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Introduction

The book, Physics for Universily Beginners, Volume One, is a
first year text on University Physics, It covers topics such as
Mechanics, Properties of Matter and Thermal Physics. Physics
for University Beginners Volume Two dealt with Waves, Optics,
Electricity, Magnetism and Modern Physics.

In order to enhance students' understanding of the course, we
have provided several questions and answers on the subject. The
questions and answers include solutions to past questions from
relevant examinations and the lesson note of the author,

[n writing this book, due cognizance has been taken of the fact
that a significant proportion of University first year students are
not familiar with some aspects of elementary Mathematics. As
such, the mathematical aspect of each solution has been carefully
simplified for easy understanding.

This book has been written mainly as an aid fo first year students
of Nigerian Universities and JUPEB students of the University of
Lagos who have been admitted into the following Faculties:
Science, Medical Sciences, Engineering, Environmental
Sciences and Education. Students studying for allied
examinations like Joint University Preliminary Examination
Board (JUPEB), Interim Joint Matriculation Board Examination,
University Matriculation Examination, Polytechnics and

Colleges of Education Examinations will also find this book very
useful.

This book could not have been realised without the support of
many people. I would like to thank Dr. Elijah Oyedola Oyeyemi
in particular and all academic staff of the Department of Physics
University of Lagos for their support and many valuablé
comments. | would like to thank Adewoyin Adeyinka and staffof
MOSRON communications for reviewing the manuscript.
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1.0 Introduction

Physics is the branch of science concerned with the natur

properties of matter and energy. It is a natural science basec
experiments. measurements and mathematical analysis with
purpose of finding quantitative physical laws for everything fi

nanoworld of the microcosmos to the planets, solar systems
galaxies that occupy the macrocosmos. In performing experimer
Physics, we come across several quantities

In Physics. physical quantities can be divided into two gi

fundamental and derived quantities. In this chapter we will disc
several physical quantities and their units.

m

1.1 Fundamental and Derived Quantities

As you may know, Physics is an experimental science whicl
measurements. The results of measurements are described
of numbers. A physical quantity is usually used to qu
describe a physica] Phenomenon. In the laboratory, you
required to take measurements and you are expected to rei
result (the physical quantity being measured) using number:
:"“’3““?“_13“}; ';’II!\ Physics are made in term
stan - there are several systems of
used 0"‘5!‘1'1& Years. One of these aglfed ;
°m of unis” and is abbreviated
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for time is the second and the standard for mass is the kilogram. In
this book, we will use the S.I units. Another metric system is the
CGS system. In this system, the standard of length is the centimetre,
the standard for time is the second and the standard for mass is the

gram. You will also come across the CGS system in this book. ." :F !
There are seven fundamental/base units which are listed in Table 1.1 i
below with their corresponding physical quantities. §
Tablel.1: Fundamental or base quantities and units ;1

S/N | Physical Quantity Unit Symbol 1

I Mass kilogram kg

2 Length metre m

3 Time second S

4 Electric current ampere A

5 Thermodynamic temperature kelvin K

6 Luminous intensity candela cd

7 Quantity of substance mole mol

There are standards that define these fundamental units. These
standards are chosen so that they can be readily reproducible.

i. One kilogram (kg) is the mass of a particular platinum-
iridium cylinder, kept at the International Bureau of
Weights and Measures, Sevres, France.

ii. The metre (m) is defined as the length equal to
1,650,763.73 wavelengths in vacuum of the orange light
from Krypton-86 atom.

ii. The second (s) is defined as the time interval or duration A

of 9,192,631,770 periods or cycles of the radiation
corresponding to transition between the two hyperfine
levels of the ground state of the cesium-133 atom.

S
: R R

iv. The ampere (A) is a constant current t ;“!r‘E-"-ﬁ“t . 4




V. The kelvin (K) is defined as the fraction 1/273.16 i,-; .
thermodynamic temperature of the triple point of s

(273.16 K).

vi. We can define the candela (cd) as the luminous intensity,
in the perpendicular

lxlO_s m
6

freezing platinum, under a pressure of | atmosphere,

Vil The mole (mol) is the amount of a substance of a system
which contains as many as there are carbon atoms in
0.012kg of carbon-12.

Derived quantities are the quantities that are defined in terms of -._;,
seven fundamental quantities.
combining base units using S.1. system of units. Some derived
have special names and symbols which can themselves be used to
obtain other derived units. Examples of derived units are gwen in

Table 1.2.

Tablel.2: Derived units with special names

direction,

of a blackbody at the temperature J

Derived

of a surface of

units are obtained

S/N Physical Quantity Unit Special Name/Symbol
1 Area m" square metre '
2 Volume m’ cubic metre
3 Density kgm™ | kilogram per cubic metre
4 Speed/Velocity ms”’ metre per second

5 Acceleration ms™ metre per second

6 Force kgms™ | newton (N) 3

7 Impulse kgms"' | newton second (Ns)

8 Momentum kgms™' | newton second (

9 Surface tension N/m newton per metre (l

10 Pressure Nm? | pascal (pa) '

11 Energy/work Nm joule )

12 Power/radiant flux J/s watt (W)

13 Frequency s

14 Electric charge As

15 .| Capacitance C/V

16 Electric resistance |




17 Conductance
18 Magnetic flux
19 Magnetic flux density

20 Inductance
21 Luminous flux
22 Illumination

Table 1.3. They have been adopted because of the link
geometrical and physical descriptions of events.

Tablel.3: Supplementary Units

S/N | Quantity Unit Symbol  » e TEE .ri
1 Plane angle | radian rad "'"ﬂ_ e
2 | Solid angle | steradian | sr ol

1.2 Multiples and Submultiples of S.I. Unlts _,

Prefixes are used to form multiples and submultiples ofS
shown in Table 1.4. . 3
Tablel.4: Multiples and prefixes for units Sibesaai
S/N_ | Factor [ Prefix | Symbol |

1024 v yotta iy
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15 10~ nano n
16 107" pico P
17 107" femto

18 1 atto

19 1072 zepto

20 10 yocto |y

For example, using the prefixes we see that 5 MV =5 000 000 V and
SNm =5 x 107 m. Note that the abbreviations for the multiples ("
and greater are capitalised, whereas the abbreviations for the smaller

multiples are in lower casc,

1.3 Dimension

Dimension as a tool in Physics denotes the physical nature of a
quantity. Dimension shows the way in which the derived quantity is
related to the base quantities, 1.e. dimensions of any other quantity
involve one or more of the fundamental dimensions. Length, mass
and time are the fundamental dimensions. You could measure the
amounts of matter in an object and express the units as kilogram or
gram, but the quantity would still have the dimension of mass. The
dimensional quantities for length, mass and time are expressed
respectively as L, M and T. Table 1.5 shows the dimensions of some

derived quantities.

Tablel.5: Dimensions of derived units

S/N Physical Quantity | Unit | Dimension

| Area m” L-

2 Volume m’ %

3 Density kgm” | ML”

- Speed/Velocity ms” LT

5 Acceleration ms™ g

6 Force kgms™ | MLT?

7 Impulse kgms”' | MLT"

8 Momentum kgms' | MLT"

9 Surface tension N/m | MT?

10 Pressure Nm? | ML'T?
5

|
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Comparing the powers on both sides

ForT: 1=-2y
1

y = -JEZ- ..

| :

Forl: O=x4y=x-+ 3

Activity 1 Physical Quantities and Units

1.1.  What are the correct dimensions of energy and force?

A. MLT™", MLT

B. MLI’T, MLT

C. ML T, MLT?

D. MI*T™, MI*T?

Solution

Energy = mgh = kgms?m = kgm’s?= ML*T™
Force = ma = kgms?= MLT™

The correct option is B.
\
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oy |
F o kegms a3 2 T .
PrassureP=—2—5—F kgm™'s" = ML1 ..¢

A m- |
The correct option is A.

1.4. The velocity v ol the wave set-up by plucking a stretched
string is found to depend on (he tension 7" in the string, its length /

. - . Ny 2 ’
and its mass m, and is given by v=k7 ‘1Y m~ where x, y, z are
unknown numbers and & is a constant. Find the values of x, y, and z,
A. Vs - A B. -, %A, C.-Y%, Y, -2 D. 4, %%
Va

Solution
v=kT"1"m"

Dimensionally:
LT = k(MLT™2) x I x M
LT-I — kM.‘t+: XL"-P'P X:F—B.r

I=V2’y=vzsz='yﬂ

Comparing:
For T.-1=-2x
xX="1
Forl: 1=x4y
y=l=-lA=ls :
ForM:0=x+:z ;
O=%+z 1
z=-Y a

The correct option is D.
1.5. Use dimensional analysis to determine the value of y in the
relation 7" = ka*p”y*, where T is the period of vibration, @ is the -4

radi}ls, p is the density and yis the surface tension.
A. -/ B. 2 C.3/2 D. -3/2

AT :



Solution
T=ka'p'y’

Dimensionally:

T=kL x (ML) x (M2
T=kM" x L7 x 7%

Comparing:

ForT: | =-2z
z=-Y%
ForM.0=yp+:z
0=y+(-2)
P '

The correct option is B.

"
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1.6. Given that the period of oscillation of a pendulum is given by
T =km'l” ¢” where k is a constant. Which of the following is

correct?

[ 2 1
AT=k [— B T=—_|—
& T\NE

_2 g

T\l
Solution

T — k”IT !}"g:

Dimensionally:
T =kM*x ' x(LT %)
T = kM.rLy+: T-Z:

Comparing;

10

C. T=27r‘jz D.
g
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ForT:I=-2:_—b::—%

ForM: ) =x
Forl: O=p+s=y = %

L/

~ 1
)y i =
F=fmltg 2

T:k\ﬁ
g

The correct option is A.

1.7. Which of the following relates period of vibration (7)) with the
following: radius «, density p and surface tension Y.

¥ W =

A T=kaply -

) VY

B. T'=ka 2 p/ 2y

C.T = ka“%p%}f%

-

D T = kcr%p—%;r /

NN

E.T = kaﬁ%p_%;y ¢
Solution

Let 7' = ka' p’y-
Dimensionally:

T = kL (ML) (MT-2)
T = kMY =2s

Comparing;

For 7- l:—-23::-_;.:=_%

11
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4

The correct option is C.

1.9. Identify which of the quantities listed from (i) to (vii) are

derived quantities: | |
(i) mass (ii) length (iii) electric current (iv) density (v) Temperature

(vi) velocity (Vi) energy
A. (D). (1) (i) & (v)

B. (iv). (v). (vi) & (vii)
C. (iv), (vi) & (vii)

D. all

Solution

The correct option is C.

1.10. The period T of a loaded spring oscillator depends on its mass

m and spring constant &, as follows: 7" = ck*m" where x and y are
integers and ¢ is a dimensionless constant. Find the values of x and y.

11 11 1ol 11
A= - B. —,— S N, sl 2
Y 5 B =iyt D. =3

Solution

T'=ck*m"
Dimensionally, we have:
T =c(MT2) A

I =cM™ 2
Comparing:

ForT: | =25

13
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The correct option is D.

1.11. Which of the following unit is equivalent to kgm's??
A.Ns” B. Pa 65! D. Nm™ E.Js'

Solution

The correct option is B.

1.12. Which of the following are the dimensions of pressure and
torque respectively?

A. MI’T*and MLT™ B. MLT ?and MLT™
C. ML'T?and ML*T"! D. ML'Tand ML’T™
Solution
Pressure P = E

A

[P]= —k-gﬂ =kgm™'s? =ML'T"? - o
m

Torque t = force x perpendicular distance

[7]=kgms™ x m = kgm*s™ = ML’T"

Han Nt a3 : ‘h ]

"The correct option is D. 2 “93 B
N el @riat B aql
ummary of Chapter 1 o saumdiv T30 s

Q.' A

hapter 1, you have learnied AHA TR, ; meﬁ At &.
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nternational system of units™ and is abbreviated ag 4§, » .
units can bo divided into three classes: base units,
units, and supplementary units, :

There are seven fundamental/base quantities/units: ﬂftf_
length (m), time (s), cleetric current (A), thermod
temperature (K), luminous intensity (cd).

There are standards that define all of the fundamental units

These standards are chosen so that they can be req
reproducible,

Derived units are obtained by combining base units using S|
system ol units. Some derived units have special names

symbols which can themselves be used to obtain other deji‘f'
units,

The third class of units is the supplementary units. They have
been adopted because of the link between geometrical and
physical descriptions of events,
The dimensional quantities for Jer

expressed respectively as L, M an
4 procedure by which the dj

equation may be checked and also to check whether

equation that has been derived or is being used in solving a
problem has the correct form. s

1gth, mass and time
d 7. Dimensional analysis
mensional uniformity of an;
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D. the ohm

1.10. Wh.ichl of the following is NOT a fundamental 8.1, unit?
A. Metre .+ B.Ampere C. Mole 2, Newton

1.11. In a gas experiment, the pressure of the gans is plotied agsiny |
the reciprocal of the volume of the gas at a constant temperalure, the

unit of the slope of the resulting curve is

="y

A. newton B. newton/m C. joule

D. newton/m’ | i
|

1.12. Which of the following is a derived unit?

A. Kilogramme  B. Melre C. Kelvin D. Newton |

1.13. Which of the following units is equivalent to k gm/s?

‘A Jjs B.Ns CNs  D.Nms

e correct 8.1 units of the

1.14. Which of the following are th
11, Nm (Torque) i,

quantities indicated? I. Ns (Impulse)
Watt/s (Power) IV. kgmfsz (Momentum).
A.Iland Il only

B. [, 1l and Ill only | - 1
C.IIlandIVonly
D. I and III only |

and V is volume hﬁs the

i

s e i i e oyt

1.15. The product PV where P is pressure

same unit as
A.density  B.power C.momentum D. encrgy

1.16. Which of the following are derived units? (I) Second (m
Newton (111) Kilogram (IV) Ampere (V) Joule.

A.land Il only

B. Il and V only

C.1ILL, 1V and V only

D. I only

17
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1.17. Which of the following are derived QUantltles‘? 1) Force (Il
Temperature (1) Area (1V) Pressure (1) 1))

Al w* 1V only
B 1L Il and IV only
C. 1 and 111 only
D. 1. 1l and IV only

1.18. Which of the following is/are supplementary unit(s)? (1) Kelvin
(A1 Newton (HD Second (1V) Radian

A.land 1l onhy

B. 1\ onby

C.land Il only

D. 1. I and 1\ only

1.19. The unit of momentum 1s
Als B. N3 C. Kkgm/s D. Nms

1.20. Which of the following is the dlmensmn of power?
AMLT B.MLT™ C. ML'T? D. ML*T’

L31. In which of the following physical quantities are the units
correctly indicated? (1) Weight [N] (11) Power [J/s] (11T) Momentum
[kem's] (IV) Acceleration [N/kg]

A.land Il only

B. Il and IV only

C.1, Il and l11 only

D. L 1L, 11l and IV

1.22. The watt is equivalent to
A.Nm's B.Js C. Lom 5” D. N/s

1.23. Which of the following quantities has the same unit as the
kilowatt - hour?

A. Force x time

B. Force x distance

C. Force x velocity

D. Force x acceleration

18



3

-

[Physics for University
[Scalars

SCALARS AND
VECTORS

BeEianen]
and Vccim]

2.0 Introduction

Apart from classifying physical quantities into fundamental, derived
and supplementary quantities, we can also classify them into either
scalar or vector quantities. Scalar quantities are quantities that can be
described completely by their magnitudes without directions,
Examples of scalars include: mass, area, volume, density, time,
temperature, work, energy, power, etc.. Vector quantities are
quantities that can be described by their magnitudes and directions.
Examples of vectors include: displacement, velocity, acceleration,
force, weight, momentum, etc. As an illustration, we can consider the
difference between speed and velocity. The velocity of a boat in
motion is determined by a magnitude which is the speed (scalar) and
the direction of its motion. It is always important that you represent
all vectors in terms of its magnitude and direction. The
representation of a vector in terms of magnitude alone is incomplete

and unacceptable.
2.1 Vector Representation

In this book we represent vectors in boldface letter, such as A, or usé

: -
{-::f an arrow over a letter, such as 4. The magnitude of the vector A
IS written as either A or IA] We can also use a line with an

arrowhead at its tip to represent vectors, as shown in Figure 2.1. The

tl:?fnt%t h of the line shows the magnitude of the vector and the direction
€ arrow shows the vector’s direetie.

19
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: < 4 _ ;
Figure 2.1: Vector representation

2.2 Components of a Vector

Lcnsxder a vector A lying in the x-y plane and making an arbitrary
angle @ with positive x axis, as shown in Figure 2.2.

A, A

—p X

@) Asx

Figure 2.2: Vector A making an angle @

xis and Ay is the component

f A along the x a
the definitions of sine and

A, is the component O
) Figure 2.2 and

along the y axis. Fron
cosine, we see that:

A,
cosez-A—’— and s'1ne9=——}--
A A

Hence the components of A are:

20
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A.t =A0059 2.]
A = Asinf@ 22

These ‘components form two sides of a right triangle vy ,
hypotenuse of length A, as shown in Figure 2.3.

4

Ay

a
_N
Ax
Figure 2.3: Components of vector A

Thus, it follows from Figure 2.3 that the magnitude and direction of {
A are related to its components through the expressions (recall

Pythagoras theorem),

A=1/Af+Ay2 h - magnitude | 2.3

A
6 =tan™ [j'-J - direction 2.4

X

The direction is usually stated in terms of the positive x-axis.

2.3 Addition and Subtraction of Vectors

The addition and subtraction of a vector is quite different from scalar
or numerical addition and subtraction, which you should be familiar
with. You may be familiar, for instance, with Skg + 2kg = 7k&
However, SN + 2N may not add up to 7N. A single vector that would
have the same effect as two or more vectors taken together is called 2
resultant vector (R). Several methods are employed in the addition
of vectors. One of them is the polygon method. Consider three
vectors A, B and C shown in Figure 2.4a. Starting from any
convenient point, each vector in Figure 2.4a is drawn to scale and 1N

21
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proper directions with the head of one touching the tail of another.

The resultant vector R is drawn with its tail end at the starting point

and its tip at the tip of the last vector added, as shown in Figure 2.4b.
A

a b
Figure 2.4: Polygon method of vector addition

The resultant vector is given as
R=A+B+C ZeS

e Using the polygon method, perform graphically the following
vector additions and subtractions, where A, B and C are the
vectors shown in Figure 2.5a: (i) A+ B (1)) A—-B

/il

a

Figure 2.5: (a) individual vectors Aand B(b) R=A+B (c)R=A+B

o (i) The resultant vector R = A + B is shown in Figure 2.5b.
(ii) The resultant vector R = A — B is shown in Figure 2.5¢, where
-B is equal in magnitude but opposite to B.

The second method is the parallelogram method. This method is used
for addition of two vectors. If two vectors are inclined to each other

22
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ar 8 i be represented in magnityd
t an angle 6, their resultant can | gnitude gng
Zirectiongby the diagonal of a parallelogram whpse l_adJacent Sidey -
ors in magnitude and direction, Consige

represent the two vectors ' .
vel:c,:wrs A and B shown in Figure 2.6a, their resultant R, is showy j,

Figure 2.6b.

cemsnanbibsdotdidndssshsas

A

a
Figure 2.6: Parallelogram of vector add ition

To determine the resultant vector R we can use the cosine rule:
R*=A>+B*~24Bcos(180-8) - = 26

It the resultant R makes an angle a with the positive x-axis, we can
use sine rule as follows: B
sin(180-6) sina 2.7
R A _
The difference A ~ B of two vectors A and B is defined as the vectof
sum of A and -B: | ' "
A-B=A+(-B) - 2.8

Note that the vector ~A has the same magnitude as A but in the

opposite direction. Figure 2.7 shows an example of vector
subtraction. ; ¥

23
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and the unit vectors i, j, and k is shown in Figure 2.9, 4
are the components of vector A along the x, y
respectively.

%X Ay alld,sf
and ; axe;

When two vectors A and B are represented in terms of ther
components, we can express the vector sum R, using unit vectors
follows:

A=A i+A4j+4Kk

B=Bi+Bj+Bk

R =(4i+4,j+Ak)+(Bi+Bj+Bk)

R=(4+B)i+(4+B i+(4+B)k 212
v |

X

Figure 2.9; The unit vectors i, jand k

2.5 Multiplication of Vectors

Tre‘;'e are two kinds of multiplication of vectors namely: scalar

; :]dléczagglarector Product. While the scalar product of two vectors
ar quantity, the ields

another vector, Y vector product of two YectOTS y!

The scal
1 ar product of two vectors A and B, denoted as A.B is defined

A-B=|4|Blcoso 2.13

o
where 0 is the angle between the two vectors (Figure 2.10)

—\
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any vector with itself is zero i.e IAXAI =0. When _
perpendicular, the magnitude of the vector product will be
1€ lA X B| = lA"B|, since sin @ =sin 90° = 1.

The direction of A x B is determined using the right-
Imagine rotating the vector A, in Figure 2.11a,
perpendicular line until it is aligned with B, choosing the sm
the two possible angles between A and B. Curl the fingers c
right hand around the perpendicular line so that the fingerti
‘ the direction of rotation; your thumb will then point in
direction of A x B.

Similarly, we can determine the direction of B x A by rota'tfﬁg
A as shown in Figure 2.11b. This figure shows that th
product is not commutative. That is A X B=BxA. We
express the vector product in terms of the components as follo

AxB=(4i+4,j+Ak)x(B,i+B,j+B.k) 2,17

l AxB &

i E B
y i
| A
(a) The vctor product Ax B
determined by the right-hand rule
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42 +3% =5m/s

ané’-l}—:-—zl 333
Vi 0

H=55"
The correct option is B.

92, Vectors A and B are given as A = 3i+4j-2kand B =2i-6j+

3k Evaluate A x B.
A. 24i - 5j + 20k
B.-13j - 26K
C.24i+5j -4k

D. 24i- 5j - 4k

Solution
i j k
AxB=[3 4 —2:(12-412)iﬁ(9+4)j+(—18—-8)k=-—13j
2 -6 3 i

The correct option is B

33 Vectors A and B are given as A =3i+4j -2kand B= 2i-6jt

3k. What is the angle between vectors A and B?

A. 134.4°
B. 134"
CA56°
D. 129.5°

Solution

|4 =437 +47 +(=2)" =29

|B|= N2 +(-6) +3* =7 |

A-B= (3><2)+(4><—6)+(-2><3) 6-24-6=-24
A -B=|4|B|cosd
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1B =+/0.77 +5.47 =0.49+29.16 = 5.45unit
y 5.4

tanf ===——="17.714
x 0.7

0 =tan"'(7.714) = 82.6°
The correct option i1s D.

2.6. Three forces F,, F;, and F; are acting on a block as shown in
the Figure 2.13. Find the resultant force in unit vector notation.

A 651+ 1.0) B. 5.0i +3.5j
C.6.51—7.0j D. 7.0i + 6.5)
Solution

Resolve the forces into x and y components as follows:
F,, =4 cos 30° = 3.464N, F,, = 4sin30” = 2.0N,
sz_—'o, FQY':SN

F]x = 3N, F3;,.= 0

A FI = 5”

F1=4|lr'1

30°

.
>

F; = 3H

Figure 2.13: Activity 2.6

Total x component F, = Fy, + Fy, + F3, = (3,464 + 0 + 3)N = 6.464N
Total y component F, = F,, + Fiy+F3,=(2+5+0)N=7N
Resultant force  Fp =F,ji+ Fyj = (6.5i + 7.0j)N

The correct option is A.
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C.4,0, 43
D. 34, 2, 0,
E. /4, 2sin30,0 -

Solution
A ¥ ‘ ‘4 X

sin 30 = 3 Figure 2.14: Activity 2.9
= 8 sin 30 = 4

A
cos 30 = =
8

h-—-
'l.:

A =8cos30 = 8‘/— =43

A =0
The correct option is A.

2.10. Find the angle between two vectors A = 21 + 3j + 4k and

B=i-2j+3k
A. 46.6° B. 56.0° C.39.7° D. 0.397° E. 66.6°
Solution

A=2i+3j+4k, B=i—2j+3k
|4 =v2+3+ 4% = J4+9+16 =29
|Bl=y1P+(-2f +3* =VI+4+9 =14
A-B =|4||B| cos8
(2x1)+(3x-2) +(4x3) =29 x4 cos @
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cos” /vy, 44.4°
tan’ v/, 35.5°
sin”v/vy, 45.6°
E. 8=tan" v,/vy, 54.5°

Solution

B. 8
C.6
D. @

tan 8= V)/Vx
O=tan™ vy/vy

o= tan” v, =tan” (7/5) = 54.5°

The correct option is E.

2.13. If A = 2i +3j, B=3i+5jand C 4
A. -114i - 76j

B. 6i - 4j
C. 114i+ 76j
D. 6i +4j
Solution
i j k
3 2
AxB=[2 3 0=il5 3’—43 3[+k
3 5 0
i i k
(AxB)xC=|0 0  1|=6i+4]
4 -6

The correct option is D.

Summary of Chapter 2
In chapter 2, you have learned that:

[Physics for Universiy |
, lkihrn!::?u

- 6j, find AxBxC.

1. Sc?::all-et :]luagmlfs‘ are quantities that can be described
o :’calar)s’ Y tl‘ielr magnitudes without directions. Examples
s include: mass, area, volume, density, UmMe

perature, work, energy, power, etc. Vector quantities ar¢
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quantities that can be described by their magnitudes and

directions. Examples of wvectors include: displacement,
velocity, acceleration, force, weight, momentum, etc.

. Vectors can be represented with boldface letter such as A, use

—»

of an arrow over a letter such as 4 or a line with an arrowhead
at its tip.

. A vector A lying in the x-y plane and making an arbitrary

angle 0 with positive x axis has components:

A, =AcosO and A =Asin0, with A=.4% + 4 and

A,
f=tan"'| =

¥

A single vector that would have the same effect as two or
more vectors taken together is called a resultant vector (R).
Several methods are employed in the addition of vectors:

polygon method, parallelogram method. A unit vector is a
dimensionless vector that has a magnitude of 1.

. A vector A can be written as A=A i+ A4 j+ AK; the unit

vectors are i, j, and k; 4,, 4, and A4, are the components of
vector A along the x, y and z axes respectively.

The scalar product of two vectors A and B, denoted as A.B, is

defined as A-B =\A“B|cos€where 0 is the angle between
the two vectors.

We can also express scalar or dot product in terms of
components as follows: A-B=4 B +A B +A.B..

The magnitude of the vector product of two vectors A and B is

defined as |A X Bl = ]AHBl siné.

The vector product can also be expressed in determinant form
- as:
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i i k
AxB =4, 4, A
B\ By B-

Self-Assessment Questions (SAQs) for Chapter 2

2.1. A car is travelling castward at a speed of 40m/s. But a 30m/s
wind is blowing southward. What is the direction and speed of the
car relative to its original direction?

2.2.  Two forces act on a block of mass 2kg as follows: 100N at
170.0° and 100N at 50.0°. Find the resultant force.

2.3. Find the magnitude of R =8i—12jand the angle it makes
with the positive x axis.

2.4. A man walks | km due cast and then 1 km due north. His =
displacement is:

A. ITkm N15°E B. Ikm N30°E
C. V2km N45°E D. V2km N60°E
2.5. Given two vectors A=06i+3j- kand

B =4i-5j + 8k, find the magnitude of the vector 2A — 3B.

2.6. Find the angle between the two vectors A = 2i+ 3j+k and ..
B=—4i+2j-k.

2.7. Three vectors are given
A=3i+3j-2k, B=-i—4j+2kand C=2i+2j+k
A-(BxC)

2.8.  Which of the following physical quantities is NOT a vector? .
A. velocity

3.
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A. Weight, displacement and momentum
B. Velocity, volume and upthrust

C. Density, capacitance and distance

D. Mass, force and impulse

2.15. Which of the following physical quantities is a vector?
A. displacement

B. current

C. work

D. area
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il KINEMATICS

3.0 Introduction

Mechanics, a branch of physics, is usually divided into two parts:
kinematics and dynamics. Kinematics deals with the mathematical
description of the motion of objects without consideration of what
causes the motion. Dynamics, on the other hand, study the causes of
the motion. We will begin our study of mechanics with the
kinematics of particles. A particle is a body of negligible size and
internal structure,

3.1 Motion in one dimension

Motion in one dimension refers to the motion of an object in a

straight line along the x, y or z axis. Discussed below are some terms
used in describing motion,

3.4:1 Displacement

Consider a particle moving in a straight line, say along the x-axis,
from an initial position x; 10 a final position xp: the distance Ax
covered by the particle would be:

Ax =x

el

el

ol
-

T ——t—+——+—+

x=0 X X

k4

Fig. 3.1: Motion in one dimension

We can define the displacement of the particle as the straight-line
distance between two points, along with the direction from the
starting point to the final position. The displacement s a vector of

magnitude equal to Ax, and in the simple case of one-dimensional
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motion, the direction of the displacement is in the directiop of the.
axis along which the motion is allowed. i

3.1.2 Speed/Velocity

Speed is a scalar quantity. Speed can be defined as the rate of change
of distance with time. There are two ways in which the spegq
particle is defined: average speed and instantaneous speed. Supms?-
that a particle travels a distance Ax in a time interval A¢, the ave,a'gl
speed denoted as v,, of the particle is defined as:

3.2

The instantaneous speed v(7) of the particle is defined as the limit of
Vv as the time interval Ar tends to zero or:

i) T = il 33

= |lim —
Ar—0 A] (‘1’{

Velocity is a vector quantity. Velocity is defined as the rate of =
change of displacement with time. That is,

- -

- total displacement r,—r

Var = - [ - ' : 34
time laken L=

where r, and r, are position vectors at time 4 and respectivel):
Note that average speed is not the magnitude of average velocity.

The instantaneous velocity v(t) of a particle is defined as the limit of

4

Vav as the time interval Af tends to zero, or

:(t) = ijmﬂ i: d;(’) 3.5
= !

The terms “velocity” and “speed” have distinct definitions in PI‘XS |
and care must be taken not to confuse one for thf' '
Instantaneous speed measures how fast a particle is moving &
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particular time: instantaneous velocity measures how fast a particle is
moving in a specific direction at a particular time.

313 Acceleration

Acceleration is defined as the time rate of change of velocity. It is a
vector quantity. The average acceleration can be written as

change in velocity

a,, = ; 3.6
nme taken

If the velocity of a particle changes from v, to v, in time interval Af,
the magnitude of the average acceleration is:

Mo ™=—¥

! !

UL“_ = 3.7
At

The instantancous acceleration a(r) 1s the limit of the average

acceleration as the time interval approaches zero. That is:

;(.’): lim AV :‘j 1-(,') - d” !(f)

_ - 3.8
e L dt dt”
The magnitude of ‘:( 1) is written as:
i'. [

.’.7(:’ —‘u(! : ( 3.9
From Equation 3.5 and 3.8, we ¢an write:

r(r)= [ v(e)de + e 3.10
and

v(r) = I al)dt + ¢ where ¢ is a constant.  3.11

IJ
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3.2 Motion with Constant Acceleration in 2 Straight Lip,

A particle is said to be undergoing a constant acceleration motion jf
the rate of change of acceleration is constant throughout‘the motion,
Consider a particle moving with constant acceleration a in a straigh
line, say the x-axis, with its velocity changing from v, to vin a time
interval 1. The acceleration of the motion is given from Equation 37

as:
. i the acceleration |
a, 6 =a= (Let a, =a, SWce on is
t
constant)
Rearranging, we have:
v=v, +at 3.12

The distance, x travelled by the particle is given as:

. (average speed )x )

z

.= "*"o)x, 3.13
Z

Substitute Equation 3.12 into Equation 3.13, we have:

v +at+v
x= £ 2 xt
2

1 5
x=v l+—al 14 .
5 3.1

Eliminate ¢ from Equations 3.12 and 3.13, we have:
vi=vl+2ax 3.15

Note tha't Equations 3.12, 3.13, 3.14 and 3.15 are for constant
acceleration motion only. :
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3.4 Motion in Two or Three Dimensions

In sections 3.2 and 3.3 we described the mOoUOR OF 2
straight line along one of the Cart=s! ian axes (xor y) Tod
motion of a particle in space, we muSt [Ws O 25 0 eyl

particle’s position. The posrion vectat

a certain instant is a vector thal 2O0&5 Lt zn
- . e B iz T [ e the o
coordinate system to the pot £ (FIZEEs =) =25 = = ol

1‘\

of Section (2.4), we can WITe

=x+yj+zk 3.16
where the x-, - and z-components of v&iir ¥i5 HE
coordinates x, V. an

L1 j_f"'

Figure 3.2: The position vector 7 from the OrniZm o po==

The change in position as the particle moves from 2, 10 Pz g
time interval At is given as: '

Ar=r—r :(—rg ‘x1)i“"(}'1 "‘Jf'r)j:—(::_:uk >

- -
where 7, and r, are the position vectors of P; and P-, rﬁpﬁl\ﬂ!’
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IKi
- Av d:(I)Fﬂ'z:(f)
a(t)= lim —===2" = "4
-y (f’,_ 7
a(r)=%i+7‘fj+%k i

two-dimensional motion
in both magnitude and direction,

and a, also arg

Let us consider
acceleration remains constant
Because a is assumed constant, its components dy
constants. Therefore, we €

x and y components of the velocity and the displacement vectors:

V.=V, +a.l 3.23
v, =V, a1 3.24
v\' + vﬂf
X = ——2———}’ 3.25
R W
}; - —— I 3.26
L 2
x=v, (+—at’ . 3.27
_ 2
y=v,l+=a,l | 3.28
2 2
v; = ;x +2a x 3.29
v, =v, +2a,y 3.30

:Igzz 1»;,;;I :mt, axfapd..?: represent x-component of velocity after time /
ponent of initial velocity, x-component of acceleration 8h

et slog e s, gty eE
y-comgonem oofveloclty aﬁer time ¢, y-component of initial velocitys -
acceleration and displacement along the Y axis,

respectively.
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3.5 Projectile Motion

A projectile is a body that is given an initial velocity and then
follows a path determined completely by the effects of gravitational
acceleration and air resistance. A golf ball struck by a club, a thrown
football and a bullet shot from a rifle are all projectiles. The path
followed by a projectile is called its trajectory. A projectile motion is
two-dimensional and we can treat the x- and y- coordinates
separately. The x-component of acceleration due to gravity g is zero
since g is acting vertically downward; the y-component is constant

and equal to -g. Since the x-acceleration and y-acceleration are both
constant, we can use Equations 3.23 -3.30 for projectile motion.

Consider a particle launched at point O (x,= 0, y, = 0) with velocity
vox and v, at time ¢ = 0. The initial velocity v, makes an angle a,
with the horizontal, as shown in Figure 3.3. The components of
acceleration are a, = 0, a, = -g. For the horizontal or x-motion, we
have,

=
Il
C
L
L

=
Il
=
—_
LI
L)
13

For the vertical or y-motion, we have:

(W8]
d
L

v}' = vn}' - g"
| G
;.:":'u'w.f——24;_;;!E 3.34

In projectile motion, the horizontal component of the velocity, v, is
constant and the vertical component of the velocity, v,, changes by
equal amounts in equal times. Can you explain these using Equations
3.23 and 3.24?

Resolving the initial velocity into x- and y-components, we have:

Var = V,COSU, Voy = VoSiNQg 335

48
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™~ i
7 Vi |
Vo ;
v ly=H Vi \
P4 |
Z I
o
Voy |
i,
- ¥
0] — v‘i _____________________ E
v=R -

Figure 3.3: Projectile motion

At the highest point in the projectile’s path, v, =v,
Equation 3.33,
O=v,sina, —gt
v, sina,
g

Equation 3.36 is the expression of the time taken to reach max:mu
height, /7. The time taken for the projectile to travel from O to A i g.
usually referred to as the time of flight, 7= 2. Substituting Equation

3.36 into 3.34,

. i 2

; v, Sin & 1 v, sina,
y:H:v” sine,, x”—i_ﬁgx(’—_‘_J
g 2 g

2g

To derive an expression for the maximum horizontal distance, &,

substitute Equation 3.36 into 3.32:
2v,sina,

b4

H=

x=R=v, 6 cosa, x
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I i [
2vsine, cone, v sin 2,

Rm— i Ny
s 4

We can derive an equation for the trajectory’s shape in terms of
md oy From Eguations 3,52 and 595, we have,

N

VoCON
it i

Substitute Fguation 3,39 it 3,34

/
. X | £
Voo, SN 9/
v " i ) o P
v, Cose, 2 v, Lo,
g ) .
v (I:1I|u”)\' X ) A1)

] Ao i

2v.cos” o
i L

Equation 3.40 can be written simply as y -~ bz’ where a and b

are constants since v, landg,, cout,, and @ arc constants, Thiv s the

equation of a parabola. In projectile motion, the trajectony i always s

parabola.

3.6 Horizontal Projectile Motion

Suppose that an object is thrown horizontally with an initial velocty
Vor (Figure 3.4). In this motion, like the one described in Section 2.5,
the horizontal acceleration (a, = 0) and the vertical aceleration (4,
+g = 9.80m/s’). The acceleration duc 1o gravity is taken a5 postive
since the object is travelling downviard, “Throughout the object’s
path, the horizontal velocity remains constant; v, = vV, = vy, = vy, and
the initial vertical velocity vy, = 0 since the initial velocity has no
component along the y-axis.

For the horizontal or x-motion, we have:
v, =V 341
x=v, /I 342
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. t.

v, =gl
1 2
y=—8
y
V™ ¥y ’.l
* "':“ ‘—‘-Hh" Vi
I J
.
l Vi
_Tlnl'\.__JJ‘ll |
|
|
I
- ———————— —

Figure 3.4: Horizontal projectile motion

i ject] s poi ime 1 =l

For instance, if the projectile reaches point P after tlmef.
the position and velocity of the projectile at P is as follows:
~ s ) . — .‘\'.

The horizontal component of the displacement after time /=5 __

Xy

[/ 2 v

The vertical component of the displacement after time 7 = £ is:

Hy =

g1

b gy

to | —

Hence the displacement is:

il -5 _ 2
}*:\FIE“"}’S and @ =tan™' Y2

X,

The horizontal component of the velocity after time 7 = 15 is:

vV, =vy

2x ox
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For the vertical or y-motion, We have:

y
| 3.44
y — — gf ;
2
y
Vos=Vy —p-'
* 13(}_\:0 T — 1 Iy
| N
I Vi b ~ \
Vo™ H I r Var
|
I Y V2
\
l 1
“‘_ __________ _'
X |||.|.\: ie

Figure 3.4: Horizontal projectile motion

For instance, if the projectile reaches point P after tlmei: ?r..‘
the position and velocity of the projectile at /7 1s as follows:

= = . F1 =! :..
The horizontal component of the displacement after time /= 2%

Xy = Vouda
The vertical component of the displacement after time /= fy IS¢ 4
Y, = =gt} |

2 2 2

Hence the displacement is:

r= «ng' +y: and @ = tan"[&J

X3
The horizontal component of the velocity after time ¢ = £ IS

v!x & vﬂx
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At1=3.0s, v=10x3.0m/s = 30m/s

3.2. The acceleration with which a particle moves g
a() ( 3+2 )mr/s Find its velocity at time £ = 3g, g!Ven"

velocity at 1 =0 is zero.
A. 15m/s B. -3m/s C.9m/s

Solution

21°
Velocity, v = jcrdl = J.(—3+2f2}f! = -3t +T +c
Att=0,v=0,
0=0+0+c
c=0

Hence, v = -3/ +ZL

Att=3s

3
=(~3x3+ 2);3 ]m/s =9m/s

The correct option is C.

3.3.  The displacement s(z) of a car as a function of time /IS’
as 5(1) = (31’ -2t + l)m Find its velocity at time ¢ = 4s. At *“T"-

will the velocity of the body become zero? /A
A.12m/s,0  B.22m/s, 03335 C. 12m/s, 0.333s D. 10m/s,0

Solution

Velocity, Y= .cél. =6f-2
dt

At time ¢ = 4s, v=g§ =(6x4-2)m/s =22m/s

Time at which the velocity of the body becomes zero:
v=6-2=0
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( =0.333s

The correct option is B.

3.4. The position of a particle is given by x(t)=(t3 -3 +5}n
where x is in meters and  is in seconds. Calculate the position of the

particle at / = 4s and the average velocity for the time interval 1 = Is
to 6s.

A.4m, 8m/s B. 5m, 10m/s C.8m, 4:4mf's D.21m, 22m/s

Solution

The position at 4s

()= =3 +5pn = (4 -3x4* +5)m =21m
Average velocity

total displacement
v=

time laken

V= (ﬂulx(—l)]mz’s — [1—1—35?—3}??/5 =22ml/s

6

The correct option is D. by

3.5. The position of a projectile travelling in two dimensional
space is given by x(f)z(lf2 +4t+3)m and y(r)= (3:2 ~5t+2jmn. k

Calculate the magnitude of the projectile’s displacement and the I’}
average velocity between time interval 1 =2sand £ = 5s. L
A. 58.0m, 29m/s B. 72.2m, 24.1m/s ' '
C.58.0m, 1031m/s  D.29.0m, 19.31mvs |

i
Solution

Displacement along x

5, =x(5)-x(2)
5, = (2(5)1 +4(5)+3- [2(2)2 +4(2)+ 3])m =54m
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5, = y(S) = J’(Q)

5, = (5} -56)+2- 5 -52)+ 2)m =48
Hence, object displacement is:

= }si +sj =+54*> +48°'m=T72.2m

Average velocity along x:

x(3)- x(Z) 4

g el X" il o= 18IS
* 5-2 3

Average velocity along y:

v =M 481?1!5 =16mls
2 5-2 3

Average velocity, v=+/18" +1 6*mls=~580m/s=24.Imls

The correct option is B.

3.6. The acceleration of a moving object is equal to the:
A. gradient of a displacement-time graph

B. gradient of a velocity-time graph

C. area below a speed-time graph

D. arca below a displacement-time graph

Solution

The correct option is B.

3.7. The position of a particle moving along y-axis is .-:if'
byy() ( -4 +6“)’” where y is in meters and / is in ..L
What is the object’s displacement and average velocity for he
interval from1=3sto 1= 5s?

A. 46.0m, 5.75m/s B. 46.0m, 23.0m/s
C.2.0m, 1.0m/s D. 2.0m, 0.25m/s
Solution
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y{;) - (;“ -4t + (u}n

w(3) = ( =4 x3? 6x3}n =Om

v,(ﬁ) [ Ax5 +6x "}}u—SSm
Displacement: y = y(5)= »(3) = (55-9)m = 46m

Average velocity:

(8 R
v '1-&); ) ~mls —(DZ 9]»:!.\' =4—2§me= 23.0m/s

§=3

==

The corvect option is B,

38 The position of a particle moving along x-axis is given
by xl(¢) = (2r" ~ 60 4 Shn, where x is in meters and 7 is in seconds.
Find the acceleration of the particle at + = 2.0s. Is the velocity
constant or changing with time?

A, 24.0nVs”, changing

B. 6.0m/s", changing

C. 24.0nvs”, constant

D. 6.0nVs", constant

Solution
) = (2" - 60 + 5hn

Velocity:

V= ﬂ :th: - 6.0 )’Il ls
Jr

a=— _(I"f Yn/s? =24ml s
dt

The velocity is changing since the velocity is a function of time.
The correct option is A.

3.9, The acceleration of a particle is given by a(f): (Zma’ o ).'2

If the particle is at rest at £ = 0, find the velocity of the particle after
$=2s,
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A.5.0m/s B. 4.0m/s C. 8.0m/s D. 1y

Solution
a(t).—- (Zm/s" )12

3 3
V(!)=Ia(!)dt == J3f2dt = —g— +c=r+c

y =0att=0
0=0+c
c=0

Hence, v([)_—_f'
At t = 2s, v=22m15:4m/5

The correct option is B.

r is given as a function of fimés

3.10. The acceleration of a ca
ime [ =¥

a(t) - (2_0-0_1{);;1/52. If the position and velocity at t
%, = 0 and v, = 10ms’" respectively, what is the velocity of @

after t = 2.0s?
A. 1.8ms” B. 13.6ms” C. 40ms™

Solution

a(t)=(2.0-0.1)m/ s*

Wr) = [ adr = [(2.0-021)dr

w(t) =2t -0.1% + ¢

At + = 0, v, = 10m/s, hence ¢ = 10m/s.
wt) =2t - 0.7 +10

Atr=2.0s

v=(2x2 - 0.1x2? +10)m/s

v=13.6m/s

The correct option is B.
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31 1_‘An ulcmcnt)m*y particle is projected into space and travelled as
po (04 200 3¢ 7j + 2 sinSrk. Find its acceleration at £ = 0,
A, ~12j B. -12i C. 12k D. -12k

Solution

g (4 200 3¢ + 2 sinSrl

. f!' } i
Velocity, y = &= (374 20+ (n:'z'j 1+ 10cosSrk
ol
. v ;
Acceleration, ¢ = L. i_:i = 6fi — 12¢™'j — 50sin5rk
dt dt”

Atr=0,a=06x0i-12c" - 50sin0k = -12j

The correct option is A.

3.12, A particle moving along the x axis is located at x; = 2 m at
= Isand at xp;= 8 mat ;=3 s. Find the displacement and average
velocity during this time interval.

A. -6m, -3m/s

B.-10 m, -Sm/s

C.10m, S5m/s
D. 6 m, 3nvs

Solution
Displacement r = xy—x; = (8 - 2)m=6m
Average velocity:

r %
Vo, =i 8 =300 S

The correct option is D.

3.13. A car decelerates with 10m/s’ from S0m/s to 20m/s. Calculate

the distance travelled by the car.
A 150 m B. 105 m C.10m D.75m

Solution
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=] Ornf'sz' v=20m/s and v, = 50m/s
Using:

v: = v;‘: +2ax

20% =507 +(2x-10xx)

20% = 50 —20x
x=105m

The correct option is B,

3.14. Calculate the time taken and the distance covered by a tra
moving with a velocity of 15m/s to accelerate uniformly at the ratef
2nv/s” to reach a velocity of 20m/s. .
A:-2:5%23.75m

B.17.5s,43.75 m
C.13.55,33.75m
D.2.5%,43.75m

Solution

Vo = 15m/s, v=20m/s and g = 2m/s’

Fromv=y, + at, we have [ = -v—_—v— - [20 _15}5' =2.58
a 2

i

Using:

x:vﬁt+la:2= 15)‘25‘*'-]—%2)(252 ~ (375 625)"1
2 ' 2 . m_( 546, _

The correct option is D.

- h vertically upwards with an in itial velocity o
20m/s. Find the time taken for tho o e hi int and
the distance travelled. r the stone to reach its highest point 1
A. 55, 50m B. 4s, 40m

C.35,30m D.2s,20m
Solution

Vo =20m/s, v = () ¢ the maxirnuﬁ, a=-g=.10m/s?
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Solution ‘

Vo =20m/s, a = 2m/s?, x =100 m

v? =v? +2ax =20% +(2x 2x100)=800
v=28.3m/s

The correct option is C.

3.19. A man throws a ball vertically upward with an initia)
40m/s. What is the velocity of the ball on striking the ground?
A. 30nv/s B. 40m/s C. 10m/s.

D. Insufficient information ‘

Solution _ | |
At maximum height, v="0, using v = v, + ay

0=40-10¢
t=40s

From maximum height, v, =0, a, = 10m/s?

v=v,tat
v=(0+10x 4)m/s = 40m/s

The correct option is B,

3.20. A stone is thrown horizontallj with an initial velocity &'
20m/s from the top of a building 90m high. Find the horizontal "¢

of the stone, Calculate also the velocity with which the stone stk
the ground.

A. 84,8 m; 46.9m/s, 64.7° -
B.45.0m; 5.83m/s, 6.1°
C. 30.0 m; 43.67m/s, 30°
D. 23.5 m; 24.7nmvs, 20°

Solution

From the figure below, the x a

nd ol velocl
are Vo, = 20m/s and v, Y components of the initia

= 0. For the vertical motion:
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3.21. A missile is launched with a speed of 50m/g 4 i

above the surface of a warship. Ignoring the effects of it rﬂ .
determine the maximum height achieved by the migsife, es
A.51.6m B. 250.94m C. 0.50m D, s,

30
Solution

First we find the time it takes for the missile to reach |

o . IS mayin:
height. The components of the initial velocity: My

v, =(50c0s40° /s =383m/s
Voyp = (50 sin 40° )m [s=32.14m/s

At its greatest height, the speed v, of the projectile is zero, Then:
v, =v, +a.l

0=32.14+(-10)

t=3.214s

-

Therefore, the greatest height )., is given by:

l | >
Vix =V, f+—a t = {33.]4 x3.214+—(- lU)(3.2I4)']m=SI.
; =9 -

Alternatively. we can use;

H = =
2x10

visin“a, [503 x sin” 40
28

Jm= S51.6m

The correct option is A.

3.22. A car accelerates uniformly in a straight line with accelerd®

10m/s™ and travels 150m in a time interval of Ss. How far Wil
travel in the next 5s?

A. 150m B. 400m C.300m D. 500

Solution

To calculate the initial velocity, we use:
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25()=0><25+-;-><a><252
500 = 625a

a=£92mf52 =0.8m/s*

(b) v=v, +at=(0+0.8x 25)m/ s =20m/ s

The correct option is A.

3.28. A ball was thrown from the ground and its velocity was [
at an altitude of 15m above the ground. Calculate the velocity at the

point of throw and the maximum height reached.
A. 15m/s, 7.1m

B. 20m/s, 20.0m

C.25.0m/s, 10.0m

D. 15m/s, 15.0m

Solution

Atx=15m, v=10m/s, a=-g=-10.0m/s’
Using

vi=v2 424y

10 =v2 —2x10x15

v =100+300 =400

v, =20m/s

At maximum height, v = (
v =y’ +2ay

0% =20? =2x10x y
20y =400

y=20m

The correct option js B,

ey
>y
-
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v? =v§ + 2ay
0:202 —2)(]0>(y
y=20m

The correct option is B.

Summary of Chapter 3
In chapter 3, you have learned that:

. Mechan_ics, a branch of ph}‘fsu:s, is usually divideg
parts: kinematics and dynamics. |

r2

. Speed can be defined as the rate of change of distange,
time. There are two ways in which the speed of a partig
defined: average speed and instantaneous speed.

3. Velocity is defined as the rate of change of displacemen
time.

4. Acceleration is defined as the time rate of change of velo
It is a vector quantity.

5. All'bodies at a particular location fall with the same down
acceleration, regardless of their size or weight.

6. A projectile motion is two-dimensional and we can treé L
and y-  coordinates separately. The x-componen
acceleration due to gravity g is zero since g is acting vert
downward; the Y-component is constant and equal to -§-

Self-Assessment Questions (SAQs) for Cha pt"’

3.1. A stone of mass 2kg is thrown vertically upward ‘
of 20m/s. Calculate the maximum height reached. |

3.2. A baseball js thrown vertically upward with an
20m/s. Calculate how fast it was travelling on its way down
caught 5.0 m above where jt was thrown. 3
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= - . of 2.0nV/s’. How far does it gees before s

[Kinmn:‘
reaching 5.70 x10°m/s. Calculate its constant acceieration :
travelling for 1.0cm.

3.12. A car moving with constant acceleration Covered t)ye dis

between two points X and ¥, 100.0m apart in 5.0s, 1 speed o)
passes the second point was 50.0m/s. What was the speed at theaf‘s '
‘point and what was the acceleration? .

3.13. The speed of a car travel
from 20.0ms™ to 10.0ms™

magnitude of the deceleratio
this deceleration?

ling due west is uniformly reduced
in a distance of 80.0m. What s th]
n and how much time has elapsed duripyg

3.15. A projectile is launched with an initial velocity of 60ns at ml
angle 60° to the v

ertical. Whau is the magnitude of jts displacemen
afier 5s?

3.16. A missile was to be launched at
at an inital velocity v,
the maximum height H.

an angle 15° to the horizontal
to hit a iarget 300m away. Calculate v, ad

3.17. An object of mass 50¢ is projected at angle 60° to the

horizontal with an initial speed of 20m/s. Calculate the horizontl
range and the time taken to reach maximum height.

3.18. A footballer lobs a football at an angle of 30° to the horizontd

with an initial speed of 20ms™. What are the greatest height attai“@
and the time of flight? .

(e
3.19. A car moving at a speed of 30m/s decelerates at a constant® ;
topping? | - '
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5.70 <106nV/s. Calculate its constant acceleratiop "
reaching 2 |
ravelling for 1.0cm.
i i t acceleration covered the d;
moving with constan '
3.12. Acar points X and ¥, 100.0m apart in 5.0s. Its Speed g

between two ,
p:sses the second point was 50.0m/s. What was the speed at the e

point and what was the acceleration?

ing due west is uniformly red
13. The speed of a car tra'vellmg' deq
i:,:rom 20.01115:" to 10.0ms™” in a distance of 80.0m. What s y

magnitude of the deceleration and how much time has elapsed during
this deceleration?

3.14. A man throws a ball vertically upward with an initial speed of
60.0m/s. What is the maximum height reached by the-ball and how
long does it take to return to the point it was thrown?

3.15. A projectile is launched with an initial velocity of 60m/s ata
angle 60° to the vertical. Wha is the magnitude of its displacemest
after 5s?

3.16. A missile was to be launched at an angle 15° to the horizontl

at an ini.tial velocity v, to hit a iarget 300m away. Calculate v, ax
the maximum height H.

il’? An object of mass 50g is prnjjected at angle 60° to e
orizontal wntl? an initial speed of 20m/s. Calculate the horizond!
range and the time taken 'to reach maximum height.

3.18. A footballer lobs a football at an angle of 30° to the horizonts

with an initial speed of 20ms” :
and the time of flight? ms . What are the greatest height atta

3.19. A car moving ata s

of 2.0m/s?, How far does peed of 30m/s decelerates at a constant -

it gees before stopping?

-
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NEWTON’S LAW
OF MOTION

"CHAPTER
FOUR

4.1 Introduction

In chapter three, we discussed kinematics — the mat
description of the motion of objects without consideration
causes the motion. Now we need to know more about the @
of motion, that is, what causes motion and changes in motio
causes motion. A force can be a push or a pull and it p du
change in the velocity of the object on which it acts. The
different types of forces. We can place a variety of force
two broad categories on the basis of whether the force resu _.
the contact or non-contact of the two interacting objects. Ex
of contact forces are: frictional force, tension force, normal
i, fesistance force, spring force. Non-contact forces are grav
S e}wtm and magnetic forces. Many scientists have studied fc
motion but Isaac Newton (1642 — 1727) summarised the 3
Iy FEE’@SMPS and principles of the early scientists
R Popularly known as Newton’s laws of moti
RE laws sum up the concepts of dynamics.

ewton’s First Law of Motion: C.once:;_l__?..:
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4.6 The Law of Conscrvation of Linear
Momentum

The linear momentum has been defined as p = M, where Vs ty
velocity of the body. The law of conservation of linear momentuy
states that during collisions in which the colliding objects and the
product bodies are not acted upon by an externally applied force, the
sum of linear momentum before collision 1s cqual to the sum of
linear momentum after the colliston

We define the total initial momentum o, of a system of m bodies, of
masses M, M,..., M,. moving with initial uniform velocities #,
Uy, .. U, Tespectively, as:

P, = Z*Hr”f 4.12
1=|

During collisions, some of the colliding bodies may break up and
others may join together to produce a svstem of 2 bodies my, Myes
my. The total final momentum priof the system is:

p)‘ = Zfﬂ‘!-l'j 4.]3
=]

where the bodies are assumed (o move with final velocities ¥

V230003V, respectvely for masses My, M., N,.

The law of conservation of |

is: near momentum implies that p ‘““Pﬁw

M u, +M,u, to.=my, +m,v, + ... 4.14

If the motion is in three dimensions, Equation 4.14 can be written 3% H
3

M
14, "‘Mg!f-_._, *..= mv,. +m,v, +.. 4.152a
Mluly +M2u2y +...=n]|\-'“ + M, +... 4.15b

M]u]." +M2u1: +---=nl|]’l___ +m2\’1: +... 4'15c
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The law of conservation of linear momentum can be derived from
Newton’s laws and it holds in phenomena, such as in quantum
physics, relativity and electromagnetic field theory, in which
Newton’s laws do not apply. In other words, because it is valid in a
wider range of phenomena than Newton’s laws, the law of
canservation of linear momentum is considered more fundamental
than Newton’s laws.

4.7 Elastic and Inelastic Collisions

The collision of two or more bodies can be classified as either elastic
or inelastic. The law of conservation of momentum is conserved in

both classes of collision.

In elastic collision, the kinetic energy is conserved; that is, the sum
of initial kinetic energy is equal to the sum of final kinetic energy. If
several particles are involved in the collision such that the particle of
mass M, has initial speed % before the collision and speed v; after the

collision, we have:

Z%M:‘”E =Z%vaf 4.16a

In an elastic collision, the colliding particles do not disintegrate or

join together,

energy is not conserved
be converted into other
on, etc. A completely
lision in which the two
ove off together as one

However, in an inelastic collision kinetic
because some of this kinetic energy may
forms of energy such as heat, sound, radiati
inelastic collision between two objects is a col
objects stick together after the collision and m
body. The implication of this is that:

Y2 M # Yo M
i i

The coefficient of restitution e for 2 'p_articul
extent to which the collision is elastic or ¢

4.16b

ar collision describes the
ompletely inelastic. The
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coefMicient of restitution is defined only for ONe-dimen,,
I ; ' id is given by: -
collisions of two bodies and is given by:

v, v, -V
em—Ltw il 417
¥, ul'-“i

whers v, is the relative speed of the objects afier the collision, ang .
is the relative specd bofore the collision. The maximum valye Aeg
1 for an elastic collision and zero tor a completely inclastse cobiises
For other one~dimensional two-body collimions, Q < e < |

4.8 Friction

Whenever two bodies sre in contact with each other, there is alwaw
a resistance to maotion experienced by the surfaces of the two bodws
This resistance to motion 1s reforred 1o as force of friction, or simpiy
friction. Friction occurs for sohd, hquid and gases but this section s
concerned with friction between solid surfaces. Basically, two knds
of friction exist between two solid surfaces. They are: statc sl
shding (kinetic). Static friction (/1) refers to the frictional force the
occurs when there is no relative motion between two bodies 8
contact. Cansider 8 maoveable body A resting on a body B which 8
stationary as shown in Figure 4.2. Imagine that body A does adt
move afler a small horizontsl force /- is applied 1o it. With #
l?cclemhnn. the Net force on the body 4 is zero, that is F -/, = 0. o
F = £, that is, the applicd torce is cqual to the static frictionsl force
Suppose that the horizontal force is increased to F; and the body 4
.ltlll does not move. ‘I hen /s must now be lurger, since F; = £, and F:
I8 greater than £ Finally, if the applied force is large enough
overcome the static fricthion, the body A then tends o move.

value of the horizontal force when this sudden motion occurs $

maximum or imiting frictionnl force fo.., for the two surfaces
contact, when they are at relative reat. Experiments show that fof

types of surluces in contact, nnd which are not in relative motion, /+®
proportional 1o the normal force N. | hat is:

S @ N
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Substitute Equations 4.19 and 4.20 into 4.18:

mgsin@, = p mgcoso

m

p=tan0, 47

< |

Once the body A s sliding, there is a force of kinetic fric;,, |,
acting on it in the opposite direction to the direction of mojg, g
has a magnitude of:

Ji=uN 4.22
It is found that it takes a lower value of force (than the lim,
frictional force £) to keep two surfaces moving with respect
another. The opposing force fi between two surfaces alrcnl.
relative motion is known as the kinetic or dynamic friction |
and £ is always less than f, which means that the cocllicon
Kinetic friction is less than the coefficient of static friction (u, -
for two surfaces. u is independent of the relative velocity of 1

surfaces. Just like y,, u, is independent of the area of the surfaces
contact, provided that the normal force N remains unchanged.

B

Activity 4  Dynamics

4.1. A force of 200N pulls a block of mass 50kg and overcomes

constant frictional force of SON. What is the acceleration of It
block?

A. 2 8my/s’ B. 3.0m/s?
Solution

Resultant force £ = £ - £ = (200 - 50)N = 150N
From Fg"lﬂ

150 =50 x o

a=3.0mvs’

The correct option is B.

e

C. 3.3m/s? D. 4.0m/s

4.2.  An object of mass 2.00kg is attached to the hook of a spir"
¢ is suspended vertically from the roof of ?

81




tion is C.

M ‘._' e
yject of mass 3.00kg is attach

1 the balance is suspended rertically
the reading on the spring bal |

acceleration of 0.1m/s*?
B. 20.4N C. 20N

. &%
2 ..ﬁq!t'ﬂ.":_-'i
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There are three forces on the car — its weight mg, Fand the .,

force.

Weight of car = mg = 10 000N

Component downhill = mgcosd = 10 000 cos 60°N = S000N
Resultant force uphill, Fx = F' = 5000 - 1000

From Fr = ma,
F-5000-1000= 1000 x 2

F=8000N
The correct option is D.

4.5. Calculate the force F due to the engine when the carin Q44

moving with a steady velocity of 20m/s.
A. 6000N B. 1000N C.ON D. 800ON

Solution

Since the velocity is steady, acceleration a = 0, so resultant foree?
= (. Then:

F=(5000 + 1000)N = 6000N

The correct option is A.

s ook °f'“i-'-5 1000kg is accelerating at 3m/s’. If the resistalt
to the motion is 1000N, what is the force due to the engine’ __
A. 1000N B. 2000N C. 4000N 5. 3000N

Solution
Resultant force, £y = ma = 1000 x 3N = 3000N

Let the force due to the engi .
=2 1600 = e engine be F, then:
P = (3000 + 1000 = 4000N

‘The correct option is C.
4.7. What is the tension in a verti i o
. cal f ma
ﬁ:. g rope pulling a block 0
B.5SN C.05N D. 55N
~ Solution










- 0=5-8.117t

sind, /

20| Vwgeosd____

e Figure 4.

Since the ball is inclined at an angle 0,
N = mgcosl

From Newton’s second law of motion:
Fr= ma

From Equations 1 and 2, we have:
P 3
a=—L=y,gcosf+gsind
m

a=(0.36x10cos30+10sin30)m/s* =8. 117m,
At rest, v =0, a = -8.117m/s’ (since the body is retardl |

v=vy_ +al
- ||_.t L‘ll
ge

r s alr )
. 8 J N 1L
e J NS
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Now that the ball is moving downwards the two forces actin

T T gon
ball are acting in opposite directions hence:

Fr = mgsin@ - N
The acceleration @, becomes:

a=ﬁ=gsin9—ykgcos£?
m

a=10(sin30-0.36cos30)m/s* = 1.882m/ s>

- The initial velocity v, = 0 because the ball came to rest befy
returning to the starting point. Using:
vi=y, +2ax=0+2x1.882x1.54 = 5.797

v=241m/s
The correct option is D.

4.13. A force 80N acts on a body initially at rest and moves 72mit
6 s. If the force is removed after the first 6s, calculate how far ti
body moves in the next 6s.

A. 144m B. 72m C. 56m D. 166m

Solution

Let us find the final velocity for the first 6s.

G, +v)
2
72=(O+v)><6
2 - Iy
v=24m/s =

I_.¥

i . ' . ‘ g’
This velocity v = 24m/s will be the initial velocity for the next 65
0 (since the force s removed).

]
x=v{,r+§al2 =24 x 6m=144m

The correct option is A.
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4.14. A blocfk of mass 3.5kg is pushed by a force of magnitude 25N
along a frictionless floor by means of a cord which makes angle 60°
with the horizontal. Calculate the magnitude of the acceleration of

the block.
A.7.14m/s*> B. 6.19m/s C.3.57m/s> D. 10.00m/s>

Solution

The acceleration is caused by the horizontal component of the force.

"F.=ma
25cos60 = 3.5a
a=3.57Tm/s’

The correct option is C.

4.15. A man pulls a load of mass m with a rope along a horizontal
surface at constant velocity. If the coefficient of kinetic friction
between the load and the surface is g and the force F applied to the
rope by the man is along the horizontal, which of the following set of
Newton’s laws apply to this load? Fy is the frictional force.

() Fou =0 (1) Froee = ma (ina=0 (iv) F=F¢
A. All

B. (i), (i) & (iii)

C. (1), (111) & (iv)

D. (ii), (iii) & (iv)

Solution

The correct option is C.

4.16. A body of mass 2kg moving on a horizontal frictionless plane
with initial speed of 10m/s is pulled 4m by a force of magnitude 25N
in the direction of tke applied force. Calculate the final speed.

A. 10m/s B. 20m/s C. 14.1m/s D. 12.4m/s

Solution

The frictional force f; = 0 since the plane is frictionless.
Fr =ma
25=2xaqa
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a=12.5m/s’
2 —y? 4 2ax
vi=v, +
V=102 +2x125x4=200
v=14.1m/s

The correct option is C.

i 2kg body moving initially
f magnitude SN acts on a
?t;lzl;eAd:?;:t?oz of gthts force with speed 0; i‘Tt:s-dealc'M::g gﬁ
' by the body if the final speed of the body is 6y
dAlstsal:I:e travelled ﬂ e P e

Solution
F=ma
_d=2xa
a=2.5m/s’
vz =v: +2ax
62 =4 +2x25x x
36-16=5x
x=4m

The correct option is C.

| g
4.18. The coefficient of static friction between a bm_( of m’:’-:i Iti o
and horizontal sarface js 0.4. If a force of 20.0N is apph

box, calculate the friction force and the limiting frictional
between the two surfaces.
A. 8.0N, 60.0N

B. 20.0N, 60.0N
C. 58.8N,20.0N
D. 20.0N, 8.0N

Solution

- - . | | w.ﬁ
Frictional force is equal to the applied force when the b
Stationary, i.e. frictional force = 20.0N
Limiting frictional force:

J=umg=04yx 15.0 x 10N = 60.0N
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€ applied force is along the horizontal, frictional force
When the applied force makes angle 30° with the
ctional force:

aponent of the applied force along the x—axis = 30cos 60°N

thes : are true of friction except:
d the applied force is zero
and the applied force are equal in magnitude when

 p4 is less than coefficient of kinetic
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a stationary ball of mass
 surface. He kicks the ball forward along the

d 15m/s. Calculate the man’s recoil speed.

irects a horizontal Jet of water, moving with g

8 O to a vertical wall. The cross-sectional area of
2, If the density of water is 1000kgm™, calculate
Suming the water is brought to rest there

ss 0.1kg, moving with a velocity of 6m/s,
all B of mass 0.2kg at rest. Calculate thejr
Is move off together. If 4 had rebounded

€ opposite direction after collision, what

4.3, a force 80N accelerates the
acceleration of the motion if the
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where AB = §'is the length of the arc from A to B and r is the ryg
of the circular palh Although the speed v of the particle is cnns;q-

its velocity v is not because the direction of motion chag
continuously as the particle moves round the circle. Therefore, i
particle has acceleration. Let us now attempt (o derive an CXpressiog
for the acceleration of the motion. The acceleration here is difleres
from the acceleration we encountered in Chapter 3. The speed v §
the rate of change of the arc length 48 with time. That is: '

_A(r6) _rag
A N

assuming the radius » is constant.

32

The average angular speed of the motion, denoted by the symbol 3

is the angular displacement divided by the total time taken to (24
the distance S: .

_A8_6-¢, )
At.rt

5

SI unit of angular speed is radians per second (rad/s). In calev

notation, we can have

@ = -‘zﬁ 54
dt
Substituting Equation 5.3 into 5.2, we have:
V=re 5.3

uatio . . . ) i ulif:
Epﬁeeds, n 5.5 gives the relationship between linear and ané .
5.2 Angular Acceleration

T
he angular acceleration, @, can be defined as the time rate ?

E
change of angular velocity: I
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..h ‘-“ b 0
SO S _ 5.6a

Sy R 5.6b

| umt of angular acceleration is radians per
soond o sacond (rad $7Y Eguation 3.6 applies for constant angular

BTSRRI NN
o X g =i  Sp . - ] j . - .
W 2 S2n ST anguiar aisplace (0 = 4,) as follows:
if= = = N 8.7
Ssbstpung Eguanon d.eb e 3.7, we have:
-5 = N
- = - 5.8
Sahsmirns tor f in Egeation d.ob using 5.7, we have:
D" =@ = 2ald-¢ ) 5.9
SguEnons S o 10 3.9 are equations of motion for constant angular

33 Cenrtripetal Acceleration

Comsider an object m oving in a circular orbit of radius r with
=dorm 3‘:-:‘;‘*-:':"'- al speed v. Assume that the object possesses a
velocmy vector v whose magnitude is constant, but whose direction is
&mﬂ"‘"‘f “’-'”:m?::t This implies that the object must be
- i tor) acceleration is the rate of change of
\¥ettor) velocmy and the (vector) velocity is indeed varying in time.
The direction of 'Lhe instantaneous acceleration at each point is
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s of the circle toward its centre, Bgg,:

always along a radiu el Begg,
speed is constant, the acceleration is always perpendicylgy o

:stantaneous velocity. Figure 5.2 shows aparticle moy;
constant speed in a circular path of radius 7 with centre

oarticle moves from 4 (0 B in a time interval Ar. The velociyy
—y -

i T nin Figure 5.2,
particle changes from v /0 V245 show g

Figure 5.2: Centripetal Acceleration

-+ 8
The triangles in Figures 5.2a and 5.2b are similar since VI‘*‘;

= . . ol
perpendicular to the line O4 and v2is perpendicular to line 0&3

Hence, the ratios of corresponding sides of similar triangles @ %
equal:

Av
As

—=—or
v, r

—>]

Av

=V, —

r 3
‘ . ) : :ﬂw
The magnitude a,, of the average acceleration during the tl.
interval A is therefore: A

Av
v, As
aav— T
At r At
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magnitude a of the instantaneous acceleration «a at point A4 is the

The : .
imit of the average acceleration as we take point B closer and closer
{o point A, that 1s:
v, As v, . As vlg
a=lim =L Hii Y, =

a0 p AL r M0AL

The point 4 can be any point on the path, so we can remove the

subscript. Then:
2
\
e 5.10

-
Because the acceleration is always directed toward the centre of the
circle, it is sometimes called centripetal acceleration, which means
centre-seeking acceleration.

Using Equation 3.5, the centripetal acceleration equation can be
written as:

)
a=—= S 5.1
] F

The period 7" of the motion is the time for one revolution (one
complete trip around the circle). The particle travels a distance equal
to the circumference 27z of the circle in the time 7, so its speed is:

b 2 -
il A2
When we substitute Equation 5.12 into 5.10, we obtain:
_4rr
T 508
From Newton’s second law, the centripetal acceleration is:
mv?®
F=ma= 5.14

r

Wwh : i
€r€ m is the mass of the particle.
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5.4 Conical Penduium

Consider a small object of mass /11 tied toast * 2 of lengtl L
point O and then whirled round in 2 horizomal © -z of

the fixed point O directly above the centre of © - ircle a0
Figure 5.3. We assume that the circular <o 7 g
constant and the string turns at a constant zngiz © - ke
arrangement is called a conical pendulum. &

The tension T in the string OA has twe - aents: Teogtll
Tsinf). The horizontal component, 7sinf, of "o -5 T

0 T inthe
provides the centripctal acceleration zlonz ¢ radiug of
horizontal circular path. So that

>
T'sin0)= Ei}i—-— 3
#

o

Teosh
r

Figure 5.3: Conical Pendulum

1he welght mg must be equal to the vertical cor - nent

tension since the object docs not move in - vertical di -~'-'.-
Therefore: :

T'cos 0 =mg 5168
Dividing Equation 5.15 by 5.16, we have:
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!

nr_"r_H“]"() itk Vg
1" cos () I
Then:
)
-8 ¥

ry

fant/

from Figure .
write centripetalacecleration s

can
An’ 1, s ()
o s 5. 1%
/
Gubstituting this mnto Lquation 5. 17 and vaing, 510, we oblam.
v Aa Lsint)
Lan (/ . 5.19
TET T ol

which we can rewnie as;

e ; j.f-Jl:() =
TR AT 5.2()

bovee cansee that e Lainf), Using, Lguation 515 we

5.5 Banking. 1'he Motion of Vehicles on Curved

Roads

Banking is a tcchiique in road construction that involves tilting of
the road surface a1 an angle 0 above the horizontal, inward to the
centre of the road. i+ in Figure 5.4, Suppose a car is moving round 4

curved part of a banlked road or track.

1
|
b

g

Figure 5.4: Ihanked road
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The centripetal force is provided by the horizontal componep 0
frictional force and the horizontal component of the car’s p,
reaction, or:

[Physics for Universj
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ﬂt:rs]
atim,]

f the
IMma|

2
mv

f.cos@+Nsinf = 521

I

The maximum value of /i = V. hence Equation 5.21 becomes:

2
my

p,Ncos@+Nsin0= 5.22

Iz

Since the car does not move in the vertical direction, we can write:

—u, Nsin@+ N cosO =mg 5.23

Dividing Equation 5.22 by 5.23, we have:

u,Ncos@+Nsin0 v’

_ = +mg
-, Nsin@+ Ncosb r

g 50 +sin 0
B e rg(ge, cos §1n )
cos@—pu, sind

5.24

In a special case of horizontal road, for which 0 = 0, we have:

. =Jrg(,u£ cos 0+ sin 0) _ r—_u,\.rg 595

cos0 -, sin0

Equations 5.21 and 5.23 can be solved for f,. We multiply qu'at_ion
5.21 by cos@ and Equation 5.23 by sin0, and subtract the resulting
equations to eliminate N. Then, we have:
2
my
S = cos & —mgsin @ 5.26

¥

: oh
The best, or optimum, angle of banking is the angle 0 = 0, for wh:;e
Jx =_0’ as this produces a centripetal force which is due entirely © he il
horizontal component of the car’s normal reaction. The wear ©" &
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car and its tyres, due to friction, is eliminated as £, = 0. Then fro
Equation 5.26, the optimum angle of banking 0, is given by: o
2

vV
tan@, = —
P 5.27

5.6 Newton’s Law of Universal Gravitation

In 1687, Newton published the law of gravitation. Newton’s law of
universal gravitation states that every particle in the Universe attracts
every other particle with a force that is directly proportional to the
product of their masses and inversely proportional to the square of
the distance between them. If the particles have masses m, and n
and are separated by a distance r, the law of gravitation can be stated
as follows:

mm,
Foa—5
5
Gm,m,
o F =—-= 5.28

g ;2
where G is a fundamental physical constant called the gravitational
constant. G can be expressed inN.m’kg? and careful measurement
shows that G = 6.67 x 10”"'N.m’kg™. Because IN = lkg.m/s’, the
units of G can also be expressed (in fundamental SI units) as

m*/(kg.s?).

In vector form, the law of gravitation can be written as:

FTa _ Gm,m, ;m 5292

2

2

According to Newton’s third law of motion, the force exerted on

particle 1 by particle 2, designated £, , is: equal in magnitude to

- . - a5
F,, and in opposite direction. That s, F,=—F-

a point is the gravitational force

Gravituti th (g) at :
- ional field streng (g) tor and its 5.1 unit is ng 1'

Per unit mass at that point. It is a vec
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By definition:
_E
: i g | . 5.2%
Substitute Equation 5.28, we have:
GMm = GM
g= > ~m= =
r r

52
where M is the mass of the object creatin g the gravitatjo,

a' I‘Md
Determining the value of G

To determine the value of the gravitationgl constant G, y,,
gravitational torsion balance. The gravitational torgjo, b
reprises one of the great experimer

'S in the history of physicy.
measurement of the gravitational constant, as performed by
Cavendish in 1798,

The Gravitational Torsjon Balanc
gram masses (smal| mass, m
qQuartz fibre and two 1§ kilo
arrangement positioned |

e (Figure 5.5) consists of tw:
1) suspended from a very thin, it
gram masses (large mass, m),

ike an inverted T. The Gravitational Tt
Balance is oriented s the force of gravity between the sm&“yb
and the earth jg hegated (the pendulum is nearly perfectly 3
vertically ang horizontally), The large masses are brough“‘ﬁ:f
smaller masses and the gravitational force between the Iar:gor
Small magges i Measured by observing the twist of the 1
ribbon, Thig

. . throv
attractive gravitational force twists the T
Smal| angle.

ligh
To Measure this ang| hi beam of &
i e, we shine a "
Mirror fasteneq to th gle, e, *

. ca
© T. The reflected beam strikes 2 S
lStS, the r

scalé
eﬂected beam moves along the o
g the ¢

calibratin i g
Orces ang avendish balance, we can measue &
and thyg determineG
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@ e dettcion of e yvey bram
e fiber hia,, Mivied Onge
calibrated. this royy)y ives

Laser heam ":‘

@f_:m‘:‘;mic + =ulls the =rll masses roward Jarge
ppasses. vausing the vedtical quanz fiber 1o 1wiy, Wi susleurign] gy
.,

i) Mirror d value for g,

The sroall balls reach a aew equilibdum pasitign
ahiea the eladic force exened by tie twisteg
etz (her budanves the gravitniunal force

harwecn the MAs.cs. 2

Figure 5.5: The principle of the Cavendish balance

5.7 Free-Fall Acceleration

The weight of a body is the total gravitational force exerted on the
body by all other bodies in the universe. We can neglect all other
gravitational forces when the body is near the surface of the Earth
and consider the weight as just the Earth’s gravitational attraction.

If the Earth is considered as a spherically symmetric body. with
radius R. and mass M., the weight W of a small body of mass m at
the Earth’s surface is:

GM
W= Fg = —;m
mg = G—Alz"-’f- (since W = mg)
. R
GM
g= e 5.30

Equation 5.30 is the expression for the free-fall acceleration near the

Earth’s surface. This acceleration is independent of the mass m of the
body and this can also be shown in Equation 5.30.

se-square law at points outside

The gravitational force obeys an inver
A ‘ distance to the centre of the

the Earth, that is, g a 1/, where r is the

110
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Earth. Inside the Earth, the value of g is not inver‘sely Propors _.‘_;
the square of the distance from the centre but'van_es Iinearly erh%
distance from the centre (line OP), as shown in Figure 5.6. Notgy"
g, is the value on the surface of the Earth. h_ﬁ

Let us now consider an object of mass m located at g diSlﬂncH:
above the Earth’s surface or a distance r from the Earthg ceny

where r = R. + h.

A
P (surface of the Earth)
Lo PR
o= A
x'rr:.
Balow the surfaca of / ‘1
the Earth £ \ Outside the Earth
oy {inverse-sqaure law)
/ E _.-'/
~ f N _——
'f‘ . "p""_-
f :
# \,
o / »
R - SO |_____--,r‘.|--_
= / i s e
T T A R R S R A i i
a I
R 2R 3R

Figure 5.6: Variation of g with » (R is the radius of the earth)

The magnitude of the gravitational force acting on this object is:
GM ,m GM m
F,=mg= = ¢
¥ 2 2
(R +h)

which gives:

GM,
g = : 5.31

(R, + h)’

Thus, it follows that g decreases with increasing altitude.
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ravitational Potential Energy

58 U |
Jer a particle of mass m displaced between two points /” and Q
CoﬂS; the Earth’s surface. The change in the gravitational potential
oo associated with the displacement is defined as the negative of
ﬁ":ﬁrk done by the gravitational force during that displacement:
th | ‘
I
U=, ~U, =~ FOpr
"
The gravitational force can be expressed as (from Equation 5.28):
GM, m
F(f‘):—ﬁ-—"rg 5.33

where the negative sign indicates that the force is attractive.

Hence Equation 5.32 becomes:

ry 1 i
Up—U; = GM , m 17 Ap = Gﬂ'fcr?r[— __]

[ :- ) F r'

] 1
U,-U,=-GM | ———|. 5.34

N

f 1
Taking the point r, = @ (i.e U; = 0) as the reference point, we obtain
the important result:

GM ,m

r

U=~ 595

This expression (Equation 5.35) is valid provided that r = R,. The
result is not valid for particles inside the Earth, where r < R,. If the
mass m is at an altitude A above the Earth’s surface, then:
GM ,m

=
R,+h

5.36
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I [ ticles. The
Equation 5.36 can be applied for any two par .
pgtential energy for any pair of particles of masses
separated by a distance r is'

Bravitgg,d

| ang 48

U=_Gm,m2 51 1
r k-
This expression shows that the gravitational potential energy for

pair of particles varies as 1/r, whereas the force between thep 4
as 1/r.

If three or more particles are brought close to one another, the togy]
gravitational potential energy is the sum over all the particle
Consider for example three particles of masses m,, m, and my indg
system. The total gravitational potential energy is:

Usiar =U)3 +U,3 + U,
U = AG{m'm:’ i % m’m”) 5.38
P! i3 ry;
5.9 Satellite Motion

Consider a satellite of

mass m moving with speed v in an orbi
S M.. The centripetal force required to keep

orbit is supplied by the gravitational attraction’
lite and the Earth, therefore- ;

the satellite in
between the satel

Fom’ _ GM.m

r rz
Then:
L. [an,
r 5.39
wherer= R, + p,
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The total mechanical energy of the two-body system is the sum of
the kinetic energy of the satellite and the potential energy of the
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system-

1 5, GMm
E;—_K+U=7}-mv'———* 5.40
Z Vi

Substituting Equation 5.39 for (5.40), we have:

GM,m GM.m — GM,m
E= = S
2r r 2r

5.41

This result (Equation 5.41) shows that the total mechanical energy is
negative. Note that the kinetic energy is positive and equal to one-
half the absolute value of the potential energy.

5.10 Velocity of Escape

Suppose an object of mass 7 is projected from the Earth’s surface at
point P with an initial speed v, so that it just escapes from the
gravitational influence of the Earth. Let v. be the escape speed
which is the minimum speed the object must have at the Earth’s
surface in order to escape from the influence of the Earth’s
gravitational attraction. I'rom definition:

work done W = m xpotential difference between infinity and
the point P

e g 0% 5.42
R,

We have the kinetic energy of object as:

o,
K =—my, =mx M

2 R
v, = [2GM 5.43

R,
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From Equation 5.30, gR? = GM_, substitute into Equatioy
have:

Vae = V28R, 544
If g = 9.8m/s” and R, = 6.4 x 10°nV/s then: ’

Ve =V2x9.8x6.4x10°ms™ =11.2:* Vs~ =11

With an initial velocity of about 11 kms”, an object or a rouq
completely escape from the gravitational attraction of the Earth,

5.11 Kepler’s Laws

Kepler (1571-1630) discovered three empirical laws that
describe the motions of the planets. Kepler’s laws state that:

1. Each planet moves in an elliptical orbit, with the Suna
focus of the ellipse.

2.The line joining the Sun and the other planets sweeps
equal areas in equal times. ;

3. The squares of the periods of revolution of the planesa
proportional to the cubes of their mean distances from

Sun; that is, T’ r>.
Newton discovered that Kepler’s laws can be derived; they:

consequences of Newton’s laws of motion and the law of grav
Let us see how Kepler’s third law arises for instance.

Consider a planet of mass m, with a circular orbit around the Sun! ..

mass M, Centripetal force is supplied by the force of gravity, tal®
m,v’ _GM,m,

2

r r
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V=
¥

where r is the average distance of the planet from the Sun,
But:

circumference 2mr

' period T
So:
2rr _ |GM,
T r

Squaring both sides and solving for 77 gives:
2
T2 — 4r r_.'j
GM,

T =K 5.46

Wh
-—
LN

or.

512 Mass and Density of Earth

Assuming that the Earth is spherical and of radius K., the force of
attraction of the Earth on a mass m on the Earth surface 1s:

GM, m
F=mg= Iy
2
I'l Mc — gg‘: 5'47

The volume of the Earth is 47sz /3 _ since the Earth is regarded as a
sphere. Therefore, the mean density p of the Earth is given by:
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M,  gR’ 3g

€

v aR°G/3 . ARG e

p..—_

Activity 5 Circular Motion

5.1. A satellite of mass m circles the Earth a distance g from ¢
centre of the Earth. If the radius of the Earth is 6.4 x 10%m, ;). ¢
the height above the Earth’s surface of the pzarking orbit ang |
velocity of the satellite in orbit. Take g =9.8m/s".
A. 19600km, 2.4km/s

B. 6400km, 14.12km/s

C. 36000km, 3.1km/s

D. 956.78km, 14.12km/s

Solution

Period T = 24 hrs = 24 x 3600s = 86400s (since the satellit is!

parking orbit). | ' -

_4r’R’

- gR:

_gRIT?

T 4n?

s _ 9.8(6.4x10° ) (86400)?
B 4(3.142)

R=3¥7.588x102m=4.23x10"m

R=R.+h

From which:

TZ

R3

R

=7.588x10%?

h=R-R.=(4.23x 10" - 6.4 x 10%m = 3.59 x 10" m = 36000km

mv’  GM.,m
R R?
Vz £ GM‘ ng

R - g \Using GM.=gR)
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9.8x(6.4x10°)

423x10’

mls =3.08x10° mls =3.lkm/s
The correct option is C.

52.  Which of the following cquations are

expressions of Kepler’s
[hil'd ll‘l“"":

Ar’RY ... Gm  Arx'r :
i) T° = g 7 (i) JT: ,ﬂ: (iii) me?r = SMM
gr r “ e
rr:
(iv) mg = ‘l'(;
A& @) Bo &y Co3) & (i) D. (ii) & (iv)
Solution

The correct option is A.

5.3. The law ol universal gravitation can be expressed as:

D. F=kma

n,i, G,
3

A. F=ma B. F= C. F=
7 2

Solution
The correct option is C.

54. The mass of the moon is about 1/81 that of the Earth and its
radius is one-fourth that of the Earth. What is the acceleration due to

gravity on the surface of the moon?

e ¥ ' M.
s GM, B 16GM, C. 4GM, B, S
R’ IR’ 8IR 4K,
Solution
] ]
Mﬂ! " — MU; je,l” == !‘?L'
81 4
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z _(JMM = 3_f c _l_é GM,_
"TTRE T (1, 8 K
i!"Rzu
4 °)

The correct option is B.

5.5. Two objects of masses m; and m; are placed side by gq,
distance r apart. What is the magnitude of the force of
each other” ‘

A. F=mu B.m=kma C. F=— : D F=

Solution

The correct option is D.

5.6. A 3kg particle,

resting on a smooth table and attached
fixed point on the table by 2 rope : mis”,

| 2 m long, is making 300 r

A 3600N B. 160N €. 360NN D. SMfl
Solution $
- . 300,27
o = 3frev/ min = _?’r_ yad /s =10 radls
J

Tension = centripetal force
mv*  mlwF) ]

7= = 3
F R -

= R =3(107)F » 1.2 = 3553.979N =3600N (2] -

The correct option is C.

7. A proposed communication satellite would revolve
Earth in 2 circular orbit in the equatorial plane at a
35880km above the Earth’s surface. Find the period of revol
the satellite. M, = 5.9% x 10”* kg, R. = 6370 km,
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G _ 6.6 X lO-Ilezkg-z
A. 23 hrs B. 22 hrs . 34 hrs

Solution
R=R.+h=(35880+6370) km = 42250 km = 4.2250 x 10"
4n’R’
gR? .
4x3.142% x (4.2250x 107}
~ gx(6.370x10°)
T=86.5403663 x 10°s =24.03 hrs = 24 hrs

The correct option is C.

D. 25 hrs

e

i =7.489235x10’

§8. Calculate the period of a conical pendulum of length 16m,
given that the string turns at a constant angle 60° to the vertical.

A.42s B:36% C.8.62s D.5.62s
Solution

Lcos@ [16cos 60
T=2xn

=2x3.142,| ———5 = 5.62s
g v 10

The correct option is D.

5.9. The mass of the moon is about 1/81 that of the Earth and the
distance from the centre of the Earth to that of the moon is about
4.0 x 10°km. At what point between the moon and the Earth will the
resultant gravitational force on a spacecraft become zero?

A. 3.6 x 10°km from the centre of the Earth

B. 3.6 x 10°km from the centre of the moon

C.4.0 x 10°km from the centrc of the Earth

D. 4.0 x 10’km from the centre of the moon

Solution
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o gravitational force be xkm from gpe ol

Let tl int of zer '
et the poin 0° — x) km from the moop,

the Earth and a distance (4 x |
of the spacecraft is m, then:

GM,m  GM,m
x’ _(4><IOS -—x)z

Using M, = ~l— M and rearranging, we have:
m 81 [

M, 81 x*

Mm 1 (4 X | 05 = I)“

Taking the square root of both side:

P
4x10° —x
x=36x10°> -9x

x=3.6x10"km

Hence, the spacecraft will experience zero gravitational force ata
distance of 3.6 x L0’ km from the centre of the Earth. 1

The correct option is A.

5.10. A circular wheel moving at constant speed makes oné

complete rotation in 45s. Two objects are on the wheel, one at 3.0m

from the centre of the ride and the other farther out, 6.0m from the

centre. Calculate (a) the angular speed and (b) the tangential speed of

each object? '

A. (a) 0.14rad/s, (.14 rad/s (b) 0.42m/s, 0.42m/s

B. (a) 0.10rad/s, 0.14 rad/s (b) 0.32m/s, 0.42m/s

C. (a) 0.14rad/s, 0.14 rad/s (b) 0.42m/s, 0.84m/s : J
D. (a) 0.14rad/s, 0.14 rad/s (b) 0.32m/s, 0.32m/s '

Solution
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objects rotat
ugh

(3) BOth

el thro
heel tfﬂ\e
w 0 2rrad

: i =0.l4rm:’/s.
peed Q] " 155

The angular s

b) The (angential speed is different

wheel. Thus:
.
v, = ra=-2

g —= r_'(b} _— 6.0>< (]

0x0.14m/s = 0.42m/s
14m/s=0.84m/s ]

-

y

The correct option is C.

5.11. A spacecr
of 400km. Calcul
if the spacecraft mak
A 84X 10" n/s. 9.8m/s”

B.4.8 X 107 m/s. 10.0m/s”
C.84Xx 10 m/s. 10.4m 5
D.48x 10 m/s. 10.4m/s”

s one revolution every 85 min,

Solution

h=400km=4.0x 100m.r=7=8min=>5.1X 10’ g
The radius of the circular orbit is:
r=R +h=(64x10°+4.0x10" b =6.8x10°m
Tangential speed:
2r 27x6.8%x10°m

v =" — — =8.4x10"m/s
1 5.1x107s

Then the centripetal acceleration is:

\-": 84 l 3 3 7 2
a:——=( 20 ) m/s- =104m/s-

r 6.8x10°

The correct option is C.

2
9

e at the same angular speed. All points on the
2 7 rad in the time it takes to make one rotation,

at different locations on the

aft is in circular orbit about the Earth at an altitude /i
ate the orbital speed and the centripetal acceleration
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5.12. Suppose that two masses, m = 2.5kg and m; = ,

respectively, are connected by light strings and are in Unif“‘
circular motion on a horizontal frictionless surface, where r, 2 ,%
and », = 1.3m, as shown in Figure 5.7 below. T

b -

-‘-—-—-l"-

Figure 5.7: Activity 5.12

= 2.9N and 7} = 4.5N. Find

The forces acting on the masses are T;
) the magnitudes of the

(a) the centripetal accelerations and (b

tangential velocities of the masses.

(A)a = 0.64m/s’, a; = 0.83m/s?, v; = 0.80m/s, v, = 1.0m/s
(B) a; = 0.60m/s’, az = 0.63m/s%, v; = 0.70m/s, v, = 1.0m/s
(C) @ = 0.04 m/s’, a2 = 0.083m/s?, v = 0.080m/s, v, =0.10m/s
(D) a; = 0.48 m/s’, a, = 0.89 m/s?, vi = 0.84m/s, v; = 6.0m/s

Solution

The centripetal force for m, is provided by the tensio
since T» is the only force acting on my toward the centre

circular path. Thus:

n in the string
of s

T, =mya,
And:
I, 29N
a,=—== =0.83m/s?
2 T, 3.5kg S
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!

o W= [ayr, =J0.83x13m/s=1.0m/s.

However, there are two forces acting on m: the tensions Ty and 7
the strings. Also, by Newton’s second law, in order o hawv
centripetal acceleration there must be a net force, which is given
the difference in the two tensions. Conventionally, the tension in

string always acts away from the mass. Hence, T and 75 are acting
opposite directions. Thus we have:

2
m V|

F.=T % (— 15 )= ma, = ——
g

Then:

=T 4.5+ (-2.9)N

m, 2.5kg

=0.64m/s°

And:

v, =\a,r =0.64 x1.0m/5=0.80m/s

The correct option is A.

3.13. A compact disc accelerates uniformly from rest to an angu
speed of 400rpm in 2.50s. Calculate the angular acceleration.
A.16.72rad/s>  B.6.72rad/s’ C.7.2rad/s’  D. 0.0rad/s®

Solution

2
W, =0, w=400rpni=%rﬂdm=4l.8rﬂdl’s,t=2.50:

a=2-®, 418rad/s-0
l 2.50s

=16.72rad  s*

124




hysics for Unjyer:

(p ’fcmu.,mﬁga&
Y

5.14. A microwave oven has a rotating plate reVo.lving at

which slows down uniformly to 300rpr!1 while Makig

revolutions. Find (a) the angular acc.eleratlon and (b) the l;

required to turn through these 50 revolutions.

A. -4.5nrad/s?, 5.0s

B. 4.5mrad/s’, 5.0s

C. -4.0mrad/s’, 5.0s

D. 4.0nrad/s?, 5.0s

Solution
@, = 900 rev/min = 30.0n rad/s, @ = 300 rev/min = 10.0x rads,
6 =50 rev=2n x 50 rad = 100x rad

(a) From @’ =@’ +2a6, we have:

2 2
g @ _(00z) (3002 _ , dls?
26 2(1007)

(b) Using:

9=[m+c‘oﬂ} 2(30.0774—109?),({
2 2

1007 =20.07 x¢
t=5.0s

The correct option is C.

S.15.  Find the angular speed of any point on one of the bhdf“’h;
fan turning at a rate of 800rpm. Find the tangential speed of thetp®
the fan blade if the distance from the centre to the tip is 15.0cm

A. 5027.2 rad/s, 31.42nvs

B. 31.42 rad/s, 4.71m/s

C. 800 rad/s, 42.9nv/s

D. 10.5 rad/s, 4.71m/s

Solution
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f= 3003-—3_1)—- =5rev/s
min

w=2n =2x3.142x 5rad | s =31.42rad | s
v=ar=3!.42><0.]5m/.s‘=4.7]3mfs

The correct option is B.

5.16. Which of the following represents Kepler’s law?

A. Each planet moves in an elliptical orbit with the Earth at one
focus of the ellipse.

B. The line joining the Sun and the planet sweeps out unequal areas
in equal times.

C. The squares of the periods of revolution of the planets are
proportional to lhe_CUbeS of their mean distances from the Sun, that

. 3
is, T*a r.
D. The squares of the periods of revolution of the planets are
inversely proportional to the cubes of their mean distances from the

Sun, that is, T l/rjl .

Solution

The correct option is C.

5.17. A wheel of radius 20cm is uniformly speeded up from rest to
a speed of 300rpm in a time of 10s. Find the constant angular
acceleration of the wheel and the tangential acceleration of a point on
the wheel.

A. 16.72 rad/s’, 3.344nV/s

B. 6.72 rad/s’, 3.044m/s

C. 16.72 rad/s, 3.344m/s’

D. 16.72 rad/s, 3.344m/s

Solution
r=20cm=0.2 m, w, =0,

w=300rpm=£q6%z.ﬂ—radfs=31.4?'0de
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Then:
a=axr=16T2x02m/s* =3344m/s’
The correct option is C.

5.18. A- pulley of 5.0cm radius, on a motor, slows down Vit
constant angular acceleration of 10x rad/s™ to 20 rev/s j, 2
Calculate the initial angular speed of the pulley and the Numbe o¢
revolutions it makes in this time.

A. 16.72 rad/s, 3.344 rad

B. 6.72 rad/s, 3.044 rad

C. 16.72 rad/s, 3.344 rad

D. 188.48 rad/s, 314.16 rad

Solution

r=5.0, a=-10x rad/s’ (negative since the object slows down)
@=20rev/s=2xx20rad/s=12568rad/s. 1=20s
w=a,+a

125.68 =@, +(~101)x2.0

w, =188.48rad /s

+
a=f“’ 2“"} =('25'63; '83‘43)x2.0rad=3|4-|6rad

The correct option is D.

5.19. A aar starts from rest and accelerates uniformly to a speed of
20mVs in a time of 4.0s. Find the angular acceleration of its 15¢
radius wheels and the number of rotations one wheel makes in ths
time.

A. 33.3 rad/s’, 266.4 rad B. 33.3 rad/s’, 44.1 rad
C. 16.72 rud/s®, 44.1 rad D. 16.72 rad/s’, 266.4 rad
Solstioa
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_0 v==20m/s,l=4.05,r= 1Sem=0.15m
o 20-0
vV = _mls* =5m/ s’

a=—, 40

Then:
e __2 radls®=333radls’
r 0.15
Using:
] 2 I 2
9=0,! +_7_ar =| 0+ e 33.3x 4% |rad =266.4rad

The correct option is A. |

5.20. A road of radius 20m is to be banked so that a car may make a

rurn at a maximum speed of 15m/s. What must be the banking angle?
A. 48.9° B. 46.2° C.90.0° D. 8.9°

Solution

5

}'_’ ]5_
tanf=— = =1.148
rg 20x9.8
0=tan"'(1.148)=48.9"

The correct option is A.

Summary of Chapter 5

In chapter 5, you have Jearned that:

cle with constant speed, the

I. When a particle moves in a cir
motion is called uniform circular motion.

eration, & , can be defined as
w,+a .

2. The angular accel the time rate of
change of angular velocity: @ =
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3. The centripetal acceleration can  pe

(ro)’ e ]

v
r F

T chnique i conslruct; :
4. Banking is a technique in road constructiop that invel,

tilting of the road surface at an angle 0 above the h°’i20mal
inward to the centre of the road.

L

. Newton’s law of universal gravitation states that ever
in the Universe attracts every other particle with a fo
directly proportional to the product
inversely proportional to the squ
them.

Y Partigl

ol FCE that j
of their Masses gy

are of the distance betweg,

6. Kepler's laws state that:

a. Each planet moves in an elliptical orbit with the Sun gt
one focus of the ellipse.

b. The line joining the Sun and the
areas in equal times.

¢.  The squares of the periods of revolution of the planes
are proportional to the cubes of their mean distances
from the Sun, that is;, Tla r

planet sweeps oyt equal

Self-Assessment Questions (SAQs) for Chapter 5

S.1. A satellite orbits the moon at a height of 20 000m. Find its
speed and the time it tak

e es for one orbit. (Take the mass on the moon
as 7.34 x 102 g and radius of the moon as 1.738 x ]06m.)

of radius 1.5m. Assume that the angular speed is
ine the acceleration of

5.3. Caleulate a value for the mass of the Earth, given that the
acceleration of free fall at the

3 Earth’s surface is 9.8ImS'za and the
radius of the Earth s 6400km. :

129




[Prysics for Usinersity Begmmen)
I b Wit g Comooanon |

A wheel revolving at 6.00 rev/s has an angular acceleration of
_Fmdﬂienumbaufuum{he“mm R

and the ime required.

A satellite orbits the Earth in a circle of radius 6570km. Fmd
5.5 pefid of the satellite and the time tzken to completc ome
i:olsuﬁo"* Assume the Earth’s mass is 6.0 x 10°%g.

Calculate the speed and period of a 1000kg satellte orbating 28
5'(:;0}““ above the Earth’s surface. How much work i done to place
70 - in orbit? Assume the Earth’s mass s 6.0 x 107°kg and the

%
%

a circle of radios 150m The

d is part of
surface and the fyres

nt of kinetic friction between the road
.« 0.3. If the road is banked at 12°, calculate the speed with
el on it withoul skidding

57. A curved roa

we;fﬁ{: e

Figure 5.8. What 5

es are position as shown 1n

58, Threc mass :
potential enerzy”’

their total gravitationaI

kg
\
\\
\
2m \ 3m
\
\
\\.
\
3kg —® 2kg
4m =

Figure 5.8: SAQ 5.8

59. A 1500kg car moving on a flat road negotiales a curve whose
radius is 35m. If the coefficient of friction between the DTS and
pavement is 0.50, find the maximum speed the car can have in order

to make the turn successfully.
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5.10. A car moving at 5.0m/s tries (o round a corner in a circularan
of 8.0m radius. The roadway is flat. \What must be the coefTicientof

friction between the wheels and roadway if the

car is not to skid?
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(Worg
ntee that work is done. For example, if ad
icle and fails to move the particle in jig direct;
is zero although energy may have been expended hun, i
provided the force. Basif:all}-', energy is Sﬁmethingltfhglte |
whereas work is something that is done on objects.

6.3.1 Forms of Energy

The main forms of energy are:

e Heat
Chemical
Electromagnetic
Nuclear
Electrical
Mechanical

The internal motion of the “tome s called heat
moving particles produce heot 1leat enerey can be produ
friction and it causes chanues 1 temperature and phase
of matter.

Chemical energy is the encroy required 1o bond atoms togetie
energy is released when the bonds are broken. Fuel and 00
forms of stored chemical encruy . '

Light is a form of electromagnetic ¢nergy. Each componeiiEes
light presents a different amount of electromagh®
Electromagnetic energy is also carried by X-rays, radio W2

laser light.

L

The nucleus of an atom is the source of nuclear © !
nuclear fission (splitting of nucleus). nuclear energy 5™ , ;
fﬂﬂfi of heat energy and light energy. Nuclear energy
during nuclear fusion (joining of nuclei). T!,'c .I;-L
Produced from a nuclear fusion reaction in which l,

fuse 1o form helium nuclei. Nuclear energy is the M2
marw_ l.:

hMmul m energy is the energy an object 3¢4 '«f

=1
=
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When we multiply this equation by m, we fing:
2 2
v —v
S =ma=m
F=m 2y

Using this expression in the equation for work, we get:

. v: —v i | 3 1 5
W = Fx = m—?—- X == =y _Emvo ol

Equation 6.9 is called the work-energy theorem, which
for an object which moves under the influence of g given for

one point to another the work done by the force on the object
change in the kinetic energy of the object.

6.5 Conservative Forces: Potential Energy

A force is said to be conservative if the work done by or againsi
moving an object is independent of the object’s path. The implias
of this statement is that the work done by a conservative i
depends only on the initial and final positions of an object. Exam
of conservative forces include the force due to gravity and thesp
force. If an object falls from rest through a vertical height &%

maximum amount of mechanical work done irrespective of i |
taken is given by:

W = mgh =.mg())2 __yl) 6.1 .,

where the object has travelled from y, to its final position}} : '.
We can define the

: gravitational potential energy function =%
object of mass m, a

tthe vertical position y as:

U(y)=-mgy

The maximupm amount of work which an object of mass %

f:‘ldl\::rg unfier the Earth’s gravity, from a vertical P":ﬂ
pOSltio . .) . c__'.'-
Earth’s surfac:-,;yl’ s known as its potential energy i
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This is the mathematical statement of the law of ” ,_

mechanical energy, whjch states that in a Comam:“"i.'
total mechan ical energy is conserved. %‘

6.7 Power

Power is the rate at which work is done. Like wor

power Is 2 scalar quantity. When a quantity of work by :..’
during a time interval At, the average power, P, is de r“'ﬂdlol;:

AW
F=—1 6
a At - 14
We can rewrite Equation 6.14 as:
P = F.r _ Frc:)sf? — Frcosd -
f

where v is the magnitude of the instantaneous velocity.
We can also express Equation 6.15 in terms of the scalar prodst

P.=F.y 6.16
The instantaneous power P is defined as:

P:.i.n&“_’_dW 6.17

A—0 N df

The S.1. unit of power is the watt (W). One wat equals l;jf;':
second, that is 1W = 1J/s. The kilowatt (1kW = 10°W), 4 2=

IMW = W)
( 10°W) and horsepower (1hp = 746W = 0.746K
commonly used as unit of power.

The efficiency (€) is defined as-

- Power o 618
S P 00%
power input

W )
emalsom“ﬁ-‘ciﬂw}' in terms of wark done 3%
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ork output
| work ot o
kil 6.19

_—7__ Work, Energy and Power

Activit)’ 6
). AR skier is pulled by a tow rope behind a boat. He ski
;0 (he side and tl}e rqpe makes an angle of 60° with hi's dir;::‘% off
ion. The tenston in ti‘w rope is 120N. How much work is d ion of
kier by the rope during a displacement of 500m? s done on
j B.3.00 x 10"
D.2.18 x 10"

the'$
A— 5‘64 X 10 J

Solution

Work done:
W =force x displacement = 120

The correct option 1S B.

cos 60° x 500 =3.00x 10}

62. The spring of a spring un has a force constant of S00N/m. It is

compressed 0.05m and a ball of mass  0.01kg is placed in the barrel

against the compressed spring. Compute the speed with which the

ball leaves the gun when released.

A 11.2m/s B. 125m/s C. 12.5m/s D. 112m/s

Solution

Energ - sprine = Kineti
ergy stored in spring = Kinetic energy of ball

» 1
% ke” = ;mv‘

ke’ k >

V= ‘_ =‘[:c = ’_quxo.OSm/S
m m 0.01

"=450000x0.05m/s:I1.18m/s=ll-?-m/3

The correct option is A.

he top of @ building. If

63, :
An object of mass 5.4kg is falling fromt s
bove the sea level 1

€ veloe:
elocity of the object at height 20.0m 2
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10.0m/s, how far is the top of the building " By

Assume g = 9.8m/s”. & from .

Seg |
A. 30.0m B. 23.4m C. 25.1m hw

Solution

Using the law of conservation of mechanica] o
potential and kinetic energies at the top of the bui::je-rgy’ sun
potential and kinetic energies at any other point. The cl.gg &’3"1111
speed is zero. JeCt’s i,

1 2 ] ___ ‘2 /
Emvl + mgih, = —r)—n:w: + mghn,

P

%x0+ 9.8 x H=-;—><l()3 + 9.8x20

9.8H =50 + 196

H=25.1m
The correct option is C.
6.4. A force of 12.0N which is applied at 50° to the vertical pullt

load of mass 1.5kg along a horizontal surface through a'dis}a;.
10.0m. If the frictional force between the two surfaces IS &4

calculate the effective work done on the load. D, 7990
A. 120.0J B.91.93] C. 108.0J '
Solution ¢ isd0
. S ac that 1 1
Since the force is applied 50° to the vertical it implies

the horizontal.

Effective force:
Fr = component of the 12.0N force along the hor
force

Fr=(12cos 40° — 1.2)N = 7.9925N

Work done:
W=Fgxd=7.9925x 10] = 79.93J

The correct option is D.
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rrect option 15 e I

The €O
[ 20N is needed to hold a spring extendyg
S;

9, A force 4] = | ] '

fjrom s equilibrium position. How much work is done jy l&t‘&
ring?

;I:.GLIS{!}JOJ B. 0.5 C. 400N D 04y

Solution '

Wwork done, W = Energy stored in the spring

%x 0057 =05/

]]/:_-_I.Fg_-:
f"

—

The correct option is B.

6.10. A constant force 20N moves a body of mass 2kg with consty
speed of 0.2m/s. Calculate the power expended.

Solution

P, =Fv=20x02W =4I

115.61]{1. A 4kg ball |119vi11g with a velocity of 10ms™ collides wiht
g ball moving with a velocity of 4ms™' in the opposite d|r¥ﬂm

C - - w i i
IC'::1Ic:-.1]lca'u=: the velocst'y of the balls if they coalesce on impact ““I:'.- :
ss of energy resulting from the impact. !

A.52ms™: 58]

3 B. 1.2ms™';
C.5.2ms™"; 314) D. | 2:12“',- gé:jj
Solution ’ |

m, = 4k = 161
: n;‘%’ my = 16kg, u, = 10m/s, u, = -4m/s, vi =2 =V
y 1u|”-I]- mauy = (n1y + my)v ) ’
X +I6K(‘4)=(4+16)v
40 - 64 = 20v
20v=-24
v=-1.2ms"

Loss of en s E
cr ﬂ = f‘
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Itant force /'R = (150c0s35° — 25)N = 97.873N

Resu Froxd= 907.873 x 10J = 978.731

Work don¢ =
The correct option is C.

6.15. A force of 6N acts horizontally on a stationary mg
- L SS

4s. The kinetic encrgy gained by the mass is: ofz_k
A. 12) B. 24)J C. 48] D. 144] .
Solution

From Newton’s second law ol motion:

Fr = ma

6=2xa
a=3m/s ;
"-Ozﬂ.'
Using, v = u + al e
v=(0+3 x4mls=12m/s v
- . — l 2 - ’ 2%
K.E gained, K.E. = ;H}V‘ = —i— x2x12°.J =144
= ) - 1

The correct option is D.

6:16. A _body is released from rest and allowed to fall freely;—-_'
glven_helght under gravity. The kinetic energy at its halfway Po
A. a l_lttle above half of its initial energy -
B. a little below half of its initial energy
& A h-aif' of its initial energy

D. a little above its initial energy

Solution

The correct option is C.

6.17. : _
have \il?e::gi% falls from a nest at a height of 4m. What sp
i-_—_ 9-8]-“/52' 1Is Im ﬂ{)ln the ground? Neglect air reSlStan
- 7.1m/
; B. 4.43m/s C. 58.8m/s
Solution
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6.20. The force generated from the engine of 5 car i
300N. Calculate the power developed when the cq, mc:u"dhﬁ

constant speed of Sm/s. b
A TIW B. 4.43W C. 1500w D. "1
Solution

p = force x velocity = 300x SW =1500W

The correct option is C.

Summary of Chapter 6
In chapter 6. you have learned that:

|. The work done by a constant force in moving ap objc
equal to the product of the magnitudes of the displacemeny
the component of the force parallel to the displacement,

2

From the definition of scalar product and work done by a fo

- —
is W=F.r.InS.l units, the unit of work is the news
metre, with the special name joule (J).

3. The work done by the force in the total displacement fromx®
.
xpisW = JF(x)dx.

4. Energy is defined as the capacity to do work.

5. Kinetic energy is defined as the energy a body POSS"'S by\'Wl
of its motion, The kinetic energy of a particle ©

: : g 2 p
travelling with speed v is given as: K = -2—’-”‘" ; 3

6. The work-energy theorem states that for an Obj:‘t
moves under the influence of a given force, f_"om.oﬂ,,-‘ 5,
another, the work done by the force on the object |ls :

2 ‘E”Wd

¥ . " 1
In the kinetic energy of the object: W = Emv
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. A force is said 10 be conservative if' the wak
jnst 1t In moving an oblect s independont o :|n.m1|l“ .
cath. The uupl_n:atl-:*u o this statement ix that the :: m“L”M ‘
by & conser\_nmc T\‘Il\'i.? \t(‘l\\‘lhlﬁ wnly on (he i :,‘:1 | "||“|.'“‘
gittons of an objext. l:\nmph\q ol consenative 6

. > o 5 i It" AR
include the force due o gravity and the ring e Vi

If an object falls from rest, theough o vertieal hofuh WAl
. s 2] UL \'
maximum amount of mechameal work done ISPty |
' ‘ \ 1 0 {h
th taken, s aiven by 1w g/ wly
the pa shen iy muh = mplyy, \'1]. wWhere the
object has travelled from vy toats fimal position v,

L

9, For non'—\:n.:'!‘lser\';‘l‘ti\c or dissipative foree, amye wark done
against it in moving an objeet fromeone position (o anothe
dépends on the detatls of the path between the intial and Hinal
positions, and not qust on the end points. Fxamples ol non
conservative forces are the frictional foree between twa solid
surfaces. and the drag foree for motion through a fiid

10.The law of conservation of mechanical enerpy states that o
conservative system. the fotal mechanical enerpy s conseny e
" I bl . I ]
Thatis: U, +—my = B F

7 i 9

-

I1.Power is the rate at which work is done, When a quantity of

work AT is done during a time interval A7, the average power
. ANV i
P,, is defined to be P =-—— The S unit of power s the
Y

watt (W).

ower Ouipil

power OUPHE L\ 00%.

12.The efficiency (¢) is defined as &=~ .
power mpul

Self-Assessment Questions (SAQs) for Chapter 0

6L A 3.0kg object is lifted 3.5m. How apainst
the Earth’s gravity?

much work is done
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| Work. |.HL‘rgy and l,n::]

3 i ving a 1300kg car f :
6.2. Calculate the \\fozk done_‘ ||]10mo g 2 from peg 0
speed of 20m/s in a distance of 80m.

: she an ncline plane
6.3. A 200kg drum is pu,sht._cl up an _II](: ] ]] ane 7.0 m Iong1 to 4
platform 1.5m above the starting poimnt. Calculate the work done b
the pushing force if a friction force of 150N opposes the motion.

6.4 A water pump takes water through a distance of 12m. Water g
discharged at the surface at a rate of 2.0kg/s, and the discharge speed
of eachbdrop is 3.0m/s. Find the minimum power of the pump.

6.5. An object of mass 10kg, starting from rest, is pushed 4
distance 15m along a frictionless surlace by a force of 300N (a)
Calculate how much work is done by the force. (b) Using the work-
energy theorem, calculate the final speed and the linal kinetic energy
of the object.

6.6. An object of mass I2kg, initially at rest, is lifted from the
ground to a final height of 10m by a uniform force, so that it arrives
at its final height with a speed of 5m/s. (a) Calculate the force
applied to the object. (b) How much work is done in lifting the
object? (¢c) How much of this work js done against gravity?

6.7. A 1200kg car is moving down a 30° hill. The driver applies
the brakes at a time that the car’s speed is 12m/s. What constant
force F must result if the car is to stop after travelling 100m?

6.8. An object 4 of mass |5

Ll Kg is moving with a velocity of 6m/s.
Calculate the Kinetic cnergy an

d its momentum.

fni ]A ba(;l of massg 0.1kg is thrown vertically upwards with an
1al speed of 20mys. Calculate (a) the time taken to return to the

hro . ; :
thrower, (b) the maximum height reached (c) the kinetic and
potential energies of the ba|] half—Way up , '

6.10. An object of Mmass Skg s

: the
ground for 15 Seconds. T JElar 5 height of 1 metre above

1€ work dGone within this period is:
‘49






7.1 Introduction

Our study of mechanics has been .rcstricllc |
dynamics of point masses or particles -(J.C.., nb_lg?cls Whose iy
extent is either negligible or |}Iz|y.‘% no ‘rqlc. n tlu:::r mOIion), lﬂlhig
chapter, we will study the mcchamc:s; of rigid bodieg. A rigid body
a system of particles, such that the distances h(?u-vecn the Particleg
fixed, and do not change throughout (he motion, Exampleg of rigg
bodies include a stone, a football and g bullet. Unlike the case f
point mass which can only exhibit translationa] motion, the Motiog
of a rigid body could be translational and rotationg
describing rotational motion,

we will define the fol
moment, torque and angular moment um.

C

I motigy i
owing ferm

7.2 Moment of a vector

The moment of a vector A
magnitude s

Perpendicular dj
the vector A In

about
the product of the

stance of O from the
Figure 7.1 g defined

a pomt O is a vector whs
magnitude of A and e

direction of A. The momcnl.ﬁf
as:

M =i b 2 i § T'EE
oment = vector A X perpendicular distance from axis 5
A
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Figure 7.2: Principle of moments

All static equilibrium problems are solved the same way.
i, Find all external forces y:
ii. Choose a pivot
iii. Find all external torques i.e. the moments of
forces about the pivot ¢ all
iv. Set net force to zero, i.e. sum of upward forces eqyl,
sum of downward forces 4
v. Set net torque to zero i.e. sum of all clockwise mome
_____ equal to sum of anticlockwise moments
vi. Solve for unknown quantities

It is generally simpler to choose the pivot at the point of applicali
of the force for which you have the ieast information.

7.4 Rotation of Rigid Bodies
of an object in a i

In chapter five we considered the motion l
path. We defined the angular speed/ velocity and angu!ar aﬁﬁ
which are applicable for rotational motion of rigid boaﬂ: ;
rotational motion about a fixed axis when the angular‘ac‘;d b
constant, we have derived equations for angular yeloces
position (Section 5.2) using exactly the same P*~

for straight-line motion in Section 3.2. The eq

w= a)ﬂ +w
9=6’u+q,t+-é-at2
@’ =w +2a(60-6,)
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1
9-"9» = _2_ &y +ﬂ)} 7.7 —

15 Centre of Mass and Centre of Gravity

consider @ system of particles of masses m,, m,, m,..., located at
| 0 ’

sition (X1, 1> z1), (X2, V2, 22), (X3, y3, 23),..., respectively (Figure
. define the centre of mass of the syst

73). We : em as the point that has
c(',ordinates (xcm, Yems zcm) given by_‘
2 mx,
mx, +m,x, +m;x; + ... - i
i - 7.
Xem m, +m, +m, + ... ij 8a
i

Zml'yi
mlyl +"n2y2 +f??3y3 e _

- = 7.8b
Yan m, +m, +m; + ... me_
]
S,
| - W2 M5 Mz, . _
— s z —
| Zen = = 7.8¢
m +m, +m, + ... Zm,_

L C,, ]

Figure 73 Centre of mass

|







—

The position vector 7 «» of the centre of mass can b
— = - € eXp
> re .
Sseﬁl

terms of the position vectors 7, 75, I";,... of the Particles 4.

" —»
— —] —
E m, r,

= 1, P i, - iy 85 :

Fem =

—_ T e—_—_
M R T ol e E :’”; 7.9

i

The centre of gravity is the average location of the weight of
object. It is a geometric property ol any object. The motion ::-f:.::
object can be completely described through space in terpgs c’:
the translation of the centre of gravity of the object from one pla(‘,e:.;l
another and the rotation of the object about its centre of gravity

is free to rotate.

For a general shaped object, there is a simple mechanical wayu

determine the centre of gravity:

1. If you just balance the object using a string or an edge, U

point at which the object is balanced is the centre of gravily
o-step method sho¥

ect from any poit
oint. Dra%!

2. Another, more complicated way is a tw
in Figure 7.4. In Step 1, you hang the ob]j
and you drop a weighted string from the samep i
line on the object along the string. For Step 2, regwh&“
procedure from another point on the object. Yo:n ncentl‘ﬂ”'
two lines drawn on the object which intersect. T_‘e roced”
gravity is the point where the lines intersect- Tlt]]ZrI:: jard !

works well for irregularly shaped objects tha

balance. e
I
Yy distributed= w§

st 1S

If the mass of the object is not uniforml
calculus to determine centre of gravity.
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o
The rod is a continuous distribution of mass so we

integration to find the moment of inertia. We choose a thip ::‘l a
mass dm, which has thickness dx. Let the axis of rotation oxme !
an arbitrary distance /# from one end. The ratio of the mas; dm'o?e .
slice to the total mass M is equal to the ratio of its length dyx lo:::

total length L:
dm dx M
AN _ 2 or dm=—dx
M L L

The moment ol inertia / 1s:

1.=h

1.—h 3
> M , M( x ]
J=|ldnx’= | —x"dx=|—|—7 =-—MI\L*-3L 2
If the axis is at the left end of the rod, i.e 2= 0, then:
!:lM(LZ—SLxO+3><O):%ML2 7.11

3

If the axis is at the right end of the rod 4 = L, then:

L Ny
/ =§M(L“—3L><L+3><L‘):§ML2

If the axis passes through th

JEyY PIRY L _ Ly n2
2 2 12

e centre i1 = L/2, then:

3

The moments of inertia of various bodies are stated below:

|. Rectangular plate, axis through centre (Figure 7.6):

7.13

l:]—lz—M(a:'+b2)
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Figure 7.12: Rolling without slipping

The total Kinetic energy ol the eylinder, aceording to Equatiy 10
Is:

2 I ¥ |. p)
]\ — e | (v +—f\h'””
j tm r'}

-

Since the eylinder does not slip, then v = . Therefore:
L (v ) e (1
h = —-,FI ) it +— f‘- h.-'m —_—— '-'L_m + J‘nr ?24

9 v r | " 8

— b e Ith

Suppose the cylinder rolls without slipping
distance v along the plane. The consery
stipulates that the loss of potential ¢
e

from rest through 4
ation of mechanical energy
nergy = oain in Kinetic energy,

(& 7
2 "

Mgxsin @ =lv3 f + ,-‘u‘]

Rearranging, we have:

r _ 2Mgxsin@

v

If a is the acceleration down the plane, we have:

!

A 2 fov ey
VosY, var=2ax = Mgxsin ¢
l'.l’lf+ }’/r‘

since v, =0
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hes
-‘[g Si.n H
L. e I
= (1/2) 1.25
M+
 uting Equauon té (since the moving body is a solid
\.,L'- NS o
ol . der) int0 Equation 7.23, we have:
2gsind
a=— = 7.26
3

-9 Work and Power in Rotational Motion

Newton s second law for rotational motion states that the total
ternal torque T is equal to the product of the moment of inertia /
the angular gcceleration @

-.n‘

r=1la 7.27
The angular acceleration @ of a rotating body is defined as:
Lf(.'){{) ~
= 28
ai

v torque during an angular displacement

The total work done by
tom 6, to & is defined as:

-
- -‘\-)

rlfthe torque remains constant while the angle changes by a finite

t, then:

6, -6,) 7.30

on a rotating rigid body, the change in the
of the rigid body equals the work done by
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I M
Activity 7 Rigid bodies B
A flywheel of radius 20cm and mass ISk\

7.1 Fi g is Mounteq on 4
s i ment of inertia g4 ;
horizontal axle. Calculate its mo out the il

passing through its centre of mass.

2
A. 10kgm? B. 2.0kgm’ C. 3kgm D. 0,34y
Solution
I = MR = -l—x 15%0.2° kgn® = 0.3kgm’
2 2

The correct option is D,

7.2. A grind stone in the form of a solid cylinder hasg 4 radius of ( 5
m and a mass of 50kg. What torque will bring it from rest to gy
angular velocity of 300 rev/min in 10s?

A. 187.5Nm B. 6.3Nm C. 19.6Nm D. 3.INm
Solution
For solid cylinder, moment of inertia, /=14 (fR? = 72 X 50 x (5
kgm®= 6.26kgm?’

. 300 x 2
@ =300rev / min :—%ﬁ—;{ rad/ls =107 rad/ s

W =w +c
lUﬁ=D+a %10

a =7 rad/ s*

Torque, 7 = la=6.25x Nm =19.6 N,

The correct option is C.

g rolls without slipping down 4

; lon and (| icti - ed to
prevent SIIPping_ Take o= 9.3mf32_ 1c ﬁ‘lctlonal force need

A.327m/s? 3 6N
B.7.07mvs?, 70,7\

! e =
= - .'ﬁ iy —
& .

pl T S, )
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K E, = Volw*= "2 x 0.223 X 16°] =28.8) =29)

The correct option is A
a plane inclined at 30° to the fop,

| 7.19. A sphere rolls down
of the sphere afigr 4 “

| Calculate the velocity and acceleration
| moved Sm from rest along the plane (/piere = 2MR7/S).

| A. 3.6ms’; 4.0ms™
B. 6.0ms™; 3.6ms™
C.6.0ms™; 44.6ms™
D. 4.0ms™; 3.6ms”

Solution

I MR?
,f:__"rR_

5
I 2M

R* 5
Velocity of an object rolling down an inclined plane without slipping
IS: o

| 2 _ 2Mgs sin@

)

2 2Mgs sin@

: Vo=
Ii [M +(E_A£JJ
| 5
I| v3=2MgS siné?:]()gssin-‘.? 10x10x5x%sin30
| Mo g 7
| S
v=5.976m/s ~6.0m/ s
‘. a=Mgsin9
. M+—ir—
\ '

=33.714
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Solve:

Force, x- rm—m=0
Force vz py— mg = ()
Torgue: [

Ln, sin¢—(L/2)

Mg G =
From the force equations we oet =y

mg.
Thersfore:
#sma—(1/2)cos ¢ = 0
and so
<3 1/
aneg=| :..4
723. Calculare the weight of the e, W, if i s N e
when: W, = 6N: d) = 12cm; dy = 36057 iy
LCl M
. P of beam
. \
. |
Kknown | !’
- ! : I l
werght| | & weight of
- j o | \;,, \t»‘:’}‘[ O!
L'll " Deam W
=t ‘t\ :'
Solution
APPIving the principle of moments: 7, 4, = W, d;
nence, oN x Pem =, 36cm

Therefore. 7

[ = |

- 10T A about a point O is a vector whes
mar__:nitu_d“‘ s the produc; of the magnitude of A and t®
“Pendicular distance of O from the direction of A.
Moment = v

Perpendicular distance from axis.
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: voul the origin, ol a force F which passes
with position vector r, is given by the vector

-
r=rx F=rFsin@ where ¢ is the angle between
and the force vector F.

Prgduct:
the line 7
1. moment, about t‘hf origin, of linear momentum p which
passes through a point with position vector r, is given by:

. - . ‘

[=rxp- L is called the orbital angular momentum, or
simply the angular momentum.

4. A body is said to be in mechanical equilibrium when the

conditions for both translational and rotational equilibrium are

isfied. Thatis, > F =0and ) 2w

5. The centre of mass of the system is  defined
o - i Zmr ri
o my ri+my rat i, | 55 :
aslam = — = —
m, + i, + >om,

I

6. The moment of inertia I of the rigid body, 1S defined as

2 2 2
[=mr +my; +..= Z*’”J} .
i

7. The parallel axis theorem explains the relationship between
the moment of inertia Jon Of @ body of mass M about an axis
through its centre of mass and the moment of inertia / about
any other axis parallel to the original one, ata distance d from

it.
8. The rotational kinetic energy K of a
of inertia of the rigid body.

rigid body is

]
K =5ku2 _where / is the moment

178










[Physics for Universiyy .
[Mechanical py,

8.1 Introduction - T

External forces can be applied to a solid to produce a changg_in:ﬁ
shape or volume of the solid. This change in shape or ""“"lliﬁ'iliﬁ
known as deformation. In some cases when the defnrming fmﬁ.ﬁ
removed, solids return to their original shapes and \‘ﬂlll'miéé.:
Elasticity is the ability of a solid to return to its original shaﬂﬁiﬁf
volume when the deforming force has been removed, Such kinds of
solids are called elastic solids and the deformation js said to be g
elastic deformation. This type of deformation IS reversible, Once

the forces are no longer applied, the object returns to ifs nrig_i@i_:
shape.

Plastic deformation is 2 process in which enough force is placed on
metal or plastic to cause the object to change its size or shape ina
way that is not reversible. In other words, the changes are permanent;
even when the force is removed, the material will not go back toits
original shape. Sometimes referred to simply as plasticity, this type
of deformation can be conducted under controlled circumstances as
well as unintentionally. Both the deformation of plastic and the
deformation of metals involve changes to the makeup of the material
itself. For example, metals that undergo this process of plastic
deformation experience a condition known as dislocation. As force
is exerted on the metal, the material reaches a point known as the
yield strength. When this point is achieved, the pattern _Dfr@
molecules that make up the metal begin to shift. The end result is that

the molecules realign in a pattern that js shaped by the ex:ﬁ'iur'wl
placed on the object. it
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qulate until they are sufficient to cause a fracture. All
;m eventually fracture, if sufficient forces are applied.

s 8
'-g'ials
y Hooke’s Law

! deforming force F is applied to a wire of initial length L
i

(AL

; Juces @ change in length AL of the wire. In an experiment in
ﬂﬁST:he applied force is increased and the corresponding increase
ic

h (extension, € = AL) are recorded - if the extension, e, is
iﬂlolligdgtﬂgﬂim the force Fin the wire, a graph as shown in Figure 8.1
Fohtaiﬂf-‘d The elastic region OA shows that the extension ¢ is
. rional to the force‘Fand the wire returned to its Dl'ig.ina‘I |Eljglh

hen the applied force 1s removed. A4 is the proportional limit of the
::rire The force at B is called the elastic limit that is the limit of
elasticity-

'c law states that the extension is proportional to the force in a
Hooke’s lav _ he e
wireif the proportional limit is not exceeded:

F=k(AL) 8.1

where k is a constant of proportionality.

Beyond the elastic limit, the wire is no longer elastic and it has a
prmanent extension OF when the force is removed at E. The
extension increases rapidly along the curve 4£C as the force on the
wire is further increased and at D the wire breaks.

A
D

y C

c
8
:
&

P

0 >

Force, F

Figure 8.1: Hooke’s Law
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8.3 Stress and Steain

When a foree 2 s applied to the end ofl'n wire of Cross-sect;.,
A and original lenpth L, this produces what is known ag b Moy,
tho wire. Stress is defined as the furee per unit areq: HES

I
SIresy = — 8.2
S.L unit of stress is newton per square meter (N/m?),
Strain is defined as the extension per unit length:
Al, L-1
L,

where it is assumed that the applied force stretches the wire Lo g
length L = L, + AL. Strain is n unitless quantity,

strain = 8.3

IHooke’s law also states (hat the strain is proportional 1o the styess if
the proportional limit is not exceeded;

straine stress
Rewriting this as an equation, Hooke’s law states that
stress =Y x strain 8.4

where Y, the constant of proportionality, is known as the modulus of
elasticity (or Young’s modulus) for the deformation,

If the applied force is perpendicular to the surface of the wire, then F
can either be inward, as in Figure 8.2a, to give what is known as @
compressional stress, or F can be outward, as in Figure 8.2b, to give

a tensile stress,
) et FT— mat
" . | b
Figure 8.2: (a) Compressional stress, and (b) tensile stress
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lied to @ compressional or a tensile stress and the
ngil‘-[l strain, Hooke’s law gives:
wﬂ‘ﬁpn

F AL

which implies:

}i‘:-?lﬁf, 8.5

il
Comparing Equations 8.1 and 8.5, we have:

VA 8 6
k=— -
Lr:

Ifthe applied force /7 is parallel to the surface (Figure 8.3) we have
what is known as a shcar strcssh |‘nmx_l}1c:|ng a shear strain which is
defined as the angle ¢, measured in radian.

- =
o i
-'ff -’{f/ "jf‘]‘

| X _{-“’-‘H-- ‘_'_,r ,--"/ .-rj
[~ J_H_,..:rr_,{f,[
ol [ o

Y. iaF e e
l £ 1.,*""",_:-"! ,-""f
y g
2 A

F 4——o b2

Figure 8.3: Shear strain

From the diagram above, we can also define shear strain as the ratio

of the displacement x to the transverse dimension ¥
Sh - o 8.7
ear strain=0 ~tan@ == i
¥
H““k\‘r's. law, applied to a shear strain @ and the corresponding shear
» Blves
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wWhere the conmtapt o |ll1ltll}i|illllrllll', "o knows 05 e
o of the subatance or modisis of gty iy

1he Il'lhs| Wil of sty ey sl sttusdion 1s .

alledd bl A s
v e compressed by apply g 1y

PETHE "”I“‘

i ¢

“”lfll |““M

15‘
W e, as shown in Fipure §4 o 4l
r
r
-~
-~
L .
F " | d r
|
|
|
I

o B4 Btk st

”ll”-. {\'l11h|llh'} ahress whi o e

y .:||f|‘ A
detined g

h Irn re I [ esulne "‘:.p [

.
A~ , by

A hll“m Sy lrli'rlllll oo e B A i thie

volinme of the r;ia.}g::.j_ 1u
RAVe What b e fined e e bul)e

AV
v 8.0

L1

Itk sirain -

Applying Hooke's T 1) the bull

sirsn, we have

m)
. | 811

0]

A= 1
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nstant of proportionality B is known as the bulk
wher® ffl?ﬂ object or substance. The S.1. unit of B is pascal (Pa)
us ©
modt
N
from Equall

v, 2 8.12

on 8.11, we have:

[ude a minus sign in Equations 8.11 and 8.12 because an
e sure always causes a decreasce in volume,

We i
norease of pres

: “the bulk modulus is called the compressibility and
iprocal of the

Th”eced by C. From Equation 8.12:

is denot

=3V mp 8.13
The unit of compressibility is Pa” or atm™.

84 Energy Stored in a Tensile or Compressional
Strain

When a solid object is stretched or compressed, encrgy is stored in it.
This energy is released when the applied force is removed and
provided the deformation is clastic.

Consider a solid object of cross-scctional arca 4 and initial length L,
With one end initially on the origin of the x-axis (Figure 8.5). If a

force F(x) is applied causing deformation x, then from Equation 8.5,
we have:

b
Fx)= 22X 8.14
L“
The work done a

X gainst the restoring force in stretching the object by
4 additional s,

all length elx is given as:

X

W=Idﬁ/ = j F(x )dx :I S e
i}

i) “ti
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YAx?

W = o7 8.15
s 4 > dx

R
() i,
T T x- @ds
x=l X

Figure 8.5: Energy stored

W is stored in the solid as potential energy of deformation £ Give
that the volume of the object V is AL, the cnergy stored per un'l:
volume is: I

£ YAx? r Yx*
—_—= - —_—

' 2L M. 2F

O Yy 'y |

;_/ = ; y ;_‘_ P, _‘f.—l._ == % (.\'H'f:w) 3 (.\‘!rufn) 8.16

We see that for a tensile strain, the energy stored per unit volume of

, |
the object 15 = (_W'(-n}(m'r_..ru;rj_ We can also show that the energy

.-

stored in a shear strain for a cube of sides of length £ is given as:

- T
E==L"n@:
.-) ¥

8.17

The volume of the cube Vis L' Then, the energy stored per unit
volume is:
£ | )
—=—nl:
I_.’ 2 d

-

8.18

Rewriting Equation 8.18, using Equation 8.8:
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BN S resran) g

stored in o bulk steain in compressing o spherion solid by

# pis (where Fyis the initial volume):
i

) iBV* 8.20
- Bl e
3 v,
o eNergY stored per unit volume is;

AN

f—-:-q—f'l';r 8.2

Rearranging the right hand side, we have:

LBV r-']
— | — B R"\'}
AR

Ic_tivity 8 I\ Lhiluly

B, A wire is subjected 10 o tensile stiess of 2.5 10"Nm .
aleulate the Young’s modulus il (he lenpth mere
original length,

A 125 % 10" Nm

B.5.0% 10" Nm™”

C25% 10" Nm*

D125 % 10" Ny 2

Solution

ases by 5% ol s

Taslo strain A _ 5% 0f 1, 0.05, |
, T = 005

| ;_Y%E’i Modulus,
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~1AV
PeT Y
4x10 ,
______'____.-—-—'—'—‘—'_

|zusslﬂ' == Tx1.2%10°
0.2766 x 10"

= -

Cﬁ-ﬂ.?ﬁﬁ X 10”pn
topl 1on IS i
1‘115 corrﬁc

yeth 3m and
(0 a rigid ceiling
A 10 the Young modulun B 20 K
(ant on the wire

Qiameter T siponded verti nlly

ahretched when e hlo ki
.

10 UKL nl

f wire of et
al'll oneé attached
. ed to the other en
:;atculatc (he force cons
AS2X 10'N/m
p.6AX 10°N/m
12X 10"'N/m
0.32x 10'N/m

Solution
2 w(lx107')Y .
ml’ _3.142 x(1x10 ) (0 00000078

hea A=—=—" i

4 4
l-' EARY ' .\r !‘.lf.
Young’s modulus V' = i_.‘.?". ot ;
Stren A Tt /
M _20x 10" % 7.855410" , .
_T= : — N in \ D 10 N m

The correct option is A.

:';' f\wire of radius 0.2mm is cxtended by 0.1% ol its Tongth
it supports a load of 1kg, Calculnte the Young's modulus for

Mmaterial of bs
A8y IUIDNILI?;? wire,
78 10'N/pm?

C.54 X 10"’me2
D54 10'N/m?
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2 option 1S .

B iber cord of a catapult is pulled back until its original

;1'- . Joubled. Assuming that the Cross s;cclionjis 2mm square
g young’s modulus for rubber is 10" N/m°, calculate the
gl 12 rd.
asion 011 €0 o C.80N  D. 10N
LN
solution
.e=2L = Ly = 2mm* =2 x 10°m?%, ¥ = 10'"N/m’
L= - 7
pe 107 x2x107 x L, 50y
F=T— Ll’l

The correct option is A.

48 When a spiral spring is stretched by a weight attached to it, the
?:nsfle B shaaE C. bulk D. clastic
Solation

The correct option Is A.

8. A spherical object has its  pressure increased by
1205 x 10°Nm? and the volume reduced to °/; of the original
whme. Calculate the Bulk modulus. If (he original volume s
12x10° m’, what is the radius of the object under this pressure?
L7233 x10°Nm?, 6.590cm

B14x10%Nm? 6.204cm
CIBx10°Nm?, 6.204cm
D144y 10°Nm?, 6.590cm
Solutigy
| ¢

205X 10°Nm?, p, = (5/6)V,, Vo=1.2x 10" m’
P~ BAY

4
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1.205x10° = —

[ 1
B —_——

B=7.23><|03an12

drr} 5
New volume of sphere V, = |

S T~ % e
3§ e L
=3
- #Ei—l—x-—w__m =0.06203m = 6.203 ¢
4%x3.142

The correct option is c

stress of 4.5 10°Nm?
length increages by 6% of ; |ts

original length, :

A.4.79 x 10°Nm?

B.2.7x ]()'E’Nm'2 _
C.423 x 102Nm2

D. 7.5 x 10"°Nm2
Solution

Tensile stress =4 § x 10 ° N/m

New length ; _ ? 6

— L
100

: . AL
Tensile strain = T

Young Modulus




rect option is D,
The cor

11. A catapult is made of two identical strips
3 retched length of 0.3m and ar

unsung,s modulus for the rubber
::;pult rubber is stretched by 0.2
vertically upward and all the ela
converted to kinetic ener

of rubber, each of
€@ of cross-section 1.7 x 1042
IS 5 x IUGNm'z. ‘
m to fj
stic ener

BY stored in the
gy of the motion

of the Stone, calculate the
maximum height to which the stone rises.
A.46.26m B. 5.628m C.23.14m D.2314m
Solution
1 1 Y4 >
tored £= — Fe=_ 22,
Energy store > 2 I

Since there are two identical strips of rubbers, total energy stored-

Ee2xl ¥4 2
= Ho— — ] —
L L
6 -4 >
E=5.Oxl{} xl,;;{IO %(0.2) V13007 )

Energy stored = Potential €nergy at maximum height
113 x 10 = ppp

1.13 x 102
he
0.25x 9.8

The correct option is A.

m=46.258m

8.12, A solid cube of sides 3.5cm made of material nff shezlt:
modulus 6.53 x 10*Nm?2 s sheared through 0.06 rad by a force

48000N applied parallel to one of its face, while the opposite face is
clamped in position. C

alculate the elastic energy stored in the
deformed cube.
A. 100.8) B. 50.4) C. 25.5) D. 12.6J
Solution
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Energy stored

W=alngl= '% x (.5x10) x6.53x10' x (0.06)" = 50 4,

The correct option is B.

8.13. Determine the Poisson’s ratio of solid materiy .
modulus 7.5 x 10'°Nm™ and shear modulus 2.52 x I{}"’Nm£ Youpy,

A.4.14 B.0.15 C.0.49 D. 29

Solution
Y=2n(l + o)
75x10°=2x252x 101 + o)

1.4880952=1+0
o =0.488=049

The correct option is C.

8.14. A cylindrical copper bar of length 2.5m and radiys of crogs.
section 2.25cm compressed by a force of 1.62 x 10° N, i the
Young’s modulus and Poisson’s ratio for copper g
12.98 x 10"Nm™ and 0.34 respectively. Calculate the decrease
length and the increase in diameter.

A.0.0196m, 0.012¢cm

B. 0.0503m, 0.012¢cm

C. 0.0196¢cm, 0.0308cm

D. 0.0503m, 0.0308cm

Solution
A=7r* =3.142x (2.25 x102)*m? = 15.9 x 10™ m’
Young’s Modulus:
y- L
Ae
e FL _  162x10°x2.5 1 =0.019623804m = AL

YA  12.98x10°x15.9%10"

Position’s ratio ois defined:
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oAL

LT

',r qater of the 1OPE,

i \(radius) =2 X2 25 % 102m=45 4 102 m
"‘fw 0.34 x0.019623804

Ijﬁ’:? = 2.5

pw=0.0001201m

ereore, the change in diameter of the bar i5 0.012¢cm
The correct option is A.

415. In an experiment to measure Young’s
sikg hanging from a steel wire of lcr_lgth

020cm’ was found to stretch the wire 0.4¢c
kmgth. What is the Young’s Modulus for the g

modulus, a Joad of
3m and crosg section
m above ijtg no-load
teel of which the wire

is composed?

A245x 10°Pa B. 2.54 x10° Pa
C.184x10" Pa D.18.4x 10" pa
Solution

n=500kg, F= 500 x 9.8N = 4900N, A= 0.20 x 10~ m,
=04x107m, L,=3 m

Young modulus,

J= g Zo

€

4900 3 14700 f
J=— Pa=—— Pa=1.84x10"Py
0.2x10™ ”0.4;-:10'2 2 8x107¢

e correct option s C.

:‘i]::. Find the maximum load in kg which may be placed on a steel

of diameter 0.10cm, if the permitted strairzr must not exceed
Young’s modulus for stoel = 2.0 x 10/ Nm?,
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A. 157kg B.15.7kg C.

Solution 57k
D& <

Young’s modulus: %

y - Stress

Strain

2.0;‘ IO” _ SII"G.S’S
0.001]

Stress = 2.0 x 10"N/m
Area = nd’/4 = (3.142 x (0.10 x | (2

Stress = [/A
2.0x 10 = F/7.855x 107
F=157.IN

Therefore, load, L = 15.7kg

2

The correct option is B.

8.17. A wire of length 5Sm of uniform circular cross Section of
Imm is stretched by 1.5mm when subjected 1o a tension of iy
Calculate the strain energy per unit volume.

A.6.77 x 10°Im”

B. 4.77 x 10°Jm™

C.6.77 x 10*Jm™

D.4.77 x10°Jm”

Solution

Strain energy, W= "2Fe =". x 100 x 0.0015J=0.075)
2 3

Volume of wire, V= length x area =5 x 7% 0.001" m

Energy per unit volume :
_ Energy
Volume
0.075

= =
S5xx~0.001
The correct option is D.

u

Jm~ =477 210> Jm”
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C.025x10"Nm™
D.0.12x10"'Nm™
Solution

For an isotropic material }'=2n(1 + o)

05x10"=2x02x10"(1 + &)
o=0.25

Also:
Y=3B(l - 20)

0.5x10"=3B(1-2x0.25
B=033x10"Nm™

The correct option is B.

Summary of Chapter 8
In chapter 8. you have learned that:

I. Elasticity is the ability of a solid to return 10 its original shape
and volume when the deforming force has been removeq.
Such Kkinds of solids are called clastic solids and the
deformation is said to be an elastic deformation.

(9]

. Hooke’s law states that the extension is proportional to the
force in a wire if the proportional limit is not exceeded.

F= A(I_\L) Where & is a constant of proportionality.

L¥5]

. F
Stress is defined as the force per unit arca; s/ress = ri

4. Strain  is  defined as the extension per uni

. L-L
length; strain=—=_"_"0
LU L”

wh

. . - e
- Hooke’s law also states that the strain is proportional to th
stress if the proportional limit is not exceeded.
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MECHANICAL
PROPERTIES OF FLUIDS

1 [ntroduction

id is a group of molecules that are randomly arranged and held
i |sb weak cohesive forces and by forces exerted by the wall
Dgﬂhﬂ(:nl:inﬁr. Both liquids and gases are fluids. T hey
]Lizt; to flow and to assume the shape of any |
;ﬁs chapter, we consider {luid SIaliqt mechanics of fluid ar rest; and
fluid dynamics: mechanics of fluids in

motion. For a fluid. we would
like 10 know the values of mechanical quantities such as density,
pressure, compressibility, bulk modulus.

‘oung’s modulus and
viscosity.

(58

~
have the
containing vessel. In

9.2 Density

The density p of a substance is defined as IS Mass per unit volume-
P m
g

The S.1. unit of density
cgs uni}., the gram PEr cubic centimerre (g/cm”), i
| glem’ = 1000kg/m?,

2

is the kilogram PEr cubic metre (ke/m’). Th
g

i W T
5 2150 widels,

The relative dens;j

ty RD
density of water:

of a substance is the ratio of its densin, to th

!

RD = 2751y of subs van ce

densiry of water 922

Ve density of a body can b

2 defined
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F,

[ —
-

()3
A i , . .
F is the net normal force on one side of the surface. The S
ere ') 'm?
wh. f pressure is the pascal, where | pascal (Pa) = |N/m’.
unit ©

Now let us derive a general relationship between the pressure P at

oint in a fluid at rest and the depth 4. as shown in IFigure 9.2
al}}’ Essul“e that the density p of the fluid is constant: this means that
:;:ﬂuid is incompressible. '\'hc‘i‘m'cc exerted l_‘:" the outside liquid on
the bottom face of the cylinder is P4 and the force u.\;erllul on the lnp_
face of the cylinder is P4, where Py is the atmospheric pressure. |
the mass of the liquid is M= pl”= pah. then the weight of the liquid

in the cylinder is Mg = pAhg. Assuming the cylinder is in
equilibrium, the net force acting on it must be zero:

YF,=PA-P A-Mg=0

Or:
PA-P A - pAhg =0
PA— P A= pAhg
P—P = poh
P=P + pgh 9.4
where P

o 18 the pressure applied to the liquid surface.
PA

FA

Mg
Figure 9.2: Pressure in liquid
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9.3

I, is the net normal foree on one sid
\\Ilfr'- 1

¢ of the Surface, The
itof pressure 1s the paseal. Where | pascal (Pa) = IN/m?.
unit ‘
let us devive a peneral |'cl;umnsh[p be
NOW ; el
N:\ poimt - flund at rest and the deptly /
an) s ;
;\e assume that the density ) of

the lnd is mcompressible

S,

tween (he Pressure P gy
I, s shown i Figure 9.7,
the Muid s Lonstant: this megpg that
The force exered by the outside liquid on
the bottom face of the eylinder is P u?ul the force exer
face of the cylinder iy Pt where I’y 1s the almos
the mass of the liquid 15 Ay paAh. then the
- the eylinder is Afy plhg.

equilibrivm, the net foree acting ¢

ted on (he lop
pheric pressure, |
weight of the liquid
Assuming he cylinder is ip
Nt must be zero:

Jr}] -

YF =Py py Ve = ()
Or:
PA=P A~ pidig =0
PAd- P 4 Al
P = Pl
P=P 4 pui 9.4
where 1, |

S the pressure applied 1o the hquid surfac

S
h
PA
g o
Figure 9.2: Pressure in liquid
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(s pressure above the atmospheric pressure is usually called
The CA=--"

PICASUITE, and the total pressure s called absolute pressure
J;]”l.!,{: i

(he mer ary harometer consists ol i inlly plass tube, closed at one
ic S

| (hat has been Billed watho mercary and then mverted in o dish ol
il L

i cury (Figure O 3b), From Lguation 9 4

mei-ut )

p.= P =04 A, =y ) pnth

(his implics that the mercury barometer reads the atmospheric

OFESSUTC [, directly from the herght of the mercury colimn

9.4 Pascal’s Principle

When the pressure poat the top surbiace of a Huid is inereased using a
piston that fus tightl

ontiner to push down on the flaid
surface, the pressure poat any depth mside the ad inereases by
exac!ly the same mmonnt, The tramsmission of pressure me Huords was
studicd m 1655 by the French scientist Blaise Pascal and the result is
called Pascal™ Prmciple. Pascal’s prmeiple states that pressure
apphicd 1o an enclosed thud s tansmitied undiminished to cvery
pomt i the od and 1o the walls ol the containe
We can use the hydraubic bt shown in Figure 9.4 1o illustrate
Pascal’s princip) niston with

. mall cross-sectional arca 4, exerts
a lorce I'y on the surface of 3 Liquid. The apphed pressure P, = /4,
s transitted through the hiquid inside the conneeting pipe 1o a

larger piston of arca A, 'The pressure 1 1s the same in both eylinders,
Sl

/ I,
‘fJ
I, A,
or
A,
=l 9.5
' by

rger than A the force 15 will be larger than /.
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Figure 9.4: 1 Iydraulic Tt
Buoyancy and Archimedes’” Principle

principle cexplains the phenomenon ol buoyancy. A
15 buoyed up. Archimedesy’

Archimedes”
body [loats bccause it is buoyant, or
states that when a body s completely or partinlly tmmecersed

principle

in a fluid,

weight of the (Tuid displaced by the body.

ard force is called the upthrust or buoyant force /4, Hence:
9.6

the Muid excrts an upward force on the body cqual 1o the

This upw

f‘:, = i, 2 = 2, I'I_s

»
L

where ni, pe and 1poarce the miass. density and volume ol the uid
displaced by immecersed body.
immmersed in oa (uid

Let us consider a solid uniform object totally
(Figure 9.5). The weight ol the object in o as:
9.7

4 - .
W, =mg=p Vg
volume of the fluid

the
Ligquation 9.0 divided

If the object is completely immersed,
displaced is equal to the volume ol the object.

by Equation 9.7 gives:

Ky
;{J/l 2 I':| i

_»~/V,rg

207

_._.c__‘;m;x‘



[Physics for Univer,
[Mechanica| P

ity Hrginnur,l
roperties of | Tuwd i

9.8
P

o Weweipht of liquid
/:’ dioplaged

are immersed

Figure 9.5: Fluid displaced when solid
When an object is lowered into

a hiquid, it is found 1o
Is because the liquid exer(s

lose weight, |y
an upthrust on
that:

the object. It can be shown

upthrust = apparent lost ip weight of the object =W, - W,
Experimentally:
W

1= Wy=W = weight of liquid
Hence:

displaced

upthrust acting on a body = we

ight of liquid displaced by the body
Principle of Nloatation states (hat

a floating body displaces its own
weight of fluid in which it floats. .

¢. weight of floating body is equal
1 weight of liquid displaced by

the body. Actually, principle of
oatation is a special case of Arc
average densit

body (density
= P'_

himedes’
Y p can float in a liquid w

P) is said to be Just floating

Principle. A body with
ith density p' if p < o' A
in a liquid (density p)ifp
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2. lrroraen al: It n‘xlh“‘“ Qow moans that & TN
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t\

LT
I

Im!k\“it"\ﬁ B
resistance fow. No cnerg)y is tost i a taly 1R
10 be no frictional i

id and there Wt
When a liquid ¥

A

A" [:1‘..‘\\.‘\ i L
the fluid and wal lls contamng .
a pipe. the speed is lessar el the walls bR
drag and IS groatey T.cn.mi the contre of the Py
<. lm\xn_.-n‘:mbi\. I »mpwwablc flow  IMOAns
densiny 18 constant.
in which the

fluid is bow '. W
w 05‘

fine the volume @
cn\\.ﬁc@mm

Lot us consider a flow
shown in Figure 9.6. We de
flowing fluid at a place where the area of
wd ()

lace.

Volume rate of discharge -
where v is the velocity of the fluid at the p
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A1

W o oy
Fieure 9.6: Flow continuity

The amount of mass per second passing through point 1 is

M, =pv 4,

where 4, p; and v, are the arca, density and velocity of the fluid at
point 1.

Similarly, the mass dischareed per second where the area of cross-
section is A, and the density is 1

M, =pyv, A,

If the fluid is not allowed 10 leave the tube through the sides, we
have:

PV A, = pyv, A, 9.11

Equation 9.11 is known as the equation of continuity for fluid flow,

and is obeyed in all cases of fuid Now in which there are no sources
or sinks of fluid.

For incompressible fluid, p, = p,and the continuity equation
becomes:

VA =, 4, 9.12

According to the continuity equation, the ﬂuid’; fspeed of ﬂgw can
vary along the paths of the fluid. Daniel Bernoulli in 1738 derived an
important expression that relates the pressure, flow, speed and height
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for flow of an ideal, incompressible fluid
Bernoulli’s equation:

This ~ .
. rClEl“Gnqhip N
S iy

"'I'I-”IL'(l
L. 3
P+—=pv° + pgh=constant
) 9.13
twhcrc p is the pressure at any given poin Within the flow:
Is the speed of flow at that point, and / is heighi ul'li]m”gm'id ;
e g '

from a fixed reference level, SAMe pojy

9.7 Surface Tension; Viscosity and

PﬂiSE )
¥ ane ulle §

Despite the fact that molecules are clu:lricnlly neutr
some slight 35}’I11I11Clr?“ ol charge that Lgi\,'ux rise 1o van der Waals
Forccsrmf attraction. The molecules of a liquid hence exert qmﬂﬁ
attractive forces on cach other. The net force on g nml}.-cuh
completely surrounded by other molecules within the liquid is zerg
However, for molecules at the surface of the liquid, the attractive
force from above the surface is small and negligible and this result iy
a net forces due to the surrounding molecules experienced by
molecules of the surface layer. This inward pull on the surface layer
molecules causes the surface ol the liquid to contract and to resist
being stretched or broken and results in what is called surface
tension.

al, there i olten

Surface tension is the reason that the surface of a liquid appeHis ol
covered by a skin and this explains why the surface of a liquid can
support the weight of a small insccl or a pin. It Gl % SIW
experimentally that increasing the temperature of a liquid ““d.ﬂdfjmi
soap can decrease the surface tension of the liquid. Decre“sm?lha
surface tension of liquid implies increasing the surf:ace e Erease
liquid. It is found that the amount of work dW r.equn'ed "3

the area of a liquid is proportional to the increase in area:

dw =
et the sngﬂ“

where the constant of proportionality is known E:zn ol
tension of the liquid boundary. The unit of surface tens |

9.14
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\lrernatively, we can define surface tension 4
f
?1
Y T 9.15

where T'1s the surlace tension foree and L s lenpth of the surfyee
Equation 9.15 also gives alternative units for y as N/m.

9.8 Angle of Contact and Capillarity
When a small quantity of liquid comes in contact with a plane solid
body, we have one of the situati

lons shown in Fipure 9.7, The line A1
is a tangent 1o the Tiquid surface at A, The angle of contact of (e

liquid with the surface is (he angle 0 which A8 makes with the solid
surface. The size of angle () depends on three factors:

L. how clean the surface T

2. the material with which the surface is made: and
3.the type of liquid.,
B
'\l\-
% . B
—_— % ,"/
- /‘ \‘I\‘\\ {'_ﬁ 35 .—-/
& B - ) / g
~ e ;\ P o ~ . il . .
d

Figure 9.7: Contact angles

In Figure 9.7a, the angle of contact is less than 90° and the Iinuild
lends 1o spread out over the surface. Then, we say that the liquid
wets the surface. If, however, the angle of contact is greater than 90°,
the liquid gathers in small drops (Figure 9.7b).

It is observed that if a capillary tube is dipped in water, the level of
water inside the tube rises above the level outside (Figure ?'8.") n;ul
if the tube is dipped into mercury, the level of the mercury ;:Ida’[}h]i‘;
capillary tube falls below its level outmdc.a .(Flgurer ﬁ: ). by
phenomenon is known as capillarity. The rising or Ia |||,n%i§ o
liquid in the capillary tube depends only on wl'!elher f.m thqe i
or does not wet the tube, If /7 is the surface tension force,
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A bubble can also be a spherical volume of gag iNSide « 1. '-‘s;.rmi;:!l |
case dlV = A since this type of bubble has only = IH3I'.li(|_ g I
oncess pressure can be shown to be: o Surfﬂte, Vi |
g 3 \

p=—"

9.10 Viscosity and Poiscuille’s Law

Viscosity 1s described as the internal resistance to flow o |

considerad to be the friction between the molecules of 5 ﬂﬂ-l;dg- It
a fluid, p:
L

0 10 shows a fluid flowing i the positive x-direction, The
\ and Y in the fluid are a distance oy apart. two layer, |
A layer X
.'f'_
x’z V+dy
/
/.n'
/ v
'

LI"1.~‘ /
layer Y

Figure 9.10: Fluid flow

The velocity gradient between any two layers in the fluid producesa
ayers (o the same velocity.
is proportional o the |
onal to the area 4 wil

force known as viscous force to bring the |
The viscous force F between two layers
velocity gradient between them. and proporti
which the lavers overlap:

3 dv

Fi=—pil— 9.4

dy

e coefficient d
Silﬁiqis

as th
adient. In

The constant of proportionality # is known

viscosity of the fluid and cv/dy is the velocity gr
* ‘. ’

measured in Nsm™,
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Jean poiseuille n 1842 studied flow ip pipes
constant viscosity and steady or lamina,
following expression known as Pojseyil].
volume per unit time, is:

and tubes, assuming
How, and derived he
S law: The flow rate

N ot p
0 8L 9.25

where r is the radius of the pipe and £ is (- | noth.

9.11 Stokes’ Law

Irishman George Stokes used viscosity and (he cquations of fTuid
flow to predict the drag force on a sphere moving through a fluid.
Stokes’ law applies to objects moving at lo cnough speeds that the
flow of fluid is streamlined or laminar.

Stokes’ law states that the viscous force with which a fluid of

viscosity 5 opposes the motion of a spherical object through it is
given as:

F =6mnry

where r is the radius of the object and v is the speed of travel through
the fluid.

Consider a spherical object falling through a fluid. 'I‘h? (’}l'IlJl.%‘C[
reaches a terminal velocity v very quickly because of ﬁ'lcllo;1 mft,h
the air in the chamber. The drag force acting on the drop can then be
calculated using Stokes' law:

F =6mnrv

where v = I/t is the terminal velocity of the falling object, l s A
the viscosity of the fluid, / is the distance travelled by the object, /15
the time taken and r is the radius of the object.

For a perfectly spherical object, the apparent weight I is:

W = the weight of fluid displaced by the object
W = true weight — upthrust
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wiere 2 and p, are ki;‘:rsllit‘s -

OF object and densily
Rspectivety i
_'l. .-'f:"fl“'l-Li'l Ve 'J'n.\..lr\' rl i Ub]\_l‘l IS |]|\1[ lektrLrLlllnn

and lfu two tnru;
other out (that 18, F =

there for the
QT AQAIE Ot it must be zero

M and Wm

SHIN! Qi . This Il'rlplle

w“ r ) | - - } - Y =y
TR I8 =0 n
~grlp-o)
- — - ¥ 9.2?
Qv

NORRs law i3 often used in experiments 10 determine the viscosi[}-,;
.‘I--i .n."-- .-‘:
Acmviny 9 Fluids

J g _
91, The pistc VI & dvdraulic automobile it 1s 30¢m in diameter,
WERT pressure. in mm of mercury, s required to lift a car of mass

e, - L T, .y L L L L e |

~i T < S w -‘1:—._j1_1_||1|:|;
A 1208mmi : B. 760m mHg
. dmmHe D. 1336 9mm 1Hg
soluton
Dmmeter ¢ = 3 cm=30x 10~ m,
SR = r= 5 v Y ‘5\ = '-l:lﬂ\

‘ I T s .2
P . ™ S A V5 \" s o '}U,',.'{;j."\_:\. !
_‘1:.."..__: _'-—_————————_- = v s

i:l_\'}?[:'l.:,'\:l:\
p 2079335 xT60mmHe = 155 OmmHg
- e _________'_ -
L UI3x1Q

The correct oot onis D

- 2m, with 8
Assume

lamete
— water i:: t“[o\,\, nu [h!’ULl“’h a P'pe Dt ;il S Numbef
velocity of 20mys, calculate the value of Reyno
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5"' mP‘-'Flics of F[llld:'-]
]'3 EICI]Sil ﬂl]d COCfﬁ(‘ ie“l
(h

. of VISCosity of Water are 10°kgm i
:\U;NST'*; gfspeclwcly. .

c.4.0x 10" D.5.0x 108

Solution

Reynolds’s Number, p  _ 2rpv

lexuﬁxza 4 i
‘—-—-—-—-:‘—'—-—-—-_._.__:_________E:, §
" 10 5

The correet option is C |

9.3. A small mety) sphere wi, diameter 10mm s drop
glycerin. The viscous foree on he object wag 2.5N.
velocity of (he object is Gm/s. Caleulate (he coe
Aol the uid.

AJ0INsm? 5.60Nsm™

. 4.42Ngm?
Solution

ped into

If the lerming]|

icient of \'iﬁumit}
~ |

D. 2,J2N5|'11 -

By Stoke’s law,

the VISCous force s
F =6y
25=6x 3142 %% 5% 10 %6
25 . 2.5
n= ———————————i——h Nsm™? =
ﬁk3.1423<5;< 1077 %6

et | 11 442 Ngi2
0.56556
Thcuwmutmnmmﬁiﬂ

94. Water moving with a speed of 5.0m/s thy
~ ~ 2

Cross-sectional areq of 4. 0cm gradually descends 10m

» : 2 :

'NCreases in area to 8.0cm’, Caleulate the speed of flow

at the lower level if the pressu

A. 3.Um!5, 1.2 x |

re at the upper ley
0’ Pa
B. 2.0111!5, 1.8 x

10° Pa
(LlﬁmgQﬁlePa
D#hMaSﬂlePa

Solution

ough a pipe with
as the pipe

and pressure
elis 1.50 x 10°pa.

Vid, = vy,
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= 0.54N/m angle of contact begyy
rmercury = Y.
o M

2
density of mercury = 13600kgm )
S gensit)
I;D-

B. 5.4cm C.6.2cm
g 2.jem D
Solution
Using:

2vcos 6

o
2y, cos @, 2y, cos 0,

o>r= -
= hp.g, hyp,g,

2x7x10™ cos 2x0.54 cos 140
£ : — - —-————:______________.
6_">f.10“><1000:-:9.8 J’rzs-.l“,ﬁ()(),\\g_g

6.21x10¢
0.0003304!4 = “‘-7—--_
1

2.7em
The corregt Option is A

h= 0.0269, =

97. A S0ap bubh|
inside it if the atm
502 solutig;
A.5.0026 x
B.5.002¢

€ has a diam

Ospheric Pressure ig
=28 21

' N/m),
10°N/m

Solutigp
Excess Pressure p = dy/r
p - 4x 2.8x102

2x10-3 Wifer

=56N/m?
Pressure inside Py

= excesg Pressure +
= 1.00056 x 108

The Correct Option g c.
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€N mercury apq glass =

D. 43cm

M. Caleylate the pressure
10°

N/m (Surface lension of

a

2tma Pressure = 56 4 10°N/m?
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0.8. A fluid of density 1760kgm™ and viscosity g
through a pipe of radius 2.5cm with an average 084y,
Calculate the Reynolds’s Number R and decide Wh:th of;
°F the

f

turbulent on la minar.
926, laminar

A. 1926, turbulent B. 1
C. 2619, unpredictable D. 2619, turbuleng

Solution
2rpv  2x2.5X 107 x1760x 2.5
R = = 0 08 = 26!9
7l 084

For values of R between 2000 and 3000, the flow f
uch

unpredictably between laminar and turbulent,

The correct option is C.

9.9. A large reservoir tank is filled with water to height of |
from the tap located near its base. Il the cross-sectional area of
tap is 1.26 x 10°m’, calculate the velocity of flow from the tap

the volume of water leaving the tap per second.
A. 3234 ms’, 4.075x 107 m’s™
B.5.687ms”, 7.165x 10> m’ s”
C.3234 ms™, 7.165 x 10° mis"

D.5.687 ms”. 4.075x 107 m’s’

Solution
V=gh) *=(2x9.8 x 1.65) “nvs = 5.687m/s
Volume rate of discharge ) wy
= A =5687x126x10° m’s"=7.165X 10°m’s
The correct option is B.
. - jaced Bt
9.10. A flat square surface plate of sides 0.25m 1 P""ihe "
I Assuming that % " gk

d force on the :

liquid of surface tension 0.0586Nm’
contact is zero, calculate the downwar

surface tension.

A. 0.01465N B. 0.02930N

C.0.03215N D. 0.0586N
221




or Nivers; Beo:
Mt e
gm0
Illlgnglih imcontact L =4/ = 4 x 025 m=1, m
J ony=F/L
face tension )
]S:u.i 0.0586 x IN =0.0586N
The correct option is D,
9.11. A capillary tube of radius of

vertically inside a liquid of surf

The angle of contact of (he liqui
32° and the density

through w

Cross section 0.42mm is dipped
¢ tension coefficient 0.085Nm™"

of capillary tybe is

ac

d with the wall
ol the liquid is 1260kgm™

- Calculate the height
hich the liquid rise or fall,
A.2.78cm B.27.35m
C.3.28cm D.32.8cm
Solution
. 2y cos 0
- o

h= *—*‘——————————-_.__2 x0.085cos 32 m=0.02779m = 2.78¢m
1260%x9.8%0.42 x 10>

The correct option is A.

912,

iquid wi Il of
The size of contact angle 0 qf any liquid with the wa
container depends on all of the following except
A.how clean the surface is

- . - e
B. the substance of which the container is mad
C. area in contact

D. the type of the liquid
Solution

The correct option is C. o
: in
' .65cm is droppe 2 %
9.13. A Spherica13 ball hof rgc:(;lssit}? pocc iy “‘"-l,“i-ji. rn_sz..l-"lr95|}||5.m
density 1260kgm™. If the vis _

;_J
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the terminal velocity is 2.25m/s. Calculate the upthryst onl
e farr

ball. il

A. 14204.48N B. 0.0150N !

C.2.185N D. 0.0142N

Solution

Upthrust

U=p,Vg=1260 Xij-ﬂ'!‘] x9.8N
' 3

U =1260 x§x3.142x(6.5x10--‘)3 % 9.8N = 0.0142 N

J

The correct option is D.

9.14. Compute the atmospheric pressure on a day when the height of
a barometer is 76.0cm. (p = 13.6 x 107 kgm™)

A. 1.013 x 10° Pa B. 133.28 x 10° Pa
C.1.012x 10* Pa D.10.12 x 10° Pa
Solution

P=pgh=13.6x10"x9.8x0.76 Pa= 101292.8 Pa=1.013 x 10’

The correct option is C.

9.15. Castor oil at 20°C has a coefficient of viscosity 2.42 Nsm'”
and a density 940kgm™. Calculate the terminal velocity of a steel ball
of radius 2.0mm falling under gravity (puece = 7800kgm™). '
A. 0.25 ms™ B.2.5 ms” 4
C. 0.0025 ms™! D. 0.025 ms™ o

Solution

Terminal velocity:

V= 28'?‘2(,0—-0-)
On

y = 2%9-8x0.002° (7800 — 940)
Ox242

m/s=0.025m/s
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The correct option is D.

9.16. Assuming an isothermal atmosphere, the variation of pressure
p with altitude  is given as dp/dh = - pg where p is the air density.

Given that p¥ = mRT and p, is the pressure at the Earth’s surface, the
atmospheric pressure at any height may be written as:

A. p=pexp(-gh/RT)
B. p = pexp(-gR/hT)
C.p = pexp(-ghT/R)
D. p = pexp(RT/gh)

Solution

pV=mRT

p=mRT/V=pRT

p=p/RT. (i)
dp/dh = - pg (i1)
Subtitute Eqn. (1) into egn (i)
dp/dh = -pg/RT

dplp = -gdh/RT

Integrating, we have,
In(p/p;) =-gh/RT
plp. = exp(-gh/RT)
p = poexp(-gh/RT)
The correct option is A.

9.17. A capillary tube of 0.4mm diameter is placedzvenici:al!y inside
a liquid of density 800kgm™ surface tension 5 x 10° Nm™ and angle

of contact 30°. Calculate the height to which the liquid rises in the
capillary tube.

A.4.4cm B. 5.4mm C.55em
Solution

D. 4.4mm

2ycos @

—_ —

PET
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€5 urrrmd |

Ix5x10xcos30
*SGUw@SxU‘:xll]"

12 ,,L‘ y notisiiny gl o1arqzornin Inerrathoz s anietna. ¢
’1 IS T p
Th'llehﬂrr ‘lblkfl": 'S n.l 1(|"1 W g - = 'th"" R R R B BT §TE

; 1| | | |
9, iS \ ruhltwllll}l plm ot Li||m.n~.m||~. 6em by 4::m ﬂnd lllic!(nm

2mm is placed ‘with aJlL largest face fla on the SLIrHCE of ' \'ﬁ][ej-
Caleulate the force due to surface tension on the plate and the
downward force if the plate i1s placed \LIIIL]“}" and its longest Side
just touches the water. (S.T. of water = 7 x 107 N’ ). ;
A.1.0x 107°N: 8.6 x Eﬂ N

B.1.4x 10 °N:9x 10" N tidilod
C.8.6x 10°N: L4 x 10°N

D. 14X 10°N: 8.68 x 107N

m=0.0555m = 5.5 "0 1105 rlp

01,0
Tty 0\

Solution (1) Ay =

For the la argest face, L= =2(/+ b) =2(6 + 1]un="’ﬂun—ﬂ"m
F=yL=7x10"x02N=14x 107N e

Similarl}.-': LA
=2(0.06 + 0.002) m = 0.124 m P TR
= yL=007x0.124N=8.68 x 10°N ! niicrg sl

The correct option is D. LA (o)l

9.19. Water at 20°C flows through a horizontal pipe of raJﬂls

I.0cm. If the flow velocity at the centre is 0. 2em/s, find the prwe
drop along a 4m section of the pipe due to v asn.nsny 1.00 x 10 Nsm™.

A. O32Nm _ B. 0.61Nm” o .
C.0.55Nm™ | D 0. 72Nm? w e L | ‘,‘
i R iy e RO s ol 1o bn |
Solution- ! Lhipit Wit ot o) filyiod st wyeluale 200 pmos 1o
Vlf-‘__l?lf.l‘_ritpf:. |' o sl rnlhged
. PRE R ML ok b oA
V= - ;
4nL noinlo?

_ 4?}L‘l«' G209 Y&

-1

R? 100,
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;.lu;l-'l '1“." L3

13 ﬂa [ an‘n x N NI * 2
-3 TRTLE IR Ton || Jinde 1o ceidd
4x1x107 x4 "-“51,19 < WAL G132 urd ol wina o el A

= b
4 (l X 10'3)-
oy it £ MGY 07 biipil 6o Cernl s baebin el vadives Yo "ynd A
T COTFeak OPLIORAS Aody 1o ylienuh wil batl || gAoek
(¢ muA0V0L = 1318M Yo tiengt]) amnlov o o .
9.20. Calculate the flow rate of water in Q9.19 above.
A 4.5x107ms B.3.0x 107 m’s :

c.52x10"ms oD 2;7x,1q*?m?(s, e

. uca = —
Sﬂhltlﬂll oo ' . ! e ol

Assuming laminar flow, we apply Poiseuille’s law which is: -

7T pR* o

h'i",'iii.'f?_:t" T b Y TTTILITE 111 i i [ [TRES PR SRR LT AL S

g0 ®T M o henl Tt LT pinnda Le cdter

t

1

Redtrangingithis/we have! () ¥ ¢t il b gt iy ot ar
‘.Jr"_-}“l} Sl ey ot i

V R

S =£__. =ﬂow rate atnte s

T BUL XU . !
TSy 3 OE = -- = ‘- i:l EE z oo £ 3"

v 20.32:.(3.142):(1:10 ORI I

T 8x1.0x107" x4 It O

The correct optionis B. ., ¢ _ L Y -

' oen 1

9.21. Find the mass of air inside a room qn,easu;ing- 10m x 8m X Im,
if the density of air is 128kgm™ 7 ,

SP}}'JWH Yo viieneb bns ‘mt.0 o smpies 1o boow To zol A PR
ihis Mo prrLt 128'R10'% 8 x kg’ 307.2kg. d

2
R P T L Ml

- N i - * P -- e 0E <} =7 1a i TRLs z "'
20110 smolos o {(2) 5ot ol £9 bSuigab bt Yo genin Srii (0} 22

1

Core oot i e
9.22. A container of volume 0.05m’ is full of ice!" When'the ice
melts into.water, how many kg of water should be added to filt it up?
(density of ice = 900kgrr;::‘; density of water = lﬂﬂﬁkgr‘p'ﬂ o

W T TR il
i o .Ip“
Solution

Mass of i.':re;”f’itb;'lﬁédl X l'anShg:A&k-g Y B (V2R I

y Tefay ! o
PRI ot

ek b by -HI“'I hh
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Mass of Waler, Muge = Pumer X 0.05 = 50kg
Mass of water to be added = (50 — 45)kg = Skg

9.23. If Im’ of water is mixed with Im' ofa liquid to form g MiXtur
of density 850kgm”, find he density of the liquid, assuming g1
there is no contraction of volume, (Density of water = Iﬁﬁgkgm-s} t
Solution

total mass _m,+m, pV, +pV, — 850

-

* total volume V.o+F, I+3

p, = 800kgm™

9.24. An alloy consists of 60% aluminium and 40% tin by weight
(Density of aluminium = 2700kgm™; density of tin = Tmﬂkr:un"‘_] ‘
(a) What is the density of the allov? (b) What is the mussh of tin in
0.02m" of the alloy?

Solution
_ 1 m
(a) p= = =3610kgm™
3 V.+V.  0.6m 0.4m Sl oggri
P, P,
p =" =3610kgm™ = = 72 2k¢
V 0.02 ~T°F

m, =0.4m=0.4x722kg = 28.9%g

9.25. A log of wood of volume of 0.1m? :
_ ( .Im” and density of 700kgm”
o, () he ey sty 1000kgm”. Caleulate () the weight o the
a ;
log immersed in water ¢r displaced by the log (c) the volume of the

Solution

(a) Mass of log. m,, , = «
log = 70 x IﬂNg’z ?“a"'ah Poiock X Ve, = 70kg. Hence, weight of the

b " . .
(b) Principle of floatation states that a floating body displaces its own
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¢ fluid in which it Moats, 1.e. weight of floating body =

T, i ht D b

|i1"“:;ght of liquid displaced by the body.
:F;egmass of water displaced by the log = mass of floating body =
70kg
(¢) the volume of the log immersed in water

= volume of water displaced

nass of water displaced 70
ot : : : = m’ =0.07m’
density of waler 1000

qummary of Chapter 9
In chapter 9, you have learned that:

|. The density p of a substance is defined as its mass per unit
m . ; : .
volume: p = — . The relative density RD of a substance is the
P
ratio of s density to  the  density of
density of substance

water: RD = : -
density of waler
2. The pressure p at any point is defined as the normal force per
¥t

unit area: p = —.

3. The pressure p at any point in a fluid at rest and at depth A
is p= p, + pgh, where p, is the pressure applied to the liquid

surface.

4. Pascal’s principle states that pressure applied to an enclosv.:d
fluid is transmitted undiminished to every point in the fluid
and to the walls of the container.

5. Archimedes’ principle states that when a body is completely or
partially immersed in a fluid, the fluid exerts an upward force
on the body equal to the weight of the fluid displaced by the
body.
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6. When a fluid of density p and viscosity 17 flows from ope i
to another, the flow may be laminar or turbulent, dﬂmh““ﬂ‘::
the value of Reynolds s Number R for the flow. R for the ﬁ;;:

fluid at an average speed v through a pipe o ey

zf‘p‘l‘

/i

7 When R is less than 2000. the flow is faminar; and when § s

greater than 3000, the flow is turbulent. For values of p
between 2000 and 3000. the flow Nuctuates unpredictaliy

between laminar and turbulent.

of a given

ris defined as R =

8. The equation of continuity  for — Nud  flow

pIFIAI ::pzv,/{z,

9. The Bernoulli’s equation: ) +— " 4 ol = constant, where

p is the pressure at any given point within the Towing Muid, v
is the speed of flow at that point, and /2 is height of the same
point from a fixed reference level.

10.Surface tension is define asy =—, where 7 is (he surfice
[

tension force and L is length of the surlace.

| 1.The viscous force F between (wo layers is proportional to the
velocity gradient between them and proportional to the area /

v

_ dy
Proportionlity 1 is known as the coefficient of viscosity of the
ﬂufa and dv/dy is the velocity gradient, In S.1., y s incasured
in Nsm™,

with which the layers overlap: /' = —pA— . The constant ol

ser il

12.The Poiseuille’s law states that the flow rate. voluie

time, is V_='p | i
| y | = oe— = oa . y I
1 8nL’ Where 7 is the radius of the pipe and

L is its length.
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Self-Assessment Questions (SAQs) for Chapter 9

9.1, Which of the following is L‘D'_rnf:cf.’ In fluids, pressure:

4 decreases with height. increases with depth and 'independent of
area.

B. increases with height, increases with depth and depend on area

C. decreases with height: decreases with depth and depend on area

D. increases with height. decreases with depth and independent of
area

9.2." Two reliable devices routinely employed to measure the
pressure of a confined fluid are: |

A. Hvdrometer and manometer

B. Thermometer and Mercuryv-barometer

C. Manometer and Mercurv-barometer

D. Barometer and Spectrometer

9.3. Calculate the excess pressure inside a soap bubble of diameter
Smm, if the surface tension y =25x 10°N m.

9.4. A block of brass of mass 1.5kg and density of 4.0 x 10" kg/m’
was suspended from a string. Fimd:the tension in the string if the
block is completely immersed in water. Density of water =
1000kg/m’

9.5. Water enters a pipe of 4.0cm inlet diameter at a velocity c_:uf
Sm/s and pressure 2.5 x 10° N/m’. The outlet of the pipe 2cm in
diameter is 6m above the inlet. Find the pressure at the outlet.

9.6. A circular hole 4cm in diameter is cut in the side of a large
cylinder filled with water 10 below the water level. Find the volume
discharged per unit time.

9.7. A steel ball Imm in radius falls with zero initial velocit?r ina
tank of glycerine with viscosity 8.3 x 10" Ns/m’. What is the
terminal velocity of the ball? Density of glycerine = 1.32 gem™ and
density of steel = 8.5 gem™.
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9.8.  Methanol at 20°C flows with a speed of 40¢ys throygy
horizontal pipe of uniform radius. I.5mm. What is the Re ;
Number and the nature of flow if viscosity of methang)
temperature is 0.584 x 10° Ns/m”and its density is 806kg/m39

d
Ynolg's

9.9. Calculate the gauge pressure in a large fire hose if
is to shoot water straight upward to a height of 20.0m. (
water = 1.0 gem™)

the Nozzle
densjty of

9.10. How much water will flow in 60.0s through 200mm of
capillary tube of 1.50mm inner diameter if the pressure differentia|
across the tube is 5.00cm of mercury? The viscosity of water j
8.01 x 10™kg/m.s and density for mercury is 13 600kg/m”.
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THERMAL PHYSICS

10.1 Introduction
physics, naturally, begins with the definitions of

Thermal
temperature and heat. The temperature of a body is a measure of its
hotness or coldness. A measure of temperature is obtained by using a

thermometer. The thermomelers use some measurable properties of
substances which are sensitive to changes in temperature. For
example, the constant-volume gas thermometer uses the pressure
change with temperature of a gas at constant volume. The mercury-
in-glass thermometer depends on the change in volume of mercury
with temperature and the resistance thermometer uses the change of
electrical resistance of a pure metal with temperature.

e object to another because

mechanical energy of all
he internal energy of

Heat is the net energy transferred from on
of a temperature difference. The total
molecules of a system or body is referred to as t

the system or body.

10.2 Temperature Scales and Thermometers
t types of temperature scales. These

are Celsius temperature scale, Fahrenheit temperature scale and

thermodynamic temperature scale. All these temperature scales
depend on the properties of a particular substance. Each of these
scales has two fixed points where the temperature is always the same
and easily reproducible and reliable. On the Celsius scale, water
freezes at 0°C and boils at 100°C, while on Fahrephem} scale, water
freezes at 32°F and boils at 212°F. This is shown in Figure 10.1. In

the thermodyﬂamic temperature scale, the fixed point is the triple
int of water- it is the temperature at which ice, water and water-
Egpour coexist in equilibrium and is defined as 273.16 K; denot

T

There are basically three differen

ed by
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Figure 10.1: Temperature scales

The thermodynamic (or absolute) temperature scale is chosen as
standard temperature scale adopted for scientific measurement and it
is based on the second law of thermodynamics. Thermodynamic
temperature is denoted by the symbol 7" and is measured in kelvin,
symbol K. The conversions between the three scales are:

( |
THE2T 432 10.1a f
5
" 5 L al i
7. =§(!,,. -32) 10.1b
r=273.15+T7, 10,2 012t130

where 7, and7,. are Fahrenheit and Celsius  temperatures

respectively.
113
I'o establish any of these scales, the following are important:

.." some physical propertics of a substance which increase
continuously with increasing temperature but is constant al
constant temperature;
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fixed femperatures which can be accurately reproduced in the

Jaboratory:
signed (o measure temperature.

Their operation always
that change with
as (hermometric

(he instruments de
of thermomelers.
1 some r,-hysicnl propcriics of matter
These propcrlics are  known
The following are examples of (hermometric properties:

and when they are heated;

ometers are

Therm
many Lypes

Ther¢ are
depends ol
temperalure.
'propcrtics.
olids and quuids exp
ance change
o and volume chan

e Most s

o clectrical resist when heated;

o in a gas, pressut ge when the gas IS heated;

and

o radiation from the surface of a body depends ON the surface
gemperature.

u‘,wnwlcr is a lempcrature-measuring instrument

] gfass bulb, which serves as the reservolr

s bulb is attached to @ glass

the meniscus of the liqui

f the bulb-stem

A liquid-in-glass thern
thin-wallec
tric substané®. The glas
be through which
erature). The portion ©

consisting of 2
for the thermome
stem (the capillary

moves with a change in temp
space that is not occupied with the hermometer liquid 15 usually
der sufficient pressure to prevent

filled with a dry inert gas uw
separation of the 'Lhermomet@j-liquid.

rovided 10 indicate the height to V
feading 1S ! o indicate closely the
traction chamber (

A scale is P
rises in the stem and this

temperature of the bulb. A €O
the capillary) s often provi
need for a long length of c#pillary OF to

liquid column into the bulb. +;
nds on the

The operation of 2 li(;l,l.lid-ill.'ﬂa

coefficient of expansion of the liquid being greater than
containing glass bulb- Any increase in
the liquid to expand and rise in
'_Jolume between the bulb and the s
in volume of the liquid.
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Figure 10.2 shows the constant-volume garsl._ lthﬁ’ﬂ;mn':ter, wl;ich is an
example of liquid-in-glass th.crmometelrij Iw quﬂl“ E;‘ at the left s
the sensing bulb. The gas If the bul cuu?,ﬁe? lvglt;mef when it
experiences 4 temperature chaqg,e. That ca_u:gesl :c e els of mercury
in the U-tube manometer (o shift, and & gives the |11'u,asure of the gas
pressure and therefore of the temperature. lef- ing t_he movable
mercury column on the right shifts the other two mercury levels and

allows the volume of gas 10 be kept constant.
rke mereury fevelin the left-hand side
of the tube is maintained constant at

s level . ..
. . by moving the right-
System whose ™. hand side up or down.
vInieratt i i!‘ .‘... '...
femperature 1. T
to e measure, e
TR s
il :\\
[ Oy
.( [ Gas
JI f‘ g e ¥
e
Tl.-'“'—._""—_: '--ﬂT—)-.-.r—"-:"""I:
>

L height difierence &t belween the twao
mercury levels is a measure of the gas
pressure and therefore of the temperature

Figure 10.2: Constant-volume gas thermometer

The absolute or Kelvin temperature T at a

2 ny point i ing a
constant-volume gas thermometer for y point is defined, using

an ideal gas, as:

bl

1= =R
- 16K

L 10.3
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e P, is the pressure of the gas in the thermometer at the triple

wher : :
int temperature of water, and P is the pressure in the thermometer

when it is at the point where T is being determined.

gimilarly, using the platinum resistance thermometer, if R, is the
resistance al the triple point of water, 273.16 K, and the resistance 13
is measured at an unknown temperature T on the thermodynamic

scale, then, by definition:

T;:-&:-:Z?S.I(JK 10.4

R

ir

Suppose 4 constant-volume gas thermometer is calibrated at only the
ice and steam points. Then, since there are 100°C between these twWo
points, any other temperature ¢ on the Celsius scale is given by:
P,—F :
g =—2—2x100°C 10.5
p P

100

where P, is the pressure at (°C, Pyoo is the pressure al the steam point

and P, is the pressure at the ice point.

10.3 Zeroth Law of Thermodynamics

Two bodies are said to be in thermal contact when heat is transferred
between them, whether or not they are touching. When there is no
longer a net heat transfer between objects in thermal contact, they
tend to come to the same temperature and are said to be in thermal
equilibrium. This implies that two systems are in thermal
equilibrium if and only if they have the same temperature. If systems
A and B are each in thermal equilibrium with a third body C, then A
anq B are also in thermal equilibrium with each other (Figure 10.3).
This is called the zeroth law of thermodynamics.

Two objects are defined to have the same temperature if they are in
thermal equilibrium with each other. Temperature may be defined as
the property gf a system that determines whether it is in thermal
vilibrium with other system. Temperature is one of the seven basic
sical quantities by which all other physical quantities are defined.,
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L=L (1+aAT) 10.7

The unit of @ 15 K" or (°CY".

10.4.2 Area Expansion

Similarly, the coefficient of area expansion F which describes the

thermal expansion properties of a particular material is defined as:

AA A=A,
) = —= — 10.8
AAT A(T-T,)
The new area is given as:
A=A (1+ pAT), 10.9

where f = 2a. The unitof f 1s K or{oCy.

10.4.3 Volume Expansion

Experiments show that increase in volume AV for both solid and

liquid materials is approximately proportional to both the
temperature change AT and the initial volume V5!

AV V-V,

- = 10.10
"TVaT T T-T)

The new volume is given as:
v =V,(1+T), 10.11

where ¥ =3a . The unit of y is e (0.

10.5 Thermal Stress

When a metal rod of length L, is heated and clamped rigidly to
prevent expansion or contraction, tensile or compressive SLrEsSES

called thermal stresses develop in the metal. The thermal stress IS
given as:
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11}'5ic_~.]
F AL AT
L_yhh_y AT
- F = YAQAT 10.12

where I is the force; A the surface area; Y the Young’s modulus: A7
the change in temperature and a the coefficient of linear expansion,

10.6 Quantity of Heat

When heat is applied to an object, the heat energy may increase the
random molecular motion and thereby increase the temperature of
the object. The quantity of heat (Q) required to change the
temperature of an object is proportional to the mass (m) of the object
and to the change in the temperature (A7). That is:

QamAT
Or:

Q=mcAT 10.13
where c is the specific heat capacity with unit J/(kg.K).

The specific heat capacity of a substance is the amount of heat

required to raise the temperature of a unit mass of the substance
through one degree change in temperature.

For an infinitesimal temperature change dT and corresponding
quantity of heat dQ:

dQ = mecdT
and: e 1 dO 10.14
m dT

The relations 10.13 and 10.14 does not
encountered because the heat added
change does not change the temperature

apply if a phase change is
or removed during a phase
The molar heat capacit

y (or molar specific heat) denoted by C IS
define as:

C

= molar mass of substance x specific heat capacity
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Figure 10.4: Heat flow in steady state

The minus indicates that the temperature @ along a bar diminishes as
[ increases, so that J0/dL has a negative value and dQ/dt is then

positive.

10.8.2 Convection

Convection is the transfer of heat by mass motion of a fluid from
one region of space 10 another. There are two types of convection:
natural and forced convection.

Natural convection cycles occur when cold water, when being
heated, rises with the heat and cold water replaces the rising warm
water. Such cycles occur naturally and are important in atmospheric
processes. During the day, natural convection cycles give rise to sea
breezes in which the ground heats up more quickly than do sea. This
is made possible because the water has a greater specific heat than
the land and because convection currents disperse the absorbed heat
through the great volume of water. The air in contact with the warm
ground expands, becoming less dense than the surrounding coolt?r
air. As a result, the warm air from the land rises and the cooler air
from the sea descends to take the place of the warm air and a thermal
convection cycle is set up which transfers heat away from the Iand

(Figure 10.5). The process is usually called sea breeze.
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i surface area A
il. temperature T
iii.  nature of the surface; this dependence is described by a
quantity e called emissivity,
Stefan-Boltzmann law for a black body radiation can be expressed
as:
dQ !
=— = oAel
di

10.25
where H is the power radiated in

watts (W), o is the Stefan-
Boltzmann constant: o = 5.67x10%

W/(m*.K"Y).
When an object is in thermal e

ttmperature 7 of the b

quilibrium with its surroundings, the
surroundings;

ody is equal to the temperature 7. of the
hence the rate of radiation to the surrounding is equal
to the rate at which the body absorbs heat. For this to be true, the rate
of absorption must be given as H = oAeT . Then, the net rate of

energy loss or gain per unit time (power) is given by:

e c:r/le(?'“l - 14)

10.26

In Equation 10.26 a positive value of K

1, means a net heat flow out
of the body.

10.9 Gas Laws

The gas laws explain the relationship between the variébles that
describe the behaviour of a given mass of gas. The \:ranab|es are
Pressure, volume and temperature. Such a relation. is called an
€Quation of state. Let us consider some of these equations.

nt
Boyle’s law states that the volume of a fixed mass of gas al consta
emperature is inversely proportional to the pressure:

1

a_.
S

Which implies:
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jected to lower temperatures » as shown by the dashed line |
crosses the axis at aboyt — 213°C: The implication of this is that if
,:},Qf_ggs-:cauld be cooled to =273°C, it would have zero volume, and at
lower temperatures g negative volume, which makes no sense,
Hence, the scientist argue

d that - 273°c is the lowest temperature
possible. This temperature | e absolute zerg of

temperature. Its value has been determined to be - 273.15°C.

Y
‘u'mh.lmeT
v
Ve =
. I X
x—.—é A I 0 L 1 T
. m
-273.16 "> Y

Temperature T
Figure 10.8: Graph showing Charles’s law
Combining Equations 10.27 and 10.28, we have:

Y -_;- - :; -x'
PlVl PV, ;

—_—
e L e ot

T T,

This relationship (Equation 1"():?.279)-_is--'thierl* 2l
be written as: ~ v




" ; nl » |
O
viiich mes:
| - | ] [, ! - e L 4
) 8 ] J 1 p LWV S = o= - =
| 1w A A > : : : l




[Physics for University Beginners)
[Thermal Physics)

1.10  Kinetic Theory of Gases

So far we have deaht with Macroscopic variables of gases: pressure,
ol and temperature. Now, we want to describe all these
varables 0n 2 mroscopie level using some assumptions about the
mokacules m a gas.

represent the basic postulates of the kinet

thory for an ideal eas. are: e

l. Gasss consist of large numbers of molecules n each of
mass m. that are in continuous random motion.

2 '[T:Imolecules are. on average, far apart from one another.

5. their average separation is much greater than the

dmmeter of each molecule.

Themmonandd\erepulsiveforcesbetweenlhe
molecules are negligible.
The total volume of the molecules themselves is negligible
compared to the volume in which the 2as Is contained.
>. Collisions with another molecule or the wall of the
conmainer are assumed to be perfectly elastic. No Kinetic
_eorey s lost during the collision so the average Kinetic
energy per molecule does not change with time.
The time spem during a collision is negligible, compared to
the time during which the molecules move independently.

7. The average kinetic energy of the molecules is proportional
o the absolute temperature.

6.

The pressure exerted on the wall of a gas container is due to the
consiant bombardment of molecules. If the volume is reduced, the
molecules are closer together and many more molecules will be
striking a given area of the wall per second. Hence we expect the
pressure (o increase, in agreement with Boyle’s law.

; ly
Matter is treared a collection of molecules. We can app
N e laws of ::souon in a statistical manner to a collection of
pamcﬂ'mlenssto vide a reasonable description of the dwrmodynamiﬁ
processes anl;m derive an expression for the pressure a gas exerts on

ner based on kinetic theory. Consider molecules inside a
conzainer
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square container (at rest) whose ends have arca A and whose leng
Figure 10.9. &lh

is ¢, as shown in

One molecule ol the gas

moves with velociy v on

TS Wild towstned it ollision

with the wall.

)

Fioure 9- s e :
g 10.9: Molecules of a gas moving about in a container

Let us consider a i

way loxx'airzijcérjlE]S}icz)ll{]m\?j; 011? i H,I(’Wi”g with velocity v onits
the wall. and according i(]]t\jw Wa”; I"hi-s molecule exerts a force on
exerts an equal and g):)) .-.e\W\O”JS third law of motion, the wall
magnitude of this f‘orcc[ | 05_11‘3 force back on the molecule. The
time rate of change of nu?ll]]];:lil:]noflfculi’ i/S equal to the molecu®
G Fiptiois. TPWe Bes ¥ =4 dl (Newton’s second law
the molecule’s mome::ItT]i tlsmt the collision is elastic, the change in

Ap=m,v, —(—
[¥] X ( ’??“ v,\' ) — 2}?20 ]) .

This molecule wi ¢
container and e;;z;” -ma'i\(': many collisions  witl
el Ay le 1{coll:s:on IS separated b 1 the wall of the
; s 1ne . ; a . "
i T rm].e it la.kes the moiecu};e tllhe At This time
ack again, a distance equal to 2,/ to travel across (he
0 2d. Hence:

A;_—_%_
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I cqual to the Mmomentum
change during one collision divided by the time between collisions
2
& Ap  2m v myv;

ponent of velgc ity is
% o i 2
v =XtV e dy? | 10.33
) N
Using Equation 10.33 We can write Equation 10,37 as
FﬁgNE.

According to

Pythagoras theorem, the s
to the sum of

the squares of

its Components, hence:
vZ =2 + V2 + ;{
v - v-x vy z -
- : are
The x, Y Z axes are called the molecules’ degree of freedom: they
in three direct

the motion of the molecule al

one is indepen on along the others,

In Kinetic th
moleculeg in
One direction

ong any
dent of itg moti

iti e
eory, we have assumed that the velocities of th

1 g ‘eference to
our gas to be random, there is therefore no prefe
Or another. Hence:

-_.2___2___

- —_—2
vx "vy —-v:.
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Combing this relation with the one above, we get:
AL )
v =3v,.
We substitute this into Equation 10.34:
v
m
F=—N—
d 3
The pressure on the wall is then:
\cum.mnw Nmv-
A" 3Add
or:
1 Nmvy? _
B 10.35a°
Ny
where V= Ad is the volume of the container.
We can rewrite Equation 10.35a as:
D s gy
)] “ T
fe = 10.35b
my-

The quantity i rerace kinet; Iz
| Y —5— s the average kinetic energy K of the molecules

-

in the gas. If we compare Equation 10.35b with Equation 10.31, we
see that: T

my
— | = kT,

(PR [

or.

10.36
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The square root of y2 ig called the root-mean-squa.-e speed, v, .
: [“ 3T
2
Vs SNV = —, 10.37
. m
or.
,“ 3RT
2
N = 10.37b

where M = molar mags = MmN, .
Equation 10 3¢ shows that the average translationg| kinetic energy of
molecules in random motion j

Olion in an jdeg| gas is directly Proportional
to the absoluyte temperature of the
the faster the molec

€as. The higher the temperature,
ules are moving on the average. We cap conclude
that pressure and temperatyre relate

directly to molecular motion in a
Sample of gas
Therefore the average kinetic energy of a monoatomic molecule, in
each degree of freedom, is: '
15 1 — il
— my =—my =—my: =--kT.
2 7 2y 2 " 2

1
S0 the molecule has kinetic energy 5 kT per degree of freedom. A

Ne atom per molecule, If
one atom, then the

Monoatomic gas has o If the gas lpolet;ulesl
Contain more than rotational and vibrationa

S¢en that the internal energy of an ideal

temperature and the number of moles of gas.
shared between the translations and rotations
average kinetic enérgy of a molecule, in eac

gas depends only on
This internal energy is
of its molecules, The
h degree of freedom,

W —1 T . Thi ent is called
1 . kT . his statemer
rotational as ell as translatlonal, 1S

the

" V
ro \

IS near
e and above but it fails when the gas i
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. —— ey ctemperatores. At un!in:ny lemper: g
liquelaction, at very low tem) '“'”NIL.“L.

have:

|
| 0y Atonne maolecnle 1 e
Average kinetic enerpy ol monoaton . k' (trans,)

’ . . i ' |¢ . r'li,'l"lll'
Average Kinetic enerpy of diatomic m _

) y o
-1,-'."1"flr;|rr',.} kT (rot) _}fn‘a";
2 ) ,

Average kinetic encrpy of polyatomic molecn e

3 b L
-_—A'J"'{fl.'lllw,j ] kf (rol,) ki
2 . )

10.11] First Law of Thermodynamices

The internal energy ol an ideal pas is the sum ol the kinetic energy of
thermal motion of s molecules and ity magnitude depends on the
lemperature of the gas and on the number of aloms - its molecule,
We denote (he internal cnergy with the symbol ¢y and changes in
internal energy denoted by At/

Hence:

e W
U=N 7 (7)- ny J =

.

N kT 10.38a

(10l S

(since there are N, molecules

mole where N, is (he Avogadro
constant)

or:
[ 3 o
{J = "2—!?)?}" . [0.38b

for an ideal Monoatomic gas,

The internal ehergy of real gages depends (g
and volume, although (pe interna|
temperature.

some extent on pressure
energy  depends mainly on
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e add a quantity of heat 0 1o a system and the system does
nw y of | ysl | I
Whi W by expanding against its surroundings, the total change in
work _ g
internal energy 1s:

Uf ._UF — Q-—Idx
or:
O=AU+W

10.39
Equation 10.39 is known 2

as the mathemat; lormulation of the first
law of thermodynamics.

The implication of Equation
added to a system. some
energy of the system by
System again as the sy:

10.39 is that i1 ucneral, when heat Q is
ol the heat encroy changes the internal
an-amount AL/, the remainder lcaves the
tem does work W against its surroundings. A (J

ve or zero for different processes since W and
galive, or zero.

For a process Involvin
thermodynamics

can be positive. negati
O may be positive, ne

g only infinitesima! hanges, the first law of
becomes:

dQ = dU + dw

10.40
If the work dmw is given by:
dW = pqy 10.41
then the first Jaw can be stated as:
dQ =dU + pqy 10.42

10.12 Molar Specific Heats for Gases

The molar specific heats, Cy, and Cp, are dcfined as the heat required
to raise 1 mo] of the gas by 1°C at constant volume and at constant

Y. Hence the heat O needed to raise the
oles of gas by AT is:

=nC AT
=nC_,AT

[volume constant] 10.43a

[pressure constant] 10.43b

254

o e e



o

[Physics for Uniy erSity Begin
[Thermyy P""‘-:zj! ,
From the definition of molar specific heat that:

C. =M [volume constant] 10.44,
C. =AMe: [pressure constant] 10.44p

where M s the molecular mass of the gas (M= m/n in grams/mol),
Consider an ideal gas slowly heated through two different Processes:
first at constant volume. and then at constant pressure, The
temperature 13 made to increase by the same amount jp both
processes. In the process done at constant volume, no work Is done
since AV = 0 (Equation 10.41). Hence the heat added all £0€s into
ncreasing the internal energy of the 2as. You can see this by
considering Equation 10.42:
O, =dl. 10.43

The heat added at constant pressure will increase internal energy and
330 be used 1o do work 11'= PAI Thus. more heat must be added in

this process at constant pressure than in the first process at constant

volume. At constant pressure, we have:
O, =dU + Pdv 10.46

Since the change in temperature is the same, JU

3 IS same in the two
processes. Combining the mo equations above:

O, -0, =Pav. 10.47

ations 10.30 and 10.43 into the Equation 10.47:
nC,AT —nC,.AT = p nRAT

Substitute Equ

P
{T“ — (_‘,. =R 10.48
For an ideal monoatomic £as. Equation 10 .45 becomes:
3 |
Al :E-HRAT=HC,,3_\.T 10.492a
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=>R N 110.49%

E ., a9

and using Equation 10.48: , |
5 N

Cp= i 10.49¢
1013 Ther_modynamics Processes
A process in which th

ere are Changes in the state of 5 thermodynamic
system is called thermodynarnic Process. In thig Section we describe
four kinds of thermodynamic Processes that

situations. The PV di

OCcur often iy Practica]
‘agram for al} the Processes s gh

10.10,
| :

—_—
Pressure

-

"—l'l—-—-h, lb’\,-'.CJI‘J me

Figure 10.10: py diagram for thermodynamic processes
10.13.1 Adiabatic Processes et ot e
1 i i d as one with no heat tran : an
::t a(:'labam::et::n?cés : 13 d;;-:'n:very adiabatic process Equation 10.3
of a system: :
Omes:

10,50
Uf ""UI' =AU =-W
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When a system expands adiabatically, W is positive, (hat S, the
system does work on its surroundings, so AU is negative ang the
internal energy  decreases.  When a  system s COMpresgeg
adiabatically, IV is negative, that is, work is done on the systen by

its
surroundings, and U increases.

For an ideal gas changing from conditions (P, V,, 7)) 1o (P, Vs, 7))
in an adiabatic process:
Fy Fw FEA -l T ' | -
BV =5V and T =1V 10.5]
where y =, /C,. = ratio of heat capacitics.

The work done by an ideal gas during an adiabatic expansion can be
expressed in terms of the initial and final values of temperature, or ip
terms of the initial and final values of pressure and volume:

W=nC,(7, -T,) 10.52a
or.

) |
W=—-T\ @V, -prV,) 10.52b
7= )
10.13.2 Isobaric Processes
An isobaric process is one in which {he pressure is constant. If the
volume changes from Vi to V5 as the pressure /” remains constant, the
work done by the system js:

W= p(V,-v,)

AU, Q, and W are not equal to zero in

10.53
an isobaric process.
10.13.3  Isochoric Processes

An isochoric process is one in which the volume is constant. When

the‘volume Of‘f" thermodynamic System is constant, it does no work
on its surroundings. Then W = () and:

Ur-U=aU=g 10.54
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nature can spontaneously proceed toward equilibrium, Fo, eXample
water flows down a waterfall, gases expand from a high Pressure 10;
low pressure and hcat flows from a high temperature .
temperature. The reicise of these processes will  not ocey
spontaneously. In other v ords, the processes will not OCCur on thej,

own. A spontaneous 55 can be reversed, but it will no reverse
itself spontaneously. -+€T5C a spontaneous process some externg)
encrgy must be exper ‘ol We know by experience that heat Nows
spontancously from | temperature 1o a low temperature. But
heat flowing from a -mperature to a higher temperature With ng
expenditure of energ cause the process to take place woulg
violate the second la I thermodyvnamics but will not violate the
first law of thermodvinamics. The first law s concerned with the
conversion of energy i one form to another. Heat and work are
not completely interciiizeable forms of energy. This is shown ip
Joule's experiments. |i., cxperiment showed that energy in the form
of heat could not be coipletely converted into work: however, work
cnergy can be comple -onverted into heat energy. It is the second
law of thermodynarr hat controls the direction processes may

take and how much heui 1s converted into w ork. A process will not

occur unless it satisfics both the first and the second laws of
thermodynamics.

You will encounter 1], ollowing terms as we discuss second law of
thermodynamics in details:

Heat (thermal) resers oir

A heat reservoir is a ¢ ‘lently large system in stable equilibrium to
and from which finite - 1ounts of heat can be transferred without any

“re. A high temperature heat reservoir from

which heat is transfericd is sometimes called a heat source. A low
temperature heat reservoir

called a heat sink.

change in its temperai

to which heat js transferred is sometimes
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Workreservoir

Avwork reservoir is a sufﬁcient'.y large System in staple €quilibriym
o ad fom which finite amounts of werk can be transferreq
adiabatically without any change i its pressure,

Thermodynamic cycle

C cycle whep the system
Cesses and they returns to jtg original state

50 that the Properties of the System at the end of the Cycle are the

same as at itg beginning.

Heat Engine

A heat €ngine

10.141 Thermal Efficiency
The thermal efficienc
net w

Y € of a heat engine is defined as the ratio of the
ork output W (th

e desired result) to the heat input, Oy, (the
COsts to obtain the desir
w

ed result) at the high temperature:
10.56a
Oy

(Figure
' t the low temperature O

heat that flows out a

done plus the
10.11):
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Q,=W+0,.
Equation 10.56a become:
- )
:QH Qr. L;, . —

=4 _—
QH Q”

The thermal efficiency is always less than 1 or less than 100 percent,

heal engines, refrigerators and heat pumps

Cyclic devices such as
h-temperature reservoir at temperature 7,

often operate between
and a low-temperaturc « crvoir at temperature i

High-tempei i 2 reservoir

U

vk _ ) .. /ﬂ ; ./,-'
2

Low-temperitures reservoir

Fig G E / transfers f
gure | Lnergy transfers for heat engine

10.14.2  Carnot 7 l¢

N'.COI.aSlefadfl tﬁarnot ( 09-1832) was among the first to study the
principles ol the secoi . aw ot"thcrrnod}namm He introduced the
concept of cyclic OpLJdIIfJn and devised 2 reversible cycle that s

composed of four rev - ible process
€5, twre 5
adiabatic. The processe. wre » isothermal and w0
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A

i
2y " Congg,

U4

netl, oul

T; =const.

o 3‘

Figure 10.12: The Carnot cycle

:"rocess 1 to 2: Reversible isothermal heat addition at high
em'perature,. Ty > Ty, to the working fluid (an ideal gas) in a piston-
cylinder device that does some bou ndary work. :

Process 2 to 3: Reversible adiabatic expansion during which the

S}):’Stem does work as the working fluid temperature decreases from
Hto T,

Process 3 to 4: The system is brought in contact with a heat reservoir
at T) < Ty and a reversible isothermal heat exchange takes place
while work of compression is done on the system.

Process 4 to 1: A reversible adiabatic compression process increases
the working fluid temperature from 7}, to Ty. The working fluid is
hence returned back to its original state.

i i ther type
The net work done in one cycle by a _Carnot engine (or any o
of engine using a reversible cycle) is equal to the area enclosed by
the curve representing the cycle on the PV diagram, the curve 1234

in Figure 10.12.
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We can show that the efficiency of a Carnot engine USing an iqey
gas depends only on the temperatures of the heat reservoirs, 7, and
T\.. The work done by the gas in the isothermal process | tg 2 is:

V.
=nRT, In—=,
nRT,, >

W,

=2

where 7 is the number of moles of the ideal gas.

For isothermal process the temperature is constant, hence the change
in internal energy is zero. The first law of thermodynamics shows
that the heat added to the gas equals the work done by the gas:

%
Qy =nRT, In =+,

e,
Similarly, the heat lost by the gas in the isothermal process 3 to 4 is:

V.
Q, =nRT, ln~V—3.

4

The path 2 to 3 and 4 to 1 are adiabatic, so we have:
BV, =BV and BV =By,

Also, from the gas law;

5 LBV, BV s P
A S [l
L Sl [

: quations with the correspond; f equations
on the line above, we obtain- ponding set of eq
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or.
v, Vs
v, Y,

[Carnot cycle) 10.57
QH TH

Hence the efficiency of a reversible Carnot engine can now be
written as:

== 10.58
IJIa’J'

Thus the efficiency of a Carnot engine depends only on the
temperature 7\ and T),.

The second law of thermodynamics puts limits on the operation of

cyclic devices as expressed by the Kelvin-Planck and Clausius
statements.

: A heat engine cannot operate by exchanging heat with a
single heat

‘ reservoir, and a refrigerator cannot operate without net
work input from an external source.

I'he heat engine we described above is operating between two fixed
lemperature reservoirs at T}, > T;. We can point out two conclusions

about the thermal efficiency of reversible and irreversible heat
engines:

* The efficiency of an irreversible heat engine is always less
than the efficiency of a reversible one operating between
the same two reservoirs.

* All reversible engines operating between the same two

constant temperatures Ty and T;, have the same efficiency.

As the result of the above, Lord Kelvin in 1848 used energy as a

thermodynamic property to define temperature and devised a
temperature scale that is independent of the thermodynamic
substance.
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10.14.3  Refrigerator

The operating principle of reﬂ'igcrﬂlo.rs, air cmm_di(ioners and heg
pumps is just the reverse of a heat engine. A refrigerator is a device
that operates on a thermodynamic cyr:l:?: and extracts heat from |,
low-temperature medium. A heat pump is a thermodynamic System
operating in a thermodynamic cycle that removes heat from a loyy.
temperature body and delivers heat to a high-temperature body. T,
accomplish this energy transfer, the refrigerator receives externg]
energy in the form of work or heat from the surroundings.

Figure 10.13 shows the schematic diagram of energy transfers for 4
refrigerator or air conditioner. By doing work IV, heat is taken from a
low-temperature region, 71 (such as inside a refrigerator), and g
greater amount of heat is exhausted at a high temperature, 7y (the
room). The work is usually done by an electric motor which
compresses a fluid.

Warm environmenl

mpul

N TN
/f.‘-l \"'\
x{i] A
[ Required
| Uy Hitre

2=X |Jm
) outpul
] .Jl,

-

I

N
3
| |
b
|
!

|
Cold relrigerated
space at Ty ;

Figure 10.13: Energy transfers for refrigerator

The Carnot cycle may be reversed

. . in which i
refrigerator.  The refrigeration eycle it operates as a

Operates in the counter-
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lockwise direction as shown m Figure 10.14. Compare
CcioC = X = N
refriceration cycle with the Carnot ¢ cle.
e

{
i
!
|

Figure 10.14: The Refrigerator

cyele

The coefficient of performance (COP) of a refrigerator is defin
the heat O_ removed from the low- -temperature area (insi
refrigerator) divided by the work ¥ done to remove the heat:

O
COP ==L

= 10.59:

This shows that the more heat O that can be removed fror
inside of the refrigerator for a given amount of work, the

efficient the refrigerator is. From first law of thermodynamics w
WTite:

QH =Q1+W

—

(see Figure 10.13)
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TI
COpi=—C— 10.59¢

TH _TL.

For the device acting like a heat pump, the primary function of the
device is the transfer of heat to the high-temperature system. The
coefficient of performance for a heat pump is:

0
COPyp = On =S 10.60

QH S QL

The COPyp is necessarily greater than 1. Most heat pumps can be
“turned around” and used as air conditioners in the summer.

10.15 Entropy

Entropy is defined as a measure of the order or disorder of a system
When we deal with entropy it is the change in entropy during a
process that is important, not the absolute amount. The change in
entropy S of a system when an amount of heat Q is added to it by a
reversible process at constant temperature, is given by: ;

o 10.61

where T is the kelvin temperature.

If the temperature is not constant,

we define entropy S by the
relation:

ag
ds=-—=
= 10.62

For a reversible process, the ch

reve ange in entropy between two states g
and b is given by:

AS:Sb-Sa=de=f%g. 10.63

267

y -




0

[Physics for University Beginners)
[Thermal Physics]

Activity 10 Temperature and Heat

10.1. A gas has a volume of 120 m’ at STP. If the gas is compressed
and adiabatically to a volume of 25m” the new temperature, pressure
and the work done on the gas respectfully are:

(Hint: C, = 1.68 kag'iK"__C\ :11 20 kag‘K"

AT=344K p=23x10Nm”, W=3.7x10°)
B.7T=4274 K, p=1.6x10°Nm>, W=3.7x10")
C.T=5274K.p=9.6 x 10°Nm™, I"=1.7x 10"}
D.7T=511K,p=9.1x 10 Nm>, W=27x10"J

Solution

At STP, T, =273K, P, = 1.013 x 10°N/m?
C, 1.68
C 1.20

1)

5 623898318
I-=3511.28 K
pVy = p.Vy
1.013x10% x120"* = p, x 25"
8.250x 10" = p, x 90.59745796
P2=9106 x 10°N/m>*=9.1 x 10°N/m?
1
(pII/I _'lef’:)

-.',__1

Ed

e

W=

l(l.omxw" x120-9.1x10% x25)/ =2.7x10" J

The correct option is D.

10.2. A quantity of a diatomic gas expands adiabatically from an
initial pressure of 3 x 10° Nm™ and volume of 3 x 10°m3 at
temperature 20°C to thrice its original volume. The work done by the
gas is (hint: for a diatomic gas y = 1.4),
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A.791) B. 801) C.810J D, K10
Solution
pVy = p.Vy
3x10°(3x107)" = p, x(3x3x107)"
2= 6.4439403 x 10'N/m’

PV:—lTUMﬂ—pJQ)

I
1.4 -1

The correct option is B.

W=

(3x10°x3x107 = 6.44x10" x9x107 )1 = 800 1

10.3. A volume of gas V at a temperature 7y and a pressure p, jg
enclosed in sphere. It is connected to another sphere of volume 172
by a tube and stopcock. The second sphere is initially evacuated and
the stopcock is closed. If the stopcock is opened the temperature of
the gas in the second sphere becomes 75 The first sphere s
maintained at a temperature 7. The final pressure p, within the
apparatus is:

InT; 1
A p, _-—_..TI_)_l_“.__ B p, = 2/)|/I_
- 2L, 4T, - 20 +1;
21,71 27 + T
C. p, = ~”' D. p, :_/Li_/_l
2p, T, ” 2k
Solution

The total number of moles of air in the two containers remains
constant, although some air is transferred from the hot to the cold
sphere. :

From n = —/1/—,
RT

Initially, total moles of air:

269
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pl" pl[‘r + Y—}
= - 2 _ 3P|V

RT R, 21,
AN :-i:l;...-._;; . “_@] malcs Of.ai}':

3pT,

ey

The correct option B A

M4 An ideal gas 27°C and 2 pressure of 760mm of mercury is

compressed isothermally uniil is volume is doubled. It is then

axpanded reversibly and adiabatically to half its original volume. If

the value of y for the gas is 1.4, calculate the final pressure and
of the gas.

A p-=218mmHg T,=172K

B p.= 2646 5mmig, T;=3255K

270

———————




[Physics for Universily Bep;
nncrs|

[Thcrmnl Physic |
§

=3252K

1g, T
C. py = 380mmklg, 12 300 K

Dp= 1520mmHg, 72
Solution
For isothermal process:
pV = PV,
760x V = p, x2V
py = 380mmHg

V=2V, Vy=VI2
A4 :/72V2y

’/ 1.4
380x(2V)" = p, X[EJ

380x 2" x 2" = p,
py =2646.5mmHg

Tszr_] = T3V3H
1.4-1
’ VY
300 (2V)" =T, "[E)
T, =300x 2% x 2" K =522.3K

10.5. The root mean square velocity of hydrogen molecule is
1839ms™ at STP. Calculate the density of hydrogen.

A. 0.09kgm™ B. 0.9kgm™
C. 0.009kgm™ D. I1.2kgm™
Solution

r.m.s velocity

Vo = 22
P

_3p
==

Fmx

P
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3%x1.013%10° —_
= - m
P 18397

p= 0.08986kgm™ = 0.09kgm™

The correct option is A.

10.6. A lagged bar of length 60cm and cross-sectional area 2.0cm’
made of copper attains a steady state with one end at a temperature
120°C and the other at 30°C. Find the time rate of heat transfer
(thermal conductivity for copper is 380 Wm'K™).

A 141 W B. 1.1 W C.114W D.3.84 W

Solution

dQ (0, -0 )
- - j\ Al = ¢ e ‘|

clt . \ / /

dO (120-30 .,

= =380 < 2.0%x10 7| ———= IV =11.4W
i L\ 60107

The correct option is C.

10.7. At 25°C and a pressurc of 75¢m of mercury, the density of air
is 1.26kgm™. What is the density at the top of a hill when the
pressure is S0cm of mercury and temperature is -43°C,

A. 1.09kgm’ B. 10.9kgm C.1.43kgm~ D. 1.33|\'f=1',n1."1L
Solution
m ., om :
= e — = — {l)
I/ 0
pV, _ p.Vs (ii)
T, T

Substitute (1) into (i1):

pm _ p.m
;J|T] fJETZ
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50 50

e A
1.26x298 P x 230 )
Py = 1.088kgm™ =1.09kgm

The correct option is A.
l 7 -3 2 le ]
10.8. The density of an OXygeh gas is 1.83kgm™ at STp, ¢ "

ecific heat capacity at constant volume is Cv = 20.8Jmq[ k-
S ” ¥ i k] g : , L]
cE!cuIntc the ratio of its specific heat capacity at constant pressure (,

that at constant volume. 1
A, 1.40 B. 1.67 C: .31 D. 1.33
Solution

The gas constant:

14 n
R=L=2

r 1p

w5 s sema
Rzl.DlelD x32x10 _ 6.489
273x1.83

C,=C,+R
C,= 20.8 +6.489 = 27.289.Jmol '

C. 272
y= L= . 89=1.31

ko 20.8

.
The correct option is C.
10.9. Calculate the average kinetic energy of a gas molecule at room

tempera_!ure (27°C). (Hint: ky=1.38 x 107 JK ™.
A.0.0353eV B.0386eV  C.0.013¢V  D.0.0386eV

Solution

Average Kinetic energy:
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_ 3kT _3x1.38%107% » 3
2 2 i
- 6.21#10-21.} - 6.213’(10-11
1.6%19-1 eV = 0.0388125¢)

The correct option is D.

10.10. Calculate the maxim

| um efticiency of C
the temperature of the input steam ; Y Of a steam engine if
exhaust is 90K . P AM 1s 185K and the temperature of the
A.40.7% | B.26.2% C.51.4% D. 20.7°
Solution - SR

Efficiency e = L -T, *x100%
T,

e=185"90><100°/ o
185 0=151.4%

The correct option is C.

10.11.

_ A D.OZkg_ice cube was melted at 0°C by an application
of heat which further increased the temperature of the resulted water

to 40°C. Calculate the total heat supplied to the system within this
temperature range (hint: specific latent heat of fusion of water is

3.34 x 10° Jkg', specific heat capacity of water is 4200Jkg'K™).
A.20080)

B. 19880) C. 10040J] D. 3320])
Solution

Quantity of heat required to melt the ice:

QO =mL=0.02x334x10°J=6.680x10°]

Quantity of he:at.required to increase temperature to 40°C,
O = mc(6; - 6,)) = 0.02 x 4200(40 — 0)J =3.360 x 10°) -

Total heat required O = (6.680 x 10° +3.360 x 10%) J = 10040J
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The correct option is C.
0.01kg of ice and 0.2Kg of water at 20°C are in a
; 4 in until all the ice melted and the

10.12.

container. _ 4
ure of mixture 15 30°C. Calculate the mass of water

final temperat ' ; _ :
S the container. (hint: specific latent heat of vaporisation

D o X 10%kg” specific latent heat of fusion of water =
f water = 4200Jkg 'K ™).

of water ;= 2.1? S : e
3.34 x 10°Jkg specific 1eat capact
A. 0.228kg B. 0.182kg C.0.192kg D. 0.3kg

Solution
o melt the ice and increase its temperature:

Quantity of heat required

Q=mL+ meA0
— 4.6 x 10°]

514+ 0.01 x4200x 30J

red to increasc the temperature of water from

0=0.0] x 3.34x 10

uantity of heat requi
20°C to 30°C:
Q= mcA0= 0.2 x 4200 x (30 — 20

Heat lost by steam.

)J = 8400]

Q=mL+ mcAl

0=mx23x10°+mx 4200(100 —30) = 2.594 x 10°m.J

Heat lost = heat gained

4600 + 8400 = 2.594 x 10°%m
13000 0005
Sie0a 100 - gte

Total mass of water = (0.01 +0.2 + 0.005)kg = 0.215kg =

10.13. . _

bgt:é i A carnot engine has an efficiency of 22.0%. It operates

75°C wﬁ;n;:?:; timperatlﬂ‘ﬁ reservoirs differing in temperature by
; e temperat :

A.266 K and 341 K peratures of the two reservoirs”

B. 225 K and 300 K
C.300K and 375 K

m =
0.220kg
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T —9T=9%x273K =2457K
I .
The correct option is B.

10.17. A certain platinum resistance thermometer has o
resistance of 12.6 € when immersed in a triple point cell. When the
thermometer 1s placed in surroundings where its resistance becomes

21.6 Q, what is the temperature that will be shown on the
thermometer? (Hint: triple — point of water is 273 16 K.)
A.159.34 K B.743.4 K
C.468.27 K D. 2458 44 K
Solution
A
T=—Lx273.16
X,
21.6 . . :
e x273.16K =468.27K
12.6
The correct option is C.
10.18. Pressure p, volume V¥ and temperature 7 for a ceriain

AT — BT

-]

material are related by p = where 4 and B are

constants. An expression for the work done by the material if the
temperature changes from 7 to T, with constant pressure Is:

A- (I, T )4-B(T, + 7))
B. (Tz —'TIIA + B(Tz _TI.)]
G laT? < BT?)

D. A(T? -T?)- AB(T, - T))
Solution

AT BER
= 4
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Rearranging, we have:
AT, - BT o AT, — B1;

4 o iR )z

Work done = p(V>— V1)

W = AT, — BT? — AT, + BT

W = (T, ~T,)- B(TZ ~T)
W=A(T2 "_T;)'—B(TE _'TtXTz +E)
w =, -1 4 - BT + 1)l

The correct option is A.

10.19. The pressure recorded by a cons}ant jvolume gas
thermometer at a kelvin temperature 77is 5.80 x 10 Nm:. CHLCLliatE T
if the pressure at the triple point, 273.16 K, is 5.20 x 10" Nm™.

A.304.7 K B.312 K
C.27T3 K D. 549 K
Solution

i
T:%x??fw-l(ﬂk’

r

~ 5.80x10"
5.20%10*

The correct option is A.

Vi

x273.16K =304.7K

10.20. A constant mass of gas maintained at constant pressure
has a v;:-lume of 200.0cm’ at the temperature of melting ice,
273.2em” at the temperature of water boiling under standard
i an_d 525.1cm’ at the normal boiling-point of sulphur. A
platinum wire has resistance of 2.000, 2.778 and 5.280 Q at the

temperatures. Calculate th 3 1l
_ : ¢ values of the boiling-point of sulphur
given the two sets of observ ks p

A. 444.1°C, 214.6°C ations, and comment on the results.
B. 444.1°C, 421 6°C

H"_fr}
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o °C

C.434.1°C, 214.6

D. 434.1°C, 421.6°C

Solution
On the gas thermometer scale, the boiling—-
by: |

Ve "Vo

]/100 - Vo

point of sulphur ig given
T =

x 100

525.1-200.0
T = 100° C = 444 10
2732 2000 % &

platinum resistance scale, the boiling-
given by:

point of sulphur is
Rﬂ -_ 4]
0, = B ————x100
Rio—R

S5.280 — 2.000
0, =2 100°C =421 6°C
| 2778 32000 X100°C =4
The correct Option is B,

Sunmnmary*df(:lnwpter'lﬁ
In chapter 10, you have learned that:

> its hotness or
1. The temperature of g body is a mea_suri of ed by weing =
coldness. A measure of temperature is obtain
thermometer. '
: o another
2. Heat is the net energy transferred from °;;e ‘:2,;':;3 tr:,echanical
. because of a temperature difference. The

i ed to as
ener of all molecules of a system o; body is referr
the i;g-;{ernal energy of the system or body.

les. These
f temperature sca

ically three types o

3. There are basica

a“
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4. The conversions between the three scales are:

T =§7;, +32° and T=273.15+T,. where T, andT.. are

Fahrenheit and Celsius temperatures, respectively,

N

If systems A and B are each m thermal equilibrium with 3
third body C, then A and B are also in thermal equilibrium
with each other. This 1s called the Zeroth law of
thermodynamics.

6. The coeflicient of lincar expansion @ is defined as:

AL E—1T.

—— Theunits of & are K" or (2Cy -,

LAT L(T—T)

The coelficient of area expansion /' which describes the
thermal expansion properties of a particular material, is
defined as:

AA A—A

A= — = ———"— The units of # are K" or (°C)".
AAT  A(T-T) )

8. Experiments show that increase in volume AV for both solid
and liquid materials is approximately proportional to both the
temperature change A7 and the initial volume V;

4 V-V,
4 VAT V(T-T)

9. The thermal stress is given as:

F y AL Vs al AT
A L L

i i

= YaAT , where F is the force; 4

the surface area: )V the Young’s modulus; AT is the change in
temperature and o 1s the coefficient of linear expansion.

10.The quantity ol heat (Q) required to change the temperature of
an ohi - ‘“anal 1o the mass (m) of the object and to




——— s

S
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the change in the temperature (AT). That is, O=mcAT , where
¢ is the specific heat capacity.

11.The specific latent heat of fusion of a solid is the heat Tfiql{ired
to change the unit mass of it, at its melting point, into liquid at
the same temperature. The quantity of heat required to melt a

mass m of an object that has specific latent heat of fusion L
issQ=mL, .

12.The three mechanisms or modes of heat transfer are
 conduction, convection and radiation, '

13.Experiment shows that the quantity of heat O flowing through
a small part of a lagged bar of uniform cross-section of area 4

in the steady  state, in time A, s
Q=ktd X temperature gradient,

| mate{ial called its thermal conductivity and is measured in
Wm'K!,
14.Convection 1S the transfer

M one region of space
convection: natura|

of heat by mass motion of a fluid

to another. There are two types of
and forced convection

-

8: surface area A, temperature, T and nature of
thG.Sllfface; this dependence is described by a quantity e called
emissivity, :

d
16.Stefan’s law can be expressed as: H = a9 = oAeT*

H is the
B

, Where

power radiated in watts (W), o is the Stefan-
oltzmann constant: ¢ = 5.67 x 10* W/(m®.K%).

17.Boyle’s law states that the volume o
constant temperature is

pressure: pV =constant.

f a fixed mass of gas at
inversely proportional to the
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18. Charles’s law states that the volume of a fixed mass o

constant pressure i1s directly proportional (o
temperature: Va T .

'gas g
the absolyge

19.For a process involving only infinitesimal
law of thermodynamics is:
dQ =dU +dWw .

20.An adiabatic process is defined as one

into or out of a system; O = 0. For an ide
conditions (py, Vi, 7)) to (ps, Vs, 15)

changes, the firg

with no heat transfer

al gas changing from
inan adiabatic process.

p V) = p V] where ratio of capacities y = C, /C', .

21.An isobaric process is one in which the pressure is constant.
An isochoric process is one in which

the volume is constant.
An isothermal process is a constant-temperature process.
22.The second law of thermodynamics states

for any self-acting machine working

unaided by an external agency to make heat pass from one

body to another at a higher temperature — Clausius’ statement
of the second law.

at it is impossible
i a cyclical process

Self-Assessment Questions (SAQs) for Chapter 10

10.1. The result of an experiment shows that the resistance Ry ol a
platinum wire at IE]H[’]EI'BIUI'C (°C. measured on the scale, is given by
R = Ro(1 + a0 + b&"), where a=3.800 x 10” and b = -5 ¢ x 107,
What temperature will the platinum thermometer indicate when the
temperature on the gas scale is 300°C?

10.2. A process which involves no exchange of heat is:
A. isothermal B. isobaric

C. isochoric | D. adiabatic :

10.3. The heat taken in when »n moles of a

gas expands isothermally
from ¥, and V; is;
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10.8. wiy
the tube,  respect to Q1o

g ca\gulate the rate of loss of heat from

Ceat Capacity 4003kg 'K, The final temperature reached is 35°C.

alculate the specific heat capacity of the metal. The specific heat
capacity of water is 42003kg ' K*. -
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10.10. An electric kettle with a 2.0 kW heating element has 5
heat capacity of 400JK™. 1.0kg of water at 20°C s placed in the
kestle. The kettle is switched on and it i3 found that 13 mimites lafer
the mass of water in it is 0.5kg Ignoring heat kinses, cakulate &
value for the specific latent heat of vaporisation of water. (Specific
heat capacity of water = 4.2 x 10°Jkg'K™".)

10.11. A faulty barometer tube has some air at the top sbove
the mercury. When the length of the air column s 250mm, the
reading of the mercury above the outside level is 750mm. When the
length of the air column is decreased to 200mm, by depressing the
barometer tube further into the mercury, the reading of the mercury
above the outside level becomes 746mm. Calculate the atmospheric

pressure.

10.12. Oxygen gas contained in a cylinder of volume V of
| x 107 m® has a temperature T of 300 K and a pressure p, of
2.5 x 10° Pa. Afier some of the oxygen is used at constant
temperature, the pressure falls to 1.3 x 10” Pa. Calculate the mass of

the oxygen gas used.

10.13. Two gases containers with volumes of 100cny and
1000cnT respectively are connccted by a tube of negligible volume,
and comain air at a pressure of 1000mmHg If the temperature of
bath vessels is originally 0°C, how much air will pass through the
connecting tube when the temperature of the smaller is raised to
100%C? Give your answer in cm” measured at 0°C and 760mmHg

10.14. The amount of heat required to raise the temperature of
a kg body through 1°C is:

A. thermal energy

B. thermal capacity

C. heat lost

D. specific heat capacity

10.15. Calculate the quantity of heat conducted through 2 m’ of
a brick wall 10cm thick in 1 hour if the temperature on one side is
10°C and on the other side is 20°C. (Thermal conductivity of brick
=0.13Wm"'K")
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ANSWERS 2.6. 100.1°

2.7. -21

29 D
1. f=f‘[i 2.10. A

I\ u 2.11. B
12. 2, 1,1 2.12. B
1.3. The expression is 213 I
correct. 2.14. A
14. C 2.15: A
1.5. D
16. B CHAPTER 3
1.7. C
18. B 3.1. 20m
1.9. C 3.2. 17.3m/s
1.10. D 3.3. 20m/s
1.11. € 3.4. 6.5m/s,21.5m/s
1.12. D 3.5. 15m/s, 35m/s
L.i%. 3.6. (a)l.5m/s (b)2s (c)
1.14. A 20.1m/s, 85.7°
1.15. D 3.7. (i) 5s (i) 62.5m (i)
1.16. B 17.3m/s
1.17. D 3.8, 1.25m/s, 10m/s
118. B 3.9. (a)3.33m/s” (b) 15m
1.19. C 3.10. (a) 43.83 m, 16.15m/s ;
120. A 21.7° (b) 2.598s  (0) 77.9 m
1.21. D 3:11. ]62XIO m/s” ,
122 A 3.12. 150m/s, -100m/s’
123 B 3.13. _1.875m/s>, 5.3 s
‘ 3.14. 180 m, 12s

3.15. 261 m
CHAPTER 2 316, 77.5m/s, 20.1 m
2. 1. 50m/s at 36.9° south east 3.17. 34.6m, 1.73s
2.2. 100N at 110° 3.18. 5m,2s
2.3. 14.4 units at -56.3° 3.19. 225 m
2.4, 5 3.20. 13.25m
2.5. 334
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CHAPTER 4

4.1. 1.35m/s, 21.4° above the
x-axis

4.2. 0.75m/s

4.3. 200N

4.4. 2m/s, 4m/s

4.5. 4.51m/s?

4.6. 8s,0

4.7. 2.7N

4.8. 2.40m/s’

4.9. (a) 12.84N, 9.63N (b)
I1.16N, 8.37N

4.10. (a) 132.89N (b) 0.63
4.11. C

4.12. B

4.13. D

4.14. A

4.15. B

4.16. B

4.17. B

4.18. A

4.19. C

420. A

CHAPTER 5

5.1, 1668.8my/s, 6619.9 g
5.2, 533.1nvs%, 80N

5.3, 6.02x 10%kg

54. 502.72 rev,31.42 g
5.5, 7804.7m/s, 5289 9 S
5.6.  7729m/s, 5447 .4 S, 3.47
x 10"

5.7. 28.7m/s

5.8. 2.45x10"

5.9. 13.2m/s
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If'uww.,-mj
5.10. 0.31
CHAPTER 6
6.1. 105)
6.2. 2.6x10°
6.3. 4050)
0.4. 2352 W
6.5. (a)4500J (b) 30m/s,
4500)
6.6. (a) 135N (b) 1350) (c)
1200
0.7. G6864N
6.8.  270J, 90kgm/s

6.9;
10J
6.10.

(a)4's (b) 20 m (c) 10J,
D

CHAPTER 7

7.1. 3.0 rad/s, 30m/s

7.2, D

7.3. 3.16m/s

7.4, 39.4kgm?, 990.4Nm
7.5. (a) 17.41] (b)
0.185kgm?/s (¢) 0.044m

7.6.  50Nm

1.7.  240)

7.8.()2000J (ii) 200kgm¥/s
(ii1) 3.18 rev/s

7-9. (i) 8 radrs, (ii) 25,136)
7-10. (a) 0.0421, (b) 0.03

CHAPTER 8
8.1. 72x107m
82. A

8.3. 2.65mm

8.4. 0.0714 mL



8.5. 0.047s ,

$6. 1.8x10'"N/m? ﬂ
8.7. ()38 x10°N/m’ (b)
0.1464 (¢)0.029

8.8 (2) 6.238 X 10°Nm? (b
1.02mm

89. 4.404x107

8.10. (@)8.0x10™ ()20
10°N/m?

(© 25X 10"Nm? (dy 0,156

CHAPTER 9

31 A
22,

93. 40Nm?

94. 11.25N

9.5. 2500N/m2

9.6. 0.0178 m/s
9.7. 0.0192n/5

9.8. 1656.16, laminar
99. 2.0x10°p,
9.10. 3.16 x 107 1y

CHAPTER 19

10.1. 291°C
2. D

103. B

104. D

10.5. 1.526 x 10%)
10.6. 900Jkg 'K

10.7. 4200Jkg" 'K
108. 2.1 w

10.9. 590.8)kg'K"!

10.10, 2.38 x 10°Jkg’!
10.11, 766rang
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10.13,
10.14.
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- 0.0154kg

33em’

D

93600
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Index

A

absolute zero - 246
Acceleration - 3, 5, 42, 43, 58, 68,

110, 166
Adiabatic - 256, 257, 283
Archimedes’ principle - 207, 228
Average acceleration 42
Averapge speed - 41, 69, 209, 229
Avopadro’s hypothesis 247

Avopadro’s numbe 247

B

e unlts < 1, 2, 3, 15
Perponlls eguation
Poltamann - 244, 247, 287
Haayle s low - 244, I8

gl noddulis - 180, 198, 202

P pganin y 20/

2711, 219; 229

gt A6, 262, 208, 204, 205

Capendinle 108, 110

Calvioy - 2492, 213, 296, 280, 281

papbed ol gravity © 1hh

fanbar of iass - 154, 145%, 100, 178

£ birlen's lnw 0 24%, 282

Caomtfi st of pestitution « 78, 79

i fant of statlc frlction « 80, 81,
1

Canpreasibilig - 186, 189, 202

Eomdutlon 241, 241, 282

FanAsiyalive 107, 108, 119, 148

Cantinuity sguation « 210
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Convection » 241, 242, 243, 282

D

degree of freedom - 250, 252
Density - 3, 8,9, 11, 12, 13, 16, 19,
35, 96, 116, 202, 204, 207, 209,
210, 218, 219, 220, 221, 222,
223 224, 228, 229, 230, 231
derived units+ 1, 3,5, 15, 16, 17
diatomic - 253, 268

Dimension + 5
Displacement - 13, 36, 40, 41, 47, 51,

5:.53,54,55.53,6&.69.?L
101 112, 132, 133, 140, 147,
162, 179, 184

- 40, 69, 73, 202, 209

Dynamics

E

Efficiency - 139, 148, 274, 275, 284

Elastic collision - 78, 79

Elastic limit - 182

Elasticity - 181, 199

cmissivigy » 244, 282

enemyy * 7, 13,19, 35, 60, 112, 113,
114, 134, 136, 137, 13§, 139,
140, 141, 142, 143, 145, 146,
147, 148, 160, 161, 162, 163,
178, 179, 186, 187, 188, 191,
194, 197, 209

entropy + 267

equipartition of energy - 252

F

Fahrenheit - 232, 233, 276, 280, 281




force - 73
Fl’iCﬁOn -79, 90, 96: 99

——

G

Gravitational field strength - 108

H

heat engine - 260
heat pump - 265

heat reservoir - 258, 259
heat sink - 259

heat source - 259

Hooke’s law - 182, 183, 184, 185,
199, 200

Horsepower - 139

Ideal gas - 246, 253, 257, 258, 270,
283, 284

Impulse - 3, 5, 74, 95
Inelastic collision - 78,79

Inertia - 73, 74, 156, 157, 160, 162,
163, 165, 167, 169, 170, 171,
174,178,179

Instantaneous acceleration - 42, 46,
102, 104
Instantaneous speed - 41, 69

internal energy - 232, 252, 253, 254,
257, 280, 284

Irrotational flow - 209
Isobaric - 257, 283
Isochoric - 257, 283

Isothermal - 224, 258, 271, 283
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J
Joule - 3, 133, 138, 139, 147

K

Kepler's laws - 115, 129
Kinematics - 40, 47, 69, 73

L

Land breeze - 243

Latent heat - 240, 241, 274, 275, 282,
284

le systeme international d’unites - 1,
14

M

Mechanics - 40, 69

Moment - 151, 152, 156, 157, 160,
162, 163, 166, 167, 169, 170,
171,177,178, 179

Momentum - 19, 36, 74, 75, 77, 78,

95, 151, 152, 163, 164, 167, 174,
178,179 ’

monoatomic - 252, 253

N

Newton - 3, 74, 75, 133, 147, 152,
183

Newton’s

laws of motion - 73, 74, 75, 76,
84, 86, 88, 90, 91, 95, 104,
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108, 115, 124, 129, 145, 162,

179

p

parallelogram method - 22, 36

Pascal’s Principle - 206

Poiseuille’s law - 216, 226, 229

polyatomic - 253

polygon method - 21, 22, 36

Position vector - 45, 152, 155, 163,
178

power - 16, 17, 18, 19, 35, 139, 143
146, 147, 148, 149, 163, 179,
244 282

Pressure - 8, 14, 16, 185, 186, 189,
192, 200, 201, 202, 203, 204,
205, 206, 210, 211, 214, 215,
217, 218, 220, 223, 224, 225,
228, 229, 230
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specific heat capacity - 239, 273,

274, 275, 281, 284, 285

Speed - 3, 5, 41, 69

Stefan’s law - 282
Stefan-Boltzmann law - 244
Strain - 183, 186, 197, 199
Stress - 183, 197, 199
supplementary units - 1, 4, 15
Surface tension - 9, 11, 211, 212,

213, 214, 219, 221, 222, 224,
225, 229, 230 ¢

R

Radiation - 78, 241, 243, 244, 282
radius of gyration - 160, 180
refrigerator - 265

resultant vector - 21, 36
Reynold’s number - 209, 229
root-mean-square speed - 252

Thermal - 232, 237, 238, 285
Thermal conductivity - 16, 241, 272,

282

Thermal stress - 238, 281
Thermodynamic - 232, 233, 236,

256, 257, 280

thermodynamic cycle - 260
Thermometers - 232, 234, 236, 276,

277,278, 279, 280, 283

Torque - 14, 151, 152, 162, 163, 164,

165, 167, 179

S

scalar- 19, 35

Scalar product - 25

Sea breezes - 242

second law of thermodynamics -
233, 258, 283

Shear modulus - 185, 189, 194, 195

unit vector - 24, 36

Vector- 19, 35
vgctcr product - 25
Viscosity - 15, 202, 209, 215, 216,

218,219,221,222,223,225:
229, 230, 231

Viscous force - 15, 215, 218, 229



e ————

W

Work:3,5, 15 = B S
b T —

1“?,1 %~ _:_: ===

~
- .
"\\\\
S
-~ .
~ — ™ i
-
S—
—
—_— y
= 5 : )
— =
- 5
— T — -
e =
—




[Physics for University Beginners)
[Bibliography]

Bibliography

Bueche, F.J., & Hécht, E. (1997). Schaum's Ou!!mg of Theory and
Problems of College Physics. New York: McGraw-Hill.

Eywaraye, A. O., Mgbenu, EN., & Okeke, P.N. (2002).

Electromagnetism and Modern Physics. 1badan: Spectrum Books
Ltd.

Giancoli, D. C. (1984). Physics for Scientists and Engineers. New
Jersey: Pearson Education, Inc.

Maduemezia, A. and Chike-Obi, B. (1996). Mechanics and
Properties of Matter (A First Course). Lagos: Longman Nigeria Plc.

Meade, R. L. (1999). Foundations of Electronics Circuits and
Devices.New York: Delmar Publishers.

Nelkon, M., & Parker, P, (1995). Advanced Level Physics. New
Delhi, India: CBS Publishers & Distributors.

Young, H. D., & Freedman, R. A. (2006). Sears and Zemansky's
University Physics with Modern Physics New York: Pearson
Addison-Wesley.

293




About the Author |
Dr A. 0. Adewale is a M:

University of Ilorin with a
| Ionospheric Physics from the Universit
Lagos. He currently l-ctures at
Department of Physi Universlty.
Lagos. Heisascholar © : excellenceandis

happily married wii « "..idren.




