OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE
 DEPARTMENT OF MATHEMATICS
 B.Sc. (Mathematics) Degree Mid-Semester Examination
 Harmattan Semester, 2021/2022 Session
 MTH 101-Elementary Mathematics I

Time Allowed - 1 Hour

Type 1

Instructions: Use HB pencils ONLY. Write and Shade your Names and Registration Number in the spaces provided on the OMR sheet. Shade the Question type. Attempt all questions: Shade the option \mathbf{E} if none of the options A-D is correct.
All notations have their usual meanings.

1. If the universal set $\mathcal{U}=\mathbb{R}$, and
$A=\left\{x \in \mathbb{R}: x^{2}+1=0\right\}$. Which of the following statement(s) is/are not true?
I. A is a finite set
II. $A \neq\{-\sqrt{-1}, \sqrt{-1}\}$
III. $A=\{ \}$
IV. $A \subseteq \mathbb{R}$
V. $A^{c} \neq \mathbb{R}$.
(A) I. and III.
(B) II.
(C) IV.
(D) V.

Solution

Answer: D
$x^{2}+1=0$ has no real solution. Thus, A is an empty set. But $\mathbb{R}=\mathcal{U}$, so that $A^{c}=\mathbb{R}$. Hence, $A^{c} \neq \mathbb{R}$ is not true.
2. The following define the symmetric difference $A \Delta B$ of sets A and B except
(A) $(A-B) \cup(B-A)$
(B) $\left[\left(A \cap B^{c}\right) \cup B\right] \cap\left[\left(A \cap B^{c}\right) \cup A^{c}\right]$
(C) $(A \cap B)-(A \cup B)$
(D) $(A \cup B) \cap\left(A^{c} \cup B^{c}\right)$

Solution

Answer: C
$A \Delta B \neq(A \cap B)-(A \cup B)$
3. The cardinality of an arbitrary finite set X is denoted by $n(X)$. Which of the following from I. to III. is/are true?
I. $n(A)=n(A-B)+n(A \cap B)$
II. $n(A \cup B)=n(A-B)+n(A \cap B)+n(B-A)$
III. $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.
(A) I. only
(B) III. only
(C) I. and III. only
(D) I., II. and III.

Solution

Answer: D
4. Let $A=\{1,4,9\}$ and $B=\{-3,-2,-1\}$. If the propositional function $p(x, y)$ on $A \times B$ means $x=y^{2}$. Which of the following from I. to IV. about the relation $f=(A, B, p(x, y))$ is/are true?
I. f is a function from A to B
II. f is not a function from A to B
III. Solution set of f is

$$
\{(-3,9),(-2,4),(-1,1)\} .
$$

(A) I. only
(B) II. only
(C) I. and III. only
(D) II. and III. only

Solution

Answer: A
f is a function from A to B.
5. If A and B are respectively the largest possible domains of the real-valued functions f and g of real variable x defined by

$$
f(x)=\frac{x-3}{x^{2}-9} \quad \text { and } \quad g(x)=\frac{1}{x+3} .
$$

Which of the the following reasons from I. to III. justify why f is not the same as g ?
$\begin{array}{lll}\text { I. } A \neq B & \text { II. } A \subset B & \text { III. } B \subset A\end{array}$
(A) I. only
(B) I. and II. only
(C) I. and III. only
(D) II. only.

Solution

Answer: B
Domain of f is $A=\{x \in \mathbb{R}: x \neq-3$ and 3$\}$
Domain of g is $B=\{x \in \mathbb{R}: x \neq-3\}$
Clearly, $A \neq B$ and $A \subset B$.
6. Evaluate N, given that $\sum_{k=0}^{N}\left(5 \times 2^{k}\right)=315$.
(A) 8
(B) 7
(C) 6
(D) 5

Solution

Answer: D
Clearly, this is a geometric series with first term $a=5$, common ratio $r=2$. The sum is given by

$$
\begin{aligned}
S & =a \frac{\left(r^{N+1}-1\right)}{r-1}=315 \\
\Longrightarrow 315 & =5\left(2^{N+1}-1\right) \Longrightarrow N=5 .
\end{aligned}
$$

7. If $\sum_{k=1}^{N} U_{k}=\frac{3 N^{2}+N}{2}$. Evaluate U_{15}.
(A) 345
(B) 144
(C) 45
(D) 44

Solution

Answer: D
Clearly,
$S_{15}=\frac{3 \times(15)^{2}+15}{5}=345$
and $S_{14}=\frac{3 \times(14)^{2}+14}{2}=301$.
$U_{15}=S_{15}-S_{14}=345-301=44$.
8. Evaluate N, if $\sum_{n=3}^{N}(18-5 n)=-116$.
(A) 10
(B) 9
(C) 8
(D) 7

Answer: A
Clearly, series is an arithmetic series with ($N-2$) terms. The sum is given by
$S_{N-2}=-116=\frac{(N-2)}{2}(2 \times 3+(N-3) \times(-5))$
$\Longrightarrow-232=(N-2)(21-5 N) \Longrightarrow N=10$.
9. Suppose α and β are the roots of the equation $x^{2}-2 s x+3 s^{2}+r^{2}=0$, given that s and r are real numbers. Then
(A) $\alpha, \beta \in \mathbb{R}$ and $\alpha \neq \beta$
(B) $\alpha=\beta$
(C) $\alpha, \beta \in \mathbb{C}-\mathbb{R}$
(D) α and β are undefinable

Solution

Answer: C
The discriminant $D \equiv b^{2}-4 a c$ is

$$
D \equiv 4 s^{2}-4\left(3 s^{2}+r^{2}\right)=-\left(8 s^{2}+4 r^{2}\right)<0
$$

Hence, $\alpha, \beta \in \mathbb{C}-\mathbb{R}$.
10. Suposse α and β are the roots of the equation $5 x^{2}-3 x-1=0$. Which of the following is the value of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$?
(A) $-\frac{72}{25}$,
(B) $-\frac{18}{5}$
(C) $-\frac{9}{5}$
(D) $-\frac{3}{5}$.

Solution

Answer: A
Recall that $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ $\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=-\frac{72}{25}$,
where $\alpha+\beta=3 / 5$ and $\alpha \beta=-1 / 5$.
11. x in the inequality $\frac{1}{x-1}<2$ satisfies two of the following inequalities:
I. $x-1<0$
II. $(x-1)(2 x-3)<0$
III. $(x-1)(2 x-3)>0$
IV. $2 x-3<0$
(A) I. and II. only
(B) III. and IV. only
(C) I. and III. only (D) II. and IV.

Solution

Answer: C

Solution

The inequality $\frac{1}{x-1}<2$ is equivalent to

$$
\begin{gathered}
\frac{(x-1)}{(x-1)^{2}}<2 \Longrightarrow(x-1)<2(x-1)^{2} \\
\Longrightarrow(x-1)(2 x-3)>0
\end{gathered}
$$

We thus have

$$
\begin{gathered}
x<1 \text { and } x>\frac{3}{2} \\
\Longrightarrow x-1<0 \text { and }(x-1)(2 x-3)>0 .
\end{gathered}
$$

12. Evaluate the values of the constants a and b for which

$$
\frac{6 x^{3}-8 x+5}{a x+b}=3 x^{2}+6 x+8+\frac{37}{a x+b} .
$$

(A) $a=2, b=-4$
(B) $a=2, b=2$
(C) $a=2, b=4$
(D) $a=2, b=-2$

Solution

Answer: A
The equation implies

$$
\begin{gathered}
6 x^{3}-8 x+5= \\
3 a x^{3}+6 a x^{2}+8 a x+3 b x^{2}+6 b x+8 b+37 .
\end{gathered}
$$

By comparison, we have

$$
a=2 \text { and } b=-4
$$

13. A solution of the equation

$$
\frac{x^{3}-2 x^{2}-7 x+12}{x-3}=0
$$

is
(A) $x=3$
(B) $x=-2$
(C) $x=\frac{-1+\sqrt{17}}{2}$
(D) $x=\frac{1-\sqrt{17}}{2}$

Solution

Answer: BONUS

Clearly, we have

$$
\begin{gathered}
\frac{x^{3}-2 x^{2}-7 x+12}{x-3}=x^{2}+x-4=0 \\
\Longrightarrow x=\frac{-1 \pm \sqrt{17}}{2}
\end{gathered}
$$

14. If a and b are non-negative real numbers and $a^{2}+b^{2}=23 a b$, then $\log a+\log b$ is
(A) $2 \log \left(\frac{a+b}{5}\right)$
(B) $2 \log \left(\frac{a+b}{23}\right)$
(C) $\log \left(\frac{23}{a^{2}+b^{2}}\right)$
(D) $\log \left(\frac{a^{2}+b^{2}}{5}\right)$

Solution

Answer: A
Note that

$$
\begin{gathered}
(a+b)^{2}=a^{2}+b^{2}+2 a b=23 a b+2 a b=25 a b \\
\Longrightarrow a b=\frac{(a+b)^{2}}{25} \\
\Longrightarrow \log a+\log b=2 \log \left(\frac{a+b}{5}\right)
\end{gathered}
$$

15. The expression

$$
\frac{x^{3}-x^{2}-3 x+5}{(x-1)\left(x^{2}-1\right)}
$$

has the form $(A, B$ and C are constants)
(A) $1+\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}$
(B) $1+\frac{A}{x-1}+\frac{B}{x-1}+\frac{C}{x+1}$
(C) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}$
(D) $\frac{A}{x-1}+\frac{B}{x-1}+\frac{C}{x+1}$

Solution

Answer: A
16. If $a, b>0$ and $a \neq b$, solve for x satisfying $a^{x}=b^{x-y}$ and $2-y=0$.
(A) $x=\frac{-2 \log b}{\log b / a}$
(B) $x=\frac{2 \log b}{\log a / b}$
(C) $x=\frac{2 \log b}{\log b / a}$
(D) $x=\frac{-2 \log b}{\log a b}$

Solution

Answer: C
$a^{x}=b^{x-2} \Longrightarrow x \log a=(x-2) \log b$
$x=\frac{2 \log b}{\log b / a}$.
17. Evaluate the imaginary part of $\sqrt{40+42 i}$, where $i^{2}=-1$.
(A) ± 3
(B) ± 5
(C) ± 7
(D) ± 9

Solution

Answer: A

$$
\begin{aligned}
\sqrt{40+42 i} & =x+i y, \text { where } x, y \in \mathbb{R} \\
& \Longrightarrow(x+i y)^{2}=40+42 i \\
& \Longrightarrow x^{2}-y^{2}=40, x y=21 \\
& \Longrightarrow x= \pm 7, y= \pm 3
\end{aligned}
$$

Hence, imaginary part is $y= \pm 3$.
18. If $x, y \in \mathbb{R}$, find x satisfying the equation

$$
x(3+4 i)-y(1+2 i)+5=0
$$

(A) -2
(B) -3
(C) -4
(D) -5

Solution

Answer: D
The equation $x(3+4 i)-y(1+2 i)+5=0$ implies solving the system of equation

$$
3 x-y=-5, \quad 4 x-2 y=0
$$

The value of $x=-5$.
19. If a and b are two real numbers such that $a+b=1$. Which of the following inequalities are true?
(A) $4 a c \leq 1$ and $a^{2}+b^{2} \geq 1 / 2$
(B) $a^{2}+b^{2} \leq 1 / 2$ and $4 a c \geq 1$
(D) $4 a c \geq 1$ and $a^{2}+b^{2} \geq 1 / 2$
(D) $4 a c \leq 1$ and $a^{2}+b^{2} \leq 1 / 2$

Solution

Answer: BONUS

Recall that $a^{2}+b^{2} \geq 2 a b$ and it is given that $a+b=1$. Thus, we have

$$
\begin{aligned}
a^{2}+b^{2}+2 a b=1 & \Longrightarrow a^{2}+b^{2}=1-2 a b \geq 2 a b \\
& \Longrightarrow 4 a b \leq 1
\end{aligned}
$$

Also, $a^{2}+b^{2}=1-2 a b \geq 1-1 / 2=1 / 2$.
20. Suppose "." is the multiplication sign on any pair of real numbers (eg. $2 \cdot 5=10$). Which of the following is true concerning the solution x of the equation

$$
0 \cdot x=0 ?
$$

(A) x is undefinable
(B) Equation has infinite number of solutions
(C) Equation has only one non-zero solution
(D) The only solution is $x=0$

Solution

Answer: B

