COURSE OUTLINE CHM201

STAFF	AREAS TO COVER
Dr. Ayeni	Atomic Theory (From Classical Theory to Quantum Theory) and Molecular
	Orbital Theory
	Experiments associated to the discovery of electrons, protons, nucleus and
	neutrons (such as Rutherford's experiments, JJ Thompson's experiments,
	Milliken oil drop experiment and the determination of charge-to-mass ratio
	(e/m), radioactive particles). Moseley's Law, Limitation to classical theory.
	Birth of quantum theory: Max Plank – interaction with light and matter, Albert
	Einstein - relationship between matter and energy, Bohr's theory and it
	limitation. De Broglie- dual nature of electron, Heinsberg's – Uncertainty
	principle, Schrøndinger's equation and derivation of quantum numbers.
	Quantum numbers and the significance of each of the numbers and their
	theoretical determinations. Molecular orbital theory – electronic
	configurations and deviations, molecular energy profiles. Homonuclear and
	heteronuclear combinations, bond order, possibility of existence and non-
	existence of molecular compounds and ions. Concept of effective nuclear
	charge, factors affecting the magnitude of shielding effect, calculation of σ and
	Z* using Slater's rule.
Dr. Doherty	Periodicity of Chemical Properties
	Periodic Law, arrangement of electrons on the periodic table, determination of probable location of elements on the periodic table
	Trends and factors affecting the following on the periodic table: atomic size
	atomic volume atomic and ionic radii ionization potential electron affinity
	electronegativity, polarizing power and polarizability and Faian's rule.
	Chemical Bonding III
	Need for bonding and conditions which they occur. Definitions and types of on
	bonding (Intramolecular- ionic, covalent [single, double, triple bonds], dative
	bond, metallic bond; intermolecular – Van der Waals forces, dipole-dipole
	interactions, hydrogen bonding) their occurrence with relevant examples;
	polarity of these bonds. Comparison between the types of bonds and their
	properties using adequate examples.
	Properties of ionic and covalent compounds with suitable illustrations; factors
	favouring the formation of ionic and covalent bonds, structure of ionic and

	covalent compounds. Peculiarity of metallic bonds and properties attributed to
	it as displayed in their malleability and ductility.
Dr. George	Introduction to Symmetry
	Using VESPR theory to predict shape of molecules. Symmetry elements and
	operations - identity operation (E), rotation operation (C_n), reflection (σ),
	inversion (i), improper rotation (S_n) and other symmetry operations. Point
	group - groups of low and high symmetry (with rules guiding their assignment)
	Order of the groups
	Introduction to Coordination Compounds II
	Definition of complexes, ligand, spectator ions, primary and secondary valences
	Denticity of ligands (mono-, bi-, tri-, poly- and ambidentate)
	Nomenclature of coordination compounds
	Properties of coordination compounds
	Werner's coordination theory
	Coordination number and its significance in geometry of the coordinated
	compounds with appropriate examples and structure
	Isomerism of coordination complexes: cis-, trans-, fac- and mer- isomers
	Introduction of CFT, spectrochemical series, magnetic properties, spin
	Lability and inertness of complexes and factors that affect lability
Dr. Aiyelabola	Acids, Bases, Salts and Ions in Aqueous Solutions
	Brønsted and Lewis acids and bases- difference between Brønsted and Lewis
	acids and bases with examples; Definition- acid-base properties of water.
	Definition with examples of Hard and Soft acids and bases; conjugated acid-
	base pair as described in a given chemical equation and conditions under which
	they occur.
	Inorganic Application of Standard Reduction Potentials
	Redox reactions – half cell reactions
	Electrode potential and factors affecting the magnitude of electrode potential
	Standard hydrogen electrode, standard electrode potential,
	Electromotive force (e.m.f.), ΔG , E°, K
	Electrode potential as related to the formation of coordinated compounds:
	(a) The effect of complex formation or precipitation on M^{2+}/M^0 reduction
	potential
	(b) Modifying the relative stabilities of different oxidation state of a metal
	(c) Stabilizing species against disproportionation
	(d) Potential diagrams (calculations must be involved in the examples given)