierarchy 
problem, resulting from the tremendous difference in the masses of the weak gauge 
bosons (10 2  GeV/c 2) and of the leptoquarks (10 15  GeV/c 2). To achieve that huge 
difference in masses requires an unbelievable fine-tuning of parameters, and there are 
added difficulties with the stability of these solutions under renormalization. The 
other problem is experimental: the predicted proton partial lifetime for the p e +  +  
Tr°  decay mode is 4.5 x 1029 ± 1  ^' years, while the limit from the experiment by the  

University of California Irvine, University of Michigan, and Brookhaven National  

Laboratory is > 10 32  years as this material is written.  

The question of experimental tests of grand unification deserves a little more dis-
cussion. For a long time it has been believed that lepton number and particularly  

baryon number were absolutely conserved quantities, like charge. However, as was  

discussed in Section 17-8, absolute conservation laws are connected with exact in-
variance principles and symmetries. We have learned that charge conservation de-
pends upon gauge invariance and the existence of an associated massless field. This  

is a general result for charge-like conservation laws in gauge theories. There is no  

gauge invariance with a massless field that can be associated with the conservation  

of baryons or leptons. These are probably approximate conservation laws which  

appear to be so exact because the unification energy, perhaps expressed as leptoquark  

mass, is so large. Whatever the theory, if quarks and leptons are unified, baryons  

and leptons will not be conserved. Shortly after the universe began expanding, at  

a time when its thermal energy was comparable to the unification energy, these unifi-
cation effects were large. Now these effects are extremely small because the thermal  

energy or temperature of the universe is so low. Two of these effects will be cited  

briefly as examples, the first being the already mentioned proton decay.  

Man could not exist with the radiation from his own body if the lifetime of the  

proton were not at least a million times longer than the age of the universe, which  

is about 10 10  years. To detect a proton lifetime in the 10 30  years range requires a  
great deal more material than the human body, as well as a much more sensitive  

detector. The experiment, which at the time of writing is giving the best limit of 10 32  
years for the proton lifetime, uses about 8,000 tons of highly purified water viewed  

by particle detectors and held in a plastic container lining the walls of a huge pit dug  

in a very deep salt mine. It is necessary to go deep underground to eliminate the  

effect of cosmic rays, particularly extremely high-energy muons. Cosmic ray neutrinos  

cannot be absorbed out; they sometimes produce events difficult to separate from  

proton decays and these may set a limit of about 10 33  years on the sensitivity of  
the experiments. Besides the great experimental difficulty in detecting proton decay  

events in such a huge bulk of material, there is the problem of knowing for which  

decay to design the instrumentation. While the initial experiments were made parti-
cularly to detect p e +  + 7c°  as favored by SU(5), other theories suggest different  

decays. Other, more finely grained detecting systems may do a better job on some of  

these other decays. It may take some time to have definitive results, but the existence  

of proton decay is crucial to grand unified theories.  

Less crucial, because the effects could be unobservably small, but nevertheless  

important, is the issue of the violation of lepton number conservation. Experiments  
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on this topic are even more theory dependent, but the most sensitive test is nuclear 
double beta decay. Even-even nuclei are bound much more tightly than their neigh-
boring odd-odd nuclei because of the pairing energy explained in Section 15-9. For 
many of the even-even nuclei, while single beta decay is energetically impossible, 
double beta decay, via a two-step weak interaction, could give a transition to the 
next even-even nucleus. The expected process, involving the emission of 2e -  + 2ve , 
is highly improbable but has possibly been observed in one laboratory experiment 
and also indirectly by looking for noble gas decay products in billion-year-old rocks. 
Having a much larger phase space volume is the decay in which only 2e -  are emitted. 
This neutrinoless double beta decay would obviously not conserve lepton number. 
As shown in Figure 18-28, in the first decay an  e -  and a virtual V e  are emitted. 
To get a second  e -  from the other beta decay requires that a virtual v e  be absorbed. 
Thus, this decay demands the condition v e  - v e ,  and if it is satisfied lepton number 
conservation is violated. A neutrino which is identical to its antineutrino is called a 
Majorana neutrino.  

Because of parity violation in the weak decay, the neutrino emitted in the first 
decay will have a right-handed helicity. Because the e - , being a particle instead 
of an antiparticle, has to have left-handed helicity, angular momentum conservation 
requires the absorbed neutrino producing the second e -  to be left-handed. There are 
two ways to provide the required helicity reversal of the neutrino. One way is if 
the weak interaction, through the existence of a very massive (» 100 GeV/c 2) right-
handed W boson, can sometimes give particles (as opposed to antiparticles) a right-
handed helicity. The other way is if the neutrino has a nonzero rest mass, since then 
its helicity is reversed simply by having a coordinate system which travels faster 
than the neutrino that no longer has y = c. (See the argument at the end of Section 
16-4.) In principle, it is possible experimentally to separate these two helicity-
reversing effects and provide a measure of v e  or WR mass. So far such decays have 
not been observed, the experiments setting lifetime limits of greater than about 10 22 

 years. Expressed as a purely ve  mass effect, this places a limit of < 10 eV/c 2 . 
The possible existence of a neutrino rest mass would most likely be a consequence 

of the violation of lepton-number conservation. That is, all known mechanisms for 
giving a neutrino a mass require that it be a Majorana neutrino. Many experiments 
have been done to detect a neutrino mass. One Soviet experiment, examining closely 
the end-point energy spectrum of tritium beta decay, reported a nonzero mass and 
quoted a limit of > 20 eV/c 2. This result and the double beta decay limit are not 
necessarily incompatible, because of a possible mixing among the different types of 
neutrinos; but the Soviet result was contested on experimental grounds when this was 
written and similar experiments were being done as a check. Another class of experi-
ments looks for neutrino oscillations, which require that at least one flavor of neu-
trino have a mass and that flavor changing can occur among different kinds of 
neutrinos. The oscillations are, from a mathematical point of view, closely related to 
K °-K °  oscillations discussed in Section 17-8. In the neutrino case the measurements, 
of which there have been many, give a product of neutrino mass and degree of 
neutrino mixing. The mass limits set are quite small, unless neutrino mixing is at 
least as small as quark mixing. One of the motivations for looking for neutrino 

P 

 

Figure 18-28 Neutrinoless double beta decay requires 
that the virtual right-handed antineutrino emitted in the  

first neutron decay becomes absorbed as a left-handed  
neutrino in order that the second neutron decay occur. 
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oscillations is provided by the observation of Davis and others, who find only about 
one-fourth as many solar neutrinos as are expected to reach the earth. If oscillations 
among the three kinds of neutrinos exist, then at the earth-sun distance only about 
one-third of the v e's would be detected. 

The questions of baryon and lepton conservation and of neutrino mass apply 
generally in a qualitative way whatever the grand unification scheme, although quan-
titative predictions differ. With so much uncertainty in the theoretical area, there is 
little point in devoting much space here to rival theories. Other groups, such as 
SO(10), have been used. Perhaps, as in the case of SU(3) of flavor which introduced 
quarks, one of these groups will lead to the next level of fundamental particles. Much 
work has already been done on this topic of preons, which are supposed to be the 
constituents of quarks and leptons. Another alternative is the supersymmetry theory,  
which was designed to avoid the hierarchy problem. In this theory every boson has 
a fermion partner, and vice versa. At the time of writing, the theory is very popular, 
but there is no experimental evidence for these squarks, sleptons, photinos, gluinos, 
etc. Another version of this theory, called supergravity, has the appealing feature 
that gravity does the symmetry breaking. This theory extends the hope that all four 
fundamental interactions may one day be unified in a single theory. 

The manifestations of grand unification apply not only in particle physics, but also 
in cosmology. This is a large subject and so only a few topics will be touched 
upon briefly in the following paragraphs. 

Neutrino mass may play a role in explaining the "dark mass" of the universe. From the  

rotation rate of galaxies it is known that 80 to 90% of galactic masses are not observed. There  

are so many neutrinos that if one type of neutrino had a mass between 4 and 80 eV/c 2 , even  
this miniscule value could provide most of the dark (i.e., unobserved) mass of the universe.  

This would also provide a mechanism to produce galaxy formation, presently an unsolved  

problem, and to give stability to galaxies. If the neutrino mass were sufficiently large it would  

eventually stop the expansion of the universe and hence close it.  

While neutrino mass is a by-product of grand unification, there are more direct mani-
festations of this subject for cosmology. For example, the antibaryon-to-baryon ratio in the  

universe has been difficult to understand. At an early stage of the universe's expansion this  

ratio should have been unity. From observations of heavy cosmic ray nuclei and lack of  

observation of the x-ray emission which would result from the annihilation of galactic matter  

with intergalactic antimatter, it is known that this ratio is now <10 -4. Explanations for  
this large change have come from theories like SU(5) in which baryon nonconservation occurs  

and which has a baryon-creating process that is CP violating, so that more baryons than  

antibaryons are created.  

More generally, since the very early universe was controlled by unified interactions, it is  

to be expected that there are presently detectable results of that early era. About 10 -4°  sec  
after the singularity that began the expansion of the universe (the big bang), its thermal  

energy was at the grand unification level, and the breakdown of unifying gauge invariance  

was just starting to appear.  

The gauge theories have produced impressive increases in our understanding at both ends of  

the distance scale, with applications to cosmology and to particles. Those simplifications and  

unifications give hope that all of physics is being brought together into an understandable  

whole.  

QUESTIONS  

1. What is really meant by an elementary particle? Consider such properties as mass, life-
time, size, and reactions, especially decays into other particles and fusion to make other  

particles.  
2. How would the cross section for antineutrinos scattering from nucleons depend upon  

laboratory energy? Why? From the reaction, how could you tell if a  y  or AT was incident?  



3. The threshold laboratory kinetic energy for producing antiprotons by the reaction p+ 
p - p + p + p +pis 5630 MeV. If instead of a free proton target, protons bound in a 
nucleus are used, would you expect the threshold energy to be lower, higher, or the 
same, and why? 

4. The elastic electron-proton cross section decreases rapidly with increasing electron 
energy, whereas the inelastic cross section does not. On the basis of the essential physical 
difference between those two processes, what is the reason for the disparity between the 
two energy dependencies? 

5. The nucleon and antinucleon are each about 7 times more massive than the pion. How 
is it even conceivable that the 7E could be a combination of nucleon and antinucleon? 

6. Why is isospin, like SU(3), a broken symmetry, and how is it broken? 
7. What is the hypercharge of the u, d, and s quarks? 
8. The 3 and 3 representation make a singlet and an octet. Would you expect the singlet 

to have the same spin and parity as the octet? Why? 

9. If a strong decay mass width for a particle is -10 2  MeV/c2 , what would you expect an 
electromagnetic decay width to be? How does this compare with the width of the /J? 

10. Explain why the mass width of the cp °  is much smaller than that of the other vector 
mesons p and co which have an even lower mass. 

11. The decay D +  -p K -  + it+ +n+  is allowed, but D +  K +  + n°  and D +  -> K +  + 
n +  + IL are strongly suppressed. Why is this? 

12. Out of the spin 3/2, even parity decuplet only three members (A , A ++ , and S2 - ) have 
been selected to demonstrate a need for the color quantum number. Why have the others 
not been utilized? 

13. In what ways are electromagnetic and color charges similar and different? 
14. The fact that the photon is massless makes the electromagnetic interaction one of long 

range. If the gluon is also massless, why is the strong color interaction also not of 
long range? 

15. Suppose you have two dice, each of which you are going to rotate in some prescribed 
manner. Is the finite rotation of one die an Abelian or a non-Abelian operation? Is the 
choice of which die to rotate first an Abelian or a non-Abelian operation? 

16. When a local phase transformation is constructed in the electromagnetic case, a charge is 
inserted and the phase angle is made to depend on space and time coordinates. In the 
Yang-Mills theory, what sort of chargelike quantity would be inserted? That is, what 
interaction would it relate to? 

17. Local electromagnetic charge conservation depends upon gauge invariance and the exis-
tence of an associated massless field, the photon. Do similar conditions apply in the 
color interaction and is there a similar absolutely conserved quantity? 

18. Why is vacuum polarization necessarily a quantum effect only? 

19. The cross section ratio R of (18-6) is based on the quark-parton model. This result is 
altered slightly in QCD because of the appearance of gluons. Considering what happens 
to hadronic jets as the energy increases, in what direction would you expect R to change 
due to QCD corrections and why? 

20. In what way is the non-Abelian nature of QCD essential in converting the global sym-
metry of color to a local symmetry? Why can the same result be achieved in Abelian 
QED? 

21. What is the hidden symmetry in the electroweak theory? In answering this it may be 
useful to recall the Yang-Mills theory and the role of the Higgs boson. 

22. Before the electroweak theory it was difficult to compare the weak coupling constant 
to the electromagnetic one because they have different dimensions. Explain these di-
mensions and how the electroweak theory gives an appropriate strength to a dimension-
less weak coupling constant. 

23. What is the relationship, if any, between a Goldstone boson and a Higgs particle? 
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24. If neutrinoless double beta decay occurs, the neutrino is of the Majorana type, requiring 

y  = v. In neutrino-nucleon scattering, beams of "y" and of "v" are utilized, and they pro-
duce different results. What physical characteristic makes an apparent "y" in a beam differ 
from a "v' and yet would allow these really to be Majorana neutrinos? 

PROBLEMS 

1. Prove the relation p2  = mE/2 quoted in the third paragraph of Section 18-2. (Hint: Use 
results obtained in the last problem of Appendix A.) 

2. (a) The intensity of a beam of particles diminishes fractionally by dI/I = -dx/) in a dis-
tance dx, if the mean free path for collision with n other particles per unit volume is 

= 1/n6 for an interaction cross section a. Using these relations, estimate the probability 
that a solar neutrino will pass through the earth along a diameter without interacting. 
Take o-  = 4 x 10 -44  m 2/nucleon, and the radius and mass of the earth to be 6.4 x 
10 6  m and 6 x 1024  kg. (b) For a flux of neutrinos from the sun of 4 x 10 14  m -2-sec -1 ,  
make a rough estimate of the number of neutrino-induced reactions in your body per day. 

3. (a) Draw a Feynman diagram for the pion charge exchange reaction, n: + p -> n°  + n. In 
this case the exchanged particle is a p meson. Explain what latitude you have in choosing 
the charge of the p. (b) Redraw the diagram of part (a) as a quark flow diagram (a Feynman 
diagram on the quark level). 

4. The meson octet of Figure 18-6 is formed by quarks q iqi , where q i  can be u, d, and s and 
qJ  their antiparticles. Show that the baryon octet of Figure 18-7, which is made up of 
giqigk, can have the same TZ  and Y quantum numbers as that of the meson octet. Proceed 
by finding which combinations of gigk  have the same TZ  and Y quantum numbers as qi . 

5. (a) Using Table 18-1, determine the quark structure of the antiproton (p), E +  baryon, 
and  p -  meson. (b) Since the n has spin 0 and the p has spin 1, what is the internal 
structure of the 2r and p? The angular momenta should be specified in spectroscopic nota-
tion (e.g., 3 D 2 ). 

6. In an e +-e -  colliding beam accelerator, the ring radius is 350 m. Each beam has 
15 milliamps of current, which can be considered as electrons or positrons (charge 
1.6 x 10 -19  coulombs) traveling at velocity c. Determine first the number of circulating 
e +  and e - . The luminosity L of the accelerator is defined so that there is a reaction rate 
of 6L per second for a process with cross section a. Now L depends on the particle den-
sity transverse to the beam (i.e., particles per unit area) of each beam, the beam area, and 
the frequency of revolution. Find L if each beam has an area of 10 -6  m2 . 

7. (a) Draw a quark-flow diagram for the strong decay 0(3767) D +  + D. (b) Using the 
quark content as a guide, assign isospins (T and TZ) to the D +, D - , D°, and D°. In what 
way are these mesons similar to and different from the K mesons? 

8. The D meson is a pseudoscalar and the D* meson is a vector with the same quark content. 
What would you expect to be the quark-antiquark states for the D and D*? Use spectro-
scopic notation. 

9. A charmed baryon, E c , with T = 1 has been discovered. From its name, what would you 
expect its quark content to be? Consider all three charge states. 

10. Using (18-5) find the isospin of the B meson. How is this like the K meson? 
11. Draw a quark-flow diagram for T -> E+ + 7r°  + 7 and state how this decay relates to 

the narrow mass width of the T. 
12. Draw a quark- flow diagram for the decay T -> p+ + u  . Recalling (18-6), determine the 

ratio of the probability for 	p+ + 
u  to that for T -> p+  + 

13. Show that the condition for local phase invariance, P(x,t) -* tP'(x,t) = eie cx , t )LP(x,t) will 
not satisfy the free-particle Schroedinger equation; i.e., 'P'(x,t) is not a solution if `P(x,t) 
is. To save algebra, consider only one space variable x, although all three may be involved. 

14. As an example of a possible particle possessing color, consider the color eigenfunction 
for a member of a "sextet" representation of color SU(3) made from a quark pair: 



(QQ)6 = 	[rr + bb + yy + (rb + br) + ̂   (ry + yr) + 	(yb + by)]  

From the quark couplings of Figure 18-21 find for this eigenfunction the (QQ) 6  potential. 
15. Draw a quark-flow diagram for the weak decay i -  -3 µ -  +174 . Explicitly include the 

appropriate intermediate vector boson. (b) By considering the production of it -   and vu  
in the rest frame of the vector boson, show from the necessary parity nonconservation 
that the boson is indeed a vector type, that is, that it has spin one. 

16. In neutrino-nucleon scattering, the actual interaction is mainly with u or d quarks. (a) 
Give Feynman diagrams for charged-current v µ  and vµ  scattering from u and d quarks, 
being sure to conserve all necessary quantum numbers. (b) Because gluons form virtual 
quark-antiquark pairs, scattering can occur with reduced probability from û and d quarks; 
give Feynman diagrams for v, and vµ  scattering from û and d quarks. (c) For u and d  
quarks, give Feynman diagrams for neutral-current scattering with vµ  incident. (d) For 
the processes in parts (a) and (c) and using proton or neutron (in a nucleus) targets, what 
would be the initial state nucleon and what would be the final state nucleon? 

17. Show why observation of the process v + e -  e + VI, provides proof of the existence  

of neutral currents while v e  + e -  -> e -  + ve  does not.  
18. Among the gluons are the combinations with color charges  (rF -  yÿ)/h and  

(rr + yy -  2bb)l, These appear to treat the different colors unequally so that it would  

matter which color had a specific label. Show that this is not true by taking the specific  

case of Figure 18-21b; compute the coupling for the quark reaction r + y r + y and  
get the same coupling -x 2/3 as was the case for r + b -> r + b.  

19. A neutral-current coupling to a u quark can be pictured as a u quark emitting or  

absorbing a Z°  and going on as a u quark with a different momentum. This is equivalent  

to a u and û quark annihilating to form a Z °. Draw Feynman diagrams for both processes  

and state why they are equivalent. From the u + û -> Z °  point of view, the amplitude for  
the process will involve the wave functions for uû. Similarly if d, and s, are involved, the  
amplitude will be proportional to the sum dcdc  + scsc . Show that the strangeness-
changing part of this amplitude vanishes because s cs, has been added to dcdc ; i.e., show  
that the GIM mechanism works.  
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Appendix A 
THE SPECIAL THEORY 

OF RELATIVITY 

The object of this appendix is to develop those results of Einstein's special theory of relativity 
that we shall need in our study of quantum physics. Of course it is likely that many students 
will have worked with relativity, in studying classical mechanics and/or electromagnetism, be-
fore embarking on the study of quantum physics. For those students, this appendix can be 
useful as a review. For others, it should be useful as a concise treatment of the most impor-
tant results of relativity. 

THE GALILEAN TRANSFORMATION AND MECHANICS 

In classical physics the state of a mechanical system at some instant can be described com-
pletely by constructing a frame of reference and using it to specify the coordinates, and the time 
derivative of the coordinates, for the particles comprising the system at that instant. If we know 
the masses of the particles and the forces acting between them, Newton's equations of motion 
make it possible to calculate the state of the system at any future time in terms of its state at 
the initial  time. Now, it is often desirable that during or after such a calculation we specify the 
state of the system in terms of a new frame of reference which is moving in translation (i.e., not 
rotating) relative to the first frame with constant velocity. Two questions arise: (1) How do we 
transform our description of the system from the old to the new frame? (2) What happens to 
the equations which govern the behavior of the system when we make the tr ansformation? 
These questions are the ones with which the special theory of relativity concerns itself. (In the 
general theory, which we shall not need in our study of quantum physics, transformations in-
volving acceleration of one frame relative to the other are considered.) 

Figure A-1 shows a particle of mass m whose motion under the influence of force F is speci-
fied in terms of a primed and an unprimed frame of reference. The primed frame is moving rel-
ative to the unprimed frame with constant velocity y  in a direction which, by construction, 
is the positive direction of their collinear x' and x axes. By definition, the times t' and t mea- 

y axis y' axis 

x' axis 

z 
axis 	z' 

axis 

Figure A-1 An x', y',  z', t' frame of reference moving in translation with constant velocity 
y  relative to an x, y, z, t frame. The x' and x axes are supposed to be collinear. 

A-1 
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sured in the two frames are both zero at the instant when the y'z' plane coincides with the 
yz plane. With these two frames there are two sets of four numbers, (x',ÿ ,z',t') and (x,y,z,t), that 
can equally well be used to specify the coordinates of the particle at any instant of time. What 
are the relations between these sets of numbers? According to classical physics they are 

x' =x — vt 

= Y 	 (A-1) 
z' = z 

t' = t 

These are known as the Galilean Transformation. The simple arguments of classical physics 
leading to them are: 

1. If the zeros of the time scales used in different frames are defined to be the same at any 
time and location, then in classical physics both time scales will remain the same for all times 
and all locations, so t' = t. 

2. Since by construction the x'ÿ and xy planes always coincide, we have z' = z; and similarly 
for y' = y. 

3. Since in the time interval between zero and t' = t the  y'z'  plane moves in the positive 
direction a distance vt, the x' coordinate will be smaller than the x coordinate by that amount. 
Sox'=x— vt. 

The Galilean transformation constitutes the answer that classical physics gives to the first 
question posed earlier. 

The answer to the second question is given in classical mechanics by using the Galilean 
transformation to convert Newton's equations in the x, y, z, t frame 

M 
 d

2 z 2 
t2 = 

Fx 
m d t2 = F

,, 
m dt2  = FZ (A-2) 

into whatever form these equations assume in the x', y',  z', t' frame. Note that for (A-2) to be 
valid the x, y, z, t frame must be an inertial frame; i.e., one in which a body not under the 
influence of a force, and initially at rest, will remain at rest. 

By differentiating each of the first three of (A-1) twice with respect to t, and then using the 
fourth to write t = t', it is trivial to show that 

	

d 2x'_ d2x 	d 2y' _ d2y 	d2z' _ d2z 

dt'2 	dt2 	dt'2 	dt2 	dt'2 	dt2  
In other words, the acceleration of the mass m measured in the primed frame is the same as it 
is when measured in the unprimed frame. Of course, the reason is that two frames related by 
a Galilean transformation are not accelerating with respect to each other, so the transfor-
mation does not change the measured acceleration. Furthermore 

	

Fx. = Fx 	Fy  = F3, 	Fe = FZ  
because the component of the force F acting on m in the direction of the x' or x axis is the same 
as seen in either frame, and similarly for its other components. Evaluating the unprimed com-
ponents of acceleration and force in (A-2) in terms of their primed counterparts, but doing noth-
ing to the mass, since in classical physics mass is an intrinsic property of a particle whose value 
cannot depend on the frame of reference, we find the equations of motion in the primed frame 

d2 	 2 
m dt 	2  = Fx , 	m dt  2  =F. 	m die 

 2' 
= FZ , 	 (A-3) 

Note that (A-3) have exactly the same mathematical form as (A-2). Thus part of the answer to 
the second question is that Newton's equations, which govern the behavior of the mechanical 
system, do not change when we make a Galilean transformation. The x, y, z, t frame was an 
inertial frame because 42x/dt 2  = d2y/dt 2  = d2z/dt 2  = 0 if F = O. From (A'3) we see that x', y', 
z', t' is also an inertial frame because d2x'/dt' 2  = d2ÿ /dt' 2  = d2z'/dt' 2  = 0 if F = O. 

Since Newton's equations are identical in any two inertial frames, and since the behavior of 
a mechanical system is governed by these equations, it follows that the behavior of all mechani-
cal systems will be identical in all inertial frames, although these frames move at constant veloc-
ity with respect to each other. This prediction is verified by a wide variety of experimental 
evidence. 



THE GALILEAN TRANSFORMATION AND ELECTROMAGNETISM 

Next we inquire into the behavior of electromagnetic systems when we perform a Galilean 
transformation. Electromagnetic phenomena are treated in classical physics in terms of Max-
well's equations, which govern their behavior just as Newton's equations govern the behavior 
of mechanical phenomena. We shall not actually carry through the Galilean transformation of 
Maxwell's equations, as we have for Newton's, since the calculation is complicated. Instead 
we shall state the results: Maxwell's equations do change their mathematical form under a 
Galilean transformation, in sharp contrast to the behavior of Newton's equations. We shall 
also discuss the physical significance of these results. 

As the student probably knows, Maxwell's equations predict the existence of electromagnetic 
disturbances which propagate through space in the characteristic manner of wave motion. The 
nineteenth century physicists, who were very mechanistic in their outlook, felt quite sure that 
the propagation of waves predicted by Maxwell's equations requires the existence of a mechani-
cal propagation medium. Just as sound waves propagate through a mechanical medium, air, so, 
according to their view, electromagnetic waves must propagate through a mechanical medium, 
which they called the ether. This propagation medium was required to have quite strange 
properties in order not to disagree with certain known facts. For instance, it would have to be 
massless since electromagnetic waves such as light can travel through vacuum; but it would 
have to have elastic properties to be able to transmit the vibrations inherent in the idea of wave 
motion. Nevertheless, physicists of that era felt the concept of the ether was more attractive 
than the alternative of electromagnetic waves propagating without the aid of a propagation 
medium. 

It was assumed that the electromagnetic equations in the form presented by Maxwell were 
valid for the frame of reference at rest with respect to the ether, the so-called ether frame. 
A solution of these equations led to a prediction of the magnitude of the propagation velocity 
of electromagnetic waves in vacuum. The result was 2.998 x 10 8  m/sec = c, in agreement 
within experimental error with the value of the velocity of light that had been measured by 
Fizeau. However, in a frame of reference moving with constant velocity with respect to the 
ether, Maxwell's equations changed form when the Galilean transformation was used to eva-
luate them in that moving frame. As might be expected, when these changed equations were 
used to obtain a prediction of the electromagnetic wave propagation velocity that would be 
measured in the frame moving with respect to the ether, the velocity was found to have a mag-
nitude different from c. 

The complicated calculation which predicted the velocity of light measured in a frame of 
reference moving with respect to the ether, performed by making a Galilean transformation of 
Maxwell's equations to the moving frame and then solving them in that frame, led to the simple 
prediction 

Might wrt moving frame = Vlight wrt ether — moving frame wrt ether 	 (A-4) 

where wrt = with respect to, and Vlight wrt ether = C.  The prediction agreed with two simple 
physical ideas: 

1. Light propagates with a velocity of fixed magnitude c with respect to its propagation 
medium, the ether, just as sound waves propagate with a velocity of fixed magnitude with re-
spect to their propagation medium, the air. 

2. The velocity of light with respect to a frame moving with respect to the ether can be found 
from a normal vector addition of relative velocities. 

It should be pointed out that the arguments justifying vector addition of velocities are really 
the same as those justifying the Galilean transformation. For instance, in a case when all 
motion is along the x' or x axis, (A-4) can be obtained immediately by a time differentiation of 
the first of (A-1), using also the fourth one, t' = t. 

In summary, theoretical physics near the end of the nineteenth century was based on three 
fundamentals: Newton's equations, Maxwell's equations, and the Galilean transformation. 
Almost everything that could be derived from these fundamentals agreed well with the experi-
ments that had been performed to that time. With regard to the questions we have been dis-
cussing, they predicted that reference frames in uniform motion with respect to each other 
were completely equivalent as far as mechanical phenomena were concerned, but in regard to 
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electromagnetic phenomena they were not equivalent; there was only one frame, the ether 
frame, in which the velocity of light had a magnitude with the numerical value  c. 

THE MICHELSON -MORLEY EXPERIMENT 

In 1887 Michelson and Morley carried out an experiment which proved to be of extreme im-
portance. The experiment was designed to investigate the motion of the earth with respect to 
the ether frame. Since the earth is moving about the sun, it would seem unrealistic to make 
the a priori assumption that the ether frame travels with the earth and, as we shall indicate later, 
experimental observations arguing against such an assumption were known at the time. It 
would be much more reasonable to assume that the ether frame was at rest with respect to the 
center of mass of the solar system, or the center of mass of the universe. In the first case the 
velocity of the earth with respect to the ether frame would have a magnitude of the order of 
104  m/sec; in the second case the magnitude of the velocity would be somewhat greater. The 
basic idea of the experiment was to measure the velocity of light in two perpendicular direc-
tions from a frame of reference fixed to the earth. A moment's consideration of the classical 
theory, as summarized by the vector addition (A-4), will show that the theory predicts the 
measured velocities should have different magnitudes for light traveling in different directions 
relative to the direction of motion of the observer through the ether. 

Although the difference in the two measured light velocities was expected to be small, be-
cause the velocity of the earth with respect to the ether is small compared to the velocity of 
light with respect to the ether, Michelson and Morley built a device incorporating an inter-
ferometer that should have been more than sensitive enough to detect and measure the differ-
ence. To their extreme surprise, they could not even detect a difference. They, and many other 
subsequent investigators, repeated the measurements with improved equipment, but an effect 
was never observed. Despite the predictions of the classical theory, the Michelson-Morley 
experiment showed that the velocity of light has the same magnitude, c, measured in perpendic-
ular directions in a reference frame which is, presumably, moving through the ether frame. 

These results captured the attention of most physicists, and a number of them tried to devise 
explanations that would be consistent with the Michelson-Morley results and yet retain as 
much as possible of the physical theories then in existence. Notable among them were the 
"ether drag hypothesis" and the "emission theory." 

The ether drag hypothesis assumed that the ether frame was locally attached to all bodies of 
finite mass. It was attractive because it would explain the Michelson-Morley results and yet 
did not involve modification of the existing theories. But it could not be accepted for several 
reasons, the principal one having to do with an astronomical phenomenon called stellar aber-
ration. It had been known since the 1700s that the apparent positions of stars move annually 
in circles of very small diameter. This is a purely kinematical effect due to the motion of the 
earth about the sun; in fact, it is the same as the effect causing a vertical shower of rain to ap-
pear to a moving observer to be falling at an angle to the vertical. From this analogy it is easy 
to see that stellar aberration would not be present if light were to travel with velocity of fixed 
magnitude with respect to the ether frame, and if that frame were dragged along by the earth. 

In the emission theory Maxwell's equations are modified in such a way that the velocity of 
light remains associated with the velocity of its source. This too would explain the Michelson-
Morley results since their light source was fixed to the interferometer used to measure the light 
velocity difference, but it must be rejected because it conflicts with astronomical measurements 
concerning binary stars. Binary stars are pairs of stars which are rotating rapidly about their 
common center of mass. Consider such a pair at a time when one is moving toward the earth 
and the other is moving away. Then, if the emission theory is valid, relative to the earth the 
velocity of the light from one star would be larger than that of the light from the other star. 
This would cause the stars to appear to move in very unusual orbits. However, in 1913 De 
Sitter showed that observed motions of binary stars are accurately accounted for by Newtonian 
mechanics when the velocity of the light they emit is taken to have a magnitude independent 
of their motion. 

All the experimental evidence (including evidence from a number of highly accurate con-
temporary experiments) is consistent only with the conclusion that there is no special frame 
of reference, the ether frame, with the unique property that the velocity of light measured in 
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that frame alone has a magnitude equal to c. Just as for inertial frames and mechanical phenom-
ena, all frames in relative motion with constant velocity are equivalent in that the velocity 
of light measured in each frame has the same magnitude c. To succinctly put the experimental 
evidence: 

The velocity of light in vacuum is independent of the motion of the observer and of the motion 
of the source. 
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EINSTEIN'S POSTULATE 

Einstein, in 1905, was the first to realize that physicists should abandon the fruitless and mis-
leading concept of the ether. In essence, he accepted the fact that light propagates through 
vacuum, and that vacuum really is empty! With no ether frame, the only frame of reference 
that can have any significance to an observer measuring the velocity of light is the frame fixed 
relative to himself. Then it is not surprising that an observer in all cases obtains the same 
numerical result, c, when he measures the magnitude of the velocity of light. Einstein stated 
as a postulate: 

The laws of electromagnetic phenomena, as well as the laws of mechanics, are the same in all 
inertial frames of reference, despite the fact that these frames move with respect to each other. 
Consequently, all inertial frames are completely equivalent for all phenomena. 

This postulate required that Einstein modify either Maxwell's equations or the Galilean 
transformation, since the two together imply the contrary of the postulate. Although in 1905 
the emission theory could still be considered acceptable, he chose not to modify Maxwell's 
equations. He was then forced to modify the Galilean transformation. This was a bold move. 
The intuitive belief in the validity of the Galilean transformation was so strong that his con-
temporaries had never seriously questioned it. Yet, as we shall see, the very different trans-
formation that Einstein adopted in lieu of the Galilean one is based on realistic physical con-
siderations, whereas the Galilean transformation is grossly unrealistic. Another indication of 
the boldness of Einstein is that our earlier considerations imply that any modification of the 
Galilean transformation would require some compensating modification of Newton's equations 
in order that the postulate continue to be satisfied for mechanics. We shall see soon what results 
this leads to, but first we must study the new transformation equations. 

SIMULTANEITY 

Consider the fourth of the Galilean transformation (A-1), which is 
t' = t 

The equation says there is the same time scale at all places and for all times in any two frames 
of reference moving uniformly with respect to each other. This is equivalent to saying that 
there exists a universal time scale for all such frames. Is this true? To find out we must realisti-
cally investigate the procedures used in time measurement. 

Let us first concern ourselves with the problem of defining a time scale in a single frame. 
Now the basic process involved in any time measurement is a measurement of simultaneity. 
As Einstein wrote, "If I say `That train arrives here at 7 o'clock,' I mean something like this: 
`The pointing of the small hand of my watch to 7 and the arrival of the train are simultaneous 
events'." Of course there is no problem at all in determining the simultaneity of events which 
occur at essentially the same location, like the train and the nearby watch or clock used to 
time its arrival. But there is a problem in determining the simultaneity of events which occur 
at separated locations. In fact this is the key problem involved in setting up a time scale for a 
frame of reference. In order to have a time scale valid for a whole frame of reference we must 
have a number of clocks distributed throughout the frame so that there will everywhere be a 
nearby clock which can be used to measure time in its vicinity. These clocks must be syn-
chronized; that is, we must be able to say of any two of these separated clocks A and B: "The 
little hand of clock A and the little hand of clock B pointed to 7 simultaneously." 

A number of methods for determining simultaneity at separated locations are probably now 
suggesting themselves to the student. They surely all involve the transmission of signals be-
tween the two locations. If we had at our disposal a method of transmitting signals with in- 
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Figure A-2 Illustrating Einstein's definition of  
simultaneity of separated events.  

finite velocity there would be no more of a problem in determining the simultaneity of events  

occurring at separated locations than there is of doing it for events occurring at the same 
location. This is where the Galilean transformation goes wrong by implicitly assuming the 
existence of such a method of synchronization. In fact, there is no such method. Since we have 
agreed to be realistic in developing a time scale, we must use real synchronization signals. Light 
(or other electromagnetic) signals are clearly the most appropriate because they have the same 
propagation velocity under all circumstances. This property enormously simplifies the process 
of determining simultaneity. Thus we are led to Einstein's definition of simultaneity of separated 
events: 

An event occurring at time t 1  and location x 1  is simultaneous with an event occurring at time 
t2  and location x2  if light signals emitted at t 1  from x 1  and at t2  from x 2  arrive simultaneously  
at the geometrically measured midpoint between x 1  and x 2 .  

This definition, illustrated in Figure A-2, makes the very reasonable statement that two  

separated events are simultaneous to an observer located at their midpoint if he sees them  

happening simultaneously. Note that in Einstein's theory simultaneity in time does not have  

an absolute meaning, independent of location in space, as it does in the classical theory. The  

definition intimately mixes the times t 1 , t2  and the space coordinates x 1 , x2 .  
A consequence of this is that two events which are simultaneous when observed from one  

frame of reference are generally not simultaneous when observed from a second frame of ref-
erence which is moving relative to the first. To see this, we consider a very simple "thought  

experiment," adapted from one used by Einstein. Figure A-3 illustrates the following sequence  

of events from the point of view of an observer 0 who is at rest relative to the ground. This  
observer has so placed two charges of dynamite C 1  and C2 that the distances OC 1  and OC2  are  
equal. He causes them to explode simultaneously in his frame of reference by simultaneously  

sending out light signals to C 1  and C2 which actuate detonators. (He is invoking a reciprocal  

of the definition quoted earlier.) Assume that he does this so that, in his frame, the explosions  

occur when he is abreast of O', an observer stationed on a train moving by at a very high ve-
locity v. The explosions leave marks C'1  and C'2 on the side of the train. After the experiment,  
O' can measure the distances O'C1 and 0'C'2 . He must, and will, find them equal because other-
wise space would not be homogeneous. The explosions also produce flashes of light. Observer  
0 will receive the flashes simultaneously, confirming that in his frame the explosions occurred  

simultaneously. However O' will receive the flash which originated at C'2 before he receives  
the flash from C'1  simply because the train moved during the finite time required for the light  
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Figure A-3 Two successive views of a train moving with constant velocity y, from the  
viewpoint of a ground based observer O. The small arrows indicate flashes of light.  



to reach him. Since the explosions occurred at points equidistant from O', but the light signals 
were not received simultaneously, he must conclude that in his frame of reference the explosions 
were not simultaneous. 

Such disagreements concerning simultaneity lead to interesting results. From the viewpoint 
of O, C 1 C2  = CiC'2 . But according to 0', C'2 passed C2 before C'1  passed  C 1  since he re-
ceived the signal from C'2 first. Therefore O' must conclude that C 1 C2  < CiC'. If this is not 
apparent, it can be demonstrated by constructing diagrams showing the sequence of events 
from the viewpoint of O'. The simultaneity disagreement will also cause the two observers to 
disagree concerning the rates of clocks fixed in their respective frames of reference. As we shall 
see, the nature of their disagreements about the measurement of dist ance and time intervals 
is such as to allow both O and O' to find the same value c for the velocity of the light pulses 
which came from C 1  or C2. 

TIME DILATION AND LENGTH CONTRACTION 

We consider here a second thought experiment designed to facilitate the quantitative evalu-
ation of two relativistic effects that were noted qualitatively in the preceding thought experi-
ment. An observer O', moving with velocity y  relative to observer O, wishes to compare a time 
interval measured by his clock with a measurement of the same time interval made by clocks 
belonging to O. They have already established that, when at rest with respect to each other, 
all the clocks involved run at the same rate and are synchronized. Now it is apparent that, even 
when in relative motion, the reading of an O' clock can be compared with the reading of an O 
clock that happens to be momentarily coincident with the former without any complication. 
Thus measurements of a time interval made with clocks in the two frames can be compared 
by the procedure illustrated in Figure A-4. O' sends a light signal to a mirror, which reflects it 
back to him. Both O and 0' record the emission of the signal with clocks C 1  and C', which are 
coincident at that instant. They use the clocks C2 and C', which are coincident when the light 
signal is received back from the mirror, to record the time of its reception. The two events de-
fining the beginning and end of the time interval to be compared are the emission and reception 
of the light signal. 

The elapsed time between these two events measured by 0' is T' = 2At', where At' = l'/c 
with l' the distance to the mirror measured in his frame. The elapsed time measured by O is 
T = 2At. From the figure, and the Pythagorean theorem, it is apparent that 

c2At2  = v2At2  + l2  
where l is the distance to the mirror as measured by O. Solving for At, we have 

Ate = 	
l2 	— l2 	1 

C 2  — v 2  c2  1 — v2/c2 

or 

At  = 
c  1/1 — v2/c2 
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Figure A-4 The comparison of a time interval measured by two observers. Left: The figure 
shows the situation at the instant of emission of a light signal (the small arrow), from the 
point of view of O'. Right: The figure shows the situation at the instant of its reception, 
from the point of view of O. 
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Now it is easy to show that observers in relative motion cannot disagree about the measure-
ment of distances perpendicular to the direction of motion because disagreements about 
simultaneity concern finite synchronization signal propagation times for propagation in the 
direction parallel to the direction of relative motion. Thus we have 1 = l', and so 

l' 	1 	 At' 
At = 	 = 	

 c /l — v 2 /c 2 	— v2/c2 	 

Therefore we obtain 

v 2 /c 2  

We have found that a time interval between two events  occurring  at the same place in a cer-
tain frame is measured to be longer by a factor of 1/V1 — v 2/c 2  in a frame moving relative to 
the first frame and, consequently, in which the two events occur at separated locations. The 
time interval measured in the frame in which the events occurred in the same place is called the 
proper time. The effect involved is called time dilation. 

Next we consider the same thought experiment, but we imagine a measuring rod placed 
in the O frame with one end at clock C 1  and the other end at clock C2. Designate by L the 
length of the rod measured in the 0 frame, with respect to which it is at rest. We want to 
evaluate L' , the length of the rod measured from the O' frame. 

In this frame the rod is moving in a direction parallel to its own length. Since the velocity 
of O' with respect to 0 is v, the velocity of O, and also of the rod, with respect to 0' must be 
precisely — v. Otherwise there would be an inherent asymmetry between the two frames that 
is not allowed by Einstein's postulate. T' is the time interval between the instant when O' sees 
the front end of the rod pass his clock C' and the instant when he sees the rear end pass the 
clock. This time interval is related to the length L' of the rod as measured in the O' frame, 
and to the magnitude v of its velocity measured in that frame, by the equation 

L'=vT' 

We may also establish an equation connecting the corresponding quantities as measured in 
the 0 frame. In this frame C', which is moving with velocity of magnitude v, travels the dis-
tance L in time T. Thus 

L = vT 

From the last two equations we obtain 
T' 

L' =L — 
T 

But the time dilation argument shows that 

T= 	v2 	/c2 

Therefore 
L' = 	— v 2/c2 L (A-6) 

We have found that a rod is measured to be shorter by a factor \/1 — v 2 /c2  when the mea-
surement is made in a frame in which it is moving parallel to its own length, compared to its 
length measured in a frame in which it is at rest. The length of the rod measured in the frame 
in which it is at rest is called its proper length. The effect is called the Lorentz contraction. 
Note that a comparison of (A-6) with the equation immediately above it shows the factor 
relating the primed to the uprimed time interval is the same as (and not the reciprocal of) 
the factor relating the primed to the uprimed distance interval. 

It is not difficult to understand why the phenomenon of Lorentz contraction is unobserv-
able in classical physics. Consider a railroad train which when stationary with respect to the 
ground has a measured length of 1 km. This is its proper length. If it is moving over the 
ground at velocity v = 100 km/hr = 27.8 m/sec and its length is measured from the ground, 
(A-6) predicts that the value obtained will be less than 1 km. But not by much. In fact, 
since  v2/c 2  = (27.8/3.00  x 108 )2  = 8.59  x 10 -15 , the value of the Lorentz contraction factor 
is V1 — v2/c 2  = ,/l — 8.59 x 10 -15  1 — (1/2) x 8.59 x 10 -15  = 1 — 4.30 x 10 -15 . Thus 

T' 	 (A-5) 

T 
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the length of the train is predicted to be contracted by about four parts in 10 15 . Such an effect  
would be completely unobservable because the lengths of objects dealt with in classical physics  

cannot be measured with the necessary accuracy.  

However, time intervals occurring in classical physics can be measured with very great accu-
racy using atomic clocks. This makes it just possible to observe time dilation with classical  

objects. An experiment performed in 1971 did so by sending atomic clocks on a trip around  

the earth in commercial airliners, and comparing the readings of the traveling clocks with a  

reference atomic clock at the U.S. Naval Observatory. After various corrections were made to  

account for things having nothing to do with time dilation, the traveling clocks showed smaller  
readings, compared to the reference clock, which amounted to about 3 x 10 -7  sec for the  
entire round trip. This agreed, to the 0.2 x 10 - ' sec accuracy of the measurement, with the  
predictions of (A-5).  

Both length contraction and time dilation are easy to observe for objects moving at veloc-
ities whose magnitudes are an appreciable fraction of that of light. A particularly convincing  

example is found in the behavior of particles called muons. These are known to be formed at  

an elevation of around 10,000 m, near the top of the atmosphere, as a byproduct of collisions  

of rapidly moving cosmic rays with the molecular constituents of the atmosphere. The muons  

are projected toward the surface of the earth at velocities of about 0.999c. They are unstable  

particles; on the average each lives for 2.2 x 10 -6  sec, as measured in a reference frame in  

which the muons are stationary, before decaying into other particles. Now a particle moving  

at essentially 3.0 x 10 8  m/sec for 2.2 x 10 -6  sec will travel only 660 m. Hence it might seem  

that all muons would have decayed long before they are able to reach the ground, since they  

must travel around 10,000 m to do so. But, in fact, observations show that nearly all the muons  

formed at the top of the atmosphere reach ground level.  

Time dilation explains the observations. A prediction as to whether or not a muon can  

traverse the thickness of the atmosphere before it decays should not use 2.2 x 10 -6  sec for  
the time available. This value is the proper time the particles live, on the average, because it  

is measured in a reference frame in which they are at rest. Instead, the corresponding dilated  

time should be used since the observations are made in a reference frame in which the muons  

are moving at  a very high velocity. For v/c = 0.999, the time dilation factor has the value  

1/.,/1 — v 2 /c 2  = 1/\/1 — 0.998 = 1/0.045 = 22. Hence the dilated lifetime has the value 22 x  

2.2 x 10 -6  sec = 4.9 x 10 -5  sec. A particle moving at 3.0 x 10 8  m/sec for this time will travel  

a distance of 14,000 m, more than enough to reach ground level before decaying.  

An alternative explanation of the observations concerning muons involves Lorentz contrac-
tion. It carries out the calculation in a reference frame in which the muons are stationary,  

instead of in one in which the atmosphere is stationary. The muons live their proper lifetime  

2.2 x 10 -6  sec in this reference frame. But in  it the proper thickness of the atmosphere is  

Lorentz-contracted by the factor ,/1 — v 2 /c2  = 0.045, and is only 0.045 x 10,000 m = 450 m  
thick. The time required for the atmosphere to move past the muons, as observed in the  

reference frame in which they are stationary, is its contracted thickness divided by its velocity,  

or 450 m/3.0 x 108  m/sec = 1.5 x 10 -6  sec. Since this is less than their proper lifetime, there  

is no difficulty in understanding how it happens.  

THE LORENTZ TRANSFORMATION  

Now we shall obtain the equations that are used in relativity theory to transform space and  

time variables from one frame to another moving with constant velocity relative to the first.  

Our argument will be guided by what we have already learned, but in the final analysis it is an  

independent derivation based on the experimental evidence that the velocity of light is inde-
pendent of the motion of the observer and of the source.  

We consider a third thought experiment involving two observers O' and O, with 0' moving  
relative to 0 at velocity of magnitude  y  in the positive direction of the x' and x axes. Their  

x'y' and xy planes always coincide, as in Figure A-1, and the origins of their reference frames  

coincide at the instant t' = t = 0. At that instant O' ignites a flash bulb at his origin which  

produces a wavefront of light that expands away from the point of emission with velocity of  

magnitude c in all directions. Therefore, according to O' at time t', the wave front will be a  
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sphere, centered on his origin, of radius r' = ct'. The coordinates of any point on the wave front 
at that time will thus satisfy the equation of a sphere 

z2 + ÿ 2 + z'2 = c2 t'2 
	

(A-7)  

But it will be equally true that according to 0 the light is expanding away from the point of 
emission, his origin, with velocity of magnitude c in all directions. Thus from the point of view 
of 0 the wave front at time t is also a sphere of radius r = ct centered on his own origin, and  
satisfying the equation 

X2  + y2  + z 2  = c 2 t 2 	 (A-8)  
We shall find relations between the two sets of variables (x',y',z',t') and (x,y,z,t) which allow  
both (A-7) and (A-8) to be valid, i.e., which transform one equation into the other.  

We are guided by our earlier considerations to assume the following form for the trans-
formation equations  

x' =y(x—vt)  

Y^ = Y  
z' = z  

t' =y(t+ S)  

where y is a dimensionless quantity, presumably involving the relative velocity of the two  

frames, v, and the velocity of light, c, and where S is a quantity, also presumably involving these  

velocities, which must have the dimensions of time. Expressions for y and S will be determined  
soon, but we can say even now that we should have y -- ►  1 and S —* 0 if v/c -* 0. The reason is  
that for y = 1 and S = 0 (A-9) reduce to the Galilean transformation (A-1), which is as it should  

be since the Galilean transformation would be essentially correct if the relative velocity v of  
the frames is extremely small compared to the velocity c of the signals used to synchronize the  
clocks in the frames. We inserted the additive term S in the fourth equation when v/c is not  
small because according to 0' the time of some event measured by 0 must be corrected for a  
synchronization error between the clock used by O at the event and the clock used by 0 at his  
origin, as discussed in our first thought experiment. Having accounted for synchronization, we  

put the multiplicative factor y in the fourth equation to account for the discrepancy in time  

intervals measured by 0' and O, as discussed in our second thought experiment. As was also  

discussed there, the same factor y should appear in the first of (A-9) to account for the discrep-
ancy in distance intervals measured by the two observers. Since y and z are distances mea-
sured perpendicular to the direction of relative motion, we assumed that their values will not  

be changed by the transformation.  
Now let us see whether the forms assumed in (A-9) can actually transform (A-7) into (A-8)  

and, if so, what expressions for S and y are required to accomplish this. Using (A-9) to rewrite  

each variable in (A-7) in terms of the unprimed variables, we have  

y 2(x2  — 2vxt + v2 t2) + y2 + z2 = c2y2 (t 2  + 26t + 62)  

As we must obtain from this (A-8), which does not contain a term with the combination of  

variables xt, the second term in the parentheses on the left side must be canceled by something  

on the right side. For the cancelation to be obtained for all values of the independent variable  

t, it must be due only to the second term in the parentheses on the right. Thus we must have  

—y 22vxt = c 2y 2 2St  

or  
S = —vx/c 2 " 	 (A-10)  

Note that S has the dimensions of time, and that S —* 0 if v/c —* 0, as predicted earlier. A re-
consideration of our first thought experiment will make it apparent why the synchronization  

correction S is linearly proportional to both v and x. Gathering the factors of x2  and t2  in the  
remaining terms of the equation after evaluating 6 2, we obtain  

x2y2(1 — v 2/c 2) + y2  + z2  = c2 t2y2(1 — v2/c2 )  

Comparing this with the required form, (A-8), we see that we shall obtain it if  

y 2(1 — v2/c2) = 1  

(A-9)  
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_L 

 1  
(A-11)  

y  ^1 — v2/c2  

Note that y is dimensionless, and that y —> 1 if v/c —> 0, as also predicted earlier. Considering 
the  results of our second thought experiment, it is not surprising that y involves the expression 

— v2/c2 . Finally, we use (A-10) and (A-11) to evaluate y and S in (A-9), and successfully 
complete our derivation of the Lorentz transformation 

1  
= 2 2 (x—vt) 

—v /c  

Ÿ =Y  
z' = z  

1  
t' =   (t — vx/c 2 )  

/1 	v2/c2  

The space-time variables transformation of relativity is called the Lorentz transformation for  

the historical reason that equations of the same mathematical form (but with a very different  

physical significance because v represented a velocity with respect to the ether frame instead of  

a velocity of any inertial frame with respect to any other inertial frame) had been proposed by  

Lorentz in connection with a classical theory of electrons some years before the work of  

Einstein.  
The Lorentz transformation reduces, as expected, to the Galilean transformation when the  

relative velocity of the two frames, v, is small compared to the velocity of light, c. But signifi-
cant differences between the predictions of the Galilean transformation and those of the rigor-
ously correct Lorentz transformation are found when v is comparable to c. These had not  
been observed in classical physics because the appropriate experiments had not been per-
formed. Many experimental results of quantum physics, some of which are discussed in this  

book, show that the Lorentz tr ansformation is, in fact, the one that accurately describes  

nature. Note that for v larger than c the Lorentz transformation equations are meaningless,  
in that real coordinates and times are transformed into imaginary ones. Thus c appears to play  
the role of a limiting velocity for all physical phenomena. We shall obtain a better under-
standing of this as we go further into relativity theory.  

THE RELATIVISTIC VELOCITY TRANSFORMATION  

Consider the particle shown in Figure A-5, moving with velocity u as measured in a frame of  

reference O. We would like to evaluate the velocity u' of the particle as measured in the frame  

O', which is itself moving relative to O with velocity v.  
Measured in the 0 frame, the velocity vector of the particle has components  

	

dx 	dy 	dz  

	

ux  =  dt 	uy  = dt 	
uz = 

dt  

Y Y'  

O  
Particle  

(A-12)  
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v Figure A-5 A moving particle observed from  

two frames of reference O and O', with the  

latter moving relative to the former at velocity  

v.  



N 

Q  

The velocity vector, as measured in the O' frame, has components  
, 	dx' 	, 	dy' 	, 	dz' 

lo — x 	
dt' 	

zi = ' 	
dt' 	

uZ 
 = dt'  

To establish the required relationships, we take the differentials of the Lorentz transformation,  

(A-12), remembering that y  is a constant. This gives'  

dx' = 	1 	 	 (dx — v dt)  — v2/c2  

dy' = dy  

dz' = dz  

dt' = 	1  	(dt — vdx /c 2 ).  
— v2 /c2  

So we obtain  

1 	 dx  

	

^ 	2 	2 (dx—vdt) 	__ v  

	

, dx 	̂/i — v2/c2 	 dt 	ux  — v 
 ux =—= 	 = 	_ 	 

	

dt 	1 	( 

	

v dx) 	v dx 
1 	

vux 
Q 	 — 

 c2 	
1 c

2  dt 	
— 	c2 

x 	 ,I1 — v2/v2  
v  
â 	 dy  
Q. 	 — 

â 	
dÿ 	 dy 	 dt 

uy _ 
	 — 

	

dt' 	1 2 
	(dt — v dxl 	

1 	2 2
(

1  — v2  dx 	
1— v Zx 

^/1 —  v /c2 	c 2  ) ^1 — v /c ( 	c 	 dt 	) 	c  

(A-13)  
\/1 — v 2/c2  uy  

dz  

	

_ dz' 	 dz 	 dt 	 \ 1 — v 2/c2  uZ  

	

uZ dt' 	1 	( 	dx)  	vdx 	vu x  
/
c 2 	c 2  Cdt

— 	 ) 	
— v2 

/ 
c2 (

1-- 
c2  dt 

) 	
c 2 1/1 — v2 	̀ 	 1 	\  

These equations constitute the relativistic velocity transformation.  

Note that as v/c approaches zero (A-13) approach those which would be derived from the  

Galilean transformation. Another interesting property is that it is impossible to choose  

u and y such that u',  the magnitude of the velocity measured in the new frame, is greater  

than c. Consider the example illustrated in Figure A-6. As measured by O, particle 1 has  
velocity 0.8c in the positive x direction and particle 2 has velocity 0.9c in the negative x direc-
tion. We evaluate the velocity of particle 1 as measured in a frame O' moving with particle 2  
using the first of (A-13), with ux  = u 1  = 0.8c and y = —0.9c. We obtain  

, 
 = 

0.8c — (— 0.9c) = 1.70c 
u l 	

(-0.9c)(0.8c) 	1.72 = 0.99c  
1  

The velocity transformation equations demonstrate another aspect of the fact that c acts as a  
limiting velocity for all physical phenomena.  

y 

—0.9c 	+0.8c 	 n' 1  
^o o--^ 	 2 • o—^ 

2 	1 	 1 

x 

y  = — 0.9c 
E-- 

z 	 z'  

Figure A-6 Illustrating an example of the relativistic addition of velocities.  
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RELATIVISTIC MASS 

It has been emphasized that Einstein's modification of the transformation equations would 
necessitate some compensating modification in the equations of mechanics, so that these 
equations continue to satisfy the requirement of not changing form in a transformation from 
one inertial frame to another moving relative to the first. Now we shall begin to develop 
the new mechanics, which is called relativistic mechanics. 

Clearly it is desirable to carry over into relativistic mechanics as much of classical mechanics 
as the circumstances allow. We shall see that it is possible to preserve Newton's equation 
of motion, in a form equivalent to the one originally given by Newton 

F =dP  
dt 

(A-14) 

where p is the momentum of a particle acted on by force F. It is also possible to preserve 
the very closely related classical law of momentum conservation for the particles in an isolated 
system 

C all particles P 
	 P 

initial 	[all particles 	final 
	 (A-15) 

It will even be possible to preserve the classical definition of the momentum of a particle 

p =mv (A-16) 

where in is its mass and v is its velocity. But to do all this it will be necessary to allow the 
mass of a particle to be a function of the magnitude of its velocity, i.e. 

m = m(v) 	 (A-17) 

The form of this function is to be determined. However, we know a priori that we must have 
m(v) = mo  if v/c « 1, where the constant mo  is the classically measured mass of the particle. 
The reason is that when a characteristic velocity becomes very much smaller than the velocity 
of light the pertinent Lorentz transformation approaches a Galilean transformation and no 
modification of mechanics is necessary. 

In order to evaluate the function m(v), we consider the following thought experiment. As 
measured in the x, y, z, t frame indicated in Figure A-7, observers 0 1  and 02 are moving in 
directions parallel to the x axis with equal magnitude but oppositely directed velocities. These 
observers have identical particles, say billiard balls B 1  and B2, each of mass mo  as measured 
when they are at rest. While passing, each throws his ball so as to hit the other's ball with 
a velocity which, from his own point of view, is directed perpendicular to the x axis and is 
of magnitude u. 

As observed in the x, y, z, t frame, B 1  and B2 will approach along parallel paths making 
angles e1, = 02 i  with the x axis, and rebound on paths at angles e lf  and 92f  to that axis. 
Assuming conservation of momentum and that the collision is elastic, it is easy to show that 
01 f  = 192f  and that the magnitude of the velocity of the balls is the same after the collision as 

y 

Figure A-7 A symmetrical collision between two balls of identical rest mass. 
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Figure A-8 A symmetrical collision, as observed by O.  Since u is supposed to be very 
much smaller than y,  the angles made by the trajectories of B2 and the x axis are actually 
very much smaller than shown. 

before. The actual value of 0 1 f  and  02f  depends on the impact parameter d, which we assume 
to be such that 0 1 f  = 0 1 , 	shown in the figure. 

Now consider the process from the point of view of 0 1 , as illustrated in Figure A-8. 
0 1  throws B 1  along a line parallel to his y axis with velocity of magnitude u, which 
we shall take to be very small compared to c. It returns along the same line with 
velocity of the same magnitude but opposite sign. He sees B2 maintain a constant x com-
ponent of velocity just equal to y  the velocity of 0 2  relative to 0 1 , which we shall take to 
be comparable to c. The component of velocity of B2 along his y axis is observed by 0 1  to 
change sign during the collision but to maintain a constant magnitude. To evaluate this 
magnitude we realize that the y component of the velocity of B2, as measured by 0 2 , is u. 
Then we transform this to the 0 1  frame with the aid of the second of (A-13) and obtain 
u Ji — v2/c 2  for the magnitude of the y component of velocity of B2 as measured by 0 1 . 

The y momenta of both B 1  and B2, as measured in the 0 1  frame, simply change sign 
during the collision. Consequently the total y momentum of the isolated system of two colliding 
balls changes sign. If the momentum conservation law (A-15) is to be valid, the total y 
momentum before the collision must equal the total y momentum after. This can be true only 
if the total y component of momentum of the system measured by 0 1  is zero before the 
collision because zero is the only quantity which can change sign without changing value. 
Evaluating y components of momentum as the masses times the y components of velocity 
from the definition of (A-16), and equating their sum to zero, we obtain an equation that is 
obviously self-contradictory if we insist that both masses have the value m o  that they have 
when measured in frames in which they are at rest. The reason is that according to 0 1  the 
magnitude of the y component of  velocity of B 1  is u, while the magnitude of the y component 
of velocity of B2 is UN/1 — v 2/c 2 . 

However, if we allow the mass of a particle to be a function of the magnitude of its 
total velocity vector we can satisfy the momentum conservation law. Since u is very small 
compared to y, the magnitude of the velocity vector of B2 as measured by 0 1  is essentially y, 
as can be seen in Figure A-8. The magnitude of the velocity vector of B 1  according to 0 1  is 
just u. Thus 0 1  would write the requirement imposed by the momentum conservation law for 
y components as 

m(u)u — m(v)u,\/1 — v2/c2  = 0 

or 

m(u) = m(v)J1 — v 2/c 2  
Since u is very small compared to c, we may take m(u) = m o  and obtain 

1 
m(v) =   m0 	 (A-18) 

•N/1 — v2/c2 
A theory of relativistic mechanics consistent with momentum conservation demands that the 
mass m(v) of a particle measured when it is moving with velocity  of magnitude y be larger 
than its mass m o  measured when it is at rest by the factor 1/ N/1 — v 2/c2 . The mass m(v) is 
called the relativistic mass of the particle and m o  is called the rest mass. A reconsideration of 
our arguments will show that the two observers in the thought experiment measure different 
values for the mass of the particle because of the difference in their measurements of its velocity 
component perpendicular to the direction of their relative motion, and that this arises because 
of the difference in their measurements of time intervals. 
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Figure A-9 An experimental verification of the dependence of mass on velocity.  

For the quite high velocity y  = 0.1c the relativistic m ass is only one-half of 1% greater  

than the rest mass. But with increasing y the relativistic mass rapidly increases since m(v) oo  

as y -* c if m o  has any finite value. It is apparent that the velocity of a particle cannot exceed c.  
The first experimental confirmation of the predictions of relativity theory concerning the  

dependence of mass on velocity was provided by Bucherer in 1909. He applied to electrons  

of high velocity a variation of the technique used by Thomson to measure the charge to mass  

ratio of slowly moving electrons (described in most elementary physics texts). Bucherer's results  

are shown by the crosses in Figure A-9, some more extensive results obtained in recent years  

are shown by dots, and the predictions of (A-18) are shown by the solid curve. Note that these  

results prove not only that (A-18) has the correct functional form, but also that the velocity  

c, which essentially enters the theory of relativity as the limiting velocity for the transmission  

of information, actually is equal to the velocity of light, 2.998 x 10 8  m/sec.  

RELATIVISTIC ENERGY  

Consider a particle of rest mass m o  initially stationary at x = x =. A force of magnitude F is  
then applied in the positive x direction and the particle moves under the influence of the force.  
It is interesting to calculate the total work done by the force when the particle moves to  

x = x  f . We shall label this work K. Taking the usual definition of work, we have  

Xf  

K 
= J 

F dx  
xi  

In order to evaluate the integral we must know the relativistic form of Newton's equation of 
motion. With a relativistically acceptable expression for momentum p = mv, where m is the 
relativistic mass, we can with confidence take over into relativity Newton's equation in the 
form of (A-14). For the one-dimensional situation of interest here, it reads 

_ d(mv) _ dv 	dm F 	
dt — m  dt + v  dt  

Hence we have  
xf 	x

('

f 	
\ 

K =
J  F

dx= J  Cmdt+ v dt  I dx  

To obtain an easy evaluation of this integral, we go through the following sequence of  

manipulations. First we write the relation (A-18) between m and y in the form  

m2(1 — v 2/c 2) = mp  
This immediately yields  

m2c2  — m 2 v2 =  m2
0C

2 
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dm = c2(m f  — mi) i 

Next we differentiate each term with respect to time, to obtain 

C 2  d(m2)  d(m2v2)  = 0  
dt 	dt  

or  

2c2m dm — 2m2v dt — 2v2m 
dm 

 = 0  

or  
dv 	dm 	2  dm 1 	2  dm dt 	2 

dt 	dt _ 

	

dtdx 

dm 
m—

at +v — ^ 	—c 	— c  dx  

We have used the fact that v = dx/dt so that 1/v = dt/dx. Now we can write  
X 	 mf  

K = J 2dm 
 c 	dx = c 2  

Xi  

where mi  and m  f  are the masses of the particle when it is at positions x i  and x  f , respectively.  
But m i  = m0  since the particle starts from rest at x i  and, according to (A-18), the mass of the  

Q 	particle as it moves past x  f  with velocity v is m  f  = m0/\/1 — v 2/c2 . So we have  
X 	 moc 2 
c 	 K = 	 moc2 	 (A-19)  
a 	 J1 — v2/c2  

â 	Now the classical law of energy conservation implies that the total work done by the force  

acting on the particle should equal its kinetic energy. Thus we would like to call K the kinetic  
energy of the particle. To check in the classical limit take v/c « 1, and expand the reciprocal  

of the square root, to obtain  

rr 	v 2) -112  	ll 	rr 	1 v 2  

K m ° c2  L(1 — C2 	— 1
J 
 ^ m oc2 I 1 + 2  c2 — 1 J 

or  
moc 2  V2  m0v 2  

K ^ 	 — 
2 c 2 	2  

This agrees with the classical expression for kinetic energy, and confirms our identification of  

K in (A-19) as the relativistic kinetic energy.  
Continuing the interpretation of (A-19), we observe that K is a function of v which can be  

written as the difference between a term depending on v and a constant term, as follows  

K(v) = E(v) — E(0)  

where E(v)in= moc2/ J1 — v 2/c2  =  mc2 ,  with m the relativistic mass; and where E(0) is the  

value of E(v) for v = 0, i.e., E(0) = m oc2. Since K is an energy, E(v) and E(0) must also be  
energies—E(v) being some energy associated with the particle when its velocity is v, and E(0)  

some energy associated with the particle when its velocity is 0. To identify these energies, we  

rewrite the equation as  
E(v) = K(v) + E(0)  

The conclusion is inescapable. We must interpret E(v) as the total energy of the particle moving  

with velocity v, since it is the sum of the kinetic energy K(v) of the particle and an intrinsic  
energy E(0) associated with the particle when it is at rest. The energy E(v) is called the total  

relativistic energy, and E(0) is called the rest mass energy.  
We have established Einstein's well known relations between mass and energy: The rest  

mass energy E(0) of a particle is c 2  times its rest mass m °  

E(0) = moc2 	 (A-20)  

and the total relativistic energy E of a particle is c2  times its relativistic mass m  

E = mc2 	 (A-21)  

Equation (A-19) tells us the relation between total relativistic energy E, relativistic kinetic  
energy K, and the rest mass energy m oc2  

E = K + moc 2 	 (A-22)  



It is often convenient to have an expression for the total relativistic energy that explicitly 
involves the momentum p. Such can be obtained by evaluating the quantity 

m2c4  m 2  c4 
= m 2 c4 	1  = m2c4 v2/c 2 

o — o 
1 — v 2 /c2 	° 1 — v2/c2 

2 2 2 
= 	

Y12°C 71 = 
c2 m2 v2  = c2 p2 

1 — v

2 

 /c 2  

Thus 

m 2 c4  = c2  p2  + mO 4  C 

or 

E2  = c2p2  + m02c4 	 (A-23) 
As an example of the relativistic theory of energy, we will calculate the relativistic kinetic 

energy, total relativistic energy, rest mass energy, and relativistic momentum of a muon moving 
at velocity 0.999c, in terms of its known rest mass 1.9 x 10 -28  kg. The first thing to do is to 
calculate the rest mass energy. According to (A-20), it is m 0c 2  = 1.9 x 10 -28  kg x (3.0 x 10 8 

 m/sec)2  = 1.7 x 10 -11  joule. Now we can employ  a result obtained in discussing time dilation 
for muons moving at 0.999c, namely 1/0 — v 2/c 2  = 22. Using (A-18) in (A-21), we find that the 
total relativistic energy is mc 2  = 22 m0c2  = 22 x 1.7 x 10 -11  joule = 3.8 x 10 -10  joule. The 
relativistic kinetic energy is then obtained from (A-19) to be K = mc 2  — m0c 2  = 3.8 x 10 -10 

 joule —0.17 x 10 -10  joule = 3.6 x 10 -10  joule. Finally, we use (A-16) to write the relativistic 
momentum as p = my = mc2(v/c)/c = 22m 0c 2(v/c)/c = 3.8 x 10 -10  joule x 0.999/3.0 x 10 8 

 m/sec = 1.3 x 10 -18  kg-m/sec. Another way would be to solve (A-21) for p in terms of mc 2 , 
m0c2 , and c. But the procedure we followed is easier in this case. A case in which (A-21) is 
truly useful is found in Section 2-4. 

Although the choices made in the theory of relativistic mechanics seem reasonable, their 
ultimate justification is found in comparing the predictions of the theory with appropriate 
experiments. Several very successful comparisons are given in the text, but it is worthwhile 
here to point out that the existence of a rest mass energy m 0c 2  is not in conflict with classical 
physics. Since the experiments in that field all involve systems in which the total rest mass 
is essentially constant, the appropriate rest mass energies can he added to both sides of all 
classical energy balance equations without destroying their validity. 

The theory is, however, of more than academic interest because there are important pro-
cesses in nature in which the total rest mass of an isolated system changes significantly. For 
such processes the experiments of quantum physics show that the change in rest mass energy 
is exactly compensated for by a change in kinetic energy in such a way as to conserve the 
total relativistic energy of the system. This is, of course, what happens in a nuclear reactor. 
Consequently, in relativity we must replace the separate classical laws of conservation of mass 
and conservation of energy by a single comprehensive law of conservation of total relativistic 
energy: 

As measured in a given inertial frame of reference, the total relativistic energy of an isolated 
system remains constant. 

We close our concise development of relativity by stating that explicit calculations demon-
strate that neither Newton's equation as expressed in (A-14), nor Maxwell's equations, change 
form under a Lorentz transformation from one frame of reference to another moving relative 
to the first. However, these calculations show that the force in the case of the mechanical 
equation, and the electric and magnetic fields in the case of the electromagnetic equations, 
change when Lorentz transformed from one frame to the other. Although we cannot go into 
these matters here, their study elsewhere is recommended to the student as adding very worth-
while physical insight—particularly into the relationship between electric and magnetic fields. 

PROBLEMS 

1. At what speed will the Galilean and Lorentz expressions for x' (see (A-1) and (A-12)) 
differ by (a) 0.10%; (b) 1%; (c) 10%? 

2. (a) Construct diagrams, similar to those in Figure A-3, showing the sequence of events 
from the point of view of the observer 0' stationed at the center of the train. Use them 
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to prove that C 1  C2  < C1C'2 . (b) Repeat the argument associated with Figure A-3, but 
letting 0' be the one who sends the light signals to detonate the two charges of dynamite, 
so that they explode simultaneously from his point of view. Present diagrams of the 
situation from his point of view and also from the point of view of O. Explain both the 
similarities and the differences for this case and for the case treated in the Appendix A. 

3. The distance to the farthest star in our galaxy is of the order of 10 5  light years. Explain 
why it is possible, in principle, for a human being to travel to this star within his lifetime, 
and estimate the required velocity. 

4. The length of a spaceship is measured to be exactly half its proper length. (a) What is the 
speed of the spaceship relative to the observer's frame? (b) What is the dilation of the 
spaceship's unit time? 

5. Two spaceships, each of proper length 100 m, pass near each other heading in opposite 
directions. If an astronaut at the front of one ship measures a time interval of 2.50 x 
10 -6  sec for the second ship to pass him, then (a) what is the relative velocity of the 
spaceships? (b) What time interval is measured on the first ship for the front of the second 
ship to pass from the front to the back of the first ship? 

6. A passenger walks forward along the aisle of a train at a speed of 1.3 m/sec as the train 
moves along a straight track at a constant speed of 30.2 m/sec with respect to the ground. 

v 	What is the passenger's speed relative to the ground? To the accuracy cited, do classical 
aa) 	 and relativistic predictions differ? 
° 	7. One cosmic-ray particle approaches the earth along its axis with a velocity 0.80c toward 

the North Pole, and another with a velocity 0.60c toward the South Pole. What is the 
relative speed of approach of one particle with respect to the other? (Hint: It is useful to 
consider the earth and one of the particles as the two inertial systems.) 

8. In frame O, particle 1 is at rest and particle 2 is moving to the right with velocity u. Now 
consider a frame 0' which, relative to O, is moving to the right with velocity v. Find the 
value of v such that the two particles appear in 0' to be approaching each other with 
equal but opposite velocities. 

9. What is the speed of an electron whose kinetic energy equals its rest energy? Does the 
result depend on the rest mass of the electron? 

10. Compute the speed of (a) electrons and (b) protons that fall through an electrostatic 
potential difference of 10 million volts. (c) What is the ratio of relativistic mass to rest mass 
in each case? 

11. (a) What potential difference will accelerate an electron to the speed of light according 
to classical physics? (b) With this potential difference, what speed will an electron acquire 
relativistically? (c) What would its relativistic mass be at this speed? (d) Its relativistic 
kinetic energy? 

12. If m/m o  = 40,000 for electrons emerging from the Stanford linear accelerator, what is 
their laboratory speed, in m/sec and in terms of c? 

13. (a) Show that when v/c < 1/10, then K/m oc 2  < 1/200, and the classical expressions 
for kinetic energy and momentum may be used with an error of less than 1%. (b) Show 
that when v/c > 99/100, then K/m oc 2  > 6, and the relativistic relation p = E/c for a zero 
rest-mass particle may be used for a particle of rest mass m o  with an error of less 
than 1%. 

14. (a) Show that a particle that travels at the speed of light must have a rest mass of zero. 
(b) Show that for a particle of zero rest mass v = c, K = E, and p = E/c. 

15. The "effective mass" of a photon (bundle of electromagnetic radiation of zero rest mass 
and energy hv) can be determined from the relation m = E/c2 . Compute the "effective 
mass" for photons of wavelengths (a) 5000 A (visible region), and (b) 1.0 A (x-ray region). 

16. (a) How much energy is released in the explosion of a fission bomb containing 3.0 kg of 
fissionable material? Assume that 0.10% of the rest mass is converted to released energy. 
(b) What mass of TNT would have to explode to provide the same energy release? Assume 
that each mole of TNT liberates 820,000 calories upon exploding. The molecular mass 
of TNT is 0.227 kg. (c) For the same mass of explosive, how much more effective are 
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fission explosions than TNT explosions? That is, find the ratio, fission/TNT, of the  

fraction of rest mass converted to released energy.  

17. The nucleus 6C 12  consists of six protons and six neutrons held in close association by  

strong nuclear forces. The atomic rest masses are  

6012 :  

1H1:  

n: 

12.000000u  

1.007825u  

1.008665u 

in terms of the atomic mass unit u = 1.66 x 10 -27  kg. How much energy would be re-
quired to separate a 6C 12  nucleus into its constituent protons and neutrons? This energy 
is called the binding energy of the 6C 12  nucleus. (The masses, except for the neutron, are 
really those of neutral atoms, but the extranuclear electrons have relatively negligible 
binding energy and are of equal number before and after the breakup of the nucleus.) 
As observed in an inertial reference frame O, a particle of rest mass m o  moves at velocity 
u in the positive x direction. The  components of its total relativistic momentum in that 
frame are px  = m ou/\/1 — u2/c2 , py  = 0, pZ  = 0, and its total relativistic energy is E =  
moc 2/.1 — u 2/c2 . The inertial reference frame O' is moving relative to O in the positive x 
direction at velocity y,  where y  < u. In that frame the particle's components of relativ-
istic momentum, and  its total  relativistic energy, are p' = moû /J1 — u' 2/c2 , p3, = 0, p'2  =  
0, and E' = moc2R/1 —  u' 2/c 2 ,  where u' is the velocity of the particle relative to 0'. Eval-
uate u' from the relativistic velocity transformation. Then use it in the expressions for 

pz, and E' to derive the following: 
1 

Px 	2 	2 (px 
 — 

 vE/c 2) = 
1—v /c  

pv = py  
Pz = Pz  

E' = 	 1 	 (E — vpx) 
 

^1 — v2/c2  

These equations are called the Lorentz transformation for momentum and energy. Com-
pare them with the Lorentz transformation for space and time, (A-12), and_show_ .that the 
quantitites px, py, pz, E/c2  transform in ways that are identical to the ways the quantities  
x, y, z, t, respectively, transform. This fact forms the basis of a more advanced treatment  

of special relativity employing the "four-vectors" with components (x, y, z, t) and (pr, py ,  
pz, E/c 2).  





Appendix B 
THE RADIATION FROM 

AN ACCELERATED 
CHARGE 

Here we give a largely qualitative view of the classical theory of emission of electromagnetic 
radiation from an accelerated charge, restricting ourselves to the c ase of a stationary charge 
in vacuum that is suddenly accelerated to a non-relativistic velocity y  « c. 

We know that a stationary charge has an associated static electric field E whose energy per 
unit volume is given by 

p = EoE2  2 	 (B-1) 

This energy is stored in the field and is not radiated away. If the charge moves with a uniform 
velocity, there is a magnetic field B associated with it as well as an electric field. The total 
energy stored in the nonstatic field of a uniformly moving charge is larger than for the static 
field of a stationary charge, the additional energy being supplied from the work done by the 
forces that initially produced the motion of the charge. The energy density in this case is given 
by 

p = 1  E0E 2  + 1  B2 	 (B-2) 
2 	2µo  

and the energy stored in the field moves along with the charge. That the energy is not radiated 
away, even in this case, follows from transforming to a reference frame in which the charge is 
stationary and applying the relativistic requirement that the behavior of the charge, including 
whether or not it radiates, cannot depend on the frame of reference from which it is viewed. 
Hence for a charge having constant velocity, the electric and magnetic fields are able to adjust 
themselves in such a way that no energy is radiated, even though these fields are not static. 

For an accelerated charge, however, the nonstatic electric and magnetic fields cannot adjust 
themselves in such a way that none of the stored energy is radiated. We can understand this 
qualitatively by considering the behavior of the electric field. In Figure B-1 we describe this 
field by drawing some of the lines of force surrounding a charge which was at rest at the initial 
instant t, suffered a constant acceleration a to the right during the interval t to t', and then 
continued moving with a constant final velocity. The figure shows the lines of force at some 
later instant t", as viewed from the frame of reference moving at that velocity y. At small 
distances the lines of force are directed radially outward from the present position of the charge. 
At large distances they emanate from where the field would anticipate it to be if unaccelerated. 
The reason is that information concerning the position of the charge cannot be transmitted 
to distant locations with infinite velocity, but only with the velocity c. As a result, there are 
kinks in the lines of force found between a sphere centered on the anticipated position and 
of radius c(t" — t), which is the minimum distance at which the field can "know" the accelera-
tion started, and a sphere centered on the actual position and of radius c(t" — t'), which is the 
minimum distance at which the field can know that the acceleration stopped. As t" increases, 
the region containing the kinks expands outward with velocity c. That is, each kink of adjust-
ment propagates along its line of force in much the same way as a kink set up at one end of 
a long stretched rope propagates along the rope. The electric field in the region containing 
kinks has components which are both longitudinal and transverse to the direction of expan-
sion. But, by constructing diagrams for several values of t", it is easy to see that the longitudinal 
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Figure B-1 The lines of force surrounding an accelerated charge. Only some of the lines 
are shown. 

component dies out very rapidly and can soon be ignored, whereas the transverse component 
dies out slowly. In fact, electromagnetic theory shows, by calculations based upon the same 
idea as in our qualitative discussion, that at large distances from the region of the acceleration 
(large t") the transverse electric field obeys the equation 

	

E1  =  qa  2  sin 0 	 (B-3) 
4irEOC r 

In this equation, which is valid only if v/c « 1, r = c(t" — t) is the magnitude of the vector r 
from the region at which the acceleration a took place to the point at which the transverse 
field is evaluated, and 6 is the angle between r and a. The dependence of E 1  on B and r can 
be seen from Figure B-1 and comparable diagrams for larger values of t", and it should be clear 
from our discussion that E 1  must be proportional to q and a. Similarly, there is a transverse 
magnetic field moving along with El, and at large distances from the region of acceleration 
its strength, if v/c « 1, is given by 

B1  =  Yoga  sin B 	 (B-4) 
4ncr 

These two transverse fields propagating outward with velocity c form the electromagnetic 
radiation emitted by the accelerated charge. The radiated field is polarized with E in the plane 
of a and r and with B at right angles to this plane. The energy density of the radiation is 

1 	2  1 Bl 
p =— €0E1  + 	 

2 	2 /j0 
or, with c = 1//µ o€0  and B1  = E1/c 

p = 2 e0El + 2 EoE1 = €0E1 	 (B-5) 

The "Poynting vector," which gives the energy flow per unit area (i.e., the intensity of radiation) 
is directed along r and has a magnitude 

S = pc = EocEi 

Hence, from (B-3) 

(B-6) 



= d2x/dt 2  = 

(B-8) 

which can also be obtained from the relation defining the Poynting vector 

S = 
1 

E x B 
Ito 

Notice that no energy is emitted forward or backward along the direction of acceleration 
(0 = 0° or 180°) and that the energy emitted is a maximum at right angles to this direction 
(0 = 90° or 270°). The radiated energy is distributed symmetrically about the line of accel-
erated motion and with respect to the forward and backward directions. We see also from 
(B-6) that the radiated intensity obeys the familiar inverse square law, S oc 1/r 2 . To get the 
rate R at which total energy is radiated in all directions per unit time, i.e., the power, we in-
tegrate S over the area of a sphere of arbitrary radius r. That is 

R = J  S(9) dA = J  S(0)2mrr 2  sin 9 dû 

in which dA = 27rr 2  sin B dO is the differential ring-shaped element of area on the sphere in a 
range between 0 and 8 + dû. Carrying out the integration yields 

R = 
4ir€0  3 c3 	

(B-7) 
1 2 g2a2 

which is the rate of radiation of energy from the accelerated charge. The rate of radiation is 
seen to be proportional to the square of the acceleration. 

It should be pointed out that energy must be supplied to maintain a constant linear 
acceleration of the charge, some of it simply to compensate for the energy radiated away. 
However, the radiation loss is usually negligible at nonrelativistic speeds. In the case of 
deceleration the radiated energy is supplied by the energy stored in the electromagnetic field 
of the charge whose velocity is decreasing. This is the bremsstrahlung radiation discussed in 

 Chapter 2. 
A frequent application of (B-7) is to a vibrating electric dipole. Let a charge q be vibrating 

about the origin of the x axis with simple harmonic motion. Then the displacement of the 
charge as a function of time is x = A sin wt where A is the amplitude of the vibration and 
w = 2.7ry its angular frequency. The acceleration of the charge is given by a 
—w 2A sin wt = —w2 x. If we substitute this for a in (B-7) we obtain 

2g2w4x 2 

4it€ 03c 3  
Because x varies with time, the power radiated also varies with time at the same frequency as 
the vibration of the dipole. The average value of x 2  = A 2  sin 2  cot over one period of vibration, 
however, is simply A 2/2, so that the average rate of radiation is given by 

 

R= 
g2 w4A2 

or, with w = 2iry 
4rr€° 3c 3  

47xE03c3 
 Now qx is the electric dipole moment of the vibrating dipole when the charge is at x. So qA 

is the amplitude of the electric dipole moment. Writing qA = p, we have the useful expression 

R = 	P 	 (B-10) 
4 3

V 4 p 2 

3€0c
3  

PROBLEM 

1. According to the classical electromagnetic theory of Appendix B, what power is radiated 
by a single electron in a gold atom during the roughly 10 -12  sec that it takes to collapse 
from an orbit of radius 1.0 x 10 -1°  m to the surface of the nucleus, the nuclear radius 
being about 6.9 x 10 -15  m? Assume that all the lost electrostatic energy is radiated, the 
electron's kinetic energy remaining unchanged during the motion. 

R= 

1 6n4v4gzAz 
R= (B-9) 





Appendix C 
THE BOLTZMANN 

DISTRIBUTION 

We present here a simple numerical argument that leads to an approximation of the Boltzmann 
distribution, and then an even simpler general argument that verifies the exact form of the dis-
tribution. Consider a system containing a large number of physical entities of the same kind 
that are in thermal equilibrium at temperature T. To be in equilibrium they must be able to 
exchange energy with each other. In the exchanges the energies of the entities will fluctuate, 
and at any time some will have more than the average energy and some will have less. However, 
the classical theory of statistical mechanics demands that these energies g be distributed ac-
cording to a definite probability distribution, whose form is specified by T. One reason is that 
the average value / of the energy of each entity is determined by the probability distribution, 
and I should have a definite value for a particular T. 

To illustrate these ideas, consider a system consisting of entities, of the same kind, which can 
contain energy. An example would be a set of identical coil springs, each of which contains 
energy if its length is vibrating. Assume the system is isolated from the surrounding environ-
ment so that the total energy content is const ant, and assume also that the entities can 
exchange energy with each other through some mechanism so that the constituents of the 
system can come into thermal equilibrium with each other. Purely for the purpose of simpli-
fying the subsequent calculations, we shall, for the moment, also assume that the energy of 
any entity is restricted to one of the values g = 0, AC 2M, 3M, 4M, .... Later we shall let 
the interval M go to zero so that all the values of energy are permitted. For additional sim-
plicity, we shall at first also consider that there are only four (an arbitrarily chosen small 
number) entities in the system and that the total energy of the system has the value 3M (which 
is also chosen arbitrarily to be a small one of the integral multiples of M that the total energy 
must, by the above assumption, necessarily be). Later we shall generalize to systems having a 
large number of entities and any total energy. 

Because the four entities can exchange energy with one another, all possible divisions of the 
total energy 3Ag between the four entities can occur. In Figure C-1 we show all the possible 
divisions, the divisions being labelled by the letter i. For i = 1, three entities have g = 0 and 
the fourth entity has e = 3Ag, giving us the required total energy of 3M. Actually we can 
distinguish among four different ways of getting such a division, because any one of the four 
entities can be the one in the energy state e = 3M. We indicate this in the figure in the column 
marked "number of distinguishable duplicate divisions." A second possible type of division, 
labelled i = 2, is one in which two entities have g = 0, the third entity has e = Ag, and the fourth 
has g = 2Ae. There are twelve distinguishable duplicate divisions in this case, as we verify in 
the next paragraph. The third possible division, labelled i = 3, also has four distinguishable 
duplicate ways of letting one entity have e = 0 and the other three have e = Ag, giving the 
required total energy 3M. 

In evaluating the number of duplicate divisions we count as distinguishable duplicates any 
rearrangement of entities between different energy states. However, any rearrangement of 
entities in the same energy state is not counted as a duplicate, because entities of the same 
kind having the same energy cannot be distinguished experimentally from one another. That 
is, the identical entities are treated as if they are distinguishable, except for rearrangements 
within the same energy state. The total number of rearrangements (permutations) of the four 
entities is 4! = 4 x 3 x 2 x 1. (The number of different ways of ordering four objects is 4! since 
there are four choices of which object is taken first, three choices of which of the remaining 
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i =1  

i =2  ✓✓ ✓ ✓ 

4 4/20  

12 12/20  

4 4/20  i = 3  

^✓✓ 

✓✓✓ 

n'(&  40/20 24/20 12/20 4/20 	0/20  

Figure C-1 Illustrating a simple calculation leading to an approximation to the Boltzmann  

distribution.  

objects is taken next, two choices of which is taken next, and one choice only for the last  

object. The total number of choices is 4 x 3 x 2 x 1 - 4!. For n objects the number of different  

orderings is n! = n(n —  1)(n —  2) • • • 1.) But rearrangements within the same energy state do not  

count. Hence, for example, in the case i = 2, the number of distinguishable duplicate divisions  

is reduced from 4! to 4!/2! = 12 because there are 2! rearrangements within the state g = 0  

that do not count as distinguishable. In cases i = 1, or i = 3, the number of such divisions is  
reduced from 4! to 4!/3! = 4 since there are 3! rearrangements within the state e = 0, or the  
state e = MM, that do not count as distinguishable.  

We now make the final assumption: all possible divisions of the energy of the system occur  

with the same probability. Then the probability that the divisions of a given type (or label) will  

occur is proportional to the number of distinguishable duplicate divisions of that type. The  

relative probability, Pi , is just equal to that number divided by the total number of such  
divisions. The relative probabilities are listed in the column marked Pi  in Figure C-1.  

Next let us calculate n'(e), the probable number of entities in the energy state e. Consider  
the energy state g = 0. For divisions of the type i = 1, there are three entities in this state,  

and the relative probability Pi  that these divisions occur is 4/20; for i = 2 there are two entities  
in this state, and Pi  is 12/20; for i = 3 there is one entity, and Pi  is 4/20. Thus n'(0), the probable  
number of entities in the state e = 0, is 3 x (4/20) + 2 x (12/20) + 1 x (4/20) = 40/20. The  
values of n(g) calculated in the same way for the other values of e are listed on the bottom  
of Figure_ C-1, marked n'(‘). (Note that the sum of these numbers is four, so that we find a  

correct total of four entities in all the states.) The values of n'(tf) are also plotted as points in  

Figure C-2. The solid curve in Figure C-2 is the decreasing exponential function  

n(s) = Ae -gie0 	 (C-1)  

where A and go  are constants which have been adjusted to give the best fit of the curve to the  

points representing the results of our calculation. The rapid drop in n'(g) with increasing e  
reflects the fact that, if one entity takes a larger share of the total energy of the system, the  

remainder of the system must necessarily have a reduced energy, and so a considerably reduced  

number of ways of dividing that energy between its constituents. That is, there are many fewer  

divisions of the total energy of the system in situations where a relatively large part of the  

energy is concentrated on one entity.  



	 4 	 
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Figure C-2 A comparison of the results of a simple calculation and the Boltzmann  

distribution.  

Imagine now that we successively make M smaller and smaller, increasing the number of  

allowed states at the same time so as to keep the total energy at its previous value. The result  

of such a process is that the calculated function WV) becomes defined for values of e which  
are closer and closer together. (That is, we get more points on our dist ribution.) In the limit  
as M -* 0, the energy 6' of an entity becomes a continuous variable, as classical physics  

demands, and the distribution n'(,) becomes a continuous function. If, finally, we allow the  

number of entities in the system to become large, this function is found to be identical with  

the decreasing exponential n(s) of (C-1). (That is, as the points become closer and closer  

together, they no longer scatter about the decreasing exponential but fall right on it.) To verify  

this, by a straightforward extension of our calculation to the case of a very large number of  

energy states and entities, involves some formidable bookkeeping in enumerating the  

distinguishable divisions that have the required values of total energy and number of entities,  

and then calculating the many relative probabilities. We shall verify the validity of the prob-
ability distribution given in (C-1) by a more subtle, but much simpler, procedure.  

Consider a system of many identical entities in thermal equilibrium with each other, en-
closed in walls which isolate it from the surroundings. Equilibrium requires that the entities  

be able to exchange energy. For instance, in interacting with the walls of the system, the  

entities can exchange energy with the walls and so indirectly exchange energy with each other.  

Thus the entities interact with each other in that if one gains energy, it does so at the expense  

of the total energy content of the remainder of the system (all the other entities, plus the walls).  

Except for this energy conservation constraint, the entities are independent of each other.  

The presence of one entity in some particular energy state in no way inhibits or enhances the  

chance that another identical entity will be in that state. Now consider two of these entities.  

Let the probability of finding one of them in an energy state at energy g1  be given by p(gi).  
Then the probability of finding the other in a state at energy g2  will be given by the same  
probability distribution function, since the entities have identical properties, but evaluated at  

the energy g2. The probability will be p(g2 ). Because of the independent behavior of the  

entities, these two probabilities are independent of each other. As a consequence, the prob-
ability that the energy of one entity will be e1  and that the energy of the other will be g2  
is given by p(gi )p(g2 ). The reason is that independent probabilities are multiplicative. (If the  
probability of obtaining heads in one flip of a coin is 1/2, then the probability of obtaining  

heads in each of two flips is (1/2) x (1/2) = 1/4, since the flips are independent.)  

Next consider all divisions of the energy of the system in which the sum of the energies of  

the two entities has the same fixed value Si  + g2  as in the particular case just discussed, but  

in which the two entities take different shares of that energy. Since the total energy of the  

isolated system is constant, for all of these divisions the remainder of the system will also have  

a fixed value of energy. So for all of them there are the same possible number of ways for the  

remainder of the system to divide its energy between its constituents. As a consequence, the  

probability of those divisions in which there is a certain sharing of the energy g 1  + e2 between  
the two entities can differ from the probability of other divisions, in which there is a different  

sharing of that energy, only if these different sharings occur with different probabilities. If we  

again assume that all possible divisions of the energy of the system occur with the same prob- 
ability we see that this cannot be, and we conclude that all divisions in which the same energy  
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^1 + g2 is shared between the two entities in different ways occur with the same probability.  
In other words, the probability of all such divisions is a function only of 62'1  + g2 and so can 
be written as, say, q(g1  + f2). However, we concluded earlier that the probability for a partic-
ular case can also be written as p(g1 )p(g2). Thus we find that p(A)p(g2) = q(g1 + g2).  

The essential point here is that the probability distribution function p(g) has the property  
that the product of two of these functions, evaluated at two different values of the variables,  
g1 and g2 , is a function of the sum, g1  + g2, of these variables. But an exponential function,  
and only an exponential function, has this property. Recall that the product of two expo-
nentials with different exponents is an exponential whose exponent is the sum of the two  
exponents. Specifically, if we take the probability p(g) of finding an entity in a state at energy  
g to be proportional to the probable number n(s) of entities in that state, as it certainly  
should be, and use (C-1) to evaluate n(s), we have the function 

p(e) = Be -gig° 	 (C-2)  

where B is proportional to the A in (C-1). This function demonstrates the required prop-
erty since  

p(ei)p(ez) = 
Be-giIeoBe eZlgo = B2 e -(gi±g2)lgo = q(g1 + g2) 

 

(There is no loss of generality in choosing e to be the base of the exponential function instead 
of some other number, such as 10. The reason is that an exponential function using any other 
base b can be transformed into an exponential with base e by the relation bx = ex In b Hence 
changing the base amounts to no more than changing the as-yet-not-evaluated constant go .) 

 Our argument does not actually prove that n(g) is a decreasing, instead of increasing, expo-
nential, but an increasing exponential can be ruled out on physical grounds as its value goes 
to infinity for large values of g. Thus we have verified the general validity of (C-1). 

Now we shall evaluate the constant go in (C-1) 

n(s) = Ae-gle°  

By treating a system containing two different kinds of entities in thermal equilibrium, it is not  
difficult to prove that the value of go does not depend on the type of entities comprising a  
system. Thus we shall use in our argument entities with the simplest properties. Since n(s) is  
the probable number of entities of the system in an energy state at e, the number of entities  
whose energies would be found in the interval from g to e + dg equals n(s) times the number  
of states in that interval. If that number is independent of the value of g (i.e., if the states are  
uniformly distributed in energy), then the number will be proportional to the size de of the  
interval. This is the case if the entities are simple harmonic oscillators, like the coil springs  
mentioned earlier. So the probable number of simple harmonic oscillators with an energy  
from g to e + dg, in an equilibrium system containing many of them, is proportional to  
n(g)dg. If the multiplicative constant A is given the proper value, this probability can be made  
equal to n(s) dg. Then the average energy of one of the oscillators is  

CO  

The integral in the numerator has an integrand which is the energy weighted by the number of  

oscillators having that energy; the integral in the denominator is just the total number of  

oscillators. If we evaluate n(g) from (C-1), we have  
^ 

J Age -gIgOdtô  

1 _  0  

J Ae - eIgOde  

0  
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(Note that we do not need to know the actual value of A.) By proceeding in a manner com-
pletely analogous to what is done in Example 1-4, except that integrals are involved instead  

of sums, we find  
e _ 4 	 (C-3)  

But according to the classical law of equipartition of energy, as expressed in (1-16), for simple  

harmonic oscillators in equilibrium at temperature T  

g = kT 	 (C-4)  

where Boltzmann's constant k = 1.38 x 10 -23  joule/°K. Combining (C-3) and (C-4), we have  

4 = kT 	 (C-5)  

This result is correct for entities of any type, even though we have obtained it for the particular  

case of simple harmonic oscillators. Therefore we may write (C-1) as  

n(s) = Ae -/k T 	 (C-6)  

This is the famous Boltzmann distribution. Since the value of A is not specified, (C-6) actually  
tells us about a proportionality: the probable number of entities of a system in equilibrium  

at temperature T that will be in a state of energy 4 is proportional to e -  gl kT  Expressed in  
different terms: the probability that the state of energy f will be occupied by an entity is pro-
portional to e - 

The value chosen for the constant A is dictated by convenience. In Chapter 1 we apply the  
Boltzmann distribution to a system of simple harmonic oscillators. As discussed here, in such  

a system n(g)dg is proportional to the probable number of oscillators with energy in the range  

e to g + dg, since the states of a simple harmonic oscillator are uniformly distributed in  

energy. Of course, n(g)de is also proportional to the probability PV) de of finding a partic-
ular one of the oscillators with energy in this range. Thus we have  

P(s)= Ce -g1"  

providing the constant C is properly chosen. This is done by setting  
09 	00 	 CO 

J P(ode = J  Ce -674. de = C J  e - ele° de = 1 	 (C-7)  
0 	 0 	 0 

That is, we define p(e)dg to be the probability of finding a particular simple harmonic  
oscillator with energy from e to g + dg, and so for consistency we must then demand that  
f ô p(e)dg have the value one because the integral is just the probability of finding it with any  
energy. By evaluating $ô  e -elg° de in (C-7), and then solving for C, we find C = 1/kT. Then  
we have a special form of the Boltzmann distribution  

e -  8/^° P(0) _ 	 (C-8)  

g/kT  

kT  

which is used in Chapter 1.  





Appendix D 
FOURIER INTEGRAL 

DESCRIPTION OF 
A WAVE GROUP 

Section 3-4 presented a qualitative argument explaining how a single group of waves can be 
formed by combining an infinitely large number of component sinusoidal waves, each with 
infinitesimally different reciprocal wavelengths. Here the argument is made quantitative. 

The work depicted in Figure 3-9 amounts to evaluating, at time t = 0 and for a particular 
set of A K  and K, the summation 

= E A K  cos 2ir(Kx— Vt) 	 (D-1) 

The A K  are the amplitudes of the component sinusoidal waves of reciprocal wavelengths K 

which when added form the pattern at the bottom of the figure. The central group is the one 
of interest in representing the behavior of a freely moving particle. But auxiliary groups, such 
as the one shown partially on the right, are also formed by the addition because there are 
only a finite number of component sinusoidal waves. To prepare for adding an infinite number, 
we evaluate (D-1) for t = 0, obtaining 

= E A K  cos 27rKx 	 (D-2) 
K 

Then we make the transition by replacing the summation by an integration, as follows 

`Y =J A(K) cos 27(Kx dK 	 (D-3) 

o 

In this integral the reciprocal wavelength K is treated as the va riable and the coordinate x is 
treated as a constant. The quantity A(K) is the amplitude of the component sinusoidal wave 
whose reciprocal wavelength is K, and there are an infinite number of them with reciprocal 
wavelengths differing by the infinitesimal amounts dK. The right side of (D-3) is a form of what 
is called a Fourier integral. 

A simple example of the Fourier integral is found in the case where the amplitude function 
A(K) has the form specified in Figure D-1. The amplitude has the value 1 for component sinu-
soidal waves whose reciprocal wavelengths lie in the range K o  — AK to Ko + AK, and the value 
0 for those whose reciprocal wavelengths lie outside this range. In this case (D-3) reduces 
immediately to 

This is equivalent to 

i = 

KO  +AK 

f 
K0 -  AK  

cos 27EKx dK (D-4) 

27c(K0 + mK)x 

cos 2 rKx d(2xKx) 

2K(K0 - AK)x 

D-1 



1.0  

0.5  

—0.5  

—1 .0  

N  
0  

(D-5) 

F
O

U
R

IE
R

 I
N

T
E

G
R

A
L

 D
E

S
C

R
IP

T
IO

N
 O

F
 A

 W
A

V
E

 G
R

O
U

P
 

1  

0  
Kp — AK Kp  p + AK  

K 

Figure D -1 A flat-topped amplitude distribution.  

which integrates to  
1  

^

2nx ^

sin 2Tr(K 0  + AK)x — sin 27c(K p  — AK)x]  

Now  
sin 2ir(K 0  + AK)x = (sin 221K0x)(cos 27rAK x) + (cos 27rKOx)(sin 2rrAK x)  

and  
sin 2ir(KO  — AK)x = (sin 2irK ox)(cos 27tAK x) — (cos 2nK ox)(sin 2rrAK x)  

Therefore we have  

1  
^ = — (COS 27rK0x)(Sin 21rAK x)  

Tcx  

or  

= 2AK cos 2mic0x 
sin 2nAK x 

 	
2nAK x 

= cos2TrKpx 
sin 2^r^x x  

2AK 	 27rIK x  
for AK = 0.1Kp  

sin 27rAK x 
 versus AK   

27rEK x 

^  	. 

versus  AK X,  

w nimmININA!'^^nAW► 
■^^nr^^^^^^^^ -  

I 	 " 

Q 

J 

0 
	

05 
	

1.0 
	

1.5  

AK  

Figure D -2 The wave group obtained from a Fourier integral of the amplitude distribution  

in Figure D-1. Since the group is symmetrical about the origin, only the right half is plotted.  

The continuous curve shows the detailed structure of the group, while the dashed curve  

shows only the factor responsible for its gross structure.  
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This result is illustrated in Figure D-2 by plotting `Y/2AK versus AK x for the typical case 

AK = 0.1KO. Since Y' has symmetry about the point AK x = 0, only positive values of AK x need 
be used in the plot. The rapid oscillations arise from the cos 2lrK Ox factor. The slow variation 
of their amplitudes, which forms the group, is due to the factor sin 27rAK x/27rAK x. Because of 
the x in its denominator, this factor becomes negligible for large values of x. Hence there are 
no auxiliary groups formed at values of x larger than those shown in the figure; there is only 
the central group. This is in contrast to the case illustrated by Figure 3-9 where there are an 
infinite number of uniformly spaced auxiliary groups formed, in addition to the central group, 
because there are only a finite number of component sinusoidal waves. 

Inspection of Figure D-2 shows that the amplitude of the group falls to half its maximum 
value when AK X = 0.30. Hence, if we define the length Ax of the group as its half width at 
half maximum amplitude, as in Section 3-4, this quantity has a value given by AKAx = 0.30, or 

AxAK = 0.30 	 (D-6) 
But Figure D-1 makes it clear that the AK in this result represents the range of reciprocal 
wavelengths used to compose the group, measured in terms of half width at half maximum 
amplitude. Therefore 0.30 is the value of the length-reciprocal wavelength product AxAK for 
the single group formed by combining an infinite number of component sinusoidal waves, 
using the "flat-topped" amplitude distribution of Figure D-1. 

This AxAK value is larger than the value 1/12 = 0.083 found in the work depicted in Figure 
3-9. The reason is that there the component sinusoidal waves have a "tapered" distribution 
of amplitudes where here it is flat-topped. A smaller AxAK value can be obtained from the 
Fourier integral, while still producing only a single group, by properly adjusting the form of 
the function A(K) specifying the amplitudes of the component sinusoidal waves. As is stated 
in Section 3-4, the smallest value that can be obtained is 1/47r = 0.080. It is obtained by using 
a Gaussian distribution 

A(K) = e- [(K- KO)/1.201 ]2  

But some rather complicated mathematics must be employed to evaluate the integral for this 
case. 
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Appendix E 
RUTHERFORD 
SCATTERING 

TRAJECTORIES 

Figure 4-4 shows the parameters for the scattering trajectory of a light particle of positive 
charge +ze by a heavy nucleus of positive charge +Ze. We saw in the text that the angular. 
momentum L = Mr2  dcp/dt is constant because the force on the particle is always acting in 
the radial direction. Let us apply Newton's law to the radial component of the motion, there-
fore, to determine the particle's trajectory. From F = Ma we obtain 

zZe 	d r 	dcp 

47rE0r2 
— M [

dt2 — r C dt ) J 	
(E-1) 

wherein the left-hand term is the Coulomb force and the right-hand terms are as follows: 
d2r/dt2  is the radial acceleration due to the change in the magnitude of r and —r(dcp/dt) 2  = 
—w 2r is the centripetal acceleration (which is also radially directed) due to the change in the 
direction of r. To get the trajectory we need to find r as a function of cp. 

It simplifies the solution of (E-1) to write it, not in terms of the coordinates r, cp, but instead 
in terms of the coordinates u, cp, where 

	

r = 1/u 	 (E-2) 

dr dr dcp dr du dcp 
dt dcp dt 	du dcp dt 

dr 	1 du Lu 2 	L du 

dt 	u 2  dcp M 	M dcp 
and 

d2r  d (dr)dcp 	L d 2u Lu 2  

or 

d2r 	L2u2  d2u 
dt2 
	

M2  d29 
Substituting this into (E-1), we have 

	

L 2u2  d2u 1 ( Lu2 	)2 — zZe 2u2  

	

u M 	47hE0M 

or 
d2u 	zZe 2M _ 	

l 
zZe2M 	

//E-3 ) 
42

+ u = — 
47r€ 0L2 	471E0M2v2b2 

 

since L = Mvb, where y  is the initial speed of the particle and b is its impact parameter defined 
in Figure 4-4. If we let D = (zZe2/47te 0)/(Mv2 /2), as in (4-4), this simplifies to 

d2u 	D 

d92 + u = — 2b2 	 (E-4) 

dt2  dcp dt dt 	M dcp2 M 

M2 dcp 2 

E-1 
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This is a second order ordinary differential equation for u as a function of  go. 

 The general solution to (E-4) is 
u = A cos q  + B sin  9 — D/2b 2 	 (E-5) 

which contains the two arbitrary constants, A and B. We can prove that (E-5) is, in fact, the 
solution to (E-4) by evaluating 

du  
d 

= —A sin 9+B cos cp 
^P 

and  
d2u  
492

= —A cos  9 — B sin  9  

and substituting these into (E-4). This gives us  

—A cos 9—B sin cp+A cos 9+B sin ce-2b2 —D/2b2 

This identity proves the validity of the general solution.  
To get the particular solution we must evaluate the constants A and B. We require that (E-5)  

conform to the initial conditions: cp - 0 as r —* co and dr/dt —> —y as r —> co. Thus  

w 	 u= 1 =O= A cos O+B sin O- 2b2  

c 	or  
a^ 
Q 	 D 

A = 2b2  

and  
dr 	L du _ 

 dt 	M d9
—v =— L (—A  sin O+ B cos O) 

or  
My  My 1 

B 

_ _ 
 L Mvb b 

Therefore, the particular solution is  

D 	1 D 
u =

2b2 
cos cp+ b s in 9 - 2b2  

or  

= -
1 
 sin cp+ 2b2 (cos cp-1) 	 (E-6)  

This is the orbit equation, giving r as a function of cp. We see that the trajectory is hyperbolic,  
since (E-6) is the equation of a hyperbola in polar coordinates.  



Appendix F 
COMPLEX QUANTITIES 

The imaginary number i is a unit defined so that 

i2 = 1 	or 	i = —1 

The name is appropriate because none of the real (i.e., ordinary) numbers have squares which 
are negative. A complex number z can be written in the general form 

z=x+ iy 	 (F-2) 
where both x and y are real numbers. The number x is called the real part of z, and the number 
y is called the imaginary part of z (even though y is real). Note that z reduces to a pure real num-
ber if y = 0, while it reduces to a pure imaginary number if x = O. 

Complex numbers obey the same laws of algebra that apply to real numbers, except for the 
property specified in the definition (F-1). Also, the definition of equality is extended so that 
two complex numbers are equal if, and only if, the real part of one equals the real part of the 
other, and the imaginary part of one equals the imaginary part of the other. That is 

(F-1) 

(F-3a) 

(F-3b) 

(F-4) 

z1 = z2 
implies 

x1 = x2 	Y1 = y2  
and vice versa. 

The complex conjugate of the number z = x + iy is written as z*, and is defined as 
z* =x — iy 

From the definition it follows that 
z*z = (x — iy)(x + iy) = x 2  — i2y2  — ixy + ixy = x2 — i2y2 

So 
z *z = x2 + y2 	 (F-5) 

That is, the product of a complex number times its own complex conjugate always equals a 
real number. 

Equation (F-5) is suggestive of the Pythagorean theorem. In fact, there is a very useful geo-
metrical representation of complex numbers shown in Figure F-1. The location of a point P, 
relative to what are called the real and imaginary axes of the complex plane, is used in the man-
ner defined in the figure to specify the real part x and the imaginary part y of the associated 
complex number. The location of the representative point P can also be specified by the polar 
coordinates r and 0, called the modulus and phase, which are defined in the figure. The two 
sets of coordinates are related by 

x=r COS 8 

y = r sin B 

and 

r2  = x2 + y 2  

y 

	

cos 9=—
x 
	sinB= — 

	

r 	 r  
From (F-2) and (F-6), we see that the general complex number can be expressed in polar co-
ordinates as 

z = r(cos B + i sin B) 	 (F-8) 

(F-6) 

(F-7) 

F-1 
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Figure F -1 The geometrical representation of a 
complex number. The relations between the rec-
tangular and polar coordinates of the represen-
tative point P can be determined by inspecting 
the figure. 

 

Real axis 

Note also that 
z *z = r2  (F-9) 

Important relations can be developed by considering rotations in the complex plane of the 
representative point P. In Figure F-2, z is a complex number that is represented by a point P 
lying on the real axis. If the representative point is rotated at constant r through an angle dB, 
the corresponding complex number becomes z + dz. It is apparent from the figure that 

dz = iz dB 

or 

dz
= idB  

z 

As this relation can be seen to be true independent of the initial location of the representative 
point, it can be integrated as follows 

This yields 

or 

i® 
Zfinal = Zinitiale 

If we take r = 1, then Z initial = 1 and, from (F-8), we also have Zfinal = cos O + i sin O. Thus 
we obtain an evaluation of the complex exponential 

e`®  = cos O + i sin O 	 (F-10) 

z +dz 
de 
	

dz 

z 	 Real axis 

Figure F-2 Illustrating a rotation, at constant distance from the origin, of a representative 
point. 

Zfinal 	 0  

J dz =iJ dB  
z 

Zinitial 	 o 

In Zfinal  = 
i0 

Zinitial 

Im
ag
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ar
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s  



Rotation in the negative sense yields 
e - `®  = cos (—O) + i sin (—Co) 

which is 

e i® = cos ®— i sin O 	 (F-11) 
By adding and subtracting (F-10) and (F-11), it follows immediately that 

cos Co = 
e`®  + e-10 	 (F-12) 

2 
and 

e i® — e  - i® 
sin O = 	

2i 	
(F-13) 

Comparison of the definition of (F-4) with (F-10) and (F-11) shows that the complex conjugate 
of a complex exponential is obtained by reversing the sign of the i appearing in the exponent. 
That is 

(e i®)* = e-i® 	 (F-14) 
Applying (F-9) and (F-14) to a complex exponential, we find 

r2  = z*z = (e i®) *ei® = e -i®ei® = eo = 1  

Thus a complex exponential maintains a constant modulus r = 1, even if its phase is changing. 
But its real and imaginary parts, which are from (F-2) and (F-6) equal to cos O and sin O, 
are oscillatory functions of the phase O. If its phase is continually increasing from 0 to n/2 to x 
to 3n/2 to 2nc, and so on, a complex exponential changes in value from +1 to + i to —1 to 
—i to + 1, and repeats this cyclically. In this sense it is an oscillatory function of its phase. 

In differentiating or integrating a complex quantity, the standard procedures of calculus are 
used with i treated as any other constant. An example of integration in found in the calcula-
tion leading to (F-10). As another example, the first derivative of the complex exponential is 

dei®  
	= ie`® 	 (F-15) 

= ike ikx 	 (F-16) 

dO 

Although the geometrical interpretation leads naturally to writing the phase of a complex 
exponential as an angle O, it can actually be any quantity which, like an angle, is dimension-
less. In quantum mechanics, complex exponentials frequently used are 

eikx 	eikx- cot) 	
e
- iEt/Ii 

In the first of these, for example, the wave number k has the dimensions of (length) -1 , so k 
times the length x is dimensionless. All relations quoted for e`®  have obvious extensions to 
eikx, and the others. For example, application of the rules of differentiation to eikx , with k con-
stant, yields 

dei" 

dx 
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x = + a/2 
u = +0.5 

V(x) = Vo 

Appendix G 
NUMERICAL SOLUTION 

OF THE 
TIME-INDEPENDENT 

SCHROEDINGER 
EQUATION FOR A 

SQUARE WELL 
POTENTIAL 

In quantum mechanics, as in other fields of science and engineering, many of the calculations 
that arise in current professional work are carried out on computers using numerical tech-
niques. In some cases the potential energy function of interest is of such a form that its 
time-independent Schroedinger equation cannot be solved by even the most general analytical 
techniques (for reasons explained in Appendix I). In other cases analytical solutions can be 
obtained, but numerical solutions can be obtained more conveniently. 

As a simple illustration of the numerical techniques, and of the "thought calculations" of 
Section 5-7, we shall obtain here a numerical solution of the time-independent Schroedinger 
equation for the potential energy function 

V0 , a constant 	x < — a/2 or x > + a/2 

V(x) = V0/2 	 x = +a/2 	(G-1) 

0 	 — a/2 < x < + a/2 

This is called a square well potential, for reasons that are apparent from inspection of its form 
plotted in Figure G-1. (The figure implies that V(x) has no definite value at x = + a/2. In the 

Figure G -1 A square well potential. 

G-1 
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analytical work with a square well potential found elsewhere in this book, there is no need to 
define its value at these two points. But this is not true of numerical work, and so V(x) is 
defined to have the reasonable value V0/2 at x = ± a/2.) For this potential a numerical solution 
can be found quite easily on any computer. The time-independent Schroedinger equation for 
a square well potential can also be treated with fairly simple analytical techniques (see 
Appendix H), so we shall be able to compare the resulting exact solution with the results we 
obtain from our numerical solution. 

Using the square well potential (G-1), we seek a numerical solution to the time-independent 
Schroedinger equation (5-45) for the eigenfunction >'(x). The equation is  

d20(x) 
 h2 [V(x) — E]0(x) 	 (G-2)  

Since numerical calculations can deal only with pure numbers, the first step is to switch to the  
dimensionless coordinate  

x 
u = —   

a  

The relation between the second derivatives with respect to x and u is  

	

d20(x) 	1  d2 0(u)  
dx2 	a2  du2  

Thus we have  

	

d2 0(u)u
= 

 2 h2 
	[V(u) — EN(u)  

Evaluating V(u) from (G-1) gives us  

2ma2 Vo  r  E  

h2  LV0 
— 1] ti/(u) 	u < — 1/2 or u > + 1/2 

d20(u) 	2ma 2 Vo  FE 11 
h2  LV 2 ^ (u) 	 u = ± 1/2 

du2  0  
2ma2  Vo  E 

— 	 —1/2 < u < + 1/2 
h2 Vo O(u)  

We write this as  
d2 >/i  
	= F  
du2  

(G-4)  

where  

—/3(E — 1)0 	u < —1/2 or u > +1/2  (G-5a)  
F = — /3(E — 1/2)0 	 u = ± 1/2 (G-5b)  

—/30 	 —1/2 < u < + 1/2 (G-5c)  
with  

f3 = 	
h2 	

E = 
V 	 (G-6) 

0  
The dimensionless parameter f3 = 2ma 2 Vo/h2  is a measure of the "strength" of the square well  
potential, and E = E/Vo is a dimensionless measure of the total energy of the system. The  
quantity F specifies the functional dependence of the second derivative on u and t/i.  

From the arguments of Section 5-7, we know that the behavior of a solution i to the time-
independent Schroedinger equation (G-2), with given values of the potential parameter f3 and  
the energy parameter E, should be completely determined for all values of u by the form of the  
equation and by the assumed initial values of 0 and  d0/du. A procedure for doing this follows:  

First calculate  

(G-3)  

2ma2 Vo 	E 

_ di/i 	Au 
du 1,2 	du ]o  + 

 F 
 2  

(G-7a)  



Then calculate  

Then set  

Y' 1 = Ifro + 
d>y 
du 

Au 
1/2  

(G-7b) 

u 1  = u0  + Au (G-7c) 

Next calculate  

+ FAu  [f ]u 3/2=  [f ] 
 1/2 

(G-8a) 

Then calculate  

^ 1 + [

11:4 

ddû 	] 	
Au (G-8b) 

Then set  
3^2 

u2  = u 1  + Au (G-8c)  

Next calculate  

[û ]5/2 	
[c/01

3/2 
	FAu (G-9a)  

Then calculate  

^r3 = 
I

2  + 
C/11/  
du 

Au 
5/2  

(G-9b) 

Then set  
u3  = u2  + Au (G-9c)  

Etc.  
In these equations Au is a small increment in the independent variable u. The quantity F,  

being the second derivative with respect to u of the dependent variable ,Ii, is the derivative  
with respect to u of the first derivative d►Ii/du. Initial values of the independent variable, depen-
dent variable, and the first derivative are written as uo , >Ji o , and [dpi/du]o . The first equation  
evaluates [d0/du] 1/2 , the derivative for u greater than its initial value by (1/2)Au. It does so  

by adding to the initial value of the derivative the product FAu/2 of its rate of change with  

respect to u and the change in u. Then in the second equation t/i i , the dependent variable for  

u greater than the initial value by (1)Au, is found by adding to its initial value its rate of change  

with respect to u, at the midpoint of the increment in u, times the change in u. Then the value  
of u is updated in the third equation. The second set of three equations is similar. But in the  

first set the value of F is fixed by the initial values of the variables  u and 0 on which it de-
pends, whereas in the second set the value of F is fixed by the values of u and i/i obtained from 
the first set. The third set of equations, and all subsequent sets, are identical to the second set 
except that in each the F that is used is fixed at the value calculated from the latest values of u 
and i/i. For sufficiently small Au, these equations provide good approximations to the values 
of 0  and dpi/du. 

Tables G-1 and G-2 list a computer program in BASIC which carries out the numerical 
procedure. Several comments should be made about this program: 

1. It consists of a main program, listed in Table G-1, plus two related subroutines, listed. in 
Table G-2. The main program is a universal one, which can be used to solve any second-order 
ordinary differential equation. This is true because the numerical procedure it follows is 
universal; all such equations can be written in the form of (G-4) if u represents any independent 
variable, 0 represents any dependent variable, and F represents any function of the indepen-
dent variable and/or the dependent variable and/or the first derivative. As an example, the 
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Table G -1 A Universal Program in BASIC for Solving Second-Order Ordinary Differential 
Equations 

100 REM UNIVERSAL PROGRAM FOR SOLVING SECOND-ORDER DIFFERENTIAL EQUATIONS 
110 REM REQUIRES SUBROUTINES TO INPUT PARAMETERS AND INTIAL CONDITIONS 

AND TO CALCULATE THE SECOND DERIVATIVE 
120 REM PROGRAM IS WRITTEN IN THE IBM PERSONAL COMPUTER DIALECT OF BASIC- 

MINOR CHANGES MAY BE REQUIRED TO TRANSLATE IT TO ANOTHER DIALECT 
130 DEF FNR(A)=INT(10"P*A+.5)/10"P: REM FUNCTION R ROUNDS ANY VARIABLE A TO 

P DIGITS PAST THE DECIMAL PLACE 
140 GOSUB 1000: REM INPUT PARAMETERS AND INITIAL CONDITIONS 
150 CLS: REM CLEAR MONITOR SCREEN 
160 PRINT "TO CONTINUE RUN AFTER A SET OF VALUES ARE DISPLAYED, PRESS C. 

PRESS ANY OTHER KEY TO HALT": REM PUT INSTRUCTIONS ON SCREEN 
170 PRINT: REM PUT BLANK LINE ON SCREEN 
180 LET N=0: REM ZERO INDEX COUNTING SETS OF VALUES DISPLAYED 
190 PRINT "INDEPENDENT VARIABLE","DEPENDENT VARIABLE": REM PUT TABLE HEADINGS 

ON SCREEN 
200 PRINT 
210 GOSUB 2000: REM CALCULATE SECOND DERIVATIVE D2 
220 LET D1=D1+D2*DEL/2: REM INCREMENT FIRST DERIVATIVE D1, FOR CHANGE DEL/2 

IN INDEPENDENT VARIABLE, USING (G-7A) 
230 PRINT FNR(I) ,, FNR(D0): REM DISPLAY ROUNDED VALUES OF INDEPENDENT VARIABLE I 

AND DEPENDENT VARIABLE D0 
240 LET N=N+1: REM INCREMENT INDEX N 
250 LET D0=D0+D1*DEL: REM INCREMENT DEPENDENT VARIABLE USING (G-7B) OR 

(G-8B), ETC. 
260 LET I=I+DEL: REM INCREMENT INDEPENDENT VARIABLE 
270 GOSUB 2000 
280 LET D1=D1+D2*DEL: REM INCREMENT FIRST DERIVATIVE USING (G-8A) OR 

(G-9A) , ETC. 
290 IF N<10 THEN 230: REM IF <10 SETS OF VALUES DISPLAYED, CALCULATE ANOTHER 
300 PRINT 
310 LET N=O: REM REZERO INDEX N 
320 LET A$=INKEY$: REM LABEL KEY PRESSED ON KEYBOARD AS A$ 
330 IF A$="" THEN 320: REM IF NO KEY PRESSED TRY AGAIN 
340 IF A$="C" THEN 230: REM IF C PRESSED CALCULATE 10 MORE SETS OF VALUES 
350 END: REM TERMINATE PROGRAM AND RETURN TO COMMAND LEVEL 

Table G -2 Subroutines Adapting the Universal Program to the Solution of the Time-
Independent Schroedinger Equation for the Square Well Potential 

1000 REM FINITE SQUARE WELL SCHROEDINGER EQUATION-INPUT PARAMETERS AND 
INITIAL CONDITIONS 

1010 CLS 
1020 PRINT "FINITE SQUARE WELL SCHROEDINGER EQUATION": REM PUT TITLE ON SCREEN 
1030 PRINT 
1040 PRINT "INITIAL PSI = ";: REM PUT QUERY ON SCREEN 
1050 INPUT DO: REM ADD QUESTION MARK, AWAIT INPUT, ACCEPT IT AND LABEL AS D0 
1060 PRINT "INITIAL DPSI/DU = "; 
1070 INPUT D1 
1080 PRINT "INITIAL U (USUALLY 0) _""; 
1090 INPUT I 
1100 PRINT "DELTA U (MUST DIVIDE EVENLY INTO .5) = "; 
1110 INPUT DEL 
1120 PRINT "BETA = "; 
1130 INPUT B 
1140 PRINT "EPSILON = "; 
1150 INPUT E 
1160 PRINT "NUMBER OF DIGITS PAST DECIMAL POINT TO BE SHOWN (USUALLY 3) = "; 
1170 INPUT P 
1180 RETURN: REM TERMINATE SUBROUTINE AND RETURN TO PROGRAM 
2000 REM FINITE SQUARE WELL SCHROEDINGER EQUATION-CALCULATE THE SECOND 

DERIVATIVE 
2010 IF ABS(I)>.50001 THEN 2070: REM TEST IF OUTSIDE WELL 
2020 IF ABS(ABS(I)-.5)<.00001 THEN 2050: REM TEST IF AT EDGE OF WELL 
2030 LET D2=-B*E*D0: REM CALCULATE SECOND DERIVATIVE USING (G-5C) 
2040 RETURN 
2050 LET D2=-B*(E-.5)*D0: REM CALCULATE SECOND DERIVATIVE USING (G-5B) 
2060 RETURN 
2070 LET D2=-B*(E-1)*D0: REM CALCULATE SECOND DERIVATIVE USING (G-5A) 
2080 RETURN 
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dt2  

where 

differential equation for a damped, sinusoidally driven, classical oscillator can be written as 

d2x 
= F 

F 	
mx  m dt + m 

sin wt 

with m the mass, C the force constant, f the frictional constant, a the amplitude of the driving 
force, and w its angular frequency. Hence (G-7), and the following equations, can be applied 
to solve this differential equation if u is replaced by t, Ili is replaced by x, and F is evaluated 
from the equation immediately above. 

2. To make the universal character of the main program apparent, and to conform to the 
restrictions on variable names in BASIC, the symbols it uses internally to represent the in-
dependent variable, dependent variable, first derivative, and second derivative are I, DO, D1, 
and D2, instead of those used externally, that is: u, tfr, dpi/du, and F. 

3. The subroutines listed in Table G-2 cause the main program to solve the differential 
equation specified by (G-4) through (G-6). One of the subroutines inputs initial values of the 
variables and values of the parameters. The other calculates the second derivative. In doing 
this, they connect the symbols used internally and externally for the variables and do the same 
for the parameters, which are represented by B, E, and DEL internally and by 16, E, and Au 
externally. A different set of subroutines must be written if the main program is to be used 
for a different differential equation. 

4. Both the main program and the subroutines are liberally documented with REMark 
statements. But they can be deleted, for the sake of rapid keyboard entry, if desired. 

For the purpose of the illustrative calculations that we shall perform, any reasonable value 
of the parameter f3 specifying the strength of the square well potential can be used. So we 
take, rather arbitrarily 

/3 = 64 	 (G-10) 

We also must specify a numerical value of the energy parameter E to use in the calculations. 
Now we know, from the qualitative arguments of Section 5-7, that in the interior region of the 
square well the lowest energy eigenfunction will look something like half of a cosine wave fitted 
into the region. However, it will have a longer wavelength since it does extend for some dis-
tance into the exterior regions. By evaluating the momentum p corresponding to a half wave-
length 2/2 = a just fitting into the interior region, from de Broglie's relation p = h/A = h/2a, 
we can use the corresponding energy E = p 2/2m = h 2/8ma 2  = t2h2/2ma2  to help us estimate 
the actual value of E, and save effort in the numerical calculations. In terms of E, the esti-
mated value of E is E = E/Vo  = (n2h2/2ma2)/(32h2/ma2) = i1 2/64 = 0.1542. Since A is an under-
estimate, E and E are overestimates. We therefore make an educated guess and try, in the 
initial calculations, the value E = 0.1000. 

In consideration of what was learned in the qualitative arguments, it is apparent that the 
eigenfunction for the lowest allowed energy in the square well potential should be symmetrical 
about the point u = 0, relative to which the potential itself is symmetrical. This very much 
simplifies things because we need only carry out calculations in the range u >— 0, and because 
the symmetry immediately leads to the conclusion that di/i(u)/du = 0 at u = 0. We shall 
therefore start the calculations at u = 0. Since the choice of ifi(u) at u = 0 is immaterial because 
of the linearity of the differential equation, we shall take iii(u) = +1.000 at that point. Sufficient 
accuracy will be obtained by taking Au = 0.025. 

The results of the calculations are shown by the dots labeled E = 0.1000 in Figure G-2. The 
calculations were terminated at u = 0.950 because >/i was rapidly going to — oo. This happened 
because the chosen value of E was too large. As a result, >/i bends too rapidly in the interior 
region, and consequently it goes through zero just a little way outside this region. Once it 
goes through zero, nothing can prevent it from going to — oo. 

In an attempt to prevent the divergent behavior of >/i , a second set of calculations were per-
formed. Because of the obvious sensitivity, the value of E was reduced by only 2%, to E = 0.0980. 
The results are shown in Figure G-2 by the crosses labeled with this value of E. These calcula-
tions failed also, but in the opposite sense, because ,/i bent away from the axis in the exterior 
region and began to go to + oo. 
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Figure G-2 Solutions to the time-independent Schroedinger equation for a square well  

potential with four values of the energy parameter E.  

The figure also shows results obtained in two more sets of calculations, using E = 0.0981  
and E = 0.0982. None of them produced a solution to the differential equation which never  

diverges to infinity But it is apparent that the divergence can be postponed more and more  

by getting closer and closer to a certain value of E, and that that allowed value of the energy  

parameter lies between 0.0981 and 0.0982. Additional calculations can be used to narrow the  

limits, but it would be necessary to decrease the value of Au in order to reduce the numerical  

inaccuracy of the calculation. A solution to the time-independent Schroedinger equation for  

this potential using analytic methods (see Appendix H) yields E = 0.0980 for the lowest allowed  
value of the energy parameter. The agreement with our numerical calculations is very good,  
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but not perfect due to the numerical inaccuracy just mentioned. The analytic solution also  
shows that there are two additional bound allowed energies, corresponding to E = 0.383 and  
E = 0.808. Of course, any unbound energy, corresponding to E > 1, is allowed.  

The procedure we have just used is sometimes called numerical integration. The second word  
is appropriate because we started with an equation containing d 2/i/dx2  and finally obtained  
i'/ itself; therefore, we have carried out a process which is the inverse of differentiation. If the  

student has access to a computer, of even the smallest size, he will find that by performing  

numerical integrations for bound and unbound states in various potentials he can rapidly 
develop a real intuitive feeling for many of the important features of quantum mechanics. 

PROBLEMS  

1. (a) Repeat the numerical integration of Appendix G for assumed values of E of higher 
energy, and find the first excited state of the potential treated there. (Hint: (i) For this state, 
iji = 0 at u = 0. (ii) Take diji/du = + 1 at that point, since linearity allows it to have any  

value. (iii) The eigenfunction looks something like a full sine wave fitted into the region  

of the well.) (b) Find the second excited state by numerical integration. 
2. Find, via numerical integration, an acceptable solution to the square well potential equa-

tion for a value of the energy parameter E greater than one. Comment on the difference 
between the results obtained here and those obtained for the bound states. 

3. (a) Use the numerical integration procedure, developed in Appendix G, to find the lowest 
allowed energy value E 1 , and the form of the corresponding eigenfunction ik 1 (x), for a 
particle of mass m moving in the potential 

V(x) = 
 0 	 — a/2 < x < + a/2  

As is proven in Chapter 6, since V(x) increases without limit when x is outside the region 
of length a, the particle is strictly prohibited from being found outside that region. There-
fore tÿ 1 (x) goes to zero at x = ± a/2. Symmetry arguments show that for the lowest  

eigenfunction dIi 1 (x)/dx is zero at x = 0. (Hint: The parameter fl cannot be defined in this 
problem, but the function F can still be defined directly in terms of E 1 .) (b) Compare the 
value of E 1  you obtain with the exact solution to this problem obtained analytically in 
Example 5-9. 

4. Make the same calculation indicated in Problem 3, except for a potential containing a 
rectangular bump of height v °  and width a/2, centered at the bottom of the binding region. 
That is 

no 	 x < — a/2 or x > + a/2  
V(x) = 0 	— a/2 < x < —a/4 or + a/4 < x < + a/2  

v ° 	 — a/4 <x< +a/4  

v 0 /2 	 x = ± a/2  

Take v°  to have the value 
2^2  

v0  8ma2  

Problem 3 of Appendix H asks for an analytical solution to the time-independent Schro- 
edinger equation for this potential. (Hint: A guess concerning an appropriate initial choice  
of E 1  can be obtained from the qualitative considerations of Problem 25 of Chapter 5.) 

5. Use the numerical integration procedure developed in Appendix G to find the first two  
eigenfunctions and eigenvalues of a simple harmonic oscillator potential. (Hint: Use (I-7)  
from Appendix I to write the time-independent Schroedinger equation in the form  
d2 ►///du e  = —(E — u 2)0.) Compare the results you obtain with those obtained in Examples  

5-3 and 6-7.  
6. Use the numerical integration procedure developed in Appendix G to find the first three  

eigenfunctions and eigenvalues for an anharmonic oscillator with potential energy of the  

co 	 x < — a/2 or x > + a/2  
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form  

V(x) = —
2 

2  + 
^ 

 x4  

due  
Then express b in terms of D. Make calculations for the particular case S = 0.25. Compare  
the eigenvalues you obtain with the corresponding harmonic oscillator eigenvalues (that is,  

with those that would be obtained for 8 = 0). There is no analytical solution to the  
anharmonic oscillator time-independent Schroedinger equation; it can only be solved  

numerically.  

Convert the time-independent Schroedinger equation to the  dimensionless form 

d2 ti=
-(E — u2- (Su4 )4^  



Appendix H 
ANALYTICAL SOLUTION 

OF THE 
TIME-INDEPENDENT 

SCHROEDINGER 
EQUATION FOR A 

SQUARE WELL 
POTENTIAL 

Here we develop the general solution of the time-independent Schroedinger equation for 
the bound states of a square well potential of finite depth, following the procedure that is dis-
cussed in a qualitative way in Section 6-7. Then we apply the results to the particular case of a 
square well potential with the same parameters that were used in the numerical solution of 
Appendix G. 

The description of the classical motion of a particle bound by a square well suggests that 
it would be most appropriate to look for solutions to the Schroedinger equation in the form 
of standing waves. Thus we take, as a general solution to the time-independent Schroedinger 
equation in the region — a/2 < x < + a/2 where V(x) = 0, the free particle standing wave eigen-
function of (6-62), which we write here as 

,G(x) = A sin kix + B cos kix 	—a/2 < x < +a/2 (H-1) 

where 
ki  = -\I2mE/h 

In the regions x < — a/2 and x > + a/2 the time-independent Schroedinger equation has the 
general solutions displayed in (6-63) and (6-64). These are 

0(x) = Cek ux + De - kux 	 x < — a/2 (H-2) 

and 

where 
t/i(x) = FekIix + Ge - kiix x > +a/2 (H-3) 

     

k 11  = f m(Vo  — E)/hi 	 with E < Vo  
To determine the arbitrary constants first impose the requirement that the eigenfunctions 

remain finite for all x. Consider (H-2) in the limit x — oo. It is apparent that this requirement 
demands 

D = 0 	 (H-4) 
Similarly, it is necessary to set 

F=0 
	

(H-5) 

H-1 
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in order that (H-3) remain finite in the limit x -> + co. Next impose the requirement that the 
eigenfunctions and their first derivatives be continuous at x = - a/2 and x = + a/2. Four equa-
tions are obtained. They are 

	

- A sin  (kw/2) + B cos (kia/2) = Ce - k"al2 	 (H-6) 

Ak i  cos (kIa/2) + Bk i  sin (kia/2) = Ckiie -ki`a/2 	 (H-7) 

A sin (kw/2) + B cos (k 1(1/2) = Ge 	kiia/2 	 (H-8) 

Ak i  cos (kia/2) - Bki  sin (kIa/2) _ - Gkiie — kjIa/2 	 (H-9) 

Subtracting (H-6) from (H-8) yields 

2A sin (k ia/2) = (G - C)e - kiia/2 (H-10) 

Adding (H-6) to (H-8) yields 

2B cos (kia/2) = (G + C)e-kiia/2  (H-11) 
Subtracting (H-9) from (H-7) yields 

2Bki  sin (kia/2) = (G + C)kiie -k"11/2  (H-12) 

Adding (H-9) to (H-7) yields 

2Aki  cos (k ia/2) = -(G - C)klie -k iia/2  (H-13) 

Provided B 	0 and (G + C) 	0, we may divide (H-12) by (H-11) and obtain 

kI  tan (k ia/2) = k11 	if B 	0 and (G + C) 0 (H-14) 

Provided A 0 0 and (G - C) 	0, we may divide (H-13) by (H-10) and obtain 

kI  cot (kw/2) = - kii 	if A 0 0 and (G - C) 0 (H-15) 

It is easy to see that both (H-14) and (H-15) cannot be satisfied simultaneously. If they 
could, the equation obtained by adding these two 

kI  tan (kia/2) + k1  cot (kw/2) = 0 

would be valid. Multiply through by tan (kia/2). Then the equation becomes 

ki  tan 2  (k 1a/2) + ki  = 0 
or 

tan 2  (k ia/2) = -1 

But this cannot be valid as both k i  and a/2 are real. Thus it is only possible either to satisfy 
(H-14) but not (H-15) or to satisfy (H-15) but not (H-14). The eigenfunctions of the square well 
potential form two classes. For the first class 

k 1  tan (kia/2) = k11  

A = 0 	 (H-16) 

G-C= 0 
Then (H-8) reads 

and the eigenfunctions are 

For the second class 

Then (H-8) reads 

B cos (k ia/2) =  

G = B cos (kia/2)ekiia'2  = C 

[B cos (kia/2)ekiia/2]ekiix 

i/i(x) = [B] cos (kix) 
[B cos (kia/2)ekiia/ 2]e -kiix 

kI  cot (k ia/2) = - 

 G+C=0 

x < - a/2 

-a/2 < x < a/2 (H-17) 
x > a/2 

(H-18) 

A sin (kia/2) = Ge- k na/2  

G = A sin (kia/2)ekiial2 = -C 



and the eigenfunctions are  
[— A  sin (kIa/2)ek" 2]ektix 	x < —a/2  

0(x) = [A] sin (k I x) 	 —a/2 < x < a/2 (H-19)  
[A sin 	 ik 	 x > a/2  

Consider the first of (H - 16). Evaluating k1  and k11 , and multiplying through by a/2, the  
equation becomes  

.mEa2/2h2  tan ( \/mEa2/2h 2 ) = Vm(Vo  — E)a 2 /2h2 	 (H-20)  
For a given particle of mass m and a given potential well of depth Vo  and width a, this is an  
equation in the single unknown E. Its solutions are the allowed values of the total energy of  
the particle—the eigenvalues for eigenfunctions of the first class. Solutions of this transcen-
dental equation can be obtained only by numerical or graphical methods. We present a simple  
graphical method which will illustrate the important features of the equation. Let us make the  
change of variable  

e - N/mEa 2/2h 2  

so the equation becomes  

If we plot the function  
p(e) = e tan g  

and the function  

q(f) = JmV0 a2 /2h 2  — g 2  
the intersections specify values of f' which are solutions to (H-22).  

Such a plot is shown in Figure H-1. The function p(s) has zeros at e = 0, it, 2rr, ... and  
has asymptotes at g = 77/2, 3n/2, 5rc/2, .... The function q(g) is a quarter-circle of radius  

\/mV02/2h 2 . It is clear from the figure that the number of solutions which exist for (H-22)  
depends on the radius of the quarter-circle. Each solution gives an eigenvalue for E <  V o  
corresponding to an eigenfunction of the first class. There exists one such eigenvalue if  

NimVo a2/2h 2  < it; two if  TE < \/mVo a2/2h 2  < 27t; three if 2rn < \/mV0 a2 /2h2  < 3n; etc. The  
case JmV0 a2 /2h2  = 4 is illustrated in the figure. Note that this corresponds to 2mV0a2/h2 =  

64, the value used in the numerical integration of Appendix G. For this case accurate graphical  
(or numerical) work shows that there are two solutions: g 1.252 and e 3.595. From (H-21),  
the eigenvalues are  

22 2 	 2 

E = e2 ma2— e2 mVa 2Vo^
^

1.^2^ 
Vo^ 0.0980Vo 

0  

7r  27r  
g—)-  

Figure H-1 A graphical solution of the equation for eigenvalues of the first class of a  

particular square well potential. Solution of  

e tan e = JmVoa2/2h2 —  g2  

g tan e= VmVoa2/2h2 _ e2  

(H-21) 

(H-22) 
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or p(e) = g(e).  
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Figure H-2 A graphical solution of the equation for eigenvalues of the second class of a  
particular square well potential. Solution of  

—S cot 6= v/mVo a 2 l2h 2 —S2  

or r(S) = g( 6')•  

and  
2h 2 
 E ^2 

 mV a2 V
o  ^ (3.595)2   V

o  ^ 0.808 Vo  
o   

The eigenvalues corresponding to eigenfunctions of the second class are found from the  

solutions of an analogous equation obtained from (H-18), which is  

—6' cot = JmVoa2/2h 2  — S2 	 (H-23)  

Figure H-2 illustrates the solution of this equation. It is apparent that there will be no eigen-
values for E < Vo  corresponding to eigenfunctions of the second class if ✓mV0a 2 /2h 2  < n/2;  
there will be one if 7r/2 < */mVo a2 /2h 2  < 3ir/2; two if 3m/2 < ,/mVo a2 /2h 2  < 57r/2; etc. The  
figure illustrates the case \An Vo a 2 /2h 2  = 4. The single solution to (H-23) is  ' 2.475, and the  
eigenvalue is  

2h2  
E ^ 2 

mY a2 Vo 
ti 

(2.475)2   
Vo  0.383 Vo  

o   

We see that for a given potential well there are only a restricted number of allowed values 
of total energy E for E < Vo . These are the discrete eigenvalues for the bound states of the 
particle. On the other hand, we know that any value of E is allowed for E > Vo ; the eigen-
values for the unbound states form a continuum. For a potential well which is very shallow or 
very narrow or both, only a single eigenvalue of the first class will be bound. With increasing 
values of .mVoa2/2h2  an eigenvalue of the second class will be bound. For even larger values 
of this parameter an additional eigenvalue of the first class will be bound. Next, an addi-
tional eigenvalue of the second class will be bound, etc. As an example consider the case 

T 
	  Continuum 

Vo  

(1st class)  E3  = 0.808V0  

(2nd class)  E2 = 0.383V0  

(1st class)  E, = 0.0980V0  

Figure H -3 The eigenvalues of a particular square well potential.  
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1J1 2(x) = 1.23 ^ sin (2.48 
 /2)  

18.6  1 
 e

- 3'16  aiz 

x < —a12  

— a/2 < x < a/2 (H-25)  

x > a/2  

VmVoa2 /2h2  = 4. The potential and the discrete and continuum eigenvalues are illustrated to 
scale in Figure H-3. We have used the quantum numbers n = 1, 2, 3, 4, 5, ... to label the 
eigenvalues in order of increasing energy. For this potential only the first three eigenvalues 
are bound. 

From the solutions g, of (H-22) and (H-23) for a given value of JmVoa2/2h2,  the explicit 
forms of the eigenfunctions, (H-17) and (H-19), may be evaluated. The required relations are 

kII  2  = VmVoa 2 12h2  — e2  

The value of the constant A or B must be  adjusted  so that each eigenfunction satisfies the 
normalization condition. For the case .,/mV0 a2 /2h2  = 4, the three normalized eigenfunctions 
corresponding to the eigenvalues E 1 , E2, and E3 are 

—5.80 e 1. ^ 4 â2  

a  

>/i 3 (x) = 1.13 ^ cos (3.60 	 
a/2 

 

—5.80  1  e -1 . 74 a!z  
Va  

x < —a/2  

—a/2  < x < a/2  

x>_a/2  

 

k1
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2 = 	and (H-24)  
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Figure H -4 The eigenfunctions for the bound eigenstates of a particular square well  

potential.  
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The eigenfunctions, multiplied byj, are plotted in Figure H-4 as a function of x/(a/2).  

PROBLEMS  

1. Use a trial-and-error numerical procedure to find with three- decimal-place  accuracy the 
solutions to the transcendental equations (H-20) and (H-23) for JmV0a 2/2i`î 2  = 4. Thereby 
verify the values quoted in Appendix H. 

2. Use a graphical procedure to find with one-decimal-place accuracy all the solutions to the 
transcendental equations (H-20) and (H-23) for JmVoa 2/2hî 2  = 5. (Hint: Additions to Fig-
ures H-1 and H-2 will yield results of sufficient accuracy.) 

3. Obtain an analytical solution, as in Appendix H, to find the first eigenvalue of the potential 

	

co 	 x < —a/2 or x > +a/2  

	

V(x) = 0 	— a/2 < x < — a/4 or + a/4 < x < + a/2  

	

vo 	 —a/4 < x < + a/4  

where 
^2^2  

vo 
 8ma2  

Compare with the numerical integration of Problem 4 of Appendix G. (Hint: (i) Because  

of the symmetry of V(x), the first eigenfunction i/i must be of even parity. This means there  

can be no sine term in the form assumed by i/i in the region — a/4 < x < + a/4 surrounding  

x = 0. (ii) Because of this symmetry, it is necessary only to match i/i and dpi/dx at x = + a/4,  
and to make i i = 0 at x = + a/2.)  



or  
d20 	2mE 	27cmv 2 
dx2+ [ î2 	( 	h  ) x  

1/1 =0  

Appendix  
SERIES SOLUTION  

OF THE  
TIME-INDEPENDENT  

SCHROEDINGER  
EQUATION FOR A  

SIMPLE HARMONIC  
OSCILLATOR  
POTENTIAL  

In this appendix we shall use analytical techniques to solve the time independent Schroedinger 
equation for a particle of mass m bound in the simple harmonic oscillator potential 

	

V(x) = 2x2 	 (I-1)  

where C is the force constant of the corresponding linear restoring force. These techniques are 
worth studying not only because of the importance of the simple harmonic oscillator, but also 
because the solution of the time-independent Schroedinger equation for the even more impor-
tant one electron atom involves techniques which are almost identical. Mathematically inclined 
students will, furthermore, find them to be quite interesting. 

The time-independent Schroedinger equation for the potential is 
h2 d2 çl 	C 2  
2m dx2 + 2 
	 (I-2)  

If we evaluate the force constant C in terms of the classical oscillation frequency  

the equation becomes  
h2 

 d2^  + 2rc2mv 2x 20 = Et/i  
2m dx2  

Introducing the parameters  

a = 2zzmv/hi 	and 	f = 2mE/h2 	 (I-4)  

-1  
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the equation assumes the more compact form  

dx 2  + (fi  a 2x2)0 = 0  

It is convenient to express this in terms of the dimensionless variable  

_ 2rrm C 1/z J 1/2 
 = 

(Cm)1/4 
x u ^ - x [ht2ir \m) 	

x 	h1 	/2 =  

We have 
dt/r - dudtfi = 	fi r di 

dx dx du V a  du  

d2 1Ji 	du d di/i 	d2 ]f 

dx 2  dx du (dx) 
- a 

 due  

d22 	+ (R—au2)=0  

du
g + (-

13 
 - u2)0= 0 	 (I-7)  

We must find solutions for which 1i(u) and its first derivative are single valued, continuous,  
and finite, for all u from - co to + co. The first two conditions will automatically be satisfied 
by the solutions we shall obtain. However, it will be necessary to take explicit consideration 
of the requirement that i/i(u) remain finite as lul -> co. For this purpose it is useful first to con-
sider the form of 0(u) for very large values of  ^ul. 

Now for any finite value of the total energy E, the quantity f3/cc becomes negligible compared  
to u 2  for very large values of lul. Thus we may write, from (I-7)  

d20 = u2,/  
due  

The general solution to this differential equation is  
= Ae-u212 + Beu

2/ 2 	
(I-9)  

where A and B are arbitrary constants. We verify that this is a solution to (I-8) by calculating  

dpi 
du 

= A(- u)e - u 212  + Bueu212  

and  
d2tk  

	 A(-u) 2 e - u 212  - Ae - u212  + Bu2 eu
212  + Beu212 

du2 
 

= A(u 2  - 1)e - u 2/ 2  + B(u2  + 1)eu 212  

Since, for lid -> oo, this is essentially  
2 d 
	= Au 2e - u2/2  + Bu2eu212  
due  

or  

	

d20 	 ! 

	

0 
	= u2 (Ae — u212  + Be u 212 ) = u2 4'  

du2  

it is obvious that it satisfies (I-8) identically.  

Next we apply the condition that the eigenfunction must remain finite as lul -> co. It is  

apparent from (I-9) that this requires us to set B = 0. Thus the form of the eigenfunctions for  

very large lul must be  

and  

So the equation becomes 

or  

lul -> a)  (I-8)  

tli(u) = Ae-u212 	 1141' oo (I-10)  

The form we have found in (I-10) suggests that we search for solutions to the full-fledged  
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differential equation, (I-7), that can be written 
iji(u) = Ae -u212H(u) 	 (I-11)  

These solutions are to be valid for all u. So the H(u) must be functions which are slowly varying  

compared to e - 142 / 2  as  co, in order that (I-11) agree with (I-10). Elsewhere, the H(u) must 
have whatever forms are required to yield the correct forms for the Ji(u). To evaluate the H(u),  
we calculate 

d>ji 

—
Aue-"212H + Ae-u2/2 

dH 

du 	 du  

and  

/le -112 /2H  + Au2 e - u 2l2H — Aue_u212 dH 
du  

— Aue -u2i2 
dH 

+ Ae "2 
d2H 2 ^ 	 

du 	 du2  

Ae - u 212  (— 
	 dH d2H^  

H + u2   — 2u 
du + du  

Then we substitute iJi and d21/î/du 2  into (I-7), to obtain 
2 

Ae-'212 
C 
 —H + u 2H — 2u 

dH 
 + 

d Hl 
 + 

a 	
A e  U212H - Au2 e -142"2H = 0  

Dividing by Ae '2/ 2, and cancelling the terms involving u2H, we have  

 d2H 
2u dH + 

f -1 H=0 	 (I-12)  
du2 	du 	a  

This differential equation determines the functions H(u).  
Let us recapitulate. We started with the time-independent Schroedinger equation, (I-7). For  

reasons that will be explained, this equation cannot be directly solved. However, by writing  

the solutions to the equation as products of the function Ae - 142 / 2 , which is the form of the  
solutions for 1141 —> oo, times the functions H(u), we transform the problem to one of solving  

(I-12). This equation is solvable by means of the power series technique.  
In this, the most general technique available for the analytical solution of a differential equa-

tion, we begin by assuming that the solution can be written as a power series in the independent  

variable. That is, we assume  
CO  

H(u) = 	a1ul -ao +aiu+a2u2 + a3 u 3 +••• 	 (I- 13)  
1= 0  

The coefficients ao , al , a2 , ... are then determined by substituting (I-13) into (I-12), and de- 
manding that the resulting equation be satisfied for any value of u. Calculating the derivatives  

dH  
= E latu1- 1 - la i  + 2a2u + 3a3 u2  + • •  

du 	1=1  
and  

d 2H 	co  

du2 	1E 
(1-1)la1u1 2 - 1. 2a2 +2.3a 3u+3.4a4u2 +•••  

and substituting them into the differential equation, we obtain  

1.2a2 +2.3a 3u+3.4a4u2 +4. 5a5 u3 + •• — 2- M i tt —2.2a 2u2 -2.3a 3 u3 —•••  

+ (fi/a —  1)a0  + (Na — 1)a 1 u + (Na — 1)a2u2  + (fl/a — 1)a 3 u3  + • • =  0 

Since this is to be true for all values of u, the coefficients of each power of u must vanish  
individually so that the validity of the equation will not depend on the value of u. Gathering  

the  coefficients  together, and equating them to zero, we have  

u° :  1 2a2  + (/3/a — 1)a0  =  0 

u l :  2 3a3  + (f3/oc — 1 — 2 1)a1  =  0 

u2 :  3 4a4  + (fl/a — 1 — 2.2)a 2 = 0 

u3 :  4.5a5  + (f3/a — 1 — 2.3)a 3  =  0 

d2  

due  
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For the lth power of u, the relation is 
u1 : 	 (1 + 1)(l + 2)a1+ 2 + (/3/a - 1 - 21)al  = 0  

or  

(13/a - 1 - 2 1 )  
a1  + 2 	

(l + 1)(l + 2) 
 a1 

This is called the recursion relation.  
The relation allows us to calculate, successively, the coefficients a 2 , a4 , a6 , ... in terms of  

ao , and the coefficients a 3 , a 5 , a7 , ... in terms of a l . The coefficients ao  and a l  are not  
specified by the recursion relation, but this is as it should be. Since the differential equation  

for H(u) contains a second derivative, its general solution should contain two arbitrary con-
stants. We see then that the general solution splits up into two independent series, which we  

write as  

H(u)=ao (l+a2 uz +a4 a2 u4 +a6 a4 a2 u6 +...1 
ao 	a2  ao 	a4 a2 ao 	J  

	

+ all u + a3u3 +asa3 u s + a^ asa3u 7 +...1 	(I-15) 
a l 	a3 a1 	a5 a3 al 	l  

The ratios a1+2/a1  are given by the recursion relation. The first series is an even function of u,  
and the second series is an odd function of that variable.  

The reason why (I-7) cannot be directly solved by application of the power series technique  

is that it leads to a recursion relation involving more than two coefficients. The student can  

show this immediately by applying the technique. If he then attempts to write an equation  

analogous to (I-15), he will see that the technique fails because there can be only two arbitrary  

constants in the solution of an equation containing a second derivative. We were able to cir-
cumvent the difficulty by transforming the problem to one of solving (I-12). Essentially the  

same trick is successful for the differential equations that arise from the time-independent  

Schroedinger equation for the Coulomb potential, V(r) cc  r -  1 ,  of a one-electron atom. There  

are other potentials for which the trick does not work, and there is no analytical solution. Of  

course, any potential can be treated by the numerical techniques of Appendix G.  

For an arbitrary value of /3/a, both the even and the odd series of (I-15) will contain an  

infinite number of terms. As we shall see, this will not lead to acceptable eigenfunctions.  
Consider either series, and evaluate the ratio of the coefficients of successive powers of u for  
large 1. This gives  

a1+2 (/3/a— 1 — 21)  2l 2  
a1 	(1+l)(l+2) - 12 	1 

Let us compare it with the same ratio for the power series expansion of the function e" 2, which  
is  

"2 	2 u
4 u6 	 u 1 	u 1 +2 

e = 1 + u + 
2! 

+ 
3! 

+ 	+ (1/2)! + (1/2 + 1)!  

For large 1, the ratio of the coefficients of successive powers of u is 
1/(l/2 + 1)! 	(1/2)! 	(1/2)! 	1 	1 	2  

1/(l/2)! 	(//2 + 1)! 	(1/2 + 1)(//2)! 	1/2 + 1 - 1/2 	l  
The two ratios are the same. This means that the terms of high power in u in the series for 
e"2  can differ from the corresponding terms in the even series of H(u) by nothing more than 
a multiplicative constant K. They can only differ from the terms in the odd series of H(u) by 
u times another constant K'. But, for lul  -> oc, the terms of low power in u are not important  
in determining the value of any of these series. Consequently, we conclude that  

H(u) = aoKe" 2  + aiKtueu2 	 lul ' ao  

According to (I-11), the solutions to the time-independent Schroedinger equation are  

i/i(u) = Ae - "212H(u)  

Thus, if the series of H(u) contain an infinite number of terms, the behavior of these solutions  

for lul-> cois  

Ae - "212H(u) = aoAKe" 2/2  + al AK'ue" 212  

(I-14)  
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But this increases without limit as 	-> oo, which is not acceptable behavior for an eigen- 
function. 

Acceptable eigenfunctions can be obtained, however, for certain values of Na. We set either  
the arbitrary constant ao , or the arbitrary constant al , equal to zero. Then we force the re-
maining series of H(u) to terminate by setting 

f3/a = 2n + 1 	 (I-16)  

where 
n= 1,3,5,... 	 if ao =0 

n= 0,2,4,... 	 if a l  = 

It is clear from (I-14) that such a choice of /3/a will cause the series to terminate at the nth term 
since we shall have, for 1 = n  

(/3/a -1- 2n) (2n + 1 - 1 - 2n) 
an+2 = -  (n + 1)(n + 2) an 	(n + 1)(n + 2) 

	 a°  =  0 

The coefficients an+4 ,  an+6' an+s' • • • will also be zero since they are proportional to an+2.  
The resulting solutions Hn(u) are polynomials of order un, called Hermite polynomials. Each  
Hn(u) can be evaluated from (I-15) by calculating the coefficients from the recursion relation  

with /3/a given by (I-16) for that value of n. The first few Hermite polynomials can be seen in  

Table 6-1. They are the factors multiplying A ne - n 212  in the entries of the table. (In each case  

the arbitrary constant ao  or a 1  has been chosen so that the coefficient of each power of  u can  
be written as a simple integer.)  

For the polynomial solutions to the Hermite differential equation, (I-12), the corresponding  

eigenfunctions  

Y'n(u) = Ane  n2"2Hn(u) 	 (147)  
will always have the acceptable behavior of going to zero as 1141 -> oo. The reason is that, for  

large (u^ ,  the exponential function e-u212  varies so much more rapidly than the polynomial  

Hn(u) that it completely dominates the behavior of the eigenfunctions.  

Evaluating a and /3 from (I-4), we obtain immediately from (I-16)  

2mE h _ 2E _ 2E _ 
h2  2irmv 27 by by 

2n + 1  

or  

E = Cn+Zf hv 	n= 0, 1, 2, 3, ... (I-18)  

These are the eigenvalues of the simple harmonic oscillator potential, expressed in terms of its  

classical oscillation frequency v.  

PROBLEMS  

1. Determine the forms of the first five simple harmonic oscillator eigenfunctions by eval-
uating the coefficients of the polynomials from the recursion relation developed in Ap-
pendix I. 

2. Carry through, as far as possible, an attempt to make a direct series solution of (I-7) of 
Appendix I. Explain clearly why the attempt fails. 





Appendix J  
TIME-INDEPENDENT  

PERTURBATION  
THEORY  

The technique Appendix I employed to solve the time-independent Schroedinger equation for  

the simple harmonic oscillator potential will not, in general, be of use in the case of a potential  

of arbitrary form V(x). What happens is that the recursion relation is found to involve more  

than two coefficients, making it impossible to find analytical solutions to the differential equa-
tion. In such cases the equation can always be solved by numerical integration in the manner  

described in Appendix G. In addition, there are approximation techniques that are very useful  

for treating certain potentials. The study of one of these techniques forms the subject of time-
independent perturbation theory, to which this Appendix is devoted.  

TIME-INDEPENDENT PERTURBATIONS  

Consider a potential V'(x), for which it is either difficult or impossible to solve the time-
independent Schroedinger equation analytically, but which can be decomposed as follows  

V'(x) = V(x) + v(x) 	 (J-1)  

where V(x) is a potential for which the time-independent Schroedinger equation has been  

solved, and where v(x) is a potential that is small compared to V(x). We shall develop expres-
sions from which it will be easy to obtain good approximations to the eigenvalues and eigen-
functions of the perturbed potential V'(x), in terms of the perturbation v(x) and the known  
eigenvalues and eigenfunctions of the unperturbed potential V(x). An example of (J-1) is illus-
trated in Figure J-1. The potential V'(x) has been decomposed into a square well potential  

V(x), plus a perturbation v(x) which is small compared to V(x).  
Let us write some particular perturbed eigenfunction tJi;,(x) as a linear combination of the  

unperturbed eigenfunctions i/i i(x). That is, we write  

Y' n(x) = E and i(x) 	 (J-2)  

The coefficients an,  specify how much of each of the i/i i(x) is contained in Iin(x). The summation  
runs over all the values of the quantum number 1, including those in the continuum. The un-
perturbed eigenfunctions are solutions to the time-independent Schroedinger equation for the  

potential V, which is  
h2 	

i  + VIP /  = EA 	 (J-3a) 
2m dx 2  

The perturbed eigenfunctions are solutions to the same equation for the potential V', which  
is  

h2 d2Wn 
 + V ' Y' n  = En4'n  2m dx  

Using (J-1) this can be written  
h2 d2 , 

2m dx2n + Vi^In + v4'n = EnY'n  (J-3b) 

J-1  
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Continuum Continuum 

4 4  
3 3 
2 2 

1 1 

= 	 +  
V' (x) 	 V (x) 	 y (x)  

Figure J-1 Illustrating the decomposition of a perturbed potential into an unperturbed  

potential plus a perturbation. 

Here El  and En are, respectively, the unperturbed and perturbed eigenvalues. Now substitute  

(J-2) into (J-3b), to obtain  

E  ant 

p
m dx2l + V111

11 + E a1vY', =  an1En't 1 

According to (J-3a) the bracket is equal toE 1 1Ji 1 .Thus we have  

E  ;1E1`V 1+ anlv'4' 1= E an1EnY'  
I 	 I 	 1 

or  

/ 	'J'  

:1:73 E ;1(4—  E1)Y' 1 = E  an1v4' 1 

N 	 1 	 I 

â Multiplying through by the complex conjugate of a certain unperturbed eigenfunction Y'm,  and  
integrating over all x, we have  

L,  a1(E — E1) J  fi7Iijdx = E and J Y' mvtfrl dx 	 (J-4)  

op 	 -  co  

The unperturbed eigenfunctions are, necessarily, orthogonal. That is, they have the ortho-
gonality property described by the equation  

1̂ m Pidx = 0 
	

m l (J-5) 

This is true for any two different eigenfunctions of any particular potential. See Problem 27 
of Chapter 6, Example 9-la, and, particularly, Problem 10 of Chapter 9. We also assume the 
unperturbed eigenfunctions have been normalized. (This involves box normalization for the 
continuum eigenfunctions. In so doing, the continuum eigenvalues actually become discrete, 
although very closely spaced. This removes any difficulty of interpreting the summation E 1 

 for the continuum values of 1.) With this assumption, the integral on the left side of (J-4) will 
be equal to zero if 1 # m, and equal to one if l = m. Thus there will be only one non-vanishing 
term in the summation on the left side of the equation, and 

CO  

, 
anm(En — Em) = E  ant  I  tPmvt1  dx  

-  o0 

Let us define the symbol  
00  

vm! = J tfrm(x)v(x)01(x) dx 	 (J-6)  
Then we can write  

anm(En
, 
 — Em) = Ean lvm l 	 (J-7)  

—^ ^— 

This equation is exact, but it is not very useful. In order to obtain one that is useful, we  

shall employ the condition that the perturbation v(x) is small compared to the unperturbed  



potential V(x), so that the perturbed potential V'(x) differs only slightly from V(x). For such 
a situation it is reasonable to assume that the perturbed eigenfunctions will differ only slightly 
from the unperturbed eigenfunctions. In terms of (J-2), this means that we assume  

«1 	 l n  
ant  	1 	 l 

= 
n  (J-8)  

If we also require that v(x) be small compared to the eigenvalues of V(x), it is clear that the 
v,nt  must then all be small compared to the unperturbed eigenvalues because, according to 
(J-6), these quantities are just certain averages of v(x). Now let us divide both sides of (J-7) by 
the unperturbed eigenvalue E n . We have  

(En — Ern) 	vml  

anm 	= law 
E.t Em  

Every term in the summation, except the term l = n, is the product of two small quantities ant  
and vml/Em.  We shall neglect such terms, keeping only the term for l = n. Then we have  

(En — Em) 	vmn  
anm E 	_ ann  m  

or  

Now take m = n. We obtain 

SO  

If we take m n, we obtain 
E

ann(E

anm(E ^ 	N 
n — Em) — annvmn 

, 
 n — En) ti  annvnn  

r 
n  — En ti vnn  

(J-9)  

(J-10) 

N anm 	nn E
r  —  n 	m 

Setting ann  = 1 because of (J-8), this becomes 

vmn  

anm E —E En  m  

Using (J-10) to evaluate E;,, we find that 

vmn 	 vmn  

(J-11) 

(En  — E.)(1 + 	
vnn

— / En Em  
1 

vmn  ( 1 +  vnn 1 	vmn  ( 1 	vnn  

En — Em`\ En —  Em) N En —  Em 	En — Em  

We have taken the first term in the binomial expansion of 1 plus the quantity vnn/(En —  Em)• 
Next we shall drop the term involving the product of the two quantities vmn/(En  — Em ) and 
vnn/(En  — E m ). The validity of these two steps depends on the additional requirement that v(x)  
be small even compared to the difference between En  and any other eigenvalue Em  which  
enters into our calculations. We have finally  

an. ^— 	vmn 	 (J-12)  
En — Em  

Equations (J-10) and (J-12) are the expressions which provide good approximations to the  

eigenvalues and eigenfunctions of the perturbed potential V'(x). Consider (J-10), and evaluate  

vnn  from (J-6). This yields  

r^ 

En — En ^— vnn = J 1.1/n (x)v(x)i/i n(x) dx 	 (J-13a)  

-  o0 

This gives an approximation to the nth perturbed eigenvalue in terms of the nth unperturbed  

eigenvalue and a certain integral involving the corresponding unperturbed eigenfunction and  

the perturbation v(x). The integral is the expectation value of v(x) for the nth unperturbed  

vmn  

nm 
En  —  Em +vnn  
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eigenstate. To see this, consider (5-29), with V(x,t) = v(x) and'F(x,t) = ¶ n(x,t) = e - °E"trn  tit n(x).  
That equation reads  

^ 

�  

T
IM

E
-I

N
D

E
P

E
N

D
E

N
T

 P
E

R
T

U
R

B
A

T
IO

N
  T

H
E

O
R

Y
 00  

v(x) = 
J 
 e`EntrnY'n(x)v(x)e-

aE„t/fii,l,n(x) dx  

— co  

or  

v(x) = J i//n (x)v(x)t in(x) dx  (J-13b) 

— OD  

Thus perturbation theory gives the very reasonable result that the shift in the energy of the 
nth eigenvalue, due to the presence of the perturbing potential v(x), is approximately equal to 
the value of v(x) averaged over the nth unperturbed eigenstate with a weighting factor equal 
to the probability density tin(x)On(x)  for that eigenstate. Succinctly put, the energy shift in 
any state is approximately the expectation value for that state of the perturbing potential. Next  
consider (J-12), and evaluate the symbol v mn  to obtain  

Go  
1  

anmEn — 	
Em 	

114,(x)v(x)tli n(x) dx 	 m n (J-14)  
-  co 

This equation gives the approximate value of the coefficients anm  which specify how much of  
each of the unperturbed eigenfunctions 1l/ m(x) is mixed in with the dominant unperturbed  
eigenfunction tfi n(x) to form the perturbed eigenfunction ifr (x). Then in the series (J-2), with  

I replaced by m  

	

W n(x) = E anml/ m(x) 	 (J-15) 

	

we may use (J-14) to evaluate all the coefficients except 	From From (J-8) we know ann  1. Its  
exact value can be determined by requiring that ilin(x) be normalized. Note that anm  is pro-
portional to 1/(E n  — Em). Thus the perturbation v(x) will mix in with the unperturbed eigen-
function O n(x) only a negligibly small amount of any unperturbed eigenfunction O m(x) whose  
eigenvalue E m  is very different from the eigenvalue En . This has the important consequence  

that a good approximation to the series (J-15) may be obtained by taking only the term for  

m = n, plus a few terms for m not very different from n. The coefficient a nm  is also propor-
tional to the quantity  

vmn = J V'm(x)v(x)Y'n(x) dx  

w  

This is a certain average of v(x), with a weighting factor i/im(x)t/i n(x) which depends on the  
eigenfunction for the mth unperturbed eigenstate as well as the eigenfunction for the nth un-
perturbed eigenstate.  

The quantities vmn , for m = n as well as m n, are called the matrix elements of the perturba-
tion v taken between the state n and the state m. This terminology is used because in advanced  

treatments of quantum mechanics it is convenient to consider a matrix in which each element  

is one of the quantities v mn . Such a matrix  

	

/Vll 	t'12 	V13 
	 Vi n 

 

	

V21 	V22 V23 	 • V2n 	•  

	

V31 	V32 	V33 • 
 

Vml vm2  

CO  
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a/2 	x--  Figure J-2 A V-bottom potential.  

We consider this as the sum of an unperturbed potential 

V(x) = 0  
— a/2 < x< + a/2  

x < —a/2 orx> +  a/2  CXD  

contains all possible information concerning the application of a perturbation v(x) to a system 
whose unperturbed eigenfunctions are >/i i (x), 4i 2(x), i/i 3 (x), tp4(x), ... . 

AN EXAMPLE  

Let us illustrate the use of (J-13a) and (J-14) by doing a simple perturbation calculation. We shall 
evaluate the first eigenvalue and eigenfunction for the potential indicated in Figure J-2 and 
specified by the equation 

S 	/2 	— a/2 < x < + 
 a/2 (J-16) 

V'(x) =  
x < —a/2 orx> +  a/2  

which is an infinite square well, plus a perturbation 

v(x) = S 
 I /2  

According to (6-79), (6-80), and Example 5-10, the normalized unperturbed eigenfunctions can 
be written 

'J'  / 	̂2/a cos (mltx/a) m = 1, 
m = 2, 

m = 1, 2, 

3,5, 
4, 6, 

3, 4, 

4'mlx) 	J2/a sin (micx/a) 

According to (6-81), the unperturbed eigenvalues are  

Em  = x2h2m2/2Ma2  
where we use M for the mass of the particle. If S is small compared to the first eigenvalue  

E1 = x2h2/2Ma2  
the perturbation technique should be applicable.  

To evaluate tli'1(x), take n = 1 in (J-14). This gives  
CO  

 

aim = 	
1 	

0m(x)v(x)iffi(x) dx  
E 1  — E m  

m 1  

which is 
-  o0 

 

a/2  

8M6 	1 	
cos 

m"x 
 Ixl cos 	dx 	m = 3, 5, 7, 5,7, . . . 

^ 2fz 2  (1 — m2) 	a 	\ a  
—a/2 

atm 
_ 
	 a/2  

8MS 	1 	 i 
sin  	

x 

	

mx 
 ^xl cos 

x 
 dx 	m = 2, 4, 6, . , . 

1r2^12 (1 — m2) 	a 	 a )  
—a/2  

For m = 2, 4, 6, ... the integrand is an odd function of x. Since the integral is taken over a range  

symmetrical about x = 0, the integral will vanish. Thus we have  

a im  =0 	 m=2,4,6,...  
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For m = 3, 5, 7, ... the integral is an even function of x; it gives  

a/2  
16  MS (  1  2)  (^ 	Cmnxl 	

Cox / 
aim = 	 J cos 	

JJ
xcos —/Idx 	m = 3,5, 7,. . 

1—m 	a 	a  
o  

Let Z = nx/a; then this becomes  
rz/2  

aim = g a 
 1 

2 J cos (mZ)  Z cos Z dZ 
n Ei (1 —m)  

o  

where we have introduced the convenient dimensionless ratio  6/E 1  = 2Ma28/n2 h 2. The in-
tegral can be evaluated easily by writing cos (mZ) = (1/2)(e+imz + e -tmz ). The result is  

8 8 	1 	(cos [(m + 1)n/2] — 1 cos [(m — 1)n/2] — 11 
aim —  2 	m2)  l 	 2 	+ 	

1)2 

	

)j 	m= 3,5,7,... 

	

E1 (1 — 	2(m + 1) 	 2(m — 1)  
The first few non-vanishing coefficients have the values  

1 8 b  

32 n2  E i  
1 8 8  

864 n2  E 1  
1 8 ô  

1728 Tc 2  E 1  

1 	8 (5  
8000 7E 2  E1  

It is not surprising that aim = 0 for m = 2, 4, 6, .... The perturbed potential V'(x) is sym-
metrical about the origin, and so its first eigenstate must be of even parity. Consequently there  

can be no odd parity unperturbed eigenfunctions mixed into the first perturbed eigenfunction,  

and the odd parity unperturbed eigenfunctions are precisely those for m = 2, 4, 6, .... The per-
turbed eigenfunction I/4(x) is obtained by substituting the aim  in the series (J-15). Since the  
a im  decrease rapidly with increasing m (owing partly to the 1/(E 1  — Em) term and partly to  
the vmi  term), it is apparent that we can get a very good approximation to the series by taking  

only the terms for m = 1 and m = 3. Thus  

/4(x) ti  aiitfri(x) + 32 
8  Ei 	03(x) 	 (J-17)  

Finally the  coefficient al  1  must be adjusted so that Vi(x) is normalized, but we leave this as  

an exercise for the student.  

Figure J-3 illustrates (J-17). The relative amount of ' 3 (x) has been exaggerated for the sake  
of clarity. Fixing our attention on 1f/1(x) and 0 1 (x), we see that the second derivative of  

the perturbed eigenfunction is relatively small near the ends of the region — a/2 to + a/2, and  
relatively large near the center, compared to the second derivative of the unperturbed  

—a/2 	 0 	 a/2  

x 
Figure J-3 Illustrating the composition of the first eigenfunction for a V-bottom potential.  



eigenfunction. Consideration of the form of the time-independent Schroedinger equation for  

the perturbed and unperturbed potentials will make it clear why this happens.  

Next let us evaluate E1 — E 1 . Taking n = 1 in (J-13a), and inserting the appropriate un-
perturbed eigenfunction, we have  

a/2  

El — E 1  = J Ixl cos2 
 axl 

 dx a^  

— a/2  

a

(

/

'

2  

El —E 1 =â J xcos 2 ^^)dx  

o 
R/2  

E1 — E 1  = 
 

8(5 
	Z cos2  ZdZ  

o  
8(5 (7r2 	1) E1 —E1 = ^2 

which is  
E'1  — E 1  = 0.297(5  

Figure J-4 shows the perturbed eigenvalue E1 in terms of the dimensionless ratio (El —  

E1 )/E 1 , plotted as a function of the dimensionless ratio (5/E 1 . Perturbation theory predicts  
the straight line of slope 0.297. The points are the correct answer. They were calculated from  

the eigenvalues El obtained by an accurate (numerical integration) solution of the time-
independent Schroedinger equation for the four potentials V'(x) corresponding to the values 
of (5/E 1  indicated. The shift in the energy of the first eigenvalue, as predicted by perturbation 
theory, is seen to be in error by about 10 percent for (5/E 1  ^ 0.9, which corresponds to (El  
E 1 )/E 1  ^ 0.25. For (E1 — E 1 )/E 1  ^ 0.05, the error is about 0.5 percent. Now it is apparent 
that the error in the perturbation theory we have developed is of the order of the square of 
a small quantity since, throughout the development, the squares of small quantities were always 
neglected. The numbers just quoted indicate that, in the present case, an approximate measure 
of the size of this small quantity is the ratio (E' 1  — E 1 )/E 1 . Note also that the eigenvalue E'1  
calculated by perturbation theory is always too large. It can be shown that this is true for 
any form of the perturbation v(x), and it is easy to see why it happens. Perturbation theory 
uses the unperturbed eigenvalue tIi i (x) to evaluate E1 — E 1  = f°° ^  tlii(x)v(x)/i 1 (x)dx. Com-
paring the plots of ifi 1 (x) and of 44(x), we see that this procedure gives too much weight to the  

values of v(x) near the ends of the region. But near the ends of the region v(x) is largest, and  

therefore the contribution of v(x) to the perturbed eigenvalue E'1 is overestimated.  

A comparison of the exact form of the eigenfunction 411(x) of the potential V'(x) with the 
form (J-17) predicted by perturbation theory shows that the error in the coefficient a 13  is also 
of the order of the square of the quantity (E1 — E 1)/E 1 .  

16 4  

3
1
d

W
V

X
3
 N

V
  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  

E 1  

Figure J-4 A comparison between the first eigenvalues for several V-bottom potentials  

obtained from time-independent perturbation theory and from accurate solutions of the  
time-independent Schroedinger equation.  
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If more accurate estimates of En and t//,,(x) are needed, it is possible to extend the perturba-

tion theory to obtain expressions in which the error is of the order of the cube, or even of a  

higher power, of the appropriate small quantity. However, in practice (J-13a) and (J-14) are  

normally adequate.  

THE TREATMENT OF DEGENERACIES  

Consider the case of two different unperturbed eigenfunctions, which we label Vi i (x) and 0 2(x),  
whose corresponding unperturbed eigenvalues E 1  and E2 happen to be exactly equal. These 
eigenfunctions are said to be degenerate. There are a number of important examples of this 
situation that actually arise in the study of atomic and nuclear physics. For instance, many of 
the eigenfunctions are degenerate for an electron bound in the 1/r Coulomb potential of a 
hydrogen atom. When eigenfunctions are degenerate, we shall often be interested in studying 
the effect of a small perturbation which changes the potential in such a way as to remove the 
degeneracy.  

However, to apply perturbation theory in a case involving degenerate eigenfunctions, we 
must exercise care. This need is clearly indicated by (J-11), which makes the prediction a12  — 1 
and a21  — 1 for the case E 1  = E2. (Equation (J-11) states a12 ^ v21/(E1 — E 2). Taking 
El  = E2, and using (J-10), this becomes a12v2 1/(Ei — E1) = v21/v11 — 1, in general. Note  
that this result does not depend on the "additional requirement" that v(x) be small compared  

to the difference between two unperturbed eigenvalues.) This really tells us only that the theory  

we have developed breaks down in this case. But it also provides some clue to the nature of  

the difficulty by showing that, when E 1  = E2, the assumption a 1  « 1 for n l of (J-8) is not  
consistent with the results obtained from that assumption in the cases n = 1, 2 and l = 1, 2.  
The difficulty is resolved when we realize that there is certainly no a priori basis for the assump-
tion that a12  « 1 and a21  « 1, when tJr 1 (x) and (/i 2 (x) correspond to eigenvalues which are  

exactly equal. Under such circumstances it might very well be that, in contrast to the assump-
tion, a small perturbation could have a big effect and thoroughly mix up the two degenerate  

eigenfunctions.  
To account for this situation we first investigate only the mixing, due to the presence of the  

perturbation v(x), of the two degenerate unperturbed eigenfunctions tJr 1 (x) and 0 2 (x) with each 
other. In doing this we ignore the mixing with 0 1 (x) and tf/ 2 (x) of any of the non-degenerate  
unperturbed eigenfunctions 1/1 3(x), 04(x), t/r 5 (x), .... Now in many cases of physical interest  
the matrix elements have two symmetries. These are v11= v22 and y 12 = v21. In such cases  
the result of the investigation is that the perturbation mixes the tjr l(x) and  02(x) into the follow-
ing two linear combinations  

and  

O °(x)  =
V2 

 C01(x) + 02(x)]  (J-18a)  

02)
(x) 

 = 	r 01(x) — 02(x)] 	 (J-18b)  

These particular linear combinations have a very useful property: If the perturbation is  

applied directly to either of them it will not cause one to mix with the other. This can be seen  

by evaluating the integrals that appear in the coefficients which, according to (J-14), determine  

the mixing. For  instance 
 (' 

	

J 07*v0 (2)  dx = J 	[1i + i]v 	[01 — t// 2] dx  

2
[J itei dx — JrV2  dx + J  tIfivi I l  dx — J  11441 a  dx]  

2[ = v11 — v12 +v21 — v22] = 0 

Similarly,  
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Figure J -5 Two independent degenerate vibrations of a circular drum head. 

Node 

So the perturbation does not mix iji? and iG° among themselves, and non-degenerate perturba-
tion theory can be applied directly to these particular linear combinations to calculate the energy 
shifts, even though they are degenerate before the application of the perturbation. 

But how can we find, in a general case, the particular linear combinations of degenerate 
eigenfunctions that have the very desirable property of not mixing among themselves when the 
perturbation is applied? There is a mathematical procedure—the one used to obtain (J-18a) 
and (J-18b)—but it is rather complicated. Fortunately, there are also physical arguments that 
can be used, instead of mathematical ones, to simplify the application of time-independent per-
turbation theory to quantum mechanical systems that involve degeneracies. 

Before considering a quantum mechanical system, it is informative to look at an example 
of a physical argument which can be used in a classical system. In one of the higher frequency 
modes of a circular drum head, the drum head vibrates with a nodal line lying along a dia-
meter. This mode is degenerate because the same frequency is obtained for all orientations of 
the nodal line. But there is only a two-fold degeneracy because there are only two independent 
vibrations—the vibrations whose nodal lines are perpendicular. These independent degenerate 
vibrations are indicated in Figure J-5. All other vibrations at this frequency can be obtained 
by linear combinations of these two. In particular, other sets of two independent degenerate 
vibrations, with perpendicular nodal lines of different orientation, can be obtained by appro-
priate linear combinations. In the absence of a perturbation, all these sets are equivalent. 

Now imagine applying a perturbation by fixing a small weight to the drum head at some 
position other than its center, as indicated in Figure J-6. Because of the asymmetry introduced 
by the perturbation, the two previously independent vibrations are mixed together to form two 
new vibrations, as indicated in Figure J-7. Also the perturbation removes the degeneracy be-
cause the weight lies along the nodal line for one vibration and therefore has no effect on the 
frequency of that vibration, while it does a ffect the frequency of the other vibration. 

After gaining some experience with these problems, it is possible to tell from physical argu-
ments what the form of the perturbed vibrations must be. This allows the set of independent 
degenerate unperturbed vibrations to be chosen as the particular set for which one nodal line 
runs through the weight. Then the application of the perturbation does not mix the vibrations 
because they have the same form both before and after its application, and the non-degenerate 
classical perturbation theory can be used in the calculation of the frequency shifts produced 
by the perturbation. 

There are several implicit examples in the text of applying physical arguments to quantum 
mechanical systems to find the particular linear combinations of degenerate eigenfunctions 
that are  not mixed by the application of a perturbation. The first is found in Section 8-6, 
where the energy shifts produced by the spin-orbit interaction in a hydrogen atom are evalu-
ated. To clarify the point in question, we begin by observing that there is a redundancy of 

Figure J -6 Applying a perturbation to a circular drum head. 
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Figure J-7 The results of applying a perturbation to a circular drum head. 

quantum numbers in the one-electron atom if the spin-orbit interaction is neglected. That is, 
n, 1, ml , ms , j, and mj  would all be "good" quantum numbers but, since there are only three 
spatial coordinates and one spin coordinate, only four quantum numbers are needed. In other 
words, if we ignore the spin-orbit interaction there are solutions to the time-independent 
Schroedinger equation for the hydrogen atom which can be written as i/ nim im s . But in these 
circumstances there are also solutions to the equation which can be written as ^i jm  . The latter  
are certain linear combinations of the former. (It is not appropriate to use s as a label since  
it has only the single value 1/2.)  

If we use the Cinlmtms  to evaluate the spin-orbit energy shifts in perturbation theory there is  

a difficulty. These unperturbed eigenfunctions are degenerate since the total energy of the state  

specified by the quantum numbers n, 1, m l , ms  depends only on the quantum number n.  
Instead, in Section 8-6 we use the set of degenerate unperturbed eigenfunctions /nljmJ.  The 
reason is that since J and JZ , the quantities specified by j and mj, have definite values whether  
or not the spin-orbit interaction is present, it follows that the application of this perturbation  

cannot change their values. (This is not true of LZ  and SZ , the quantities specified by m 1  and  
ms). Consequently, the perturbation cannot produce a large mixing of the Ii n i , even though  
they are degenerate. So they must be the set of degenerate unperturbed eigenfunctions analo-
gous to those in (J-18), to which nondegenerate perturbation theory can be applied directly  

as is done in obtaining (8-35). Thus in Section 8-6 the quantum numbers used to specify the  

state are precisely those that must be used to justify evaluating the spin-orbit energy by calcu-
lating its expectation value according to nondegenerate perturbation theory. The forms Cairn, 

 

of the eigenfunctions that must be used in (8-35) are not shown explicitly in that equation  
because the expectation value occurring in it is written in the compact notation (1/r) dV(r)/dr.  
But they are if the expectation value is written in an expanded notation analogous to (J-13b).  

Note that the required forms are found by applying a physical argument, not a mathematical  

argument.  
Explicit use is made in Section 17-8 of equations completely equivalent to (J-18).  

PROBLEMS  

1. Use time-independent perturbation theory to calculate the first eigenvalue E 1  and the first  
eigenfunction 0 1 (x) of the potential  

oo  

V(x) = 
8 	

x  

a/2  
where 8 is small relative to E 1 . Compare with the results obtained in the example treated  

in Appendix J.  
2. Use time-independent perturbation theory to calculate the first eigenvalue E 1  for the  

potential in Problem 3 of Appendix H. Compare your results with those obtained by the  

analytical treatment in Problem 3 of Appendix H, and also those contained in Problem 4  

of Appendix G, which applied to numerical integration of the potential.  

3. Except for certain pathological cases, no degeneracies arise in problems involving one  

particle moving in one dimension. In order to obtain a simple example of the application  

of degenerate time-independent perturbation theory, consider one particle moving in the  

two dimensional infinite square well potential  
co 	x < —a/2 or x > +a/2 or y < — a/2 or y > +a/2  

x< —a/2orx> +a/2  

—a/2 < x < + a/2  

V(x,y) = 
 0 	 — a/2 < x < + a/2 and — a/2 < y < + a/2  
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Use the techniques of Section 7-2 to set up the time-independent Schroedinger equation  

for the potential. Separate this partial differential equation into two ordinary differential  

equations by the usual method, making use of the fact that V(x,y) can be written as  

V(x) + V(y). Since these equations, and the conditions on 4i at the edges of the well, have 
the same form as for a one dimensional infinite square we ll, their solutions can be written 
immediately. Note that there are degeneracies in almost all the eigenfunctions. 

4. Consider the application of the perturbation 
8 	 x>O and y>0 

v(x,y) = 
0  x<Oory<.0 

to the particle in the two dimensional infinite square well of Problem 3. Investigate the 
effect of this perturbation on the first pair of eigenfunctions that are degenerate, as follows. 
Evaluate their four matrix elements with the perturbation. Use the results to justify the 
applicability of the linear combinations of these eigenfunctions quoted in (J-18a) and 
(J-18b). Then use these linear combinations to evaluate the energy shifts that the pertur-
bation produces in the eigenvalues. 





Appendix K  
TIME-DEPENDENT  

PERTURBATION  
THEORY  

Here we extend the theory of Appendix J to the case of perturbations which are functions of  

both position and time. This is an important case for several reasons, one being that time-
dependent perturbation theory provides the only nonnumerical method for solving the Schroe-
dinger equation for a time-dependent potential V(x,t). (One exception is a time-dependent  
potential of the form V(x,t) = V1(x) + V2(t). For this form only, the Schroedinger equation can 
be separated in the manner of Section 5-5 by assuming a solution W(x,t) _ 11i(x)(p(t).)  

Thus we consider a time-dependent potential V'(x,t) which can be decomposed as follows 
V'(x,t) = V(x) + v(x,t) 	 (K-1) 

where V(x) is a time-independent unperturbed potential and v(x,t) is a small time-dependent 
perturbation. The solutions to the Schroedinger equation for V(x) are the set of unperturbed 
wave functions 

Pn(x,t) = e- iEnt, 1,n(x) 
	 (K-2) 

where the En  and ^in(x) are the unperturbed eigenvalues and eigenfunctions. Assume that a  

solution to the Schroedinger equation for V'(x,t) can be written  

'F'(x,t) = E an(t)W,(x,t) 	 (K-3) 

where the coefficients an(t) are functions of time. Different solutions will have different sets  

of coefficients, but here we shall not use a second subscript to indicate this explicitly. Sub-
stitute (K-3) into the equation  

h2 a2q" 	aŸf' 
— 2M axe 
	+V'W'— iii 	=O 

at 
 

which it is supposed to satisfy. This gives  
r 	2 2 

	

E, a
nL

— 
M a 
	n+Vgin—t fi

O 
	n]+ > anvP, — iŸ1 , dt '11  =O 

n  
The bracket vanishes because the P n  are solutions to the Schroedinger equation for the  

potential V. Multiply the remaining terms by the complex conjugate of some particular un-
perturbed wave function 111,n  = e - `E"4/6 4/,n , and integrate over all x. Then, evaluating gi n, we  
have  

V  ane - i(En—Em)t/fi  

n 

f,„ 
4' mv4'nltx = 12 E 

da 
	e- i(En  - 	Em)t/ir  

n  dt  
CO  L  

Since the tji n  are orthogonal as in (J-5), and normalized, this reduces to  

dam(t) t)  _ _ 
E 

a (t)e - i(En—Em)tlm
vmn 	 (K-4) n  

We have extended the definition of the matrix element v mn  given in (J-6) to include time- 
dependent perturbations. And we have obtained, in (K-4), a set of coupled first order ordinary  

differential equations, one for each m, which determine the an(t). The details of the solution  

K-1  
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X  

C 
a) 

of these equations depend on the details of the particular problem at hand. We consider here 
a simple but illustrative case. 

Assume a perturbation of the form 

v(x,t) = 
v(x) 	 t > 0 (K-5) 

This is a perturbation v(x) which is "switched on" at t = O. For this case the set of unperturbed 
wave functions (K-2) are exact solutions for t < 0. Next assume that the wave function for 
the particle is known to be equal to a single one of these wave functions, say 'I' k(x,t), for  
t < 0. This amounts to assuming that the total energy of the particle is known to be precisely 
Ek for t < 0. This does not conflict with the uncertainty principle 

AEAt >-  h/2 	 (K-6) 

because in the infinite time before t = 0 it would be possible to measure the energy of the 
particle with perfect precision. In terms of (K-3), this assumption provides the following set 
of initial conditions for the an(t) at t = 0.  

an(0) = 	
n k 

(K-7)  

(We assume that the an(t) do not change discontinuously at t = 0. This assumption will be 
justified by the results of the calculation.) We would like to find the perturbed wave function 
'If'(x,t) for the particle at a time t > 0. To do this we shall evaluate the an(t) for  t > 0. 

Let us require that the perturbation v(x) be small enough, or that the time t be short enough, 
that 

«1 	 n0k  

an(t)  ^., 1 	 n= k t > 
0 (K-8) 

Then we may neglect all terms in the right side of (K-4) except for n = k. This gives 

dam(t) ," - f ak(t)e - t(E k  - E„,)tl vmk 	 (K-9)  

To evaluate ak(t), set m = k. Then 

d 	d t) 	-h  ak(t)vkk  

or  

dak(t) 	_  t  v dt 
ak(t) — 	 h kk  

Integrate both sides from 0 to t' > 0, remembering that the vmk  are all independent of t for  
t > 0. This gives  

[ln 
ak(t)JD 

^ C - ^ vkktJ  

which is  

	

In 
Cak(til 

 ^- - 
- 

vkkt ' 	
t'  > 0  

According to (K-7), ak(0) = 1. So we find 
ak(t) 	e- ivkkt/h 	 t > 0 (K-10) 

where we have dropped the primes to simplify the notation. 
Next evaluate the an(t), n k, by setting m = n in (K-9) and by making the additional ap-

proximation that ak(t) = 1. We have 
daâ  t)   	 e  - ttE k  - En)tl h 	 n k via  

or  

dan` 
/
t) 	- t 	

-i(Ek - En)tlh dt ti 	h  nk  n k  
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Integrate from 0 to t' > 0 to obtain  
r  r 	 

	

[an(t)1
o 	C vnk 	e - i(Ek - En)tlh 

	

0 	Ek — En  To' 

 

From (K-7), an(0) = 0, so  

an(t) 
N 	vnk 	[e  - i(Ek - En)tlh — 1] 	 n k (K-11) _ Ek

— En  
where we have again dropped the primes. Evaluating `h'(x,t) from (K-3), (K-10), and (K-11)  
we find  

e-i(Ek+vkk)tIhY'k(x) + E  E
Unk
—E 

  [e -i(Ek-En)t/i'i 
— 

ne- Mal 

	(K-12) 

n#k k 
	n  

Note that the energy Ek + Vkk appearing in the exponential of the first term is exactly the  

perturbed energy Ek = Ek +vkk, which would be predicted for a completely time-independent  

perturbation equal to v(x).  

It is of interest to consider the quantity a,'(t)an(t). This real function of t is the square of the  
magnitude of the coefficient an(t). Multiplying (K-11) into its complex conjugate, we find  

sin'  
v kvnk (

En  — Ek) t^ 

(K-13)  L 	2h  
an (t)an(t) ^ 	

2 

	

h 	En  — Ek 2 

^ 	2h 	I  
This quantity oscillates in time between zero and 4v kv nk/(En  — Ek) 2, with frequency y  =  
(En  — Ek)/h. We plot in Figure K-1 the factor sin e  [(En  — Ek)t/2h]/[(En  — Ek)/2h] 2  as a func-
tion of (En  — Ek)/2h for fixed t. Now the wave function describing the particle initially contained  

only the wave function Y'k(x,t) for its single quantum state with quantum number k. The per-
turbation v(x,t) has the effect of mixing in contributions from other states over a whole range  

of the quantum number n. However, we see that the most important contributions come from  

those n which correspond to eigenvalues En  lying within a range centered about Ek and of  
width AE, where  

AE/2h  nit  

or  
AE 2i h/t 	 (K-14) 

Now the value of an(t)an(t) at any instant t is equal to the probability of finding the par-
ticle in the quantum state n at that instant. (If this statement is not considered self-evident, 

- 37r  - 	- ^r 
t 	t 

0 ^ 2ar  3^r 

En  - Ek  
2X  

Figure K-1 The plot of a function which arises in time-dependent perturbation theory. 
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it can be proven by using the second operator association of (5-32) to calculate the expectation 
value of the particle's total energy for the wave function of (K-3), and then interpreting the 
results in light of the fact that if the particle is in quantum state n a measurement of its total 
energy can yield only En .) Thus at any time t there is a certain probability of finding the par-
ticle in final quantum state n which is different from the initial quantum state k, and with total 
energy En  different from the initial total energy Ek. This appears to be a violation of the law 
of conservation of energy by an amount En  — Ek, which may be large compared to the energy 
vkk supplied by the perturbation. However, in the time interval 0 to t the probability of finding 
the particle with energy En  is important only when En — Ek is at most equal to about AE, 
where t and AE are related by (K-14). According to the uncertainty principle (K-6), any mea-
surement of the total energy of the particle which is carried out in this time interval must be 
uncertain by an  amount of the order of b/t, which is comparable to AE. This removes the 
difficulty and provides an example of the uncertainty principle. 

Consider (K-13) for small values of t > O. The equation says that the probability of finding 
the particle in a particular quantum state n is proportional to the square of t. This statement 
is in contrast to the linear dependence on t that might be expected intuitively. However, phys-
ical intuition is always based on our experience with systems in the classical limit In that limit 
the resolution of any experimental apparatus is so large compared to the separation of the 
eigenvalues, or even to the width of the range AE, that it is not possible to measure an(t)an(t)  
for a single value of n. All that can be measured classically is the total probability of finding 
that the particle has made a transition from the initial quantum state k to some other final 
quantum state n. We express this in terms of the transition probability Pk, which is defined as 

n 
n# k  

To evaluate it, we assume that there are a large number of closely spaced final quantum states  

in the range AE; the number of final quantum states dNn  per energy interval dEn  is the density 
of final states p n  = dNn/dEn . Then the summation over n can be approximated by an integral 
over dN n . That is 

co  

Pk 
	

an (t)an(t) dNn = 
^ 

a(t)an(t)  dE " dEn  
n  

— c0 

Evaluating an(t)an(t) from (K-13), we 

N  1  

Pk —

^2 J 
- 

have 

°

r

° 	* 

vnkUnkpn 

00  

— 00  

t^ sin 
 

	

[(En 2h 
dE

(En  — E 2  kl  

2h  

2h  
The quantum number n now refers to a typical final quantum state in the neighborhood of 
the initial quantum state k. Let Z = (E„— Ek)t/2h; then  

co  

vnkvnk 	sin 2  Z 
Pk ^_ h2 

 p
n2l^2t J  Z2  dZ  

— 00  

which gives  

X_  
^ 

O. 
^ 

Q 	 Pk =  E an (t)an(t) 	 (K-15) 

Owing to the factor sin 2  [(En  — E k)t/2h]/[(En  — E k)/2fî] 2 , most of the contribution to the inte-
gral comes from the range AE. If we assume that the matrix element v nk  and the density of 
final states pn  are both slowly varying functions of n in that range, we can write 

sin2 
[(En  —  Ek) 

t
J2h Pk  — 

N 
 v h2nk 

 Pn 	 dE 

CE k

n— 
 \2 	n  

-  cp 

2n  
Pk ti 

 ^ v kvnkPnt (K-16) 



The transition probability is proportional to t, as expected. The transition rate Ric  - dPk/dt 
is independent of t, since 

27E  
R.  ti ^ vrykvrykP n 	 (K-17)  

This important formula is often called Golden Rule No. 2. It is very widely used in advanced  

work in quantum physics because it is of very general applicability. In any situation in which  

transitions are made to an essentially continuous range of final states under the influence of  

a constant perturbation, the transition rate can be evaluated from this formula. Note that we  

have here a good example of the use of quantum mechanics in the evaluation of transition  

rates. The ability to do this is one of its most important advantages over the old quantum  

theory.  
An equation in the text that is closely related to Golden Rule No. 2 is (8-43), giving the  

rate at which atoms make transitions from a higher energy quantum state to a lower energy  

one. Although it is not identified in the text as such, the basic equation in the treatment of  

beta decay of radioactive nuclei is actually Golden Rule No. 2. In this equation, (16-12), the  

beta decay matrix element M plays the role of v„ k  in (K-17). And the term (E — K e) 2pe, being  
proportional to the product of the number of quantum states per unit energy interval for the  

antineutrino and for the electron, plays the role of p„. Appendix L is based entirely on Golden  

Rule No. 2.  

PROBLEM  

1. At t < 0 an electron is known to be in the n = 1 quantum state of a one-dimensional  
infinite square well potential which extends from x = — a/2 to x = + a/2. At t = 0 a uni-
form electric field is applied in the direction of increasing x. The electric field is left on  

for a short time r and then removed. Use time-dependent perturbation theory to calculate  

the probability that the electron will be in the n = 2, 3, or 4 quantum states for t > i, in  
terms of the strength of the electric field. Make plots of these probabilities as a function  

of r. (Hint: Some of results of Problem 1 of Appendix J can be used.)  
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Appendix L  
THE BORN  

APPROXIMATION  

In this appendix we develop a method, due to Born, for obtaining approximate quantum me-
chanical predictions for the differential cross section da/dil and cross section a that describe 
the way a potential V(r) scatters a particle in three dimensions. It depends on material 
developed in Appendices J and K. 

The first step is to give a quantum mechanical description of a particle in the beam that is 
incident upon the scattering potential. We do this by extending to three dimensions results 
that are familiar in one dimension. Equation (6-9) shows that a one-dimensional eigenfunction 
for a free particle of mass m traveling with velocity y  in the positive direction along the x axis 
is  

tfr(x) = Ae` k X 	 (L-la)  
where 

k = 2it/)l = 2icp/h = my/h 	 (L-lb)  
and where A is a constant. The student may show by substitution that the traveling wave eigen-
function (L-1a) is also a solution to the three-dimensional time-independent Schroedinger equa-
tion for a free particle  

where  

h2 [

a2ja20  a2 Jax2 + ay2  + ôz2 
= EIP  (L-2a)  

E = p2/2m = h 2 k2/2m 	 (L-2b)  
In three dimensions, (L-1a) describes a particle which is definitely known to be moving parallel  

to the x axis with velocity y, whose y and z coordinates are entirely unknown since tJi*(x)/i(x)  
is obviously independent of y and z, and whose x coordinate is also entirely unknown since  

0*(x)(x) = A*e 
ikxAeikx = A*A 	 (L-3)  

Thus the particle is moving somewhere in a beam, parallel to the x axis, of infinite transverse  

and longitudinal dimensions. Of course, this is not physically realistic since all beams are al-
ways limited in their transverse dimensions by diaphragms of finite aperture and in their longi-
tudinal dimensions by the finite length of the apparatus. On the other hand, the dimensions of 
real beams are extremely large compared to the characteristic atomic or nuclear dimensions. 
Therefore (L-la) provides an accurate description of the incident particle in the region of im-
portance where the atomic or nuclear potential which produces the scattering has any appreci-
able value. 

The unrealistic aspects of (L-1a) are, however, the origin of certain problems concerning the 
normalization of the eigenfunction. In Section 6-2 we showed that these problems can always 
be handled and can usually be ignored. The present calculation provides an example of a case 
in which they cannot be ignored; we must use a three-dimensional extension of the technique 
of box normalization in a form called periodic boundary conditions. We set 

A= L -3 / 2 	 (L-4)  
where L is the edge length of a very large cubical box surrounding the region of the scattering  

potential, and we restrict the range of the space variables to lie within the box. Then the eigen-
function is normalized because  

►^*^ = A*A = A 2  = L-3 	 (L-5)  

L-1  
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Figure L -1 The space dependence of the real part of an eigenfunction in box normalization  

with periodic boundary conditions. 

and  

J = L JdT = L 3L3  = 1  

where di is the volume element, and where the integration is now taken only over the volume 
of the box. We furthermore demand that the eigenfunction and its space derivative in the 
direction normal to the wall have the same values at corresponding points of the opposing 
walls of the box. The real (or imaginary) part of i/i will then typically have the behavior plotted 
in Figure L-1 as a function of one of the space variables, holding the other two constant. Using 
periodic boundary conditions, the eigenfunction will be completely periodic, with period L, 
in all three directions. Its behavior repeats indefinitely in adjacent boxes (just as a scene ob-
served from within a cube with mirror walls repeats indefinitely), and we are justified in con-
sidering what happens only within a single box—that is, in restricting the range of variables 
to the box. 

In most cases of physical interest the scattering potential is a spherically symmetrical func-
tion V(r). We assume this to be true, although it is not a necessary restriction. It is then obvious-
ly convenient to describe the incident particle in terms of the spherical coordinates r, 8, 4)  
instead of the rectangular coordinates x, y, z. Define the origin to be at the center of the 
potential and the polar axis to be along the x axis. This means 

x= r cos 8 

and >Ji for a free particle of the incident beam can be written 
I, = L-3/2 eikx = L - 3/2 eikr cos B = L-3/2eik•r 	 (L-6) 

where k is a vector of magnitude k directed along the beam direction, which is the direction of 
the x axis, and where r is a vector from the origin to the point (r,B,çi). In this form the normal-
ized eigenfunction for a free particle traveling in some other direction can be written 

= L— 3/2eik' • r 	 (L-7)  

where k' is a vector in the direction in question of magnitude equal to the value of k' appro-
priate to the mass and velocity of the particle. The validity of (L-7) can be verified by the same  

arguments as were used for (L-6)  
Now consider a particle in the incident beam impinging upon the potential V(r). We want to  

calculate the probability per unit time that the particle will be scattered in some direction. If  

V(r) is not too strong, we can treat this as a perturbation problem: What is the rate at which  

a constant (in time) perturbation V(r) induces transition from the initial quantum state associ-
ated with the free particle eigenfunction (L-6) to a final quantum state associated with the free  

particle eigenfunction (L-7)? Since the final quantum state is in an essentially continuous range  

of final quantum states because the possible eigenvalues E' = h2ki2/2m are almost contin-
uously distributed even with box normalization, the answer is given, approximately, by a three-
dimensional extension of Golden Rule No. 2, developed in Appendix K. It is  

2n 
Rk  ^ 

h 
vk'kvk 'kl^k' 	 (L-8a) 

where Rk is the rate we wish to calculate, where we have used the vectors k and k', instead of 
quantum numbers, to label the initial and final states, and where v k • k  is the matrix element of 
the potential taken between these states. That is 

vk k =   
(L— 3 /2eik' r )

* V(r)L- 3 /2 e ik • rdZ  = L— 3 I V(r)ei(k  —k') rdz = L — 3  Vk'k (L-8b)  



with r 
w  

Vk'k = 
f V(r)e i(k - k') • r di  

The quantity pie  of (L-8a) is the number of possible quantum states per unit energy interval 
for the particle associated with the final eigenfunction. As we have employed box normalization 
with periodic boundary conditions (required because the eigenfunctions appearing in V k'k  must 
be normalized), the density of final states p ie  will have some finite value since the boundary 
conditions impose restrictions on the possible de Broglie wavelengths. As an example, consider 
k' parallel to one edge of the box. Then the real (or imaginary) part of tfi would typically have 
the appearance shown in Figure L-1, with the distance d equal to the de Broglie wavelength 

= 2x/k'. The periodic boundary conditions can be satisfied for propagation parallel to one 
edge of the box only if L contains exactly an integral number of wavelengths of the traveling 
waves. Compare this with the case of free particle standing wave eigenfunctions in a box with 
impenetrable walls, which is treated in Section 6-8. In that case, the boundary conditions de-
mand that the have nodes at the walls of the box. For the propagation direction parallel to 
one edge of the box, the condition can be satisfied if L contains either an integral number of 
wavelengths or a half-integral number of wavelengths. Consequently, in every wavelength or 
energy interval there are two times as many allowed wavelengths in the standing wave case 
as there are in the traveling wave case. However, for each possible wavelength there are two 
separate traveling waves, one propagating in one direction and another propagating in the 
opposite direction. The factors of 2 cancel out, not only for propagation in directions parallel 
to the edges of the box but also for propagation in all directions, and the number of possible 
quantum states per unit energy interval is therefore the same in both c ases. 

Example 1-3 calculates the number of electromagnetic standing waves that fit into an 
impenetrable-walled box, for each interval of wave frequency. Section 11-10 shows that the re-
sults of the calculation immediately yield (11-49), which specifies the number of standing wave 
eigenfunctions per unit energy interval that fit into such a box. Since the number of possible 
quantum states per unit energy interval is the same for the case of traveling wave eigenfunc-
tions in box normalization with periodic boundary conditions, we may use (11-49) here. In our 
present notation, it is 

m3/2L3E'1/2  dE'  
Pk' dE' =  

where L 3  is the volume of the box and where  

E' = h2k'2/2m  
Therefore 

M3/2L3 	hk'_  mL 3k'  
Pk' = 2

1/2n2 ^i 3  21/2m 1/2 	27r 2 fi 2  
(L-10)  

This is not quite what we want because it is the density of all states associated with k', whereas 
we want pie , the density of states associated with k' when that vector lies within some certain 
range of directions. Now it is clear that for a spherically symmetrical potential V(r) the scat-
tering angular distribution will not depend on the azimuthal angle 4. Consequently, it is ap-
propriate to consider together all final states associated with vectors k' whose directions lie 
anywhere within the angular range B to B + dB. The density pk ' of these states is smaller than 
Pk , by a factor equal to the ratio of the solid angle  an = 2x sin B dB contained within the range 
B to .0 + dB to the total solid angle 47r contained within the entire angle of B. (See Figure 4-8 
for a definition of solid angle.) That is 

dS2  
Pk' = 4̂ Px'  

so  

Using this in (L-8a), we have 

mL 3 k'  
Pk' — 

87r
3

h
2  dS2 

2n _ 6 	 k' dû
Rk  ^ 

h
k kVk k 	

87E3h2 
 

21/2 ir2h3  (L-9) 
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Now let us calculate the probability per unit time that the particle in the initial quantum  
state associated with the vector k will cross a unit area normal to the direction of k. This is the  
incident probability flux I. Its value is proven in the caption of Figure L-2 to be the product  
of the probability ,li* /i of finding the particle in a unit volume and the velocity y  of the particle.  
That is  

I = v/i*fi 	 (L-13)  
With (L-1b) and (L-5), this becomes  

kh  - s I = L  
m 

(L-14)  

Next, divide the transition rate Rk by the element of solid angle dit to obtain the rate of transi-
tions per unit solid angle into the final states associated with the vector k'. Then we have the  
probability per unit time of scattering into a unit solid angle at the angle 0, which is S(0), the  
scattered probability flux. Thus  

mL -3k'  
S(0)  ^-  4^2iz3 	 Vk'kVk'k 	 (L-15) 

Section 4-3 defined a differential cross section in terms of an incident beam containing many 
particles and a target containing many scattering centers, and used an arbitrary time interval 
in the definition. Here we deal with a single particle incident on a single scattering potential, 
and also consider a unit time interval. We adapt the previous definition to the present need 
by writing 

S(0) = dS
2 
	 (L-16) 

Here I and S(0) are the incident and scattered probability fluxes, defined as above, and the 
differential scattering cross section dQ/di2 is defined to be the proportionality constant relating 
the two. 

Solving (L-16) for du/di2, and using (L-14) and (L-15), we obtain 
daS(9) 	m mL -3k' _  
dit 	I 

	
khL - 3  4ir2b3 	Vk kYk k 

But k' = mv'/h = my/>h = k because the initial and final speeds of the particle are the same when  

it scatters from the potential V(r) whose center remains fixed at the origin of coordinates.  

Therefore  
da 	m 2  
dit 	27th  

	

2 	Vk'kVk'k 	 (L-17a)  

where 

Vk'k = 
 V(r)e i(k  -k')  ' r  di 	 (L-17b)  

with the integration taken over a very large box surrounding the scattering potential. This is  

the Born approximation for dQ/di2. Note that the size of the box has dropped out since L  
does not appear in (L-17a), and since contributions to the integral in (L-17b) will come only  

from the small region in which V(r) has any appreciable value and therefore the value of the  
integral is independent of ifs limits. (We use this limit independence in writing (L-19).)  

   

Figure L -2 Proof that I = WO. At time zero  
consider a rectangular parallelepiped with  
ends of area da and length y  dt extending along  
the particle's direction of motion. If the particle  

Area da is anywhere within its volume then by time dt  
it will cross the end toward which it is moving.  
The probability that this will happen is the  
probability per unit volume `l`*tY = t*ti of  
finding the particle in the parallelepiped mul-
tiplied by its volume vdtda, or  dtda.  
The probability per unit time per unit area  
is v>L"i/i. This is the quantity defined to be the  
probability flux /.  
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Vk'k = 

 J J 
V(r)e`Xr  cos ° 2xr2  sin O dr dO 

Figure L-3 Illustrating the relation between the vectors which  
enter in the Born approximation.  

It is possible to carry out part of the integration of (L-17b) immediately. Define  

X= k —k' 	 (L-18)  
which is, physically, 1/h times the negative of the momentum transferred to the scattered  

particle by the scattering potential. Also define a set of spherical coordinates r, 0, 0 with an  
origin at the center of the potential and polar axis along the direction of x. (They should  

not be confused with the spherical coordinates r, 0, 0  whose polar axis lies along the direction 
of k.) Then 

and  

so  

(k —k')•r=x•r=xrcos0  

di = r2  sin 0 dr dO d0  

^ n Z7c  

 

 

Vk'k = 
 J  J J V(r)e`Xr cos  ° r2  sin O dr d0 d0  

0 0 0  

(L-19)  
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The Co integral can be evaluated by making the change of variable Z = ixr cos O. The result is  
co  

which is  

r 
 

[
et

Xr  — e - 

 eXr 

Vk'k = J V(r)  
	J 27CY 2  dr 

ixr  
0 

Tick  = 	V(r) 
sin xr  47xY

2 
 dr  

xr  
0 

(L-20a)  

(L-20b)  

Finally, let us express x in terms of the scattering angle  O. Consider the vector diagram of  
Figure L-3, which illustrates the relation (L-18). From this figure it is apparent that  

x = 2k sin (0/2) 	 (L-21) 

AN EXAMPLE  

Consider a three-dimensional attractive square well potential 

V(r) 
O V o 	 r> R 

(L-22)  

whose radial dependence is illustrated in Figure L-4. Here  

R 

sin xr 	2 Vk ,k  = — Vo 	47CY dr  

0 
Zr  

and we obtain upon integration  
3  [sin xR —  xR cos xR] 

Vick = —47rVoR 	
(xR)3  
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Figure L-4 An attractive square well  
potential.  

So  

d6 	m 2 	
2 6 [sin  xR — zR cos xR] 2  

dS2 ^ (2^h21 16^r
2  V°R 	(xR)6  

or  

do-  4m2 2 6 {sin [2kR sin (0/2)] — 2kR sin (0/2) cos [2kR sin (0/2)] 	} 2  

	

X 	 dO 	
—  h4 V°R 	

[2kR sin (0/2)]6 	
(L-23) 

	

c 	The form of this differential scattering cross section is indicated in Figure L-5. At 0 = 0, xR = 0 

	

â 	but [sin xR — xR cos zR] 2/(zR)6  = 1/9. Consequently da/dS2 has a finite maximum at 0 = O.  

	

â 	It drops with increasing angle, reaching its first zero when sin zR — xR cos xR = 0 has its 
first nonzero root. This is 

zR = 4.49 

or  
2kR sin (0'/2) = 4.49 

At high energies, kR » 1, 0' « 1, and the value of 0 at the first zero of da/dS2 is 

4.49  
B' 	

kR 	
(L-24) 

For this scattering potential, or for any other with a moderately "sharp" edge, da/dS2 has the 
characteristic behavior of an optical diffraction pattern: it has consecutive maxima and minima 
with the largest maximum in the forward direction. The angle 0' decreases with increasing k 

 (increasing energy of the particle or increasing frequency of the photon in the optical case), 
and the angular distribution becomes more strongly peaked forward. The separation in angle 
between adjacent minima has a value 0 which is given approximately by 

4.49 4.49 A 4.49 2 
BNB^N 	N— N— 

kR 	2ir R 6.28 R  

or  

0N
A  

R 
(L-25)  

This result is used on several occasions in the text when discussing nuclear and particle 
physics. 

The scattering cross section for the potential we have considered can be evaluated from its 
differential cross section by calculating 

v = J ^̂ dS2  (L-26)  

 

— Va  

e '  

Figure L-5 The differential scattering cross section for an attractive square well potential.  



where the integral is taken over all solid angle. (This obvious equality follows from the defini-
tions of the quantities involved.) We shall not actually carry out the integration because the 
important characteristics of the scattering cross section are easy to see qualitatively. That is, Q 
decreases with increasing k because the angular region in which d6/dll has an appreciable 
value becomes smaller. 

In closing, we must discuss the range of applicability of the Born approximation. The con-
dition of validity of the perturbation theory underlying the approximation is (K-8), which 
states that the amplitude of the wave function for the scattered particle is small compared to 
the amplitude of the wave function for the incident particle. It is also necessary that the free 
particle wave function for (L-6) be a reasonable representation of the incident wave function 
and that the free particle wave function for (L-7) be a reasonable representation of the scattered 
wave function, in the region of the scattering potential where Vk-k is evaluated. These condi-
tions will usually be met if the energy E of the incident particle is large compared to the mag-
nitude of the scattering potential, that is, if 

E» IV(r)I 
	

for all r (L-27) 

because then the scattering potential is a small perturbation which can usually produce only 
a small effect. When the Born approximation is not applicable a method called partial wave 
analysis can be applied to evaluate the scattering produced by a potential. A development of 
this mathematically complicated method can be found in most quantum mechanics textbooks. 

PROBLEMS 

1. Use the Born approximation to evaluate the differential scattering cross section for an 
attractive Gaussian potential 

V(r) = — Yoe (1111)2 

Define the "width" of the forward maximum in terms of the angle at which it falls to 1/e 
of its peak value. Then compare it to the width of the forward maximum for the attractive 
square well potential, defined as O' in (L-24). 

2. Use the Born approximation to calculate the differential scattering cross section for the 
screened Coulomb potential 

V(r) = (ZZe 2/4rcEor)e - rid  

This provides a useful approximation to the potential between a charged particle and a 
neutral atom if d is set equal to the radius of the atom. Then let d -> oo, and show that 
dQ/dII approaches the Rutherford scattering differential cross section (4-9) when V(r) ap-
proaches the normal Coulomb potential. 
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Appendix M  
THE LAPLACIAN AND  

ANGULAR MOMENTUM  
OPERATORS IN  

SPHERICAL POLAR  
COORDINATES  

THE LAPLACIAN OPERATOR  

The Laplacian operator V 2, which enters into the three-dimensional Schroedinger equation, 
is defined in rectangular coordinates as 

a 	

Y

2 	a2 	a2 
v2 = ax2  + a 2 + az2 	

(M-1) 

We show here how to transform the operator into the form it assumes in spherical polar 
coordinates, which is 

2 

02 
r ar 

Crz 
drj + 

r  sin  B acp 2  + r  sin B 00 Csin B a9) 	(M-2) 

The most straightforward way to carry out the transformation is \  to make repeated applica-
tions of the "chain rule" of partial differentiation. This is a tedious procedure. But the first 
term of (M-2) can be obtained, without too much tedium, by considering a case in which the 
Laplacian operates on a function i/ = /i(r) of the radial coordinate alone. In this case, the de-
rivatives in the last two terms of (M-2) yield zero, and we have 

V2 	
1 a \r2 atk) 

 
r2  ar 	ar  

We shall obtain this expression from the expression 

2 	a2^ a2i a2^  V20 = 
 ax2  +  ay2 

aZ2  
which is the Laplacian in rectangular coordinates of (M-1), operating on si(r). To do this, we 
use the relation 

r  = (x2  +  y2  + z2)112  

connecting the rectangular and the spherical polar coordinates (see Figure 7-2).  

We evaluate  

M - 1  
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and  

a2 lk 	a x a>/i 	ax 1 a:ji 	a  (i alp)  
ax2  ax ( r ar 	) ax (r ar )  x  ax r ar  
a2 tp  	1 alk 	ar a 1 a ►y 
ax2  r ar + 

x 
 ax ar ^ r ar 	)  

a2 0  1 ao x2  a1  al k) 
 r' ar + r ar ( r ar )  

Similarly, the y and z derivatives yield  

a2 tp _  1 alp  y2  a  (tatp ) 
r ar + r ar r Or  ayz  

and  

a20  _  130 z2  a 
az2  rar + r ar ( r ar  

Adding these three expressions, we obtain  

2 3 

 00 
(x2  + 

y2 + z2) a (1 
 a^ ) ° = ar + 	r 	Or  r ar  

or  

2 	3 ao 	a C1 ovi) 
°— r ar +r ar 

—
r 

—
Or  

Now note that the expression we have obtained expands to  

v 2 	3 a
+ (— 1 	

a2tp 
 

i 	r ar 	r2  ar 	r ar t  

a) or  

v2 	2 a, 020  
r ar 	ar2  

Also note that the first term of (M-2), that is  

expands to  

or  

2 	2 a, 	4' a2  
° —  rar + ar2  

Comparison shows that the expression we have obtained is identical to the first term of (M-2).  

The second and third terms can be obtained by taking tfi = CO, and then taking t = O(B).  

THE ANGULAR MOMENTUM OPERATORS  

In rectangular coordinates, the operators for the three components of orbital angular momen-
tum are  

	

Lxop = — ih\y a 	 — z
a) 

 Y 

	

_ C 
a 	a)  LyoP  = t^2 z 

ax —  x  az 

	

—

C

a 	al 
LZop  = i^i x a —  y  ax Y  

°2,/' _ 1 a (r2 a^) V20 
 r2  ar 	ar  

2 , J , 

° 2 0 = 
r 

(2r ^  + r2  07,2 	
)  

(M-3)  



When transformed to spherical polar coordinates, these operators asssume the forms 

Lxop  = ih (sin cp ae + cot 0 cos  go  ) 
 W  

Lyop  = ih C—cos q) 
0 
 + cot 0 sin 9 a / 	

(M-4) 
cP  

LZop  = —ih a9  
We shall show that these are equivalent, taking L Zop  as the simplest example. To do this, we  
must use the relations  

x=r sin 0 cos q)  

y = r sin 0 sin cp  

z = r cos 0  

connecting the rectangular and spherical polar coordinates (see Figure 7-2).  

It is easiest if we start by applying the chain rule to aVi/acp, and obtain  

alalp ax a>y ay a^ OZ —  

7cp ax 7cp +  ay acp +  az 8cp  

From (M-5), we have  
ax  
- = —r  sin O sin cp= —y 
89 

 

ay 
- = r sin O cos cp= x 

cP  

aZ  
- =o  

Thus  
alfr 	alif 	alp  
acp 

—

y ax +  x  ay  
As an operator equation, this reads  

a _ 	a 	a  
&p —y ax +x ay  

which verifies the equivalence of the two forms of LZop  quoted in (M-3) and (M-4). Similar  
calculations will do the same for L xop  and Lyop •  

In rectangular coordinates, the operator for the square of the magnitude of the orbital an-
gular momentum is  

L2 2 2 2 
(M-b 

 ) 
op  = Lx op  + Lyo p  + L Zop   

By squaring Lxop , Lyop , and LZop , and adding, it is found after some manipulation of the 
sinusoidal functions that 

[si
n 	

/ 	\2 

	

Lôp  = —fie 1  a  (s in O  a t+ z  a 	2 
 J

(M-7) 
 0 a0 \ 	a0/ sin 0 a9  

Note the relation between (M-7) and the last two terms in (M-2). It forms the basis of an alter-
native way of obtaining those terms, which can be found in mathematical reference books.  

PROBLEM  

1. By using the techniques of Appendix M, show that Lxop  has the form stated in (7-37). 

(M-5) 

acp  

w
31

eo
ad

 





Appendix N  
SERIES SOLUTIONS OF  

THE ANGULAR AND  
RADIAL EQUATIONS  

FOR A ONE-ELECTRON  
ATOM  

This appendix outlines the procedures used to obtain analytical solutions to (7-16) and (7-17), 
the differential equations that specify the angular and radial behavior of the one-electron 
atom eigenfunctions and also lead to the determination of the eigenvalues. These equations 
are  

2 ^ N 
	_ 	M m _ 

sin B dB 
si 	

M
n B 

 d9 + sine  O 
l(l + 1)O  

and  

	

— —

r dr (
r2 

 dR) + Z 
[E — V(r)]R = 1(1 + 1) 
	

(N-2) 

The central feature of the procedures is essentially the same as that employed in Appendix I 
to obtain a power series solution to the time-independent Schroedinger equation for a simple 
harmonic oscillator potential. The treatment given in that appendix was quite detailed, while 
the one given here is brief. Thus the student should read Appendix I carefully before beginning 
this material. 

THE ANGULAR EQUATION  

The first step in solving (N-1) is to write it in a more concise form by changing to the 
independent variable. 

z = COS B  (N-3)  
After expressing the derivatives in terms of the new variable, and using the relation cos t  O + 

 sine  O = 1, it is easy to show that the equation assumes the form 

	

N 	 2  

dz 
[(1 — z2) 

dO] + 
[/(/ + 1) — 1  mi z2]O = 0 	 (N-4)  

The solutions to this differential equation are called the associated Legendre functions, which  
we write as Ot„,,(z). But it is convenient to deal with the Legendre polynomials, written as  
P1(z), because they are more widely encountered and because they solve a simpler differential  

equation. The relation between the two functions is  

Olm t(Z) = (1 — Z2)Imtl/2  dlmt lmt!  

dz tl  

and the differential equation satisfied by the P1(z) is  
2 

(1 — z2) 
d Pi 

 2z  dPi + 1(1 + 1)P1  = 0 

	

dz 	dz  

(N-1)  

(N-5)  

(N-6)  

N-1  



N 

z 
S

E
R

IE
S

 S
O

LU
TI

O
N

S
 FO

R
 A

 O
N

E
-E

LE
C

T
R

O
N

 A
T

O
M

 

z 
x 

a^ o.  o.  

To show that the relation between the two functions defined by (N-5) is consistent with the 
differential equations satisfied by each of them, (N-4) and (N-6), first differentiate the latter 

miI times, to obtain 
2 dlmil+ 2 	 dlmtl +l 

(1 — z) 
dzlmtl+2  P

i  — 2(lmil + 1 )z dz lm l l+l Pi  

dint!'  
+ [l(l + 1) — Imil(Imil + 1)] dzlmil  Pi 	0  

Next substitute Oimt = (1 — z2)Im11/2I, into (N-4) to produce  

2 
(1 — z2) 

dz2 
— 2(1111/1 + 1)z 

dz 
+ [1(1 + 1) — I miI (I miI + 1)]F = 0  

Comparison of (N-7) and (N-8) shows that F = (dlmtl/dzlmtl)P i  so that Oimt = (1 — z2)Imtl/2 x  
(dlmtl/dz l in/ l )Pi , in accord with (N-5).  

A power series solution to (N-6) begins by assuming that the P1  can be written as  

Pi(z) _ 	akz k 	 (N-9) 
k=o  

Substituting into (N-6), and gathering coefficients  of common powers of z, yields  

E {k(k — 1)a kzk-2  — [k(k + 1) — l(l + 1)]akzk } = 0  
k=o  

After writing out explicitly a number of terms in this series, and again gathering coefficients 
 of common powers of z, it is seen that the equation can be expressed as 

E {(j + 2)(j + 1)aj+2 — [1(j + 1) — l(l + 1)]azj  =  
j= o  

In order that the equality be maintained for any value of z, it is necessary that the  coefficient  
of each power of z must vanish. Thus the recursion relation  

aj+2 = (j+ 2)(j+ 1 ) a./ 
 

j(j  + 1) — 1(1 + 1) 	
(N-10)  

must be satisfied. Because this relation connects the values of the constants a whose indices  
differ by two, the series (N-9) breaks into two independent series; one involves even powers and  

the other involves odd powers. The even series contains as a common factor the single arbitrary  

constant ao . All the other constants in that series are determined in terms of a0  by the recursion  
relation. For the odd series the single arbitrary constant is al .  

The recursion relation requires that aj+2 aj  as j —> co. And consideration of (N-9) 
shows that this means both of the series will lead to the result Pi(z) —> oo at z = + 1 
if they actually are infinite series. This, in turn, would lead to physically unacceptable behavior 
of the eigenfunctions constructed from the Pi(z). But it can be prevented as follows. One of the 
series is suppressed by setting its arbitrary constant equal to zero. Then the other series is pre-
vented from being an infinite series by requiring that l be one of the integers 

1=0, 1,2,3,... 	 (N-11)  

The recursion relation shows that this terminates the series at the lth term, so that the Legendre 
polynomials are of degree 1. It is straightforward to use the recursion relation to show that the 
first few have the forms 

	

Po  = 1, P1  = z, P2  = 1 — 3z 2, P3 = 3z — 5z 3 	 (N-12) 

For each poylnomial the arbitrary constant a o  or a l  has been chosen so that the  coefficients 
 of all powers of z are simple integers. This means that the polynomials are not normalized. 

The associated Legendre functions are obtained immediately from the Legendre polynomials 
by employing (N-5). The first few are 

(N-7) 

(N-8) 

Ooo  = 1  

0 10 
 = z, O 1 +1  = (1 - z 2 ) 1/2  

020 = 1 — 3z2, 02 ±1 =  (1  — z2)1/2z,  02±2 = 1 — z2  

O30 = 3z — 5z3, 03 +1 = (1  — z 2) 112 (1 — 5z2), e3+ 2 = (1 — Z 2)z, 03 ±3 = (1 — Z 2) 312  

(N-13) 



The arbitrary constants have, again, been adjusted to make these unnormalized polynomials 
look as simple as possible. Note that for a given value of 1 the combined properties of (N-5) and 
(N-12) require that m 1  be one of the integers 

mj =-1,-1+1,...,0,...,1-1,1 	 (N-14) 

This is just the condition of (7-27), which Example 7-1 shows to be equivalent to the condition 
of (7-20). By using (N-3) to convert from z back to cos 0, and using also the relation 
cost  0 + sin2  0 = 1, the O l,,, i  can be written as polynomials involving sin 0 and cos 0. If the 
student does this, he will recognize that their general behavior is correctly described by (7-21). 
He will also recognize the specific behavior seen in the one-electron atom eigenfunctions of 
Table 7-2. 
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THE RADIAL EQUATION  

Upon writing the potential energy as V(r) = - Zee  /4n €0r, the radial equation, (N-2), assumes  
the form 

In terms of the new independent 

where 

and also using 

the equation becomes 

1 d 	 21 	
E+ 

Ze2 
r2 dR R=1(1 

2  

y 

+1)
R 

.------ 

() i,A  j ^z 

R= 0  

(N-15)  

(N-16)  

(N-17)  

(N-18)  

(N-19)  

r2  dr ( 	dr ) 	h2  [ 	47cE or  

variable 
p = 2,6r  

2µE 132 
 = h  

µZe 2  
Y 	47cE0h2/3 

 

1 	d 2  dR 	1 	1(1 + 1) 
p2 dp (P dp  +L- 4-  p2 	+ P [ 

The power series procedure cannot be applied directly to (N-19) because it leads to a  

recursion relation involving more than two of the constants appearing in the series. But it can  

be applied indirectly by first considering the form of the solutions R(p) for very large values  
of p. For p -> co the second and third terms in the brackets can be ignored in comparison to  

the first term and so (N-19) reduces to  

1 d (

p2  dR = - pi dp 	dp l  4  

It is easy to verify that 
R(p) = e Pl2 	 p -> co (N-21)  

is a solution to (N-20) which remains finite. This suggests that we search for a solution to  

(N-19) of the form  
R(p) = e - P/2F(P)  

Substitution of (N-22) into (N-19) leads, after some manipulation, to  

d2F+ (2 -1 1 dF + ry-1 1(l + 1 )1 F=0 
dp2 	p 	f dP LL  p 	P2 J  

This differential equation determines the functions F(p).  
A power series solution to (N-23) begins with the assumption  

(X)  

(N-22)  

(N-23)  

F(p) = pS 	akpk 	 ao  0, s > 0 (N-24)  
k= 0  

This form is used because it ensures that F will be finite at p = 0, even though there are several  
terms in (N-23) which become infinite there. Substituting into (N-23), and gathering coefficients  

p -> co (N-20)  
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of common powers of p, produces  
CO  

E {[(s + k)(s + k +  1) -1(1+ 1)]akps+k-2 —(s + k+ 1 —y)a kps +k-1 } = 0  
k=0  

After writing out explicitly a number of terms in this series, and again gathering coefficients  
of common powers of p, it is seen that the equation can be expressed as  

[s(s + 1) — 1(1 + 1)]aops -2  + 
	

{[(s + j + 1)(s + j + 2) — 1(1 + 1)]a+ 1 
 

i=0  
—(s + j + 1 —y)ai}ps+i1 = 0  

In order that the equality be maintained for any value of p, it is necessary that two relations  
be satisfied. They are  

s(s + 1) — 1(1 + 1) = 0 	 (N-25)  

and  
_ 	s+j+1—y (N-26)  a

'+1  (s+1+1)(s+j+2)— l(1 +1) a' 

The first determines the possible values of s; it is called the indicial equation. The second is  
the recursion relation connecting the values of the constants a whose indices differ by one.  

The indicial equation, (N-25), is quadratic in s. Its two roots are easy to find; they are s =1  
and s = —(1 + 1). The latter must be rejected because it violates the physical condition s >_  0  
so that F(p), or any eigenfunction constructed from it, is finite at p = 0. Thus we set s =1  
in (N-26) and write the recursion relation as  

j+1+1—y  

aj+ 1 
_ 
 (j + 1 +1)(j +1 +2) — l(1 +1) aJ 

(N-27)  

Inspection of the recursion relation shows that for j —* oo it requires aj+1  -' ai/j. This ratio  
of the successive constants in the series expansion of F(p) is the same as in the series expansion  
for es'. Thus R(p) = e °12 F(p) —* oo as p — co if the F(p) series actually is an infinite series. To  

prevent such physically unacceptable behavior in the eigenfunctions containing R(p), the series  
is terminated by requiring that y be one of the integers 

y = n 	 (N-28)  
where  

n=1+ 1, 1+ 2, 1+ 3,... 	 (N-29)  
with  

1= 0, 1, 2, 3, ... 	 (N-30)  

Consideration of (N-27) verifies that doing so causes the series to terminate at the  
[n — (1 + 1)]-th term. And inspection of (N-24) shows this makes the F(p) be polynomials of  
order n — 1.  

The condition (N-29) is identical to (7-26), which expresses the possible values of the  
quantum number n for a given value of the quantum number 1. The one-electron atom energy  
quantization equation, (7-27), is obtained from (N-17), (N-18), and (N-28), as follows  

	

p2h2 	112Z2 e4h2  

	

E =
21/ 	(47cE0) 2h4n22µ  

or  
µZ2e4  

E
n 	(4^cEO) 22h2n2 

 = — 	 n = 1, 2, 3, ... (N-31) 

Schroedinger's very first substantial application of his new theory was to the one-electron  

atom. When he obtained (N-31), which he knew to be in accurate agreement with experiment,  

he knew the theory must be taken seriously.  
The functions expressed by (N-24) are written as Fn1  to indicate that their specific de-

pendences on p are determined by the values of n and 1. By using (N-27) and (N-28), it is 
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straightforward to determine their forms. The first few are 
Flo  = 1 

F20 = 2 — p, F21 = P 	 (N-32) 

F30 = 6 — 6p + p2 , F31= 4p— p 2 , F32 = p2  

For each of these unnormalized polynomials, the arbitrary constant has been adjusted to give 
it the simplest appearance. They are closely related to what are called the associated Laguerre 
polynomials. According to (N-22), the functions specifying the radial dependence of the one-
electron atom eigenfunctions can be written as 

R„1 = e  nl2Fnt 	 (N-33) 
If the student uses (N-16), (N-18), and (N-28) to express the R,a  as functions of r, instead of 
p, he will then recognize the general behavior described by (7-24) as well as the specific behavior 
seen in Table 7-2. 

PROBLEMS 

1. Fill in all the details leading from (N-1) to (N-6), the differential equation satisfied by 
Legendre polynomials. Also make the comparison between (N-7) and (N-8). 

2. Carry out in detail the power series solution to (N-6), the differential equation satisfied 
by Legendre polynomials, to the point of obtaining the recursion relation (N-10). 

3. Use the Legendre polynomial recursion relation, (N-10), and the condition that l be an 
integer, to show that the first few polynomials have the forms quoted in (N-12). Then verify 
the forms quoted in (N-13) for the first few associated Legendre functions, and use them 
to show that (7-21) and the entries in Table 7-2 have the correct dependence on O. 

4. Fill in all the details leading from (N-15) to (N-23), the differential equation for the 
function F(p) which determines in part the radial dependence of the one-electron atom 
eigenfunctions. 

5. Carry out in detail the power series solution to (N-23), the differential equation for the 
function F(p) which determines in part the radial dependence of the one-electron atom 
eigenfunctions, to the point of obtaining the indicial equation (N-25) and the recursion 
relation (N-26). 

6. Use the indicial equation, (N-25), and the recursion relation, (N-26), to verify that the first 
few functions Fr1 , which determine in part the radial dependence of the one-electron atom 
eigenfunctions, have the forms quoted in (N-32). Then use these forms to show that (7-24) 
and the entries in Table 7-2 have the correct dependence on r. 





Appendix O 
THE THOMAS 
PRECESSION 

The relativistic effect which introduces the factor of 1/2 in (8-25) for the spin-orbit orientational 
potential energy is called the Thomas precession. It is not difficult to understand if we keep 
the geometry sufficiently simple. For this purpose, let us assume that the electron moves about 
the nucleus in a circular Bohr orbit, as illustrated in Figure 0-1. The figure shows the situation 
as seen by an observer in the nuclear rest frame xy. The electron is momentarily at rest in the 
frame xiy i  at the instant t 1 , and momentarily at rest in the frame x 2y2  at the slightly later 
instant t 2 . Both the axes of xy and of x 2y2  have been constructed parallel to the axes of x iy i  , 
as seen by an observer in x iy i . Nevertheless, we shall show that the observer in xy sees the 
axes of x 2y2  rotated slightly relative to his own axes. He sees the axes of the x 3y3  frame rotated 
even more, etc. Thus he sees that the set of axes in which the electron is instantaneously at 
rest are precessing, relative to his own set of axes, as the electron goes around the nucleus—
even though the observers instantaneously at rest relative to the electron contend that each 
set of axes x„+ 1Y„+ 1 is parallel to the preceding set x„y„. By using a sequence of reference 
frames x„y„ in which the electron is momentarily at rest, and which are each moving with 
constant velocity relative to the others and relative to the xy frame, we can apply special rela-
tivity theory to the problem even though the electron is accelerating relative to the xy frame. 

Figure 0-2 shows xy, x iy i , and x 2y2  from the point of view of the observer in x 1 y 1 . Since 
the electron is moving with velocity y  relative to the nucleus, the axes xy are moving with 
velocity —y in the direction of the negative x 1  axis relative to x 1 Yi  . As seen in x 1  y i , the 
electron is accelerating toward the nucleus with acceleration a in the direction of the positive 
y i  axis. If the time interval (t 2  — t 1 ) is very small, the change in velocity of the electron in 
that interval is 

dv = a(t2  — t 1 ) = a dt 	 (0-1) 

and this will be the velocity of x 2y2  as seen by x iy i . Now let us use the relativistic velocity 
transformation equations of Appendix A to evaluate the components of u a, the velocity of 
x2y2  as seen by xy. These give 

	= v 
1 vxdvx 1  — v • 0 

2 C2  

2  
dv y  1 — 

uQy  = 	c  = dv 

1 
vxdvx 

C 2  

  

dvx  — v x 	O+v 

Figure 0-1 The frames of reference used in calculating 
x2 x3  the Thomas precession. 
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Figure 0-2 The frames of reference used in calculating the  
	 x 	 Thomas precession, as seen in the x l y 1  frame.  

Using the same transformation equations to evaluate the components of u b, the velocity of xy  

as seen by x2y2 , we have  

ubx  =  

v — v uby  =  v d  v  = — dv  
dvyv  1 	y  

c2  

Next we calculate the angle between the vector u a  and the x axis of the xy frame. It is  

11 2  
dv  

c2  B — uQy  — 11 1  
a  

uax  

The angle between the vector u b  and the x axis of the x 2y2  frame is  

6b  — 	 

	

ub —y 	— dv  

ubx  

Figure 0-3 shows the x2y2  and xy frames from the point of view of xy. Because of the equiv-
alence of inertial frames, u a  and ub  must be exactly opposite in direction. Since the angles  

between the x axes and the relative velocity vectors are not the same, the x2y2  frame appears  
to be rotated relative to the xy frame. The angle of rotation is  

Y1  

y 
	

du  

xl 

v 

   

 

1  
dv2  

C2  

d6= Bb — Ba = 	 

V  

 

dv  

  

v2 
1— i 

C 2  

    

  

dv2  

C 2  

 

As dv is a differential, we may neglect dv 2/c2  and obtain  

dB = v̂ I1— 
v \  

As the velocity of an electron in a one-electron atom is relatively small compared to the veloc- 
ity of light, v2/c 2  « L (This is also true for the electrons responsible for the optical spectra 
in other atoms.) Thus we may obtain an excellent approximation to dû by making a binomial 

Y 2  

X2  

Figure 0-3 An exaggerated illustration of  

the Thomas precession.  
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expansion of the square root, keeping only the first two terms. That is 
13 2 

dB . dv[1—(1-
-.— 2c 2  

dv v 2 vdv vadt 
2vc2  = 2c2  = 2c2  

where we have evaluated dv from (O-1). The axes in which the electron is instantaneously at 
rest appear to precess, relative to the nucleus, with the so-called Thomas frequency 

_ dB va 
wT 

dt = 2c2  
Inspection of the figures will verify that the sense of precession is given by the vector equation 

1 _ 
œT 	2c2 v 

x a 	 (O-2) 

Relative to frames in which the electron is at rest, its spin magnetic dipole moment precesses 
in the magnetic field it experiences at the Larmor frequency w. But these frames are themselves 
precessing with frequency w T  relative to the frame in which the nucleus is at rest. Consequently, 
the dipole moment is seen in the nuclear rest frame to precess with angular frequency 

w'=w+wT 	 (O-3) 
Using an equation analogous to (8-14), plus (8-24), and evaluating g  and jib , we have 

=- 2 v xE=-
2mc2h vxE=— 

 mc 2  (O-4)h 

To evaluate w T  in similar terms, we may use Newton's law to express the acceleration of the 
electron as a function of the electric field: a = F/m = — eE/m. With this, (O-2) yields 

_ e 
wT  2mc2 

v x E 	 (O-5) 

Thus, the precessional frequency in the nuclear rest frame is 

w ' =— 	
e 
 v xE+ 	

e 
 vxE= — 

 e 
vxE 

mC 2 	2mC2 	2mc2  

Comparing (O-4) and (O-6), we see that the effect of transforming the spin magnetic dipole 
precession frequency, from the frames in which the electron is at rest to the normal frame in 
which the nucleus is at rest, is to reduce its magnitude by exactly a factor of 1/2. The same is 
true of the orientational potential energy AE since the magnitude of that quantity is pro-
portional to the magnitude of the precession frequency w. This can be seen from equations 
analogous to (8-13) and (8-14) 

AE= —µs• B= 
h 

S•B 

and 

= -T- B 

Thus we have completed our verification of the factor of 1/2 in (8-25). 

PROBLEM 

1. The Thomas precession can also be described in terms of a time dilation between the refer-
ence frame in which the nucleus is at rest and the reference frames in which the electron 
is instantaneously at rest, which leads to a disagreement between an observer at the nucleus 
and the observers at the electron concerning the time required for each to make a complete 
revolution about the other. Work out the details of this description, and compare with 
the results of Appendix O. 

(O-6) 





Appendix P 
THE EXCLUSION 

PRINCIPLE IN 
LS COUPLING 

If an atom contains two or more electrons that have common values of the quantum num-
bers n and 1, because they are in the same subshell, the exclusion principle imposes restrictions 
on the possible values of the remaining quantum numbers. In the Hartree approximation, 
these are the mi  and ms  quantum numbers of each electron. In this case the exclusion princi-
ple says simply that no two electrons can have the same set of all four quantum numbers. In 
LS coupling, the quantum numbers that are used, in addition to n and I for each electron, are 
1', s', j', mi'. These quantum numbers specify the way the electrons interact in LS coupling. The 
restrictions imposed by the exclusion principle on the possible values of these quantum num-
bers are more complicated, but they can be determined as follows. 

Working first in the Hartree approximation, the possible values of m l  and ms  are used to 
determine the possible values of the quantum numbers m' 1 , ms , ml. From these the possible 
values of 1', s', j', in are then determined. Although in LS coupling the z components of 
L' and S', which are specified by ml  and ms, are changed by the residual Coulomb and 
spin-orbit interactions, L', S', J', Jz are not changed. Therefore, the restrictions that are found 
in the Hartree approximation concerning the associated quantum numbers, 1', s', j', m also 
apply in LS coupling. 

As an example, we determine the LS coupling quantum numbers which satisfy the exclusion 
principle for two electrons in the 2p subshell. Referring to Table P-1, we first list all the 
possible sets of values of m 1  and ms  for the two electrons, which satisfy the exclusion principle. 
There are 15 different sets of m 1  and ms  for the two electrons which satisfy the exclusion 
principle, and a number of others, such as m i l  = + 1, ms , = + 1/2, m12 = + 1, ms2 = + 1/2, 

Table P-1 Possible Quantum Numbers for an np 2  Configuration 

Entry 	m11 	ms, 	m12 	mSZ 	mi 	MS 	m
i.  

1 +1 +1/2 +1 —1/2 +2 0 +2 
2 +1 +1/2 0 +1/2 +1 +1 +2 
3 +1 +1/2 0 T1/2 +1 0 +1 
4 +1 +1/2 —1 +1/2 0 +1 +1 
5 +1 +1/2 —1 —1/2 0 0 0 
6 +1 —1/2 0 —1/2 +1 —1 0 
7 +1 —1/2 —1 +1/2 0 0 0 
8 +1 —1/2 —1 —1/2 0 —1 —1 
9 0 +1/2 +1 —1/2 +1 0 + 1 

10 0 + 1/2 0 —1/2 0 0 0 
11 0 +1/2 —1 +1/2 —1 +1 0 
12 0 +1/2 —1 —1/2 —1 0 —1 
13 —1 +1/2 0 —1/2 —1 0 —1 
14 -1 +1/2 —1 —1/2 —2 0 —2 
15 —1 —1/2 0 —1/2 —1 —1 —2 

P-1 



N 
i 
^ 

T
H

E
 E

X
C

LU
S

IO
N

 P
R

IN
C

IP
LE

 I
N

 L
S

 C
O

U
P

LI
N

G
 

Table P-2 Possible Quantum Numbers for an np 6  Configuration  

Entry m1 1  ms1  m12 ms2  m13 ms3  ml4  ms4 m15 ms5 
 m16 ms6  ml  ms  m^ 

1 	+1 + 1/2 + 1 - 1/2 0 + 1/2 0 -1/2 -1 +1/2 -1 - 1/2 0 0 0  

which are ruled out because they violate it. For each set the corresponding values of the 
quantum numbers nib  m, m^  are evaluated from the relations mi = m11 + m12 , ms  = ms , +  
ms2 , mi  = mt + ms, which represent z components of the angular momentum addition equa-
tions, (10-6), (10-8), and (10-10).  

The problem now is to identify the allowed quantum states, specified in Table P-1 in terms  

of m4, ms, m', with the specification of these states in terms of l', s', j'. We begin by using  
(10-14), which represent other requirements of angular momentum conservation. Setting 1 1  =  
l2  = 1, we find that the possible combinations of l', s', j', expressed in spectroscopic notation,  

are as follows: 1 S0 ,  iPl, 1D2,  35 1 , 3P0, 3
P,,  3P2,  3D,,  3D2,  3D 3 . The 3D 3  states are im-

mediately ruled out because for these states there would be m values of + 3 and -3, but we  
see that there are none listed in Table P-1. Since there are no 3D 3  states, there can be no  
3D 2  or 3D, states; all these states correspond to S' and L' vectors of the same magnitude  
in the same multiplet and they stand or fall together. Now, entry number 1 in the table says  
there must be states with s' >_  0 and l' >-  2, since ms = -s', ... , s' and mi = -1', ... , l'. These  
requirements can be satisfied only by the states 1 D2 . There are five such states corresponding  

to the five values mJ  = -2, - 1, 0, 1, 2. Entry number 2 says that there must be states with  

s' >-  1 and l' > 1. This requires the presence of the states 3P0 , 3P 1 , 3P2 . For 3P0  there is one  
state corresponding to mi  = O. For 3P, there are three states corresponding to m = -1, 0, 1.  

For 3P2  there are five corresponding to m = - 2, -1, 0, 1, 2. The number of states we have  

identified so far is 5 + 1 + 3 + 5 = 14. Only a single state is left, and this must be a state  

with mi  = 0 because all the other m i  values of the table have been used. It is clear then that 
this must be the single quantum state 1 S0 . 

We have found that in the Hartree approximation the only possible quantum states for two 
electrons with the configuration 2p 2  are those associated with the symbols 1 S0,'D2, 3P0,1,29  
This is equally true for an np 2  configuration with any n. Since these restrictions are expressed  

in terms of the quantum numbers l', s', j', they are also valid in LS coupling. Note that these 
results agree with the states that are observed to be present in the 6C energy-level diagram 
of Figure 10-8.  

As a second example, consider six electrons in the same p subshell, that is, consider the 
configuration np6 , with any n. Table P-2 lists the allowed quantum states for this case, in 
analogy to the listing for the np2  configuration, but in the present case the table has only one 
entry. The entry is obviously the single state 'S o . Of course, six electrons represents the 
maximum number that can occupy a p subshell. Thus we conclude that when this subshell is 
filled, its total spin angular momentum, total orbital angular momentum, and total angular 
momentum, are all zero. Furthermore, it is apparent that the same conclusion will be obtained 
for any completely filled subshell. The conclusion is confirmed by the analysis of the optical 
spectra of noble gas atoms. Also, if a completely filled subshell has no net spin or orbital 
angular momentum, there can be no net magnetic dipole moment. This is confirmed by 
Stern-Gerlach experiments on noble gas atoms. 

Table P-3 lists the quantum states allowed by the exclusion principle for some configurations 
containing several electrons in the same subshell. Each symbol gives the l' and s' values 
of an allowed multiplet. The possible values of j' and mi' for the states of that multiplet can  
be determined in terms of l' and s' from (10-13) and (10-14). Entries are given for configurations  

ranging from no electrons in the subshell up to the maximum number of electrons consistent  

with the exclusion principle. For no electrons, l' = s' = j' = 0, which is described by the  
symbol 1S0 . For one electron in any subshell, s' = 1/2, and the allowed states are necessarily 
2S1/2, or

2- 1/2,3/2, etc. The allowed states for other configurations are determined by the 
calculations in the examples above, or by similar calculations. The allowed states can also be 
obtained from more elegant calculations based on the mathematical theory of groups. 

It is particularly interesting to note the symmetries in Table P-3 about the half-filled sub-
shell configurations. The number of states is greatest for this configuration, and the states 
for a configuration in which a subshell is filled except for a certain number of electrons are 



Table P-3 Possible Quantum Numbers for Configurations Containing Several Electrons in 
the  Same Subshell  

nso 	1 S 
ns l 	 2S 
ns2 	1 S 

npo 	ls  

np i  
np2 	1 S, 1 D 
np3  
np4 	1s

, 
 1D 

np5 
np6 	1S 

2D,  2p,  2D,  2F,  2G,  2H 	 4p 4F 

ls,  1 D,  1 G,  ls, 1 D, 1 G, 1 F, 1 1 	 3P, 3F, 3P, 3D, 3F, 3 G, 3H 	5D 
2D,  2p,  2D,  2F,  2G, 2H,  2 ,5,  2D,  2F,  2G,  2I 	4P,  4F,  4D,  4G 	6S 

iS,  1 D,  1 G,  1 S,  1D, 1 G, 1 F, 1j 	 3P, 3F, 3P, 3 D, 3F, 3 G, 3H 	5D 
2D,  2p,  2D,  2F,  2G,  2H 	 4p,  4F 

1 S, 1 D, 1 G 	 3P, 3 F 
2D 

Is  

exactly the same as the states for the configuration in which there are just that number of 
electrons in the subshell. This result can also be expressed by saying that the allowed states for 
electrons are the same as the allowed states for holes-a fact that has important consequences 
in solid state and nuclear physics, as well as atomic physics. The symmetries are a striking 
demonstration of the effect of the exclusion principle because, if it were not for this principle, 
the number of states would increase monotonically as the number of electrons in the subshell 
increased. 

nd° 
 ndl  

nd2  
nd3  
nd4  
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nd6  
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Appendix Q 
CRYSTALLOGRAPHY 

An ideal crystal consists of a large number of identical groups of atoms positioned to form 
a regular array in three dimensions. The group of atoms which is repeated is known as the 
basis of the crystal and may contain a single atom, several atoms, or as many as  several 
thousand atoms, depending on the crystal. Each of the replicas, throughout the crystal, con-
tains the same kinds of atoms at the same positions relative to each other and all the replicas 
have exactly the same orientation. 

Placement of the basis replicas is described by giving a regular array of points, called a 
lattice, such that the disposition of atoms about any lattice point is the same as about any 
other lattice point. The idea, for a two dimensional crystal, is illustrated in Figure Q-1, which 
shows lattice points and a basis of two atoms, labeled with the symbols O and • . A par-
ticular three dimensional lattice is defined by three vectors, a, b, and c, not in the same plane, 
such that the positions of the lattice points are given by n i a + n2b + n3c, where n 1 , n2 , and 
n3  are integers (positive, negative, or zero). The vectors a, b, and c are called the fundamental 
translation vectors for the lattice and linear combinations with integer coefficients are called 
lattice translation vectors. It is usually convenient, though not necessary, to position the lattice 
so that atoms are at lattice points. For a particular crystal, a can be chosen to be one of the 
shortest displacement vectors from some atom in one basis replica to the analagous atom in 
a neighboring replica, then b can be chosen as another such vector, not colinear with a, and 
finally c can be chosen as another, not coplanar with a and b. If the N atoms of the basis 
are labeled i = 1, 2, ... N and the origin is placed at one of the lattice points, then the 
atomic positions are given by vectors of the form n 1 a + n2b + n 3c + p.. The first three terms 
locate a lattice point while the last locates an atom relative to that point. 

The periodicity of the atomic positions can also be described by means of a unit cell. This 
is a geometric figure, such as a cube or rectangular solid, constructed so that when a large 
number of them are placed with the same periodicity as the lattice points they fill the space 
with no overlap and without any space between. One way to construct a unit cell is shown 
in Figure Q-2. The cell is a parallelepiped. Two opposite sides are parallelograms with a and 
b as edges, two other opposite sides are parallelograms with b and c as edges, and the final 
two sides are parallelograms with a and c as edges. 

There is one unit cell for each lattice point and the atoms in the unit cell may be taken 
as the basis. If atoms lie at the corners of the cell, they are linked by lattice translation 

O 	O 	O 
• • 	• 

• • 	. O 	O 	O 	O  

• • 	• 	• 
• • 	 • 

O 	O 	O 	O 
• • 	• 	• 

Figure Q-1 Part of a two dimensional crystal structure. Lattice points are marked by •, 

atoms of one type by O, and atoms of another type by •. The arrows labeled a and b are 
fundamental lattice vectors; the displacement vectors joining lattice points all have the form 
n ia + n2b, where n 1  and n 2  are integers. The arrows labeled p1  and p2 are basis vectors 
which give the positions of the basis atoms relative to a lattice point. 
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Figure Q-2 A parallelopiped unit cell with lattice points at the corners. The faces are 
parallelograms, with edges along fundamental lattice vectors. 

vectors and only one of them can be included in the basis. If an atom lies on one of the faces, 
there must be an identical atom on the opposite face, with a lattice translation vector joining 
them, and only one of this pair can be included in the basis. Similarly, if an atom lies on a 
cell edge, there must be identical atoms on three other edges, separated by lattice translation 
vectors, and only one of these four can be included in the basis. 

For any given crystal the lattice, basis, and unit cell are not unique. It is always possible, 
for example, to use a basis and unit cell which are twice as large as the originals. Then the 
lattice consists of half the points of the original lattice. If the basis is the smallest possible 
group of atoms which repeats throughout the crystal, then the associated lattice and unit cell 
are said to be primitive. Lattice vectors and unit cells for a primitive lattice are also not unique. 
A look at Figure Q-1 should convince the student that there are other choices for the vectors 
a and b such that vectors of the form n la + n2b give the positions of all lattice points. 

Crystal lattices are categorized according to the symmetry they display and the symmetry, 
in turn, is evident in the shape of the conventional unit cell. There are 14 different lattice 
types, a typical lattice of each type being called a Bravais lattice. The 14 Bravais lattices are 
arranged in 7 lattice systems, as shown in Figure Q-3. Notation for the cell edges and angles 
are defined in the diagram of a general cell, shown at the top of the figure. 

For the simple or p rimitive (P) cubic lattice, a cube is the primitive unit cell and there are 
lattice points only at the corners. A cube is not primitive for the body centered (I) or face 
centered (F) lattices. In addition to primitive lattice points at the cube corners, the first of these 
has a primitive lattice point at the cube center while the second has a primitive lattice point 
at the center of each face. 

The tetragonal unit cell has two square and four rectangular faces. In addition to the 
primitive cell there is a body centered cell in the tetragonal system. If, instead of the cells 
shown, new cells are constructed using the square formed by base diagonals of four adjoining 
original cells, the primitive cell becomes base centered and the body centered cell becomes 
face centered. These are not new lattice types. The orthorhombic unit cell has six rectangular 
faces. In addition to the primitive cell there are base centered, body centered, and face centered 
cells in the system. Primitive lattice points are shown in the diagrams The base of a mono-
clinic cell is an oblique parallelogram and the sides are rectangles, perpendicular to the base. 
A triclinic cell also has an oblique parallelogram for a base, but at least two sides and per-
haps all four are not perpendicular to the base. 

In the base plane of a hexagonal lattice, the points are at the vertices and center of a 
regular hexagon. The primitive unit cell has a base which is a parallelogram with equal 
edges, and interior angles of 60° and 120°, as shown in the diagram. The sides are rectangles, 
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Figure Q -3 The 7 lattice systems and the 14 Bravais lattices.  

P 

Trigonal  

a = b = c  
a=/3=y# 7r/2  

perpendicular to the base. The edges of a trigonal cell are of equal length and the three 
edges which meet at a corner make equal angles with each other. They are symmetrically 
arranged around the body diagonal, shown as a dashed line in the diagram. 

In general the crystalline structure of a particular material is determined by the interaction 
between the constituent particles and, at low temperature, the most stable configuration is the 
one for which the total energy is a minimum. In many cases the difference in energy for two 
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Figure Q-4 The hexagonal close packed structure. Dots rep-
resent atomic positions. The smaller primitive unit cell is also  

shown.  

or more structures is slight and the material may have a different structure at higher tem-
peratures. A few simple structures are discussed as examples.  

Most elemental metals crystallize in one of the close packed structures: the face centered  

cubic (FCC) structure with a face centered cubic lattice and a primitive basis of one atom  

or the hexagonal close packed (HCP) structure with a hexagonal lattice and a basis of two  

atoms. The HCP structure is shown in Figure Q-4. The base of the unit cell can be divided  

into two equilateral triangles, inverted with respect to each other. Then, if one of the basis  

atoms of the HCP structure is placed at a lattice point, the other is at the midpoint of the  

line which joins the center of one of the triangles to the center of the triangle directly above  

it on the top face. The similar line through the center of the other triangle marks an open  

channel through the crystal.  

The close packed structures can be generated by arranging layers of spheres, packed together  

as tightly as possible. In any layer the sphere centers form the base plane of a hexagonal  

lattice, as shown in Figure Q-5. The next layer above is identical in structure but it is  

shifted so that its spheres fit snugly into the wells formed by spheres below. There are two  

sets of wells, marked by small crosses and by small dots on the diagram, and either set may  

be used. These wells are at the centers of the triangles formed by the lines joining sphere  

centers. Spheres of the third layer fit into the wells of the second layer and, in different  

structures, may be either directly over spheres of the first layer or directly over wells of the  

first layer. The layer pattern is then repeated and, in the first case, an HCP structure is  

formed while, in the second case, an FCC structure is formed.  

For the HCP structure the centers of first and third layer spheres form a hexagonal lattice.  

Centers of second layer spheres are along the line joining wells of the first layer to wells of  

the third layer directly above. For the FCC structure the layer shown in Figure Q-5 cuts  

obliquely across the cube so that three neighboring spheres lie respectively at a cube corner  

and two neighboring face centers, as shown in Figure Q-6. Successive layers form parallel  

planes through primitive lattice points.  

Figure Q-5 Close packing of spheres with centers on a plane. One set of wells between  

spheres is marked by dots and the other by crosses. The base of the hexagonal primitive unit  
cell is also shown.  



Figure Q -6 A close packed plane in the FCC structure. Only  
atoms in the plane are shown. Other close packed planes are  

parallel to the one shown and pass through the other atomic  
positions. A two-dimensional hexagonal cell is also pictured.  
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For both the HCP and FCC structures each atom is surrounded by twelve neighboring  

atoms. If, for either structure, the atoms are replaced by spheres as described above, the  

spheres would occupy 74% of the volume, the highest occupation (or packing) fraction of any  

crystalline structure.  
At room temperature 16 of the chemical elements, including calcium, nickel, platinum, cop-

per, silver, gold, and aluminum, have FCC structures. Iron is FCC above 1401°C and below  

906°C. The rare gases neon, argon, krypton, and xenon bond via van der Wa als forces and,  
when they crystallize at low temperatures, they also form FCC structures. Twenty-two of the  

chemical elements form HCP structures at room temperature. These include magnesium,  

titanium, cobalt, zinc, zirconium, cadmium, thallium, and many of the rare earth metals. For  

most of these the model of close packed spheres closely predicts the ratio of cell height to  

hexagonal edge. For some however, the hexagonal layers have greater separation than the  

close packed model and the packing fraction is less than for ideal HCP. Zinc and cadmium  

belong to this group.  
The body centered cubic structure (BCC), with a  body centered cubic lattice and a primitive  

basis of one atom, is slightly less tightly packed than the FCC and HCP structures. Every  

atom has only eight nearest neighbors, each a distance (0/2)a away, but there are six other  

neighbors a distance a away and, if the atoms were replaced by the largest spheres consistent  

with the cube size, they would occupy 68% of the volume. At room temperature 14 chemical  

elements, including lithium, sodium, potassium, rubidium, cesium, tungsten, and iron, are  

BCC.  
Many intermetallic compounds, such as CuPd, CuZn (called f3 brass) AgMg, A1Ni, and  

BeCu, as well as some ionic compounds, including many of the halides of cesium and thallium,  

crystallize with a cesium chloride (CsCI) structure. This structure may be characterized by a  

cubic cell with atoms of one type at the corners and an atom of the other type at the  

cube center. The lattice is simple cubic and the primitive basis contains one atom of each  

type, separated by half the cube diagonal or (-0/2)a. Each atom sits at the center of a cube  

with eight atoms of the other type at the corners. If the two atoms of the basis were iden-
tical this structure would be BCC.  

Many covalently bonded materials have diamond or zinc blende structures. Both of these  

have face centered cubic lattices and a primitive basis of two atoms. In the diamond struc-
ture the two atoms are of the same type while in the zinc blende structure they are of  

different types. Otherwise the two structures are the same. The two atoms of the basis are  

displaced from each other along a line which is parallel to one of the body diagonals of the  

cubic cell and their separation is one fourth the diagonal length or ( ^/4)a. Figure Q-7 shows  
a diagram of the structure. Each atom sits at the center of a regular tetrahedron with four  

atoms at the vertices. In zinc blende the surrounding atoms are of a different type than the  

central  atom. The structures are loosely packed. A diamond structure composed of spheres  

which touch along the body diagonal has only 34° °  of its volume occupied by spheres.  
The elemental semiconductors silicon and germanium have diamond structures. Each of  

these atoms has four electrons in its outer shell and can form four covalent bonds with  

neighboring atoms. The diamond structure results when these bonds are of equal length and  

are symmetrically arranged. Carbon has a diamond structure only if formed at high tempera-
ture and pressure. At room temperature, its stable form is graphite, with a complex hexagonal  

structure. Many compound semiconductors with equal numbers of two types of atoms crys-
tallize with a zinc blende structure. If one of the atoms has N electrons in its outer shell and  
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Figure Q -7 (a) Perspective and (b) plan views of the zinc blende structure. Atoms of each  
type are arranged with a face centered cubic lattice and the two lattices are displaced from  
each other by one fourth the cube body diagonal. The diamond structure is the same except  

that all atoms are of the same type. Elevations are in units of the cube edge a.  

the other has 8 — N, then in the crystal each atom can form covalent bonds with four  

neighbors of the other type. Some examples are GaAs, ZnSe, SiC, CdS, and ZnS, which is  

zinc blende itself.  
Many ionic crystals have the structure of sodium chloride. This structure has a face centered  

cubic lattice with a primitive basis of two atoms, separated by half the cube edge, as shown  

in Figure Q-8. There are four atoms of each type per cube and each atom has six nearest  

neighbors, all of the other type. Most of the alkali halides, and most of the sulphides, selenides,  

and tellurides of the alkaline rare earths have NaC1 structures. So do many nitrides, phos-
phides, and hydrides.  

Crystals formed by most of the chemical elements on the right side of the periodic table  

are less symmetric than the examples given above. For example, gallium and indium are  

tetragonal, iodine, oxygen, and one form of sulfur are orthorhombic, and arsenic, antimony,  

bismuth, mercury, and another form of sulfur are trigonal. For many of these the primitive  

basis is large and the structure is quite complicated.  

The structure of a crystal is most apparent in the external shape of the sample. Crystals  

tend to cleave along planes with high densities of atoms and these planes form the outer  

surfaces. In general the sample does not have the same shape as the unit cell since many of  

these cleavage planes are not parallel to cell faces. Nevertheless, the angles between sample  

faces are determined by the crystalline structure and measurement of these angles is often a  

first step in identifying the structure. Physical properties depend on the crystal structure. The  

electrical conductivity of a tetragonal or hexagonal crystal, for example, is different for an  

electric field parallel to the rectangular cell faces than for an electric field parallel to the cell  

base.  
Most methods for investigating the crystal structure involve the scattering of x rays from  

crystal samples. Although it is the electrons which scatter x rays, the periodic arrangement  

of the atoms leads to a formulation of the scattered amplitude in terms of reflections from  

planes which pass through atomic positions. At each plane the angle of reflection is the  

same as the angle of incidence and waves reflected by all planes interfere to produce the  

scattered wave. In general, the scattered wave is diffuse and has a small amplitude. If, how-
ever, the angle of incidence for any set of parallel planes satisfies the Bragg relation of (3-3)  

Figure Q -8 The NaCI structure. Each type atom is arranged  

in a face centered cubic lattice and the two lattices are dis-
placed from each other by one half the cube edge. 
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Figure Q-9 Some planes in simple cubic lattices. (a) The (100), (010), and (001) planes. (b) A 
(110) plane. (c) A (111) plane. 

for n = 1, that is 

= 2d sin 0 
then waves from all planes in the set add constructively and a large amplitude reflected wave 
is obtained. Here ) is the x-ray wavelength, d is the distance between adjacent planes of the 
set, and 0  is the angle between the propagation direction of the incident or reflected wave 
and one of the planes. This is exactly as described in Section 3-1 for electron waves. 

A set of parallel crystal planes is identified by means of three integers, called Miller indices 
and related to the intercepts of the planes on the crystal axes, along the fundamental trans-
lation vectors a, b, and c. To find the indices of a plane, its intercept on a is measured in 
units of a, its intercept on b is measured in units of b, and its intercept on c is measured in 
units of c. The reciprocals of these numbers are multiplied by a common factor so that the 
result is three integers with no common integer divisor, except 1. These integers are the 
Miller indices. They are displayed by placing them in parentheses: (hkl). All planes in the set 
have the same indices. If an index is negative a bar is placed above its magnitude. If a plane 
is parallel to a crystal axis its intercept on that axis is taken to be at infinity and the corre-
sponding index is 0. 

The geometry for cubic crystals is particularly easy to deal with. For these materials (hkl) 
planes are perpendicular to vectors with components h, k, and 1, respectively, along three 
mutually perpendicular cube edges. Some planes are shown in Figure Q-9. The (100), (010), 
and (001) planes are perpendicular to a, b, and c respectively. They are parallel to cube 
faces. The (110), (101), (011), (110), (101), and (011) planes cut through diagonals on opposite 
cube faces. The (111), (111), (111), and (I1 1) planes are perpendicular to cube body diagonals. 

For simple cubic lattices, adjacent planes with indices (hkl) are separated by the distance 
d, whose value is 

a 

\/h2 + k2 +12  

For example, (100) planes are separated by a cube edge a, (110) planes are separated by a face 
diagonal or a/J, and (111) planes are separated by a body diagonal or a/.. For face centered 
and body centered cubic lattices there are planes between these planes and the separation is 
less. 

In an x-ray diffraction experiment, Bragg reflection angles are measured for scattering from 
a large number of differently oriented planes, then the Bragg relation is used to compute 
interplanar separations. A lattice type is assumed and Miller indices are assigned to the 
various planes so that ratios of experimentally determined interplanar separations match the 
values predicted. If a match is obtained, cell dimensions can then be calculated. 

d = 





Appendix R 
GAUGE INVARIANCE IN 

CLASSICAL AND 
QUANTUM 

MECHANICAL 
ELECTROMAGNETISM 

The discussion which follows is more quantitative than that in Section 18-6 because it is as-
sumed that the student is familiar with Maxwell's equations in differential form and the vector 
potential, and has at least heard of Hamilton's equations of mechanics. We shall treat gauge 
invariance first from a classical standpoint and then add more quantitative material to the 
discussion in Section 18-6 of gauge invariance in quantum mechanics. 

In 1868 Maxwell had available to him four equations of electromagnetism which were (in 
the simplest form, since units will be of no concern here) 

V•E= p, V x E= —0B/0t, V•B=0, ando x B=j 

where E is the electric field, B the magnetic field, p the charge per unit volume, and j the cur-
rent per unit area. Maxwell noticed that taking the divergence of the last equation gave 

V•(V x B)=V•j=0 
since the divergence of a curl is zero. This result was in conflict with the continuity equation 
for electric charge 

V .j=  —ôp/ât 

if the charge density p is not a constant in time, so he modified Ampere's law to be 

V x B=j+ 0E/cat 

This insured the local conservation of charge, since the continuity equation says that no net 
charge can be created or destroyed in an arbitrarily small volume. Global charge conservation 
does not help here, since creating a charge at point x 1  while destroying a similar charge at 
point x 2  will not satisfy the continuity equation if x 1  and x 2  are not both inside the volume 
considered. 

To understand the deeper significance of Maxwell's addition to Ampere's law, it is easier to 
deal with the vector and scalar potentials A and V instead of the fields, so we use 

B=V x A and E = —V V — aA/at 

The origin of gauge invariance lies in the fact that A and V are not unique for given physical 
fields E and B. That is to say, gauge transformations on A and V leave E and B unaltered. 
The associated invariance of the Maxwell equations is called gauge invariance. As an example 
of a gauge transformation, let V —* V' = V — ex/at, where x  is arbitrary. To leave E unchanged 
there must be the simultaneous transformation A —+ A' = A + Vx. That is, E —* —V V + 
V(ôx/ôt) — ôA/dt — 88(O x)/8t = E by changing the order of space and time derivatives. Note 
that this leaves B unchanged also, since the curl of a gradient is zero, so that B — V x A + V x 
Vx=VxA=B. 

R-1 
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The important point is that the global symmetry of the electric field (and global charge 
conservation) has been converted into a local symmetry with local charge conservation because 
of the addition of a new field, the magnetic field. In other words, V can now be made different 
at any point—not just changed everywhere at once—by introducing a compensating change 
in A. The result is still the symmetry that E and B, the only physical observables, remain un-
changed. 

It is interesting to note that the above process can be turned around. The local invariance 
requirement forces a relationship between V and A and hence between E and B fields. With 
the aid of Lorentz invariance, Maxwell's equations can be derived from this local symmetry 
requirement. This approximates the procedures to be used in obtaining gauge theories: A 
global symmetry is turned into a local symmetry by the addition of one or more new fields, 
and from the resulting relations the field equations are obtained. 

As explained in Section 18-6, the related problem in quantum mechanics is turning a global 
phase invariance into a local one, and this requires the addition of the electromagnetic field 
to compensate the local phase change. If Q is the charge of the particle involved, the required 
local  phase transformation, as given in (18-14), is 

W(x t) --> kP'(x,t) = eiQx(x,t),I,( x,t ) 

There needs to be simultaneously a correlated change in the electromagnetic quantities, which 
will be just the previously discussed gauge transformations 

A —* A' = A + V (x,t) 	and 	V -4 V' = V — ax(x,t)/at 

Now the Schroedinger equation will be satisfied. However, as discussed in Section 18-6, this is 
not the free particle Schroedinger equation, but rather one which includes the electromagnetic 
field. It may be obtained by using the fact that classically the Lorentz force F on a particle 
of charge Q moving at velocity y,  which is 

F = QE + Qv x B 
can be obtained from Hamilton's equations of mechanics using the Hamiltonian H of the form 

H = 2m (p — QA) 2  + QV 

where p is the particle's momentum. 
The Hamiltonian is then converted to an operator equation by using the quantum mechan-

ical replacement p — ihV, which is a three-dimensional extension of (5-32). By allowing the 
operator equation to operate on the wavefunction P(x,y,z,t), we obtain 

[2
m (— ihV — QA) 2  + QV1f(x,Y,z,t) = iii a( at 

,z,t)  

°C 	This is the desired Schroedinger equation with the full spatial dependence displayed. Com- x 
paring this with the free-particle Schroedinger equation, we see that this equation results from 

Q 	substituting 
V — V — iQA 	and 	a/at a/at + iQV/h 

These same substitutions work in the Klein-Gordon equation (Section 17-4) and in the Dirac 
equation (Section 5-2). Thus this prescription for converting a global symmetry into a local 
one works relativistically as well. 



Appendix S 
ANSWERS TO 

SELECTED PROBLEMS 

Answers to approximately one half of those problems that are not self-answering, and do not 
involve graphing. 

Chapter 1 	(4) 7.51 W. (5a) 4.09 x 10 9  kg (5b) 6.5 x 10 -14 	(7) 5466 A 
(10b) 280°K 	(15a) 2.50 (15b) 2.14 (15c) 1.00 
(21) 1.8152., 0.6142maX 	(22a) 1410°C (22b) 1.26 cm 
(24) 18,020°K 

Chapter 2 	(2a) 2.0 eV (2b) zero (2c) 2.0 V (2d) 2950 A (2e) 2.0 x 10 14 /cm2 -sec 
(4) 3820 A 	(8a) 3.1 keV (8b) 14.4 keV 	(10) 3.6 x  10 -17  W 
(12) 1.235 x 10 2Ô  Hz, 2.427 x 10 -2  A, 2.731 x 10 -22  kg-m/sec 	(20) 300% 
(21) 44° 	(23) 2.64 x  10 -5  A 	(26a) 5.725 keV (26b) 0.870 A, 2.170 A 
(29a) 2.022 MeV (29b) 29.7% 	(30a) 5.46 x 10 -22  kg-m/sec 
(30b) 2.71 eV, yes 	(31) c/3 

Chapter 3 	(2) 4.34 x 10 -6  eV 	(4) neutron 	(6) 1.096 x 10 -6  A 	(14a) 1.287 A 
(14b) 11.6° 	(15) 1.596 A 	(17) 41.3° 	(18) 37.7 KV 
(27) 1.40 x 104  A3 	(28a) 0.987 keV/c, yes (28b) 9.87 MeV/c, no 
(28c) 9.87 MeV/c, yes 	(30) 4.17 x 10 - 8 eV 

Chapter 4 	(3) Z 1 / 3 RH 	(6a) 4.29 x 10 -14  m (6b) 3.72 x 10 -14  m 
(7) 1.58 x 10 -14  m 	(9) 4000 A 	(10) 4240, 11.4 	(13) 7 
(14) Fgrav/Fcoul = 4.4 x 10 -40 , yes 	(18) 1.2 km/sec 
(19) 13.46 eV, 13.46 eV/c, 921.2 A, 4.30 m/sec 	(25a) 23.2 eV 
(25b) 36.8 eV 	(30) 4.90 A 	(31) 1.50 x 10 6  m/sec 	(34) 26.7 A 
(35) n = 5 	(38a) 6, 4 (38b) smaller (38c) 2.68 A 
(39a) AA) = 3647n 2/(n 2  - 16), n = 5, 6, 7, . . . (39b) visible, infrared 
(39c) 3647 A (39d) 54.4 eV 	(40) 2.38 A 

Chapter 5 	(4) (C/mit 2 ) 1 " 2 	(5) 0.84 	(7a) 0.1955 (7b) 0.3333 
(9b) 2n 2 h2 /ma2  = 4E0 	(11) zero, 7.067 x 10 -2  a2 	(12) zero, (h/a)2  
(25) E, will increase 	(26) smaller 	(29a) 0.4 A 
(33a) c i ci E 1  + c2c2E 2  

Chapter 6 	(8a) 0.62 (8b) 1.07 x 10 -56  (8c) 2.1 x 10 -6  
(9b)  proton: 3.07  x 10 -5 , deuteron: 2.51 x 10 -7  
(10b) 2 x 10 -3  VO  (10c) 0.0073 
(15a) [1 + (sin 2  k2 a)/4x(x - 1 )] -1 , x = E/VO  (15b) 
(20a) 9 eV (20b) 1 eV 	(21a) 2.05 MeV 	(25a) 
(25c) 0.0777a 2  (25d) 88.826(h/a) 2 	(29b) 	1 0 36  

(32b) 0.049 joule  (32c) 1.5 x 10 32  (32d) 3.3 x 10 - 
 (32e) 1.3 x 10 -33  m 

n 2n 2 h 2 /2ma2  
zero (25b) zero 

(32a) 0.5 Hz 
34 j oule 

(l0a) 4.32 MeV 

S- 1 
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Chapter 7 	(7a) 4a0  (7b) 5a0 	(9a) 2E 2  (9b) 2E2 	(11a) 4.147% (lib) 11.44% 
(12b) 54.7°, 125.3° (12c) 35.3°, 144.7° 	(13a) -0.85 eV (13b) 9.52 A 
(13c) 3.46h (13d) 2h (13e) zero (13f) zero 	(16a) hcot Be`'V21-1 
(26a) mh (26b) m2h2 , rn2h2 , mh 

Chapter 8 	(3a) 6.51 x 10 -24  nt-m (3b) 1.89 x 10 -22  nt (3c) 1.48 x 10 -5  eV 
(5) 29 tesla/m 	(7) 0.019 eV 	(10a) 74.5° (10b) 74.5° (10c) 25.2° 
(19) An = ±1, +3, +5,... 	(21) 27 

Chapter 9 	(14a) 2.4 	(15a) 0.48 A (15b) 1.6 A 	(25) 870 V 
(26a) 8.65 x 106  m -1 ,  1.7 	(27a) Co: 8.50 keV, Fe: 7.83 keV 
(27b) 8.50 keV 	(28) 2.44 x 10 -16  sec 

Chapter 10 (la) 6700 A (lb) 0.152 A 	(8) 10.0° 	(17a) 12 	(20c) 1.8 x 10 -3  A 
(20d) 2000 A 	(22a) 1.4 eV (22b) 104  tesla (22c) no 

Chapter 11 (5a) 0.418 eV (5b) 4410°K 	(10b) vm  = v\3N °/2ta, B = (hv/k)J3N °/Ica 
(20a) none (20b) 51.4 joule 	(21) 1.28 x 10 16  sec -1 	(27) 3.1 eV 
(28) 10.3 eV 	(29a) 

Chapter 12 (1) 4.64 eV 	(2) 18 A 	(5b) r = 4 	(6) 120°K 	(l0a) 1 (10b) 1 
(10c) 2 (lOd) 2 (10e) 2 (10f) 2 	(lla) 1/72 (llb) 210/1 
(15) 0.190 A 	(17) 2900 cm -1 , 40 cm -1 	(20) D2: 0.375 eV, HD: 0.460 eV 
(22a) 2.49 x 10 14  Hz (22b) 3650 nt/m 	(25a) 2.91 (25b) 2.88 
(26a) 8.7 x 10 -47  kg-m 2, 6.9 x 10 -47  kg-m 2  (26b) 0.1 eV 	(29) 3/2 

Chapter 13 (4a) metallic (4b) covalent (semiconductor) (4c) ionic 
(4d) covalent (insulator) (4e) molecular 	(6) 101°  V/m 
(9a) 0.47 mm/sec (9b) 1.2 x 10 5  m/sec (9c) 1.6 x 10 6  m/sec 
(11a) 65.4 m (lib) 4.4 x 104  A 	(13b) ,N5 (Vi) + /) 	(15a) 6.95 eV 
(19) 0.756 eV -1 	(20) 5.5 x 10 -3 	(24) 377°K 
(33) 1.834 x 10 -5  amp 

Chapter 14 (1) 1.3 x 104  A 	(11a) 8.4 x 10 -5  amp/m (11b) 700 amp/m 
(12a) 0.549 (12b) 1.43 x 10 -23  joule/tesla 	(17a) 5.4 x 10 8  amp/m 
(17b) 1.73 x 10 6  amp/m (17c) 1200 joule 	(18b) 310 

Chapter 15 (1) 3/2 	(3a) 5.8 x 10 -37  MeV (3b) 0.72 MeV 	(5) 2.4 F 
(7) 3.02 cm 	(10a) 5.95 MeV 	(11) 23.0 MeV 	(14a) 23.8 MeV 
(14b) 0.48 MeV 	(16a) 2.764 MeV (16b) 3.44 F 	(18a) 7.275 MeV 
(18b) 14.44 MeV 	(23a) 5/2 (23b) even (23c) negative (23d) zero 
(25a) 1.09 (25b) 6.0526 F (25e) 6.31 F, 5.79 F 

Chapter 16 (4) 1(1 - e -R")/R 	(7a) 4 x 10 9  yr (7b) 23 g (7c) 4 x 10 -7  g 
(9a) 13.1 g (9b) 3.61 g 	(lla) 4.0 x 104  m/sec, 
(ila) allowed, Gamow-Teller (11b) forbidden, 10 -6  supression 
(11c) allowed, Fermi or Gamow-Teller (lid) forbidden, 10 -3  supression 
(15a) 2.9 x . 10 -62  joule-m 3  
(22b) a= -3.1 x 10 -35  m4/sec, b = 2.5 x 103  mm/sec, 
p3 = 8.0267 x 10 34  m -3 , P4  = g.0248 x 10 34  m 3 	(24) 78° 
(26c) 1/2k1 	(28) 0.67 bn/sr 	(29) 0.074 rad 	(32a) 0.154 MeV 
(32b) 154 eV 	(32c) 0.065 eV (32d) 99 	(34a) 3.27 MeV 
(34b) 2.53 x 10 3  kg 

Chapter 17 (5a) 0.16 sin (0.90r), r < 2; 0.24e -°.23., r > 2, r in F 	(8a) 10 (8b) 33° 
(12a) 5 x 10 -24  sec (12b) 1 (12c) 3 	(13) 2.2 x 10 -8  m 
(15) 6m0c2  = 5360 MeV 	(16a) -10 -43  cm2  (16b) 10 18  cm 

.itr2 h2 /32m1 2  (29b) 4 /3 



(2a) 1.7 x 10 -6  (2b) —10 5 	(5a) arid,  uus, ûd (5b)  =  1So , p = 3S 1  
(6) 6 x 10 34  m -2-sec -1 	(12) 4 	(14) +2x2/3r  

Chapter 18  

Appendix A  (5a) 3.965 x 107  m/sec  (Sb) 2.522 x 10 - 6  sec 	(7) 0.946c  

(8) (c2/v)(1 — ^/1 — v 2/c 2) 	(12) 2.991 x 108  m/sec, 0.9975c  
(16a) 2.696 x 10 14  joules (16b) 1.783 x 10 7  kg (16c) 5.94 x 10 6  
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INDEX 

A and B coefficients, 394, 395 
Abelian transformation, 690 
Absorption, stimulated, 393 
Absorption edge, 342 
Absorption spectra, 98 

and emission spec tra, 104 
Absorptivity, 6 
Acceptor impurity, 469 
Acoustic radiation, 399 
Actinide, 334 
Action, 111 
Adiabatic demagnetization, 506 
Age: 

of earth, 561 
of universe, 608 

Alkali, 336 
spectra of, 349 

Allowed band, 447 
Allowed beta decay, 572 
Alpha decay, 206, 555 

energy of, 556 
Alpha particle model, 552 
Alpha particle scattering, 88 
Alternation of intensities, 436 
Angstrom unit, 5 
Angular correlation experiment, 465 
Angular frequency, 129 
Angular momentum, see specific types 
Angular momentum operator, 255, M-1 
Annihilation, 44, 464 
Anomalous Zeeman effect, 364 
Antiferromagnetism, 503 
Antineutrino, 566 

detection of, 575 
Antiscreening, 699 
Antisymmetric eigenfunction, 305 
Associated Laguerre polynomial, N-5 
Associated Legendre function, N-1 
Asymmetry term, 527 
Asymptotic freedom, 685, 698 
Atomic eigenfunction, 323 
Atomic mass unit, 520 
Atomic number, 94, 342, 511 
Atomic radius, 86, 327 
Atomic spectra, 96 
Atomic stability, 95 
Attenuation coefficient, 50 
Attenuation length, 50 
Azimuthal quantum number, 115, 240 

Balmer formula, 97 
Balmer series, 97, 98 
Band, conduction, 450 

valence, 450 
Band spectra, 430 

Band theory, 445 
Band width, 454 
Barn unit, 517, 597 
Barrier penetration, 201, 206, 558 
Barrier potential, 199 
Baryon, 640, 649 
Baryon number, 640, 649, 651 
BCS theory, 487 
Beta decay, 562 

coupling constant, 569, 574 
energy, 564 
interaction, 569, 572. See also Weak interaction 
matrix element, 568 
rate, 570 
spectrum, 567 

Big bang theory, 20, 608, 710 
Binding energy, 102, 524 

per nucleon, 524, 530 
Blackbody, 3 
Blackbody radiation: 

and Big bang theory, 20 
and cavity radiation, 5 
energy density of, 5 
and photon gas, 34, 399 
Planck spec tral formula for, 17 
Planck theory of, 13, 398 
Rayleigh-Jeans theory of, 7 
spectral measurements, 3 
and thermometry, 19 

Bloch eigenfunctions, 457 
B meson, 682 
Bohr magneton, 269 
Bohr microscope, 67 
Bohr model, 100 

and hydrogen energy levels, 286 
Bohr quantization postulate, 98 

and de Broglie postulate, 112 
and Wilson- Sommerfeld rules, 114 

Bohr radius, 100, 246 
Boltzmann constant, 12, 740 
Boltzmann dist ribution, 13, 104, 377, 384, C-1 

and quantum systems, 391 
Boltzmann factor, 391, 392 
Bombarding particle, 521 
Bond: 

covalent, 418 
ionic, 416 
metallic, 444 
molecular, 444 

Born approximation, L-1 
Born postulate, 64, 135 
Bose condensation, 399, 402 
Bose distribution, 382, 384 

for photons, 398 
Boson, 310, 378 

1 



N Box normalization, 182 
Brackett series, 98 
Bragg scattering condition, 58, 459 
Bravais lattice, Q-2 
Breeder reactor, 606 
Breit- Wigner formula, 596 
Bremsstrahlung, 42 
Brillouin zone, 460 
Broken symmetry, 674 
Brueckner theory, 529 

Cabibbo angle, 703 
Carbon atom, energy levels of, 361 
Carbon cycle, 610 
Cascade hyperon, 649 
Causality and quantum theory, 79, 139 
Cavity radiation; see Blackbody radiation 
Centrifugal potential, 345, 536 
Chain reaction, 602 
Charge conjugation, 655 
Charge density: 

atomic, 323 
nuclear, 516 

Charge independence, 618, 621 
Charm, 678 

quantum number, 678 
Charmonium, 680 
Classical limit 

for orbital angular momentum, 259 
of quantum theory, 117, 184 
for simple harmonic oscillator, 21, 136, 165 
for step potential, 198 

Classically excluded region, 213 
Collective model, 545, 549 
Color, 683 
Color charge, 684, 699 
Color force field, 686 
Comparative lifetime, 571 
Complementarity principle, 63 
Complex conjugate, 135, F-1 
Complex exponential, F-2 
Complex number, F-1 

and Schroedinger equation, 134 
Compound nucleus, 591, 595 
Compound nucleus resonance, 595 
Compton effect, 34 

theory of, 36 
and uncertainty principle, 68 

Compton scattering cross section, 49 
Compton shift, 35, 37 
Compton wavelength, 37 
Conduction band, 450 
Conduction electron, 32, 191, 215, 405 
Conductivity, 450, 463 
Conductors, 449 
Configuration, 332 
Conservation laws: 

for nuclear reactions, 588 
for observed interactions, 654 

Contact potential, 27, 407 
Continuity of eigenfunction and derivative, 

214 
Continuum energy states, 110 

and Schroedinger theory, 163 
Contraction, Lorentz, A-8 

Control rod, 606 
Cooper pair, 487, 546 
Copenhagen interpretation, 79 
Correlation angle, 465 
Correspondence principle, 117 
Cosmic rays, 42, 44 
Coulomb potential, 234 

screened, L-7 
Coulomb scattering, 90, 591, E-1 

cross section for, 95 
Coulomb term, 527 
Coupling constant, 682 

beta, 569, 573 
electromagnetic, 639 
nuclear, 638 

Covalent bond, 418 
Covalent solid, 444 
CP operation, 657 
CPT theorem, 658 
Critical field, 485 
Critical temperature, 484 
Cross section, 48 

Compton scattering, 49 
Coulomb scattering, 95 
pair production, 49 
photoelectric, 49 
total photon, 49 

Crystal lattice, 443 
Crystallography, 448, Q-1 
Curie law, 494 
Curie temperature, 497 

ferromagnetic, 497 
Curve of stability, 563 

Daughter nucleus, 556 
Davisson-Germer experiment, 57 
De Broglie postulate, 56 

and Bohr quantization postulate, 112 
and infmite square well, 218 
and Schroedinger equation, 129 
and uncertainty principle, 72 

De Broglie wave, 56, 69 
De Broglie wavelength, 56 
Debye specific heat theory, 389 
Debye temperature, 390 
Decay energy: 

alpha, 556 
beta, 564 

Decay law, 558 
Decay rate, 558 

alpha, 207 
beta, 570 
gamma, 579 

Deep-inelastic scattering, 669 
Degeneracy, 115, 239, 240, 327 

of atomic eigenfunctions in applied field, 
252 

for Coulomb potential, 536 
exchange, 305 
perturbation theory of, J-8 

155, Degeneracy effect for gases, 401 
Delayed neutron emission, 606 
Delta particle, 651 
Density of states, in band, 455 

and effective mass, 463 



for free particle, 453 
for photons, 398 

Detailed balancing, 381, 639 
Deuterium, 107 
Deuteron, 619 
Diamagnetism, 493 
Differential cross section, 94, L-4 
Differential equation, 127 
Differential operator, 144 
Diffraction: 

general formula for, 57 
of particles, 58, 76 
and uncertainty principle, 67, 77 

Dilation, time, A-8 
Dirac theory: 

and beta decay, 566 
and hydrogen energy levels, 286 
and pair production, 47 
and Schroedinger theory, 132 

Direct interaction, 591, 593 
Directional bond, 422 
Distance of closest approach, 91 
Distribution function, 3. See also specific types 
D meson, 679 
Domains, 500 
Donor impurities, 468 
Doping, 467 
Doppler shift 

and Mdssbauer effect, 586 
relativistic, 46 

Drift  speed, 450 
Dual nature of radiation, see Wave-particle 

duality 
Dulong-Petit law, 388 
Dynamical quantity, 143 

Effective mass, in crystal lattice, 461 
in nuclei, 533 

Effective Z, 325 
Eigenfunction, 154, 166, 242, 262 

degenerate, J-8 
required properties of, 155 

Eigenvalue, 165, 239, 262 
Eigenvalue equation, 259, 262 
Einstein A and B coefficients, 394, 395 
Einstein photon hypothesis, 30, 63 
Einstein relativity postulate, A-5 
Einstein specific heat theory, 388 
Elastic scattering, 593, 668 
Electric dipole radiation, B-3 
Electric dipole transition, 289, 580 
Electric quadrupole moment, 514, 546, 

600 
Electromagnetic interaction, 574, 653, 655 
Electromagnetic spectrum, 33 
Electron, 59 
Electron affinity, 336 
Electron capture, 564 
Electron emission, 564 
Electron gas, 404, 406 
Electron molecular spectra, 429 
Electronic neutrino, 642 
Electronic specific heat, 406 
Electron-positron annihilation, 464 
Electron-positron pair, 43 

Electron radius, 277 
Electron spin resonance, 369 
Electron volt unit, 29 
Electroweak gauge theory, 699, 701 
Elements: 

abundances of, 510 
origin of, 607 
periodic table of, 330 

Emission: 
spontaneous, 291, 393 
stimulated, 291, 393 

Emission spectrum, 98 
Emissivity, 6 
End point, 565 
Energy band, 446 
Energy gap, 489 
Energy level diagram, 20 

x-ray, 339 
Energy quantization: 

of one-electron atom, 101 
Planck postulate of, 14 
of radiation, 30 
in Schroedinger theory, 157 
and uncertainty principle, 68 
by Wilson-Sommerfeld rules, 110 

Enhancement factor, 380 
Entropy, 410 
Equilibrium decay, 559 
Equipartition of energy, 12 
Eta meson, 651 
Ether frame, A-3 
Even function, 140 
Exchange: 

of particle lables, 306 
of phonons, 487 
of pions, 634 

Exchange degeneracy, 305 
Exchange force, 316 
Exchange interaction, 498 
Exchange operator, 624 
Excited state, 102 
Exclusion principle, 308, 319 

and atomic structure, 337 
in LS coupling, 363, P-1 
and nuclear structure, 531 

Exhaustion region, 481 
Expectation value, 141 

general presc ription for, 146, 
171 

Exponential attenuation, 50 
Exponential decay law, 558 
Extrinsic conductivity, 467 
Extrinsic region, 481 

Fermi distribution, 383, 384 
Fermi energy, 385 

for metals, 406 
for nucleus, 531 
in semiconductors, 471 

Fermi gas, 405 
Fermi gas model, 531, 549 
Fermi momentum, 465, 480, 671 
Fermion, 310, 378, 382 
Fermi selection rules, 571 
Fermi temperature, 480 



Fermi unit, 94, 511 
Fermi velocity, 479 

X 	Fermi-Yang model, 673 
W 	Ferrimagnetism, 503 
0 	Ferromagnetism, 493, 497 
— 	Feynman diagram, 669 

Filled subshell, 252, 363 
Fine structure, 114, 276 

in hydrogen atom, 287 
Landé interval rule for, 359 

Fine structure constant, 116, 286, 639, 682 
Finiteness of eigenfunction and derivative, 155 
Fission, 525, 602 
Fission fragment, 602 
Flavors, 678 
Flux, probability, 196 
Flux quantization, 491 
Fock calculation, 322 
Forbidden band, 447 
Forbidden beta decay, 572 
Forward bias, 473 
Fourier integral, D-1 
Franck-Condon principle, 432 
Franck-Hertz experiment, 107 
Free electron gas, 404 
Free electron model, 452 
Free particle: 

density of states for, 453 
quantum mechanical behavior of, 178 

Frustrated total internal reflection, 205 
FT value, 571 
Fundamental translation vectors, Q-1 
Fusion, 525 
Fusion reactor, 607 

Galilean transformation, A-1 
Gamma decay, 578 

selection rules for, 580 
transition rate, 5 79 

Gamma ray, 32, 578 
Gamow-Teller selection rules, 572 
Gas degeneration, 401 
Gauge fields, 691 
Gauge invariance, 655, R-1  
Gauge invariant, 689 
Gauge theories, 688 
Gauge transformation, R-1  
Gaussian distribution, D-3 
Gaussian potential, L-7 
Geiger-Marsden experiment, 89 
Gell-Mann-Nishijima relation, 646, 681 
Generation, quark-lepton, 705 
g factor, Landé, 368 

orbital, 269 
spin, 274 

GIM mechanism, 704 
Global gauge symmetry, 688 
Glueballs, 692 
Gluons, 684, 692 

mass of, 697 
Golden Rule No. 2, K-5 
Goldstone boson, 701 
Goudsmit-Uhlenbeck postulate, 276 
Grand unification theories, 706  

Gravitational interaction, 574, 654 
Gravitational red shift, 588 
Graviton, 654 
Ground state, 102 
Group velocity, 72 
Group wave function, 182, 192 
Group of waves, 70 

Hadron, 649 
Half-life, 559 
Hall coefficient, 451, 479 
Hall effect, 451 
Halogen, 336 
Hamiltonian, 262 
Handedness, see Helicity 
Harmonic oscillator, see Simple harmonic 

oscillator 
Hartree theory, 319 
Heat capacity, 388 
Heisenberg matrix mechanics, 261 
Heisenberg principle, see Uncertainty principle 
Helicity, 577, 642, 657 
Helium energy levels, 317 
Hermite polynomials, I-5 
Heteropolar bond, 418 
Heusler alloy, 499 
Hidden variables, 79 
Hierarchy problem, 708 
Higgs particles, 702 
Hole, 451 

in filled band, 464 
and positron, 47 
and x-ray spec tra, 338 

Homopolar bond, 422 
Hydrogen energy levels, 101, 286 
Hydrogen molecular ion, 418 
Hypercharge, 674 
Hyperfine splitting, 288, 363, 512 
Hyperon, 648 
Hysterisis, 501 

Identical particles, 302 
Imaginary number, 131, F-1 
Imaginary part, F-1 
Impact parameter, 90 
Independent particle motion: 

in atoms, 320 
in nuclei, 531 

Indeterminacy principle, see Uncertainty 
principle 

Indicial equation, N-4 
Indistinguishability, 303 

and quantum statistics, 377 
Induced fission, 603 
Inelastic scattering, 593 
Inertial frame, A-2 
Infmite square well potential, 214 

ground state of, 147 
Inhibition factor, 378 
Insulator, 448 
Interactions, comparison of properties, 574, 653 
Interatomic force, 416 
Intermediate boson, 643, 653 
Internal conversion, 581 



coefficient of, 582 
Intensity, of radiation, 63 
Interval rule, 359 

in hyperfine splitting, 514 
Intrinsic conductivity, 467 
Intrinsic parity, 639 
Inversion of NH3, 209 
Ionic bond, 416 
Ionization energy, 110, 335, 336 
Irreducible, 674 
Isobar, 601, 632 
Isobaric analogue levels, 633 
Isolated band, 448, 449 
Isomer shi ft, 587 
Isospin, 631 
Isotope, 521 
Isotope effect, 486 
Isotopic abundance, 428, 437 
Isotopic spin, see Isospin 

Jastrow potential, 627 
Jet, 693 
JJ coupling: 

atomic, 356 
nuclear, 540 

J meson, 679 
Josephson effect, 491 

Kirchoff law, 6 
Klein-Gordon equation, 639 
K meson, 644, 649 

decay of, 658 
Kronig Penney model, 457 
Kurie plot, 569 

Laguerre polynomials, associated, N-5 
Lamb shift, 288 
Lambda particle, 644 
Lambda point, 402 
Landé g-factor, 368 
Landé interval rule, 359, 514 
Lanthanide, 334 
Laplacian operator, 235, 236, M-1 
Larmor frequency, 270 
Larmor precession, 270 
Laser, 291, 392 
Lattice translation vector, Q-1 
Laue diffraction pattern, 61 
Legendre functions, associated, N-1 
Legendre polynomials, N-1 
Lenz law, 493 
Lepton, 641 
Lepton number conservation, 642 
Leptoquark, 707 
Level densities, of band, 463 
Lifetime, 292, 558 
Linearity of Schroedinger equation, 132, 166 
Line spectrum, 97 

formation of, 102, 348 
Line width, 76 
Liquid drop model, 526, 549 
Liquid helium, 402 
Local gauge symmetry, 688 
Lorentz contraction,  A-8 

Lorentz transformation, A-11 
LS coupling, 356 

exclusion principle in, P-1 
selection rules for, 364 

Lyman  series, 98 

Magic numbers, 530, 561 
Magnetic dipole moment: 

atomic, 365 
nuclear, 512, 543 
orbital, 267, 268 
spin, 274 

Magnetic field strength, 492 
Magnetic induction, 492 
Magnetic quantum number, 240 
Magnetic resonance, nuclear, 392 
Magnetic susceptibility, 493 
Magnetization, 492 
Majorana neutrino, 709 
Many body effects: 

in nuclei, 545 
in solids, 484 

Many particle states, 595 
Maser, 393 
Mass deficiency, 523 
Mass formula, 528 
Mass number, 511 
Mass spectrometry, 519 
Mass unit, 520 
Mass width, 652 
Matrix element 

beta decay, 568 
electric dipole, 290 
electric quadrupole, 581 
magnetic dipole, 581 
nuclear, 569 
perturbation, 771 
and selection rules, 292 

Matrix mechanics, 261 
Matter waves, 56, 69 
Maxwell distribution, 3, 14, 377 
Mean free path, 450 
Meissner effect, 484 
Meson, 650. See also specific types 
Meson theory, 634 
Metallic bond, 445 
Metallic solid, 445 
Metastable state, 295, 393 
Michelson-Morley experiment, A-4 
Miller indices, Q-7 
Mirror nuclei, 552, 601 
Mobility, 451 
Models and theories, 509, 545 
Moderator, 606 
Molecular bond, 444 
Molecular solid, 444 
Momentum spectrum, 567 
Moseley formula, 341 
Miissbauer effect, 584 
Multiple scattering, 89 
Multiplet, 359 
Multipolarity, 579 
Muon, 641 
Muonic atom, 106 

(Ji 

Z 

m 



Muonic neutrino, 641 

Natural line width, 76 
Negative resistance, 477 
Net potential: 

atomic, 320 
nuclear, 531, 541 

Neutral current process, 703 
Neutrino, 566 

electronic, 642 
muonic, 641 
production of, 667 
tauonic, 642 

Neutrino oscillations, 709 
Neutron, 512 
Neutron number, 526 
Neutron-proton  scattering, 622 
Noble gas, 335 
Normal Zeeman  effect, 364 
Normalization, 138, 149 

in box, 182 
n-type semiconductor, 468 
Nuclear abundance, 526 
Nuclear binding energy, 524 
Nuclear charge density, 517 
Nuclear electric quadrupole moment, 514, 546 
Nuclear force, 511 

coupling constant, 638 
see also Nucleon force 

Nuclear interaction, 574 
parity conse rvation in, 595 
see also Strong interaction 

Nuclear magnetic dipole moment, 512, 543 
Nuclear magnetic resonance, 392 
Nuclear magneton, 512 
Nuclear mass, 519 
Nuclear mass density, 518 
Nuclear mass formula, 528 
Nuclear matrix element, 569 
Nuclear pairing interaction, 541 
Nuclear parity, 542 
Nuclear potential scattering, 591 
Nuclear radius, 518 
Nuclear reaction, 588 

energy balance in, 521 
Nuclear reactor, 602 
Nuclear spin, 434, 512, 542 
Nuclear spin-orbit interaction, 537 
Nuclear spin quantum number, 435 
Nuclear symmetry character, 434, 512 
Nucleon, 512 
Nucleon force, 618. See also Nuclear force 
Nucleon potential, 619 
Nucleon resonances, 651 
Nucleus, discovery of, 90 
Numerical integration, G-7 
Numerical solution of Schroedinger equation, G-1 

Observed interactions, 653 
Odd function, 142 
Old quantum theory, 2 

critique of, 118, 295 
Omega meson, 652 
Omega particle, 648 

One-electron atom: 
eigenfunctions, 243 
eigenvalues, 239 
Schroedinger equation, 235 

Operator. 
angular momentum, 255, M-2 
Laplacian, 235, M-1 
linear momentum, 145 

Operator equation, 145 
Optical excitation, 348 
Optically active electron, 349 
Optical model, 592 
Optical pumping, 396 
Optical pyrometer, 3, 19 
Optical spectra, 348 
Orbital angular momentum, 254 

and parity, 294 
quantization of, 99 
quantum mechanical conservation law for, 259 
quantum numbers, 253 
total, 355 

Orbital g-factor, 269 
Orbital magnetic dipole moment, 268 
Orthogonality, 230, 307, 344, J-2 
Ortho-molecule, 435 

Pair annihilation, 43, 45 
Pairing 

in covalent bonds, 421 
in nuclei, 541 
in superconductivity, 487 

Pairing energy, 542 
Pairing term, 527 
Pair production, 43 

cross section for, 49 
Dirac theory of, 47 

Paramagnetism, 493 
Para-molecule, 435 
Parent nucleus, 556 
Parity, 220, 294, 576 

conservation in electromagnetic interaction, 576 
conservation in nuclear interaction, 595 
intrinsic, 639 
nonconservation in beta decay, 576 
nuclear, 542 
operation, 294 
and orbital angular momentum, 294 
and selection rules, 295, 572, 580 

Partial band, 499 
Partial derivative, 127 
Particle in a box, 215 
Particle-wave duality, see Wave-particle duality 
Parton, 667 
Paschen-Bach effect, 370 
Paschen series, 98 
Pauli principle, see Exclusion principle 
Penetration of classically excluded region, 189 
Penetration distance, 190 
Periodic table, 330, 331 
Permanent magnetism, 501 
Perturbation theory: 

time dependent, K-1 
time independent, J-1 

Pfund series, 98 



Phase integral, 111 
Phase space, 111, 409 
Phi meson, 652 
Phipps-Taylor experiment, 273 
Phonon, 399, 484 

and superconductivity, 487 
Phonon wing, 585 
Phosphorescence, 295 
Photoconductivity, 467 
Photoelectric effect, 27 

cross section for, 49 
Einstein theory of, 29 

Photoelectron, 28 
Photon, 40, 650, 653 

momentum of, 35 
rest mass of, 35 

Photon gas, 34, 398 
Pi meson, see Pion 
Pickering series, 123 
Pion, 634, 653 
Pion field, 634 
Pion resonances, 651 
Planck blackbody spectrum, 17 

theory of, 13, 398 
Planck const ant, 16, 31 
Planck energy quantization, 20, 410 

and Schroedinger theory, 222 
and  Wilson-Sommerfeld rules, 111 

Planck postulate, 20 
Plasma, 609 
p-n junction, 472 
Polar molecule, 418 
Population inversion, 396 
Positron, 43, 464 
Positron emission, 564 
Positronium, 45, 106, 466 
Pound-Rebka experiment, 588 
Power series technique, I-3 
Poynting vector, 63, B-2 
Preons, 710 
Primitive unit cell, Q-2 
Principal quantum number, 115, 240, 535 
Probability density, 135, 244 

average, 252 
directional, 249 
radial, 244 

Probability flux, 196 
Product particle, 521 
Prompt fission neutron, 605 
Proper length, A-8 

 Proper time,  A-8 
 Proton, 511 

Proton-proton cycle, 609 
Psi meson, 679 
p-type semiconductor, 469 

Quantization: 
of action, 111 
of energy, see Energy quantization 
of magnetic flux, 491 
of orbital angular momentum, 99, 254 
space, 273 
of spin angular momentum, 274 

Quantum chromodynamics, 691 

Quantum electrodynamics, 288, 291, 295, 635, 
639, 685, 690 

Quantum number, 20, 100, 238. See also specific 
types 

Quantum Mate, 20,166 
Quantum statistics, 377 

Quark, 673, 676, 678 
mass of, 682 

Quark quantum number, 682 
Q-value, 522, 589 

Rad, unit, 616 
Radial node quantum number, 534 
Radial probability density, 244 
Radiancy, 4 
Radiation: 

by accelerated charge, B-1 
by atoms and Bohr model, 99 
by atoms and Schroedinger theory, 167 
intensity, 63 

Radioactive series, 560 
Radioactivity, 555 
Radius: 

atomic, 86, 327 
Bohr, 100, 246 
nuclear, 518 

Raman  effect, 432 
Ramsauer effect, 202, 229, 592 
Range of interaction: 

beta, 574, 653 
electromagnetic, 636, 653 
gravitational, 574, 653 
nuclear, 635, 653 

Rare earth, 334 
Rayleigh-Jeans blackbody theory, 6 
Rayleigh-Jeans spectrum, 12 
Rayleigh scattering, 38, 49, 55, 432 
Reaction, nuclear, 588 
Reactor. 

fusion, 607 
nuclear, 602 

Real part, F-1 
Reciprocal wavelength, 70 
Reciprocity property, 197 
Recombination current, 473 
Rectifiers, 472 
Recursion relation, I-4 
Reduced mass, 105, 233 
Reflection coefficient, 188, 196 
Regeneration, 660 
Reines-Cowan experiment, 575 
Relativistic energy, A-15 
Relativistic mass, 523, A-14  
Relativity theory, A-1 

and electron spin, 277 
and hydrogen atom, 116, 286 

Renormalization, 700 
Repulsive core, 627, 629 
Residual Coulomb interaction, 353 
Residual nucleus, 521 
Resistance, 450, 464 

negative, 477 
Resistivity, 450 
Resonances, pion-nucleon, 651 

Z 
v 
m 



00 	Resonant absorption, 584 
Rest mass, A-14 

X 	Rest mass energy, A-16 
W 	Rho meson, 652 
0 Z 	Rigid rotator, 264, 299, 423, 599 

Rotational quantum number, 424 
Rotational spectra: 

molecular, 423 
nuclear, 599 
selection rules, 424 

Ruby laser, 396 
Russell-Saunders coupling, 356 
Rutherford model, 90 
Rutherford scattering, 90, E-1 

cross-section for, 95, 591 
Rydberg  constant  

for finite nuclear mass, 105 
for hydrogen, 97 
for infinite nuclear mass, 102 

Saturation: 
in molecular binding, 422 
of nuclear forces, 524, 618, 629 

Scattering, nuclear, 88, 593 
Scattering probability flux, L-4 
Schmidt line, 543 
Schottky specific heat, 413, 506 
Schroedinger equation, 132 

and de Broglie postulate, 129 
and differential operators, 145 
and Dirac theory, 132 
and Newton law, 184 
plausibility argument for, 128 

Screened Coulomb potential, L-7 
Selection rules: 

for alkali atoms, 351 
for beta decay, 572 
and correspondence principle, 117 
for gamma decay, 580 
for LS coupling, 364 
for matrix elements, 292 
for one-electron atoms, 288 
x-ray, 340 

Self-conjugate, 641 
Self-consistency, 320 
Semiconductor, 450, 467 
Semiempirical mass formula, 528 
Separation constant, 152 
Separation of va riables, 151 

in one-electron atom Schroedinger equation, 235 
Serber potential, 624 
Series limit, 97 
Series solution of Schroedinger equation, I-1 
Shell, 246, 325 
Shell model, 534, 549 

excited states of, 599 
predictions of, 540 

Sigma particle, 648 
Simple harmonic oscillator 

classical limit of, 117, 136, 165 
eigenfunctions of, 223 
eigenvalues of, 222 
energy levels in old quantum theory, 20 
ground state probability density, 136  

ground state wave function, 133 
phase diagram, 111 
potential for, 221 
series solution of, I-1 

Simultaneity, A-5 
Single particle state, 592 
Singlet state, 312 
Single-valuedness: 

of eigenfunction and derivative, 155 
of one-electron atom eigenfunction, 237 

Size resonance, 202, 592 
Slater determinant, 309 
Solar cell, 27 
Solar constant, 23 
Solid angle, 95 
Sommerfeld model, 114 

and hydrogen energy levels, 286 
Space quantization, 273 
Specific heat, 388 

Debye, 390 
Einstein, 388 
Electronic, 406 
Shottky, 413 

Spectral line, 97, 102 
Spectral radiancy, 3 
Spectroscopic notation, 331, 339, 358 
Spectroscopy, 97 
Spherical polar coordinates, 235, M-1 
Spin: 

electron, 272, 274 
nuclear, 434, 512, 542 
total, 355 

Spin dependence of nucleon potential, 621 
Spin eigenfunction, 311 
Spin g-factor, 274 
Spin magnetic dipole moment, 274 
Spin-orbit interaction, 278 

in alkali atoms, 350, 372 
general formula for, 285 
in multielectron atoms, 353 
in nuclear potential, 537 
in nucleon potential, 629 
and Thomas precession, O-1 

Spin quantum number 
electron, 274 
nuclear, 435, 512, 542 
total, 358 

Spin resonance, electron, 369 
Spontaneous emission, 291, 393 
Spontaneous fission, 560, 603 
Spontaneous symmetry breaking, 700 
Square well potential, 209 

analytical solution of, H-1 
numerical solution of, G-1 

Standing waves, 8, 113 
Stefan-Boltzmann constant, 4 
Stefan law, 4 

and Planck spectrum, 19 
Stellar formation, 609 
Step potential (E < V0), 184 

(E > V0), 193 
Steradian, 597 
Ste rn-Gerlach experiment, 272 
Stimulated absorption, 393 



Stimulated emission, 291, 393 
Stopping potential, 28 
Strangeness, 643, 644 
Strange particles, 643 
Strong coupling constant, 699 
Strong interaction, 641, 653, 655. See also 

Nuclear interaction 
Subshell, 252, 329 

properties when filled, 252, 363 
Superconducting state, 484 
Superconductor, 484 

type II, 491 
Superfluid, 402 
Supergravity, 710 
Superheavy elements, 561 
Supernova, 611 
Superposition principle, 64 
Supersymmetry theory, 710 
Surface term, 527 
Susceptibility, 493 

paramagnetic, 495 
SU (2) theory, 673 
SU (3) theory, 674, 678 
Symmetric eigenfunction, 305 
Symmetry character, 310 

nuclear, 435, 512 

Target nucleus, 521 
Tau particle, 647 
Tauonic neut rino, 642 
Tauons, 642 
Taylor experiment, 77 
Thermal current, 473 
Thermal equilibrium, 381, C-1  
Thermal radiation, 2. See also Blackbody 

radiation 
Thermionic emission, 407 
Theta particle, 647 
Thomas frequency, O-3 
Thomas precession, O-1 
Thomson experiment, 58 
Thomson model, 86 
Time, flow of, 660 
Time dilation,  A-8 

 Time-independent Schroedinger equation, 150 
and classical wave equation, 203 
and energy quantization, 156 
plausibility argument for, 154 

Time reversal, 657 
Total angular momentum, 281, 355 
Total internal reflection, 203 
Total magnetic dipole moment, 365 
Total orbital angular momentum, 355 
Total radial probability density, 323 
Total relativistic energy, A-16 
Total spin angular momentum, 312, 355 
Transistor, 474 
Transition group, 336 
Transition probability, K-4 
Transition rates: 

for alpha decay, 207 
for beta decay, 570 
for electric dipole radiation, 290 
for gamma decay, 579 

and selection rules, 288, 289 
Transmission coefficient, 196 
Triangle anomaly, 705 
Triplet state, 312 
Tri tium, 571 
Tunnel diode, 209, 475 
Tunneling, 199, 201, 558, 603 
Type II superconductor, 491 

Ultraviolet catastrophe, 13 
Uncertainties, 150 
Uncertainty principle, 65 

consequences of, 77 
and de Broglie postulate, 72 
and infinite square well, 150. 
interpretation of, 66 
and stability of atom, 248 
and statistical nature of qu antum theory, 139 
verification of, 586 
and wave-particle duality, 191 
and zero-point energy, 217 

Unitary group, 701 
Unitary symmetry, 673 
Unit cell, 448, Q-1 

primitive, Q-2 
Universal 3 °K blackbody radiation, 20, 609 

Vacuum polarization, 699 
Valence, 336 
Valence band, 450 
Van Allen belts, 42 
Van der Waals attraction, 444 
Vector meson, 652 
Vector model, 258, 283 
Vector potential, 689 
Vibrational quantum number, 426 
Vibrational spectra, 427 

molecular, 426 
nuclear, 600 

Vibration-rotation spectra, 426 
Virial theorem, 263 
Virtual particle, 634 
Volume term, 527 

W± particles, 702 
Wave function, 64, 134, 166 

interpretation of, 64, 134 
and probability density, 135 

Wave group, 70 
Wave number, 129 
Wave velocity, 72 
Wave-particle duality, 62 

and matter, 56 
and radiation, 40 

Weak interaction, 641, 647, 653. See also Beta 
decay 

Weak isospin, 702 
Weak mixing angle, 702 
Width of energy levels, 583 
Wien displacement law, 4, 5 

and Planck spectrum, 19 
Wilson-Sommerfeld quantization rules, 111 
Work function, 30, 408 
Wu experiment, 575 



Xi particle, 648 
	

Yukawa potential, 638 
X-ray, 32, 40 
	

Yukawa theory, 634 
X-ray continuum spectrum, 41 

X 	X-ray line spectrum, 337 
	

Z° particle, 702 
Q 	X-ray production, 40, 	 Zeeman effect, 274, 364 
Z 	 42, 337 
	 Zero point energy, 217, 429 

X-ray selection rules, 340 
	 of electromagnetic field, 291 

X-ray tube, 41 
	 and stability of atom, 248 

Zero potential, 178 
Yang-Mills theory, 690 
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Useful Constants and 
Conversion Factors 

Quoted to a useful number of significant figures. 

Speed of light in vacuum 
Electron charge magnitude 
Planck's constant 

Boltzmann's constant 

Avogadro's number 
Coulomb's law constant 

Electron rest mass 
Proton rest mass 
Neutron rest mass 
Atomic mass unit (C 12  - 12) 

c = 2.998 x 10 8  m/sec 
e = 1.602 x 10 -19  coul 
h = 6.626 x  10 -34  joule-sec 
h = h/2n = 1.055 x 10 -34  joule-sec 

= 0.6582 x 10 -15  eV-sec 
k  =1.381  x 10 -23  joule/°K 

= 8.617 x 10 -5  eV/ °K 
No  = 6.023 x 1023/mole 
1 /47cE 0  = 8.988 x 109  nt-m2/coul2  

m e  = 9.109 x 10 -31  kg 
mp  = 1.672 x 10 -27  kg 
mn  = 1.675 x 10 -27  kg 
u = 1.661 x 10 -27 kg= 

0.5110 MeV/c 2 
 = 938.3 MeV/c2 

 = 939.6 MeV/c2 
 931.5 MeV/c2  

Bohr magneton 
Nuclear magneton 
Bohr radius 
Bohr energy 

Electron Compton wavelength 
Fine-structure constant 
kT at room temperature 

µ b  = eh/2m,  = 9.27 x 10 -24  amp-m2  (or joule/tesla) 
= eh/2m p  = 5.05 x 10 -27  amp-m 2  (or joule/tesla) 

ao  = 47rEO h2/mee2  = 5.29 x 10 -11  m = 0.529 A 
E1 = — mee4/(47cE0) 22h 2  = —2.17 x 10 -18  

joule = —13.6 eV 

Ac = h/mec = 2.43  x  10 -12  m = 0.0243 A  
a = e2 /47cE Ohc = 7.30 x 10 -3  ^ 1/137 
k300°K = 0.0258 eV ^ 1/40 eV 

1 eV = 1.602 x 10 -19  joule 

1A =10 -10 m 

1 joule = 6.242 x 10 18  eV 
1F=10 -15 m 	 1 barn (bn) = 10 -28  m2 
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