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REAL NUMBERS
At the very foundations of mathematics is the concept of a set or collection of objects

and, in particular, sets of numbers on which we base our quantitative work in science and
engineering. The student is already familiar with the following important sets of numbers.
1. Natural Numbers 1,2,3,4, ... or positive integers used in counting.
2. Integers 0, ±1, ±2, ±3, . . . . These numbers arose in order to provide meaning to

subtraction [inverse of addition] of any two natural numbers. Thus 2 — 6 = —4,
8-8 = 0, etc.

3. Rational Numbers such as 2/3, —10/7, etc. arose in order to provide meaning to division
[inverse of multiplication] or quotient of any two integers with the exception that
division by zero is not defined.

4. Irrational Numbers such as \/2, *, etc. are numbers which cannot be expressed as the
quotient of two integers.

Note that the set of natural numbers is a subset, i.e. a part, of the set of integers which in
turn is a subset of the set of rational numbers.

The set of numbers which are either rational or irrational is called the set of real
numbers [to distinguish them from imaginary or complex numbers on page 11] and is com-
posed of positive and negative numbers and zero. The real numbers can be represented as
points on a line as indicated in Fig. 1-1. For this reason we often use point and number
interchangeably.

The student is also familiar with the concept of inequality. Thus we say that the real
number a is greater than or less than b [symbolized by a > b or a <b] if a — b is a positive
or negative number respectively. For any real numbers a and b we must have a > b,
a = b or a < b.

RULES OF ALGEBRA
If a, b, c are any real numbers, the following rules of algebra hold.

1. a + b = b + a Commutative law for addition
2. a + (b + c) = (a + b) + c Associative law for addition
3. ab = ba Commutative law for multiplication
4. a(bc) — (ab)c Associative law for multiplication
5. a(b + c) — ab + ac Distributive law

Chapter 1

: Review of
Fundamental Concepts

Fig. 1-1

1



2 REVIEW OF FUNDAMENTAL CONCEPTS [CHAP. 1

It is from these rules [if we accept them as axioms or postulates] that we can prove the
usual rules of signs, as for example (-5)(3) = -15, (-2)(-3) = 6, etc.

The student is also familiar with the usual rules of exponents:

(Í)

FUNCTIONS
Another important concept is that of function. The student will recall that a function

/ is a rule which assigns to each object x, also called member or element, of a set A an
element y of a set B. To indicate this correspondence we write y = /(«) where f(x) is
called the value of the function at x.

Example 1. If /(») = a;2 - 3x + 2, then /(2) = 22- 3(2) + 2 = 0.

The student is also familiar with the process of "graphing functions" by obtaining
number pairs (a;, y) and considering these as points plotted on an xy coordinate system. In
general y = f(x) is represented graphically by a curve. Because y is usually determined
from x, we sometimes call x the independent variable and y the dependent variable.

SPECIAL TYPES OF FUNCTIONS
1. Polynomials f(x) = a<>xn + aix"'1 + azxn~2 + • • • +an. If a0^0, n is called the degree

of the polynomial. The polynomial equation f(x) = 0 has exactly n roots provided we
count repetitions. For example a;3 - 3a;2 + 3a; -1 = 0 can be written (x - I)3 = 0 so
that the 3 roots are 1,1,1. Note that here we have used the binomial theorem

where the binomial coefficients are given by

and where factorial n, i.e. nl, = n(n— !)(•» — 2) • • • 1 while 0! = 1 by definition.

2. Exponential Functions f(x) = ax. These functions obey the rules (1).
An important special case occurs where a = e = 2.7182818

3. Logarithmic Functions f(x) — loga x. These functions are inverses of the exponential
functions, i.e. if ax = y then x = logay where a is called the base of the logarithm.
Interchanging x and y gives y = logo x. If a = e, which is often called the natural
base of logarithms, we denote log«a; by mo:, called the natural logarithm of x. The
fundamental rules satisfied by natural logarithms [or logarithms to any base] are

(*)

4. Trigonometric Functions sin», cosa;, tana;, cotx, seca;, ese a;.
Some fundamental relationships among these functions are as follows.
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(6) sin2 x + cos2 x — 1, sec2 x — tan2 x — 1, esc2 x — cot2 x = 1
(c) sin (—a;) = — sin x, cos (—x) = cos x, tan (—a;) = — tan x
(d) sin (x ± y) = sin x cos y ± cos x sin y, cos (a; ± #) = cos x cos 2/ T sin a; sin #

(e) A cos a; + B sin a; = where tan a = A/B
The trigonometric functions are periodic. For example sin* and cosa;, shown in

Fig. 1-2 and 1-3 respectively, have period 2ir.

Fig. 1-2 Fig. 1-3

5. Inverse Trigonometric Functions sin"1 a;, cos"1 a;, tan"1 a;, cot"1 a;, sec"1 a;, csc^a;.
These are inverses of the trigonometric functions. For example if sin x = y then
x = sin"1 y, or on interchanging x and y, y = sin"1 x.

6. Hyperbolic Functions. These are defined in terms of exponential functions as follows.

Some fundamental identities analogous to those for trigonometric functions are
(Z>) cosh2 x — sinh2 x = I, sech2a; + tanh2a; = 1, coth2 x — csch2 x = 1
(c) sinh (a; ± y) = sinh x cosh y ± cosh x sinh y

cosh (a; ± y) = cosh x cosh y ± sinh x sinh y

tanh(x±y) —

The inverse hyperbolic functions, given by sinh"1 a;, cosh"1 a;, etc. can be expressed
in terms of logarithms [see Problem 1.9, for example].

LIMITS

The function f(x) is said to have the limit I as x approaches a, abbreviated lim f(x) = I,
if given any number e > 0 we can find a number 8 > 0 such that |/(a;) — Z| < « whenever
0< |*-a| <8.

Note that \p\, i.e. the absolute value of p, is equal to p if p > 0, — p if p < 0 and 0 if
p = 0.

3



4 REVIEW OF FUNDAMENTAL CONCEPTS [CHAP. 1

If then we have the following theorems on limits.

CONTINUITY

The function f(x) is said to be continuous at a if lim f(x) = /(a).
z-»a

Example 3. f(x) = x2 — 4x + 8 is continuous at x = 1. However, if f(x) =

then f(x) is not continuous [or is discontinuous] at x = 2 and x = 2 is called a
discontinuity of /(a;).

If f(x) is continuous at each point of an interval such as Xi ^ x ^ x¡ or x\ < x ë a;2,
etc., it is said to be continuous in the interval.

If fi(x) and fa(x) are continuous in an interval then fi(x) ± /z(a;), fi(x)fz(x) and
f\(x)lfz(x) where /2(a;) ¥= 0 are also continuous in the interval.

DERIVATIVES

The derivative of y = /(a;) at a point a; is defined as

(5)

where provided the limit exists.
The differential of y = f(x) is defined by

dy = /'(a;) dx where da; = Aa; (6)

The process of finding derivatives is called differentiation. By taking derivatives of
y' = dy/dx — f'(x) we can find second, third and higher order derivatives, denoted by
y" = d?yldxz = f"(x), y'" = d3y/dx3 = f'"(x), etc.

Geometrically the derivative of a function f(x) at a point represents the slope of the
tangent line drawn to the curve y — f(x) at the point.

If a function has a derivative at a point, then it is continuous at the point. However,
the converse is not necessarily true.

DIFFERENTIATION FORMULAS

In the following u, v represent functions of x while a, c, p represent constants. We
assume of course that the derivatives of u and v exist, i.e. u and v are differentiable.
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In the special case where u = x, the above formulas are simplified since in such case
du/dx = 1.

INTEGRALS
If dy/dx = f(x), then we call y an indefinite integral or anti-derivative of f(x) and

denote it by
(7)

Since the derivative of a constant is zero, all indefinite integrals of f(x) can differ only by
a constant.

The definite integral of f(x) between x = a and x = b is defined as

(«)

provided this limit exists. Geometrically if f(x) =£ 0, this represents the area under the
curve y = f(x) bounded by the x axis and the ordinates at x — a and x = b. The integral
will exist if f(x) is continuous in a a x a b.

Definite and indefinite integrals are related by the following theorem.

Theorem 1-1 [Fundamental Theorem of Calculus]. If f(x) = -p g(x), then

The process of finding integrals is called integration.

INTEGRATION FORMULAS
In the following u,v represent functions of x while a,b,c,p represent constants. In

all cases we omit the constant of integration, which nevertheless is implied.

3. or

This is called integration by parts.

Example 4.

1 2



REVIEW OF FUNDAMENTAL CONCEPTS [CHAP. 1

SEQUENCES AND SERIES
A sequence, indicated by u\, u2, ... or briefly by (un), is a function defined on the set of

natural numbers. The sequence is said to have the limit I or to converge to I, if given any
« > 0 there exists a number N > 0 such that for all n > N, and in such case
we write lim un = I. If the sequence does not converge we say that it diverges.

n-* «

Consider the sequence u\, Ui + u2, Ui + u2 + us, ... or Si, Si, Sa, ... where Sn =
Ui + uz + • • • +Un. We call <Sn) the sequence of partial sums of the sequence (un). The
symbol

Ui + uz + us + • • • or or briefly (9)

is defined as synonymous with (Sn) and is called an infinite series. This series will converge
or diverge according as (Sn) converges or diverges. If it converges to S we call S the sum
of the series.

The following are some important theorems concerning infinite series.

Theorem 1-2. The series converges if p > 1 and diverges if pal .

Theorem 1-3. If converges and then converges.
Theorem 1-4. If converges, then converges.
In such case we say that 2wn converges absolutely or is absolutely convergent. A property
of such series is that the terms can be rearranged without affecting the sum.
Theorem 1-5. If diverges a n d t h e n 2vn diverges.

6

4. where w = u(x) and w' = dw/dx expressed as a
function of w. This is called integration by substitution or transformation.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14

15

16

17

18

19

20

21

22
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Theorem 1-6. The series w h e r e c o n v e r g e s or diverges according as
exists or does not exist.

This theorem is often called the integral test.

Theorem 1-7. The series diverges if However, if the
series may or may not converge [see Problem 1.31].

Theorem 1-8. Suppose that Then the series 2un converges (absolutely)
if r < 1 and diverges if r > 1. If r = 1, no conclusion can be drawn.

This theorem is often referred to as the ratio test.

The above ideas can be extended to the case where the un are functions of x denoted
by Un(x). In such case the sequences or series will converge or diverge according to the
particular values of x. The set of values of x for which a sequence or series converges is
called the region of convergence, denoted by ̂ .

Example 5. The series 1 + x + xz + x3 + • • • has a region of convergence 'K. [in this case an
interval] given by — 1 < * < 1 if we restrict ourselves to real values of x.

UNIFORM CONVERGENCE

We can say that the series ui(x) + Uz(x) + • • • converges to the sum S(x) in a region "3̂
if given e > 0 there exists a number N, which in general depends on both « and x, such
that |S(a;) — Sn(x}\ < f whenever n>N where Sn(x) = Ui(x)+ • • • + Um(x). If we can find
N depending only on e and not on x, we say that the series converges uniformly to S(x) in
% Uniformly convergent series have many important advantages as indicated in the
following theorems.

Theorem 1-9. If Un(x), n = 1,2,3, ... are continuous in a ë x à & and 2un(x) is uni-
formly convergent to S(x) in a a x a b, then S(x) is continuous in
a = x = 6.

Theorem 1-10. If ~S.Un(x) converges uniformly to S(x) in a ë x a b and un(x), n = 1,2,3, ...
are integrable in a ë x ë b, then

Theorem 1-11. If Un(x], n — 1,2,3,... are continuous and have continuous derivatives in
a ë x ë b and if ~S,un(x) converges to S(x) while 2ui(x) is uniformly con-
vergent in a a x ë b, then

An important test for uniform convergence, often called the Weierstrass M test, is
given by the following.

Theorem 1-12. If there is a set of positive constants Mn, n=l,2,3, ... such that
in "K and converges, then is uniformly convergent

[and also absolutely convergent] in <^.
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TAYLOR SERIES
The Taylor series for f(x) about x = a is defined as

(10)

where *o between a and x (11)

is called the remainder and where it is supposed that f(x) has derivatives of order n at
least. The case where n = 1 is often called the law of the mean or mean-value theorem
and can be written as

xo between a and x (12)

The infinite series corresponding to (10), also called the formal Taylor series for f(x),
will converge in some interval if limí¿n = 0 in this interval. Some important Taylor

n»+°o
series together with their intervals of convergence are as follows.

1.

2.

3.

4.

5.

A series of the form is often called a power series. Such power series are
uniformly convergent in any interval which lies entirely within the interval of convergence
[see Problem 1.120],

FUNCTIONS OF TWO OR MORE VARIABLES

The concept of function of one variable given on page 2 can be extended to functions of
two or more variables. Thus for example z = f(x, y) defines a function / which assigns
to the number pair (a;, y) the number z.

Example 6. If f(x, y) - x2 + Sxy + 2y*, then /(-1,2) = (-1)2 + 3(-l)(2) + 2(2)2 = 3.

The student is familiar with graphing 2 = f(x, y) in a 3-dimensional xyz coordinate
system to obtain a surface. We sometimes call x and y independent variables and z a
dependent variable. Occasionally we write z = z(x, y) rather than z — f(x, y), using the
symbol z in two different senses. However, no confusion should result.

The ideas of limits and continuity for functions of two or more variables pattern closely
those for one variable.

PARTIAL DERIVATIVES

The partial derivatives of f(x, y) with respect to x and y are defined by

(13)
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if these limits exist. We often write Note that df/dx is simply the ordinary
derivative of / with respect to x keeping y constant, while df/dy is the ordinary derivative of
/ with respect to y keeping x constant. Thus the usual differentiation formulas on pages
4 and 5 apply.

Example 7. If f(x, y) = 3x2 - 4xy + 2j/2 then

Higher derivatives are defined similarly. For example, we have the second order
derivatives

(U)

The derivatives in (13) are sometimes denoted by fx and fy. In such case fx(a,b), fv(a,b)
denote these partial derivatives evaluated at (a, b). Similarly the derivatives in (14) are
denoted by fxx, fxv, fyx, fm respectively. The second and third results in (14) will be the same
if / has continuous partial derivatives of second order at least.

The differential of f(x, y) is defined as
(15)

where
Generalizations of these results are easily made.

TAYLOR SERIES FOR FUNCTIONS OF TWO OR MORE VARIABLES

The ideas involved in Taylor series for functions of one variable can be generalized.
For example, the Taylor series for f(x, y) about x = a, y — b can be written

(16)

LINEAR EQUATIONS AND DETERMINANTS

Consider the system of linear equations

(17)

These represent two lines in the xy plane, and in general will meet in a point whose coor-
dinates (x,y) are found by solving (17) simultaneously. We find

(18)

It is convenient to write these in determinant form as

(19)

where we define a determinant of the second order or order 2 to be

(20)

9



10 REVIEW OF FUNDAMENTAL CONCEPTS [CHAP. 1

Note that the denominator for x and y in (19) is the determinant consisting of the coefficients
of * and y in (17). The numerator for x is found by replacing the first column of the
denominator by the constants c\, cz on the right side of (17). Similarly the numerator for
y is found by replacing the second column of the denominator by ci, c2. This procedure is
often called Cramer's rule. In case the denominator in (19) is zero, the two lines represented
by (17) do not meet in one point but are either coincident or parallel.

The ideas are easily extended. Thus consider the equations

(21)

representing 3 planes. If they intersect in a point, the coordinates (x, y, z) of this point are
found from Cramer's rule to be

(22)

where we define the determinant of order 3 by

= 01&2C3 + &iC2a3 + CiO2&3 — (biases + aiC2&3 + Ci62as) (23)

The result (23) can be remembered by using the scheme of repeating the first two columns
as follows

(24)

and taking the sums of the products of terms as indicated by the arrows marked + and —.

The determinant can also be evaluated in terms of second order determinants as follows

(**)

where it is noted that a\, b\, c\ are the elements in the first row and the corresponding second
order determinants are those obtained from the given third order determinant by removing
the row and column in which the element appears.

The general theory of determinants, of which the above results are special cases, is
considered in Chapter 15.
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MAXIMA AND MINIMA
If for all x such that \x - a\ < 8 we have f(x) S /(a) [or f(x) g /(a)], we say that /(a)

is a relative maximum [or relative minimum]. For f(x) to have a relative maximum or
minimum at x = a, we must have /'(a) = 0. Then if /"(a) < 0 it is a relative maximum
while if /"(a) > 0 it is a relative minimum. Note that possible points at which f(x) has
a relative maxima or minima are obtained by solving f'(x) = 0, i.e. by finding the values
of x where the slope of the graph of f(x) is equal to zero.

Similarly f(x,y) has a relative maximum or minimum at x = a, y = b if fx(a, b) = 0,
fv(a,b) = 0. Thus possible points at which f(x,y) has relative maxima or minima are
obtained by solving simultaneously the equations

(26)

Extensions to functions of more than two variables are similar.

METHOD OF LAGRANGE MULTIPLIERS
Sometimes we wish to find the relative maxima or minima of f(x, y) = 0 subject to

some constraint condition </>(«, y) = 0. To do this we form the function h(x, y) = f(x, y) +
\4>(x, handset

\*i)

The constant A. is called a Lagrange multiplier and the method is called the method of
Lagrange multipliers. Generalizations can be made [see Problems 1.54 and 1.150].

LEIBNITZ'S RULE FOR DIFFERENTIATING AN INTEGRAL

Let (28)

where / is supposed continuous and differentiable. Then Leibnitz's rule states that if a and
b are differentiable functions of a,

(29)

MULTIPLE INTEGRALS
A generalization of the integral for functions of one variable leads to the idea of

multiple integrals for functions of two or more variables. Because several ideas involved
in the theory may be new to some students, we postpone consideration of this topic to
Chapter 6.

COMPLEX NUMBERS
Complex numbers arose in order to solve polynomial equations such as x2 +1 = 0 or

x2 + x +1 = 0 which are not satisfied by real numbers. We assume that a complex number
has the form a + bi where a, b are real numbers and i, called the imaginary unit, has the
property that i2 = — 1. We define operations with complex numbers as follows.
1. Addition. (a + bi) + (c + di) = (a + c) + (b + d)i

2. Subtraction. (a + bi) — (c + di) = (a — c) + (b — d)i

3. Multiplication. (a + bi)(c + di) = ac + adi + bci + bd& = (ac - bd) + (ad + bc)i

4. Division.
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Note that we have used the ordinary rules of algebra except that we replace i2 by —1
wherever it occurs. The commutative, associative and distributive laws of page 1 also
apply to complex numbers. We call a and b of a + bi the real and imaginary parts respec-
tively. Two complex numbers are equal if and only if their real and imaginary parts are
respectively equal.

A complex number z = x + iy can be considered as a
point P with coordinates (x,y) on a rectangular xy plane
called in this case the complex plane or Argand diagram
[Fig. 1-4]. If we construct the line from origin 0 to P and
let p be the distance OP and <f> the angle made by OP with
the positive x axis, we have from Fig. 1-4

(30)

and can write the complex number in so-called polar form as Fig. 1-4
(31)

We often call p the modulus or absolute value of z and denote it by \z\. The angle is
called the amplitude or argument of z abbreviated argz. We can also write
where z = x — iy is called the conjugate of z = x + iy.

If we write two complex numbers in polar form as
(32)

(34)

Also if n is any real number, we have
(35)

which is often called De Moivre's theorem. We can use this to determine roots of complex
numbers. For example if « is a positive integer,

k = Q, 1, 2, ...,n-l (36)

Using the series for ex, sin x, cos x on page 8, we are led to define
(37)

which are called Euler's formulas and which enable us to rewrite equations (31)-(36) in
terms of exponentials.

Many of the ideas presented in this chapter involving real numbers can be extended
to complex numbers. These ideas are developed in Chapter 13.

T H E N (33)
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Solved Problems

REAL NUMBERS AND LAWS OF ALGEBRA

1.1. Prove that is an irrational number.
Assume the contrary, i.e. suppose that where p and q are positive integers having

no common integer factor other than 1 [in such case we say that p/q is a fraction in lowest terms}.
Squaring, 2 = p2/q2 or p2 = 2g2. Then p2 is even and so p must also be even. Thus p = 2m
where m is a positive integer. Substituting into p2 = 2<?2 we find so that q2 is even and
thus q is even, i.e. q = 2n where n is a positive integer. Since p and q are both even they have
2 as a common factor, violating our assumption that thev have no common integer factor other than
1. This contradiction shows that the assumption that is rational is incorrect and proves that

is irrational.

1.2. Which is larger
Assume Then raising each side to the 6th power we have 23 a 32 which is wrong.

It follows that

1.3. Assuming that the real numbers a, b, c satisfy the rules of algebra on page 1, prove
that (6 + c)a = ba + ca.

From rule 5 on page 1 we have a(b + c) = ab + ac. But by rule 3 it follows that a(b + c) —
(b + c)a, ab — ba, ac = ca. Thus (6 + c)a = ba + ca.

FUNCTIONS
1.4. If f(x) = 2x3 - 3x + 5 find (a) /(-I), (b) f(0), (c) f(x + h).

(a) /(-I) = 2(-l)3 - 3(-l) + 5 = 2(-l) + 3 + 5 = 6
(6) /(O) = 2(0)8 _ 3(0) + 5 = 0 + 0 + 5 = 5

(c) f(x + h) - 2(x + h)3 - 3(œ + h) + 5 = 2(x3 + 3x2h + Sxh2 + h3) - 3x - 3h + 5
= 2a;« + 6x2h + 6xh2 + 2h3 - 3x - 3h + 5

1.5. Using the rules of exponents (1) on page 2, prove the rules of logarithms (4) on
page 2.

By definition, if ex — m then x = In m. Similarly if ev = n then y — In n.

Since ex'e" = ex+y we have mn — ex+v or * + y = In (mri), i.e. In (mn) — In m + In n.

Since e*/e» = e*-" we have m/n — ex~y or * — y — In (m/n), i.e. In (m/n) = In m — In n.

Since (ex)v = exp we have m" = e*? or xp = In mv, i.e. In m? — p In m.

1.6. Prove that
Since cos (* + y) — cos * cos y — sin x sin y we have on letting y — x,

cos2« — sin2» = cos 2* (Í)

Also we have cos2» + sin2* = 1 ia\
V*'/

From (J) and (2) the required results follow by subtraction and addition respectively.
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1.7. Prove that where
We have

(1)

Letting

[see Fig. 1-5], (1) becomes

as required. Fig. 1-5

1.8. Prove that (a) cosh2 x - sinh2 x = 1, (6) sech2 x + tanh2 x = 1.
(a) By definition,

(6) Dividing both sides of the result in (a) by cosh2 x, we have

Since sinh «/cosh x — tanh x, 1/cosh x = sech x. From this we obtain

1.9. Prove that
By definition, if then x — cosh Thus or

e2» —2»e» + 1 = 0. Solving this as a quadratic equation in'e», we find

or Since

In )

the required result follows. Note that we must have » S 1 if y = cosh"1 x is to be real.

LIMITS AND CONTINUITY

1.10. If prove that

(a) We must show that given any we can find [depending on « in general] such that
when

Choose so that Then

where we have used the result that
Take S as 1 or e/5, whichever is smaller. Then we have whenever

and the required result is proved.

(6) There is no difference between the proof for this case and the proof in (a) since in both cases
we exclude * = 2.
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1.11. Prove that if and then
We must show that for any e > 0 we can find 8 > 0 such that

when
We have

U)

Now by hypothesis, given we can find and such that
(2)
(Í)

Then from (1), (2) and (S) we have
when

where 8 is chosen as the smaller of Sj and S2.
In a similar manner we can prove other theorems on limits such as

if See ProblenTl.75.

1.12. Prove that (a ) f(x) = x2 i s continuous a t x = 2 while
continuous at x = 2.
(a) Method 1.

By Problem 1.10(a), and so f(x) is continuous at x = 2.

Method 2.
We must show that given any we can find [depending on e in general] such

that when The proof patterns that given in
Problem 1.10.

(6) Since /(2) = 0 we h a v e s o that /(*) is not continuous [or is discontinuous]
at x = 2. We can also give a proof involving e, 8 methods by showing that given any
w e cannot f i n d such t h a t w h e n

DERIVATIVES

1.13. Prove that if u and v are differentiate functions of x, then

(a) (6)

(a) Write Denote u(x), v(x) briefly by u, v respectively.
Then by definition, if we have

(b)

since

IS NOT
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1.14. Prove that if f(x) has a derivative at the point a, then f(x) is continuous at a.

We have Then if the derivative exists,

Thus and the required result follows.

1.15. Prove that if p is any positive integer and u is a differentiate function of x, then

By definition

The result can also be shown to hold for all values of p.

1.16.Assuming that prove that (b)

(<0

(a)

where we have used the result of Problem 1.6(a).

( 6 ) From part ( a ) w e h
we find

THEN LETTING SO THAT

(C) By differentation formula 4, page 4, we have
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1.17. Prove that

Thus

1.18. Given that prove that

Then by Problem 1.16(c),then

We have assumed here that

which can be demonstrated by showing that In u is continuous.

Thus by part (a),then

1.19. Find

Consider y as a function of x and differentiate both sides with respect to x. Then

or

i.e.

and

If find
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1.21. Show that if then
We have

Then

1.22. Find the differentials of

INTEGRALS
1.23. Prove that

where constants of integration are omitted.

1.24. Find

(a) Let

(b) Let

(c) Let

so that

so that

so that

Then

Then

Then

then by definition

and so F = G + H apart from a constant
of integration and the required result follows.

(c) If

(a) Since

(6) Since

(d)

(a)

(&)
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1.25. (a) Prove the formula for integration by parts, and (6) use the formula to find

(a) Since

so that

(6) Let u = x, dv = sin2xdx. Then du = dx, v = -lcos2x. Thus applying integration by
parts,

1.26. Evaluate (a)

(a) Let u = x2 + 1 so that du = 2x dx. Then

Thus

(6) Let u = 3x so that du = 3 dx. Then

Thus

In practice when evaluating definite integrals, we omit the constant of integration c since
it does not enter anyway.

1.27. Find the area under the curve y = sin x between x = 0 and x = » [see Fie 1-2
page 

Area =

1.28. (a) By using definition (8) page 5 for
the definite integral, obtain an ap-
proximate value for and
give a geometric interpretation.

(6) Show how the result in (a) can be
improved.

(a) Let o = l, 6 = 2 and divide the inter-
val from a to 6 of length b — a — 1 into
10 equal parts so that n = 10, h =

[see Fig. 1-6]. We
have approximatel Fig.1-6
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The correct value is In a = .6932. Note that each term of the approximating sum repres-6-6ents
one of the 10 rectangular shaped areas shaded in Fig. 1-6.

(6) The result obtained in (a) overestimates the true value since the upper edge of each rectangle
lies above the curve y = í/x. To obtain an underestimate we use the lower rectangles. In
this way we find approximately

As a better estimate of the integral we take the arithmetic mean of the overestimate and the
underestimate, i.e. £(.7188 + .6688) = .6938 which compares very well with the correct value
.6932. Since the arithmetic mean of the areas of any upper rectangle and corresponding
lower rectangle is the area of a trapezoid, this method of averaging is often called the
trapezoidal rule.

SEQUENCES AND SERIES

1.29. (a) Find the limit of the sequence .3, .33, .333, ... and (6) justify your conclusions,
(a) The nth term of the sequence can be written

Now if

then

so that by subtracting we have

Thus the nth term is

(6) To give a proof that 1/3 is in fact the required limit we must show that given e > 0 we can
find N [depending on e] such that \un — £| < e for n > N. Now

when

Thus we have found the required N and the statement that the limit is 1/3 is proved.

1.30. Show that the series 1-1 + 1-1 + 1-1+ ••• does not converge.
The sequence of partial sums is 1, 1 - 1, 1 — 1 + 1, 1 — 1 + 1 — 1, ... or 1, 0, 1, 0, .... Since

this sequence does not converge, the given series does not converge.

1.31. Use the integral test, page 7, to show t h a t ( a ) converges if p > 1 and
(&) diverges if pa l .
(a) Using f(ri) = 1/n* we have f(x) - 1/x" so that if p •£ 1,

Now if p > 1 this limit exists and the corresponding series converges.
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(6) If p < 1 the limit does not exist and the series diverges. If p = 1 then

which does not exist and so the corresponding series for p = 1 diverges.
This shows that diverges even though the nth term approaches zero.

[See Theorem 1-7, page 7.]

1.32. Investigate the convergence of

The series of absolute values is and converges by Problem 1.31
since p = 2. Thus the series converges absolutely and so converges by Theorem 1-4, page 6.

1.33. Prove that the series converges for
xn

The «th term of the series is un = (—l)""1-^. Now

Then by Theorem 1-8, page 7, the series converges if \x\ < 1, i.e. — ! < * < ! and diverges for
|*| > 1. For |*| = 1, i.e. x = ±1, no conclusion can be drawn. However, for x = 1 and —1 the
series becomes

which are absolutely convergent and thus convergent. It follows that the series converges for
-1 S * S 1.

UNIFORM CONVERGENCE

1.34. Investigate the uniform convergence of

for -1 ë a; ë 1.
Method 1. Let =

If * = 0, then — 0.

[see Problem 1.110(a)].

Then

Since each term of the series is continuous while the sum function S(x) is discontinuous at x = 0,
it follows by Theorem 1-9, page 7, that the series cannot be uniformly convergent in —1 S x £ 1.

Method 2. We have from the results of Method 1,

Then However, since we
cannot find an N which holds for all a; in -1 g * a 1 [consider x - 0 for example], it follows
that the series cannot be uniformly convergent in —1 S a; S 1.

if then using the fact that the series is a geometric srries
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1.35. Prove Theorem 1-9, page 7.
We must show that S(x) is continuous in a ë x S b.
Now S(x) = Sn(x) + Rn(x), so that S(* + h) = Sn(x + h) + Rn(x + h) and thus

S(x + h)- S(x) = Sn(x + h)- Sn(x) + Rn(x + h)- Rn(x) (1)

where we choose h so that both x and x + h lie in a a * S b [if * = b, for example, this will
require h < 0].

Since Sn(x) is a sum of a finite number of continuous functions, it must also be continuous.
Then given « > 0, we can find 8 so that

whenever (2)

Since the series, by hypothesis, is uniformly convergent, we can choose N so that
(S)

Then from (1), (2) and (5),
|S(* + /i)-S(aO| S \Sn(x + h) -Sn(x)\ + \Rn(x + h)\ + \Rn(x)\ < e

for \h\ < S, and so the continuity is established.

1.36. Prove Theorem 1-10, page 7.
If a function is continuous in a S x S b, its integral exists. Then since S(x), Sn(x) and Rn(x)

are continuous,

To prove the theorem we must show that

can be made arbitrarily small by choosing n large enough. This, however, follows at once, since by
the uniform convergence of the series we can make |iZn(*)| < t/(b — a) for n > N independent of
x in [a, b], and so

This is equivalent to the statements

1.37. Prove the Weierstrass M test [Theorem 1-12, page 7].
Since 2MB converges, we have

Then

Since N is independent of x, the series must be uniformly convergent.

1.38. Prove thai is uniformly convergent for

We have Since converges, it follows by the Weierstrass M test that the

given series is uniformly convergent for [and in fact any finite interval].
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TAYLOR SERIES
1.39. Obtain the formal Taylor series for sin x about x = 0.

Let /(*) = sin «. Then

Thus from

so that

with o = 0, we have

1.40. Use series methods to obtain the approximate value of
From the expansion for ex on page 8 we have on replacing

Then

Since this series is uniformly convergent for 0 = x = I [as can be proved by using Problem
1.120], we can integrate term by term to obtain

FUNCTIONS OF TWO OR MORE VARIABLES AND PARTIAL DERIVATIVES

Note that the results in (e) and (/) illustrate the fact that fxv = fyx since in this case / is
continuous and has continuous partial derivatives up to and including the second order.

1.41. If
(e)

(a)

(6)

(c)

(d)

W

(/)

(g)

Then

Then

Then

Then

Then

Then

find

approx.
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1.42. If f(x,y) = sin(x2 + 2y), find (a) /*, (6) /„, (c) /**, (d) /„, (e) /„*, (/)/«„.

(a)

(6)

(c)

(d)

(e)

(/)

Note that in (d) and (e).

1.43. If f(x,y) = Zx* + ±xy-2y2, find df.

Method 1.

Method 2.

1.44. If 2 = f(ylx), show that
Method 1.

Let u — y/x so that

Then

Method 2.

Then since

and the result follows as in Method 1.

it follows on equating coefficients of dx and dy that



CHAP. 1] REVIEW OF FUNDAMENTAL CONCEPTS 25

1.45. If dz = M(x, y) dx + N(x, y) dy, prove that dM/dy = dN/dx where M and N are
assumed to have continuous partial derivatives.

Since w e must h a v e s i n c e
x and y are independent variables.

Then since [if these derivatives are continuous], we have

or

Similarly we can prove that if dM/dy - SNIdx then Max + Ndy can be written as the differ-
ential of z, i.e. dz, often called an exact differential.

1.46. If z = z(u, v) where u = u(x, y), v = v(x, y), prove that (a)

(b)

From z = z(u, v), u = u(x, y), v = v(x, y) we have

(S)

Then using (2) and (3) in (1) we find on combining terms,

(*)

But considering that « is a function of x and y since u,v are functions of x and y, we must have
(5)

Equating corresponding coefficients of dx and dy in (4) and (5) yields the required results.

TAYLOR SERIES FOR FUNCTIONS OF TWO OR MORE VARIABLES
1.47. Verify the result (16) page 9 for the function of Problem 1.41.

From Problem 1.41 we have /(2,-3) = -30, /s(2,-8) = 0, /v(2,-3) = 20, fxx(2, -3) = 6,
fxy(2,— 3) = fyx(2, — 3) = 4, /w(2, — 3) = —4. Also the higher derivatives are all zero. Then from
(18), page 9. we should have

I
Now the right side can be written
-30 + 20y + 60 + 3(*2 - 4* + 4) + 4(xy - 2y + Sx - 6) - 2(j/2 + By + 9) = 3»2 + 4*y - 2j/2

and the result is verified in this special case.

LINEAR EQUATIONS AND DETERMINANTS
1.48. Verify that the solutions of (17), page 9, are given by (18).

We have (1) a^x + bty = clt (2) atfc + b& = C2

Multiply (1) by 62 to obtain
Multiply (2) by 6j to obtain
Then by subtraction, («162 — 61o2)w = cfo — 6tc2 which gives the required result for *. Sim-

ilarly on multiplying (1) by a^, (2) by t^ and subtracting we obtain the result for y.

1.49. Solve using determinants.

By Cramer's rule we have

A check is supplied by substituting these results in the given equations.
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1.50. Solve for z.

By Cramer's rule we have

1.51. (a) For what value of fc will the system of equations

have solutions other than the trivial one x = O, y = 0. (&) Find two non-trivial
solutions.
(a) By Cramer's rule the solution will be

Now since the numerators are equal to zero, these can be non-trivial [i.e. nonzero] solutions
only if the denominator is also equal to zero, i.e.

>

(6) If k = 2 the equations become — x + y = 0, 2x — 2y = 0 and are identical, i.e. x = y. Then
solutions are x — 2, y = 2, x = 3, y — S for example. Actually there are infinitely many
such non-trivial solutions.

MAXIMA AND MINIMA. METHOD OF LAGRANGE MULTIPLIERS

1.52. Find the relative maxima and minima of f(x) = x* - Sx3 + 22a;2 - 24a; + 20.
The relative maxima and minima occur where

f ( x ) = 4a;3 - 24a;2 + 44a; - 24 = 0 or (x - l)(x - 2)(x - 3) = 0, i.e. x = 1,2,3

Then since f"(x) = 12a;2 - 48a; + 44, we have /"(I) = 8 > 0, /"(2) = -4 < 0, /"(3) = 8 > 0. Thus
a relative minimum of 11 occurs at x = 1, a relative maximum of 12 occurs at x = 2 and a
relative minimum of 11 occurs at x = 3.

1.53. Determine the dimensions of the largest rec-
tangular parallelepiped which can be inscribed
in a hemisphere of radius a [Fig. 1-7]. 

The volume .of the parallelepiped is 
V = (2x)(2y)(z) = 4*2/Z 

and the equation of the surface of the hemisphere is 
x2 + y2 + 22 = a2 or- 

The volume is a maximum where V2 — U =
X2y2z2 = xW(a? - x2 - j/2) is a maximum. To find
this we solve simultaneously the equations Fig. 1-7
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Since x ¥* O, y ¥= 0, these give
2*2 + y2 = <&, x2 + 2j/2 = a?

from which

Then the required volume is

1.54. (a) Prove the method of Lagrange multipliers for the case where the function
f(x,y) is to be made a maximum or minimum [or extremum] subject to the con-
straint condition <f>(x, y) = 0.

(6) Show how to generalize the result of (a) to the case where the function to be made
an extremum is f(x, y, z) and the constraint condition is $(x, y, z) = 0.

(c) Illustrate the method of Lagrange multipliers by working Problem 1.53.
(a) Assume that </>(x, y) = 0 defines y as a unique function of x, i.e. y = g(«), having a continuous

derivative g'(x). Then we must find the maximum or minimum [extremum] of
f(x,y) = f(x,g(x))

But as in elementary calculus this can be found by setting the derivative with respect to x
equal to zero, i.e.

or (J)

Also from we have the identity <j>(x, g(x)) = 0 so that

or (2)

Eliminating between (1) and (2) we find

(*)

assuming Now if we define or

W

(3) becomes (5)

But (4) and (5) are obtained by considering h(x, y) = f ( x , y) + \<f>(x, y) and setting

(«)
so that the method is proved. We call \ the Lagrange multiplier.

(b) In this case we assume that can be solved to yield I so that

But the extremum of this function of x and y can be found by setting the partial derivatives
with respect to x and y equal to zero, i.e.

o r

or (8)

Also the constraint condition yields the identity <f>(x, y, g(x, y)) = 0 so that by differentiation
with respect to x and y we have

o r

or (io)

( 7 )

( 9 )
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Eliminating gx and gy among the equations (7), (8), (9), (10) we find, assuming <f>z ¥* 0,

(11)

Then c a l l i n g o r
(12)

equations (11) yield
f

But (i#) and (i#) can be obtained by letting h(x, y, z) = f ( x , y, z) + \<j>(x, y, z) and setting the
derivative with respect to x,y,z equal to zero so that the required result is proved.

(c) We must find the maximum of 4xyz subject to the constraint condition x2 + y2 + z2 — o2 = 0.
To do this we form the function

h(x,y,z) = 4*2/2 + \(xz + y2 + z2 - a2) (14)

and set the partial derivatives of h with respect to x, y, z equal to zero. Thus we obtain

(IS)

Multiplying these by x, y, z respectively and adding, we find

I2xyz + 2\(x2 + y2 + z2) = Í2xyz + 2Xa2 = 0

or X = —6xyz/a2. Then substituting this value of X in equations (15) and solving simultaneously
with x2 + y2 + z2 = a2, we find

x = y = z = a/v/S
as in Problem 1.53.

LEIBNITZ'S RULE

1.55. If

COMPLEX NUMBERS

1.56. Perform the indicated operations.
(a) (4 - 2i) + (-6 + 5i) = 4 - 2i - 6 + 5i = 4 - 6 + (-2 + 5)i = -2 + Si

(b) (-7 + Si) - (2 - 4i) = -7 + Si - 2 + 4i = -9 + 7i

(c) (3 - 2i)(l + 3f) = 3(1 + Si) - 2i(l + 3t) = 3 + 9i - 2i - 6i2 = 3 + 9i - 2i + 6 = 9 + 7i

(d)

(«)

(13)
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(/)

to)

1.57. If Zi and z2 are two complex numbers, prove that \ZiZz\ — \z\\ \zz\.
Let «! = *! + iyi, z% = xz + iy2. Then

1.58. Solve a;3-2x-4 = 0.
The possible rational roots are ±1, ±2, ±4. By trial we find x = 2 is a root. Then the given

equation can be written (x — 2)(*2 + 2x + 2) = 0. The solutions to the quadratic equation

For o = l, 6 = 2, e = 2 this gives x —

The set of solutions is 2, —1 + i, — 1 — i.

POLAR FORM OF COMPLEX NUMBERS

1.59. Express in polar form (a) 3 + Si, (b) -l + \fèi, (c) -1, (d) -2-2v/3i

Fig. 1-8

(a) Amplitude 0 = 45° = ;r/4 radians. Modulus p - Then

(6) A m p l i t u d e = 2ir/3 radians. Modulus Then

-1 + \/3i = 2(cos2)r/3 + i sin2îr/3) = 2 cis2jr/3 = 26^/3

( c ) A m p l i t u d e = v radians. M o d u l u s T h e n

—1 = l(cos IT + i sin JT) = eis 7T = e^

(d) Amplitude = 4r/3 radians. Modulus Then

1.60. Evaluate (a) (b)

(c) By Problem 1.59(6) and DeMoivre's theorem,
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(6)

Then

The results for k = 0,1,2 are

The results for k = 3,4, 5,6, 7, ... give repetitions
of these. These complex roots are represented geomet-
rically in the complex plane by points P1( P&P» on the
circle of Fig. 1-9. Fig. 1-9

1.61. Assuming that the series for ex on page 8 holds for complex values of x, arrive at
Euler's formula e™ = cos <£ + i sin <£.

If we have

Similarly we find e-i* = cos <f> — i sin $.

Supplementary Problems
REAL NUMBERS AND LAWS OF ALGEBRA

1.62. Prove that (a) v% (&) V3, (c) V2 + A/3 are irrational numbers.

1.63. Arrange in order of increasing value: 11/9, \fí, VÏÏ ^/5/^/Z fy(N.

1.64. Explain why (a) 1/0, (6) 0/0 cannot represent unique numbers.

1.65. Explain why we must define (a) (-5)(3) = -15, (6) (-2)(-3) = 6 if the rules of algebra on page 1
are to hold.

FUNCTIONS

1.66. If /(») = (8«« + 2<B-6)/(«-4), find (o)/(2), (6) /(-I), («) /(3/2), (d) f(-x), (e)/(\/2).

1.67. An odd function is one for which /(—a;) = — /(«) while an ei>ew function is one for which
/(—a;) = /(a;). Classify each of the following according as they are even or odd: (a) cos 2a;,
(6) sin 3ic, (c) tan x, (d) ex, (e) ex — e~x, (/) ex + e~x.

1.68. (a) Prove that eolnl) = &«. (6) Find e-2ta«.
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1.69. Prove that (a) sin 3* = 3 sin * - 4 sin3 x, (b) cos Sx - 4 cos3 x - 3 cos x.

1.70. Prove that (a) coth2 x - csch2 x = 1, (6) cosh2 x + sinh2 * = cosh 2x, (c)

1.71. If cos x = 8/17, find (a) sin 2», (6) cos 2a, (c) sin (a/2).

1.72. Find tanh (In 3).

LIMITS AND CONTINUITY
1.73. Find (a) (b) (c) and prove your conclusions.

1.74. If prove that

1.75. If and prove that

(a) (e)

(b) (d)

1.76. If f(x) = \x\/x, prove that lim f(x) does not exist.
z-»0

1.77. Using the definition prove that f(x) = 3 — x2 is continuous at (a) x = 1, (b) x = a.

1.78. If f(x) is continuous at a, prove that [/(œ)]2 is also continuous at a.

1.79. If f1(x) and fz(x) are continuous at a prove that (a) f1(x) + f2(x), (b) fi(x) —f2(x), (c) f1(x) f2(x),
(d) fi(x)/f2(x), fz(a)¥=0 are also continuous at a. Revise the statement if a is replaced by an
interval such as a = x = b or a < x < b.

1.80. If prove that f(x) is continuous (a) at x = 0, (6) in any interval.

1.81. Prove the statement at the end of Problem 1.12(6).

DERIVATIVES

1.82. Using the definition, find the derivatives of (a) f(x) = x2 - 2x + 5 and (6) f ( x ) = (x — l)/(x + 1).

1.83. Prove the differentiation formulas (a) 2, (b) 4 on page 4.

1.84. Assuming that prove the formulas (a) 12, (6) 13,
(c) 14 on page 5.

1.85. Prove formulas (a) 15, (b) 16, (c) 18, (d) 19, (e) 20 on page 5.

1.86. Find 

(/)

1.87. If e*» + y2 - cos x, find dy/dx.

1.88. If x — a(e — sin e), y = a(l — cos e), find dy/dx.

1.89. If y = (Sx + !)/(! - 2x), find d*y/dx2 at * = 2.

1.90. If y = (cj sin x + c2 cos x)/^fx, show that xy" + 2y' + xy = 0 where clt c2 are any constants.

1.91. Find d2y/dx2 for the function defined in Problem 1.88.

1.92. Find the equation of the tangent line to the curve xy2 + y — Sx — l at the point (1,1).

1.93. Find the differentials of (a) y = x2 In x + Sx, (b) y = (2x - l)/(x + 2).

1.94. (a) Show that if x > 0 and A« is numerically small compared with x, then is approximately
equal to (6) Use this result to find the approximate values o f a n d

•>

(c) By obtaining a similar result for V* + A*, find an approximate value for and
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1.95. Prove the law of the mean, page 8, and illustrate by an example.

INTEGRALS

1.96. Find the integrals (a) (b) (e)

(d) (e) (/) (g) (*)

1.97. Prove the integration formulas (a) 7, (b) 11, (c) 12, (d) 13, (e) 14 on page 6.

1.98. Find ( a

(e)

1.99. Evaluate (a) (b) (c)

1.100. Prove the integration formulas (a) 15, (6) 16, (c) 17, (d) 18, (e) 19, (/) 20, (g) 21, (h) 22 on
page 6.

1.101. Find

1.102. Find

(6) (d)

1.103. (a) Find the area bounded by y = 4x — x2 and the x axis.
(b) Find the area bounded by the curves y — x2 and y = x.

1.104. Using the trapezoidal rule, find the approximate value of by dividing the interval from

0 to 1 into (a) 5, (b) 10 equal parts, (c) Show that the integral has the exact value ir/4 and compare
with the approximate values.

1.105. Prove the trapezoidal rule which gives the approximate value of

where h = (b — a)/n.

1.106. Assume that a function f(x) is approximated by the
parabolic function c0 + Cj» + c2x

2 in the interval
a S x S a + 2h [see Fig. 1-10]. Show that we have
approximately

The result is often called Simpson's rule.

1.107. (a) Show how Simpson's rule [Problem 1.106] can be

used to find the approximate value of

and (6) use the result to find the approximate values
of the integrals in Problems 1.28 and 1.104. Compare
the accuracy of the results with those of the
trapezoidal rule. Fig. I.JQ

(b) (c) (d)

(a)

(b)

(c)

(d)

(e)

(a) (c) (e)
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SEQUENCES AND SERIES
1.108. Find the limit of the sequence whose nth term is un = (n- l)/(2w +1), justifying your answer.

1.109. Show that the series converges and find its sum.

1.110. Prove that and (6) if then

1.111. Show that .181818 ... = .18 + .0018 + .000018 + • • • = 2/11.

1.112. Investigate t h e convergence o f t h e serie

(e)

1.113. Prove that the series converges for

1.114. Prove (a) Theorem 1-3, (6) Theorem 1-4, (c) Theorem 1-5, page 6.

1.115. (a) Consider the series wt — u2 + u3 — M4 + • • • where uk > 0. Prove that if un+l£un and
then the series converges. (6) Thus show that is convergent

but not absolutely convergent.

1.116. Find the interval of convergence of (a) (b)

1.117. Find the interval of convergence of (a) (6)

UNIFORM CONVERGENCE
1.118. Prove that the series *(1 — x) + x2(l — x) + xs(l — x) + • • • converges for — 1 < x a 1 but is not

uniformly convergent in this interval. Is it uniformly convergent in —1/2 S x ë 1/2? Explain.

1.119. Investigate the uniform convergence of the series (a) in (6) for

1.120. Prove that a power series c0 + c^x — a) + c2(x — a)2 + • • • converges uniformly in any interval
which lies entirely within its interval of convergence. [Hint: Use the Weierstrass M test.]

1.121. (a) Prove that if Sn(x) converges uniformly to S(x) in o = x a 6, then

(6) Show that

and supply a possible explanation.

1.122. Prove Theorem 1-11, page 7.

1.123. (a) By using analogy with series, give a definition for uniform convergence and absolute conver-
gence of the integral

(b) Prove a test for uniform [and absolute] convergence of the integral in (a) analogous to the
Weierstrass M test for series.

(c) Prove theorems for integrals analogous to Theorems 1-9, 1-10 and 1-11 on page 7.

(b) (c) (d)

(f)
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TAYLOR SERIES
1.124. Obtain the formal Taylor series (a) 1, (6) 3, (c) 4, (d) 5 given on page 8.

1.125. Expand sin * in a Taylor series about a = W6 and use the result to find sin 31° approximately.
Compare with the result from a table of sines.

1.126. Find an approximate value for (a)

1.127. Show that (a) sinh x = , (b) for

PARTIAL DERIVATIVES
1.128. If f ( x , y ) = x sin (y/x), find (a) f(2,v/2), (b) fx(2,ir/2), (e) fy(2,w/2), (d) f^(2,v/2), (e) f^(2, v/2),

(/) /Sz(2,T/2), (O) fm(2,v/2).

1.129. Verify that /„, = fyx for the case where /(*, y) = (x - y)/(x + y) if * + y ¥> 0.

1.130. If f ( x , y ) = xz tan-1 (y/x), show t
x and 2/?

1.131. If V(x,y,z) = (*2 + 3/2 + «2)-1/2, show that if x,y,z are not all zero.

1.132. If f ( x , y ) = ycos(x-2y), find df if

1.133. If f(x,y,z) = x*z - yz^ + x*, find df.

1.134. I f z = x2f(y/x) where / i s differentiate, show t
Problem 1.130.

1.135. If prove that if U is a twice differentiable function of * and y,

TAYLOR SERIES FOR FUNCTIONS OF TWO OR MORE VARIABLES
1.136. Expand f(x, y) = 2xy + »2 + ya in a Taylor series about a = 1, 6 = 2 and verify the expansion.

1.137. Write Taylor's series for f(x, y, z) expanded about x — a, y = b, z = c and illustrate by expanding
f(x, y, z) = xz + y2 about x = 1, y = —1, 2 = 2.

LINEAR EQUATIONS AND DETERMINANTS

1.138. Solve the systems (a) (6)

1.139. Determine whether the system of equations

has non-trivial solutions. If so give two such solutions. If not replace the first equation by
kx — y + z — 0 and determine fc so that the system has non-trivial solutions and give two such
solutions.

1.140. Show that if two rows (or columns) of a second or third order determinant are interchanged, the
sign of the determinant is changed.

1.141. Show that if the elements in two rows (or columns) of a second or third order determinant are
equal or proportional, the value of the determinant is zero.

Are there any excweptional values for

nd compare with
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1.142. Discuss the system of equations

from a geometrical viewpoint.

MAXIMA AND MINIMA. THE METHOD OF LAGRANGE MULTIPLIERS.
1.143. Find the relative maxima and minima of f(x) = 12 + 8«2 — x* and use the results to graph the

function.

1.144. Find the relative maxima and minima of (a) x2 In x, (b) a sec 6 + b esc e.

1.145. Find the area of the largest rectangle which can be inscribed in a semicircle of radius a with base
on its diameter.

1.146. If /'(a) = 0 and /"(a) = 0, is it possible that f(x) has a maximum or minimum at x = a?
Explain. [Hint: Consider f(x) = x* or f(x) = —x*.]

1.147. A box having only five rectangular sides is required to have a given volume V. Determine its
dimensions so that the surface area will be a minimum.

1.148. Find the shortest and largest distance from the origin to the curve x2 + xy + y2 = 16 and give a
geometric interpretation. [Hint: Use the method of Lagrange multipliers to find the maximum of
«2 + y2.]

1.149. (a) Find the relative maximum and minimum of x2 + y2 + z2, given that 4a;2 + 9y2 + 16z2 = 576
and (6) interpret geometrically.

1.150. Generalize the method of Lagrange multipliers to the case where /(*, y, z) is to be made an extremum
[i.e. maximum or minimum] subject to two constraint conditions <t>i(x, y, z) — 0, <f>2(x, 2/>z) = 0.
[Hint: Let h(x, y, z) = f ( x , y, z) + Xj^z, y, z) + X202(&> V>z) and prove that dh/dx — 0, dh/dy = 0,
dh/dz — 0 where \i, X2 are two Lagrange multipliers.]

LEIBNITZ'S RULE

1.151. I f
rule.

1.152. Find dl/da if (a) (b)

1.153. Prove Leibnitz's rule. [Hint: C o n s i d e r a n d write the result as the sum of three
integrals. Then let

COMPLEX NUMBERS. POLAR FORM

1.154.Perform each of the indicated operations: (a) 2(5 - 3i) - 3(-2 + i) + 5(i - 3), (b) (3 - 2i)3, (c)

(/)

1.155. If Zj and z2
 are complex numbers, prove (a) (6) giving any restrictions.

1.156. Prove (a) (b) (c)

1.157. Find all solutions of 2x* - 3x3 - 7a;2 - 8x + 6 - 0.

1.158. Let zl and z2 be represented by points Pl and P2 in the Argand diagram. Construct lines OP1 and
OP2, where O is the origin. Show that zl + z2 can be represented by the point P3, where OP3 is the
diagonal of a parallelogram having sides OPj and OP2. This is called the parallelogram law of
addition of complex numbers. Because of this and other properties, complex numbers can be con-
sidered as vectors in two dimensions. The general subject of vectors is given in Chapter 5.

1.159. Interpret geometrically the inequalities of Problem 1.156.

d dl/da by (a) integrating first and (b) using Leibnitz's
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1.160. Express in polar form (o)3A/3 + 3¿, (b) -2-2i, (c) (d) 5, (e) -5i.

1.161. Evaluate (a) (6)

1.162. Determine all the indicated roots and represent them graphically:
(a) (b) (c)

1.163. If and prove (a) :
Interpret geometrically.

1.164. Show that De Moivre's theorem is equivalent to (e**)n = ein<*.

Answers to Supplementary Problems

1.63.

1.66. (a) -11/2 (6)4/5 (c) -19/10 (d) (5 + 2x - 3x*)/(x + 4) (e) -(8 + 9\/2 )/14

1.67. (a) even (b) odd (c) odd (d) neither (e) odd (/) even

1.68. (6) 1.71. (a) 240/289 (b) -161/289 (c) VÎT/l?

1.72. 4/5

1.73. (a) 18 (6) 1 (c) 1/32

1.86.

1.87. 1.88.

1.89. -20/27 1.91. -l/o(l - cos <9)2 or -esc4 (*/2)/4a 1.92. 3y - 2x = 1

1.93. (a) (x + 2x In * + 3) dx (b) 5 dx/(x + 2)2

1.96.

1.98.)

1.99. (a) 14/3 (6)

(a)

(b)
(c)

(d)

(e)

(f)
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1.101.

1.102.

1.103. (a) 32/3 (6) 1/6 1.107. 1

1.110. (a) diverges (6) converges (c) converges (d) diverges (e) converges (/) diverges

1.116. (a) -1 < x S 1 (b) -lëx SI

1.117. (a) -2SxS2 (b) -1 •& x ë 1

1.128. (a) (6) (c) (d) (e) (/) (g)

1.132. 1.133. (2xz + 4a;3) dx - t? dy + (x2 - Syz2) de

1.138. (a) x = -1, y = 2 (6) x = 2, y - 0, z = -1

1.141. rel. min. 12 at x = 0, rel. max. 28 at x = ±2

1.144. (a) rel. min. -l/2e at x = e~i/2 (b) rel. min. (a2's + 62/3)3/2 for 0 = tan"1 (6/a)1/3

1.145. a2
 1<147

1.148. max.4\/2, min. 4\/6/3

1.151. (a) (6)

1.154. (a) l-4i (b) -9 - 46i (c) (d) -1 (e) (/)

1.157. ' 3, $, -l±i

1.160. (a) 6cisW6 (6) 2^/2 cis 5W4 (c) 2cis5W3 (d) 5cisO (e) 5cis3ff/2

1.161. (a) (b) -2i

1.162. (a)

(b)

(c)

(d)



Chapter 2

Ordinary
Differential Equations

DEFINITION OF A DIFFERENTIAL EQUATION

A differential equation is an equation involving derivatives or differentials. The fol-
lowing are some examples of differential equations.

Example 

Example 2.

Example 3.

Example 4.

Example 5.

Equations such as those in Examples 1-4 involving only one independent variable are called
ordinary differential equations. Equations such as that of Example 5 with two or more
independent variables are called partial differential equations and are treated in Chapter 12.

ORDER OF A DIFFERENTIAL EQUATION

An equation having a derivative of wth order but no higher is called an nth order dif-
ferential equation. In Examples 1-5 above, the orders of the differential equations are
2,1, 2,1, 2, respectively.

ARBITRARY CONSTANTS

An arbitrary constant, often denoted by a letter at the beginning of the alphabet such as
A, B, C, clf cz, etc., may assume values independently of the variables involved. For example
in y — xz + cix + c2, c\ and c2 are arbitrary constants.

The relation y = Ae~4x+B which can be written y = AeBe~*x = Ce~4x actually involves
only one arbitrary constant. We shall always assume that the minimum number of con-
stants is present, i.e. the arbitrary constants are essential.

SOLUTION OF A DIFFERENTIAL EQUATION

A solution of a differential equation is a relation between the variables which is free
of derivatives and which satisfies the differential equation identically.

Example 6. y - x2 + c& + c2 is a solution of y" = 2 since by substitution we obtain the
identity 2 = 2.

38

re
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A general solution of an rath order differential equation is one involving n (essential)
arbitrary constants.

Example 7. Since y = x2 + «i* + c2 has two arbitrary constants and satisfies the second order
differential equation y" - 2, it is a general solution of y" = 2.

A particular solution is a solution obtained from the general solution by assigning
specific values to the arbitrary constants.

Example 8. y = xz — 3* + 2 is a particular solution of y" = 2 and is obtained from the general
solution y = x2 + ctx + c2 by putting Cj = —3 and c2 = 2.

A singular solution is a solution which cannot be obtained from the general solution
by specifying values of the arbitrary constants.

Example 9. The general solution of y = xy'- y'2 is y = ex - c2. However, as seen by substi-
tution another solution is y = «2/4 which cannot be obtained from the general
solution for any constant c. This second solution is a singular solution. For a
relationship between the general and singular solutions see Problem 2.5.

DIFFERENTIAL EQUATION OF A FAMILY OF CURVES
A general solution of an nth order differential equation has n arbitrary constants (or

parameters) and represents geometrically an n parameter family of curves. Conversely
a relation with n arbitrary constants [sometimes called a primitive] has associated with it a
differential equation of order n [of which it is a general solution] called the differential
equation of the family. This differential equation is obtained by differentiating the prim-
itive n times and then eliminating the n arbitrary constants among the n +1 resulting
equations. See Problems 2.6 and 2.7.

SPECIAL FIRST ORDER EQUATIONS AND SOLUTIONS
Any first order differential equation can be put into the form

(1)

and the general solution of such an equation'contains one arbitrary constant. Many special
devices are available for finding general solutions of various types of first order differential
equations. In the following table some of these types are given.

General SolutionDifferential EquationM method by which it can be obtained)

1. Separation of variables Divide by g i (y) f2 (x) ¥* 0 and integrate to obtain

fi(x) ffi(y) dx + f2(x) ff2(y) dy = 0

2. Exact equation The equation can be written as
M dx + Ndy = dU(x,y) = 0M(x,y)dx + N(x,y)dy = 0 v

where dU is an exact differential. Thus the solution is
where U(x, y) = c or equivalentíy

where dx indicates that the integration is to be performed
with respect to * keeping y constant.
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General Solution
Differential Equation (or method by which it can be obtained)

3. Integrating factor The equation can be written as an exact differential

where » is an appropriate integrating factor so that
\yVigT*P

and then method 2 applies.

The following combinations are often useful in finding
integrating factors.

(«)

(&)

(«)

(d)

(e)

See also Problem 2.17.

4. Linear equation An integrating factor is given by
, /Pd)dx
ff + P(*)V = Q(x) " = e

and the equation can then be written

with solution ¡iy

(Pdx
ye

5. Homogeneous equation Let ylx — v or y — vx, and the equation becomes

v + x ~ = F(v) or xdv + (F(v) - v) dx - 0

which is of Type 1 and has the solution

where v = ylx. If F(v) = v, the solution is y - ex.

6. Bernoulli's equation Letting v = yl~n, the equation reduces to Type 4 with
solution

If n = 0, the equation is of Type 4. If n = 1, it is of
Type 1.

equation
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Differential Equation
General Solution

(or method by which it can be obtained)

7. Equation solvable for y

V = g(«, P) where p = y'

Differentiate both sides of the equation with respect
to a; to obtain

or

Then solve this last equation to obtain G(x, p, e) = 0.
The required solution is obtained by eliminating p be-
tween G(x, p, c) = 0 and y = g(x, p).

An analogous method exists if the equation is solvable
for x.

8. Clairaut's equation

y = px + F(p) where p = y'

The equation is of Type 7 and has solution
y = ex + F(c)

The equation will also have a singular solution in general.

9. Miscellaneous equations (a) Letting the equation reduces to Type 1.

(6) Let x = X + h, y = Y + k and choose constants h
and k so that the equation reduces to Type 5. This is
possible if and only if a¡/a2 =£ /8,//32. If a^a^ =
Pi/Pz, the equation reduces to Type 9(a).

EQUATIONS OF HIGHER ORDER
If a differential equation is of order m > 1 and has one of the variables x or y missing

explicitly from the equation, then it can be reduced to a differential equation of order
m — 1 by letting

y' - P, (2)

See Problems 2.25 and 2.26.

EXISTENCE AND UNIQUENESS OF SOLUTIONS
It is often important to be able to predict directly from a differential equation and

associated conditions whether a solution exists and is unique. For the case of a first
order differential equation

y' = f ( x , y ) (3)

an answer is supplied in the following
Existence and Uniqueness Theorem. If f(x, y) is continuous and has a continuous partial

derivative with respect to y at each point of the region R defined by \x — x0\ < 8,
\y — Vo\ < 8, then there exists in R one and only one solution to (3) which passes through
the point (x0,yn).

An immediate generalization of this theorem is possible for the nth order differential equa-
tion y<n> = f(x,y,y',...,y<n-»).

APPLICATIONS OF DIFFERENTIAL EQUATIONS
Many problems of science and engineering, when formulated mathematically, lead to

boundary-value problems, i.e. differential equations and associated conditions. Solutions
to these can be of great value to the scientist and engineer.

or
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In a mathematical formulation of a physical problem, a mathematical model is chosen
which often approximates the actual situation. For example, in treating rotation of the
earth around the sun, we may consider that the sun and earth are points.

If a mathematical model and corresponding mathematical formulation leads to fairly
good agreement with that predicted by observation or experiment, then the model is good.
Otherwise a new model may have to be chosen.

SOME SPECIAL APPLICATIONS
The following table lists some special applications of an elementary nature which arise

in science and engineering.

I. MECHANICS The basic law of mechanics or dynamics is that of Newton, i.e.

(4)

where m is the mass of the moving object, v is its velocity, t is the time and F is the net force
acting on the object. The quantity mv is often called the momentum.

If m is constant, then this equation becomes

(5)
where a is the acceleration.

On or near the earth's surface, mass m is connected with weight W by m = W/g or W - mg
where g is the acceleration due to gravity.

Various systems of units are available.
(a) C.G.S. [centimeter (cm), gram (g), second (sec)]. If m is in grams and a in cm/sec2, then

F is in dynes.
(b) M.K.S. [meter (m), kilogram (kg), second (sec)]. If m is in kilograms and a in m/sec2, then

F is in newtons (nt).
(c) F.P.S. [foot (ft), pound (Ib), second (sec)]. If W is in pounds a and g in ft/sec2, then F =

ma — Wa/g is in pounds.
On the earth's surface g = 32 ft/sec2 = 980 cm/sec2 — 9.8 m/sec2 approximately.

II. ELECTRIC CIRCUITS A simple series electric circuit [Fig. 2-1] may consist of

(1) a battery or generator supplying an electromotive force or
e.m.f. (voltage or potential) of E volts,

(2) a resistor having a resistance of R ohms,
(3) an inductor having an inductance of L henries,
(4) a capacitor or condenser having a capacitance of C farads.

The current I measured in amperes is the instantaneous time
rate of change of charge Q on the condenser measured in cou-
lombs, i.e. 7 = dQ/dt. Fig. 2-1

From basic principles of electricity we have
Potential drop across resistor = IR

Potential drop across inductor = L dl/dt

Potential drop across capacitor = QIC

Kirchhoff's Laws.
(a) The algebraic sum of the currents flowing into a junction point is zero.
(6) The algebraic sum of the potential drops around a closed loop is zero.

For single loop circuits law (a) implies that the current is the same throughout the loop.
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III. ORTHOGONAL TRAJECTORIES

A curve cutting each member of a one parameter family of curves at right angles is called an
orthogonal trajectory of the family. If dy/dx = F(x, y) is the differential equation of a one param-
eter family (not containing the parameter), then the differential equation for the family of
orthogonal trajectories is

IV. DEFLECTION OF BEAMS

A horizontal beam situated on the x axis of an
xy coordinate system and supported in various ways,
bends under the influence of vertical loads. The de-
flection curve of the beam, often called the elastic curve
and shown dashed in Fig. 2-2, is given by y = f(x)
where y is measured as positive downward. This curve
may be determined from the equation

(«)

where M(x) is the bending moment at x and is equal to
the algebraic sum of the moments of all forces to one
side of x, the moments being taken as positive for
forces in the positive y direction and negative otherwise.

For small deflections y' is small and the approximate equation

Ely" = M(x)

Fig. 2-2

(7)

is used. The quantity El where E is Young's modulus and / is the moment of inertia of a cross
section of the beam about its central axis, is called the flexural rigidity and is generally constant.

V. MISCELLANEOUS PROBLEMS

Various problems of science and engineering pertaining to temperature, heat flow, chemistry,
radioactivity, etc., can be mathematically formulated in terms of differential equations.

NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUATIONS
Given the boundary-value problem

(8)

it may not be possible to obtain an exact solution. In such case various methods are
available for obtaining an approximate or numerical solution. In the following we list
several such methods.

1. Step by step or Euler method. In this method we replace the differential equation of
(8) by the approximation

so that y(x0 + h) = y(x<>) + hf(xo,y0)

(9)

(10)

By continuing in this manner we can then find y(x<> + 2h), y(x<> + 3h), etc. We choose
h sufficiently small so as to obtain good approximations.

A modified procedure of this method can also be used. See Problem 2.45.
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2. Taylor series method. By successive differentiation of the differential equation in (8)
we can find y'(x0), y"(x0), y'"(x0), Then the solution is given by the Taylor series

(11)

assuming that the series converges. If it does we can obtain y(x0 + h) to any desired
accuracy. See Problem 2.46.

3. Picard's method. By integrating the differential equation in (8) and using the bound-
ary condition, we find

(12)

Assuming the approximation yi(x) = y<>, we obtain from (12) a new approximation

(13)

Using this in (12) we obtain another approximation

(14)

Continuing in this manner we obtain a sequence of approximations y\, y*, 2/3, . . . . The
limit of this sequence, if it exists, is the required solution. However, by carrying out
the procedure a few times, good approximations can often be obtained. See Problem 2.47.

4. Runge-Kutta method. This method consists of computing

(15)

Then (16)

See Problem 2.48.

These methods can also be adapted for higher order differential equations by writing
them as several first order equations. See Problems 2.49-2.51.

Solved Problems
CLASSIFICATION OF DIFFERENTIAL EQUATIONS

2.1. Classify each of the following differential equations by stating the order, the depend-
ent and independent variables, and whether the equation is ordinary or partial.
(a) x*y" + xy' + (x2 - n2)y = 0 order 2, dep. var. y, indep. var. x, ordinary

(6) order 1, dep. var. x, indep. var. y, ordinary
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(c) order 1, dep. var. y, indep. var. x, ordinary

Note that this equation is identical with the equation in (&).

(d) order 2, dep. var. u, indep. var. t, ordinary

(e) order 2, dep. var. Y, indep. var. x and t, partial

(/) (a2 + 2j/2) dx + (Sx2 — 4j/2) dy = 0 order 1, dep. var. y (or *) indep. var. x (or y), ordinary

SOLUTIONS OF DIFFERENTIAL EQUATIONS
22. Check whether each differential equation has the indicated solution. Which solutions

are general solutions?
(a) y' - x + y = 0; y = Ce~x + x - 1.

Substitute y = Ce~x + x — 1, y' = -Ce"1 + 1 in the differential equation. Then

y' - x + y = -Ce-* + 1 - x + Ce~x + x - 1 = 0

Hence y — Ce~x + x — 1 is a solution.

Since the number of arbitrary constants (one) equals the order of the differential equation
(one), it is a general solution.

(&)

Differentiating xzy -y3 = c we have x2y' + 2xy - 3y2yi = 0, i.e. (x2 - 3y2)y' + 2xy = 0
or Then the solution is a general solution.

<«)

Substitute
sin í in the differential equation. Then

and so the given relation is a general solution since the order of the differential equation and
the number of arbitrary constants in the solution are both equal to 2.

Substituting in the differential equation, we find «3(2c)2 =
2(cx2)(2cx) or 4c2*3 = 4e2ic3. Thus v = ex2 is a solution. However, it is not a general solu-
tion since the number of arbitrary constants (one) is not equal to the order of the equation
(two).

2.3. Determine the particular solution of the differential equation of Problem 2.2(c)
satisfying the conditions 7(0) = 2, 7'(0) = -5.

From Problem 2.2(c) the general solution is

7 = I(t) - ctf* + c2e-*t + sin t

At í = 0, 1(0) = el + c2 = 2 i.e. (Í) Cj + c2 = 2

(d)
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Differentiating with respect to t yields
I'(t) = c^* — 3c2e~at + cost

so that at * = 0
/'(O) = ct - 3c2 + 1 = -5 i.e. (2) ct - 3c2 = -6

Solving (1) and (2) simultaneously, we find Cj = 0, c2 = 2 and the required particular
solution is 7 - 2e-3* + sin t

2.4. Show that the solution of the boundary-value problem
Q"(t) + 4Q'(t) + 20Q(t) = 16e-« t i£ 0

0(0) = 2, Q'(0) = 0
is Q(«) = e~2t(l + sin4£ + cos4£).

We have Q(t) - e~^(l + sin 4< + cos 4t)
Q'(t) = e-2«(4 cos4« - 4 sin4«) - 2e~2t(l + sin 4t + cos4t)

= e-2t(2 cos 4* - 6 sin 4t - 2)
Q"(t) = e-2t(-g sin4t - 24 cos 4t) - 2e~2«(2 cos4t - 6 sin 4* - 2)

= e-2'(4sin4t-28cos4« + 4)

Then Q"(t) + 4Q'(t) + 20Q(t) = e-2«(4 sin 4t - 28 cos 4t + 4)
+ 4e-2«(2 cos 4t — 6 sin 4t - 2)

+ 20e-2'(l + sin 4t + cos 4t)
= 16e-2t

Furthermore Q(0) = 2 and Q'(0) = 0. Thus the given relation is a solution to the boundary-value
problem.

2.5. Determine graphically a relationship
between the general solution y —
ex — c2 and the singular solution
y = x2/4 of the differential equation
y = xy' - y'2.

Referring to Fig. 2-3, it is seen that
y = ex — c2 represents a family of straight
lines tangent to the parabola y — x2/4. The
parabola is the envelope of the family of
straight lines.

The envelope of a family of curves
G(x, y, c) — 0, if it exists, can be found by solv-
ing simultaneously the equations dG/dc = 0
and G = 0. In this example G(x, y, c) =
y — cx + c2 and 8G/do = — * + 2c. Solving
simultaneously — * + 2c = 0 and y — ex +
c2 = 0, we find x - 2c, y = c2 or y = x2/4. Fig. 2-3

DIFFERENTIAL EQUATION OF A FAMILY OF CURVES

2.6. (a) Graph various members of the one parameter family of curves y — ex3, (b) Obtain
the differential equation for the family in (a).
(a) The graphs of various members of the family are indicated in Fig. 2-4 below.
(6) From y = cxs we have dy/dx = 3c*2. Then since c = y/x3, the required differential equa-

tion of the family is
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Fig. 2-4

2.7. Find the differential equation of the two parameter family of conies ax2 + by2 = 1.
Differentiating with respect to x we have

2ax + 2byy' = 0 or a = —byy'/x

Substituting into ax2 + by2 = 1 gives
(-byy'/x)xz + by2 = 1 or -bxyy' + by2 = 1

where a has been eliminated. Further differentiation gives
-b[xyy" + xy'2 + yy'] + 2byy' = 0

Then the required differential equation obtained on division by 6 ^ 0 is

xyy" + xy'2 — yy' = 0

2.8. (a) Find a general solution of the differential equation dy/dx = Sx2.

(b) Graph the solutions obtained in (a).
(c) Determine the equation of the particular curve in (b) which passes through the

point (1,8).
(a) We have

dy = Bx2dx or

so that y = x3 + c is the general solution.

(6) The curves y — xs + c for various values of c are
shown in Fig. 2-5. The set of curves for all values
of c is a one parameter family of curves whose dif-
ferential equation is dy/dx = 3a;2. Through each
point of the xy plane there passes one and only one
member of the family.

(c) Since the curve passes through (1, 3), we have y = 3
when x = 1. Thus from y — xs + c, 3 = I3 + c or
e = 2 and the required curve has the equation
y = *3 + 2. Fig. 2-5

2.9. (a) Solve the boundary-value problem
y" = Bx -2 y(0) = 2, y(l) = -3

and (6) give a geometric interpretation.
Oy.2

(a) Integrating once, we have y' = — 2x + Cj. Since j/'(l) = -3 [i.e. y' = -3 when * = 1],
we have — 3 = f — 2 + ct and c, = —|. Thus
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Integrating again, Since j/(0) = 2 [i.e., y = 2 when x = 0],
we find c2 = 2. Then the required solution

(6) Geometrically represents that particular member of the family [whose
differential equation is y" = 3x — 2] which passes through the point (0,2) and which has a
slope of —3 at the point where x = 1.

Note that if we integrate the differential equation twice, we have
so that the solution represents a two parameter family of curves. The particular member of
the family found above corresponds to ct = — §, c2 = 2.

SEPARATION OF VARIABLES
2.10. (a) Find the general solution of (4a; + xyz) dx + (y + x2y) dy = 0.

(6) Find that particular solution for which y(l) = 2.

(a) The equation can be written as x(4 + y2) dx + y(l + x2) dy = 0 or

Integrating,

i.e. In

Thus the required general solution is (1 + x2)(4 + y2) — c.

(b) For the particular solution where y(1) = 2, i.e. y = 2 when x — 1, put * = 1, y = 2 in
(1 + *2)(4 + j/2) = c to obtain c = 16. Thus (1 + o;2)(4 + y2) = 16.

2.11. Solve the boundary-value problem

We have dy/dx = 8 — 3y so that on separating the variables,

Thus

Putting x = 0 and y = 2, we have —^ In 2 = c1 and so the required solution is

This can also be written as £ In (8 - 3y) - J In 2 = —x, In (8 - 3y) - In 2 = -Sx, In
or finally

Check:
so that

Also
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2.12. Solve the preceding problem if y(Q) = 2 is replaced by y(Q) = 4.
If we use the result —^ In (8 — Sy) = x + e1 of Problem 2.11, we find on formally putting

x = o, y = 4 that the logarithm of a negative number is involved. The difficulty can be avoided
on noting that actually

so that the solution is -£ In |8 - Sy\ = x - % In 4. Since 8 - Sy is negative, the result can then
be written as

2.13. Solve dy/dx = sec y tan x.
Separating the variables, we have dy/seey — tanxdx

or

Then integration yields

or sin y = —In cos o; + e

i.e. In cos x + sin y = c

EXACT DIFFERENTIAL EQUATIONS

2.14. (a) Show that (3a;2 + y cos a;) dx + (sin x — iy3) dy — 0 is an exact differential equa-
tion and (6) find its general solution.
(a) Here M = 3a;2 + y cos x, N = sin x — 4y3 so that dM/dy = cos x = dN/dx and the equa-

tion is exact.

(6) Method 1 [Grouping of terms by inspection]. Write the equation as

Sx2 dx + (y cos xdx + sin x dy) — 4y3 dy = 0

i.e. d(x*) + d(y sin x) - d(y*) = 0

or d(x3 + y sin x — y*) = 0

Then on integrating, x3 + y sin x — y* = c

Method 2 [Direct method]. Since M dx + N dy = dU an exact differential and dU = ^-dx +
dU— dy, we must have

and

or (j)

Integrating the first equation in (¿) partially with respect to x [keeping y constant], we have

W

where F(y) is the constant of integration which may depend on y.

Substituting (2) in the second equation of (J), we find
y cos x + F'(y) — sin x — 4ys or F'(y) = —4y3

so that F(y) = -y* + Cj. Then from (2),

U = x3 + y sin x — y* + ct

Thus Mdx + Ndy = dU = dix3 + y sin x - y* + cj - 0
from which we must have

x3 + y sin x — y* = c
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Method 3 [Formula]. From the result 2 on page 39 we see that the solution is

i.e.

or

INTEGRATING FACTORS
2.15. (a) Show that the equation (3xy2 + 2y) dx + (2x2y + x) dy = 0 is not exact but that

(6) it becomes exact after multiplication by x. (c) Thus solve the equation.

( a ) Here 
tion is not exact.

(6) Multiplying by x, the equation becomes
(3xV + 2xy) dx + (2x3y + x2)dy = 0

from which M = Sxty2 + 2xy, N = 2x3y + x2. T
tion is exact.

(c) By any of the methods of Problem 2.14 we find the required solution x2y + *3j/2 = c.

2.16. Solve (a) (y + x*) dx-xdy = 0, (6) (a;3 + xy" -y)dx + xdy = 0.
(a) Write as y dx — x dy + x* dx = 0. The combination y dx — x dy suggests integrating factors

I/*2, 1/y2, l/(x2 + y2) [see page 40, entry 3]. Only the first leads to favorable results, i.e.

so that

(6) Write as x(x2 + y2) dx + x dy — y dx = 0 and multiply by the integrating factor l/(x2 + y2)
to obtain

Then

2.17. (a) If M dx + N dy = 0 has an integrating factor /A which depends only on x, show
that n = eSK*"* where f(x) = (Mv - N,)/N, My = dM/dy, Nx = dN/dx. (b) Write
the condition that /*, depend only on y. (c) Use the result to solve Problem 2.15.
(a) By hypothesis, fiM dx + pN dy = 0 is exact. Then

Since ¡i depends only on x this can be written

Thus

and so

o that the equa-

d the equa-
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(6) By interchanging M and N, x and y we see by part (a) that there will be an integrating factor
H depending only on y if (Nx — MV)/M = g(y) and that in this case ¡i = e} 9 v

(e) In Problem 2.15, M - 3xy2 + 2y, N - 2x2y + x, Mv = 6xy + 2, Nx = 4xy + 1 and

depends only on *. Thus by part (a), is
an integrating factor and we can proceed as in Problem 2.15(6).

LINEAR EQUATIONS

2.18. Solve the equation

Write the equation as

Then

Since = P(x) depends only on x, we see from Problem 2.17 that e->p(x)<te

an integrating factor. Multiplying by this factor, the equation becomes

which can be written as

Then on integrating we have

2.19. Solve

Write the equation as , a linear equation of the form

with P = —Z/x, Q — x2 cos 4x. As in Problem 2.18, an integrating factor is
Multiplying by x~2 we have

which can be written as

Then by integrating we find

HOMOGENEOUS EQUATIONS

2.20. Solve (2a;3 + y3) dx - Sxy2 dy = 0
Write as

The right side is seen to be a function of y/x either by writing it as

or
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or by letting y = vx and showing that the right side depends only on v, i.e.

Thus the equation is homogeneous. From y = vx we obtain

Separating the variables, we have

Integrating, In (vs — 1) = — 2 In x + Ci

or In [(v« -1)*2] = G!

Thus (i>3 — 1)«2 = eci = c and the required solution on letting v = y/x is y3 — x3 = ex.
Note that in the integration we assumed vs — 1 > 0. Similar reasoning analogous to that of

Problem 2.12 shows that the solution is also valid if v3 — 1 < 0.

2.21. Solve

The right side is a function of y/x. Thus letting y = vx,

or

Integrating,

Since

the required solution is

BERNOULLI'S EQUATION

2.22. Solve

The equation written a s i s a Bernoulli equation [see page 40] with P(x) = l/x,
Q(x) = 1, n = 3.

Making the transformation yl~« = v, i.e. y~2 = v, we find on differentiating with respect
to x,

Thus the equation becomes

i.e.

Since the general solution of this is v = 2x + ex2, the solution of the required equation is

or
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EQUATIONS SOLVABLE FOR ONE VARIABLE

2.23. Solve xp2 + 2px - y - 0 where p = y'.
The equation can be solved explicitly for y, i.e. y = xp2 + 2px. Differentiation with respect

to x yields

or M

Case 1, p + 1 ¥• 0. In this case (2) becomes on division by (p + 1),

whose solution is xp2 — c. Then
(2)

are the parametric equations of the general solution. By eliminating p from (2) we can obtain the
general solution in the form . .

(y — e)2 - 4cx (3)

Case 2, p + 1 = 0. In this case p = —1, and substituting into xp2 + 2px — y = 0 we find x + y = 0
which is a solution of the differential equation, as can be checked. However, it cannot be obtained
from the general solution (3) by any choice of c. Thus x + y = 0 is a singular solution.

CLAIRAUT'S EQUATION

2.24. Solve where p — y'.

Use the method of Problem 2.23. Differentiating,

from which

Case 1 , I n this case p = c and so the general solution is

Case 2, In thiscase and

To eliminate p, note that . The equation x2 + y2 = 1 satisfies the
given differential equation but cannot be obtained from the general solution for any choice of c
and so is a singular solution.

EQUATIONS OF ORDER HIGHER THAN ONE

2.25. Solve y" + 2y' = 4x.

Since y is missing from the equation, let y' = p, y" = dp/dx. Then the equation becomes

W

a linear first order equation having integrating factor e^zdx = e2*. Multiplying by e2x, (1) can be
written as



54 ORDINARY DIFFERENTIAL EQUATIONS [CHAP. 2

so that

i.e.
Integrating again, we find the required general solution

y = x* - x - fae-** + c2 = x2 - x + Ae~^ + B

2.26. Solve 1 + yy" + y'2 = 0.
Since * i s missing from t h e equation, 

equation becomes

Separating variables and integrating,

i.e. i In (1 + p2) + In y = Cl or In [(1 + p%2] = c2

from which (1 + jP)yz = a2 and

Separating variables,

Integrating,

Squaring gives
which is the general solution.

MECHANICS PROBLEMS
2.27. An object is thrown vertically upward from the ground with

initial velocity 1960 cm/sec. Neglecting air resistance, 
(a) the maximum height reached and (b) the total time taken
to return to the starting point.

Let the object of mass m be located at distance x cm from the
ground after time í sec [see Fig. 2-6]. Choose the upward direction as
positive. By Newton's law,

Netforce = Weight

(1) Fig. 2-6

The initial conditions are x = 0, dx/dt = 1960 at t - 0.
Solving (1) subject to the initial conditions, we find

x = 1960i-490t2 (2)
(o) The height is a maximum when dx/dt = 1960 — 980Í = 0 or t = 2. Then * = 1960(2) -

490(2)2 = 1960. Thus the maximum height reached is 1960 cm.
(6) x = 0 when t(1960 — 490t) = 0 i.e. t = 0, 4. Then the required time to return is 4 sec.

2.28. A 192 lb object falls from rest at time t = 0 in a medium offering a resistance in Ib
numerically equal to twice its instantaneous velocity in ft/sec. Find (a) the velocity
and distance traveled at any time t > 0 and (b) the limiting velocity.

Choose the positive direction downward.
Netforce = Weight — Resistance

U)

en the given
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(a) Solving (1) subject to the initial condition v = 0 at t = 0, we find for the velocity at any
tlme' v = 96(l-e~t/3) (2)

Replace v by dxldt in (2) and use the initial condition x = 0 at t = 0 to obtain for the
distance traveled, ^ = ̂  + Bg_t/3 _ g)

(6) The limiting velocity is
lim 96(1 - e-'/s) = 96(ft/sec)
t-+00

and can also be obtained by setting dv/dt = 32 — v/3 = 0.

2.29. Solve Problem 2.28 if the medium offers a resistance in Ib numerically equal to 3v2.
Net force = Weight — Resistance

w
Then separating variables and integrating, we find

(a) Since v = 0 at t = 0, c = 0. Then

(2)

which is the velocity at any time.
Integrating the second equation in (2) subject to x = 0 at t = 0, we find for the distance

traveled,

(6) The limiting velocity is

and can also be obtained by setting

2.30. A boat of mass m is traveling with velocity v0. At t — 0 the power is shut off.
Assuming water resistance proportional to vn where n is a constant and v is the
instantaneous velocity, find v as a function of distance traveled.

Let x = distance traveled after time t > 0.

Net force = Forward thrust — Water resistance

where k is the constant of proportionality. Then

Case 1, n ¥= 2. Integrating, using v = v0 at * = 0 where v0 is the velocity at t = 0,

v2-n = v2-n _ lL (2 _ n)x

Case 2, n = 2. Integrating, using v = v0 at * = 0,
V = V(>e-kx/m
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2.31. A uniform chain of length a is placed on a
horizontal frictionless table so that a length b
of the chain dangles over the side. How long
will it take for the chain to slide off the table?

Suppose that at time t a length x of the chain is
dangling over the side [Fig. 2-7]. Assume that the den-
sity (mass per unit length) of the chain is a. Then Fig. 2-7

Net force = Mass being accelerated • Acceleration

(1)

Then since (1) becomes

(2)

Integrating (2), using x = b when v = 0,

(S)

Separating the variables in (S) and integrating again using x = b when í = 0,

Since the chain slides off when x = a, the time T taken is

ELECTRIC CIRCUIT PROBLEMS

2.32. A resistor of R = 10 ohms, an inductor of
L = 2 henries and a battery of E volts are con-
nected in series with a switch S [Fig. 2-8]. At
t = 0 the switch is closed and the current 7 = 0.
Find 7 for t > 0 if (a) E = 40, (&) E = 2Qe~3t,
(c) E = 50 sin 5i.

By Kirchhoff's laws,
Potential drop across R + Potential drop across L + Potential drop across E = 0

or

(a) If E = 40, Solving this subject to 7 = 0 at t = 0, we have / = 4(1 — e~5t).

(b) If E = 20e-3t, — + 51 = loe-at or multiplying by the integrating factor e«, j- (7e«) = 10e2t

from which we obtain 7 = 5(e~3t — «-««) on using / = 0 at í = 0.

(c) If E = 50 sin 5t, sin 5t, j¿ (/«s») = 25e« sin 5i. Integrating,

Since / = 0 at t = 0, c = f and so / = |(sin 5t - cosSi) + fe-s*.

The term £«-«, which approaches zero as t increases, is called the transient current.
The remaining terms £(sin 5t — cos 5i) comprise the steady-state current.
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2.33. A resistor of R = 5 ohms and a condenser of C = .02 farads are connected in series
with a battery of E = 100 volts [Fig. 2-9]. If at t = 0 the charge Q on the condenser
is 5 coulombs, find Q and the current 7 for t > 0.

Potential drop across R — 51 — 5 -^

Potential drop across C = -rjr = *>OQ

Potential drop across E — —E

Then by Kirchhoff's laws,

If E = 100 volts, -jT (e10*Q) = 20elot. Then integrating and solving subject
to Q = 5 at t = 0, we find Q = 2 + 3e-">« and / = dQ/dt = -30e-i°*.

Fig. 2-9 Fig. 2-10

2.34. An inductor of L henries and a condenser of C farads are connected in series
[Fig. 2-10]. If Q = Qo and 7 = 0 at t = 0, find (a) Q and (6) 7 at t > 0.

Potential drop across

Potential drop across

Then (Í)

Since we have so that (1) becomes

or (2)

Integrating the second equation of (2) yields

(3)

Since / = 0 when Q = Q0, we have Ct = Q«/2C. Thus (3) becomes on solving for /,

(4)
Separating variables in (4) and

or (5)

Since Q = Q0 for t = 0, we find C2 = v/2. Thus from (5),

or

and

Note that the charge oscillates with amplitude Q0, period Zv-^LC and frequency (I/period)
The current oscillates with amplitude Q0/\/Zc and the same period and frequency as the

charge.

dQ
5Jt
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GEOMETRY PROBLEMS
2.35. (a) Find the orthogonal trajectories of the family of curves y = ex2 and (b) give a

geometrical interpretation.

Since the slope of each member of the orthogonal family must be the negative reciprocal of
this slope, we see that the slope of the orthogonal family is

Solving this we find that the equation of the orthogonal trajectories is
x* + 2y2 = k

(b) The family y = ex2 is a family of parabolas while the orthogonal family *2 + 2j/2 = fc is a
family of ellipses [see Fig. 2-llj.

Fig. 2-11 Fig. 2-12

2.36. Determine a curve such that the length of its tangent included between the x and y
axes is a constant a > 0.

Let (x, y) be any point P on the required curve and (X, Y) any point Q on the tangent line AB
[Fig. 2-12].

The equation of line AB passing through (x, y) with slope y' is
Y-y = y'(X-x)

Set X — 0, Y — 0 to obtain the y and x intercepts
OA = y — xy', OB = x — yly' = —(y — xy')/y'

Then the length of AB, apart from sign, is

or

(¿)

(a) The differential equation of the family is

Since this must equal ±a, we have on solving for y,

where y' = p.

To solve (1) differentiate both sides with respect to x, so that
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Case 1, dp/dx — 0. In this case p = e and the general solution is

y = ex ± (2)

Case 2, dp/dx ¥• 0. In this case, using (1) we find

x =

Then x*'* -

so that a;2/3 + j/2/3 = a2/3 (5)

which is a singular solution.

The curve (3) which is a hypocycloid [Fig. 2-13] and which is
the envelope of the family of lines (2), is the required curve. Fig. 2-13

FLOW PROBLEMS

2.37. A cylindrical tank has 40 gallons (gal) of a salt solution containing 2 Ib dissolved salt
per gallon, i.e. 2 Ib salt/gal. A salt solution of concentration 3 Ib salt/gal flows into
the tank at 4 gal/min. How much salt is in the tank at any time if the well-stirred
mixture flows out at 4 gal/min?

Let the tank contain A Ib salt after í minutes. Then

Rate of change of amount of salt = Rate of entrance — Rate of exit

dA ASolving the equation -JT = 12 - — subject to A = 40 gal • = 8 0 Ib salt at t = 0, we
find A = 120 - 40«-«/io.

2.38. A right circular cone [Fig. 2-14] is filled with water.
In what time will the water empty through an orifice
O of cross-sectional area a at the vertex? Assume
velocity of exit is v = where h is the instan-
taneous height ("head") of the water level above 0
and K is the discharge coefficient.

At time í the water level is at h. At time t + dt, dt > 0,
the water level is at h + dh where dh < 0. We have

Change in volume of water = Amount of water leaving

—¡rrzdh = avdt —

From similar triangles OAB and OEF, r = Rh/H. Then

Solving, subject to h = H at t — 0, we have

t -

Then time for emptying, when h = 0, is T =
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CHEMISTRY PROBLEMS
2.39. Radium decays at a rate proportional to the instantaneous amount present at any

time. If the half life of radium is T years, determine the amount present after
í years.

Let A gm of radium be present after í years. Then
Time rate of change of A <* A

a A or = — kA

Solving subject to A = A0 at t = 0, we find A = A0e~kt.
The half life is the time T when the amount present is half the original amount, i.e. A0/2.

Then

= A0e-w or e-kT = ^ e-k = (£)i/T and A = A0(e~kY = A0(i)t/T

Another method. e~kT = \, k - and A = A0e-*In2/T.

2.40. Chemical A dissolves in solution at a rate proportional to the instantaneous amount
of undissolved chemical and to the difference in concentration between the actual
solution Co and saturated solution Cs. A porous inert solid containing 10 Ib of A is
agitated with 100 gallons water and after an hour 4 Ib of A is dissolved. If a saturated
solution contains .2 Ib of A per gallon, find (a) the amount of A which is undissolved
after 2 hr and (6) the time to dissolve 80% of A.

Let x Ib of A be undissolved after t hours. We have

« x(Cs-Ca) or = kx

Then = = Kx(x +10)

Separating the variables and integrating,

i.e. = «i + Cj

Using the conditions ( = 0, x = 10 and t = 1, x — 6, we find

x =

(a) When í = 2 hr, * = 3.91 Ib of A undissolved.
(6) When * = 2 Ib, (f )' = £ and t = 3.82 hr.

TEMPERATURE PROBLEM

2.41. Newton's law of cooling states that the time rate of change in temperature of an
object varies as the difference in temperature between object and surroundings. If
an object cools from 80°C to 60°C in 20 minutes, find the temperature in 40 minutes
if the surrounding temperature is 20°C.

Let U = temperature of object after í minutes. Then

<* U-20 or = fc(C7-20)

Solving, U = 20 + cekt. At t = O, U = 80 so that c = 60 and U - 20 + 60e«. At í = 20,
U = 60 so that ewk - 2/3, ek = (2/3)1/20. Then

U - 20 + 60e« = 20 + 60(e")* = 20 + 60(|)«/2<>
When í = 40, U = 20 + 60(2/3)2 = 46.7°C.



CHAP. 2] ORDINARY DIFFERENTIAL EQUATIONS 61

BENDING OF BEAMS

2.42. A beam of length L is simply supported at
both ends [Fig. 2-15]. (a) Find the deflection
if the beam has constant weight W per unit
length and (b) determine the maximum
deflection. Fig. 2-15
(a) The total weight of the beam is WL, so each end supports weight %WL. Let x be the distance

from the left end A of the beam. To find the bending moment M at x, consider forces to the
left of x.

(1) Force \WL at A has moment -(%WL)x.

(2) Force due to weight of beam to left of x has magnitude Wx and moment
Wx(x/Z) - $Wx*

Then the total bending moment at * is %Wx2 — \WLx. Thus
Ely" = %Wx*-$WLx

Solving this subject to y' = 0 at x = LIZ [from symmetry] and y = 0 at x = 0, we find

y = • (x* - 2Lx* + L*x)

This could also be obtained using conditions y — 0 at x = 0 and x — L.

(b) The maximum deflection occurs, at x = L/2 and is 5WL4/S84EI.
Note that if forces to the right of x had been considered, the bending moment would be

-%WL(L -x) + W(L -x) = %Wx* - \WLx as above.

2.43. A cantilever beam [Fig. 2-16] has one end
horizontally imbedded in concrete and a force
W acting on the other end. Find (a) the de-
flection and (6) maximum deflection of the
beam assuming its weight to be negligible. :
(a) Considering the portion of the beam to the right

of x, the bending moment at x is W(L — x). Then
Ely" = W(L-x) Fig. 2-16

Solving this subject to y' = 0 at * = 0 and y = 0 at x - 0, we find

y = (3Lx2-x*)

(b) The maximum deflection occurring at x = L is WL3/3EI.

NUMERICAL METHODS

2.44. If dy/dx = 2x + y, y(0) - 1, (a) find the approximate value of y(.5) using the step
by step or Euler method with h = .1 and (6) compare with the exact solution.
(a) To obtain the entries in the first line of the table below, use the fact that a:0 = 0, y0 — 1.0000

so that y' - 2x0 + y0 - 1.0000.

x y y' = 2x + y

.0 1.0000 1.0000

.1 1.1000 1.3000

.2 1.2300 1.6300

.3 1.3930 1.9930

.4 1.5923 2.3923

.5 1.8315

x y y' = 2x + y

.0 1.0000 1.0000

.1 1.1000 1.3000

.2 1.2300 1.6300

.3 1.3930 1.9930

.4 1.5923 2.3923

.5 1.8315
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To obtain the entries in the second line use h — .1 and equation (10), page 43, to obtain
y(x0 + h) = y(x0) + hf(x0,y0)

= value of y in first line + (.l)(slope in first line)
= 1.0000 + (.1)(1.0000) = 1.1000

and the corresponding slope is
y' = 2(.l) + 1.1000 = 1.3000

Similarly we have
value of y in third line = value of y in second line + (.1) (slope in second line)

= 1.1000 + .1(1.3000)
= 1.2300

and slope in third line = 2(.2) + 1.2300 = 1.6300

The remainder of the entries are obtained by continuing in this manner and we find finally
2/(.5) = 1.8315.

(6) The equation is linear and has integrating factor e~x. Solving, we find y = 3ex — 2x — 2.
Then when * = .5, y = 3e-5 — 3 = 3(1.6487) — 3 = 1.9461. Better accuracy can be obtained by
using smaller values of h or proceeding as in Problem 2.45 which is a modification of the
method.

2.45. Show how to improve the accuracy of the method of Problem 2.44.
The method which we shall use is essentially the same as that of Problem 2.44 except that

we obtain improved values of y and y', which we denote by y\,y'\', y2,y21 etc., as indicated in the
table below. Success is achieved when there is very little difference between the improved values
of y [see columns headed 3/3 and 3/4 respectively in the table].

The first line in the table below is the same as the first line in the table of Problem 2.44 and
is found in exactly the same way.

Similarly the entries corresponding to y1 and y[ in line two of the table below are the same
as those in line two of the table of Problem 2.44.

We now refer only to the table given below. As seen from this table, the slopes corre-
sponding to * = .0 and x = .1 are 1.0000 and 1.3000 respectively. Then the average [mean]
slope is ¿(1.0000 +1.3000) = 1.1500. Using this modified slope, we find for the corresponding value

°f y 2/2 = 1.0000 + .1(1.1500) = 1.1150 (1)

The slope corresponding to this value of y is given by
y'2 = 2(.l) + 1.1150 = 1.3150 (2)

using the given differential equation.
From the improved slope (2) we now obtain an improved average slope

¿(1.0000 + 1.3150) = 1.1575 (S)

and from this an improved value of y given by
ya = 1.0000 + (.1)(1.1575) = 1.1158 (¿)

which in turn gives an improved slope equal to
ya = 2(.l) + 1.1158 = 1.3158 (5)

The improved average slope using (5) is then
¿(1.0000 + 1.3158) = 1.1579

and so i/4 = 1.0000 + (.1)(1.1579) = 1.1158 (6)

Since this agrees with (4), the process ends.

We now use yt = 1.1158 and y'z = 1.3158 to obtain the entries in the third line. Thus

yl (line 3) = 1.1158 + (.1)(1.3158) = 1.2474

and y[ (line 3) = 2(.2) + 1.2474 = 1.6474



Proceeding in this manner we find the successive approximations

Then a third approximation is

V<L(X)

y4(x) -

Vs(x)

Va(x)

Letting yl = 1 as a first approximation we find the second approximation

V(x)

2.47. Solve Problem 2.44 by Picard's method.
We have on integrating the differential equation using the boundary condition,

Then when x = .5,

3/(.5)

Thus

and so

y' = Zx + y, y" = 2 + y', y'" = y", yW = y'", y<^ = j/«v>, ...

y(0) = 1, y'(0) = 1, y" = 3, y'" = .3, i/«v> = 3, y<v> = 3, ...

2.46. Solve Problem 2.44 by the Taylor series method.
By successively differentiating the given differential equation, we have
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Continuing in this manner we finally obtain y(.5) = 1.9483, the last entry of the last line in
the table. This agrees closely with the true value 1.9461.

* Vi y'i Vz VÍ Vi Vs 2/4

.0 1.0000 1.0000

.1 1.1000 1.3000 1.1150 1.3150 1.1158 1.3158 1.1158

.2 1.2474 1.6474 1.2640 1.6640 1.2648 1.6648 1.2648

.3 1.4313 2.0313 1.4496 2.0496 1.4505 2.0505 1.4506

.4 1.6557 2.4557 1.6759 2.4759 1.6769 2.4769 1.6770

.5 1.9247 2.9247 1.9471 2.9471 1.9482 2.9482 1.9483
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Putting x = .5 in this last approximation, we find
3/6(.5) = 1 + .5 + .375 + .0625 + .0078 + .0008 = 1.9461

2.48. Solve Problem 2.44 by the Runge-Kutta method.
Using h = .5, x0 = 0, y0 — 1, f ( x , y) = Zx + y in the equations on page 44,

fcj = .5[2(0) + 1] = .5
fc2 = .5[2(.25) + 1.25] = .875
ka = .5[2(.25) + 1.4375] = .96875
fc4 = .5[2(.5) + 1.9675] = 1.48375

Then y(.5) = 1 + J(.5 + 1.750 + 1.9375 + 1.48375) = 1.9452
Better approximations can be obtained by using two or more applications of the method with
smaller values of h.

2.49. (a) Show how to solve numerically the system of equations
dyldx = f(x,y,v), dv/dx = g(x,y,v); y(x0) — i/o, v(x0) = Vo

by the Runge-Kutta method.
(b) Use (a) to show how to solve numerically

(a) Using the results on page 44, we write

so that

(6) The equation dïy/dx2 = g(x, y, dy/dx) is equivalent to the system

dyldx = v, dv/dx = g(x,y,v)

and comparing with the equations of (a) we have f ( x , y, v) = v. Then the expression for
y(x0 + h) can be written in terms of Z1( 12, /3 as

2.50. If f 2y = x; y(Q) = 1, y'(Q) use Problem 2.49 to find an approximate
value of y(.5).

The differential equation is equivalent to the system
dy/dx = v, dv/dx = x — 2y + 3v

and with the notation of Problem 2.49(6) we have g(x, y,v) — x — 2y + Sv, x0 — 0, y0 = 1, V0 — 0.
Thus if h = .5 we have from Problem 2.49(a),

li = .5(-2) = -1, Z2 = .5(-3.25) = -1.625, 13 = .5(-3.9375) = -1.96875

Ve(x)
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Then 3/(.5) = 1 + ̂  (-1 - 1.625 - 1.96875) = .6172
D

The equation can be solved exactly and the solution is y — ex — %e2x + ^* + f so that
y(.S) = e-» - fe + 1 = 1.6487 - f (2.7183) + 1 = .6100.

2.51. Work Problem 2.50 by the Taylor series method.
We have y' — v, v' — x — 2y + 3v so that by successive differentiation,

y" - v', v" - I - 2y' + 3v', y'" = v", V" = -2y" + 3v", ...

and we find corresponding to x — 0,

y' =0, v' = -2, y" = -2, v" = -5, y'" = -5, v'" = -11, y™ = -11, i>(iv) = -23

yw = -23, i>(v> = -47, 2/(vi) = -47, f(vi) = -95, yW> = -95, ...

Then

Thus we have approximately

2/(.5) = 1 - .25 - .104167 - .028646 - .005990 - .001020 - .000147

= .61003

Supplementary Problems
CLASSIFICATION OF DIFFERENTIAL EQUATIONS

2.52. Classify each of the following differential equations by stating the order, the dependent and
independent variables and whether the equation is ordinary or partial.

(c) xyy' = (y")3 (/) d(uv) = v*dv

SOLUTIONS OF DIFFERENTIAL EQUATIONS

2.53. Check whether each differential equation has the indicated solution. Determine which solutions are
general solutions.

(a) y" — 2y' + y = x; y = (c¡ + c2x)ex + x + 2

(b) tl'(t) + I(t) - «2; t? - 3tl - e

( c ) y = xy' + 27x* + 256# = 0

(d) f ley = 0; V = el sin 2t + c2 cos 2t + c3t sin 2í + c4í cos 2<

2.54. (a) Show that y = e~x(cl cos x + C2 sin x) is a general solution of y" + 2y' + 2y = 0. (6) Deter-
mine the particular solution such that j/(0) = —2, y'(0) = 5.

2.55. (a) Show that y - ex + 3c2 + c and (* + I)2 + 12y = 0 are solutions of the differential equation
y — xy' + 3y'2 + y'. (b) What is the name given to each of these solutions? (c) Explain the rela-
tionship between these solutions and illustrate graphically.

(e) y" = [1 + i/'2]3/2
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DIFFERENTIAL EQUATION OF A FAMILY OF CURVES
2.56. Find differential equations for the following families of curves: (a) »2 + cyz = 1, (6) y2 = ax + b.

2.57. Find the differential equation for (a) the family of straight lines which intersect at the point
(2,1) and (b) the family of circles tangent to the x axis and having unit radius.

MISCELLANEOUS TYPES OF DIFFERENTIAL EQUATIONS
2.58. (a) Find the general solution of dy/dx = 8x3 — 4* +1. (b) Determine the particular solution such

that j/(l) = 3.

2.59. Solve each of the following boundary-value problems.
(a)

W
(c)

2.60. Solve (a) (b) xy' + 3y = 0; j/(l) = 2, (c)

(e) (l-»2)j/' = 43/; »(0) = 1.

2.61. Solve

2.62. Each of the following differential equations has an integrating factor depending on only one
variable. Find the integrating factor and solve the equation.
(a) (4j/ - *2) dx + x dy = 0
(6) (2*j/2 - y) dx + (2x - x*y) dy = 0
(c) 2dx + (2x -3y-3)dy = 0; j/(2) = 0
(d) (2y sin x + 3y* sin x cos x) dx — (4ys cos2 x + cos «) dy = 0

2.63. Solve each of the following differential equations given that each has an integrating factor of the
form xfyt;
(a) (Sy-2xy*)dx + (4x-3x*v*)dy = 0
(b) (2xy* + 2y) dx + (x*y* + 2x) dy = 0

2.64. Solve (a)
(6)

2.65. Solve ( a ) j / ( l ) = 2 , ( b ) xy'- 4y = *, (
(d) -%- + 2y cot x = esc x.ax

2.66. Solve (a) (6) (c) (d)

2.67. Solve (a) (6) 2a;2j/' = xy + j/«.

2.68. Solve (a) (6)

2.69. Solve

2.70. Solve (a) j/'2 + (y ~ l)y' - y = 0, (6) (xy' + y)2 = «-«.
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2.71. Solve each of the following, determining any singular solutions. In each case p = y'.
(a) y = px + 2p2, (&) xp2 = 2y(p + 2), (c) (xp - y)2 = P2-1, (d) x2y = x*p - yp2.

2.72. Solve (a) xy" - Sy' = x2, (b) yy" + 2y'2 = 0, (c) y" + iy = 0, (d) (1 + j/'2)« = (y")2.

EXISTENCE AND UNIQUENESS OF SOLUTIONS
2.73. Use the theorem on page 41 to discuss the existence and uniqueness of solutions for each of the

following: (a)y' = 2xy, y(0) = 1, (b) y = xy'- y'2; y(2) = 1, (c) y' = (y + x)/(y - x); j/(l) = 1.

MISCELLANEOUS APPLICATIONS
2.74. An object moves along the x axis, acted upon by a constant force. If its initial velocity in the

positive direction is 40 meters/sec while 5 seconds later it is 20 meters/sec, find (a) the velocity at
any time, (6) the position at any time assuming the object starts from the origin x = 0.

2.75. A 64 Ib object falls from rest. The limiting velocity is 4 ft/sec. Find the velocity after t seconds
assuming a force of resistance proportional to (a) v, (b) v2, (c) -\fv.

2.76. A particle is located at x = a (a > 0) at t = 0. It moves toward x = 0 in such a way that its
velocity is always proportional to xn where M is a constant. Show that the particle will reach
x — 0 if and only if n < 1.

2.77. An electric circuit contains an 8 ohm resistor in series with an inductor of .5 henries and a battery
of E volts. At * = 0 the current is zero. Find the current at any time í > 0 and the maximum
current if (a) E - 64, (6) E = %te-™, (c) E = 32e-"».

2.78. (a) Solve for the current in the circuit of Problem 2.77 if E = 64 sin St. (b) What is the transient
current and steady-state current?

2.79. An electric circuit contains a 20 ohm resistor in series with a capacitor of .05 farads and a battery
of E volts. At t — 0 there is no charge on the capacitor. Find the charge and current at any
time t > 0 if (a) E - 60, (6) E = lOOíe-2*.

2.80. Find the charge and current in the circuit of Problem 2.79 if E — 100 cos 2i.

2.81. Find the orthogonal trajectories of the family of curves
(a) xy = c, (b) x2 + y2 = ex, (c) y2 = ex2 - 2y

2.82. Find the equation of that curve passing through (0,1) which is orthogonal to each member of the
family x2 + y2 = cex.

2.83. A curve passing through (1, 2) has the property that the length of the perpendicular drawn from
the origin to the normal at any point of the curve is always equal numerically to the ordinate of
the point. Find its equation.

2.84. The tangent to any point of a certain curve forms with the coordinate axes a triangle having
constant area A. Find the equation of the curve.

2.85. A tank contains 100 gallons of water. A salt solution containing 2 Ib of salt per gallon flows in at
the rate of 3 gallons per minute and the well-stirred mixture flows out at the same rate, (a) How
much salt is in the tank at any time? (b) When will the tank have 100 Ib of salt?

2.86. In Problem 2.85, how much salt is in the tank at any time if the mixture flows out at (a) 2 gal/min,
(6) 4 gal/min.

2.87. A right circular cylinder of radius 8 ft and height 16 ft whose axis is vertical is filled with water.
How long will it take for all the water to escape through a 2 in2 orifice at the bottom of the tank
assuming the velocity of escape v in terms of the instantaneous height h is given by v = .6^/2gh.

2.88. Solve Problem 2.87 if the cylinder has its axis horizontal.
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2.89. The rate at which bacteria multiply is proportional to the instantaneous number present. If the
original number doubles in 2 hours, in how many hours will it triple?

2.90. After 2 days, 10 grams of a radioactive chemical is present. Three days later 5 grams is present.
How much of the chemical was present initially assuming the rate of disintegration is proportional
to the instantaneous amount which is present?

2.91. Find the half life of a radioactive substance if three quarters of it is present after 8 hours.

2.92. Chemical A is transformed into chemical B at a rate proportional to the instantaneous amount of
A which is untransformed. If 20% of chemical A is transformed in 2 hours, (a) what percentage
of A is transformed in 6 hours and (b) when will 80% of A be transformed?

2.93. It takes 15 minutes for an object to warm up from 10°C to 20°C in a room whose temperature is
30°C. Assuming Newton's law of cooling, how long would it take to warm up from 20°C to 25°C?

2.94. At 1:00 P.M. the temperature of a tank of water is 200°F. At 1:30 P.M. its temperature is 160°F.
Assuming the surrounding temperature is maintained at 80 °F, (a) what is the temperature at
2:00 P.M. and (6) at what time will the temperature be 100°F? Assume Newton's law of cooling.

2.95. A beam of length L ft and negligible weight is simply supported at the ends and has a con-
centrated load W Ib at the center. Find (a) the deflection and (6) the maximum deflection.

2.96. A cantilever beam of length L ft has a weight of w Ib/ft. Find (a) the deflection and (6) the
maximum deflection.

NUMERICAL METHODS
2.97. Use the step-by-step or Euler method to solve numerically each of the following.

(a) dy/dx = y, y(0) = 1; find y(.2) using h - .05.
(6) dy/dx = x + y, y(0) = 0; find y(.5) using h = .1.
(c) dy/dx = Sx — y, y(l) = 0; find y(.5) using h = .1.

2.98. Work Problem 2.97 using the modified step-by-step or Euler method.

2.99. Work Problem 2.97 using (a) the Taylor series method, (b) Picard's method, (c) the Runge-Kutta
method.

2.100. (a) Given dy/dx - (x + y)2, y(0) = 1, find an approximate value for y(.2) by using an appropriate
numerical method. (6) Compare with the exact solution obtained by using the transformation
x + y — i)2.

2.101. If tPy/daP + y = x, j/(0) = 1, j/'(0) = 0, find y(.5) using the (a) Euler method, (6) Taylor series
method, (c) Picard method, (d) Runge-Kutta method.

2.102. If h y — 2x, y(l) = 0, j/'(l) = 0 find y(A) using an appropriate numerical method.
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Answers to Supplementary Problems
2.52. (a) order 3, dep. var. U, ind. var. t, ordinary. (V) order 2, dep. var. T, ind. var. x,y,z, partial.

(c) order 2, dep. var. y, ind. var. x, ordinary, (d) order 3, dep. var. s, ind. var. t, ordinary, (e) order
2, dep. var. y, ind. var. x, ordinary. (/) order 1, dep. var. u (or v), ind. var. v (or u), ordinary.

2.53. All solutions except for (c) are general solutions.

2.54. (6) y - e~x(3 sin x — 2 cos*)

2.55. The first is a general solution and the second a singular solution.

2.56. (a) (1 - x2)y' + xy = 0 (6) yy" + y'* = 0

2.57. (a) y' = (y-l)/(x-2) (b) (y - 1)2(1 + y'2) = 1

2.58. (a) y - 2x* - 2x2 + x + c (b) y - 2x* - 2x2 + x + 2

2.59. (a) y = 9*7/3 - 2x - 7 (c) s = 2 + 12t - 2ts - 16 sin t
,,, 1 . . x4 2x . 5
W » = 2 to* + 2 4 ~ T + 8

2.60. (a) y = ce~xí (c) I = 5(l-e-2t) (e) ^ = (1 + a;)2/(l - x)2

(b) y = 2/x* (d)

2.61. (a) x2 + 4xy — 5y2 = c (c) yex — xe~y = c
(b) 2xzy2 - 3x + 2y3 = -3 (d) x2 cos y + j/3 tan 2x - 4x = c

2.62. (a) a;3; «-ty - £ic6 = c (c) e«; e»(2a; - 3y) = 4
(6) 1/3/3; a^ — x = cy2 (d) cos x; y cos2 a; + y* cos3 » = c

2.63. (a) 2x3y* — x*ys = c; int. factor x2y3 (b) 3xy2 + 2 = cx3ys; int. factor x~*y~*

2.64. (a) 2 tan~i(y/x) + 4» + j/2 = c (6) a:2 - 2/2 = ce~2*

2.65. (a) xy = x* + 1 (¿) y ~ e3x — 2x — 1
(6) » + 3# = ex* (d) y sin2 » = c — cos »

2.66. (a) x2-xy = cy (c) x2 - 3xy - 2y2 = c

(b) x = ce-*'<-* + y> (d) ln(5a;2-4i»;3/ + 2/2) + 2tan-i = c

2.67. (a) xy(c-x2) = 2 (b) xe*lv* = c

2.68. (a) (* - 2)2 + 4(« - 2)(» - 1) - fo - I)2 = c
(6) *2 _ 2xy + y2 + 2x + 2y - c

2.69. (as + y + 1)(1 - *) = 1

2.70. (a) (y - x + c)(y - cex) = 0 (b) x(xy - c)2 - 4

2.71. (a) y = ex + 2c2; sing, solution y = -x2/8.
(b) (x — c)2 = cy; sing, solutions y = 0, 4x + y = 0.
(c) (ex — y)2 = e2 — 1; sing, solution x2 — y2 = 1.
(d) y2 = ex2 - c2; sing, solutions y = ±x2/2.
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2.72. (a) y = -$xs + CjX4 + C2 (c) y = ct sin 2x + C2 cos 2» or y = a sin (2* + 6)
(6) j/s = Clx + c2 (d) (x - a)2 + (y - Í»)2 = 1

2.74. (a) v = 40 - 40i (6) x = 40t - 2i2

2.75. (a) v = 4(1-e-»') (6) v = 41 = 4tanh8i

2.77. (a) / = 8(1 —e~16t), max. current = Samp
(6) / = 8(2e-16t, max. current = e~2/8 = .01692 amp
(c) / — 8(e~8t— e~16i), max. current = 2 amp

2.78. (a) / = 6.4 sin 8t - 3.2 cos 8i + 3.2e-i«
(6) Transient current = 3.2e~16t, steady-state current = 6.4 sin 8i — 3.2 cos 8t

2.79. (a) Q = 3(1-«-*), / = 3e~'
(6) Q = Se-* - 5e-2« - 5te~**, I = lOie-2' + 5e~* - 5e~*

2.80. Q = 2 sin 2t + cos 2i - e~*, / = 4 cos 2i - 2 sin 2i + e~*

2.81. (a) w2 - 1/2 = fc (6) a;2 + j/2 = % (c) y + 1 = feeV4(x2+2!/+!'2)

2.82. * = j/ tan 2.83. a2 + j/2 = 5w 2.84. 2*j/ = A

2.85. (a) 200(1 - e~-o«) (6) after 23.1 minutes

2.86. (a) (100 + t) - (6) 3(100 -1) - 300 , 0 S t S 100

2.87. 6.72 hr 2.88. 5.69 hr 2.89. 3.17 hr

2.90. 10\̂ 4 or 21.54 gm 2.91. 19.26 hr

2.92. (a) 48.8% (6) after 14.43 hr 2.93. 30 min

2.94. (a) 133.3°F (6) about 3:12 P.M.

2.95. (a) y = (3L2* - 4œ») for 0 g * S LIZ and is symmetrical for LIZ S « ë L (V) WLS/48EI

2.96. (a) y = (x* - 4Lx* + 6L2»2) (6)

2.97. (a) Exact value = 1.2214 (6) Exact value = 2.2974 (c) Exact value = —1.6

2.100. Exact value = 1.5087

2.101. Exact value = .89815

2.102. Exact value = .14776



GENERAL LINEAR DIFFERENTIAL EQUATION OF ORDER n

The general linear differential equation of order n has the form

(1)

A differential equation which cannot be written in this form is called nonlinear.

Example 1. = sin a; is a second order linear equation.

Example 2 . = e~x i s a second order nonlinear equation.
\ /

If R(x), the right side of (J), is replaced by zero the resulting equation is called the com-
plementary, reduced or homogeneous equation. If R(x) ¥= 0, the equation is called the
complete or nonhomogeneous equation.

Example 3. If = sin» is the complete equation, then -
Zxy = 0 is the corresponding complementary, reduced or homogeneous equation.

If ao(x), ai(x), .. .,an(x) are all constants, (1) is said to have constant coefficients, otherwise
it is said to have variable coefficients.

EXISTENCE AND UNIQUENESS THEOREM

If a0(x), ai(x), ..., an(x) and R(x) are continuous in the interval \x — Xo\ < 8 and
a<>(x) ¥= 0, then there exists one and only one solution to (Í) which satisfies the conditions

»(*o) = 2V »'(*„) = V'v • • • ' »("~"(*o) = »o"~" (*)

OPERATOR NOTATION

It is sometimes convenient to adopt the notation Dy, D2y, ..., Dny to denote
The symbols D, D2, ... are called differential operators and have prop-

erties analogous to those of algebraic quantities. Using this notation, we shall agree to
write (1) as

[a»(x)D« + ai(x)D»-i + • • • + a*-i(x)D + an(x)]y = R(x) (3)

or briefly <j)(D)y = R(x)

where <t>(D) = a0(x)Dn + a1(x)Dn~1 + • • • + o»-i(a;)Z> + o»(a;) is called an operator polynomial
in D.

Example 4. - 2xy = sin * can be written (xD2 + 3D - 2x)y - sin x.

71

Chapter 3

Linear
Differential Equations
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LINEAR OPERATORS

An operator L is called a linear operator if for any constants A, B and functions u, v to
which L can be applied, we have

L(Au + Bv) = AL(u)+BL(v)

The operators D,D2,... and <j>(D) are linear operators [see Problem 3.3].

FUNDAMENTAL THEOREM ON LINEAR DIFFERENTIAL EQUATIONS

In order to find the general solution of
4>(D)y = R(x) (4)

where R(x) ¥* 0, let Yc(x) be the general solution of the complementary reduced or homo-
geneous equation my = Q (5)

We often refer to Yc(x) as the complementary or homogeneous solution. Then we have the
following important theorem, sometimes referred to as the superposition principle or
theorem.

Theorem 3-1. The general solution of (4) is obtained by adding the complementary solu-
tion Yc(x) to a particular solution Yp(x) of (4), i.e.

y = Yc(x) + Yp(x)

Example 5. The general solution of (Z>2 — 3D + 2)y = 0 is y - c^* + C2e
2x and a particular

solution of (D2 — 3D + 2)y = 4x2 is 2x2 + 6x + 1. Then the general solution of
(Tft - 3D + 2)y = 4a;2 is y = c^* + c2e*x + Zx2 + 6x + 1.

Because of this theorem it is clear that we shall have to consider separately the problems
of finding general solutions of homogeneous equations and particular solutions of nonhomo-
geneous equations.

LINEAR DEPENDENCE AND WRONSKIANS

A set of n functions yi(x), yz(x), ..., yn(x) is said to be linearly dependent over an interval
if there exist n constants Ci, cz, ..., cn, not all zero, such that

c\yi(x) + c2y2(x) + • • • + cnyn(x) = 0
identically over the interval. Otherwise the set of functions is said to be linearly
independent.

Example 6. 2eSx, 5eSx, e~4x are linearly dependent over any interval since we can find constants
ci> "2. cs n°t all zero such that c^Ze3*) + c2(5e3x) + cs(e~*x) = 0 identically; for in-
stance, Cj = —5, c2 = 2, c3 = 0.

Example 7. ex and xex are linearly independent since Cje* + c2xex = 0 identically if and only if
«i = 0, C2 = 0.

Theorem 3-2. The set of functions 3/1(0;), y2(x), ..., yn(x) [assumed differentiate] is linearly
independent on an interval if and only if the determinant

2/1 (*)

2/;(z)
y?-»(x)

y2(x)

2/2 (<*)

y?-»(x)

• • • yn(*)
• • • y'n(x}

... y?-»(x)

W(yl,y2,...,yr) =

called the Wronskian of yi,..., yn is different from zero on the interval.
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This last theorem is important in connection with solutions of the homogeneous or
reduced equation as seen in the following
Theorem 3-3. [Superposition Principle]. If yi(x),y2(x), ...,yn(x) are n linearly inde-

pendent solutions of the wth order linear equation <j>(D)y = 0, then
y = ciyi(x) + c2y2(x) + • •• + cnyn(x)

where ci, c2, ...,cn are n arbitrary constants, is the general solution of
4>(D)y = 0.

SOLUTIONS OF LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS
The remarks made so far have applied to the general equation (1). Particular sim-

plifications occur when the equation has constant coefficients and we now turn to this case.
Two general procedures are available in this case, namely those which do not involve
operator techniques and those which do. For each case methods exist for finding com-
plementary and particular solutions and use is then made of the fundamental Theorem 3-1.

NON-OPERATOR TECHNIQUES

I. THE COMPLEMENTARY OR HOMOGENEOUS SOLUTION
Let y = emx, m = constant, in (a0D

n + aiDn~l + • • • +an)y = 0 to obtain
a0m

n + aim"-1 H + a« = 0 (6)

which is called the auxiliary equation or characteristic equation. This can be factored
m ° a0(w - mi)(m - m2) • • • (m - mn) - 0 (7)
which has roots mi, m2, ..., mn. Three cases must be considered.
Case 1. Roots all real and distinct.

Then emix, em*x, ..., em"x are n linearly independent solutions so that by Theorem 3-3
the required solution is

y = ciemix + c2e
m*x + • • • + cne

m«x (8)

Case 2. Some roots are complex.
If ao, 01, ..., an are real, then when a + bi is a root of (6) so also is a — bi [where

a, b are real]. Then a solution corresponding to the roots a + bi and a — bi is
y = eax(ci cos bx + c2 sin bx) (9)

where use is made of Euler's formula ein — cos u + c sin u.

Case 3. Some roots are repeated.
If mi is a root of multiplicity k, then a solution is given by

y = (GI + c2x + c3x
2 + • • • + ckx

k~l)em^x (10)

II. THE PARTICULAR SOLUTION
Two important methods for finding a particular solution of 4>(D)y = R(x) are

available.

1. Method of Undetermined Coefficients.
In this method we assume a trial solution containing unknown constants (indi-

cated by a, b, c, ...) which are to be determined by substitution in the given equation.
The trial solution to be assumed in each case depends on the special form of R(x)
and is shown in the following table. In each case /, g, p, q are given constants and
k is a given positive integer.
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R(x)

fepx

f cos px + g sin px

/„** + ft**-» + • • • + / *

ew(/ cos px + g sin qx)

««(/„*" + /! a*- 1+ ••• +/fc)

(/o!>;'c+ • '•+/*) cos pa
+ too*"" H 1- fffc) sin />»

e^Oo»* H 1- /k) cos pa
+ e^x(g^x¡k H h srfc) sin px

Sums oí any or some of the above entries.

Assumed Trial Solution

ae"*

a cos px + b sin px

aux
k + a1x

k~1 + • • • + ak

eix(a cos px + b sin px)

e"x(a0x
k + a&K-1 H h ak)

(a0x
k + • • • + ak) cos px

+ (b0x
k + ••• +bk) sin px

e"x(a^Kk + • • • + ak) cos px

+ e«x(b0x
k H + bk) sin px

Sums of the corresponding trial solutions.

The above method holds in case no term in the assumed trial solution appears in
the complementary solution. If any term of the assumed trial solution does appear
in the complementary solution, we must multiply this trial solution by the smallest
positive integral power of x which is large enough so that none of the terms which
are then present appear in the complementary solution.

2. Method of Variation of Parameters.
Let the complementary solution of $(D)y = R(x) be

y = ciyi(x) + c2y2(x) + • • • + cnyn(x)

Replace the arbitrary constants Ci, c2, ..., en by functions Ki(x), K^x),..., Kn(x)
and seek to determine these so that y = K\y\ + Kzyz + • • • + Knyn is a solution of
<t>(D)y = R(x). Since, to determine these n functions, we must impose n restrictions
on them and since one of these is that the differential equation be satisfied, it follows
that the remaining n -1 may be taken at will. The conditions which lead to the
greatest simplicity are given by the equations

K'^ + K'^+.-.+K'^ = 0
% + %+•••+*X = o

tf><"-2) + K'2y?-» + • • • + £><,»-» = 0
#><«-» + #><»-» + • • • + Kfâ-» = R(x)/a0

(11)

where the last equation represents the condition that the given differential equa-
tion be satisfied.

Since the determinant of the above system of equations is the Wronskian of
2/1,2/2, ..., 2/n which is supposed to be different from zero, the equations can be solved
for K(,Kz, ...,K'n. From these Ki,Kz, .. .,Kn can be found by integration leading
to the required solution. The method is applicable whenever the complementary
solution can be found, including cases where oo,.. . , a» are not constants.
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OPERATOR TECHNIQUES
When Oo, ai, ..., an are constants, the equation <j>(D)y = R(x) can be written in factored

formas (12)ao(D - mi)(D - m2) • • • (D — mn)y = R(x)

where mi, ...,mn are constants and where the order of the factors (D - mi), ..., (D — mn)
is immaterial. This is not true if 00,0,1,.. .,an are not constants [see Problem 3.2]. The
constants mi, ...,mn are the same as the roots of the auxiliary equation (6) or (7), and so
the complementary solution can be written as before. To obtain particular solutions, the
following operator methods will be found useful.

1. Method of Reduction of Order.
Let ao(D-m2) • • • (D-mJy = Yi. Then (12) becomes (D-mi)Yi = R(x) which

can be solved for YI. Then let a<>(D -ms) ••• (D- mn)y = Yz so that (D - m2)Yz = Yi
which can be solved for Y2. By continuing in this manner, y can be obtained. This
method yields the general solution if all arbitrary constants are kept, while if arbitrary
constants are omitted it yields a particular solution.

2. Method of Inverse Operators.

Let -Tn\ R(x) be defined as a particular solution yp such that <¡>(D)yp = R(x). We
<p\u>

call 1/£(D) an inverse operator. By reference to the entries in the following table, the
labor involved in finding particular solutions of <¡>(D)y = R(x) is often diminished con-
siderably. In using these we often employ the theorem that

Table of Inverse Operator Techniques

This can also be evaluated by expanding
the inverse operator into partial fractions
and then using entry A.

which is simply a statement of the fact that 1/^>(D) is a linear operator.

A

B

C

D
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Table of Inverse Operator Techniques (cont.)

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

Various methods are available for solving differential equations of the form (1) where
«to, 0,1,..., On are not constants. In the following we list a few important methods.

I. MISCELLANEOUS TRANSFORMATIONS OF VARIABLES

1. Cauchy or Euler Equation. This equation has the form
(b0x

nDn + bixn-lDn~l + • • • + bn-!xD + bn)y = R(x)

where 60, & i , . . . , bn are constants. It can be solved by letting x — e* and using
the results

xD = Dt, x2D2 = Dt(Dt-l), x3D* = Dt(Dt-l)(Dt-2), ...

where Dt = d/dt, thus reducing the equation to one with constant coefficients.
The case where R(x) = 0 can be solved by letting y = x" and determining the
constant p.

2. Case where one solution is known. If one solution y = Y(x) of 4>(D)y - R(x)
is known, then the substitution y = vY(x) transforms the differential equation
into one of order n -1 in v'. If n - 2, the equation can then be solved exactly.
See Problem 3.34.

3. Reduction to canonical form. The general second order linear equation
y" + p(x)y' + q(x)y = r(x) (IS)

can be transformed into the canonical form

v" + f(x)v = g(x) (14)

E.

"Re" means "real part of" and "Im" means if $(ip) ^ o, otherwise use entry C.
"imaginary part of".

F.

xv = (c0 + CID + h ckD
k + • • -)XP (c0 + CjZH + cpDi>)xI>

by expanding 1/*<D) in powers of D. sinee DP^xP = 0 for n > 0.
(p = positive integer)

G.

called the "operator shift theorem".

H.
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where (15)

by using the substitution (16)

Thus if (14) can be solved, so can (13). See Problems 3.35 and 3.36.

II. EXACT EQUATIONS
The equation [ao(x)Dn + ai(x)Dn-1 + ••• + an(x)]y = R(x) is called exact if

a0(x)D» + ai(iK)Z)»-1 + • • • + an(x) = D[p0(x)Dn-1 + ••• + pn-i(x)}

For example, [oo(x)D2 + ai(x)D + a2(x)]y = R(x) is exact if and only if a¿' + aí +
a2 = 0 identically. See Problems 3.37 and 3.38.

III. VARIATION OF PARAMETERS
This method, identical to that on page 74, can be used when the complementary

solution is known.

IV. OPERATOR FACTORIZATION
If <f>(D) can be factored into factors each having the form p(x)D + q(x), then the

method of reduction of order (page 75) can be used. See Problem 3.39.

V. SERIES METHODS
The equation at>(x)y" + ai(x)y' + a2(x)y = 0 where a<>, oi, o2 are polynomials, can

often be solved by assuming that

y = xe(c0 + dx + C2X2+•••) = CkX"** where ck = 0, k < 0 (17)

where fi and Ck are constants. Substituting (17) into the differential equation leads
to an equation for /?, called the indicial equation, and equations for the constants
Co, ci, ... in the form of a recursion formula. By solving for p and the other constants,
a series solution can often be obtained. The series is called a Frobenius series and the
method is often called the method of Frobenius. See Problem 3.40.

SIMULTANEOUS DIFFERENTIAL EQUATIONS

A system of differential equations with two or more dependent variables and one
independent variable can be solved by eliminating all but one of the dependent variables,
thus obtaining a single ordinary differential equation. Solutions obtained should be checked
by substitution into the original differential equations to insure that the proper number of
arbitrary constants are present. See Problem 3.41.

APPLICATIONS

Problems in mechanics, electricity and other fields of science and engineering often lead
to linear differential equations and can be solved by the above methods. See Problems
3.42-3.47.
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Solved Problems
OPERATORS
3.1. Show that (Z>2 + SD + 2)e4x = (D + 2)(D + l)e4* = (D + 1)(D + 2)e*x.

(D2 + 3D + 2)e** - D2e*x + 3De*x + 2e*x = 16e4* + 12eto + 2e4* - 30e4*

(D + 2)(D + l)e4* = (D + 2)(De** + e4*) = (D + 2)(4e4* + e**) = (Z> + 2)(5e4*) = 30e4*

(D + l)(D + 2)e*x = (D + l)(De** + 2e**) = (D + l)(4e4* + 2e4*) = (Z> + l)(6e4*) = 30e4*

The result illustrates the commutative law of multiplication for operators with constant coefficients.
In general, however, the commutative law for multiplication does not hold for operators with
nonconstant coefficients, as seen in Problem 3.2.

3.2. Show that the operators xD + l and D — 2 are not commutative with respect to
multiplication.

(xD + 1)(D - 2)y = (xD + l)(y' - 2y) = xD(y' - 2y) + (y' - 2y) = xy" - 2xy' + y' - 2y

(D - 2)(xD + l)y - (D - 2)(xy' + y) = D(xy' + y)- 2(xy' + y) = xy" - 2xy' + 2y' - 2y

Then (xD + i)(D — 2)y ¥> (D — 2)(xD + l)y and the required result is proved.

3.3. (a) Prove that D,D2,D3, ... are linear operators. (6) Prove that <¡>(D) = ao(x)Dn +
ai(*)Z)n~1 + • • • + On(x) is a linear operator.

(a) D(Au + Bv) = = A Du + B Dv

and so D is a linear operator [see page 72].
In a similar way we can show that D2, D3, ... are linear operators.

(*>)

and so <t>(D) is a linear operator.

3.4. Prove that if yi,yz,...,yn are solutions of the equation $(D)y = 0 then Ciyi +
c2î/2 + • • • + cnyn where c\, cz,... cn are arbitrary constants, is also a solution.

We have <t>(D)Vl = 0, $(D)y2 = 0, ..., <t>(D)yn = 0
Then using Problem 3.3,

<t>(D)[ciyi + C2v2 + • • • + cnyn] = cl<f>(D)yl + c20(D)j/2 + • • • + cn<¡>(D)yn = 0
and so cly1 + o2y2 + • • • + cnyn is a solution.

3.5. Prove Theorem 3-1, page 72.
Let y = Yc(x) be the general solution of <t>(D)y = 0, i.e. one having n arbitrary constants.

Let y = Yp(x) be a particular solution of <f>(D)y = R(x). Then y = Yc(x) + YP(x) is the general
solution of <f>(D)y = R(x), since by Problem 3.3
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LINEAR DEPENDENCE AND WRONSKIANS

3.6. Show that the functions cos 2x, sin2 x, cos2 x are linearly dependent.
We must show that there are constants clf e2, cs not all zero such that e1 cos 2x + c2 sin2 x +

cs cos2 * = 0 identically. Since cos 2w = cos2 x — sin2 x, we can choose ct = 1, c2 = 1, c3 = —1
and the required result follows.

3.7. Prove that if the Wronskian of the set of functions y\,... yn is different from zero
on an interval, then the functions are linearly independent on the interval.

Suppose the contrary, i.e. that the functions are linearly dependent on the interval. Then there
are n constants c l5..., cn, not all zero, such that

Ci2/i + • • • + enyn = O (Í)

identically. By successive differentiation we then have identically

Ciy'i + • • • + cny'n = 0

ClJ/(n-i) + ... + cny<»-» = 0

Now in order for the system of n equations (Í) and (ê) to have solutions for c1( .. .,cn which are
not all zero, we must have

Since W ¥° 0 by hypothesis, the contradiction shows that the functions cannot be linearly
dependent and so must be linearly independent.

3.8. Prove that if the functions yi, ..., yn are linearly independent on an interval, then
the Wronskian is different from zero.

Suppose the contrary, i.e. the Wronskian is zero for a particular value x0 of the interval.
Consider the system of equations

Since the Wronskian is zero we see that this system has a solution c,, ..., cn not all zero. Now let
V = ctf^x) + • • • + cnyn(x) (2)

If J/i(*), • • ->yn(x) are solutions of <t>(D)y = 0, it follows from Problem 4 that (2) is also a solution
of <f>(D)y — 0 which as is seen from equations (1) satisfies the conditions y(x0) — 0, y'(x0) = 0, ...,
j/Cn-i)(a;0) = 0. But y = 0 satisfies <f>(D)y = 0 and these same conditions. Thus by the uniqueness
theorem of page 41 it follows that the only solution is y = 0, i.e.

Ci3/i(*) + • • • + cnyn(x) = 0

from which we see that j/1( ..., yn are linearly dependent. Since ylt ..., yn are linearly inde-
pendent by hypothesis, the contradiction shows that the Wronskian cannot be zero for ic0 and the
required result is proved.

This problem and Problem 3.7 together provide a proof of Theorem 3-2.
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3.9. Let y\(x), Vi(x) be solutions of y" + p(x)y' + q(x)y = 0.
(a) Prove that the Wronskian is W = yiyí — y¿y[ = ce~Svax.
(b) Under what conditions on c will y\ and 2/2 be linearly independent.

(a) Since yt and yz are solutions,
y" + py{ + qy! = 0, y'z + py'z + qyz = 0

Multiplying these equations by j/2
 and 2/i respectively and subtracting,

yiv'z -y^y" + p(2/ií/2-2/22/í) - o (i)
Then using W = y^a'z — VzV\ and noting that î/iî/2'— 2/zî/i' — dWIdx, (1) becomes

+ pW = 0

which has the solution W = ViVz —V&i = ce~Spdx (2)

This result is sometimes called Abel's identity,

(b) Since e-/»1»1 is never zero, W = 0 if and only if c = 0 and W ¥* 0 if and only if e ̂  0.
Thus if c ¥= 0, j/! and j/2 are linear independent.

THE REDUCED OR HOMOGENEOUS EQUATION
3.11. (a) Find three linearly independent solutions of (D3 - 9D)y = 0 and (b) write the

general solution.
(a) Assume that y = emx is a solution where m is a constant. Then (Z>3 — 9D)emx = (w3 — 9m)emx

is zero when ms — 9m = 0, i.e. m(m — 3)(m + 3) = 0 or m = 0,3, —3.
Then e°x = 1, esx, e~3x are solutions. The Wronskian is

= 54

so that the functions are linearly independent by Theorem 3-2.

(6) The general solution is y - e^ + e2e3* + c3e~Sx = Cj + c2e3x + cae~Sx.

3.12. Solve (a) 2y" - 5y' + 2y = 0. (6) (2DS - D2 - 5D - 2)y = 0.
(a) The auxiliary equation is 2m2-5«t + 2 = 0 or (2m — l)(w-2) = 0 so that m = 1/2,2.

Then the general solution is y = Cje*/2 + C2e2x.

(6) The auxiliary equation is 2m3 - m2 - 5m - 2 = 0 or (2m + l)(m + l)(m - 2) = 0 so that
m — —1/2, —1,2. Then the general solution is y = e^-*'2 + c2e~* + ese^.

1 esx

0 3e31

0 9e3*

e-ax

-Se-te
ge-3x

_ 3e«* -3e~Sx

9e8i 9e-3i

Then integrating and solving for yz leads to the required linearly independent solution.

so that the general solution is y = c\y\ + ctyz.

From (2) of Problem 3.9 we have on dividing by yz. *£ 0,

3.10. Use Problem 3.9 to prove that if y\ is a known solution of y" + p(x)y' + q(x)y = 0,
then a linearly independent solution is
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3.13. Solve y" + 9y = 0 or (D* + V)y = 0.
The auxiliary equation is m2 + 9 = 0 and m = ±Si. Then the general solution is

y = Ae3to + Be~3ix = A(cos Sx + i sin Sx) + B(cos Sx — i sin Sx) which can be written y =
Cj cos Sx + c2 sin Sx. Since cos Sx, sin 3* are linearly independent, this is the general solution.

3.14. Solve (D2 + 6D + 25)y = 0.
The auxiliary equation is m2 + 6m + 25 = 0 and so m —

Then the general solution is

y = Ae<-3+4i>* + Be<-8"*1)a: = e~Sx(Ae*ix + Be-***) = e~íx(eí cos 4a; + c2 sin 4»)

3.15. Solve (Z>4-16)|/ = 0.
The auxiliary equation m4 -16 = 0 or (m2 + 4)(m2 - 4) = 0 has roots ±2i, ±2. Then the

general solution is y = el cos 2x + c2 sin Zx + cse
2x + c4e~2x.

3.16. Solve y" - 8y' + 16y = 0.
The equation can be written (D2 — 8D + 16)y = 0 or (D — 4)2y = 0. The auxiliary equation

(m — I)2 = 0 has roots m = 4,4 so that e4*, e4x are solutions corresponding to these repeated roots.
However, they are clearly not linearly independent and so we cannot say that y = Cje4x + C2e4j: is
the general solution, since it can be written (cj + c2)e41 = ce41 which involves only one arbitrary
constant. There are two methods which can be used to get the general solution.

Method 1.

Write the given equation as (D - 4)(I> - 4)j/ = 0 and let (D — 4)y = Yl so that (D - a)Y1 - 0
and so Yl = A^. Thus (D — 4)y = Aje4*. Solving, we find y = (et + ctffie*1.

This method, called the method of reduction of order, illustrates a general procedure for
repeated roots. Using it we would find, for example, that if 4 were a triple repeated root, the
general solution would be y — (Cj + e2x + C3x

2)e*x.

Method 2.

Since one solution yt = e*x is known, we can use Problem 3.10 to find the linearly independent
solution

2/2 =

Then the general solution is y — eje41 + c2xe*x = (cj + czx)e*x.

3.17. Solve (D + 2)S(D - 3)4(D2 + 2D + 5)y = 0.
The auxiliary equation (m + 2)a(m - 3)4(w2 + 2m + 5) = 0 has roots -2, -2, -2, 3, 3, 3, 3,

—1 ± 2i. Then the general solution is

y = (cj + C2x + cax
z)e-2x + (c4 + csx + cex

2 + e?xs)e3x + e~x(cg cos 2x + c9 sin 2x)

THE COMPLETE OR NONHOMOGENEOUS EQUATION.
UNDETERMINED COEFFICIENTS
3.18. Solve (D2 + 2D + 4)y = 8xz + l2e~x.

The complementary solution is e~x(cl cos ̂ x + e2smv/3^).
To obtain a particular solution assume corresponding to 8*2 and 12e~x the trial solutions

ax2 + bx + c and de~x respectively, since none of these terms are present in the complementary
solution. Then substituting y = ax2 + bx + c + de~x in the given equation, we find

¿lax2 + (4a + 46)* + (2a + 26 + 4c) + Sde'* - 8*2 + I2e~x
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Equating corresponding coefficients on both sides of the equation,
4a = 8, 4a + 46 = 0, 2a + 26 + 4c = 0, 3d = 12

Then a = 2, 6 = —2, c = 0, d = 4 and the particular solution is 2x2 — 2x + 4e~x. Thus the
required general solution is

3.19. Solve Problem 3.18 if the term 10 sin Bx is added to the right side.
Corresponding to the additional term 10 sin Sx we assume the additional trial solution

h cos Sx + k sin 3» which does not appear in the complementary solution. Substituting this into
the equation (D2 + 2D + i)y = 10 sin Sx,

(6fc - 5h) cos Sx - (5k + 6h) sin Sx - 10 sin 3¡»

Equating coefficients,
6k - 5h = 0, 5k + 6h - -10

or . Then the required general solution is

3.20. Solve (D2 + 4)y = 8sin2«.
The complementary solution is c1 cos 2x + c2 sin 2x.

For a particular solution we would normally assume a trial solution a cos 2x + b sin 2x. How-
ever, since the ternis appear in the complementary solution, we multiply by x to obtain the trial
solution x(a cos 2x + 6 sin 2x). Then substituting in the given equation,

—4a cos 2x — 46 sin 2x — 8 sin 2x

so that 4o = 0, —46 = 8 and o = 0, 6 = —2. Then the required general solution is
y = c1 cos 2x + c2 sin 2x — 2x sin 2x

3.21. Solve (D5 - 3D4 + 3D3 - D2)y = x2 + 2x + Se*.
The auxiliary equation is m5 — Sm4 + 3m3 — -m2 = 0 or m2(m — I)3 = 0. Thus m —

0, 0, 1, 1, 1 and the complementary solution is
Cj + c2x + (c3 + c4x + C5x

2)ex

Corresponding to the polynomial x2 + 2x, we would normally assume a trial solution ax2 + bx + c.
However, some of these terms appear in the complementary solution. Multiplying by x, the trial
solution would be x(ax2 + bx + c) = ax3 + bx2 + ex, but one of these terms is still in the com-
plementary solution. Finally multiplying by x again to obtain ax4 + bx3 + ex2, we see that this
has no term in the complementary solution and so is the needed trial solution.

Similarly, corresponding to Sex we would normally assume a trial solution dex. But since
this term as well as dxex and dx2ex are in the complementary solution, we must use as trial solution
dx3ex.

Thus the assumed trial solution is ax* + bx3 + ex2 + dx3ex. Substituting this in the given
equation, we find

-12aa;2 + (72a - 6b)x + (186 - 72a - 2c) + 6dex = x2 + 2x + Sex

from which and the general solution is

THE COMPLETE OR NONHOMOGENEOUS EQUATION.
VARIATION OF PARAMETERS

3.22. Solve y" + y = sec x or (D2 + l)y = sec x.
The complementary solution is Cj cos x + c2 sin *. Then we assume the general solution to be
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y = Kl cos x + K2 sin x where Klt K2 are suitable functions of x to be determined. Differentiation
yields

y' = —K-1 sin x + K2 cos x + Kl cos x + K2 sin x (1)

Since there are two functions KltK2, we must arrive at two conditions for determining them.
However, one of these conditions is that the differential equation must be satisfied. Thus we are at
liberty to impose arbitrarily the second condition. We choose this condition to be the one which
simplifies (1) most, namely

K( cos x + K2 sin x = 0 (2)

Then (1) becomes y' = —K1 sin x + K2 cos x

Differentiating again
y" = —Kl cos x — K2 sin x — K1 sin x + K2 cos x

Thus y" + y = —K[ sin x + K2 cos * = sec a; (3)

From the two equations
K[ cos x + K2 sin x = 0

—K1 sin x + K2 cos x = sec x

we find K[ = 1, K2 = —tan x. Thus by integrating, K1 = x + c¡, K2 = —In sec x + c2 and the
required general solution is

y = GI sin x + c2 cos x + x sin x — cos x In sec x

3.23. Solve (D3 + 4D)y = 4 cot 2x.
The complementary solution is ci + c2 cos 2x + c3 sin 2x. Then we are led to the following

equations for determining the functions Klt K2, Ks in the general solution

y = KI + K2 cos 2x + K3 sin 2x

KI + K2 cos 2x + K's sin 2x = 0

0 - 2K'2 sin 2x + 2K'Z cos 2x = 0

0 - 4K2 cos 2x - 4K'3 sin 2x = 4 cot 2œ

Solving this system, we find K( = cot 2x, K2 — —cos2 2x/sin 2a;, K's — —cos 2x so that

From this we find the general solution

OPERATOR TECHNIQUES

3.24. Evaluate

Method 1.

Let Then by definition (D — 2)y — e*x or — 2y = e4x. Solving this as a

first order linear equation with integrating factor e~2x, we obtain y = ^e4x + ce2*. Since we are
interested only in particular solutions,

Method 2 [using formula A, page 75, derived as in method 1].



3.26. (a) Prove that

(&) Find the general solution of (D2 -3D + 2)y = e5x using the result in (a).

(a) By definition <f>(D) = a0D
n + OjD»-1 + • • • + on where a0,alt ...,«„ are constants. Then

4>(D)e»x = (auD
n + o^D»-1 H h an)e

px = (a0p
n + e^p"-1 + h an)e"x

= <p(p)e1Kt

Thus if <6(p) i* 0, then

 since t h e complementary solu-
eSx

tion is cle
x + c2e

2x, the general solution is y = c^ex + cze
2x + -^r.i¿

3.27. (a) Prove that

(6) Find the general solution of (D2 + l)2y — cos 2a; by using the result in (a).

(a) $(D2) = d0(D2)n + ai(D2)n-l + . . . + OB so that

<f>(D2) cos (px + q) - [a0(D*)« + ai(D
2)«-i + • • • + an] cos (px + q)

= M-P2)" + «li-p2)"-1 + • • • + « „ ] cos (px + q)

= #(—p2) cos (pw + g)

using £>2[cos (px + q)] = -p2 cos (px + q), (D2)2 cos (p* + q) - (-p2)2 cos (pa; + q), etc.

Thus if <&(—p2) ^ 0, the required result follows.

(&) eos 2* by part (a). Then since the complementary
solution is c, cos x + c2 sin x + x(cs cos x + c4 sin *), the required general solution is

y = Cj cos » + c2 sin a; + x(cs cos * + e4 sin *) + ¿-cos 2w9
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3.25. Find

Method 1.

Method 2. Using partial fractions,
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(a) Use mathematical induction. The result is true for n = 1, since D[eJ>xR(x)] = e^xDR(x) +
pei>xR(x) = eP*(D + p)R(x). Assume the result true for n = k. Then Dk[et>*R(x)] -
epx(£) + p)kR(x). Differentiating both sides,

Thus if the result is true for n = k, it is true for n = fc + 1; but since it is true for n = I,
it must be true for n = 2, ... and thus all n.

(6)

(c) Let = y so that <f>(D)y = eJ>xR(x). Then

or

from which

3.30. Solve (Ds + D)y = e-*x cos2x.

Using Problem 3.29,

Since the complementary solution is ct + c2 cos x + c3 sin x, the required general solution is

y = c1 + cz cos x + c3 sin x + (9 sin 2x + 1 cos 2x)

3.29. Prove that

3.28. Evaluate

We can show by a method similar to that in Problem 3.27 that D2 can formally be replaced
by -22 = -4. Thus



3.31. Evaluate

By formal long division in ascending powers of D,
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CAUCHY OR EULER EQUATION

3.32. Let D - d/dx and Dt = d/dt. Prove that if x = e*, then

(a)

Then xDy = e*Dy = Dty or xD = Dt.

(6)

Then x2D*y = e*D*y = (Dt - Dt)y or xW = D{ -Dt = Dt(Dt - 1).

3.33. Solve
By the transformation x = e* the equation becomes

Then the general solution is

Another method.

Letting y = xv in the complementary equation we find

Thus x2 and x~2 are solutions and the complementary solution is

We can now use the method of variation of parameters to find the required general solution.

CASE WHERE ONE SOLUTION IS KNOWN
3.34. Solve given that y — x is a solution.is a solution.

Let y = xv. Then y' — xv' + v, y" — xv" + 2v' and the given equation becomes

Integration yields

i.e.

or

Then

and so the general solution is

We can also use the result of Problem 3.10 to solve the equation.
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REDUCTION TO CANONICAL FORM
3.35. By letting y = uv and choosing u appropriately, obtain a differential equation cor-

responding to y" + p(x)y' + q(x}y — r(x) with the term involving the first derivative
removed.

Substituting y = uv in the given equation, we find
uv" + (2ur + pu)v' + (u" + pu' + qu)v = r (1)

Let 2u' + pu = 0 so that u = e~$ W>t* . Then (1) becomes

(2)
as required. Equation (2) is called the canonical form of the given equation.

3.36. Solve 4x2y" + 4xy' + (x2 - l)y = 0.
Comparing with Problem 3.35, p = l/x, q = (x2 — l)/4a;2, r = 0. Then the canonical form is

V" + %v = 0 or

Thus

EXACT EQUATIONS
3.37. Show that [a0(x)D2 + ai(x)D + a2(x)]y = R(x) is exact if and only if a'd - a( + a2 = 0

identically.
By definition of an exact equation, there are functions PQ(X), PI(X) such that

[ooD2 + aiD + a¿y = D[p0D + Pl]y = [p0Z>2 + (p£ + Pl)D + p(]y

Then we must have a0 = pv, a± — p'u + plt a2 — p{

Eliminating p0, p1 from these 3 equations, we find a'¿ — a¡ + ct2 = 0.

Conversely if «£,' — a{ + az = 0, then
[ct0I>2 + aj) + a2]y = [a0D

2 + aj) + a{ - a'0']y = D[a0D + at - a'9}y

and the equation is exact.

3.38. Solve (1 - x2)y" - Zxy' - y = 1.
Comparing with Problem 3.37, a0 = 1 — x2, al = —3*, a2 = —1 and a'0' — a{ + a2 = 0 so that

the equation is exact and can be written

D[(l - xz)D - x]y = 1

Integrating this equation and solving the resulting first order linear differential equation

we find that

OPERATOR FACTORIZATION

3.39. (a) Show that the operator xD2 + (2x + 3)Z) + 4 = (D + 2)(xD + 2).
(6) Use (a) to solve xy" + (2x + S)y' + 4y = e2x.

(a) (D + 2)(xD + 2)y = (D + 2)(xDy + 2y) = D(xDy + 2y) + 2(xDy + 2y)

= xD*y + Dy+ 2Dy + 2xDy + 4y = [xD* + (2x + 3)D 4- 4]j/



Then the corresponding solution is

and from these it is clear that c0 and Cj are undetermined while cz, es, c4,... are found in terms of
c0 and c1 as follows:

Putting k = 1,2,3,4, ... in (2), we find

Case 1, p = —1/2. In this case (i) becomes

Since this must be zero, each coefficient must be zero so that
{4(fc + /3)2-l}cfc + cfc_2 = 0 ' (1)

Let fc = 0. Then since c_2 = 0, (1) becomes (4/82 — I)c0 = 0 which is called the indicial equation.
Assuming c0 ¥= 0, this leads to 4/Î2 — 1 = 0, ¿8 = ±1/2. We have two cases 0 = 1/2, —1/2 and
we shall consider the smaller value —1/2 first.

In order to write the series on the right in terms of coefficients of xk+P, we must replace the index
of summation k in the third series by fc — 2 [note that this does not affect the limits — «o and °° of
the index of summation!. Then the series on the right can be written

omitting the summation limits. Thus

where we define

SERIES METHODS

3.40. Solve Problem 3.36 by using the method of Frobenius.
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(6) The given equation can be written Then
we findNow solvingand
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which is equivalent to the solution obtained in Problem 3.36.
Note that for this equation it is not necessary to consider Case 2, p = 1/2 since we have

already obtained the required solution. Note also that if we had considered ft — 1/2 first, we
would not have obtained the general solution. This is typical in general when the roots of the
indicial equation differ by any integer except zero. In other equations both cases would have to
be considered, each leading to a series solution. The general solution would then be obtained
from these series on multiplying each by an arbitrary constant and adding.

SIMULTANEOUS EQUATIONS
3.41. Solve the system of equations

Write the system as
(.D2 + 3)« + Dy = e~t, -Wx + (D2 + B)y = sin2t (1)

Method 1, using determinants.
Formal application of Cramer's rule for solving linear equations can be used and we find

where we have expanded the determinants so that operators precede functions.
Note that the results are equivalent to

(Z>2 + i)(D2 + g)x = 4e-«-2cos2t, (D2 + 1)(Z>2 + 9)j/ = -sin2i-4e-'
Solving these equations we find

We can show that the total number of arbitrary constants in the solution is the same as the degree
of the polynomial in D obtained from the determinant

#2 + 3 D
-W Z>2 + 3 = D* + 1002 + 9

i.e. 4. Thus there is a relationship between the constants Cj, e2, cs, c4 and cs, ce, c7, cg. To determine
this relationship we must substitute the values of x and y obtained above in the original equations.
If we do, we find

c5 = 2c2, ce = -2c1( c7 = -2c4, c8 = 2c8

Thus the required solution is

Method 2.

We can also eliminate one of the variables, for example x, by operating on the first of equations
(Í) with 4Z>, the second with D2 + 3 and adding. To solve the resulting equations, we can then use
the method of undetermined coefficients.
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APPLICATIONS
3.42. A particle P of mass 2 (gm) moves on the x axis attracted toward origin O with a

force numerically equal to Sx. If it is initially at rest at x = 10 (cm), find its posi-
tion at any later time assuming (a) no other forces act, (&) a damping force numeri-
cally equal to 8 times the instantaneous velocity acts.
(a) Choose the positive direction to the right [Fig. 3-1]. When

x > 0, the net force is to the left [i.e. is negative] and so
is —8*. When x < 0, the net force is to the right [i.e. is
positive] and so is also —8». Thus by Newton's law,

and

Fig. 3-1

x = «! cos 2i + c2 sin 2t

Since x - 10, dx/dt = 0 at í = 0, we find x = 10 cos 2f.
The graph of the motion is shown in Fig. 3-2. The amplitude [maximum displacement from

0] is 10 (cm). The period [time for a complete cycle] is ir (sec). The frequency [number of cycles
per second] is 1/n- (cycles per second). The motion is often called simple harmonic motion.

Fig. 3-2 Fig. 3-3

the general solution of which is x — e~2t(ct + ezt). Since x = 10, dx/dt = 0 when t = 0,
ct = 10, c2 = 20 so that x = 10e~2t(l + 2i). The motion is non-oscillatory. The particle
approaches 0 but never reaches it [see Fig. 3-3].

3.43. A 20 lb weight suspended from the end of a vertical spring stretches it 6 inches.
Assuming no external forces, find the position of the weight at any time if initially
the weight is (a) pulled down 2 inches and released, (6) pulled down 3 inches and
given an initial velocity of 2 ft/sec downward. Find the period and amplitude in
each case.

Let A and B [Fig. 3-4] represent the position of the end of the
spring before and after the weight W is put on. B is called the
equilibrium position. Call y the displacement of W at any position C
from the equilibrium position. Assume that y is positive in the down-
ward direction.

By Hooke's law, 20 lb stretches the spring .5 ft, 40 lb stretches it
1 ft and so 40(.5 + y) lb stretches it (.5 + y) ft. Thus when W is at C,
the tension in the spring is 40(.5 + y) lb.

By Newton's law,

Mass • Acceleration =

or

= Net force on W

= Weight downward

= 20

— Tension upward

40(.5 + y)

or

(6) The damping force is given by —8 dx/dt, regardless of where the particle is. Thus for example
if x < 0 and dx/dt > 0, then the particle is to the left of O and moving to the right so the
damping force must be to the left, i.e. negative. Thus by Newton's law,

Fig. 3-4
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which becomes
+ 64j/ = 0 or V — GI cos 8t + C2 sin 8i

(a) Since at t - 0, we have , c2 = 0 and so y - £ cos 8i. The
amplitude is ft and the period is 2W8 = W4 sec.

(6) Since and

Then the amplitude is ft approx. and the period is W4 sec.

3.44. Solve Problem 3.43 taking into account an external damping force given in pounds by
PV where v is the instantaneous velocity in ft/sec and (a) /3 = 8, (b) ft = 10, (c) /3 = 12.5.

The equation of motion with damping force fiv = /? dy/dt is

(a) If /3 = 8, Solving subject to the conditions y = 1/6, dy/dt = 0

at í = 0, we find

V =

The motion is damped oscillatory with period 2^/4.8 = 5?r/12 sec.

(6) If ¿S = 10, Solving subject to the conditions as in (a), y =

i. The motion is called critically damped since any smaller value of /3 would
produce oscillatory motion.

(c) I f j8 = 1 2 . 5 , a n d we f indThe motion i s called
overdamped.

3.45. (a) Work Problem 3.43 (a) if an external force given by F(t) = 40 cos 8i is applied
for t > 0 and (b) give a physical interpretation of what happens as í increases.
(a) The equation of motion in this case becomes

or

The solution of this, subject to y = 1/6, dy/dt = 0 at t = 0, is
y — % cos 8i + 4t sin 8*

(b) As t increases, the term 4i sin 8t increases numerically without bound and physically the
spring will ultimately break. This illustrates the phenomenon of resonance and shows what
can happen when the frequency of the applied force is equal to the natural frequency of the
system.

3.46. A rod AOB [Fig. 3-5 below] rotates in a vertical plane about a point O on it with
constant angular velocity «. A particle P of mass m is constrained to move along
the rod. Assuming no frictional forces, find (a) a differential equation of motion of
P, (b) the position of P at any time and (c) the condition under which P describes
simple harmonic motion.
(a) Let r be the distance of P from O at time t and suppose that the rod is horizontal at t - 0.

We have
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Fig. 3-5

Net force on P = Centrifugal force + Component force due to gravity

where r — r0, dr/dt = v0 at t = 0

i.e. r0 and v0 are the initial displacement and velocity of P.

(b) Solving (1) subject to (2), we find

(c) Simple harmonic motion along the rod results if and only if r0 = 0 and v0 — g/2o.

(J)

3.47. An inductor of 2 henries, resistor of 16 ohms and capacitor of .02 farads are con-
nected in series with a battery of e.m.f. E = 100 sin3í. At t = 0 the charge on the
capacitor and current in the circuit are zero. Find the (a) charge and (6) current
at £ > 0.

Letting Q and / be the instantaneous charge and current at time t, we find by Kirchhoff's laws

or since / = dQ/dt,

(6)

The first term is the steady-state current and the second, which becomes negligible as time
increases, is called the transient current.

Solving this subject to Q - 0, dQ/dt - 0 at t = 0, we find

(a)

(2)
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3.48. Given the electric network of Fig. 3-6. Find
the currents in the various branches if the
initial currents are zero.

Kirchhoff's second law states that the algebraic 
sum of the voltage drops around &ny closed loop is
zero. Let us traverse loops KLMNK and JKNPJ in
a counterclockwise direction as shown. In traversing
these loops we consider voltage drops as positive 
when we go against the current. A voltage rise is
considered as the negative of a voltage drop. Fig. 3-6

Let 7 be the current in NPJKN. This current divides at junction point K into /i and /2 so that
/ = Ii + 72. This is equivalent to Kirchhoff's first law.

Applying Kirchhoff's second law to loops JKNPJ and KLMNK respectively, we have
dl,

201 - 120 + 2^ + 10/n = O (Í)

d/j d/2
-lO/i - 2^ + 4^ + 20/2 = 0 («)

Putting / = /! + /2 and using the operator D = d/dt, these become
(D + 15)/! + 10/2 = 60 (S)

-(D + 5)/! + (2D + 10)/2 = 0 (4)

Solving these subject to I1 — I2 = 0 at t = 0, we find
/! = 3(1-«-*>«), /2 = f(l-e-2«i), / = |(i_e-20t)

Supplementary Problems
OPERATORS

3.49. Write each of the following in operator form: (a) y" + 4j/' + 5j/ = e~x, (b) 2y'" - x — 2y' + y,
(c) xy' + 2y = 1.

3.50. (a) Evaluate (Z>3 + 1) sin 2x and (D + l)(D2 - D + 1) sin 2x. (b) Are the operators I>3 + 1 and
(D + 1)(I>2 - D + 1) equivalent? Explain.

3.51. (a) Evaluate (xD - S)(D + 2){x2 + x - 4} and (D + 2)(xD - B){x2 + x - 4}. (6) Are the operators
(xD - S)(D + 2) and (D + 2)(xD - 3) equivalent? Explain.

3.52. (a) Evaluate (xD)(xD)(xD){x2 + 2ex} which can be written (xD)3{x* + 2ex}. (b) Is this the same as
xsDs{x2 + 2ex}"! (c) Are the operators (xD)t and x3D* equivalent? Explain.

3.53. Under what conditions will the operators (D + a)(D + b) and (D + b)(D + a) be equivalent? Explain.

LINEAR DEPENDENCE AND WRONSKIANS

3.54. (a) Show that the functions x2, Bx + 2, x — \, 2x + 5 are linearly dependent. (6) Are the functions
x2, 3x + 2, x — i linearly dependent?

3.55. Investigate the linear dependence of ex, xex, x2ex.

3.56. Show that y = x is a solution of xy" + xy' — y = 0 and find the general solution.

3.57. If î/t is a solution of y" + p(x)y' + q(x)y = r(x), explain how to find the general solution. Illustrate
by an example.



94 LINEAR DIFFERENTIAL EQUATIONS [CHAP. 3

THE REDUCED OR HOMOGENEOUS SOLUTION
3.58. (a) Find three linearly independent solutions of (D + 2)(D - 1)(D - S)y = 0 and (6) write the

general solution.

3.59. Solve (a) y" + 8y' + I2y = 0, (b) (D* - 4Z> - l)y = 0.

3.60. Solve (a) (D* + 25)y = 0; y(Q) = 2, y'(0) = -5, (6) y" - 8y' + 20y = 0, (c) (D» + 8)y - 0.

3.61. Solve (a) y" + 4y' + % = 0 (d) (D» + D«)y = 0
(6) ley" - 8y' + y = O (e) (£>» + 64)2j/ = 0
(c) (D + 6)4(1) - 3)2j, = 0

3.62. Solve D*(D + 1)2(D2 + W + 5)2(Z>2 + 4)j/ = 0.

THE COMPLETE OR NONHOMOGENEOUS EQUATION
3.63. Solve (a) y" - 5y' + 6y = 50 sin 4w, (6) (Z>3 - 8)y = 16» + 18e~x + 64 cos 2x - 32.

3.64. Solve (a) y" + By' + 2y = 4e~2*, (6) (D» + 3£>2)j/ = 180ws + 24a.

3.65. Solve (I>6 - 2I>5 + D*)y = 12Qx + 8e*.

3.66. Solve using variation of parameters
(a) y" + 2y' — 3y = xe~x (c) xy" — y' = x

(b) y" + 4y = esc 2x (d) (D3 + D)y = 4 tan x

OPERATOR TECHNIQUES
3.67. Evaluate each of the following:

3.68. Solve using operator techniques: (a) (D2 + W + 4)y = I8ex - 8 sin 2x, (b) (D + 1)(D - 3)y = esx + x2,
(c) (D + 2)2(D - 2)y = «-2* cos x.

3.69. Prove entries (a) A, (b) B, (c) E, (d) H in the table on pages 75 and 76.

CAUCHY OR EULER EQUATION

3.70. Solve (a) x2y" + xy' - X2j/ = 0 (d) x3y"' + 3x*y" + xy' + 8y = 7*-»/*
(6) x2y" - 2xy' + 2y = a3 (e) r2R" + 2rR' - n(n + 1)B = 0
(c) (2a;2i>2 + 5xD + l)y = In a;

MISCELLANEOUS METHODS

3.71. (a) Show that (xD2 - xD + 1) = (D - l)(xD - 1). (6) Thus solve xy" - xy' + y = a;2.

3.72. Work Problem 3.71(6) by noting that y = x is a solution of the homogeneous equation and letting
y = vx.

3.73. Solve y" + 2xy' + x2y = 0 by reducing the equation to canonical form.

3.74. Show that xy" + (x + 2)y' + y = 0 is exact and find its solution.
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3.75. Use the method of Frobenius to solve the equations
(a) y" + y - 0, (6) xy" - Zy' + xy = 0, (c) y" = xy.

SIMULTANEOUS EQUATIONS

3.76. Solve the system

3.77. Solve the system if * = 2, y = 0 when t = 0.

3.78. Solve the system (Z>2 + 2)x + Dy = 2 sin t + 3 cos * + 5e-*, Dx + (D2 -l)y = 3 cost- 5 sin t - e~*
if x = 2, y = -3, Dx = 0, Dy = 4 when * = 0.

3.79. Solve if x = y = z = 0 at i = 0.

APPLICATIONS

3.80. A particle moves on the x axis, attracted toward the origin 0 with a force proportional to its
instantaneous distance from O. If the particle starts from rest at x — 5 cm and reaches
x = 2.5 cm for the first time after 2 seconds, find (a) the position at any time t after it starts,
(6) the magnitude of its velocity at x = 0, (c) the amplitude, period and frequency of the vibration
and (d) the instantaneous acceleration.

^72/v* dor
3.81. The position of a particle moving along the x axis is determined by the equation -j-c + 4 — + 8a; =

20 cos 2i. If the particle starts from rest at x — 0, find (a) a; as a function of t, (b) the amplitude,
period and frequency after a long time.

3.82. A 60 Ib weight hung on a vertical spring stretches it 2 inches. The weight is then pulled down 4
inches and released, (a) Find the position of the weight at any time if a damping force numerically
equal to 15 times the instantaneous velocity is acting. (6) Is the motion oscillatory, overdamped
or critically damped?

3.83. The weight on a vertical spring undergoes forced vibrations according to the equation

where x is the displacement from the equilibrium position and a > 0 is a constant. If x —
dx/dt = 0 when t = 0, find (a) a; as a function of t, (b) the period of the external force for
which resonance occurs.

3.84. The charge on the capacitor in the network of Fig. 3-7 is 2 coulombs. If the switch K is closed
at time t = 0, find the charge and the current at any time t > 0 when (a) E = 100 volts,
(6) E = 100 sin 4f.

Fig- 3-7 Fig. 3-8

3.85. Find the currents /, 7t and /2 in the network of Fig. 3-8 and also the charge Q on the capacitor if
(a) E = 360, (b) E = 600e~5t sin 3f. Assume the charge and currents are zero at t = 0.



3.73. 3.74.

3.71.

3.70.

(o) y =
(6) y =

(c) !/ =

(a) y =

(d) V =
(e) R =
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3.50. (a) Both equal sin 2x - 8 cos 2x. (6) Yes

3.49. (a) (D2 + 4D + 5)y = e~x, (6) (2Z>« + 2D- l)y = x, (c) (xD + 2)y = 1

3.51. (a) -2*2 - 8x + 21. -2a;2 - 6» + 22, (6) No

3.52. (a) Sx2 + 2a;3ea: + Ba^e* + 2xex 3.55. Functions are linearly independent.

3.56. y =

3.59. (a) y

3.60. (a) j/

(c) y

3.61. (a) y

(c) y
(d) V

(•) y
3.62. j/ = ct 4

3.63. (a) j/ =

(6) y =

3.64. (o) y =

3.65. y = Cl-I

3.66. (a) j/ =
(6) V =
(c) y =
(<*) y =

3.67. (a)

(6)

(c)

3.68.



3.85.

3.84.

3.83.

3.82.

3.81.

3.80. (a) x = 5 cos Ort/6), (b) 5)r/6(cm/sec), (c) amp. = 5 cm, period = 12 sec, freq. = Jj cycle per second,
(d) -25,r2/36(cm/sec2)

3.79.

3.78.

3.77.

3.76.

3.75.
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DEFINITION OF A LAPLACE TRANSFORM
The Laplace transform of a function /(£) is defined as

(1)

and is said to exist or not according as the integral in (1) exists [converges] or does not exist
[diverges]. In this chapter we assume that s is real. Later [Chapter 14] we shall find it
convenient to take s as complex.

Often in practice there will be a real number s0 such that the integral (1) exists for
s > so and does not exist for s a s0. The set of values s > so for which (1) exists is called
the range of convergence or existence of X? {/(*)}• It may happen, however, that (1) does
not exist for any value of s [see Problem 4.50].

The symbol ̂  in (1) is called the Laplace transform operator. We can show that =C is a
linear operator, i.e.

•C {ci/i(t) + c2/2(f)} = ci.C {/i(i)} + C2.Ç {/i(*)} (*)

LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS

In the following table we give Laplace transforms of some special elementary functions
together with the range of existence or convergence. Often, however, we shall omit this
range of existence since in most instances it can easily be supplied when needed.

/(*) < {/(*)} = f<«)
1 . 1 s > 0

2. tn n = 1, 2, 3, . . . s>0

3. f p > -1 8 > 0

4. ea* s > a

5. cos at s > 0

6. sin at s > 0

7. cosh at s > \a\

8. sinh at s > \a\

98

Chapter 4

Laplace Transforms

/(*> je {/(*)} = F(t)
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In entry 3, T(p +1) is the gamma function defined by

(3)

A study of this function is provided in Chapter 9. For our present purposes, however, we
need only the following properties:

(4)

The first is called a recursion formula for the gamma function. Note that if p is any posi-
tive integer n then r(« +1) = n\, thus explaining the relationship of entries 2 and 3 of the
table.

SUFFICIENT CONDITIONS FOR EXISTENCE OF LAPLACE TRANSFORMS

In order to be able to state sufficient conditions on f(t) under which we can guarantee
the existence of £ {/(i)}, we introduce the concepts of piecewise continuity and exponential
order as follows.

1. Piecewise continuity. A function f(t) is said
to be piecewise continuous in an interval if
(i) the interval can be divided into a finite
number of subintervals in each of which f(t)
is continuous and (ii) the limits of /(í) as t
approaches the endpoints of each subinterval
are finite. Another way of stating this is to
say that a piecewise continuous function is one
that has only a finite number of finite dis-
continuities. An example of a piecewise con-
tinuous function is shown in Fig. 4-1. Fig. 4-1

2. Exponential order. A function f(t) is said to be of exponential order for t > T if we
can find constants M and « such that |/(i)| a Meat for t > T.

Using these we have the following theorem,
Theorem 4-1. If f(t) is piecewise continuous in every finite interval 0 ë t ë T and is of

exponential order for t > T, then ^ {/(i)} exists for s > a.

It should be emphasized that these conditions are only sufficient [and not necessary],
i.e. if the conditions are not satisfied =C {/(i)} may still exist. For example, <£ {*~1/2} exists
even though i~1/2 is not piecewise continuous in 0 a t ë T.

An interesting theorem which is related to Theorem 4-1 is the following
Theorem 4-2. If /(i) satisfies the conditions of Theorem 4-1, then

It follows that if lim F(s) •/= 0, then f(t) cannot satisfy the conditions of
Theorem 4-1.

INVERSE LAPLACE TRANSFORMS

If £ (f(t)} = F(s), then we call /(i) the inverse Laplace transform of F(s) and write
XT' (F(s)} = f(t).

Example 1. Since •€{*}=-=, we have ^ - 1 = t.
8
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While it is clear that whenever a Laplace transform exists it is unique, the same is not
true for an inverse Laplace transform.

Example 2. If /(i) = •< _ we can show that ^ {/(i)} = 1/s2- However, this func-(JLO t — 2
tion f(t) differs from that of Example 1 at t — 2 although both have the same
Laplace transform. It follows that .C""1 (1/s2) can represent two (or more) different
functions.

We can show that if two functions have the same Laplace transform, then they cannot
differ from each other on any interval of positive length no matter how small. This is
sometimes called Lerch's theorem. The theorem implies that if two functions have the
same Laplace transform, then they are for all practical purposes the same and so in
practice we can take the inverse Laplace transform as essentially unique. In particular if
two continuous functions have the same Laplace transform, they must be identical.

The symbol jC_~l is called the inverse Laplace transform operator and is a linear
operator, i.e.

JTl(*Fi(8) + C2F2(s)} = d/i(í) + c2/2(í)

LAPLACE TRANSFORMS OF DERIVATIVES
We shall find that Laplace transforms provide useful means for solving linear dif-

ferential equations. For this reason it will be necessary for us to find Laplace transforms
q£ derivatives. The following theorems are fundamental.
Theorem 4-3. Let /(i) be continuous and have a piecewise continuous derivative /'(i) in

every finite interval O á í a T. Suppose also that /(i) is of exponential
order for t > T. Then

•C {/'(«)} = «^ {/(«)}-/(O)
This can be extended as follows.
Theorem 4-4. Let f(t) be such that /<n~°(i) is continuous and /(n)(£) piecewise continuous

in every finite interval 0 a t a T. Suppose also that f(t),f'(t),...,/<"-"(*)
are of exponential order for t > T. Then

•C {/°°(*)} = sn=C {/(«)} - *"-V(0) - s"-2/'(0) /<»-»(0)

THE UNIT STEP FUNCTION
The unit step function, also called Heaviside's

unit step function, is defined as
f O t < a

1f(i-a) = 1
\l t>a

and is shown graphically in Fig. 4-2.
It is possible to express various discontinuous

functions in terms of the unit step function. Fig. 4-2
We can show [Problem 4.17] that the Laplace transform of the unit step function is

s > 0

and similarly we have



CHAP. 4] LAPLACE TRANSFORMS 101

Theorem 4-11. If lim exists and

Similarly if then

Theorem 4-10 [Integration]. then

Theorem 4-9 [Periodic functions]. If f(t) has period then

Similarly if then

SOME SPECIAL THEOREMS ON LAPLACE TRANSFORMS
Because of the relationship between Laplace transforms and inverse Laplace transforms,

any theorem involving Laplace transforms will have a corresponding theorem involving
inverse Laplace transforms. In the following we shall consider some of the important
results involving Laplace transforms and corresponding inverse Laplace transforms. In
all cases we assume that f(t) satisfies the conditions of Theorem 4-1.

Theorem 4-5 [First translation theorem].

Similarly if

Theorem 4-6 [Second translation theorem].

then

then

then

Similarly if then

Theorem 4-7. If then

Similarly if then

Theorem 4-8. then

then



PARTIAL FRACTIONS

Although the above theorems are often useful in finding inverse Laplace transforms,
perhaps the most important single elementary method for our purposes is the method of
partial fractions. This is because in many problems which we shall encounter it will be
necessary to find the inverse of P(s)/Q(s) where P(s) and Q(s) are polynomials and the
degree of Q(s) is larger than that of P(s). For illustrations of the method see Problems
4.39-4.41.

SOLUTIONS OF DIFFERENTIAL EQUATIONS BY LAPLACE TRANSFORMS

The method of Laplace transforms is particularly useful for solving linear differential
equations with constant coefficients and associated initial conditions. To accomplish this
we take the Laplace transform of the given differential equation [or equations in the case
of a system], making use of the initial conditions. This leads to an algebraic equation
[or system of algebraic equations] in the Laplace transform of the required solution. By
solving for this Laplace transform and then taking the inverse, the required solution is
obtained. For illustrations see Problems 4.42-4.44.

APPLICATIONS TO PHYSICAL PROBLEMS

Since formulation of many physical problems leads to linear differential equations
with initial conditions, the Laplace transform method is particularly suited for obtaining
their solutions. For applications to various fields see Problems 4.45-4.47.

LAPLACE INVERSION FORMULAS

There exists a direct method for finding inverse Laplace transforms, called the complex
inversion formula. This makes use of the theory of complex variables and is considered
in Chapter 14.
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Theorem 4-12 [Convolution theorem]. then

Similarly if then

We call the above integral the convolution of / and g and write

We have the result f*g = g*f, i.e. the convolution is commutative. Similarly we can prove
that it is associative and distributive [see Problem 4.75].



and so =Ç is a linear operator.

We have

We must show that if c1( e2 are any constants and f i ( t ) , f 2 ( t ) any functions whose Laplace trans-
forms exist, then

4.3. Prove that =Ç is a linear operator.

But

If p = n, then

Thus and so from

i.e.

(6) Integrating by parts, we have

The restriction p > — 1 occurs because the integral defining the gamma function converges
if and only if p > —1.

must have s > 0. Then the integral equals

Let st = u and note that in order for the integral to converge we

(6) Show that if p = n, a positive integer, then where s > 0.

(«)

4.2. (a) Prove that and p > —1.

provided s — a > 0, i.e. s > a

4.1. Prove that
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Solved Problems

LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS
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4.4. Prove that
Method 1. We have if s > 0,

Then taking real and imaginary parts, we have

or

Method 2. By direct integration,

4.5. Find the Laplace transforms of each of the following:

4.6. Find the Laplace transforms of each of the following:

Since this integral does not converge, the Laplace transform does not

In parts (a), (b), (c) we have omitted the range of existence which can easily be supplied.
exist.
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4.7. If /(Í) find .Ç {/(Í)}.

We have
JL {/(*)}

4.8. Find ^ {sin í cos £}.
We have sin 2i = 2 sin í cos t so that sin t cos t = £ sin 2i. Thus

EXISTENCE OF LAPLACE TRANSFORMS

4.9. Prove (a) Theorem 4-1, and (6) Theorem 4-2, page 99.
(a) We have

Now since f(t) is piecewise continuous for Q S t S T so also is e~st/(t), and thus the first
integral on the right exists.

To show that the second integral on the right also exists, we use the fact that
|/(t)| S Me* so that

for s > a and the required result is proved.
(6) We have as in part (a),

Now since /(() is piecewise continuous for 0 = t = T, it is bounded, i.e. |/(t)| = K for some
constant K. Using this and the result (1), we have

Taking the limit as s -> », it follows that F(s) = 0 as required,

4.10. Prove that (a) exists,

(a) In every finite interval ««/(* +4) is continuous fand thus certainly niecewise continuousl.
Also for all tZO,

so that ezt/(t + 4) is of exponential order. Thus by Problem 4.9(a) the Laplace transform exists.
(6) This follows at once from Problem 4.9(6) and the results of (a).



LAPLACE TRANSFORMS OF DERIVATIVES
4.14. Prove Theorem 4-3, page 100.

Since f'(t) is piecewise continuous in 0 a t S T, there exists a finite number of subintervals,
say (0, TJ, (Tlt T2), ..., (Tn,T), in each of which f'(t) is continuous and where the limits of f'(t)
as t approaches the endpoints of each subinterval are finite. Then

4.13. Find

Then letting p = k — 1,

(d) Since

4.12. Find

which shows that J^~1 is a linear operator.

Thus by definition
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SOME ELEMENTARY INVERSE LAPLACE TRANSFORMS

4.11. Prove that ^-1 is a linear operator.
We have, since jf is a linear operator [Problem 4.31,
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The right side becomes on integrating by parts,

Since f(t) is continuous, we can thus write

Now since f(t) is of exDonential order, we have if T is large enoueh.

Then taking the limit as T -» «> in (1), using the fact that lim e-stf(T) = 0, we have as required

4.15. Prove that if /'(£) is continuous and f"(t) is piecewise continuous in every finite
interval 0 a t a T and if f(t) and f'(t) are of exponential order for í > T, then

Let g(t) = f'(t). Then g(t) satisfies the conditions of Theorem 4-3 so that

Thus

4.16. Let f(t) = teat. (a) Show that f(t) satisfies the equation f'(t) = af(t) + eat. (b) Use
part (a) to find ̂ {ieot}.

Thus using Problem 4.14, we have since

i.e.

THE UNIT STEP FUNCTION

4.17. Prove that

We have

(1)

(2)
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4.18. (a) Express the function f(t) in terms of the unit step function and

thus (6) obtain its Laplace transform.

(a) We have

The result can also be obtained directly.

SPECIAL THEOREMS ON LAPLACE TRANSFORMS
4.19. Prove Theorem 4-5, page 101.

We have

Then

4.20. Prove Theorem 4-6, page 101.

Method 1. Since we have

Method 2. Since F(s)

4.21. Prove Theorem 4-7, page 101.

where we have used the transformation



Thus

4.25. Prove Theorem 4-11, page 101.

We shall assume that lim^ exists [as well as the conditions of Theorem 4-1. page 991,t-»o t '
otherwise its Laplace transform may not exist. Then we have if g(t) = /(<)/«, or /(i) = tg(t),

and so

Prom this we have

4.24. Prove Theorem 4-10, page 101.

Let Then Thus

where

Then since /(«) has period P > 0, f(v + P) = f(v), f(v + 2P) = f(v), etc. Furthermore, we can
replace the dummy variable v by t. Thus

4.23. Prove Theorem 4-9, page 101.
We have

Thus

Thus

(a) Since F(s) =
rule,

we have on differentiating with respect to s and using Leibnitz's

4.22. Prove Theorem 4-8, page 101, for (a) n - 1, (6) any positive integer n.
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(b)



This can also be obtained directly without using Theorem 4-6.

Then using Theorem 4-6,

We have

4.28. Find ̂  (F(t)} where

(a) Since

(b) Since

(e) Since

4.27. Find

APPLICATIONS OF THE THEOREMS TO FINDING LAPLACE TRANSFORMS

where we have used the transformation t = u + v from the uv plane to the ut plane.

Then

We have

4.26. Prove Theorem 4-12, page 102.

Now since g(t) satisfies the conditions of Theorem 4-1, page 99, it follows that lim G(s) = 0. Then
from (2) we see that c must be infinite and so s~*°°
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APPLICATIONS OF THE THEOREMS TO FINDING
INVERSE LAPLACE TRANSFORMS

4.33. Find

4.32. Find

Since by L'Hospital's rule and 1 — e~f is continuous and of expo-

nential order, the conditions of Theorem 4-11 apply. Then since
follows that

By Theorem 4-9, page 101, the Laplace transform is given by

The graph of this function, often called a rectified sine wave, is shown in Fig. 4-3.

O á í < 2w is given by f(t)

4.31. Find the Laplace transform of the function of period 2-n- which in the interval

4.30. Find

By Theorem 4-8, page 101, we have since

4.29. Given that

CHAP. 4] LAPLACE TRANSFORMS 111

By Theorem 4-7, page 101,
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on letting u = v2.

Since we have by Theorem 4-10,

4.36. Find

or

so that Then by Theorem 4-8,Let F(s)

4.35. Find

(6) Since and so by Theorem 4-6,

(a) Since cos4t, we have by Theorem 4-6,

4.34. Find

(6) Prom Problem 4.12(d) we have
by Theorem 4-5,

Then

(o)

Thus

Now since

we have by Theorem 4-5,



Another method.
Multiplying (1) by s after finding A and then letting s-» °°, we find A+B = Q or

B = —A = —2. This method affords some simplification of procedure.

or

Letting « = 1, we find A - 2. Letting s — 0, we find A — C = 1 so that C = 1. Then letting
8 equal any other number, say —1, we find, —2 = 2A — 2(C — B) and B = —2. Thus

4.40. Find

This must be an identity and thus must hold for all values of s. Then by letting s = 2, —1,3 in
succession we find A — -4/3, B = —1/6, C — 7/2. Thus

To determine constants A, B, C, multiply by (a — 2)(s + l)(s — 3) so that

4.39. Find

PARTIAL FRACTIONS

Then

and so

which can be checked as a solution.

The given equation is called an integral equation since the unknown function occurs under the
integral.

Taking the Laplace transform, we have by the convolution theorem,

4.38. Solve for y(t) the equation

[Theorem 4-12],
Thus by the convolution theoremThenLet

4.37. Find

CHAP. 4] LAPLACE TRANSFORMS 113
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which can be written

or

Taking the Laplace transform of the given differential equation and using the initial conditions,

4.44. Solve

Thus taking the inverse Laplace transform, we obtain the required solution

Then using j/(0) = 2, j/'(0) = —1 and solving this algebraic equation for Y, we find using partial
fractions,

Taking the Laplace transform of the given differential equation,

4.43. Solve

which is the required solution.

Thus

Since this becomes

SOLUTIONS OF DIFFERENTIAL EQUATIONS
4.42. Solve y"(t) + y(t) = 1 given y(Q) = 1, yf(0) = 0.

Take the Laplace transform of both sides of the given differential equation and let
Y = Y(s) = £ (y(t)}. Then

Another method.
On multiplying (1) by a, after finding A, and letting s -* «°, we find that A+D = 0 or

D = 1, providing some simplification in the procedure.

Letting s = -1, we find A = —1. Letting s = 2, we find B = -1. Letting a equal two other
numbers, say 0 and 1, we find —2C + 4D = 0 and —2C + 2D = -2 from which C = 2, D = 1.
Thus . .

We have

or clearing of fractions

4.41. Find



Fig. 4-4where

or

(a) The resistive force is given by The restoring force

is given by — KX. Then by Newton's law,

4.46. A mass m [Fig. 4-4] is suspended from the end of a vertical spring of constant K
[force required to produce unit stretch]. An external force F(t) acts on the mass as
well as a resistive force proportional to the instantaneous velocity. Assuming that
x is the displacement of the mass at time í and that the mass starts from rest at
x = 0, (a) set up a differential equation for the motion and (&) find x at any time i.

so that

Then

so that

Thus

(c) If E = 50 sin 5«, then

(6) If E = 20e-M then

Thus

where / = =C {/}. Then using 1(0) — 0 and solving for /, we find

(a) If E = 40 the Laplace transform of (1) is

APPLICATIONS TO PHYSICAL PROBLEMS

4.45. Solve Problem 2.32, page 56, by using Laplace transforms.
As in Problem 2.32, the differential equation is

and so we find the required solution

Now by using the special theorems on Laplace transforms [see Problem 4.78],
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Then

or

Solving,

Using /i(0) = 0, 72(0) = 0, these become

4.47. Solve Problem 3.48, page 93, by Laplace transforms.
From equations (1) and (2) of Problem 3.48 we have on taking Laplace transforms, using

•C{/l}=/i, -Ç{/2}=/2, / = /! + /» -C {/}=A +4

Then using the convolution theorem (3) yields

Case 3, R < 0. In this case let R = -a2. We have

Case 2, R = 0. In this case
in (3) yields

te-pt/2m an<i the convolution theorem

Then using the convolution theorem, we find from (3)

Case 1, R > 0. In this case let R = w2. We have

where There are 3 cases to be considered.

so that on using (2),

(b) Taking the Laplace transform of (1), using we obtain

(S)
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Supplementary Problems
LAPLACE TRANSFORMS OP ELEMENTARY FUNCTIONS
4.48. Find the Laplace transforms of each of the following:

4.49. Find ^ {/(i)} in each case:

4.50. Prove that e*2 does not have a Laplace transform.

4.51. Determine whether sin i2 has a Laplace transform and justify your conclusions.

4.52. Find (a) £ {10 sin 3f cos5i}, (6) ^ {/(i)> if f(t) =

ELEMENTARY INVERSE LAPLACE TRANSFORMS

4.53. Find

4.54. Find

LAPLACE TRANSFORMS OF DERIVATIVES
4.55. Verify the result ^ {/'(«)} = s £ {f(s)} - f(0) for each of the following: (a) f(t) = 3e2t,

(6) f(t) = cos 5t, (c) /(t) = «2 + 2t - 4.

4.56. Verify the result ^ {/"(*)} = s2^ {/(i)> - s/(0) - f(0) for each of the functions in Problem 4.55.

4.57. If /(t) = t sin at, (a) show that /"(t) + a2/(t) = 2a cos at and thus (6) find ̂  {/(t)}.

4.58. Does the result hold for

Explain,

4.59. Prove that giving conditions under which it holds.

THE UNIT STEP FUNCTION
4.60. Find and graph each of the given functions of t.

4.61. Discuss the significance of where p is any positive integer.

4.62. Find and graph.

4.63. (a) Express the function
its Laplace transform.

in terms of the unit step function and (6) find



4.82. Use Laplace transforms to evaluate [Hint. Consider

4.81. Solve the integral equations

4.80. Use the series for eu to show that

4.79. Find

4.78. Find

4.77. Find

4.76. Find

MISCELLANEOUS INVERSE LAPLACE TRANSFORMS
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MISCELLANEOUS LAPLACE TRANSFORMS

4.64. Find

4.65. Find

4.66. Find

4.67. (a) Graph the function f(t) = t, 0 S í < 4 which is extended periodically with period 4 and
(6) find the Laplace transform of this function.

4.68. Find

4.69. Verify that

4.70. Show that where and generalize.

4.71. Find

4.72. Find

4.73. Show that

4.74. Evaluate («) t*e* and (6) £{t*e*}.

4.75. Prove that (a) f*g = g*f, (6) f*(g + h) = f*g + f*h, (c) f*(g*h) = (f*g)*h and discuss the
significance of the results.
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SOLUTIONS OF DIFFERENTIAL EQUATIONS

4.83. Solve each of the following:
(a) y"(t) - 8v'(t) + 2y(t) = 4; y(0) = 1, y'(0) = 0
(6) y"(t) + Uy(t) = 32i; y(0) = 3, y'(0) = -2
(c) y"(t) + 4»'(t) + 4»(t) = Be-»; 0(0) = -2, j/'(0) = 8
(d) y'"(t) + y'(t) = t + 1

4.84. Solve y'"(t) + 8y(t) - 32Í3 - 16i if j/(0) = i/'(0) = j/"(0) = 0.

4.85. Solve the simultaneous equations
C2x(t) - y(t) - y'(t) = 4(1-e-«)

{ 2x'(t) + y(t) - 2(l + 3e-2t)
subject to the conditions *(0) = j/(0) = 0.

4.86. Solve (a) Problem 3.76, (b) Problem 3.77, (c) Problem 3.78, (d) Problem 3.79 on page 95 by Laplace
transforms.

APPLICATIONS TO PHYSICAL PROBLEMS

4.87. Solve (a) Problem 3.80, (b) Problem 3.81, (c) Problem 3.83, (d) Problem 3.84, page 95, by Laplace
transforms.

4.88. Use Laplace transforms to find the charge and current at any time in a series circuit having an
inductance L, capacitance C, resistance R and e.m.f. E(t). Treat all cases assuming that the initial
charge and current are zero.

4.89. Solve Problem 3.85, page 95, by Laplace transforms.

4.90. (a) A particle of mass m moves along the x axis in such a way that the force acting is given by

F(t) = . Assuming that it starts from rest at the origin, find the position of the

particle at any time and interpret physically, (b) Discuss the result in (a) if the limit is taken as
€^•0.

4.91. Let f(t) be any continuous function. Suppose there exists a function S(t) such that

Show that (a) £ {S(t)} = 1, (6) £ {8(í- Í0)} = e~^o, (c) £{S'(t)} = s. We often call S(t) the
Dirae delta function).

4.92. In Problem 4.90 replace the force by F(t) = F0 8(t) and solve. Discuss a possible relationship

«-»o
the relationship of this problem with ^-1 {s2}.

Answers to Supplementary Problems
4.48.

4.49.

4.93.  Graph the function  F(t) Find (a)  {F(t)} and (b) lim {F(t)}. Discuss

between &(t) and the function [Hint. Examine the case where
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4.52.

4.53.

4.54.

4.60.

4.62.

4.63.

4.64.

4.65.

4.67.

4.71.

4.72.

4.74.

4.76.

4.77.

4.78.

4.79.

4.83.

4.84.

4.85.

4.90.

4.82.



VECTORS AND SCALARS

There are quantities in physics characterized by both
magnitude and direction, such as displacement, velocity,
force and acceleration. To describe such quantities, we
introduce the concept of a vector as a directed line segment
PQ from one point P called the initial point to another point
Q called the terminal point. We denote vectors by bold
faced letters or letters with an arrow over them. Thus PQ-»
is denoted by A or A as in Fig. 5-1. The magnitude or Fig. 5-1
length of the vector is then denoted by \PQ\, PQ, |A| or |A|.

Other quantities in physics are characterized by magnitude only, such as mass, length
and temperature. Such quantities are often called scalars to distinguish them from
vectors, but it must be emphasized that apart from units such as feet, degrees, etc.,
they are nothing more than real numbers. We can thus denote them by ordinary letters
as usual.

VECTOR ALGEBRA

The operations of addition, subtraction and multiplica-
tion familiar in the algebra of numbers are, with suitable
definition, capable of extension to an algebra of vectors.
The following definitions are fundamental.

1.

2.

Two vectors A and B are equal if they have the
same magnitude and direction regardless of their
initial points. Thus A = B in Fig. 5-1 above.
A vector having direction opposite to that of vector
A but with the same magnitude is denoted by —A
[see Fig. 5-2]. Fig.5_2

3. The sum or resultant of vectors A and B of Fig. 5-3(a) below is a vector C formed
by placing the initial point of B on the terminal point of A and joining the
initial point of A to the terminal point of B [see Fig. 5-3(&) below]. The sum C
is written C = A + B. The definition here is equivalent to the parallelogram law
for vector addition as indicated in Fig. 5-3(c) below.

Fig. 5-3
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Chapter 5

Vector Analysis

(a) (b) (c)
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Extensions to sums of more than two vectors are immediate. For example,
Fig. 5-4 below shows how to obtain the sum or resultant E of the vectors
A, B, C and D.

Pig. 5-4

4. The difference of vectors A and B, represented by A —B, is that vector C which
added to B gives A. Equivalently, A — B may be defined as A + (—B). If A = B,
then A — B is defined as the null or zero vector and is represented by the symbol 0.
This has a magnitude of zero but its direction is not defined.

5. Multiplication of a vector A by a scalar m produces a vector raA with magni-
tude m\ times the magnitude of A and direction the same as or opposite to that
of A according as m is positive or negative. If m = 0, mA = 0, the null vector.

LAWS OF VECTOR ALGEBRA

If A, B and C are vectors, and m and n are scalars, then
1. A + B = B + A

2. A + (B + C) = (A + B) + C
3. m(nA.) = (mn)A — n(mA)
4. (ra + w)A = mA + «A
5. m(A + B) = mA + mB

Commutative Law for Addition
Associative Law for Addition
Associative Law for Multiplication

Distributive Law
Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is
defined. On pages 123 and 124 we define products of vectors.

UNIT VECTORS

Unit vectors are vectors having unit length. If A is any vector with length A > 0,
then A/A is a unit vector, denoted by a, having the same direction as A. Then A = Aa.

RECTANGULAR UNIT VECTORS

The rectangular unit vectors i, j and k are unit vec-
tors having the direction of the positive x, y and z axes
of a rectangular coordinate system [see Fig. 5-5]. We use
right-handed rectangular coordinate systems unless other-
wise specified. Such systems derive their name from the
fact that a right threaded screw rotated through 90° from
Ox to Oy will advance in the positive z direction. In general, Fig. 5-5
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three vectors A, B and C which have coincident initial points and are not coplanar are said
to form a right-handed system or dextral system if a right threaded screw rotated through
an angle less than 180° from A to B will advance in the direction C [see Fig. 5-6 below].

Pig. 5-6 Fig. 5-7

COMPONENTS OF A VECTOR
Any vector A in 3 dimensions can be represented with initial point at the origin O

of a rectangular coordinate system [see Fig. 5-7 above]. Let (Ai, A2, A3) be the rectangular
coordinates of the terminal point of vector A with initial point at O. The vectors Aii,
A2j and Ask are called the rectangular component vectors, or simply component vectors,
of A in the x, y and z directions respectively. A.\, A2 and A3 are called the rectangular
components, or simply components, of A in the x, y and z directions respectively.

The sum or resultant of Aii, A2j and Ask is the vector A, so that we can write

A = Aii + A2j + Aak (1)
The magnitude of A is

In particular, the position vector or radius vector i from O to the point (x,y,z) is
written

T = xi + yj + zk (3)

and has magnitude

DOT OR SCALAR PRODUCT

The dot or scalar product of two vectors A and B, denoted by A • B (read A dot B)
is denned as the product of the magnitudes of A and B and the cosine of the angle
between them. In symbols,

A- B = AB cos 0, O a 0 ^ T T (4)

Note that A • B is a scalar and not a vector.

The following laws are valid:

1. A « B = B-A Commutative Law for Dot Products
2. A-(BH-C) = A-B + A-C Distributive Law

3. m(A'B) = (mA)-B = A-(wB) = (A'B)m, where m is a scalar.

4. i - i = j - j = k-k = 1, i - j = j - k = k - i = 0

(2)
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5. If A = Aii + Azj + Ask and B = Ba + B2j + #sk, then

A-B = AiBi + AzB2 + AsB»
A-A = A2 = Al +Al +AÎ

B-B = Bz = B\ + Bl+Bl

6. If A • B = 0 and A and B are not null vectors, then A and B are perpendicular.

CROSS OR VECTOR PRODUCT
The cross or vector product of A and B is a vector C = A x B (read A cross B).

The magnitude of A x B is defined as the product of the magnitudes of A and B and the
sine of the angle between them. The direction of the vector C = A x B is perpendicular
to the plane of A and B and such that A, B and C form a right-handed system. In
Symbols' A x B = AB sin e u, 0 g 0 ë * (5)

where u is a unit vector indicating the direction of A x B. If A = B or if A is parallel
to B, then sin 0 = 0 and we define A x B = 0.

The following laws are valid:

1. A x B = -B x A (Commutative Law for Cross Products Fails)
2. A x ( B + C) = AxB + AxC Distributive Law
3. m(A x B) = (mA) x B = A x (mB) = (A x B)m, where m is a scalar.
4. ixi = jxj = kxk = 0, i x j = k, jxk = i, kxi = j

5. If A = Aii + A2j + Ask and B = B¿ + B2j + #sk, then

i J k
AxB = Ai A2 As

¡j\ Jj2 -O3

6. |A x B| = the area of a parallelogram with sides A and B.
7. If A x B = 0 and A and B are not null vectors, then A and B are parallel.

TRIPLE PRODUCTS

Dot and cross multiplication of three vectors A, B and C may produce meaningful
products of the form (A-B)C, A- (B x C) and A x (B x C). The following laws are valid:

1. (A • B)C ¥= A(B'C) in general
2. A- (BxC) = B ' (CxA) = C - ( A x B ) = volume of a parallelepiped having A, B,

and C as edges, or the negative of this volume according as A, B and C do or
do not form a right-handed system. If A = Aii + A2j + Ask, B = Bii + B2j + Bsk
and C = Cii + C2j + Csk, then

Ai A2 As
A - ( B X C ) = B! Bz B8 (6)

Ci C2 Cs
3. A x (B x C) ¥> (A x B) x C (Associative Law for Cross Products Fails)
4. A x ( B x C ) = (A-C)B- (A-B)C

( A X B ) X C = (A-CJB-(B-C)A

The product A • (B x C) is sometimes called the scalar triple product or box product
and may be denoted by [ABC]. The product A x ( B x C ) is called the vector triple
product.
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In A • (B x C) parentheses are sometimes omitted and we write A • B x C. However,
parentheses must be used in A x ( B x C ) (see Problem 5.25). Note that A- (BxC) =
(A x B) • C. This is often expressed by stating that in a scalar triple product the dot and
the cross can be interchanged without affecting the result [see Problem 5.22].

VECTOR FUNCTIONS
If corresponding to each value of a scalar u we associate a vector A, then A is called

a function of u denoted by A(u). In three dimensions we can write A(u) = Ai(u)i +
Aa(u)j + As(u)k.

The function concept is easily extended. Thus if to each point (x,y,z) there cor-
responds a vector A, then A is a function of (x, y, z), indicated by A(x, y, z) = A\(x, y, z)i +
A2(x, y, z)j + Aa(x, y, z)k.

We sometimes say that a vector function A(x, y, z) defines a vector field since it associ-
ates a vector with each point of a region. Similarly $(x, y, z) defines a scalar field since it
associates a scalar with each point of a region.

LIMITS, CONTINUITY AND DERIVATIVES OF VECTOR FUNCTIONS
Limits, continuity and derivatives of vector functions follow rules similar to those

for scalar functions already considered. The following statements show the analogy
which exists.

1. The vector function A(u) is said to be continuous at MO if given any positive num-
ber e, we can find some positive number 8 such that \A(u) — A(uo)\ < £ whenever
\u-uo < S. This is equivalent to the statement lim A(u) — A(uo).

2. The derivative of A(u) is defined as

(7)

provided this limit exists. In case A(u) = Ai(u)i + A2(u)j + A3(w)k; then

Higher derivatives such as d2A/du2, etc., can be similarly defined.

3. If A(x, y, z) = Ai(x, y, z)i + A2(x, y, z)j + A3(x, y, z)k, then

is the differential of A.

4. Derivatives of products obey rules similar to those for scalar functions. However,
when cross products are involved the order may be important. Some examples are:

(*)
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GEOMETRIC INTERPRETATION OF A VECTOR DERIVATIVE

If r is the vector joining the origin O of a
coordinate system and the point (x,y,z), then
specification of the vector function r(u) defines
x, y and z as functions of u. As u changes, the
terminal point of r describes a space curve
(see Fig. 5-8) having parametric equations
x - x(u), y = y(u), z = z(u). If the parameter u
is the arc length s measured from some fixed
point on the curve, then

(9)

Fig. 5-8

= vT

(10)

(«)

from which we see that the magnitude of v, often called the speed, is v = ds/dt. Similarly,

= a (12)

is the acceleration with which the terminal point of r describes the curve. These concepts
have important applications in mechanics.

GRADIENT, DIVERGENCE AND CURL

(13)

Then if <t>(x, y, z) and A(x, y, z) have continuous first partial derivatives in a region (a condi-
tion which is in many cases stronger than necessary), we can define the following.

2. Divergence. The divergence of A is defined by

is a unit vector in the direction ot the tangent
to the curve and is called the unit tangent
vector. If u is the time t, then

is the velocity with which the terminal point of r describes the curve. We have

= v

Consider the vector operator (del) defined by

1. Gradient. The gradient of ^ is defined by

grad

An interesting interpretation is that if <¡>(x, y, z) — c is the equation of a surface,
then is a normal to this surface (see Problem 5.36)

div A (15)

e



ORTHOGONAL CURVILINEAR COORDINATES. JACOBIANS

The transformation equations

* = f(ui,U2,Us), y = g(ui, w2, u3), z = h(ui,U2,ua) (17)

[where we assume that f , g , h are continuous, have continuous partial derivatives and
have a single-valued inverse] establish a one to one correspondence between points in an
xyz and uiu¿ua rectangular coordinate system. In vector notation the transformation (17)
can be written

r = xi + yj + zk = f(u\, «2, Us)i + g(ui, u-¡, u3)j + h(ui, u2, u3)k (18)

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.
11.
12.

The curl of the gradient of U is zero.
. The divergence of the curl of A is zero.

is called the Laplacian operator.

is called the Laplacian of U

If the partial derivatives of A, B, U and V are assumed to exist, then
FORMULAS INVOLVING

or grad (U + V) = grad u + grad V
or div (A + B) = div A + div B

or curl (A + B) = curl A + curl B

Note that in the expansion of the determinant, the operators d/dx, d/dy, d/dz must
precede Ai, At, A3.

3. Curl. The curl of A is defined by

curl A
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(16)
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A point P in Fig. 5-9 can then be defined not only
by rectangular coordinates (x,y,z) but by coordi-
nates (ui,uz,u3) as well. We call (ui,uz,u3) the
curvilinear coordinates of the point.

If uz and Us are constant, then as Ui varies,
r describes a curve which we call the u\ coordinate
curve. Similarly we define the «2 and us coordi-
nate curves through P.

From (18), we have

(19) Fig. 5-9

The vector dt/dui is tangent to the Ui coordinate curve at P. If ei is a unit vector at P
in this direction, we can write dr/dui = hid where hi = \dr/dui\. Similarly we can
write dr/du2 = A2e2 and dr/du3 - /J3e3, where h2 = \dr/duz\ and h3 = \dr/du3\ respec-
tively. Then (19) can be written

dr — hiduei + hiduzCz + h3duae3 (20)
The quantities hi, hz, hs are sometimes called scale factors.

If ei, 62, e3 are mutually perpendicular at any point P, the curvilinear coordinates are
called orthogonal. In such case the element of arc length ds is given by

ds2 = dr-dr = hi dui + h\du\ + hldul (21)

and corresponds to the square of the length of the diagonal in the above parallelepiped.

Also, in the case of orthogonal coordinates the volume of the parallelepiped is given by

dV = | (hi dui ei) • (hz duz e2) x (h3 du3 e3) \ — hihzh3 dui duz du3 (22)
which can be written as

where

dui duz du3 (23)

(24)

is called the Jacobian of the transformation.

It is clear that when the Jacobian is identically zero there is no parallelepiped. In such
case there is a functional relationship between x, y and z, i.e. there is a function <j> such that
<t>(%> y>z) - 0 identically.

GRADIENT, DIVERGENCE, CURL AND LAPLACIAN IN ORTHOGONAL
CURVILINEAR COORDINATES

If $ is a scalar function and A = Aid + A2e2 + A3e3 a vector function of orthogonal
curvilinear coordinates Ui, Uz, u3, we have the following results.

1.

2.

= grad * =

= div A =
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These reduce to the usual expressions in rectangular coordinates if we replace (ui, u2, Us)
by (x,y,z), in which case ei, e2 and e3 are replaced by i, j and k and hi-h2 = hs = 1.

SPECIAL CURVILINEAR COORDINATES

1. Cylindrical Coordinates (p, <j>, z). See Fig. 5-10.

Transformation equations:

x — p cos <t>, y = p sin <£, z = z

where p è 0, 0 ë <j> < 2*, -°° < z < «>.

Scaie factors: hi = 1, hz = p, ha = 1

Element of arc length: ds2 = dp2 + p2 cZ<£2 + dz2

/aco&wm:

Element of volume: dV — pdpd<j> dz

Laplacian:
Fig.5-10

Other types of coordinate systems are possible.

3.

4.

— curl A —

= Laplacian of $ =

Note that corresponding results can be obtained for polar coordinates in the
plane by omitting z dependence. In such case for example, ds2 = dp2 + p2 d<j>2, while
the element of volume is replaced by the element of area. dA = p dp d<j>.

2. Spherical Coordinates (r,0,<f>). See Fig. 5-11.

Transformation equations:

x = r sin 0 cos ó, y = r sin 6 sin A, z — r cos 6

where

Scale factors:

Element of arc length:

Jacobian:

Element of volume:

Laplacian

Fig.5-11
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Solved Problems
VECTOR ALGEBRA
5.1. Show that addition of vectors is commutative, i.e. A + B = B + A. See Fig. (a) below.

OP + PQ = OQ or A + B = C

and OR + RQ = OQ or B + A = C

Then A + B = B + A.

_Q

Fig. (a)

5.2. Show that the addition of vectors is associative, i.e. A + (B + C) = (A + B) + C.
See Fig. (b) above.

OP + PQ = OQ = (A + B) and PQ + QR = PR = (B + C)

Since OP + PR = OR = D, i.e. A + (B + C) = D

OQ + QR = OR = D, i.e. (A + B) + C = D

we have A + (B + C) = (A + B) + C.

Extensions of the results of Problems 5.1 and 5.2 show that the order of addition of any
number of vectors is immaterial.

5.3. Prove that the line joining the midpoint of two sides
of a triangle is parallel to the third side and has
half its length.

From Fig. 5-12, AC + CB = AB or b + a = c.

Let DE = d be the line joining the midpoints of sides AC
and CB. Then

d = DC + CE = £b + £a = £(b + a) = £c

Thus d is parallel to c and has half its length. Fig. 5-12

5.4. Prove that the magnitude A of the vector A =

A2 = A2 +A% +Al, i.e. A = Fig. 5-13

Fig. (b)

By the Pythagorean theorem,

(OP)* = (OQ)2 + (QP>

where OP denotes the magnitude of vector OP, etc.
Similarly, (OQ)2 = (OR)* + (RQ)*.

Then (OP)2 = (OB)2 + (RQ)2 + (QP> or

Aii + Azj + Ask is A —
Fig. 5-13.

See
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5.5. Determine the vector having initial point
P(xi,yi,zi) and terminal point Q(xz,yz,Zi) and
find its magnitude. See Fig. 5-14.

The position vector of P is rt = ¡»1i + j/iJ + «jk.
The position vector of Q is r2 = œ2i + j/2j + «2^-
r! + PQ = r2 or

PQ = r2 - T! = (a;2i + j/aj + 22k) - («ji + j/jj + ztk)

= (*2 - *!)i + (j/2 - Vl)î + (*2 ~ *l)k

Magnitude of PO = P0

Fig. 5-14

5.10.

H

Fig. 5-15

Fig. 5-16

5.8. Prove that (A + B) - (C + D) = A-C + A-D + B-C + B'D.
By Problem 5.7, (A + B) • (C + D) = A • (C + D) + B • (C + D) = A • C + A • D + B • C + B • D.
The ordinary laws of algebra are valid for dot products.

5.9. Evaluate each of the following.
(a) i - i = |i||i| cosO° = (1)(1)(1) = 1
(6) i -k = |i||k|cos90° = (1)(1)(0) = 0
(c) k - j = |k|¡j|cos90° = (1)(1)(0) = 0
(d) j-(2i-3j + k) = 2 j - i - 3 j - j + j - k = 0-3 + 0 = -3
(e) (2i-j)-(3i + k) = 2i-(3i + k)- j-(3i + k)

= 6i • i + 2i • k - 3j • i - j • k = 6 + 0 - 0 - 0 = 6

If A = Aii + A2j + Aak and B = Bii + B2j + B&, prove A-B = AiBi + A&i + A&t
A • B = (Aii + A2j + A3k) • (BJ + B2j + B3k)

= A ti • (B¿ + BZJ + £3k) + A2j • (Bji + B2j + Bsk) + A3k • (Bji + B2j + Bsk)
= A^ji • i + At£2i • j + Ai#3i • k + A2BJ • i + A2B2j • j + A2£3j • k

+ A-^k • i + A3B2k • j + A3B3k • k
= A,B! + A2J52 + A3B3

since i - i = j ' j = k « k = l and all other dot products are zero.

Note that this is the distance between points P and Q.

THE DOT OR SCALAR PRODUCT
5.6. Prove that the projection of A on B is equal to

A-b, where b is a unit vector in the direction
of B.

Through the initial and terminal points of A pass
planes perpendicular to B at G and H respectively as in
the adjacent Fig. 5-15; then
Projection of A on B = GH = EF = A cos e — A • b

5.7. Prove A- (B + C) = A-B + A-C.
Let a be a unit vector in the direction of A; then [see Fig. 5-16]

Projection of (B + C) on A = projection of B on A + projection of C on A

(B + C) -a = B-a + C-a

Multiplying by A,
(B + C) 'Aa = B-Aa + C'Aa

and (B + C) • A = B • A + C • A

Then by the commutative law for dot products,
A« (B + C) = A - B + A - C

and the distributive law is valid.
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5.11. If A = Aii + Azj+Ask, show that A-

A • A = (A)(A) cos 0° = A2. Then A = •

Also, A • A = (Aji + A2j + A3k) • (Axi + A2j + A3k)
= (AiXA,) + (A2)(A2) + (A3)(A3) - A\ + £ + A¡

by Problem 5.10, taking B = A.

Then A = ¡s the magnitude Of A> Sometimes A • A is written A2.

THE CROSS OR VECTOR PRODUCT
5.12. Prove A x B = -B X A.

(a)
Fig. 5-17

(&)

system^ 5-17h(6) %££** ** ̂  ' ̂  ̂ ^ "* ** B'A ̂  ° to & "^-handed

Then D has the same magnitude as C but is opposite in direction, i.e. C = -D or A X B =
~I> X A.

The commutative law for cross products is not valid.

5.13. Prove that A x ( B + C) = AxB +
A x C for the case where A is per-
pendicular to B and also to C.

Since A is perpendicular to B, A X B is a
vector perpendicular to the plane of A and B
and having magnitude AB sin 90° = AB or
magnitude of AB. This is equivalent to mul-
tiplying vector B by A and rotating the
resultant vector through 90° to the position
shown in Fig. 5-18.

Similarly, A X C is the vector obtained
by multiplying C by A and rotating the
resultant vector through 90° to the position
shown.

In like manner, A X (B + C) is the vector
obtained by multiplying B + C by A and
rotating the resultant vector through 90° to
the position shown.

Since A X (B + C) is the diagonal of the
parallelogram with A X B and A X C as sides
we have AX (B + C) = AX B + Ax C. ' „. - 10* lg. 5-18

A*B+C has magnitued AB sin  and direction such that A,B and C form a right a right handed
system [Fig. 5-17(a) above].

system (Fig.5.17(b) above].
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5.14. Prove that A x ( B + C) = AxB + AxC
in the general case where A,B and C are
non-coplanar. See Fig. 5-19.

Resolve B into two component vectors, one
perpendicular to A and the other parallel to A,
and denote them by B± and BM respectively.
Then B = Bj_ +B| ( .

If 9 is the angle between A and B, then
Bj_ = B sin e. Thus the magnitude of A X Bx

is AB sin e, the same as the magnitude of A X B.
Also, the direction A X B is the same as the
direction of A X B. Hence A X Bj_ = A X B .

Similarly if C is resolved into two compo-
nent vectors CN and Cj_, parallel and perpen-
dicular respectively to A, then A X C± = A X C . Fig. 5-19

Also, since B + C = B± + B,, + Cj_ + CM = (Bj_ + Cx) + (BM + C,,) it follows that

A X (Bj_ + Cj_) = A X (B + C)

Now BX and Cj_ are vectors perpendicular to A and so by Problem 5.13,

A X ( B ± + CX) = A X B x + A X C j _

Then A X ( B + C ) = A X B + A X C

and the distributive law holds. Multiplying by —1, using Problem 5.12, this becomes (B + C) X A —
B X A + C X A. Note that the order of factors in cross products is important. The usual laws of
algebra apply only if proper order is maintained.

5.16. If A = 3i - j + 2k and B = 2i + 3j - k, find A X B.

5.17. Prove that the area of a parallelogram with
sides A and B is |A x B . See Fig. 5-20.

Area of parallelogram = h [B|

= |A| sin e |B|

= I A X B J
Note that the area of the triangle with sides A

and B = -||AXB|. Fig. 5-20

i j k
5.15. If A = Aii + A2j + Ask and B = B¿ + B2j + Bak, prove that A x B = Ai A2 A3 .

BI BZ By
A X B = (Ati + A2j + A3k) X (J5,i + B£ + B3k)

= Aji X (B,i + B2j + B3k) + AHJ X (Bji + Eg + B3k) + A3k X (Bji + B2j + B3k)

- AjBji X i + A^i X j + A^gi x k + A2B¡j X i + A2B^ x j + A2B3j x k
+ A3B,k X i + A3£2k X j + A3B3k X k

i j k
= (A2B3-A3£2)i + (A3B1-A1B8)j + (AjB2-A2B,)k = A^ A2 A3

Bi Bn B»
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5.18. Find the area of the triangle with vertices at P(2,3,5), Q(4,2,-l), ¿2(3,6,4).
PQ = (4-2)i + (2-3)j + (-l-5)k = 2i - j - 6k

PB = (3-2)i + (6-3)j + (4-6)k = i + 3j - k

Area of triangle = £ | P Q X P R | = £ | (2i-j-6k) X (i +3j-k) |

TRIPLE PRODUCTS
5.19. Show that A • (B x C) is in absolute

value equal to the volume of a paral-
lelepiped with sides A, B and C. See
Fig. 5-21.

Let n be a unit normal to parallelogram
I, having the direction of B X C, and let h be
the height of the terminal point of A above
the parallelogram I. Fig. 5-21

Volume of parallelepiped = (height A)(area of parallelogram 7)
= (A-n)( |BXC|)
= A-{ |BXC|n} = A - ( B X C )

If A, B and C do not form a right-handed system, A - n < 0 and the volume = |A • (B X C)|.

5.20. If A = Aii + A2J + A3k, B = B¿ + B2j + Bsk, C = Cii + C2j + Cak show that

AI AZ A3

A-(BxC) = Bi B2 B3

Cl C/2 C/3

i J k

A - ( B X C ) = A- B! BZ B3

Ci GZ C3

= (A ti + A-j + A3k) • [(B2C3 - B3C2)i + (B3C, - B^s)] + (BjC2 - B^k]

AI AZ A3

= Aí(BíCs-BaCz)+Az(B3Cl-BlCí) + AA(BlCí-B.iCl) = Bl B2 B3

Ci C% Cg

5.21. Find the volume of a parallelepiped with sides A = 3i - j, B = j + 2k, C = i + 5j + 4k.

3-1 0
By Problems 5.19 and 5.20, volume of parallelepiped = |A • (B X C)| = | 0 1 2 |

1 5 4
= |-20| = 20

5.22. Prove that A- (B x C) = (A x B) • C, i.e. the dot and cross can be interchanged.

¿1 ¿2 ¿3 Cl C2 C3

By Problem 5.20: A - ( B X C ) = B^ B2 B3 , (A X B) • C = C ' ( A X B ) = Ax Az A3

C*i C2 C3 BI B2 B3

Since the two determinants are equal, the required result follows.
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5.23. Let ri = Xii + yij + Zik, r2 = xà + j/2j + z2k
and rs = xd + 2/sj + Zsk be the position
vectors of points PI(XI, y\, Zi), P2(£C2, y2, z2)
and Ps(xs,ys,zs). Find an equation for
the plane passing through Pi,Pz and Pa.
See Fig. 5-22.

We assume that P1( P2 and P3 do not lie in
the same straight line; hence they determine
a plane.

Let r = xi + yj + zk denote the position
vector of any point P(x, y, z) in the plane. Con-
sider vectors PiP2 — r2 ~ ri> PI PS = r3 ~~ ri
and PjP = r — rx which all lie in the plane,
Thel1

or (r - rx) • (ra - rt) X (i3 - rx) = 0

In terms of rectangular coordinates this becomes Fig. 5-22

[(* - *i)i + (V- Vl)j + (Z- 2j)k] • [(*2 - Xjl + (j/2 - 2/j)j + (Z2 - 2j)k]

X [(xa - xji + (2/3 - y j j + (z3 - «!)k] = 0

or, using Problem 5.20,
X — %!

*2-*l

«3 — Xl

y - 3/1
Vz-Vi
2/3-2/1

Z-Z !

*2-«l

Z 3 -Z ,

= 0

5.24. Find an equation for the plane passing through the points Pi (3,1, — 2), P2(-l,2,4),
P,(2,-l,l).

The position vectors of P1( P2, P3 and any point P(x, y, z) on the plane are respectively

rj = 3i + j - 2k, r2 = -i + 2j + 4k, r3 = 2i - j + k, r = xi + y} + zk

Then PPj^r-r j , P2P1 = r2 —r,, P3P, =r3 — rlt all lie in the required plane and so the
required equation is (r — rj) • (r2 —1¡) X (rs — rt) = 0, i.e.,

{(*-3)i+ (2/-l)j + (z + 2)k}-{-4i + j + 6k> X {-i-2j + 3k> = 0

{(* - 3)i + (y- l)j + (z + 2)k> • {15i + 6j + 9k} = 0

1B(* - 3) + 6(j/ - 1) + 9(z + 2) = 0 or 5x + 2y + 3z = 11

Another method. By Problem 5.23, the required equation is

x-B y-1 2+2
-1-3 2-1 4 + 2 =0 or
2-3-1-1 1 + 2

5x + 2y + 3z = 11

5.25. If A = i + j, B = 2i-3j + k, C = 4j-3k, find (a) (AxB)xC, (6) Ax(BxC) .

(a) A X B =

(6) B X C =

i J k
1 1 0
2 - 3 1

i J k
2 - 3 1

= i - j - 5k. Then (A X B) X C =
i J k
1 -1 -5
0 4 - 3

= 23i + 3j + 4k.

= 5i + 6j + 8k. Then A X (B X C) =
0 4 - 3

It follows that, in general, (A X B) X C ¥- A X (B X C).

i J k
1 1 0
5 6 8

= 8i-8j + k.

0



5.29. If A = a;2 sin y i + z2 cosy j - xy2k, find dA.

Method 1.

If x = 1, y - -2, z = -1, this becomes -12i - 12j + 2k.

5.28. If $(x, y, z) - x2yz and A = 3x2yi + yz*j - xzk, find at the point (1, —2,1).

0A = (x*yz)(3x*yi + yz2j - xzk) - 3x*y*zi + x2y2zaj - x^yz^i

Method 2. Let A = Ati + A2j + A3k, B = Bti + B2j + B3k. Then

Method 1.

5.27. Prove that
tions of u.

where A and B are differentiable func-

If t represents time, these represent respectively the velocity, magnitude of the velocity,
acceleration and magnitude of the acceleration at í = 0 of a particle moving along the space
curve x = t3 + Zt, y = —3e~2t, z = 2 sin 5i.

(d) From

(6) From

DERIVATIVES
5.26. If r = (í3 + 2í)i-3e-2tj + 2sin5ík, find

t = 0 and give a possible physical significance.
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(a)

(c)



GRADIENT, DIVERGENCE AND CURL

5.31. If A = x2yz3 and A = xzi - y*j + 2x2yk, find (d) div

The components d-v/dt and v2/p in the direction of T and N are called the tangential and normal
components of the acceleration, the latter being1 sometimes called the centripetal acceleration. The
quantities p and K are respectively the radius of curvature and curvature of the space curve.

Defining p = 1/rc, (2) becomes dT/ds = N/p. Thus from (Í) we have, as required,

where « is the magnitude of dT/ds. Now since X = dr/ds [see equation (9), page 126], we have
dT/ds = eZV<fe2. Hence

from which it follows that dT/ds is perpendicular to T. Denoting by N the unit vector in the direc-
tion of dT/ds, and called the principal normal to the space curve, we have

Since T has unit magnitude, we have T • T = 1. Then differentiating with respect to s,

The velocity of the particle is given by v = vT. Then the acceleration is given by

where T and N are unit tangent and normal vectors to the space curve and

5.30. A particle moves along a space curve r = r(f), where t is the time measured from
some initial time. If v = \dr/dt\ = ds/dt is the magnitude of the velocity of the
particle (s is the arc length along the space curve measured from the initial position),
prove that the acceleration a of the particle is given by

Method 2.

dA
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Laplacian of <f>

5.35. find and

Another unit normal to the surface at P is

Then a unit normal to the surface at P is

5.34. Find a unit normal to the surface 2x2 + 4yz - 5z* = -10 at the point P(B, —1,2).
By Problem 5.33, a vector normal to the surface is

is perpendicular to ar and therefore to the surface.

Let r = xi + yj + zk be the position vector to any point P(x, y, z) on the surface.
Then dr = dx i + dy j + dz k lies in the plane tangent to the surface at P. But

5.33. Prove that is a vector perpendicular to the surface ¿>(x, y, z) = c, where c is a
constant.

5.32. Prove

(e) curl (0A)

(d) div(0A)

iQQ VECTOR ANALYSIS [CHAP. 5



5.38. Find equations for (a) the tangent line, (6) the normal plane to a space curve
* = f(u), y = g(u), z = h(u) at the point where u = u0. See Fig. 5-24.

Pig. 5-23 Fig. 5-24

which in rectangular form is

(6) If r is the vector drawn from O in Pig. 5-23 to any point (x,y,e) on the normal line, then
r — r0 is collinear with N0 and so

since r — r0 is perpendicular to N0. In rectangular form this is

5.37. Find equations for (a) the tangent plane and (6) the normal line to the surface
F(x,y,z) = 0 at the point P(xo,y0,Zo). See Fig. 5-23.

(a) A vector normal to the surface at P is N0 = VF\P. Then if r0 and r are the vectors drawn
respectively from O to P(x0, y0, z0) and Q(x,y,z) on the plane, the equation of the plane is

assuming that A has continuous second partial derivatives so that the order of differentiation is
immaterial.

div curl A

5.36. Prove div curl A = 0.

Another method.
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(a) If R = f(u)i + g(u)j + h(u)k, then a vector tangent to the curve C at point P is given by

T0 = -T- . Then if r0 and r are the vectors drawn respectively from O to P and Q on the

tangent line, we have ,
( r - r 0 )XT 0 = (r-r0)xg p = 0

since r — r0 is collinear with T0. In rectangular form this becomes

(6) If r is the vector from O to any point (x, y, z) on the normal plane, it follows that r — r0 is
perpendicular to T0. Then the required equation is

(r-r0) 'T0 = ( r - r 0 ) ' = 0
or in rectangular form

f'(uo)(x - x0) + ff'(u0)(y - Vo) + h'(u0)(z - z0) = 0

5.39. If F(x, y, z) is defined at any point on a space curve C and s is the arclength to (x, y, z)
from some given point on C, show that

= V^ 'T

where T = dr/ds is a unit tangent vector to C at (x, y, z).

We have

= VF'^- = VF'Tds
The fact that T = dr/ds is a unit vector follows from dr2 = dx2 + dy2 + dz2. We often call
dF/ds the directional derivative of F at (x, y, z) along C.

CURVILINEAR COORDINATES AND JACOBIANS
5.40. Find ds2 in (a) cylindrical and (6) spherical coordinates and determine the scale

factors.

(a) Method 1. x = p cos <f>, y — p sin <j>, z = z

dx = — p sin 0 d0 + cos 0 dp, dy = p cos 0 d<f> + sin 0 dp, dz = dz

Then

ds2 = dx2 + dy2 + dz2 = (-p sin 0 d<f> + cos <t> dp)2 + (p cos 0 d0 + sin 0 dp)2 + (dz)2

= (dp)2 + p2(d0)2 + (dz)2 = hi(dp)2 + ¿I(d0)2 + ¿|(dz)2

and hi = hp = 1, h2 — h<l> = p, h3 = hz — 1 are the scale factors.

Method 2. The position vector is r = p cos 0 i + p sin 0 j + zk. Then

dr =

= (cos 0 i + sin 0 j) dp + (— p sin 0 i + p cos 0 j) d0 + k dz

= (cos 0 dp — p sin 0 d0)i + (sin 0 dp + p cos 0 d0)j + k dz

Thus ds2 = dr • dr = (cos 0 dp — p sin 0 d0)2 + (sin 0 dp + p cos 0 d0)2 + (dz)2

= (dp)2 + p2(d0)2 + (dz)2

(b) x — r sin 9 cos 0, y — r sin 9 sin 0, z = r cos 9

( r - r 0 )XT 0 = (r-r0)xg p = 0
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Then dx = —r sin e sin <f> d<j> + r cos e cos <f> de + sin e cos 0 dr
dy = r sin e cos <j> d<f> + r cos « sin <j> de + sin 9 sin 0 dr
<fe = — r sin 9 dfl + cos 9 dr

and (<fe)2 = (da;)2 + (<*2/)2 + (<fe)2 = (<fr)2 + rz(de)2 + r2 sin2 e (d<p)*

The scale factors are hl = hr = 1, ¿2 = ¿e = r, ha = h^, = r sin #.

5.41. Find the volume element dV in (a) cylindrical and (&) spherical coordinates and
sketch.

The volume element in orthogonal curvilinear coordinates MI( uz, ua is

dV = h^hg dut du2 dua = d^ du2 dua

(a) In cylindrical coordinates, Ui — p, M2
 = 0» % = «, AI = 1, hz = p, h3 = 1 [see Problem 40(a)].

Then ciF = (l)(p)(l)dpd^d« = p d p d f d z

This can also be observed directly from Fig. 5-25(a) below.

(a) Volume element in cylindrical coordinates. (6) Volume element in spherical coordinates.

Fig. 5-25

(6) In spherical coordinates, MI = r, u2 = e, u3 = <f>, h^ = 1, hz = r, h3 = r sin e [see Problem
5.40(6)]. Then

dV = (l)(r)(r sin e) dr de d<f> = r2 sin e dr de d<t>

This can also be observed directly from Fig. 5-25(6) above.

5.42. Express in cylindrical coordinates: (a) grad *, (&) divA, (c)
Let M! = p, M2 = 0, w3 = z, fi! = 1, fe2 = p, A3 = 1 [see Problem 5.40(a)] in the results 1, 2,

page 128, and 4, page 129. Then

(a) grad * =

where e1( e2, e3 are the unit vectors in the directions of increasing p, <f>, z respectively.

(6) divA = =

where A = A1e1 + A2e2 + A3es.
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(e)

5.43. If F(x,y,u,v) = Q and G(x, y, u, v) = 0, find (a) du/dx, (b) du/dy, (c) dv/dx, (d) dv/dy.
The two equations in general define the dependent variables u and v as (implicit) functions of

the independent variables x and y. Using the subscript notation, we have

(1) dF = Fxdx + Fvdy + Fudu + Fvdv = 0

(2) dG = Gxdx + Gydy + Gndu + Gvdv = 0

Also, since u and v are functions of x and y,

(S) du — uxdx + uvdy (4) dv = vxdx + vydy

Substituting (S) and (4) in (1) and (2) yields

(5) dF = (Fx + Fuux + Fvvx) dx + (Fy + Fuuy + f>9) dy = 0

(6) dG = (Gx + Guux + Gvvx) dx + (Gy + Guuy + Gvvy) dy = 0

Since * and y are independent, the coefficients of dx and dy in (5) and (6) are zero. Hence we
obtain

M !>.«» + F,v, = -Fx (Fuuy + Fvvy = -Fv
V> \Guux + Gcvx = -Gx * ; \Guuy + Gvvy = -Gy

Solvinsr (7\ and (8\ arives

Supplementary Problems
VECTOR ALGEBRA

5.44. Given any two vectors A and B, illustrate geometrically the equality 4A + 3(B — A) = A + 3B.

5.45. A man travels 25 miles northeast, 15 miles due east and 10 miles due south. By using an appropriate
scale determine graphically (a) how far and (6) in what direction he is from his starting position.
Is it possible to determine the answer analytically?

5.46. If A and B are any two non-zero vectors which do not have the same direction, prove that mA + wB
is a vector lying in the plane determined by A and B.

Fu Fv
T h e functional determinant ,. _ , denoted b y . i s t h e Jacobian o f

Gu Gv

F and G with respect to u and v and is supposed ¥* 0.

Note that it is possible to devise mnemonic rules for writing at once the required partial deriva-
tives in terms of Jacobians.

denoted by is  the  jasobion
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5.47. If A, B and C are non-coplanar vectors (vectors which do not all lie in the same plane) and
a^A + 2/jB + «tC = x2A + j/2B + Z2C, prove that necessarily Xi = x2, yt = yz, «i = ^2-

5.48. Let ABCD be any quadrilateral and points P, Q, R and S the midpoints of successive sides. Prove
(a) that PQRS is a parallelogram and (6) that the perimeter of PQRS is equal to the sum of the
lengths of the diagonals of ABCD.

5.49. Prove that the medians of a triangle intersect at a point which is a trisection point of each median.

5.50. Find a unit vector in the direction of the resultant of vectors A = 2i — j + k, B = i + j + 2k,
C = 3i - 2j + 4k.

THE DOT OR SCALAR PRODUCT
5.51. Evaluate |(A + B) • (A - B)| if A = 2i - 3j + 5k and B = 3i + j - 2k.

5.52. Prove the law of cosines for a triangle. [Hint. Take the sides as A, B, C where C = A — B. Then
use C - C = (A-B)-(A-B).]

5.53. Find a so that 2i — 3j + 5k and 3i + oj — 2k are perpendicular.

5.54. If A = 2i + j + k, B = i - 2j + 2k and C = 3i - 4j + 2k, find the projection of A + C in the
direction of B.

5.55. A triangle has vertices at A(Z, 3,1), B(—l, 1,2), C(l, —2,3). Find (a) the length of the median drawn
from B to side AC and (6) the acute angle which this median makes with side BC.

5.56. Prove that the diagonals of a rhombus are perpendicular to each other.

5.57. Prove that the vector (AB + BA)/(A + B) represents the bisector of the angle between A and B.

THE CROSS OR VECTOR PRODUCT
5.58. If A = 2i-j + k and B - i + 2j-3k, find |(2A + B) X (A- 2B)|.

5.59. Find a unit vector perpendicular to the plane of the vectors A = 3i — 2j 4- 4k and B = i + j — 2k.

5.60. If A X B = A X C, does B = C necessarily?

5.61. Find the area of the triangle with vertices (2, -3,1), (1, -1,2), (-1, 2, 3).

5.62. Find the shortest distance from the point (3,2,1) to the plane determined by (1,1,0), (3, —1,1),
(-1,0,2).

TRIPLE PRODUCTS
5.63. If A = 2i + j-3k, B = i-2j + k, C = -i + j-4k, find (a) A • (B X C), (6) C • (A X B), (c) A X

(B X C), (d) (A X B) X C.

5.64. Prove that (a) A • (B X C) = B • (C X A) = C • {A X B)
(6) A X (B X C) = B(A • C) - C(A • B).

5.65. Find an equation for the plane passing through (2, —1, —2), (—1,2, —3), (4,1,0).

5.66. Find the volume of the tetrahedron with vertices at (2,1,1), (1, -1, 2), (0,1, -1), (1, -2,1).

5.67. Prove that (A X B) • (C X D) + (B X C) • (A X D) + (C X A) • (B X D) = 0.

DERIVATIVES

5.68. A particle moves along the space curve r = e~* cos t i + e~* sin t j + e-*k. Find the magnitude
of the (a) velocity and (6) acceleration at any time t.

5.69. Prove that where A and B are differentiable functions of u.



144 VECTOR ANALYSIS [CHAP. 5

5.70. Find a unit vector tangent to the space curve * = t, y = t2, z = i3 at the point where í = 1.

5.71. If r = a cos at + b sin at, where a and b are any constant noncollinear vectors and « is a constant

scalar, prove that (a) r X

5.72. If A = X2i -yj + xzk, B = yi + xj- xyzk and C = i - yj + xszk, find ( a ) a n d
(6) d[A • (B X C)] at the point (1, -1,2).

5.74. If A is a differentiate function of u and |A(tt)| = 1, prove that dA/du is perpendicular to A.

5.75. Let T and N denote respectively the unit tangent vector and unit principal normal vector to a space
curve r = i(u), where r(u) is assumed differentiate. Define a vector B = T X N called the unit
binormal vector to the space curve. Prove that

These are called the Frenet-Serret formulas. In these formulas K is called the curvature, T is called
the torsion; and the reciprocals of these, p — l//c and a = I/T, are called the radius of curvature
and radius of torsion respectively.

GRADIENT, DIVERGENCE AND CURL

5.76. If U, V, A, B have continuous partial derivatives prove that:
(a)

5.77. If <t> = xy + yz + zx and A = x*yi + y2zj + z2xk, find
at the point (3, —1,2).

5.78. Show that = 0 where r = xi + yj + zk and r = |r|.

5.79. Prove:

5.80. Prove that curl grad U = 0, stating appropriate conditions on U.

5.81. Find a unit normal to the surface xzy — 2xz + 2?/2z4 = 10 at the point (2,1, —1).

5.82. If A = 3xz*i - yzj + (x + 2z)k, find curl curl A.

5.83. (a) Prove that ' (6) Verify the result in (a) if A is given as in
Problem 5.82.

5.84. Find the equations of the (a) tangent plane and (b) normal line to the surface x2 + y2 = 4z at
(2,-4, 5).

5.85. Find the equations of the (a) tangent line and (6) normal plane to the space curve x = 6 sin t,
y = 4 cos 3t, z = 2 sin 5t at the point where t = ir/4.

5.86. (a) Find the directional derivative of U = 2xy — z2 at (2, —1,1) in a direction toward (3,1, —1).
(6) In what direction is the directional derivative a maximum? (c) What is the value of this

maximum?

5.87. Prove that the acute angle y between the z axis and the normal to the surface F(x, y, z) = 0 at any

point is given by sec y =

5.88. (a) Develop a formula for the shortest distance from a point (x0, y0, z0) to a surface. (6) Illustrate
the result in (a) by finding the shortest distance from the point (1,1, —2) to the surface z = xz + yz.

5.73. If R at the point
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5.89. Let E and H be two vectors assumed to have continuous partial derivatives (of second order at least)
with respect to position and time. Suppose further that E and H satisfy the equations

U)

prove that E and H satisfy the equation
(2)

[The vectors E and H are called electric and magnetic field vectors in electromagnetic theory. Equa-
tions (1) are a special case of Maxwell's equations. The result (2) led Maxwell to the conclusion
that light was an electromagnetic phenomena. The constant c is the velocity of light.]

5.90. Use the relations in Problem 5.89 to show that

JACOBIANS AND CURVILINEAR COORDINATES

5.91. Prove that

5.92. Express (a) grad *, (6) div A in spherical coordinates.

5.93. The transformation from rectangular to parabolic cylindrical coordinates is defined by the equations
x = £(w.2 — vz), y = uv, z = z. (a) Prove that the system is orthogonal. (6) Find ds2 and the scale
factors, (c) Find the Jacobian of the transformation and the volume element.

5.94. Write (a) V2* and (6) div A in parabolic cylindrical coordinates.

5.95. Prove that for orthogonal curvilinear coordinates,

V* =

[Hint. Let V* = ct1e1 + <t2
e2 + a3es and use the fact that d<I> = V* • dr must be the same in both

rectangular and the curvilinear coordinates.]

5.96. Prove that the acceleration of a particle along a space curve is given respectively in (a) cylindrical,
(6) spherical coordinates by

(p- P^)ep + (p* + 2¿¿fe» + '¿9.

( V — rez — rj>2 sin2 e)er + (r 'ê + 2re — rj>2 sin e cos 0)ee + (2f 0 sin e + 2rèj> cos e + r 0 sin e)e^,

where dots denote time derivatives and ep, e^, ez, er, ee, e,,, are unit vectors in the directions of
increasing p, 0, z, r, 9, 0 respectively.

5.97. If F = x + 3y2 - zs, G - 2x2yz, and H = 2z2 — xy, evaluate at (1, -1,0).

5.98. If F = xy + yz + zx, G = a;2 + j/2 + z2, and H = x + y + z, determine whether there is a functional
relationship connecting F, G, and H, and if so find it.

5.99. If F(P, V, T) = 0, prove that (a) = -1 where a

subscript indicates the variable which is to be held constant. These results are useful in thermo-
dynamics where P, V, T correspond to pressure, volume and temperature of a physical system.

d(u'v'w) * °' ^ Give an interPretation of the result of (a) in terms of transformations.

5.10.0
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Answers to Supplementary Problems
5.45. 33.6 miles, 13.2° north of east

5.50.

5.51.

5.53.

5.54.

5.55.

5.58.

5.59.

5.61.

5,62.

5.63.

5.65.

5.66.

5.68.

5.70.

5.72.

5.73.

5.77.

5.81.

5.82.

5.84.

5.85.

5.86.

5.92.

5.93.

5.94.

5.97.

5.98.



DOUBLE INTEGRALS

Let F(x, y) be defined in a closed region ^ of the
xy plane (see Fig. 6-1). Subdivide <3?. into n sub-
regions A"^ of area &Ak, k = 1,2,...,n. Let (¿k,%)
be some point of A<Rfc. Form the sum

(1)
Consider

(*)

where the limit is taken so that the number n of sub-
divisions increases without limit and such that the
largest linear dimension of each A^fc approaches
zero. If this limit exists it is denoted by Fig. 6-1

(3)

and is called the double integral of F(x, y) over the region "5?..

It can be proved that the limit does exist if F(x, y) is continuous (or piecewise con-
tinuous) in <%.

ITERATED INTEGRALS

If "̂  is such that any lines parallel to the y axis meet the boundary of ^ in at most
two points (as is true in Fig. 6-1), then we can write the equations of the curves ACB
and ADB bounding ̂  as y = fi(x) and y = f-¿(x) respectively, where fi(x) and fz(x) are
single-valued and continuous in a ë x à b. In this case we can evaluate the double
integral (3) by choosing the regions A^fc as rectangles formed by constructing a grid of
lines parallel to the x and y axes and AAk as the corresponding areas. Then (3) can be
written

(4)

where the integral in braces is to be evaluated first (keeping x constant) and finally
integrating with respect to x from a to b. The result (4) indicates how a double integral
can be evaluated by expressing it in terms of two single integrals called iterated integrals.

147

Chapter 6

Multiple, Line and Surface
Integrals and Integral Theorems
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If ^ is such that any lines parallel to the x axis meet the boundary of <% in at most
two points (as in Fig. 6-1), then the equations of curves CAD and CBD can be written
x = gi(y) and x = g2(y) respectively and we find similarly

(5)

If the double integral exists, (4) and (5) will in general yield the same value. In writing a
double integral, either of the forms (4) or (5), whichever is appropriate, may be used. We
call one form an interchange of the order of integration with respect to the other form.

In case <^ is not of the type shown in the above figure, it can generally be subdivided
into regions "3 ,̂ <R,2, ... which are of this type. Then the double integral over ^ is found
by taking the sum of the double integrals over "3 ,̂ ̂ ^ ....

TRIPLE INTEGRALS

The above results are easily generalized to closed regions in three dimensions. For
example, consider a function F(x,y,z) defined in a closed three dimensional region "tR..
Subdivide the region into n subrogions of volume AFfc, k = 1,2,..., n. Letting (ffc, i)k, £fc)
be some point in each subregion, we form

(«)

where the number n of subdivisions approaches infinity in such a way that the largest
linear dimension of each subregion approaches zero. If this limit exists we denote it by

(7)

called the triple integral of F(x, y, z) over <R. The limit does exist if F(x, y, z) is continu-
ous (or piecewise continuous) in <]{.

If we construct a grid consisting of planes parallel to the xy, yz and xz planes, the
region ^ is subdivided into subrogions which are rectangular parallelepipeds. In such
case we can express the triple integral over ̂  given by (7) as an iterated integral of the
form

(*)

(where the innermost integral is to be evaluated first) or the sum of such integrals. The
integration can also be performed in any other order to give an equivalent result.

Extensions to higher dimensions are also possible.

TRANSFORMATIONS OF MULTIPLE INTEGRALS

In evaluating a multiple integral over a region <?(, it is often convenient to use
coordinates other than rectangular, such as the curvilinear coordinates considered in
Chapter 5.
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If we let (u,v) be curvilinear coordinates of points in a plane, there will be a set of
transformation equations x = f(u, v), y = g(u, v) mapping points (x, y) of the xy plane
into points (u,v) of the uv plane. In such case the region <3( of the xy plane is mapped
into a region <^' of the uv plane. We then have

where G(u,v) = F{f(u,v), g(u,v)} and

(9)

(10)

is the Jacobian of x and y with respect to u and v (see Chapter 5).
Similarly if (u, v,w) are curvilinear coordinates in three dimensions, there will be

a set of transformation equations x = f(u, v, w), y = g(u, v, w), z = h(u, v, w) and we can
write

du dv dw (11)

(12)

B(a,, b,)

"(#,,+,,J4+i)

LINE INTEGRALS
Let C be a curve in the xy plane which

connects points A(ai,61) and B(a2,b2), (see
Fig. 6-2). Let P(x,y) and Q(x,y) be single-
valued functions defined at all points of C.
Subdivide C into n parts by choosing (n — 1)
points on it given by (xi,yi), (x2,y2), .. .,(*»-!,
yn-i). Call AXfc = Xk — xk-i and Ayk = yk-yk-\,
k = 1,2, ..., n where (oi, bi) = (x0, y0), (a2, b2) =
(xn,yn) and suppose that points (lfc,vk) are
chosen so that they are situated on C between
points (Xk-i, 2/fc-i) and (XH, yk). Form the sum

n Pig. 6-2

2) W* vj **fc + Q(ft, Vt) Ai/fc} (15)

The limit of this sum as n -» « in such a way that all the quantities Axk, A^/fc approach
zero, if such limit exists, is called a line integral along C and is denoted by

(14)

is the Jacobian of x, y and z with respect to u, v and w.
The results (9) and (11) correspond to change of variables for double and triple integrals.
Generalizations to higher dimensions are easily made.

where

or
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The limit does exist if P and Q are continuous (or piecewise continuous) at all points of C.
The value of the integral depends in general on P, Q, the particular curve C, and on the
limits (ai, &i) and (a2, ba).

In an exactly analogous manner one may define a line integral along a curve C in
three dimensional space as

(15)

where A\, A2 and A3 are functions of x, y and z.

Other types of line integrals, depending on particular curves, can be defined. For
example, if Ask denotes the arc length along curve C in the above figure between points
(xk,yk) and (xk+i,yk+i), then

(16)

is called the line integral of U(x,y) along curve C. Extensions to three (or higher)
dimensions are possible.

VECTOR NOTATION FOR LINE INTEGRALS
It is often convenient to express a line integral in vector form as an aid in physical

or geometric understanding as well as for brevity of notation. For example, we can
express the line integral (15) in the form

(17)

where A = Aii + A2j + Ask and dr = dxi + dyj + dzk. The line integral (14) is a
special case of this with z — 0.

If at each point (x, y, z) we associate a force F acting on an object (i.e. if a force field
is defined), then

(18)

represents physically the total work done in moving the object along the curve C.

EVALUATION OF LINE INTEGRALS

If the equation of a curve C in the plane z — 0 is given as y = f(x), the line integral
(14) is evaluated by placing y - f(x), dy = f'(x) dx in the integrand to obtain the definite
integral

(19)

which is then evaluated in the usual manner.

Similarly if C is given as x = g(y), then dx = g'(y) dy and the line integral becomes

(20)
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If C is given in parametric form x = $(t), y - <¡,(t), the line integral becomes

(21)

where U and ¿2 denote the values of t corresponding to points A and B respectively.

Combinations of the above methods may be used in the evaluation.
Similar methods are used for evaluating line integrals along space curves.

PROPERTIES OF LINE INTEGRALS
Line integrals have properties which are analogous to those of ordinary integrals.

For example:

Thus reversal of the path of integration changes the sign of the line integral.

3.

where (a3, b3) is another point on C.

Similar properties hold for line integrals in space.

SIMPLE CLOSED CURVES. SIMPLY AND MULTIPLY-CONNECTED REGIONS
A simple closed curve is a closed curve which does not intersect itself anywhere.

Mathematically, a curve in the xy plane is defined by the parametric equations x = <£(i),
y = $(t) where <£ and <l> are single-valued and continuous in an interval íi á t a Í2. If
4>(ti) = <t>(ta) and ^(ii) = ^(£2), the curve is said to be closed. If <¡>(u) = <¡>(v) and <¡/(u) = *¡>(v)
only when u = v (except in the special case where u = íi and v = ¿2), the curve is closed
and does not intersect itself and so is a simple closed curve. We shall also assume, unless
otherwise stated, that <j> and ^ are piecewise differentiate in íi a t á Í2.

If a plane region has the property that any closed curve in it can be continuously
shrunk to a point without leaving the region, then the region is called simply-connected,
otherwise it is called multiply-connected [see Problem 6.19].

As the parameter t varies from ti to tz, the plane curve is described in a certain sense
or direction. For curves in the xy plane, we arbitrarily describe this direction as positive
or negative according as a person traversing the curve in this direction with his head
pointing in the positive z direction has the region enclosed by the curve always toward his
left or right respectively. If we look down upon a simple closed curve in the xy plane, this
amounts to saying that traversal of the curve in the counterclockwise direction is taken
as positive while traversal in the clockwise direction is taken as negative.

GREEN'S THEOREM IN THE PLANE

Let P,Q,dP/dy,dQ/dx be single-valued and continuous in a simply-connected region
^ bounded by a simple closed curve C. Then

(22)
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where is used to emphasize that C is closed and that it is described in the positive

direction".
This theorem is also true for regions bounded by two or more closed curves (i.e.

multiply-connected regions). See Problem 6.19.

CONDITIONS FOR A LINE INTEGRAL TO BE INDEPENDENT OF THE PATH

Theorem 6-1. A necessary and sufficient condition for to be independent

of the path C joining any two given points in a region ^ is that in ̂

dP/dy = dQ/dx (23)

where it is supposed that these partial derivatives are continuous in ^.

The condition (23) is also the condition that Pdx + Qdy is an exact differential,
i.e. that there exists a function <f>(x,y) such that Pdx + Qdy = d^>. In such case if the
end points of curve C are (x\, yi) and (xz, y¿), the value of the line integral is given by

(24)

In particular if (23) holds and C is closed, we have Xi = x-2, y\ — yz and

(25)

For proofs and related theorems, see Problems 6.22 and 6.23.

The results in Theorem 6-1 can be extended to line integrals in space. Thus we have

Theorem 6-2. A necessary a n d sufficient condition f o r t o b e
*.

independent of the path C joining any two given points in a region ^ is
that in ̂

(26)

where it is supposed that these partial derivatives are continuous in "•£.

The results can be expressed concisely in terms of vectors. If A = Aii + A2j + Ask,

the line integral can be written A-dr and condition (26) is equivalent to the condition

If A represents a force field F which acts on an object, the result is equiv-
alent to the statement that the work done in moving the object from one point to another
is independent of the path joining the two points if and only if Such a force
field is often called conservative.

The condition (26) [or the equivalent condition is also the condition that
Aidx + Azdy + Asdz [or A'dr] is an exact differential, i.e. that there exists a function
<j>(x,y,z) such that Aidx + A2dy + A3dz = d<j>. In such case if the endpoints of curve C
are (xi,yi,zi) and (#2,2/2,22), the value of the line integral is given by

(27)

In particular if C is closed and we have

(28)
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k nn

Fig. 6-3

Since ASp = |sec yp AAp approximately, where yp is the angle between the normal line
to S and the positive z axis, the limit of the sum (29) can be written

The quantity |sec y| is given by

|sec y| =

(31)

(32)

Then assuming that z = f(x, y) has continuous (or sectionally continuous) derivatives in
•3 ,̂ (31) can be written in rectangular form as

In case the equation for S is given as F(x, y, z) = 0, (33) can also be written

(34)

The results (33) or (34) can be used to evaluate (30).

In the above we have assumed that S is such that any line parallel to the z axis
intersects S in only one point. In case S is not of this type, we can usually subdivide S
into surfaces Si,S2, :.. which are of this type. Then the surface integral over S is defined
as the sum of the surface integrals over Si, S2,... .

The results stated hold when S is projected on to a region ^ of the xy plane. In some
cases it is better to project S on to the yz or xz planes. For such cases (30) can be
evaluated by appropriately modifying (33) and (34).

SURFACE INTEGRALS

Let S be a two-sided surface having
projection 'R. on the xy plane as in the
adjoining Fig. 6-3. Assume that an
equation for S is z = f(x, y), where / is
single-valued and continuous for all x
and y in ••£. Divide <K into n subregions
of area AAP, p = 1,2,...,«, and erect
a vertical column on each of these sub-
regions to intersect S in an area ASP.

Let <j)(x,y,z) be single-valued and
continuous at all points of S. Form
the sum

(29)

where (£ ,vp,£p) is some point of ASp. If the limit of this sum as »-» « in such a way
that each ASp -» 0 exists, the resulting limit is called the surface integral of $(x, y, z) over
S and is designated by

(30)
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THE DIVERGENCE THEOREM

Let S be a closed surface bounding a region of volume V. Choose the outward drawn
normal to the surface as the -positive normal and assume that a, p, y are the angles which
this normal makes with the positive x, y and z axes respectively. Then if At, A2 and A3 are
continuous and have continuous partial derivatives in the region

(35)

which can also be written

(36)

In vector form with A = Aa +A2j + Ask and n = cos ai + cos /Jj + cos yk, these can be
simply written as

(37)

In words this theorem, called the divergence theorem or Green's theorem in space, states
that the surface integral of the normal component of a vector A taken over a closed
surface is equal to the integral of the divergence of A taken over the volume enclosed
by the surface.

STOKES' THEOREM

Let S be an open, two-sided surface bounded by a closed non-intersecting curve C
(simple closed curve). Consider a directed line normal to S as positive if it is on one side
of S, and negative if it is on the other side of S. The choice of which side is positive is
arbitrary but should be decided upon in advance. Call the direction or sense of C posi-
tive if an observer, walking on the boundary of <S with his head pointing in the direction
of the positive normal, has the surface on his left. Then if Ai,A2, A3 are single-valued,
continuous, and have continuous first partial derivatives in a region of space including S,
we have

(38)

In vector form with A = Aii + A2j + A3k and n = cos ai + cos/îj + cos-yk, this is simply
expressed as

(39)

In words this theorem, called Stokes' theorem, states that the line integral of the
tangential component of a vector A taken around a simple closed curve C is equal to the
surface integral of the normal component of the curl of A taken over any surface S
having C as a boundary. Note that if, as a special case V x A = 0 in (39), we obtain
the result (28).
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Solved Problems

DOUBLE INTEGRALS

6.1. (a) Sketch the region 9?. in the xy plane bounded by y = x2, x = 2, y = 1.

(&) Give a physical interpretation to

(c) Evaluate the double integral in (&).

(a) The required region ^ is shown shaded in Fig. 6-4 below.
(b) Since x2 + y2 is the square of the distance from any point (x, y) to (0,0), we can consider the

double integral as representing the polar moment of inertia (i.e. moment of inertia with respect
to the origin) of the region .̂ (assuming unit density).

We can also consider the double integral as representing the mass of the region "3{ assuming
a density varying as x2 + y2.

Fig. 6-4 Fig. 6-5

(c) Method 1. The double integral can be expressed as the iterated integral

The integration with respect to y (keeping x constant) from y — 1 to y — x2 corresponds
formally to summing in a vertical column (see Fig. 6-4). The subsequent integration with
respect to x from x = 1 to x = 2 corresponds to addition of contributions from all such
vertical columns between x — 1 and x = 2.

Method 2. The double integral can also be expressed as the iterated integral

In this case the vertical column of region ^ in Fig. 6-4 above is replaced by a horizontal
column as in Fig. 6-5 above. Then the integration with respect to x (keeping y constant) from
x = i/y to x = 2 corresponds to summing in this horizontal column. Subsequent integration
with respect to y from y - Í to y = 4 corresponds to addition of contributions for all such
horizontal columns between y = 1 and y = 4.
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6.2. Find the volume of the region common to the intersecting cylinders xz + y2 = a2 and
x2 + z2 = a2.

Required volume = 8 times volume of region shown in Fig. 6-6

As an aid in setting up this integral note that z dy áx corresponds to the volume of a column
such as shown darkly shaded in the figure. Keeping x constant and integrating with respect to y
from y = 0 to y = ̂ az — x^ corresponds to adding the volumes of all such columns in a slab
parallel to the yz plane, thus giving the volume of this slab. Finally, integrating with respect to
* from x = 0 to x = a, corresponds to adding the volumes of all such slabs in the region, thus
giving the required volume.

Fig. 6-6 Fig. 6_7

TRIPLE INTEGRALS

6.3. (a) Sketch the 3 dimensional region ^ bounded by x + y + z = a(a,>0), x = 0 y = Q
2 = 0. '

(&) Give a physical interpretation to

(c) Evaluate the triple integral in (6).

(a) The required region ^ is shown in Fig. 6-7.

(6) Since x2 + y* + 32 is the square of the distance from any point (x, y, z) to (0, 0,0), we can consider
the triple integral as representing the polar moment of inertia (i.e. moment of inertia with
respect to the origin) of the region ^ (assuming unit density).

We can also consider the triple integral as representing the mass of the region if the
density varies as a2 + j/2 + z2.

(c) The triple integral can be expressed as the iterated integral



Aims me centróla ñas coordinates (3/4,3,8/5).

Note that the value for y could have been predicted because of symmetry.

Total mass

Total moment about xy plane

Total moment about xz plane

Total mass

Total moment about yz plane

Total mass

by part (a), since a is constant. Then

Fig. 6-8

(6) Total mass

(a) Required volume

The region ^ is shown in Fig. 6-8.

6.4. Find the (a) volume and (b) centroid of the region <5? bounded bv the narahnlip
cylinder z = 4-x¿ and the planes x = Q, y = 0, y = Q,z^Q assuming the density
to be a constant a.

The integration with respect to z (keeping * and y constant) from z = 0 to z = a-x-y
corresponds to summing the polar moments of inertia (or masses) corresponding to each cube
in a vertical column. The subsequent integration with respect to y from y = 0 to y = a — x
(keeping * constant) corresponds to addition of contributions from all vertical columns contained
in a slab parallel to the yz plane. Finally, integration with respect to x from * = 0 to x = a
adds up contributions from all slabs parallel to the yz plane.

Although the above integration has been accomplished in the order z, y, x, any other order
is clearly possible and the final answer should be the same.
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TRANSFORMATION OF DOUBLE INTEGRALS

6.5. Justify equation (21), page 151, for chang-
ing variables in a double integral.

In rectangular coordinates, the double integral
oí' F(x,y) over the region ^ (shaded in Fig. 6-9) is

We can also evaluate this double

integral by considering a grid formed by a family
of u and v curvilinear coordinate curves constructed
on the region ••£ as shown in the figure.

Let P be any point with coordinates (x, y) or
(u,v), where x = f(u,v) and y = g(u,v). Then
the vector r from O to P is given by r = xi + yj =
f(u, v)i + g(u, v)j. The tangent vectors to the coordi-
nate curves u — ct and v = cz, where Cj and C2 are
constants, are dr/dv and dr/du respectively. Then
the area of the region A^ of Fig. 6-9 is given ap-

proximately by AwAt>. Fig. 6-9

But

so that

The double integral is the limit of the sum

taken over the entire region "3Ç. An investigation reveals that this limit is

•\.

where <^' is the region in the uv plane into which the region "̂  is mapped under the transformation
x = f(u, v), y = g(u, v).

6.6. Evaluate where 'K. is the region in the xy plane bounded by

£2 + 3,2 = 4 and x2 + y2 = 9.
The presence of xz + y2 suggests the use of polar coordinates (p, 0), where » = p cos <f>, y = p sin <f>.

Under this transformation the region "̂  [Fig. 6-10(a)] is mapped into the region <3(' [Fig. 6-10(6)].
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Since = p, it follows that

We can also write the integration limits for ^' immediately on observing the region % since
for fixed <j>, p varies from p = 2 to p = 3 within the sector shown dashed in Fig. 6-10(a). An
integration with respect to <j> from <j> = 0 to <f> = 2ir then gives the contribution from all sectors.
Geometrically pdpd<f> represents the area dA as shown in Fig. 6-10(a).

TRANSFORMATION OF TRIPLE INTEGRALS

6.7. Justify equation (11), page 149, for changing variables in a triple integral.

Fig. 6-11

By analogy with Problem 6.5 we construct a grid of curvilinear coordinate surfaces which sub-
divide the region "̂  into subregions, a typical one of which is A^ (see Fig. 6-11).

The vector r from the origin O to point P is

r = xi + yj + zk = f(u, v, w)\ + g(u, v, w)j + h(u, v, w)k

assuming that the transformation equations are x = f(u, v, w), y = g(u, v, w) and z = h(u, v, w).

Tangent vectors to the coordinate curves corresponding to the intersection of pairs of coordinate
surfaces are given by dr/du, dr/dv, dr/dw. Then the volume of the region A"^ of Fig. 6-11 is given
approximately by

The triple integral of F(x, y, z) over the region is the limit of the sum

An investigation reveals that this limit is

where 9?' is the region in the uvw space into which the region <% is mapped under the transformation.
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6.8. E x p r e s s \ d x d y d z in cylindrical coordinates.«

The transformation equations in cylindrical coordinates are x = p cos <f>, y = p sin <f>, z — z.
The Jacobian of the transformation is

Then by Problem 6.7 the triple integral becomes

where ^' is the region in the p, <p, z space corresponding to "•£ and where

G(p, </>, «) = F(p cos 0, p sin <f>, z)

6.9. Find the volume of the region above the
xy plane bounded by the paraboloid
z = x2 + y2 and the cylinder xz + y2 - a2.

The volume is most easily found by using
cylindrical coordinates. In these coordinates the
equations for the paraboloid and cylinder are re-
spectively z = p2 and p = a. Then

Required volume

= 4 times volume shown in Pig. 6-12

The integration with respect to z (keeping p and <f> constant) from z = 0 to z = p2 corresponds
to summing the cubical volumes (indicated by dV) in a vertical column extending from the xy plane
to the paraboloid. The subsequent integration with respect to p (keeping <t> constant) from p = 0
to p = a corresponds to addition of volumes of all columns in the wedge shaped region. Finally,
integration with respect to <f> corresponds to adding volumes of all such wedge shaped regions.

The integration can also be performed in other orders to yield the same result.

We can also set up the integral by determining the region '̂ in p, $, z space into which ^ is
mapped by the cylindrical coordinate transformation.

LINE INTEGRALS

5.10. Evaluate along (a) a straight line from (0,1) to (1,2),

(6) straight lines from (0,1) to (1,1) and then from (1,1) to (1,2), (c) the parabola
x = t, y = t2 + l.

(a) An equation for the line joining (0,1) and (1,2) in the xy plane is y = x + l. Then dy = dx
and the line integral equals

Fig. 6-12
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(b) Along the straight line from (0,1) to (1,1), y = 1, dy = 0 and the line integral equals

Along the straight line from (1,1) to (1,2), x = 1, dx = 0 and the line integral equals

Then the required value = -2/3 +10/3 = 8/3.

(c) Since í = 0 at (0,1) and f = 1 at (1, 2), the line integral equals

6.11. If A = (3a;2-6ye)i + (2y + 3xz)j + (1 -4xyz2)k, evaluate k-dr from (0,0,0) to
(1,1,1) along the following paths C:
(a) x-t, y = t2, z = t3.
(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and then to (1,1,1).
(c) the straight line joining (0,0,0) and (1,1,1).

(a) If x = t, y = t2, z = t3, points (0, 0,0) and (1,1,1) correspond to t = 0 and í = 1 respectively.
Then

Another method.

Along C, A = (3 «2 - 6i«)i + (2«2 + 3t*)j + (1 - 4i")k and r = x\ + yj + zk = tí. + t*j + t%,
dr = (i + 2ij + 3f%) dt. Then

(b) Along the straight line from (0,0,0) to (0,0,1), x = O, y = 0, dx - 0, dy = 0 while z varies
from 0 to 1. Then the integral over this part of the path is

Along the straight line from (0, 0,1) to (0,1,1), x = 0, z - 1, dx = 0, dz = 0 while y
varies from 0 to 1. Then the integral over this part of the path is

Along the straight line from (0,1,1) to (1,1,1), y = 1, z = 1, dy = 0, dz = 0 while
x varies from 0 to 1. Then the integral over this part of the path is

Adding,
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(c) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by * = t, y = t, z = t.
Then

6.12. Find the work done in moving a particle once around an ellipse C in the xy plane,
if the ellipse has center at the origin with semi-major and semi-minor axes 4' and 3
respectively, as indicated in Fig. 6-13, and if the force field is given by

F = (3x-4y + 2z)i + (4x + 2y- 3z2) j + (2xz - 4y* + «3)k

In the plane 2 = 0, F = (3« - 4j/)i + (4* + 2y)j - 4î/2k and
dr = dxi + dyj so that the work done is

Choose the parametric equations of the ellipse as x = 4 cos t,
y = 3 sin í where t varies from 0 to 2ir (see Fig. 6-13). Then the
line integral equals Fig. 6-13

In traversing C we have chosen the counterclockwise direction indicated in Fig. 6-13. We call
this the positive direction, or say that C has been traversed in the positive sense. If C were traversed
in the clockwise (negative) direction the value of the integral would be — 96ir.

6.13. Evaluate y ds along the curve C given by from x = 3 to x = 24.

Since we have

GREEN'S THEOREM IN THE PLANE

6.14. Prove Green's theorem in the plane if C
is a closed curve which has the property
that any straight line parallel to the co-
ordinate axes cuts C in at most two points.

Let the equations of the curves AEB and AFB
(see adjoining Fig. 6-14) be y - Fj (a;) and
y = Y2(x) respectively. If <% is the region bounded
by C, we have
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Similarly let the equations of curves EAF and EBF be x - X^y) and x = X2(y) respectively.
Then

Then <«>

Adding (1) and (2), dx dy.

6.15. Verify Green's theorem in the plane for

where C is the closed curve of the region
bounded by y = x2 and y2 = x.

The plane curves y = x2 and y2 = * inter-
sect at (0,0) and (1,1). The positive direction in
traversing C is as shown in Pig. 6-15.

Along y = x2, the line integral equals Fig. 6-15

Along yz = x the line integral equals

Then the required line integral = 7/6 - 17/15 = 1/30.

Hence Green's theorem is verified.

6.16. Extend the proof of Green's theorem in the
plane given in Problem 6.14 to the curves
C for which lines parallel to the coordinate
axes may cut C in more than two points.

Consider a closed curve C such as shown in
the adjoining Fig. 6-16, in which lines parallel to
the axes may meet C in more than two points. By
constructing line ST the region is divided into two
regions "̂  and ^2 which are of the type con-
sidered in Problem 6.14 and for which Green's
theorem applies, i.e., p¡g. 6-16

Then (1)
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S'

Adding the left hand sides of (Í) and (2), we have, omitting the integrand P dx + Q dy in each
case,

using the fact that

Adding the right hand sides of (1) and (2), omitting the integrand,
where "̂  consists of regions "̂  and ^2-

A region "3J such as considered here for which any closed curve lying in "3̂  can be continuously
shrunk to a point without leaving <ï{, is called a simply-connected region. A region which is not
simply-connected is called multiply-connected. We have shown here that Green's theorem in the
plane applies to simply-connected regions bounded by closed curves. In Problem 6.19 the theorem
is extended to multiply-connected regions.

For more complicated simply-connected regions it may be necessary to construct more lines,
such as ST, to establish the theorem.

6.17. Show that the area bounded by a simple closed curve C is given by
In Green's theorem, put P = —y, Q = x. Then

where A is the required area. Thus ¡

6.18. Find the area of the ellipse x — a cos 0, y = b sin 0.

Area [(a cos e)(b cos e) de — (b sin »)(—a sin e) de]

6.19. Show that Green's theorem in the plane is
also valid for a multiply-connected region "3Ç.
such as shown in Fig. 6-17.

The shaded region *R_, shown in the figure, is
multiply-connected since not every closed curve lying
in ^ can be shrunk to a point without leaving <£, as
is observed by considering a curve surrounding
DEFGD for example. The boundary of ^, which
consists of the exterior boundary AHJKLA and the
interior boundary DEFGD, is to be traversed in the
positive direction, so that a person traveling in this
direction always has the region on his left. It is
seen that the positive directions are those indicated
in the adjoining figure. Fig. 6-17

In order to establish the theorem, construct a line, such as AD, called a cross-cut, connecting
the exterior and interior boundaries. The region bounded by ADEFGDALKJHA is simply-con-
nected, and so Green's theorem is valid. Then

( 1 )

d x  d y   a n d  t h e  t h e o r e m  i s  p r o v e d .Then

figure.
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But the integral on the left, leaving out the integrand, is equal to

since . Thus if Ct is the curve ALKJHA, C2 is the curve DEFGD and C is the

boundary of "3? consisting of C1 and C2 (traversed in the positive directions), then
and so -

INDEPENDENCE OF THE PATH

6.20. Let P(x, y) and Q(x, y) be continuous and have continuous first partial derivatives at
each point of a simply connected region ^. Prove that a necessary and sufficient

condition that around every closed path C in ^ is that

dP/dy = dQ/dx identically in ^.

Sufficiency. Suppose dP/dy = dQ/dx. Then by Green's theorem,

"A.

where ^ is the region bounded by C.

Necessity.
Suppose around every closed path C in ^ and that dP/dy ¥= dQ/dx at

some point of % In particular suppose dP/dy — dQ/dx > 0 at the point (o;0, j/0).
By hypothesis dP/dy and dQ/dx are continuous in "3J, so that there must be some region r con-

taining (x0, y0) as an interior point for which dP/dy — dQ/dx > 0. If r is the boundary of T,
then by Green's theorem

contradicting t h e hypothesis t h a t f o r a l l closed curves i n 9{.. Thus
dQ/dx — dP/dy cannot be positive.

Similarly we can show that dQ/dx — dP/dy cannot be negative, and it follows that it must be
identically zero, i.e. dP/dy = dQ/dx identically in <%.

6.21. Let P and Q be defined as in Problem 6.20. Prove that a necessary and sufficient con-

dition that [Pdx + Qdy] be independent of the path in <% joining points A and B

is that dP/dy - dQ/dx identically in <•£.

Sufficiency. If dP/dy = dQ/dx, then by Problem 6.20,

(see Fig. 6-18). From this, omitting for brevity the integrand
Pdx + Qdy, we have

and so

i.e. the integral is independent of the path.

hat
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6.22. (a) Prove that is independent of the path

joining (1,2) and (3,4). (&) Evaluate the integral in (a).
(a) P = 6xy2 -y3, Q = 6x2y - 3xy2. Then dP/dy = 12xy - 3y2 = dQ/dx and by Problem 6.21 the

line integral is independent of the path.

(6) Method 1.
Since the line integral is independent of the path, choose any path joining (1,2) and (3,4),

for example that consisting of lines from (1,2) to (3,2) [along which y = 2, dy = 0] and then
(3,2) to (3,4) [along which * = 3, dx = 0]. Then the required integral equals

Method 2.

Since ^ = ||, we must have (1) || = Qxy2 - y3, (2) |̂  = 6x*y - 3xy2.

From (1), <t> = 3x2y2 — xy3 + f(y). From (2), <f> = 3x2y2 — xy3 + g(x). The only way in
which these two expressions for <f> are equal is if f(y) = g(x) = c, a constant. Hence $ =
SxV - xya + c. Then

Note that in this evaluation the arbitrary constant c can be omitted.

We could also have noted by inspection that

(6xy2 - y3) dx + (6x2y - 3xy2) dy = (6xy2 dx + Qx2y dy) - (y3 dx + 3xy2 dy)

= d(3x2y2) - d(xy3) = d(3x2y2 - xy3)

from which it is clear that <t> = 3x2y2 — xy3 + c.

6.23. Evaluate [(x2y cos x + 2xy sin x — y2ex) dx + (x2 sin x — 2yex) dy] around the hy-

pocycloid xz/s + y2'3 = a2'3.
P = x2y cos x + 2xy sin x — yzex, Q — x2 sin x — 2yex.

Then dP/dy = x2 cos x + 2x sin x — 2yex — dQ/dx, so that by Problem 6.20 the line integral
around any closed path, in particular x2/s + y2'3 = a2'3, is zero.

SURFACE INTEGRALS

6.24. If y is the angle between the normal line to any point (x, y, z) of a surface S and the
positive z axis, prove that

|secy| =

according as the equation for S is z = f(x, y) or F(x, y, z) = 0.
If the equation of S is F(x,y,z) - 0, a normal to S at (x,y,z) is ' F = Fxi + Fvj + Fzk.

Then
F-k = |VF| |k| cosy or Fz — cosy

from which |secy|. = as required.

In case the equation is « = f(x, y), we can write F(x, y, z) = z — f(x, y) = 0, from which
Fx = —zx, Fy = — zy, Fz= 1 and we find |see y| =
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6.25. Evaluate U(x, y, z) dS where S is the surface of the paraboloid z = 2 - (x2 + y2)

above the xy plane and U(x, y, z) is equal to (a) 1, (b) x2 + y2, (c) 3z. Give a physical
interpretation in each case.

The required integral is equal to

U)

where ̂  is the projection of S on the xy plane
given by «2 + y2 = 2, z = 0.

Since zx = -2x, zy = ~2y, (1) can be
written

(2)

(a) If U(x, y, z) = 1, (2) becomes

To evaluate this, transform to polar co-
ordinates (p, <f>). Then the integral becomes Fig. 6-19

Physically this could represent the surface area of S, or the mass of 5 assuming unit
density.

(6) If U(x, y, z)=x* + 2/2, (2) becomes dy or in polar coordinates

where the integration with respect to p is accomplished by the substitution
Physically this could represent the moment of inertia of S about the z axis assuming unit

density, or the mass of S assuming a density = x2 + y2.

(c) If U(x, y, z) = 82, (2) becomes

or in polar coordinates,

Physically this could represent the mass of S assuming a density = 3z, or three times the
first moment of S about the xy plane.

6.26. Find the surface area of a hemisphere of
radius a cut off by a cylinder having this
radius as diameter.

Equations for the hemisphere and cylinder (see
Fig. 6-20) are given respectively by x2 + yz +
z2 = a2 (or z = and (* - a/2)2 +
y2 - a2/4 (or xz + y* = ax).

Since

zx = and

wehave Fig. 6-20
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Required surface area =

Two methods of evaluation are possible.

Method 1. Using polar coordinates.
Since x2 + y2 = ax in polar coordinates is p — a cos <f>, the integral becomes

Method 2. The integral is equal to

Letting x = a tan2 e, this integral becomes

Note that the above integrals are improper and should actually be treated by appropriate
limiting procedures.

6.27. Find the centroid of the surface in Problem 6.25.

By symmetry, x = y — 0 and

The numerator and denominator can be obtained from the results of Problem 6.25(c) and
„. . „ , A. , . 377T/10 111

6.25(a) respectively, and we thus have z = .„ .„ = rñ¿-

6.28. Evaluate where A - xyi- x2j + (x + z)k, S is that portion of the

plane 2x + 2y + z = 6 included in the first octant, and n is a unit normal to S.
A normal

and so

The required surface integral is therefore

Fig. 6-21
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6.29. In dealing with surface integrals we have restricted ourselves to surfaces which are
two-sided. Give an example of a surface which is not two-sided.

Take a strip of paper such as ABCD as
shown in the adjoining Fig. 6-22. Twist the
strip so that points A and B fall on D and C
respectively, as in the adjoining figure. If n
is the positive normal at point P of the sur-
face, we find that as n moves around the
surface it reverses its original direction when
it reaches P again. If we tried to color only
one side of the surface we would find the
whole thing colored. This surface, called a
Moebius strip, is an example of a one-sided
surface. This is sometimes called a non-
orientable surface. A two-sided surface is
orientable. Fig. 6-22

THE DIVERGENCE THEOREM
6.30. Prove the divergence theorem.

Fig. 6-23

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in at
most two points. Assume the equations of the lower and upper portions, Sj and S2, to be z = f1 (x, y)
and « = fz(x, y) respectively. Denote the projection of the surface on the xy plane by ^.
Consider

///£" - ///£*** - if[Cl£*>*
*

- JJ As(x,y,z) dydx = J J [ A a ( x , y , f 2 ) - A a ( x , y , f i ) ] d y d x
V. ' ' 91

For the upper portion S2, dy dx = cos y2 dS2 = k • n2 dS2 since the normal n2 to S2 makes an
acute angle j2 with k.
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For the lower portion S1( dy dx = -cos y1 dSt = — k • n¡ dS1 since the normal HJ to Sj makes
an obtuse angle yt with k.

Then

and

so that /¿\

Similarly, by projecting S on the other coordinate planes,

(2)

(3)

Adding (Í), (3) and (a),

or

The theorem can be extended to surfaces which are such that lines parallel to the coordinate
axes meet them in more than two points. To establish this extension, subdivide the region bounded
by S into subregions whose surfaces do satisfy this condition. The procedure is analogous to that
used in Green's theorem for the plane.

6.31. Verify the divergence theorem for A = (2x- z)i + x2yj - xz2k taken over the region
bounded by x = 0, x = 1, y = O, y = 1, z = 0, z - 1.

We first e v a l u a t e d S where S is the
i

surface of the cube in Fig. 6-24.

Face DEFG: n = i, x = 1. Then

FaceABCO: n =-i, * = 0. Then

Fig. 6.24
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Face ABEF: n = j, y = 1. Then

Face OGDC: n = -j, y = 0. Then

Face BCDE: n = k, z = 1. Then

Face AFGO: n = -k, z = 0. Then

Adding,

the divergence theorem is verified in this case.

6.32. Evaluate • n dS, where S is a closed surface.

By the divergence theorem,

where V is the volume enclosed by S.

«
s

surface of the hemispherical region bounded by z — and z — 0 (a) by
the divergence theorem (Green's theorem in space), (b) directly.

(a) Since dy dz = dS cos a, dz dx = dS cos ¡3, dx dy = dS cos y, the integral can be written

where A - xz*i + (xty — zs)j + (2xy + yzz)k and n = (cos a) i + (cos /J)j + (cosy)k, the out-
ward drawn unit normal.

Then by the divergence theorem the integral equals

where V is the region bounded by the hemisphere and the xy plane.

6.33.  vevaluate where S is the entire
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By use of spherical coordinates, this integral is equal to

(6) If Si is the convex surface of the hemispherical region and S2 is the base (z = 0), then

By addition of the above, we obtain

i

Since by symmetry all these integrals are equal, the result is, on using polar coordinates,

STOKES' THEOREM

6.34. Prove Stokes' theorem.
Let S be a surface which is such that its

projections on the xy, yz and <KZ planes are
regions bounded by simple closed curves, as indi-
cated in Fig. 6-25. Assume S to have represen-
tation z = f(x, y) or x — g(y, z) or y = h(x, z),
where /, g, h are single-valued, continuous and
differentiable functions. We must show that

where C is the boundary of S.

Consider first Fig. 6-25
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Since

(Í)

If z = f(x, y) is taken as the equation of S, then the position vector to any point of S is r = xi +

yj + 2k = xi + yj + f(x, y)k so that J^ = j + |̂ k = J + f ^ k - B«t f^ is a vector tangent to S
and thus perpendicular to n, so that

Substitute in (1) to obtain

or (2)

Now on S, A j (x, y,z) = A^x, y,f(x,y}} = F(x,y)\ hence and (2) becomes

Then

where 9( is the projection of S on the xy plane. By Green's theorem for the plane the last integral

equals F dx where T is the boundary of i(. Since at each point (x, y) of F the value of F is the

same as the value of A í at each point (x, y, z) of C, and since dx is the same for both curves, we
must have

or

Similarly, by projections on the other coordinate planes,

Thus by addition,

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above.
For assume that S can be subdivided into surfaces Slt S2, ..., Sk with boundaries Clt C2, ..., Ck
which do satisfy the restrictions. Then Stokes' theorem holds for each such surface. Adding
these surface integrals, the total surface integral over S is obtained. Adding the corresponding line
integrals over C1( C2, ..., Ck, the line integral over C is obtained.
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6.35. Verify Stokes' theorem for A = 3yi - xzj + yz*k, where S is the surface of the
paraboloid 2z = x2 + y2 bounded by 2 = 2 and C is
its boundary.

The boundary C of S is a circle with equations *2 + j/2 — 4,
z = 2 and parametric equations x = 2 cos t, y — 2 sin t, z = 2,
where 0 S t < 2v. Then

Also,

Fig. 6-26

and

Then

In polar coordinates this becomes

6.36. Prove that a necessary and sufficient condition t h a t f o r every closed
curve C is that identically.

Sufficiency. Suppose Then by Stokes1 theorem

Necessity.

Suppose around ^ery closed path C, and assume at some point P.

Then assuming is continuous there will be a region with P as an interior point, where
*«»*• • a C e contained in this «**<» who*e normal n at each point has the same

which contradicts the hypothesis that and shows that

It follows that is also a necessary and sufficient condition for a line integral

dr to be independent of the path joining points Pj and P2.

be a surface contained in this region
direction as

where is a postive constant. Let C be the boundary of S.Then by Stokes' theorem
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6.37. Prove that a necessary and sufficient condition that is that

Sufficiency. , then by Problem 5.80, page 144.

Necessity.
If then by Problem 6.36, around every closed path and ^ A-dr

is independent of the path joining two points which we take as (a, b, c) and (x, y, z). Let us define

Then

Since the last integral is independent of the path joining (x, y, z) and (x + AÍK, y, z), we can
choose the path to be a straight line joining these points so that dy and dz are zero. Then

where we have applied the law of the mean for integrals.

Taking the limit of both sides as Aa; -» 0 gives d<j>/dx — A t.

Similarly we can show that d<j>ldy — A2, d<j>ldz = A3.

Thus A = Ati + A2j + A3k = = V0.

6.38. (a) Prove that a necessary and sufficient condition that Aidx + Azdy + Asdz = d$,
an exact differential, is that where A = Aii + Azj + Ajk.

(b) Show thatun such case,

(a) Necessity. If AI dx + A2dy + A3dz = d<f> • then

Then by differentiating we have, assuming continuity of the partial derivatives,

which is precisely the condition V X A = 0.

Another method. If Ajda; + A2dy + Asdz = d<j>, then

A = Ají + A2j + A3k = = V0

from which

Sufficiency. If then by Problem 6.37, and

A1dx + A2dy + A3dz = A «cur = V0 • dr = = ¿4,

(b) Prom part (a), <j>(x, y, z) - [A1 dx + A2 dy + A3 dz].
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Then omitting the integrand A1dx + A2dy + A3dz, we have

6.39. (a) Prove that F = (2xz5 + 6y)i + (Qx - 2yz)j + (3x2z2 - y2)k is a conservative force

field. (&) Evaluate F • dr where C is any path from (1, -1,1) to (2,1, -1). (c) Give

a physical interpretation of the results.

(a) A force field F is conservative if the line integral I F • dr is independent of the path C joining
Jc

any two points. A necessary and sufficient condition that F be conservative is that V X F = 0.

Since here = 0 , F is conservative.

(6) Method 1.
By Problem 6.38, F • dr = (2xz3 + 6y) dx + (Gx - 2yz) dy + (Bx2z2 - y2) dz is an exact dif-

ferential d<j>, where <f> is such that

From these we obtain respectively

<6 = xW + Gxy + f^y.z) 0 = 6xy - y*z + f2(x, z) <j> = x*z* - y*z + f s ( x , y )

These are consistent if f1 (y, z) = —yzz + c, /2 (x, z) = x2z3 + c, fs (x, y) = 6xy + c in which case
<f> = X2z3 + Gxy - y2z + c. Thus by Problem 6.38,

Alternatively we may notice by inspection that

F • dr = (2xz3 dx + 3x*z2 dz) + (6y dx + 6x dy) - (2yz dy + yz dz)

= d(x2zs) + d(6xy) - d(y2z) = d(x2zs + 6xy - y2z + c)

from which 0 is determined.

Method 2.
Since the integral is independent of the path, we can choose any path to evaluate it; in

particular we can choose the path consisting of straight lines from (1, —1,1) to (2, —1,1), then
to (2,1,1) and then to (2,1, -1). The result is

where the first integral is obtained from the line integral by placing y = —1, z = 1, dy = 0,
dz — 0; the second integral by placing x = 2, z = 1, dx = 0, dz — 0; and the third integral by
placing x — 2, y — I, dx — 0, dy — 0.

(c) Physically F • dr represents the work done in moving an object from (1, —1,1) to (2,1, —1)

along C. In a conservative force field the work done is independent of the path C joining these
points.
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Supplementary Problems
DOUBLE INTEGRALS
6.40. («) Sketch the region ^ in the xy plane bounded by y2 = 2x and y = x. (6) Find the area of 9£.

(c) Find the polar moment of inertia of "̂  assuming constant density a.

6.41. Find the centroid of the region in the preceding problem.

6.42. Given dxdy. (a) Sketch the region and give a possible physical interpretation

of the double integral. (6) Interchange the order of integration, (c) Evaluate the double integral.

6.43. Show that

6.44. Find the volume of the tetrahedron bounded by x/a + y/b + z/c — 1 and the coordinate planes.

6.45. Find the volume of the region bounded by z = x2 + y2, z = 0, x = —a, x — a, y = —a, y = a.

6.46. Find (a) the moment of inertia about the z axis and (6) the centroid of the region in Problem 6.45
assuming a constant density a.

TRIPLE INTEGRALS

6.47. (a) E v a l u a t e x y z dz dy dx. (V) Give a physical interpretation to the integral
in (a).

6.48. Find the (a) volume and (6) centroid of the region in the first octant bounded by x/a + y/b + z/c = 1,
where a, b, c are positive.

6.49. Find the (a) moment of inertia and (6) radius of gyration about the z axis of the region in
Problem 6.48.

6.50. Find the mass of the region corresponding to x1 + y2 + z2 =i 4, x a O, y = 0, z = 0, if the density
is equal to xyz.

6.51. Find the volume of the region bounded by z = x2 + y2 and z = 2x.

TRANSFORMATION OF DOUBLE INTEGRALS

6.52. Evaluate dx dy, where ^ is the region x2 + y2 S a2.

6.53. If "̂  is the region of Problem 6.52, evaluate dx dy.

6.54. By using the transformation x + y = u, y = uv, show that

6.55. Find the area of the region bounded by xy = 4, xy = 8, xy3 — 5, xy3 = 15. [Hint. Let xy — u,
xy3 = v.]

6.56. Show that the volume generated by revolving the region in the first quadrant bounded by the
parabolas y2 = x, y2 = 8x, x2 = y, x2 = 8y about the * axis is 279W2. [Hint. Let y2 = ux,
x2 = vy.]

6.57. Find the area of the region in the first quadrant bounded by y = x3, y = 4a;3, * = y3, x — íy3.

6.58. Let ̂  be the region bounded by x + y = 1, x = 0, y = 0. Show t h a t d x dy — sin 1.
[Hint. Let x — y = u, x + y = v.]

TRANSFORMATION OF TRIPLE INTEGRALS

6.59. Find the volume of the region bounded by z = 4 — x2 — y2 and the xy plane.

6.60. Find the centroid of the region in Problem 6.59, assuming constant density a.

that
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6.61. (a) Evaluate dx dy dz, where ^ is the region bounded by the plane z = 3 and

the cone z = , (6) Give a physical interpretation of the integral in (a). [Hint. Perform the
integration in cylindrical coordinates in the order p, z, $.]

6.62. Show that the volume of the region bounded by the cone z = and the paraboloid
z - x2 + y2 is jT/6.

6.63. Find the moment of inertia of a right circular cylinder of radius a and height b, about its axis if
the density is proportional to the distance from the axis.

6.64. (a) Evaluate , where "̂  is the region bounded by the spheres *2 + y2 + z2 = a2

and x2 + y2 + z2 — b2 where a > b > 0. (6) Give a physical interpretation of the integral in (a).

6.65. (a) Find the volume of the region bounded above by the sphere r = 2a cos 0, and below by the cone
0 = a where 0 < a < ir/2. (b) Discuss the case a — ir/2.

6.66. Find the centroid of a hemispherical shell having outer radius a and inner radius b if the density
(a) is constant, (6) varies as the square of the distance from the base. Discuss the case a — b.

LINE INTEGRALS

6.67. Evaluate [(a; + y) dx + (y — x) dy] along (a) the parabola y2 = x, (6) a straight line,

(c) straight lines from (1,1) to (1,2) and then to (4,2), (d) the curve * = 2*2 + t + 1, y = í2 + 1.

6.68. Evaluate [(2x — y + 4)dx + (5y + 3* — 6) dy] around a triangle in the xy plane with vertices at

(0,0), (3,0), (3,2) traversed in a counterclockwise direction.

6.69. Evaluate the line integral in the preceding problem around a circle of radius 4 with center at (0,0).

6.70. (a) If F = (x2 — y2)i + 2xyj, evaluate • dr along the curve C in the xy plane given by

y = x2 — x from the point (1,0) to (2,2). (6) Interpret physically the result obtained.

6.71. Evaluate (2x + y) ds, where C is the curve in the xy plane given by x2 + y2 = 25 and s is the

arc length parameter, from the point (3, 4) to (4,3) along the shortest path.

6.72. If F = (3o; - 2y)i + (y + 2z)j - x2k, evaluate F • dr from (0,0,0) to (1,1,1), where C is a path

consisting of (a) the curve x = t, y = t2, z = t3, (b) a straight line joining these points, (c) the
straight lines from (0,0,0) to (0,1,0), then to (0,1,1) and then to (1,1,1), (d) the curve x = z2,
z = 2/2.

6.73. If T is the unit tangent vector to a curve C (plane or space curve) and F is a given force field, prove

that under appropriate conditions F "Ids where s is the arc length parameter.

Interpret the result physically and geometrically.

GREEN'S THEOREM IN THE PLANE. INDEPENDENCE OF THE PATH

6.74. Verify Green's theorem in t he plane f o r w h e r e C i s a square with
vertices at (0,0), (2,0), (2,2), (0,2).

6.75. Evaluate the line integrals of (a) Problem 6.68 and (b) Problem 6.69 by Green's theorem.
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6.76. (a) Let C be any simple closed curve bounding a region having area A. Prove that if a,, a2, a3(

&i> &2> &s are constants,

(5) Under what conditions will the line integral around any path C be zero?

6.77. Find the area bounded by the hypocycloid x2/a + y2'3 = o2/3.
[Hint. Parametric equations are x = a cos3 t, y = a sin3 i, 0 a t S 2ir.]

6.78. If * = p cos <j>, y = p sin <t>, prove that p2 <Z0 and interpret.

6.79. Verify Green's theorem in the plane f

region enclosed by the circles x2 + y2 = 4 and x2 + y2 — 16.

6.80. (a) Prove that is independent of the path joining (1,0)
•^(1,0)

and (2,1). (6) Evaluate the integral in (a).

6.81. Evaluate along the parabola Zx = iry2 from

(0,0)to(»/2,l).

6.82. Evaluate the line integral in the preceding problem around a parallelogram with vertices at (0,0),
(3,0), (5,2), (2,2).

6.83. Prove that if x — f ( u , v), y — g(u, v) defines a transformation which maps a region "̂  of the
xy plane into a region <3f of the uv plane then

by using Green's theorem on the integral and interpret geometrically.

SURFACE INTEGRALS

6.84. (a) Evaluate where S is the surface of the cone z2 = 3(x2 + y2) bounded by z = 0

and z = 3. (6) Interpret physically the result in (a).

6.85. Determine the surface area of the plane 2x + y + 2z = 16 cut oif by (a) x - 0, y - 0, x - 2, y — 3,
(6) * = 0, y = 0 and x2 + y2 = 64.

6.86. Find the surface area of the paraboloid 2z = x2 + y2 which is outside the cone z =

6.87. Find the area of the surface of the cone z2 - S(x2 + y2) cut out by the paraboloid z = x2 + y2.

6.88. Find the surface area of the region common to the intersecting cylinders x2 + y2 = a2 and
x2 + z2 = a2.

6.89. (a) Show that in general the equation r = r(u, v) geometrically represents a surface. (6) Discuss
the geometric significance of u = clt v = cz where Cj and c2 are constants, (c) Prove that the
element of arc length on this surface is given by

ds2 - Edu2 + 2Fdudv + Gdv2

where E =

6.90. (a) Referring to Problem 6.89, show that the element of surface area is given by dS = du dv.

(b) Deduce from (a.) that the area of a surface r = T(U, v) is lu dv.

[Hint. Use the fact that and then use the identity

(A X B) • (C X D) = (A • C)(B • D) - (A • D)(B • C).

where C is the boundary of the
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6.91. (a) Prove that r = (a sin u cos v)i + ct(sin u sin v)j + (a cos u)k, 0 S uë v, 0 ̂  v < 2w represents a
sphere of radius o. (6) Use Problem 6.90 to show that the surface area of this sphere is 4ira2.

THE DIVERGENCE THEOREM
6.92. Verify the divergence theorem for A = (2xy + z)i + y2j — (x + 3j/)k taken over the region bounded

by 2x + Zy + z - 6, * = O, y - 0, z = 0.

6.93. Evaluate F • n dS, where F = (z2 - x)i - xyj + Szk and S is the surface of the region

bounded by z = 4 — y2, x = 0, x = 3 and the xy plane.

6.94. Evaluate A • n dS, where A = (2* + 3z)i - (xz + y)j + (y2 + 2z)k and S is the surface of the

sphere having center at (3,—1,2) and radius 3.

6.95. Determine the value of [xdydz + ydzdx + zdxdy], where S is the surface of the region

bounded by the cylinder x2 + y2 = 9 and the planes z = 0 and z = 3, (a) by using the divergence
theorem, (6) directly.

6.96. Evaluate [4a;z dy dz — y2 dz dx + yz dx dy], where S is the surface of the cube bounded by

* = O, y = 0, z = 0, * = 1, y = 1, z = 1, (a) directly, (6) by Green's theorem in space (divergence
theorem).

6.97. Prove that for any closed surface S.
s

6.98. Prove that where n is the outward drawn normal to any closed surface S.

6.99. If n is the unit outward drawn normal to any closed surface S bounding the region V, prove that

STOKES' THEOREM

6.100. Verify Stokes' theorem for A = 2yi + Sxj — z2k, where S is the upper half surface of the sphere
x2 + y2 + z2 = 9 and C is its boundary.

6.101. Verify Stokes' theorem for A = (y + z)i — xzj + y2k, where S is the surface of the region in the
first octant bounded by 2x + z = 6 and y = 2 which is not included in the (a) xy plane, (6) plane
y = 2, (e) plane 2x + » = 6 and C is the corresponding boundary.

6.102. Evaluate • n dS, where A = (x-z)i + (x3 + yz)j - 3*2/2k and S is the surface of the
o

cone 2 = 2 — above the xy plane.

6.103. If y is a region bounded by a closed surface S and prove t h a t B • n dS = 0.

6.104. (a) Prove that F = (2xy + 3)i + (a;2 - 4z)j - 4j/k is a conservative force field. (b) Find <f> such

that F = V0. (c) Evaluate F • di, where C is any path from (3,-1,2) to (2,1,-1).

6.105. Let C be any path joining any point on the sphere x2 + y2 + z2 = a2 to any point on the sphere

x2 + y2 + z2 = b2. Show that if F = 5r3 r, where r = xi + yj + zk, then F • dr = 65 - a5.

6.106. In Problem 6.105 evaluate F • dr if F = /(r)r, where /(r) is assumed to be continuous.
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6.107. Determine whether there is a function <f> such that F = V0, where:
(a) F = (xz- y)i + (x2y + z3)j + (3xz* - xy)k.
(b) F = 2xe—»i + (cos z — x2e~y)j — (y sin z)k. If so, find it.

6.108. Solve the differential equation (z« - 4xy) dx + (6y - 2x2) dy + (3xzz + 1) dz = 0.

Answers to Supplementary Problems
6.40.

6.41.

6.42.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

6.55.

6.57.

6.59.

6.60.

6.61.

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

(6) 2/3; (c) 48<r/35 = 72M/35, where M
is the mass of ̂ .

* = 4/5, y = l

(b] (x + y) dy dx, (c) 241/60

abc/Q

8aV3

(a) ^ae<r = ff-Ma2, where M = mass;

(6) « = y = 0, Z = ¿a2

(a) 3/8

(a) abc/6; (b) x - a/4, y - 6/4, z = c/4

(a) M(a2 + &2)/10, (6) V(«2 + &2)/10

4/3

ÎT/2

frt»

7r(l - e-°2)

2 In 3

1/8

%TT

x = y = 0, ¿ = |

27^(2\/2-l)/2

fMa2

(a) 4s- In (a/6)

|jra3(l - COS4 a)

Taking the z axis as axis of symmetry:
(a) x - y = 0, z = f (a4 - 64)/(a3 - 6s);

(6) « = y = 0, z - f (a6 - &6)/(a5 - &5)

(a) 34/3, (b) 11, (c) 14, (d) 32/3

12

64)r

6.70.

6.71.

6.72.

6.74.

6.76.

6.77.

6.79.

6.80.

6.81.

6.82.

6.84.

6.85.

6.86.

6.87.

6.88.

6.92.

6.93.

6.94.

6.95.

6.96.

6.100.

6.101.

6.102.

6.104.

6.106.

6.107.

6.108.

(a) 124/15

15

(a) 23/15, (6) 5/3, (c) 0, (d) 13/30

Common value = 8

(6) o2 = 6t

3jro2/8

Common value = 120n-

(6)5

ÎT2/4

0

(a) Sir

(a) 9, (6) 24ir

§a-(5VB-l)

6>r

16a2

Common value = 27

16

10877-

81)7

3/2

Common value = 9ir

The common value is
(a) -6, (6) -9, (c) -18

12;r

(6) $ = x2y — 4yz + Sx + constant, (c) 6

r f(r) dr

(a) 0 does not exist.
(b) <f> — x2e~i + y cos z + constant

xzs - 2x2y + 83/2 + 2 = constant



Chapter 7

PERIODIC FUNCTIONS
A function f(x) is said to have a period T or to be periodic with period T if for all x,

f(x + T)- f(x), where T is a positive constant. The least value of T > 0 is called the
least period or simply the period of /(#).

Example 1. The function sin x has periods 2ir, 4v, &¡r, ..., since sin (x + 2v), sin (x + 4s-), sin (* + 6n-),
... all equal sin x. However, 2ir is the least period or the period of sin x.

Example 2. The period of sin nx or cos nx, where M is a positive integer, is 2ir/n.

Example 3. The period of tan x is ir.

Example 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figures 7-l(a), (b)
and (c) below.

Fig. 7-1

FOURIER SERIES
Let f(x) be defined in the interval (—L, L) and outside of this interval by f(x + 2L) = f(x),

i.e. assume that f(x) has the period 2L. The Fourier series or Fourier expansion corre-
sponding to f(x) is given by

(1)

where the Fourier coefficients an and bn are

(2)

If f(x) has the period 2L, the coefficients an and bn can be determined equivalently
from

(3)

where c is any real number. In the special case c = —L, (3) becomes (2).

182

Fourier Series

(a) (b) (c)
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To determine a0 in (1), we use (2) or (3) with n - 0. For example, from (2) we

see t h a t f ( x ) d x . Note that the constant term in (1) is equal to =

/(a;) àx, which is the mean of f(x) over a period.

If L = r, the series (1) and the coefficients (2) or (3) are particularly simple. The
function in this case has the period 2-*.

DIRICHLET CONDITIONS
Theorem 7-1. Suppose that

(1) f(x) is defined and single-valued except possibly at a finite number of
points in (—L,L)

(2) f(x) is periodic outside (—L,L) with period 2L

(3) f(x) and f'(x) are piecewise continuous in (—L,L).

Then the series (1) with coefficients (2) or (3) converges to

(a) f(x) if a; is a point of continuity

(6) if z is a point of discontinuity

In this theorem f(x + 0) and f(x — 0) are the right and left hand limits of f(x) at x and
represent lim f(x + £) and lim f(x — e) respectively where e > 0. These are often written

£-*0 e-»0
lim f(x + e) and lim f i x — <•) to emphasize that « is approaching zero through positive

e-»0+ e-»0 +
values. For a proof see Problems 7.18-7.23.

The conditions (1), (2) and (3) imposed on f(x) are sufficient but not necessary, and
are generally satisfied in practice. There are at present no known necessary and sufficient
conditions for convergence of Fourier series. It is of interest that continuity of f(x) does
not alone insure convergence of a Fourier series.

ODD AND EVEN FUNCTIONS

A function f(x) is called odd if /(—*) = —/(«)• Thus x3, x5 — Sx3 + 2x, sin x, tan 3a;
are odd functions.

A function f(x) is called even if f(—x) = f(x). Thus x4, 2x6 — 4a;2+ 5, cosa;, ex + e~x

are even functions.
The functions portrayed graphically in Figures 7-l(a) and 7-1(6) are odd and even

respectively, but that of Fig. 7-1 (c) is neither odd nor even.
In the Fourier series corresponding to an odd function, only sine terms can be

present. In the Fourier series corresponding to an even function, only cosine terms (and
possibly a constant which we shall consider a cosine term) can be present.

HALF RANGE FOURIER SINE OR COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or
only cosine terms are present respectively. When a half range series corresponding to
a given function is desired, the function is generally defined in the interval (0, L) [which
is half of the interval (-L,L), thus accounting for the name half range] and then the
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function is specified as odd or even, so that it is clearly defined in the other half of the
interval, namely (-L, 0). In such case, we have

for half range sine series
(4)

for half range cosine series

PARSEVAL'S IDENTITY states that

(5)

if an and bn are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the Dirichlet
conditions.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
Differentiation and integration of Fourier series can be justified by using the theorems

on page 7 which hold for series in general. It must be emphasized, however, that those
theorems provide sufficient conditions and are not necessary. The following theorem for
integration is especially useful.

Theorem 7-2. The Fourier series corresponding to f(x) may be integrated term by term

from a to x, and the resulting series will converge uniformly to f(u) du

provided that f(x) is piecewise continuous in — L ê x a L and both a and x
are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES
Using Euler's identities,

e*» = cos 0 + i sin O, e~u = cos 9 - i sin e (6)

where i = [see Problem 1.61, page 30], the Fourier series for f(x) can be written as

where c» = (8)

In writing the equality (7), we are supposing that the Dirichlet conditions are satisfied
and further that f(x) is continuous at x. If f(x) is discontinuous at x, the left side of (7)

should be replaced by

ORTHOGONAL FUNCTIONS

Two vectors A and B are called orthogonal (perpendicular) if A • B = 0 or AiBi +
AzBz + A3B3 = 0, where A = AJ + A2j + Aak and B = BA + B2j + #sk. Although not geo-
metrically or physically evident, these ideas can be generalized to include vectors with

( 7 )
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more than three components. In particular we can think of a function, say A(x), as being a
vector with an infinity of components (i.e. an infinite dimensional vector), the value of each
component being specified by substituting a particular value of x in some interval (a, b).
It is natural in such case to define two functions, A(x) and B(x), as orthogonal in (a, b) if

(9)

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e.
if A-A = A2 = 1. Extending the concept, we say that the function A(x) is normal or
normalized in (a, b) if

(10)

From the above it is clear that we can consider a set of functions {</>fc(*)}, k = 1,2,3,...,
having the properties

(11)

(12)

In such case, each member of the set is orthogonal to every other member of the set and
is also normalized. We call such a set of functions an orthonormal set in (a, b).

The equations (11) and (12) can be summarized by writing

(13)

where 8mn, called Kronecker's symbol, is defined as 0 if m ¥* n and 1 if m = n.

Just as any vector r in 3 dimensions can be expanded in a set of mutually orthogonal
unit vectors i, j, k in the form r = di + Caj + c3k, so we consider the possibility of expanding
a function f(x) in a set of orthonormal functions, i.e.,

(U)

Such series, called orthonormal series, are generalizations of Fourier series and are of great
interest and utility both from theoretical and applied viewpoints.

If (15)

where w(x) ê 0, we often say that $m(x) and qn(x) are orthonormal with respect to the
density function or weight function w(x). In such case the set of functions is
an orthonormal set in (a, 6).
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Solved Problems
FOURIER SERIES
7.1. Graph each of the following functions.

(a) f(x) = Period = 10

Fig. 7-2

Since the period is 10, that portion of the graph in — 5 < « < 5 (indicated heavy in Fig. 7-2
above) is extended periodically outside this range (indicated dashed). Note that /(*) is not
defined at x = 0,5, —5,10, —10,15, —15, etc. These values are the discontinuities of f(x).

(6) f(x) = Period = 2*

Fig. 7-3

Refer to Fig. 7-3 above. Note that /(«) is defined for all x and is continuous everywhere.

(c) f(x) = Period = 6

Fig. 7-4

Refer to Fig. 7-4 above. Note that /(*) is defined for all x and is discontinuous at x = ±2,
±4, ±8, ±10, ±14,

7.2. Prove
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_. , . CL mirx n-Trx , CL • wivx • n-^x ,7.3. Prove (a) I cos -^^- cos —f- dx = \ sin—=^ sin-7-da =J-L L L J-L L LI

(b) c si
J-L

*L m-vx n-n-x , CL • m*x . n-nx , J O m ¥° ncos^f^cos—f-dx = \ sin—=^ sin-7-da = •{ r-L L L J-L L LI \Lm-n
L . m-irX n-irX , f .sm^f—cos—j^dx — 0LI LI

where m and n can assume any of the values 1,2,3,... .

(a) From trigonometry: cos A cos B = ^{cos (A—B) + cos (A + B)}, sin A sin B = ^{cos (A — B) —
cos(A+B)}.

Then, if m ¥* n, we have by Problem 7.2,

J 

L mirx mrx , Í CL } (m — ri)vx . (m + n)vx\, ncos—^cos-^iZa; = 7; I •{ cos- =-* h cos^ ~—> dx = 0, Li Li ¿ J . \ Li L I
— Lt lj \. s

y if m ¥* n,

J'*ç*ç* .!/'{.
— LJ Ll \,

Similarly if m ¥* n,

(m — n)vx (m + rilirx , .
cos- j-1 cos^ f-1— Y dx = 0LI LI

If m — n, we have

/

L mirx nvx , 1 CL /., . 2nvx
cos —-f— cos -7— dx = -^ I 1 + cos -

-L L Li 2 J-L V 

dx = L

2nirx\ , ,cos —=— I dx — LL I

L

CL . rmrx . nvx, 1 CL LI sin —f— sin —=— dx = -¿ I I 1 —
-'-L L L 2J-L V

Note that if m = n = 0 these integrals are equal to 2L and 0 respectively.

(6) We have sin A cos B = £{sin (A - B) + sin (A +B)}. Then by Problem 7.2, if m¥*n,

If m — n,

The results of parts (a) and (6) remain valid even when the limits of integration —L,L are
replaced by c, c + 2L respectively.

°o f Vitr'Y 'Mir'ï*\
7.4. If the series A + 2J ( a» cos —j- + bn sin -=r- ) converges uniformly to f(x) in (-L, L),

n=l \ Li Lt /
show that for n = 1,2,3, ... ,

(a) Multiplying /(«) = A + 2 fa

by cos m?x and integrating from — L to L, using Problem 7.3, we haveLI

Thuss

(1)

(2))
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(6) Multiplying (Í) by sin and integrating from -L to L, using Problem 7.3, we have

Thus

(c) Integration of (1) from — L to L, using Problem 7.2, gives

Putting m = 0 in the result of part (a), we find a0 = f(x) dx and so

The above results also hold when the integration limits — L, L are replaced by c,c + 2L.
Note that in all parts above, interchange of summation and integration is valid because the

series is assumed to converge uniformly to f(x) in (—L,L). Even when this assumption is not
warranted, the coefficients am and 6m as obtained above are called Fourier coefficients corresponding
to /(«), and the corresponding series with these values of am and bm is called the Fourier series
corresponding to /(a;). An important problem in this case is to investigate conditions under which
this series actually converges to f(x). Sufficient conditions for this convergence are the Dirichlet
conditions established below.

7.5. (a) Find the Fourier coefficients corresponding to the function

f(x) = Period = 10

(&) Write the corresponding Fourier series.
(c) How should f(x) be defined at x — —5, x = 0 and x = 5 in order that the Fourier

series will converge to f(x) for —5 a x a 5?
The graph of f(x) is shown in Fig. 7-5 below.

Fig. 7-5

(a) Period = 2L = 10 and L = 5. Choose the interval c to c + 2L as -5 to 5, so that c = -5.
Then

If
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(b) The corresponding Fourier series is

(c) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all

points of continuity and to — . at points of discontinuity. At x = —5, 0 and 5,

which are points of discontinuity, the series converges to (3 + 0)/2 = 3/2 as seen from the
graph. If we redefine f(x) as follows,

f(x) = Period = 10

then the series will converge to f(x) for —5 S a; S 5.

7.6. Expand f(x) = y?, 0 < x < 2* in a Fourier series if (a) the period is 2*, (b) the
period is not specified.
(a) The graph of f(x) with period 2;r is shown in Fig. 7-6 below.

Fig. 7-6

Period = 2L = 2ir and L = ir. Choosing c = 0, we have

If

Then
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This is valid for 0 < x < 2ir. At * = 0 and * = 2v the series converges to 27r2.

(5) If the period is not specified, the Fourier series cannot be determined uniquely in general.

7.7. Using the results of Problem 7.6, prove that

At x = 0 the Fourier series of Problem 7.6 reduces to

By the Dirichlet conditions, the series converges at x = 0 to

Then and so

ODD AND EVEN FUNCTIONS. HALF RANGE FOURIER SERIES
7.8. Classify each of the following functions according as they are even, odd, or neither

even nor odd.

(a) /(») = Period = 6

From Fig. 7-7 below it is seen that /(—x) = —/(«), so that the function is odd.

Fig. 7-7

(6) /(») = Period = 2*

From Fig. 7-8 below it is seen that the function is neither even nor odd.

Fig. 7-8

(c) f(x) = «(10-a;), 0 < x < 10, Period = 10.
From Fig. 7-9 below the function is seen to be even.



CHAP. 7] FOURIER SERIES 191

7.9. Show that an even function can have no sine terms in its Fourier expansion.

Method 1.

No sine terms appear if bn = 0, n = 1,2, 3, To show this, let us write

a)
If we make the transformation x = — u in the first integral on the right of (Í), we obtain

(2)

where we have used the fact that for an even function /(—u) = /(«) and in the last step that the
dummy variable of integration u can be replaced by any other symbol, in particular x. Thus from
(1), using (2), we have

Method 2.

Assume

Then

If f(x) is even, f(—x) = f(x). Hence

and so

and no sine terms appear.
In a similar manner we can show that an odd function has no cosine terms (or constant term)

in its Fourier expansion.

7.10. If f(x) is even, show that (a) a« =

(a)

Letting x = —u,

since by definition of an even function /(—u) — f(u). Then

(6) This follows by Method 1 of Problem 7.9.

7.11. Expand f(x) = sin x, 0 < x < -a, in a Fourier cosine series.
A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence

we extend the definition of f(x) so that it becomes even (dashed part of Fig. 7-10 below). With this
extension, f(x) is then defined in an interval of length 2ir. Taking the period as 2jr, we have
2L = 2n- so that L = v.
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Fig. 7-10

By Problem 7.10, bn = 0 and

For n - 1,

For n = 0,

Then

7.12. Expand f(x) = x, 0 < x < 2, in a half range (a) sine series, (b) cosine series.
(a) Extend the definition of the given function to that of the odd function of period 4 shown in

Fig. 7-11 below. This is sometimes called the odd extension of /(«). Then 2L = 4, L = 2.

Fig. 7-11

Thus an — 0 and

Then
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(&) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 7-12 below.
This is the even extension of f(x). Then 2L = 4, L = 2.

It should be noted that the given function f(x) = x, 0 < x < 2, is represented equally well
by the two different series in (a) and (6).

PARSEVAL'S IDENTITY
7.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(x)

in (—L,L), prove Parseval's identity

where the integral is assumed to exist.

then multiplying by /(se) and integrating term

by term from — L to L (which is justified since the series is uniformly convergent) we obtain

(1)
where we have used the results

(*)

obtained from the Fourier coefficients.

The required result follows on dividing both sides of (J) by L. Parseval's identity is valid
under less restrictive conditions than that imposed here.
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7.14. (a) Write Parseval's identity corresponding to the Fourier series of Problem 7.12(6).

(&) Determine from (a) the sum S of the series jï.+ 2* + 34 + ' ' ' +^*+ "'•
4

(a) Here L = 2, ac = 2, an = -g-g (cos «"" ~ 1)> w ̂  °> 6» = °-

Then Parseval's identity becomes

7.15. Prove that for all positive integers M,

where o« and bn are the Fourier coefficients corresponding to f(x), and f(x) is assumed
piecewise continuous in (—L, L).

Let U)

For M = 1,2,3,... this is the sequence of partial sums of the Fourier series corresponding to /(«).

We have (2)

since the integrand is non-negative. Expanding the integrand, we obtain

(3)

Multiplying both sides of (1) by 2f(x) and integrating from — L to L, using equations (a) of
Problem 7.13, gives

(4)

Also, squaring (1) and integrating from —L to L, using Problem 7.3, we find

(5)

Substitution of (4) and (5) into (3) and dividing by L yields the required result.
Taking the limit as M -» », we obtain Bessel's inequality

(6)

If the equality holds, we have Parseval's identity (Problem 7.13).
We can think of SM(a;) as representing an approximation to /(*), while the left hand side of

(2), divided by 2L, represents the mean square error of the approximation. Parseval's identity
indicates that as M -» °° the mean square error approaches zero, while Bessel's inequality indicates
the possibility that this mean square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example,
we were to leave out one or more terms in a Fourier series (say cos 4vx/L, for example) we could
never get the mean square error to approach zero no matter how many terms we took. For an
analogy with 3 dimensional vectors, see Problem 7.46.
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DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
7.16. (a) Find a Fourier series for f(x) = xz, 0 < x < 2, by integrating the series of

Problem 7.12(a). (b) Use (a) to evaluate the series
(a) From Problem 7.12(a),

(1)

Integrating both sides from 0 to a; (applying Theorem 7-2, page 184) and multiplying by 2,
we find

(*)

where

(6) To determine C in another way, note that (2) represents the Fourier cosine series for x2 in
0 < x < 2. Then since L = 2 in this case,

Then from the value of C in (a), we

7.17. Show that term by term differentiation of the series in Problem 7.12(a) is not valid.

Term by term differentiation yields 2

Since the nth term of this series does not approach 0, the series does not converge for any
value of x.

CONVERGENCE OF FOURIER SERIES

7.18. Prove that

(a) We have cos nt sin

Then summing from n = 1 to M,

sin ^t{cos í + cos 2< + • • • + cos Mt} =

On dividing by sin -Jt and adding ^, the required result follows.

(6) Integrate the result in (a) from —v to 0 and 0 to w respectively. This gives the required
results, since the integrals of all the cosine terms are zero.

7.19. Prove that is piecewise
continuous.

This follows at once from Problem 7.15, since if the series is convergent,

The result is sometimes called Riemann's theorem.

follows is conver
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7.20. Prove that is piecewise continuous.

We have

sin MX dx

Then the required result follows at once by using the result of Problem 7.19, with /(») replaced by
/(*) sin %x and /(«) cos £x respectively which are piecewise continuous if /(«) is.

The result can also be proved when the integration limits are a and b instead of —r and a-,

7.21. Assuming that L = *, i.e. that the Fourier series corresponding to f(x) has period
2L = 2ir, show that

Using the formulas for the Fourier coefficients with L = JT, we have

an cos nx + bn sin nx = sin nx

= f(u) (cos MM cos nx + sin nu sin nx) du

= /(M) cos n(u — x) du

Also,

Then

using Problem 7.18. Letting u — x = t, we have

Since the integrand has period 2ir, we can replace the interval —ir — x,ir — x by any other
interval of length 2ir, in particular — -IT, v. Thus we obtain the required result.

7.22. Prove that

From Problem 7.21,

U)

Multiplying the integrals of Problem 7.18(6) by f(x — 0) and f(x + 0) respectively,

(2)

Subtracting (S) from (Í) yields the required result.
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7.23. If f(x) and /'(«) are piecewise continuous in (—IT, *), prove that

The f u n c t i o n i s piecewise continuous in because f(x) is piecewise
continuous.

Also.

exists, since by hypothesis /'(*) is piecewise continuous so that the right hand derivative of f(x) at
each x exists.

Thus is piecewise continuous in
A

Similarly, is piecewise continuous in

Then from Problems 7.20 and 7.22, we have

ORTHOGONAL FUNCTIONS
7.24. (a) Show that the set of functions

forms an orthogonal set in the interval (—L, L).
(b) Determine the corresponding normalizing constants for the set in (a) so that the

set is orthonormal in (—L, L).

(a) This follows at once from the results of Problems 7.2 and 7.3.

(6) By Problem 7.3,

Then

Also,

Thus the required orthonormal set is given by

7.25. Let be a set of functions which are mutually orthonormal in (a,b). Prove
CO

that converges uniformly to f(x) in (a, b), then

Multiplying both sides of
(1)

by <i>m(x) and integrating from a to 6, we have
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(2)

where the interchange of integration and summation is justified by using the fact that the series
converges uniformly to /(»). Now since the functions {<t>n(x)} are mutually orthonormal in (a, 6),
we have

so that (2) becomes

(*)
as required.

We call the coefficients cm given by (S) the generalized Fourier coefficients corresponding to
/(») even though nothing may be known about the convergence of the series in (i). As in the case

o f Fourier series, convergence o f i i s then investigated using t h e coefficients (S). T h e
i

conditions of convergence depend of course on the types of orthonormal functions used.

Supplementary Problems
FOURIER SERIES

7.26. Graph each of the following functions and find their corresponding Fourier series using properties
of even and odd functions wherever applicable.

Period 4 P e r i o d 8

Period 10 Period 6

7.27. In each part of Problem 7.26, tell where the discontinuities of /(*) are located and to what value
the series converges at these discontinuities.

7.28. Expand in a Fourier series of period 8.

7.29. (a) Expand . . . , in a Fourier sine series.
(6) How should f(x) be defined at * = 0 and x = v so that the series will converge to f(x) for

OSxSvl

7.30. (a) Expand in a Fourier series f(x) = cos x, 0 < * < v if the period is v, and (6) compare with
the result of Problem 7.29, explaining the similarities and differences if any.

7.31. Expand in a series of (a) sines, (6) cosines.

7.32. Prove that for

7.33. Use Problem 7.32 to show that
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7.34. Show that

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
7.35. (a) Show that for

(6) By integrating the result of (a), show that for —v'&x'&v,

)

(e) By integrating the result of (b), show that for — tr S x S v,

7.36. (a) Show that for

(6) Use (a) to show that for

7.37. By differentiating the result of Problem 7.32(6), prove that for 0 S x S v,

PARSEVAL'S IDENTITY
7.38. By using Problem 7.32 and Parseval's identity, show that

7.39. Show that [Hint. Use Problem 7.11.]

7.40. Show that

7.41. Show that

ORTHOGONAL FUNCTIONS

7.42. Given the functions a0, «j + a¿e, a3 + atx + asx
2 where a0 0*5 are constants. Determine the

constants so that these functions are mutually orthonormal in (—1,1) and thus obtain the functions.

7.43. Generalize Problem 7.42.

7.44. (a) Show that the functions are mutually orthonormal in (—w, v). (b) Show

how to expand a function /(») in a series of these functions and explain the connection with Fourier
series.

7.45. Let f(x) be approximated by the sum of the first M terms of an orthonormal series

where the functions <j>n(x) are orthonormal in (a, 6). (a) Show that
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(6) By interpreting

as the mean square error of SM(x) from /(») [and the square root as the root mean square or
r.m.s. error], show that Parseval's identity is equivalent to the statement that the root mean
square error approaches zero as M -» ».

(c) Show that if the root mean square error may not approach zero as M -» », then we still have
Bessel's inequality

(d) Discuss the relevance of these results to Fourier series.

7.46. Let r be any three dimensional vector. Show that

and discuss these with reference to Bessel's inequality and Parseval's identity. Compare with
Problem 7.15.

7.47. Suppose that one term in any orthonormal series [such as a Fourier series] is omitted, (a) Can we
expand a function /(«) into the series? (6) Can Parseval's identity be satisfied? (c) Can Bessel's
inequality be satisfied? Justify your answers.

7.48. Let be orthonormal in (a, b). Prove that

is a minimum when

Discuss the connection of this to (a) Fourier series and (6) Problem 7.45.

7.49. (a) Show that the functions 1,1 — x, 2 — 4» + x2 are mutually orthogonal in (0, ») with respect to
the density function e~x. (b) Obtain a mutually orthonormal set.

7.50. Give a vector interpretation to functions which are orthonormal with respect to a density or
weight function.

Answers to Supplementary Problems

7.26. (a)

<«)

7.27. ( a ) b ) n o discontinuities

7.28.

7.29.

7.30. Same answer as in Problem 7.29.

7.31.

7.27. (a)
(c)

(a)

(a)



Chapter 8

Fourier Integrals

THE FOURIER INTEGRAL

Let us assume the following conditions on f(x):
1. /(*) satisfies the Dirichlet conditions (page 183) in every finite interval (-L,L).

2. dx converges, i.e. f(x) is absolutely integrable in

Then Fourier's integral theorem states that

(1)

where (2)

The result (1) holds if a; is a point of continuity of f(x). If a; is a point of discontinuity,

we must replace f(x) by as in the case of Fourier series. Note that

the above conditions are sufficient but not necessary.
The similarity of (1) and (2) with corresponding results for Fourier series is apparent.

The right hand side of (1) is sometimes called a Fourier integral expansion of f(x).

EQUIVALENT FORMS OF FOURIER'S INTEGRAL THEOREM

Fourier's integral theorem can also be written in the forms

(3)

W

where it is understood that if f(x) is not continuous at x the left side must be replaced
by

These results can be simplified somewhat if f(x) is either an odd or an even function,
and we have

is even (5)

is odd (6)

201
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FOURIER TRANSFORMS
From (4) it follows that if

(7)

then (*)

The function F(a) is called the Fourier transform of f(x) and is sometimes written
The function f(x) is the inverse Fourier transform of F(a) and is written

Note: The constants preceding the integral signs in (7) and (8) were here taken as
equal to l/\/2^. However, they can be any constants different from zero so long as their
product is 1/27T. The above is called the symmetric form.

If f(x) is an even function, equation (5) yields

(9)

and we call Fc (a) and f(x) Fourier cosine transforms of each other.

If f(x) is an odd function, equation (6) yields

(10)

and we call Fs(a) and f(x) Fourier sine transforms of each other.

PARSEVAL'S IDENTITIES FOR FOURIER INTEGRALS
If Fs(a) and Gs(a) are Fourier sine transforms of f(x) and g(x) respectively, then

(11)

Similarly if Fc(a) and Gc(a) are Fourier cosine transforms of f(x) and g(x), then

(12)

In the special case where ) and (12) become respectively

(18)

(14)

The above relations are known as Parseval's identities for integrals. Similar rela-
tions hold for general Fourier transforms. Thus if F(a) and G(a) are Fourier transforms
of f(x) and 0(0;) respectively, we can prove that
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Solved Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

8.1. (a) Find the Fourier transform of

(b) Graph f(x) and its Fourier transform for a = 3.

(a) The Fourier transform of f(x) is

For a = 0, we obtain

(6) The graphs of /(*) and F(a) for a = 3 are shown in Figs. 8-1 and 8-2 respectively.

Fig. 8-1 Fig. 8-2

where the bar signifies the complex conjugate obtained by replacing i by -i. fc>e<
Problem 8.24.

(15)

THE CONVOLUTION THEOREM
If F(«) and G(«) are the Fourier transforms of f(x) and g(x) respectively, then

(16)

If we define the convolution, denoted by / * g, of the functions / and g to be

then (16) can be written

(17)

(18)

or in words, the Fourier transform of the convolution of two functions is equal to the
product of their Fourier transforms. This is called the convolution theorem for Fourier
transforms.
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8.2. (a) Use the result of Problem 8.1 to evaluate

(6) Deduce the value of

(a) From Fourier's integral theorem, if

then

Then from Problem 8.1,

(1)

The left side of (1) is equal to

(*)

The integrand in the second integral of (2) is odd and so the integral is zero. Then from
(1) and (2), we have

(3)

(b) If x = 0 and a — 1 in the result of (a), we have

since the integrand is even.

8.3. If f(x) is an even function show that:

(a)

We have

(1)

(a) If f(u) is even, f(u) cos XM is even and f(u) sin Xw is odd. Then the second integral on the
right of (1) is zero and the result can be written

(6) From (a), F(—a) = F(a) so that F(a) is an even function. Then by using a proof exactly
analogous to that in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the cosine by
the sine.

8.4. Solve the integral equation

L e t a n d c

Problem 8.3,

tHEN BY
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8.5. Use Problem 8.4 to show that

As obtained in Problem 8.4,

Taking the limit as a -» 0+, we find

But this integral can be written as which becomes on letting

x = 2u, so that the required result follows.

8.6. Show that

Let in the Fourier integral theorem

Then

But from the result 16 on page 6 we have

or

PARSEVAL'S IDENTITY

8.7. Verify Parseval's identity for Fourier integrals for the Fourier transforms of
Problem 8.1.

We must show that

where and

This is equivalent to

or

i.e.,

By letting aa, = u and using Problem 8.5, it is seen that this is correct. The method can also

be used to find directly.
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CONVOLUTION THEOREM

8.8. Solve t h e integral e q u a t i o n w h e r e g(x) a n d r(#)
are given.

Suppose that the Fourier transforms of y(x), g(x) and r(x) exist, and denote them by Y(a), G(a)
and R(a) respectively. Then taking the Fourier transform of both sides of the given integral
equation, we have by the convolution theorem

Then

assuming this integral exists.

8.9. Solve for y(x) the integral

We have

where we have used the transformation u = bv and the result of Problem 8.6. Then taking the
Fourier transform of both sides of the integral equation, we find

i.e. or

Thus

PROOF OF THE FOURIER INTEGRAL THEOREM

8.10. Present a heuristic demonstration of Fourier's integral theorem by use of a limiting
form of Fourier series.

Let (i)

where

Then by substitution of these coefficients into (1) we find

(2)

If we assume t h a t c o n v e r g e s , the first term on the right of (2) approaches zero as

L -» «, while the remaining part appears to approach

(3)

This last step is not rigorous and makes the demonstration heuristic.
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Calling can be written

U)

where we have written (5)

But the limit (4) is equal to

which is Fourier's integral formula.
This demonstration serves only to provide a possible result. To be rigorous, we start with the

integral

and examine the convergence. This method is considered in Problems 8.11-8.14.

8.11. Prove that: (a) (6)

(a) can be

shown by using Problem 8.27.

(6)

8.12. Riemann's theorem states that if F(x) is piecewise continuous in (a, 6), then

with a similar result for the cosine (see Problem 8.28). Use this to prove that

(a)

(6)

where /(#) and f'(x) are assumed piecewise continuous in (0, L) and (—L, 0) respectively.

(a) Using Problem 8.11(a), it is seen that a proof of the given result amounts to proving that

This follows a t once from Riemann's theorem, b e

wise continuous in (0,L) since lim F(v) exists and f(x) is piecewise contin
D-»0 +

(6) A proof of this is analogous to that in part (a) if we make use of Problem 8.11(6).

8.13. If f ( x ) satisfies the additional condition that converges, prove that

(a)

We have

w

(2)

because is piece-

conti
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Subtracting,

(*)

Denoting the integrals in (3) by I, /1; /2 and /3 respectively, we have / = /t + /2 +13 so that

(4)

Now

Also

Since and both converge, we can choose L so large that |/2| S «/3,

|/8| S «/3. Also, we can choose a so large that |/jj S e/3. Then from (4) we have |/| < e for a and
L sufficiently large, so that the required result follows.

This result follows by reasoning exactly analogous to that in part (a).

8.14. Prove Fourier's integral formula where f(x) satisfies the conditions stated on page 201.

We must prove that

Since which converges, it follows by the Weier-

strass test for integrals [see Problem 1.123, page 33] that converges abso-

lutely and uniformly for all a. We can show from this that the order of integration can be
reversed to obtain

where we have let u = x + v.
Letting L -» «, we see by Problem 8.13 that the given integral converges to

as required.

Supplementary Problems
THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

8.15. (a) Find the Fourier transform of

(6) Determine the limit of this transform as e -» 0+ and discuss the result.

8.16. (a) Find the Fourier transform of

(6) Evaluate

8.17. If  the (a) Fourier sine transform, (6) Fourier cosine transform of

f(x). In each case obtain the graph of f(x) and its transform.

fi of
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8.18. (a) Find the Fourier sine transform of

(6) Show that by using the result in (a).

(c) Explain from the viewpoint of Fourier's integral theorem why the result in (6) does not hold
for m — 0.

8.19. Solve for Y(x) the integral equation

and verify the solution by direct substitution.

8.20 Establish equation (4), page 201, from equation (3), page 201.

PARSEVAL'S IDENTITY

8.21. Evaluate (a) (6) by use of Parseval's identity.

[Hint. Use the Fourier sine and cosine transforms of

8.22. Use Problem 8.17 to show that (a) (b)

8.23. Show that

8.24. (a) If F(a) and <?(<*) are the Fourier transforms of f(x) and g(x) respectively, prove that

where the bar signifies the complex conjugate.
(6) From (a) obtain the results (11)-(U), page 202.

CONVOLUTION THEOREM
8.25. Verify the convolution theorem for the functions

8.26. Prove the result (18), page 203.

[Hint. If and then

Now make the transformation

PROOF OF FOURIER INTEGRAL THEOREM

8.27. By interchanging the order of integration in prove that

and thus complete the proof in Problem 8.11.

8.28. Prove Riemann's theorem [see Problem 8.12].

Answers to Supplementary Problems
8.15. (a) (b) 8.16. (a) (6)

8-17. (a) (6) 8.18. (a)

8.19. 8.21. (a) (6)



Chapter 9

THE GAMMA FUNCTION
The gamma function denoted by T(ri) is defined by

(1)
which is convergent for n > 0.

A recursion or recurrence formula for the gamma function is

(*)
where r(l) = 1 (see Problem 9.1). From (2), T(n) can be determined for all n > 0 when
the values for 1 g n < 2 (or any other interval of unit length) are known (see table below).
In particular if n is a positive integer, then

(3)

For this reason T(ri) is sometimes called the factorial function.

Examples.

It can be shown (Problem 9.4) that

(-4)

The recurrence relation (2} is a difference equation which has (1) as a solution. By
taking (1) as the definition of r(n) for n > 0, we can generalize the gamma function to
n < 0 by use of (2) in the form

(5)
See Problem 9.7, for example. The process is called analytic continuation.

TABLE OF VALUES AND GRAPH OF THE GAMMA FUNCTION
n T(n)

1.00 1.0000
1.10 0.9514
1.20 0.9182
1.30 0.8975
1.40 0.8873
1.50 0.8862
1.60 0.8935 Fig'9"1

1.70 0.9086
1.80 0.9314
1.90 0.9618
2.00 1.0000

210

Gamma, Beta and

Other Special Functions
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ASYMPTOTIC FORMULA FOR r(»)
If n is large, the computational difficulties inherent in a calculation of r(«) are

apparent. A useful result in such case is supplied by the relation

(«)
For most practical purposes the last factor, which is very close to 1 for large n, can be
omitted. If n is an integer, we can write

(7)
where ~ means "is approximately equal to for large n". This is sometimes called Stirling's
factorial approximation or asymptotic formula for nl

MISCELLANEOUS RESULTS INVOLVING THE GAMMA FUNCTION

1.

In particular if

2.
This is called the duplication formula for the gamma function.

3.

The result 2 is a special case of this with m — 2.

4.

This is called Stirling's asymptotic series for the gamma function. The series in
braces is an asymptotic series (see pages 212 and 219).

5.

where y is Euler's constant and is defined as

6.

THE BETA FUNCTION
The beta function, denoted by B(m,ri) is defined by

(«)

which is convergent for m > 0, n > 0.
The beta function is connected with the gamma function according to the relation

(»)
See Problem 9.11.

Many integrals can be evaluated in terms of beta or gamma functions. Two useful
results are

(W)
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valid for TO > 0 and n > 0 [see Problems 9.11 and 9.14] and

(11)

See Problem 9.18.

DIRICHLET INTEGRALS

If V denotes the closed region in the first octant bounded by the surface

and the coordinate planes, then if all the constants are positive,

(12)

Integrals of this type are called Dirichlet integrals and are often useful in evaluating
multiple integrals (see Problems 9.24 and 9.25).

OTHER SPECIAL FUNCTIONS

Many special functions are of importance in science and engineering. Some of these
are given in the following list. Others will be considered in later chapters.

1. Error function.

2. Exponential Integral.

3. Sine Integral.

4. Cosine Integral.

5. Fresnel Sine Integral.

6. Fresnel Cosine Integral.

ASYMPTOTIC SERIES OR EXPANSIONS
Consider the series

(18}

and suppose that (14)

are the partial sums of the series.

If where f(x) is given, is such that for every n

(15)

then S(x) is called an asymptotic series or expansion of f(x) and we denote this by writing



CHAP. 9] GAMMA, BETA AND OTHER SPECIAL FUNCTIONS 213

In practice the series (13) diverges. However, by taking the sum of successive terms
of the series, stopping just before the terms begin to increase, we may obtain a useful
approximation for /(#)• The approximation becomes better the larger the value of x.

Various operations with asymptotic series are permissible. For example, asymptotic
series may be multiplied or integrated term by term to yield another asymptotic series.

Solved Problems

THE GAMMA FUNCTION

9.1. Prove: (a) T(n +1) = nr(n), n>0; (b) r(n +1) = n!, n=l,2,8,

(a)

W

Put M = 1,2,3, ... in T(n + 1) = n T(n). Then

r(2) = lr(l) = 1, r(3) = 2r(2) = 2-1 = 2!, r(4) = 3r(3) = 3-2! = 3!

In general, T(n+ 1) = n\ if n is a positive integer.

9.2. Evaluate each of the following.

(a)

(6)

(o)

(d)

9.3. Evaluate each integral.

(a)

(&) Then the integral becomes
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9.4. Prove that

We have on letting x = u2. It follows that

Changing to polar coordinates (p, <f>) where u = p cos <f>, v — p sin 0, the last integral becomes

and so

9.5. Evaluate each integral.

( a ) L e t t i n g ys = x , the integral becomes
- o

(6) Let (4 In S)z2 = x and the integral

becomes

(c) Let —In x = u. Then x = e~u. When x = 1, u = 0; when * = 0, u = «>. The

integral becomes

9.6. Evaluate where m,n,a are positive constants.

Letting axn — y, the integral becomes

9.7. Evaluate (a) r(-l/2), (6) r(-5/2).
We use the generalization to negative values defined by r(n) = 'm '.

(a) Letting

(6) Letting using (a).

Then

9.8. Prove that where n is a positive integer and m > —1.

Letting t h e integral b  
integral becomes

becomes this last
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9.9. Prove that

Let Then

sin /?X d\

Thus (1)

Integration with respect to /J yields

or (2)

But on letting x = «X2, so that

from (2), C = -\fw/2^fa. Thus as required,

9.10. A particle is attracted toward a fixed point O with a force inversely proportional to
its instantaneous distance from O. If the particle is released from rest, find the time
for it to reach O.

At time t = 0 let the particle be located on the x axis at x — a > 0 and let O be the origin.
Then by Newton's law

(1)

where m is the mass of the particle and k > 0 is a constant of proportionality.

Let the velocity of the particle. Then and (1) becomes

(2)

upon integrating. Since v = 0 at x — a, we find c = fc In a. Then

(3)

where the negative sign is chosen since x is decreasing as t increases. We thus find that the time
T taken for the particle to go from x = a to x = 0 is given by

w

Letting In a/x = u or x = ae~u, this becomes

THE BETA FUNCTION

9.11. Prove that (a) B(m, n) = E(n, m), (b)

(a) Using the transformation x = 1 — y, we have
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(6) Using the transformation * = sin2 8, we have

9.12. Prove that

Letting we have

S i m i l a r l y , T h e n

Transforming to polar coordinates, x = p cos </>, y = p sin <t>,

using the results of Problem 9.11. Hence the required result follows.

The above argument can be made rigorous by using a limiting procedure.

9.13. Evaluate each of the following integrals.

(a)

(»)

(«)

9.14. Show that

This follows at once from Problems 9.11 and 9.12.

en
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9.15. Evaluate (a) (b) (c)

(a) Let 2m -1 = 6, 2w - 1 = 0, i.e. m = 7/2, w = 1/2, in Problem 9.14.

Then the required integral has the value

(6) Letting 2m — 1 = 4, Zn — 1 = 5, the required integral has the value

(c) The given integral =

Thus letting 2m — 1 = 0, 2n — 1 = 4 in Problem 9.14, the value is

9.16. Prove if p is an even posi-
2 • 4 • 6 • • • ( » — 1}

tive integer, (b) —1.3.5...*) *f V *s an °<^<J P°sitive integer.

From Problem 9.14 with 2m — 1 = p, 2w — 1 = 0, we have

(a) Up — 2r, the integral equals

(6) If p = 2r + 1, the integral equals

In both cases as seen by letting e = v/2 — </>.

9.17. Evaluate (a) (b) (c)

(a) From Problem 9.16 the integral equals *]4 ' | = || [compare Problem 9.15(«)].

(6) The integral equals

The method of Problem 9.15(6) can also be used,

(c) The given integral equals

9.18. Given show that where

Letting the given integral becomes

and the result follows.
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9.19. Evaluate

L e t y * = x . Then t h e integral b e c o m e s b y Problem
9.18 with P = i-

The result can also be obtained by letting y2 — tan 8.

9.20. Show that

Letting a3 = 8y or x — 2y1/a, the integral becomes

9.21. Prove the duplication formula

Let

Then

Letting 2x = u, we find

But

Then since 1 = 3,

and the required result follows.

9.22. Prove that

We have Then

a)
where we have reversed the order of integration and used the integral 16 on page 6.

Letting u2 = v in the last integral, we have by Problem 9.18

(2)

Substitution of (2) in (1) yields the required result.

b y  p r o b l e m
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STIRLING'S FORMULA

9.23. Show that for large n, n\ = \/2irnn"e-n approximately.
We have

W

The function n In x — x has a relative maximum for x = n, as is easily shown by elementary
calculus. This leads us to the substitution x = n + y. Then (1) becomes

(2)

Up to now the analysis is rigorous. The following procedures in which we proceed formally
can be made rigorous by suitable limiting procedures, but the proofs become involved and we shall
omit them.

In (2) use the result

(S)

with x — y/n. Then on letting y = \/n v, we find

(4)

When n is large a close approximation is

(*>

It is of interest that from (4) we can also obtain the miscellaneous result 4 on page 211 [see
Problem 9.38]. l

DIRICHLET INTEGRALS

9.24. Evaluate

where V is the region in the first octant
bounded by the sphere x2 + yz + za = 1 and
the coordinate planes.

Let *2 = u, y* = v, zz = w. Then

where ^ is the region in the uvw space bounded
by the plane u + v + w = 1 and the uv, vw and
uw planes as in Fig. 9-2. Thus Fig 9.2

(*)
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Letting v = (1 — u)t, we have

so that (2) becomes

(3)

where we have used (y/2) r(y/2) = r(y/2 + 1).
The integral evaluated here is a special case of the Dirichlet integral (12), page 212. The

general case can be evaluated similarly.

9.25. Find the mass of the region bounded by a;2 + y2 + z2 = a2 if the density is a — x2y2z2.

The required mass = 8 where V is the region in the first octant bounded

by the sphere »2 + j/2 + z2 = a2 and the coordinate planes.
In the Dirichlet integral (12), page 212, let b = c — a, p = q = r = 2 and a = /? = y = 3.

Then the required result is

SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

9.26. (a) Prove that if x > 0, p > 0, then

where

(b) Prove that

(c) Explain the significance of the result in (b).

(a) Integrating by parts, we have

Similarly so that

By continuing in this manner the required result follows.

(6)



CHAP. 9] GAMMA, BETA AND OTHER SPECIAL FUNCTIONS 221

since

(c) Because of the results in (6), we can say that

to
i.e. the series on the right is the asymptotic expansion of the function on the left.

9.27. Show that erf (x)

We have erf (*)

Now from equation (1) of Problem 9.26 we have on letting p = 1/2 and replacing te by «2,

which gives the required result.

Supplementary Problems
GAMMA FUNCTION

9.28. Evaluate (a) (6) (c)

9.29. Evaluate (a) (6) (c)

9.30. Find (a) (6) (c)

9.31. Show that

9.32. Prove that

9.33. Evaluate (a) (6) (c)

9.34. Evaluate (a)

9.35. Prove that where m = 0,1,2,3, ...

9.36. Prove that if m is a positive integer,
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9.37. Prove that in x dx is a negative number (it is equal to —y, where y = 0.577215...

is called Euler's constant).

9.38. Obtain the miscellaneous result 4 on page 211 from the result (4) of Problem 9.23.
[Hint: Expand e"3''3^™' + ••• in a power series and replace the lower limit of the integral by
-».]

BETA FUNCTION

9.39. Evaluate (a) B(3,5), (6) B(3/2,2), (c) B(l/3,2/3).

9.40. Find (a) (6) (c)

9.41. Evaluate (a) (6)

9.42. Prove that
«

9.43. Evaluate (a) (b)

9.44. Evaluate (a) (6)

9.45. Prove that

9.46. Prove that (a) (b)

9.47. Prove that where a, b > 0.

9.48. Prove that

[Hint: Differentiate with respect to 6 in Problem 9.47.]

DIRICHLET INTEGRALS

9.49. Find the mass of the region in the xy plane bounded by x + y = 1, * = 0, y = 0 if the density is

9.50. Find the mass of the region bounded by the e l l i p s o i d i f the density varies as the
square of the distance from its center.

9.51. Find the volume of the region bounded by

9.52. Find the centroid of the region in the first octant bounded by

9.53. Show that the volume of the region bounded by xm + ym + zm = am, where m > 0, is given by

if the density varies as the
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9.54. Show that the centroid of the region in the first octant bounded by xm + y™ + «"> = a™, where
m > 0, is given by

SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

9.55. Show that

9.56. Obtain the asymptotic expansion

9.57. Show that

9.58. Obtain the asymptotic expansions

(«)

(&)

9.59. Show that J* ^-dx =

9.60. Show that f sinx*dx = f cos»2<te = ^\l%-.

Answers to Supplementary Problems
9.28. (a) 30, (6) 16/105, (c) 9.41. (a) 12*-, (6) v

9.29. (a) 24, (6) ̂ -, ( c ) 9 ' 4 3 - <«> 3lr/256- <6) 5)r/8

9.44. (a) 16/15, (6) 8/105
9.30. (a) £r(£), (6) ̂ 2, (c)

9.49. T/24
9.33. (a) 24, (6) -3/128, (c)

._ 9-50.fe = constant of proportionality
9.34. (a) (16V^)/105, (6) -3r(2/3)

9.39. (a) 1/105, (6) 4/15, (c) 9.51. 4W35

9.40. (a) 1/60, (6)

and derive a similar result for

9.52
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Bessel Functions

BESSEL'S DIFFERENTIAL EQUATION

Bessel functions arise as solutions of the differential equation

(1)
which is called Bessel's differential equation. The general solution of (1) is given by

(*)

The solution Jn(x), which has a finite limit as x approaches zero, is called a Bessel function
of the first kind and order n. The solution Yn(x) which has no finite limit [i.e. is unbounded]
as x approaches zero, is called a Bessel function of the second kind and order n or Neumann
function.

If the independent variable x in (1) is changed to \x where X is a constant, the resulting
equation is

(3)

with general solution (4)

BESSEL FUNCTIONS OF THE FIRST KIND

We define the Bessel function of the first kind of order n as

(5)

°r (6)

where T(n +1) is the gamma function [Chapter 9]. If n is a positive integer, T(n +1) = n\,
r(l) = 1. For n = 0, (6) becomes

(7)

The series (6) converges for all x. Graphs of Jo(x)
and Ji(x) are shown in Fig. 10-1.

If n is half an odd integer, Jn(x) can be ex-
pressed in terms of sines and cosines. See Problems
10.4 and 10.7.

A function J-n(x), n>0, can be defined by re-
placing n by -n in (5) or (6). If n is an integer
then we can show that [see Problem 10.3]

J-n(x) = (-!)«/„ (») (8) Fig !„_!

224
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If n is not an integer, /»(*) and J-n(x) are linearly independent, and for this case the
general solution of (1) is

(9)

BESSEL FUNCTIONS OF THE SECOND KIND
We shall define the Bessel function of the second kind of order n as

(10)

For the case where n = 0,1,2,3,... we obtain the following series expansion for Yn(x).

(11)

where y = .5772156... is Euler's constant and
(12)

GENERATING FUNCTION FOR Jn(x)

The function (18)

is called the generating function for Bessel functions of the first kind of integral order.
It is very useful in obtaining properties of these functions for integer values of n which
can then often be proved for all values of n.

RECURRENCE FORMULAS
The following results are valid for all values of n.

1.

2.

3.

4.

5.

6.

If n is an integer these can be proved by using the generating function. Note that results
3 and 4 are equivalent respectively to 5 and 6.

The functions Yn(x) satisfy exactly the same results as those above, where Yn(x) re-
places Jn(x).
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FUNCTIONS RELATED TO BESSEL FUNCTIONS

1. Hankel Functions of First and Second Kinds are defined respectively by

2. Modified Bessel Functions. The modified Bessel function of the first kind of order n
is defined as

(14)

If n is an integer, (15)

but if n is not an integer, ln(x) and I-n(x) are linearly independent.
The modified Bessel function of the second kind of order n is defined as

(16)

These functions satisfy the differential equation
(17)

and the general solution of this equation is
(18)

or if n + 0,1,2,3, ... (19)

3. Ber, Bei, Ker, Kei Functions. The functions Bern(a;) and Bein(a;) are the real and
imaginary parts of Jn(i

s/2x) where t372 = e3lri/4 = (\/2/2)(l — i), i.e.
Jn(i

3/2x) = Eern(x)+iEein(x) (20)

The functions Kern(a;) and Kein(a;) are the real and imaginary parts of e~nMZKn(i
V2x)

where i1'2 = e™" = (v^/2)(l + t), i.e.
(21)

The functions are useful in connection with the equation
(22)

which arises in electrical engineering and other fields. The general solution of this
equation is

(23)

EQUATIONS TRANSFORMED INTO BESSEL'S EQUATION
The equation

(24)
where k, a, r, /? are constants, has the general solution

(**)
where If « = 0 the equation is solvable as an Euler or Cauchy equation
[seepage 76].
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ASYMPTOTIC FORMULAS FOR BESSEL FUNCTIONS

For large values of x we have the following asymptotic formulas

(26)

ZEROS OF BESSEL FUNCTIONS

We can show that if n is any real number, Jn(x) = 0 has an infinite number of roots
which are all real. The difference between successive roots approaches -n- as the roots
increase in value. This can be seen from (26). We can also show that the roots of Jn(x) — 0
lie between those of Jn-i(x) = 0 and Jn+i(x) = 0. Similar remarks can be made for Yn(x).

ORTHOGONALITY OF BESSEL FUNCTIONS

If A and [i are two different constants, we can show [see Problem 10.21] that

(27)

while [see Problem 10.22]

(28)

From (27) we can see that if A and ^ are any two different roots of the equation

(29)

where R and S are constants, then

(30)

which states that the functions and are orthogonal in (0,1). Note that
as special cases of (29) we see that A and /n can be any two different roots of Jn(x) = 0 or
Jn(x) — 0. We can also say that the functions Jn(\x), Jn([j.x) are orthogonal with respect to
the density function x.

SERIES OF BESSEL FUNCTIONS

As in the case of Fourier series, we can show that if f(x) satisfies the Dirichlet condi-
tions [page 183] then at every point of continuity of f(x) in the interval 0 < x < 1 there will
exist a Bessel series expansion having the form

(31)

where \\, Aa, As, ... are the positive roots of (29) with R/S § 0, S ¥* 0 and

(32)

At any point of discontinuity the series on the right in (31) converges to £[/(# + 0) + f(x — 0)]
which can be used in place of the left side of (31).
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In case S = 0 so that Ai, A.2,... are the roots of Jn(x) - 0,

(33)

If R = 0 and « = 0, then the series (31) starts out with the constant term

(84)

Solved Problems

BESSEL'S DIFFERENTIAL EQUATION

10.1. Use the method of Frobenius to find series solutions of Bessel's differential equation
x*y" + xy' + (x2 - ri*)y = 0.

Assuming a solution of the form y — 2 ckx
k+® where k goes from — <*> to °° and ck = 0 for

fe < 0, we have

Then by addition,

and since the coefficients of xk+& must be zero, we find

(1)

Letting fe = 0 in (1) we obtain, since c_2 = 0, the indicial equation (/32 — n2)e0 = 0; or assuming
e0 »* 0, ft2 = w2. Then there are two cases, given by /? = — n and /? = n. We shall consider
first the case /? = n and obtain the second case by replacing n by —n.

Case 1, /} — n.

In this case (1) becomes
(2)

Putting fe = 1,2, 3,4, ... successively in (2), we have

Thus the required series is

(*)•

Case 2, 0 = — n.

Or replacing n by —n in Case 1, we find

U)
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Now if n = 0, both of these series are identical. If n = 1,2, ... the second series fails to exist.
However, if n¥> 0,1,2, ... the two series can be shown to be linearly independent and so for this
case the general solution is

(5)

The cases where w = 0,1,2,3, ... are treated later [see Problems 10.15 and 10.16].

BESSEL FUNCTIONS OF THE FIRST KIND
10.2. Using the definition (5) of Jn(x) given on page 224, show that if n ¥= 0,1,2, ... then

the general solution of Bessel's equation is y = AJn(x) +BJ-n(x).
Note that the definition of Jn(x) on page 224 agrees with the series of Case 1 in Problem 10.1,

apart from a constant factor depending only on n. It follows that (5) can be written y = AJn(x) +
BJ_n(x) for the cases n ¥= 0,1,2,

10.3. (a) Prove that /_„(«) = (-!)"/„(x) for « = 1,2,3, ...
(6) Use (a) to explain why AJn(x) + BJ-n(x) is not the general solution of Bessel's

equation for integer values of n.

(a) Replacing n by — n in (5) or the equivalent (6) on page 224, we have

Now since r(—n + r + 1) is infinite for r = 0,1, ..., n — 1, the first sum on the right is zero.
Letting r = n + k in the second sum, it becomes

(6) From (a) it follows that for integer values of n, J-n(x) and Jn(x) are linearly dependent and
so AJn(x) + BJ-n(x) cannot be a general solution of Bessel's equation. If n is not an integer,
then we can show that J-n(x) and Jn(x) are linearly independent so that AJn(x) + BJ^n(x)
is a general solution [see Problem 10.10].

10.4. Prove (a)

(a)

w
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10.5. Prove (a) (&) for all n.

(a)

(6)

10.6. Prove (a) (6) , for all n.

From Problem 10.5(a),

or (1)

From Problem 10.5(6),

or (2)

(a) Adding (1) and (2) and dividing by Zx gives

(6) Subtracting (2) from (1) and dividing by « gives

10.7. Show that (a)

(b)

(a) From Problems 10.6(6) and 10.4 we have on letting n — 1/2,

(6) From Problems 10.6(6) and 10.4 we have on letting n = — -J,

10.8. Evaluate the integrals (a)(6)
From Problem 10.5,

(a) Then

(6) Then

(b)
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10.9. Evaluate (a)

(a) Method 1. Integration by parts gives

Method 2. We have, using J^x) = -J'0(x) [Problem 10.27(6)],

Then

(&)

Then

The integral cannot be obtained in closed form. In general can

be obtained in closed form if p + q^ 0 and p + q is odd, where p and q are integers. If,
however, p + q is even the result can be obtained in terms of
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10.10. (a) Prove that
(6) Discuss the significance of the result of (a) from the viewpoint of the linear

dependence of Jn(x) and J-n(x),

(a) Since /„(*), and /-„(*), abbreviated /„, J_n respectively, satisfy Bessel's equation, we have

Multiply the first equation by J_n, the second by /„ and subtract. Then

which can be written

or

Integrating, we find (1)

To determine e use the series expansions for /„ and J-n to obtain

and then substitute in (1). We find

using the result 1, page 211. This gives the required result.

(6) The expression J'nJ-n — J'-nJn in (a) is the Wronskian of Jn and «/_„. If n is an integer, we
see from (a) that the Wronskian is zero so that Jn and «/_„ are linearly independent as is also
clear from Problem 10.3(a). On the other hand if n is not an integer, they are linearly inde-
pendent since in such case the Wronskian differs from zero.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS

10.11. Prove that
Wo Vioiro

Let r — k = n so that n varies from —» to ». Then the sum becomes

n

10.12. Prove (a)

(&)
Let t = e*» in Problem 10.11. Then

where we have used Problem 10.3(o). Equating real and imaginary parts gives the required results.
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10.13. Prove

Multiply the first and second results of Problem 10.12 by cosw* and sinne respectively and
integrate from 0 to v using

Then if w is even or zero, we have

or on adding,

Similarly if n is odd,

and by adding,

Thus we have the required result whether n is even or odd, i.e. n = 0,1,2, ....

10.14. Prove the result of Problem 10.6(&) for integer values of n by using the generating,
function.

Differentiating both sides of the generating function with respect to t, we have, omitting the
limits — oo to °° for n

or

i.e.

This can be written as

or

i.e.

Since coefficients of tn must be equal, we have

from which the required result is obtained on replacing n by n — 1.

BESSEL FUNCTIONS OF THE SECOND KIND

10.15. (a) Show that if n is not an integer, the general solution of Bessel's equation is
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(6) Explain how you can use part (a) to obtain the general solution of Bessel's equa-
tion in case n is an integer.

(a) Since J_n and «/„ are linearly independent, the general solution of Bessel's equation can be
written

and the required result follows on replacing the arbitrary constants c1( c2 by E, F where

Note that we define the Bessel function of the second kind if n is not an integer by

(b) The expression

becomes an "indeterminate" of the form 0/0 for the case when n is an integer. This is because
for an integer n we have cosnir = (—1)" and J-n(x) = (—l)nJn(#) [see Problem 10.3]. This
"indeterminate form" can be evaluated by using L'Hospital's rule, i.e.

This motivates the definition (10) on page 225.

10.16. Use Problem 10.15 to obtain the general solution of Bessel's equation for n = 0.
In this case we must evaluate

(J)

Using L'Hospital's rule [differentiating the numerator and denominator with respect to p] we find
for the limit in (1)

where the notation indicates that we are to take the partial derivatives of Jp(x) and J-p(x) with
respect to p and then put p — 0. Since dJ_p/d(—p) — —dJ_p/dp, the required limit is also equal to

To obtain dJp/dp we differentiate the series

with respect to p and obtain

(2)

Now if we let then

ln<
so that differentiation with respect to p gives

Then for p — 0, we have

(*)
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Using (2) and (3), we have

where the last series is obtained on using the result 6 on page 224. This last series is the series
for Y0(x). We can in a similar manner obtain the series (11), page 225, for Yn(x) where n is an
integer. The general solution if n is an integer is then given by y = CjJre(a;) + c2Yn(x).

FUNCTIONS RELATED TO BESSEL FUNCTIONS

10.17. Prove that the recurrence formula for the modified Bessel function of the first kind
In(x) is given by

Prom Problem 10.6(6) we have

(1)

Replace x by ix to obtain
(2)

Now by definition In(x) = i~nJn(ix) or Jn(ix) — inln(x) so that (2) becomes

Dividing by i™+1 then gives the required result.

10.18. If n is not an integer, show that

(a) (6)

(a) By definition of H™(x) and Yn(x) [see pages 226 and 225 respectively] we have

(6) Since fl^2)(aj) = JH(x) — iYn(x), we find on replacing i by —i in the result of part (a),

10.19. Show that (a)

(b)
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We have

and the required result follows on noting that J0(i
a'2x) = Ber0(a;) + i Beic («) and equating real

and imaginary parts. Note that sometimes the subscript zero is omitted in Ber0 (x) and Bei0 (x).

EQUATIONS TRANSFORMED INTO BESSEL'S EQUATION
10.20. Find the general solution of the equation xy" + y' + ay = 0.

The equation can be written as x2y" + xy' + axy = 0 and is a special case of equation (24),
page 226, where k = 0, a = \fa, r = 1/2, /J = 0. Then the solution as given by (25), page 226, is

ORTHOGONALITY OF BESSEL FUNCTIONS

10.21. Prove that if A *• /*.

From (S) and (4), page 224, we see that yt — Jn(*.x) and y^ — Jn(nx) are solutions of the
equations

Multiplying the first equation by y2, the second by y1 and subtracting, we find

which on division by x can be written as

or

Then by integrating and omitting the constant of integration,

or using yt = Jn(\x), j/2 = Jn(^) and dividing by /i2 — X2 9* 0,

Thus

which is equivalent to the required result.

10.22. Prove that

Let 11 -» \ in the result of Problem 10.21. Then using L'Hospital's rule, we find
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But since XV^'(X) + \J'n(\) + (X2-n2) Jn(X) = 0, we find on solving for /£(X) and substituting,

10.23. Prove that if A. and ^ are any two different roots of the equation RJn(x) + SxJ'n(x) = 0
where R and S are constants, then

i.e. and are orthogonal in (0,1).
Since X and p are roots of RJn(x) + SxJn(x) = 0, we have

RJn(\) + S\Jn(\) = 0, RJM + Spj'M = 0 (1)

Then if R ¥> 0, S ¥> 0 we find from (1),

and so from Problem 10.21 we have the required result

In case R = 0, S ¥* 0 or R ¥* 0, S = 0, the result is also easily proved.

SERIES OF BESSEL FUNCTIONS

10.24 If where Xp, p = 1,2,3, ..., are the positive roots
of Jn(x) = 0, show that

Multiply the series for f(x) by x Jn(\kx) and integrate term by term from 0 to 1. Then

where we have used Problems 10.22 and 10.23 together with the fact that «/n(^k) = °- ** follows
that

To obtain the required result from this, we note that from the recurrence formula 3, page 225,
which is equivalent to the formula 6 on that page, we have

or since Jn(\k) = 0,

10.25. Expand f(x) = 1 in a series of the form

i

for 0 < x < 1, if \p, p = 1,2,3, . . . , are the positive roots of J0(x) = 0.
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From Problem 10.24 we have

where we have made the substitution v = \px in the integral and used the result of Problem
10.8(a) with n — 1.

Thus we have the required series
e f t , - »

which can be written

Supplementary Problems

BESSEL'S DIFFERENTIAL EQUATION

10.26. Show that if x is replaced by Xa; where X is a constant, then Bessel's equation x2y" + xy' +
(x2 — n2)y — 0 is transformed into x2y" + xy' + (\zx2 — n2)y = 0.

BESSEL FUNCTIONS OF THE FIRST KIND

10.27. (a) Show that and verify that the interval of conver-

gence is — «> < x < °°.

(b) Show that

(c) Show that

10.28. Evaluate (a) Jz/z(x) and (b) J_5/2(x) in terms of sines and cosines.

10.29. Find J3(x) in terms of J9(x) and J^x).

10.30. Prove that (a)

(&)
and generalize these results.

10.31. Evaluate (a) (b) (c)

10.32. Evaluate (a) (b)

10.33. Evaluate

10.34. Verify directly the result
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GENERATING FUNCTION AND MISCELLANEOUS RESULTS
10.35. Use the generating function to prove that J'n(x) = ^[Jn^1(x) + Jn + 1(x)] for the case where n

is an integer.

10.36. Use the generating function to work Problem 10.30 for the case where n is an integer.

10.37. Show that (a) 1 = J0(x) + 2J2(x) + 2 J 4 ( » ) + • • •
(b) /!<*) - J3(x) + Js(x) - J7(x) + ••• = sinx.

10.38. Show that

10.39. Show that

10.40. Show that (a)

(6)

10.41. Show that

10.42. Show that and thus find

(a) 4{J0(bt)}, (6) <{/j(6t)}, (c) Jd{Jn(&«)}, n = 0,1,2, ...

10.43. Show that

10.44. Prove that |Jn(&)| = 1 f°r »U integers n. Is the result true if n is not an integer?

BESSEL FUNCTIONS OF THE SECOND KIND

10.45. Show that (a) IW*) =25.rn(*)-y»-i<*), (6) F» = ^(Yn^(x) - Yn+l(x)}.
tfj

10.46. Explain why the recurrence formulas for Jn(x) on page 225 hold if Jn(x) is replaced by Yn(x).

10.47. Prove that Y^x) = -Y^x).

10.48. Evaluate (a) Y1/2(x), (b) r_1/2(w).

10.49. Prove that Jn(x) Y'n(x) - J'n(x) Yn(x) - 2/wx.

10.50. Evaluate (a) (b) (c)

10.51. Prove the result (11), page 225.

FUNCTIONS RELATED TO BESSEL FUNCTIONS

10.52. Show that

10.53. Show that (a) l'n(x) = ${In_i(x) + /n+J(*)}, (6) xl'n(x) = xln^(x) - nln(x).

CO

10.54. Show that e(.x/2->(.t+i/f> - ^, In(x)tn is the generating function for In(x).
— 00

10.55. Show that

10.56. Show that (a) sinha; = 2[/!(*) + Is(x) + • • •]

(b) cosh* = 70(») + 2[72(*) + 74(«) + • • • ] .
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10.57. Show that (a) (6)

2t710.58. (a) Show that Kn+1(x) = K^^x) + —Kn(x). (b) Explain why the functions Kn(x) satisfy recur-
00

rence formulas which are the same as those for In(x) with In(x) replaced by Kn(x).

10.59. Give asymptotic formulas for (a) H™(x), (6) H™(x).

10.60. Show that (a)

(b)

10.61. Show that

EQUATIONS TRANSFORMED INTO BESSEL'S EQUATION

10.62. Prove that (25), page 226, is a solution of (24).

10.63. Solve 4«j/" + 4y' + y = 0.

10.64. Solve (a) xy" + 2y' + xy = 0, (6) y" + xzy = 0.

10.65. Solve y" + e2xy = 0. [Hint. Let ex = u.}

10.66. (a) Show by direct substitution that y — J9 (2^fx) is a solution of xy" + y' + y — 0 and (6) write
the general solution.

10.67. (a) Show by direct substitution that y = ̂ Ji/^x3'2) is a solution of y" + xy = 0 and (6) write
the general solution.

10.68. (a) Show that Bessel's equation x2y" + xy' + (x2 — n2)y = 0 can be transformed into

where y = u/-\fx. (b) Discuss the case where n = ±1/2.
(6) Discuss the case where x is large and explain the connection with the asymptotic formulas

on page 227.

ORTHOGONAL SERIES OF BESSEL FUNCTIONS

10.69. Complete Problem 10.23, page 237, for the cases (a) R * 0, S = 0, (6) R = 0, S ¥= 0.

10.70. Show that

10.71. Prove the results (31) and (32), page 227.

10.72. Show that

where Xp are the positive roots of «/0(M = 0-

10.73. Show that

where Xp are the positive roots of Ji(X) — 0.

10.74. Show that

where Xp are the positive roots of Ji(\) — 0.
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10.75. If where

Compare with Parseval's identity for Fourier series.

10.76. Use Problems 10.73 and 10.75 to show that

where Xp are the positive roots of </0(\) = 0.

Answers to Supplementary Problems

10.28. (a) (6)

10.29.

10.31. (a) (c)

10.32. (a)

W

10.33.

10.42. (a) (c)

10.48. (a)

10.50. (a)

(6) (c)

10.59. (a) (6)

10.63.

10.64. (a) (6)

10.65.



Chapter 11

LEGENDRE'S DIFFERENTIAL EQUATION

Legendre functions arise as solutions of the differential equation

W
which is called Legendre's differential equation. The general solution of (1) in the case where
w = 0,1,2,3,... is given by

where Pn(x) are polynomials called Legendre polynomials and Qn(x) are called Legendre
functions of the second kind which are unbounded at x = ±1.

LEGENDRE POLYNOMIALS

The Legendre polynomials are defined by

(«)

Note that Pn(x) is a polynomial of degree n. The first few Legendre polynomials are as
follows:

1 . 4 .
2 . 5 .

3. 6.
In all cases '.

The Legendre polynomials can also be expressed by Rodrigue's formula given by

(3)

GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS

The function u\

is called the generating function for Legendre polynomials and is useful in obtaining their
properties.

RECURRENCE FORMULAS

1.

2.

242

4
5
6
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LEGENDRE FUNCTIONS OF THE SECOND KIND
If \x\ < 1, the Legendre functions of the second kind are given by the following ac-

cording as n is even or odd respectively:

For n > 1, these coefficients are taken so that the recurrence formulas for Pn(x) above apply
also to Qn(x).

ORTHOGONALITY OF LEGENDRE POLYNOMIALS
The following results are fundamental:

(7)

(*)

The first shows that any two different Legendre polynomials are orthogonal in the interval
-1< x < 1.

SERIES OF LEGENDRE POLYNOMIALS
If f(x) satisfies the Dirichlet conditions [Page 183], then at every point of continuity of

f(x) in the interval —Kx<l there will exist a Legendre series expansion having the form

(9)

where (10)

At any point of discontinuity the series on the right in (9) converges to %[f(x + 0) + f(x - 0)]
which can be used to replace the left side of (9).

ASSOCIATED LEGENDRE FUNCTIONS
The differential equation

(11)

is called Legendre's associated differential equation. If m — 0 this reduces to Legendre's
equation (1). Solutions to (11) are called associated Legendre functions. We consider the
case where m and n are non-negative integers. In this case the general solution of (11) is
given by (jf)

where P™(x) and Q™(x) are called associated Legendre functions of the first and second
kinds respectively. They are given in terms of the ordinary Legendre functions by

(13)

(14)

Note that if m > n, P™(x) - 0.
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As in the case of Legendre polynomials, the Legendre functions P™ (x) are orthogonal in
-!<«<!, i.e.

(15)

We also have (16)

Using these, we can expand a function f(x) in a series of the form

(17)

OTHER SPECIAL FUNCTIONS
The following special functions are some of the important ones arising in science and

engineering.

1. Hermite polynomials. These polynomials, denoted by Hn(x), are solutions of Hermite's
differential equation

y" - 2xy' + 2ny = 0 (18)

The polynomials are given by a corresponding Rodrigue's formula

(19)

Their generating function is given by

(20)

and they satisfy the recursion formulas

(21)

(22)

The important results

(23)

(*•*)

enable us to expand a function into a Hermite series of the form

(25)

where ^6)

2. Laguerre polynomials. These polynomials, denoted by Ln(x), are solutions of Laguerre's
differential equation

(27)

The polynomials are given by the Rodrigue's formula

(28)
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Their generating function is given by

(29)

and they satisfy the recursion formulas
(30)

(31)

The important results
(32)

(33)

enable us to expand a function into a Laguerre series of the form

(34)

where (35)

STURM-LIOUVILLE SYSTEMS

A boundary-value problem having the form

(36)

where ai, a2, 61, 62 are given constants; p(x), q(x), r(x) are given functions which we shall
assume to be diiferentiable and A. is an unspecified parameter independent of x, is called a
Sturm-Liouville boundary-value problem or Sturm-Liouville system.

A non-trivial solution of this system, i.e. one which is not identically zero, exists in
general only for a particular set of values of the parameter A. These values are called
the characteristic values, or more often eigenvalues, of the system. The corresponding
solutions are called characteristic functions or eigenfunctions of the system. In general
to each eigenvalue there is one eigenfunction, although exceptions can occur.

If p(x), q(x) are real, then the eigenvalues are real. Also the eigenfunctions form an
orthogonal set with respect to the density function r(x) which is generally taken as non-
negative, i.e. r(x) =£ 0. It follows that by suitable normalization the set of functions can be
made an orthonormal set with respect to r(x) in a ^ x ^ b.
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Solved Problems
LEGENDRE'S DIFFERENTIAL EQUATION

11.1. Use the method of Frobenius to find series solutions of Legendre's differential equa-
tion (1 - xz)y" - 2xy' + n(n + l)y = 0.

Assuming a solution of the form y = '2,ckx
k+& where the summation index fe goes from

—oo to oo and ek = 0 for fc < 0, we have

Then by addition,

and since the coefficient of xk+& must be zero, we find

(1)

Letting fc = — 2 we obtain, since c_2 = 0, the indicial equation 13(13 — I)c0 = 0 or, assuming
c0 ¥= 0, /J = 0 or 1.

Case 1, /? = 0.

In this case (1) becomes

(2)

Putting fc = —1,0,1,2,3,... in succession, we find that ct is arbitrary while

and so we obtain

(3)

Since this leads to a solution with two arbitrary constants, we need not consider Case 2, ft — 1.
For an even integer TO S 0, the first of the above series terminates and gives a polynomial

solution. For an odd integer TO > 0, the second series terminates and gives a polynomial solution.
Thus for any integer n fe 0 the equation has polynomial solutions. If n = 0,1,2,3, for example,
we obtain from (S) the polynomial

which are, apart from a multiplicative constant, Legendre polynomials.

LEGENDRE POLYNOMIALS

11.2. Derive formula (2), page 242, for the Legendre polynomials.
From equation (2) of Problem 11.1 we see that if k = n then cn+2 = 0 and thus cn+4 = 0,

cn+6 = 0 Then letting k = n — 2, n — 4, ... we find from the equation (2) of Problem 11.1,
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This leads to the polynomial solutions

The Legendre polynomials Pn(x) are defined by choosing

This choice is made in order that Pn(l) = 1.

11.3. Derive Rodrigue's formula

By Problem 11.2 the Legendre polynomials are given by

Now integrating this n times from 0 to x, we obtain

which can be written

which proves that

GENERATING FUNCTION

11.4. Prove that

Using the binomial theorem

we have

and the coefficient of tn in this expansion is

which can be written as

i.e. Pn(x). The required result thus follows.
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RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

11.5. Prove that

From the generating function of Problem 11.4 we have

(1)

Differentiating with respect to t,

Multiplying by 1 - 2xt + t2,

(2)

Now the left side of (2) can be written in terms of (1) and we have

i.e.

Equating the coefficients of t" on each side, we find

which yields the required result.

11.6. Given that P0(x) = 1, Pi(x) = x, find (a) P2(x) and (b) P3(x).

Using the recurrence formula of Problem 11.5, we have on letting n = 1,

Similarly letting n — 2,

LEGENDRE FUNCTIONS OF THE SECOND KIND

11.7. Obtain the results (5) and (6), page 243, for the Legendre functions of the second
kind in the case where n is a non-negative integer.

The Legendre functions of the second kind are the series solutions of Legendre's equation which
do not terminate. From Problem 11.1, equation (3), we see that if n is even the series which does
not terminate is

while if n is odd the series which does not terminate is

These series solutions, apart from multiplicative constants, provide definitions for Legendre
functions of the second kind and are given by (5) and (6) on page 243.
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11.8. Obtain the Legendre functions of the second kind (a) Qo(x), (b) Qi(x) and (c) Qs(x).
(a) From equation (5), page 243, we have if n — 0,

where we have used the expansion In (1 + u) = u — u2/2 + w8/3 — tt4/4 + • • • .
(6) From equation (6), page 243, we have if n = 1,

(c) The recurrence formulas for Qn(x) are identical with those of Pn(x). Then from Problem 11.5,

Putting n = 1, we have on using parts (a) and (6),

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

11.9. Prove that 0 if m¥=n.

Since Pm(x),Pn(x) satisfy Legendre's equation,

Then multiplying the first equation by Pn, the second equation by Pm and subtracting, we find

which can be written

or

Thus by integrating we have

Then since m ¥= n,

11.10. Prove that

From the generating function

we have on squaring both sides,
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Then by integrating from —1 to 1 we have

Using the result of Problem 11.9 on the right side and performing the integration on the left side,

or

i.e.

Equating coefficients of t2™ we have as required

SERIES OF LEGENDRE POLYNOMIALS

11.11. If show that
fc=0

Multiplying the given series by Pm(x) and integrating from —1 to 1, we have on using Problems
11.9 and 11.10,

Then as required,

11.12. Expand the function in a series of the forn
By Problem 11.11,

Then
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etc. Thus

The general term for the coefficients in this series can be obtained by using the recurrence formula
2 on page 242 and the results of Problem 11.29. We find

For n even An — 0, while for n odd we can use Problem 11.29(c).

ASSOCIATED LEGENDRE FUNCTIONS
11.13. Obtain the associated Legendre functions (a)

(a)

(6)

(c)

11.14. Verify that Pl(x) is a solution of Legendre's associated equation (11), page 243, for
ra = 2, n = 3.

By Problem 11.13, o, , . Substituting this in the equation

we find after simplifying,

and so P\(x) is a solution.

11.15. Verify the result (15), page 244, for the functions Pl(x) and Pl(x).

We have from Problem 11.13(a), P\(x) = Sx(l-x*)v*. Also,

Then

11.16. Verify the result (16), page 244, for the function P\(x).

Since P\(x) = 3*(1 - *2)»/2,

Now according to (16), page 244, the required result should be

so that the verification is achieved.
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HERMITE POLYNOMIALS

11.17. Use the generating function for the Hermite polynomials to find (a) H0(x), (b) Hi(x),
(c) H2(x), (d) H3(x).

We have

Now

Comparing the two series, we have

11.18. Prove that H'n(x) = 2nHn-1(x).

Differentiating with respect to x,

or

Equating coefficients of t" on both sides,

or

11.19. Prove that

We have

Then

But

11.20. Prove that

We have

Multiplying these,

Multiplying by e~^ and integrating from —« to °°,
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Now the left side is equal to

By equating coefficients the required result follows.

The result

can also be proved by using a method similar to that of Problem 11.9.

LAGUERRE POLYNOMIALS

11.21. Determine the Laguerre polynomials (a) L0(x), (6) L\(x), (c) Lz(x), (d) L3(x).

We have Then

(a)

(6)

(c)

(d)

11.22. Prove that the Laguerre polynomials Ln(x) are orthogonal in (0, «>) with respect to
the weight function e~x.

From Laguerre's differential equation we have for any two Laguerre polynomials Lm(x) and
£»(*),

Multiplying these equations by Ln and Lm respectively and subtracting, we find

or

Multiplying by the integrating factor

this can be written as

so that by integrating from 0 to «,

Thus if m ¥• n,

which proves the required result.
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STURM-LIOUVILLE SYSTEMS
11.23. (a) Verify that the system y" + \y = 0, y(Q) = 0, y(l) = 0 is a Sturm-Liouville system.

(6) Find the eigenvalues and eigenfunctions of the system, (c) Prove that the eigen-
functions are orthogonal in (0,1). (d) Find the corresponding set of normalized
eigenfunctions. (e) Expand f(x) = 1 in a series of these orthonormal functions.
(a) The system is a special case of (36), page 245, with p(x) = 1, q(x) = 0, r(x) = 1, a = 0, 6 = 1,

<*! = 1, «2 = °> 0i = 1> 02 = ° and tnus is a Sturm-Liouville system.

(b) The general solution of y" + \y = 0 is y = A cosVx* + B sin-v/Xw. From the boundary
condition j/(0) = 0 we have A = 0, i.e. y = B sin Vx x. From the boundary condition
j/(l) = 0 we have B sin \/X = 0, so that since B cannot be zero [otherwise the solution will
be identically zero, i.e. trivial] we must have sin Vx = 0. Then \/X = ^TT, X = mV2 where
m = 1,2,3, ... are the required eigenvalues.

The eigenfunctions belonging to the eigenvalues X = m2]r2 can be designated by
Bm sin m-n-x, w = 1,2,3, ....

Note that we exclude the value m = 0 or X = 0 as eigenvalue since the corresponding
eigenfunction is zero.

(c) The eigenfunctions are orthogonal since

(d) The eigenfunctions will be orthonormal if

i.e. if taking the

positive square root. Thus the set V2 sin mirx, m = 1, 2,..., is an orthonormal set.

(e) We must find constants c1( c2, ... such that

where f(x) — 1, <f>m(x) = \/2 sin mirx. By the methods of Chapter 8,

Then the required series [Fourier series] is

11.24. Show that the eigenvalues of a Sturm-Liouville system are real.

We have (1)

(2)
Then assuming p(x), q(x), r(x), ttl, «2, plt /J2 are real while X and y may be complex, we have on
taking the complex conjugate,

(S)

(4)
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Multiplying equation (1) by y, (3) by y and subtracting, we find after simplifying,

Then integrating from a to 6, we have

(5)

on using the conditions (2) and (4). Since_ r(x) § 0 and is not identically zero in (a, b), the integral
on the left of (5) is positive and so X — X = 0 or X = X so that X is real.

11.25. Show that the eigenfunctions belonging to two different eigenvalues are orthogonal
with respect to r(x) in (a, 6).

If yl and y2 are eigenfunctions belonging to the eigenvalues X t and X2 respectively,

(1)

(3)

(3)

<*i2/2(«) + «22/2>) = 0. PiVzQ) + PzVzW = 0 (4)

Then multiplying (1) by yz, (3) by j/t and subtracting, we find as in Problem 11.24,

Integrating from a to 6, we have on using (2) and (4),

and since X t ¥= X2 we have the required result

Supplementary Problems
LEGENDRE POLYNOMIALS

11.26. Use Rodrigue's formula (3), page 242, to verify the formulas for P0(x), PI(X), ..., Pe(x) on page 242.

11.27. Obtain the formulas for P±(x) and Ps(x) using the recursion formula.

11.28. Evaluate (a) (6) (c)

11.29. Show that (a) Pn(l) = 1 (c) P2n-i(0) = 0

(6) P
for n = 1,2,3, ... using (2), page 242.

11.30. Use the generating function to prove that P^+1(cc) — P^-i(x) = (2n +l)Pn(c<;).

11.31. Prove that (a) P»+1(x) - xPfa) = (n+l)Pn(x), (b) xPfa) - P^(x) = nPn(x).

11.32. Show that 2 P

11.33. Show that (a) P2(cose) = £(1 + 3 cos 20), (6) P3(cos«) = 1(3 cos a + 5 cos 30).

(D) p
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LEGENDRE FUNCTIONS OF THE SECOND KIND
11.34. Prove that the series (5) and (6) on page 243 which are non-terminating are convergent for

-!<«<!.

11.35. Find Q3(«).

11.36. Write the general solution of (1 - »%" - 2xy' + 2y = 0.

SERIES OF LEGENDRE POLYNOMIALS
11.37. Expand or* — Sx2 + x in a series of the form

11.38. Expand in a series of the f o r m w r i t i n g the first four
nonzero terms.

11.39. If obtain Parseval's identity

and illustrate by using the function of Problem 11.37.

ASSOCIATED LEGENDRE FUNCTIONS
11.40. Find

11.41. Find

11.42. Verify that the expressions for P\(x) and Q\(x) are solutions of the corresponding differential
equation and thus write the general solution.

11.43. Verify formulas (15) and (16), page 244, for the case where (a) m = 1, n = 1, I = 2, (6) m = 1,
n= 1,1 = 1.

11.44. Obtain a generating function for P™(x).

11.45. Use the generating function to obtain results (15) and (16) on page 244.

11.46. Show how to expand /(*) in a series of the forn and illustrate by using the cases

(a) /(«) = x2, m — 2 and (6) /(») = x(l — x), m — 1. Verify the corresponding Parseval identity
in each case.

HERMITE POLYNOMIALS
11.47. Use Rodrigue's formula (19), page 244, to obtain the Hermite polynomials H0(x), Hjix), H2(x), H3(x).

11.48. Use the generating function to obtain the recurrence formula (21) on page 244 and obtain
H2(x), H3(x) given that H0(x) = 1, Ht(x) - 2x.

11.49. Show directly that (a) (6)

11.50. Evaluate

11.51. Show that

11.52. (a) Show how to expand f(x) in a series of the f o r m a n d (b) illustrate by using
/(*) = «s - So;2 + 2x.

11.53. If obtain Parseval's identity

and illustrate by using the function of Problem 11.52.

11
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11.54. Find the general solution of Hermite's differential equation if (a) n — 0, (&) n = 1.

LAGUERRE POLYNOMIALS
11.55. Find Lt(x) and show that it satisfies Laguerre's equation (27), page 244, for n = 4.

11.56. Use the generating function to obtain the recursion formula (30) on page 245.

11.57. Use formula (30) to determine L2(x), L3(x) and L4(«) if we define Ln(x) = 0 when n = — 1
and 1 when n = 0.

11.58. Show that nLn^(x) = nL'n^(x) - L'n(x).

11.59. Prove the result (33) on page 245.

11.60. Expand f(x) = xs — Sx2 + 2x in a series of the form

11.61. Illustrate Parseval's identity for Problem 11.60.

11.62. Find the general solution of Laguerre's equation if (a) n = 0, (b) n = 1.

STURM-LIOUVILLE SYSTEMS
11.63. (a) Verify that the system y" + \y - 0, y'(0) = 0, y(l) = 0 is a Sturm-Liouville system.

(b) Find the eigenvalues and eigenfunctions of the system.
(e) Prove that the eigenfunctions are orthogonal and determine the corresponding orthonormal

functions.
11.64. Show how to write (a) Legendre's equation, (b) Hermite's equation, (e) Bessel's equation and

(d) Laguerre's equation in Sturm-Liouville form and discuss the significance.

Answers to Supplementary Problems
11.28. (a) 0 (6) 2/5 (e) 0

11.36.

11.37.

11.38.

11.40. (a) 3(1 -x2) (b) (c) 105*(1 - *2)3/2

11.50. if n — 0, if n - 2, 0 otherwise

11.52. (6)

11.54. (a) (b)

11.55. L4(x) = 24 - 96* + 72*2 - 16*3 + ^4

11.60. 2L0(x) - SL^x) + 6L2(x) - Ls(x)

11.62. (a) (b)

11.63. ^[2m-l]V2, cos(m-%)*x m = l,2,3, ...

11.64. ( a ) (

(&) (d)



Chapter 12

SOME DEFINITIONS INVOLVING PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation is an equation containing an unknown function of two or
more variables and its partial derivatives with respect to these variables.

The order of a partial differential equation is that of the highest ordered derivative
present.

Example 1 . i s a partial differential equation o f order two, o r a second order
partial differential equation.

A solution of a partial differential equation is any function which satisfies the equation
identically.

The general solution is a solution which contains a number of arbitrary independent
functions equal to the order of the equation.

A particular solution is one which can be obtained from the general solution by particu-
lar choice of the arbitrary functions.

Example 2. As seen by substitution, u = x*y - \xyi + F(x) + G(y) is a solution of the partial
differential equation of Example 1. Because it contains two arbitrary independent
functions F(x) and G(y), it is the general solution. If in particular F(x) = 2 sin x,
G(y) = Sj/4 — 5, we obtain the particular solution u = x*y — ̂ xy2 + 2 sin « + Sy* — 5.

A singular solution is one which cannot be obtained from the general solution by par-
ticular choice of the arbitrary functions.

A boundary-value problem involving a partial differential equation seeks all solutions of
a partial differential equation which satisfy conditions called boundary conditions. Theo-
rems relating to the existence and uniqueness of such solutions are called existence and
uniqueness theorems.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS

The general linear partial differential equation of order two in two independent varia-
bles has the form

(*)

where A, B, ..., G may depend on x and y but not on u. A second order equation with
independent variables x and y which does not have the form (1) is called nonlinear.

If G = 0 the equation is called homogeneous, while if G ¥• 0 it is called non-homoge-
neous. Generalizations to higher order equations are easily made.

Because of the nature of the solutions of (1) the equation is often classified as elliptic,
hyperbolic or parabolic according as B2 - 4AC is less than, greater than or equal to zero
respectively.

258
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SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1. Heat Conduction Equation

Here u(x, y, z, t) is the temperature in a solid at position (x, y, z) at time t. The con-
stant K, called the diffusivity, is equal to K/<TT where the thermal conductivity K, the
specific heat <r and the density (mass per unit volume) r are assumed constant.

In case u does not depend on y and z, the equation reduces t o c a l l e d the
one-dimensional heat conduction equation.

2. Vibrating String Equation

This equation is applicable to the small
transverse vibrations of a taut, flexible string,
such as a violin string, initially located on the
x axis and set into motion [see Fig. 12-1]. The
function y(x, t) is the displacement of any point
x of the string at time t. The constant a2 = T/ju,
where T is the (constant) tension in the string
and ti is the (constant) mass per unit length of
the string. It is assumed that no external forces
act on the string but that it vibrates only due Fig. 12-1
to its elasticity.

The equation can easily be generalized to higher dimensions as for example the vi-
brations of a membrane or drum head in two dimensions. In two dimensions, for exam-
ple, the equation is

3. Laplace's Equation

This equation occurs in many fields. In the theory of heat conduction, for example,
v is the steady-state temperature, i.e. the temperature after a long time has elapsed,
and is equivalent to putting du/dt = 0 in the heat conduction equation above. In the
theory of gravitation or electricity v represents the gravitational or electric potential
respectively. For this reason the equation is often called the potential equation.

4. Longitudinal Vibrations of a Beam

This equation describes the motion of a beam [Fig. 12-2] which can vibrate longi-
tudinally [i.e. in the x direction]. The variable u(x, t) is the longitudinal displacement
from the equilibrium position of the cross sec-
tion at x. The constant c2 = gE/r where g is
the acceleration due to gravity, E is the modu-
lus of elasticity [stress divided by strain] and
depends on the properties of the beam, r is the
density [mass per unit volume].

Note that this equation is the same as that
for a vibrating string. Fig. 12-2
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5. Transverse Vibrations of a Beam

This equation describes the motion of a beam [initially located on the x axis, see
Fig. 12-3] which is vibrating transversely (i.e. perpendicular to the x direction). In this
case y(x,t) is the transverse displacement or
deflection at any time t of any point x. The
constant &2 = Elg/p where E is the modulus
of elasticity, / is the moment of inertia of any
cross section about the x axis, g is the acceler-
ation due to gravity and ju is the mass per unit
length. In case an external transverse force
F(x, t) is applied, the right hand side of the
equation is replaced by b2F(x,t)/EI. Fig. 12-3

METHODS OF SOLVING BOUNDARY-VALUE PROBLEMS

There are many methods by which boundary-value problems involving linear partial dif-
ferential equations can be solved. The following are among the most important.

1. General Solutions.

In this method we first find the general solution and then that particular solution
which satisfies the boundary conditions. The following theorems are of fundamental
importance.

Theorem 12-1 [Superposition principle]. If u\, u2, . . . ,«„ are solutions of a linear ho-
mogeneous partial differential equation, then ciUi + c2«2 + • • • + cnun where
ci, c2, ..., cn are constants is also a solution.

Theorem 12-2. The general solution of a linear non-homogeneous partial differential equa-
tion is obtained by adding a particular solution of the non-homogeneous
equation to the general solution of the homogeneous equation.

We can sometimes find general solutions by using the methods of ordinary differen-
tial equations. See Problems 12.8 and 12.9.

If A, B, ..., F in (1) are constants, then the general solution of the homogeneous
equation can be found by assuming that u = eax+t>" where a and & are constants to be
determined. See Problems 12.10-12.13.

2. Separation of Variables.

In this method it is assumed that a solution can be expressed as a product of
unknown functions each of which depends on only one of the independent variables.
The success of the method hinges on being able to write the resulting equation so that
one side depends only on one variable while the other side depends on the remaining
variables so that each side must be a constant. By repetition of this the unknown
functions can then be determined. Superposition of these solutions can then be used to
find the actual solution. See Problems 12.15-12.17.

The method often makes use of Fourier series, Fourier integrals, Bessel series and
Legendre series. For illustrations see Problems 12.18-12.28.
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3. Laplace Transform Methods.
In this method the Laplace transform of the partial differential equation and

associated boundary conditions are first obtained with respect to one of the independent
variables. We then solve the resulting equation for the Laplace transform of the
required solution which is then found by taking the inverse Laplace transform. In
cases where Laplace inversion is of some difficulty the complex inversion formula of
Chapter 14 can be used. For illustrations see Problems 12.29 and 14.15-14.19.

4. Complex Variable Methods. [See Chapter 13.]

Solved Problems

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

12.1. Determine whether each of the following partial differential equations are linear or
nonlinear, state the order of each equation, and name the dependent and independent
variables.

( a ) l i n e a r , order 2 , dep. var. u, ind. var. x , t

( b ) l i n e a r ,  o r d e r  3 ,  d e p .  v a r .  R ,  i n d .  v a r .  x ,  y

( c ) n o n l i n e a r , order 2, dep. var. W, ind. var. r , s , t

( d ) l i n e a r , order 2 , dep. var. <f>, ind. var. x,y,z

(e) nonlinear, order 1, dep. var. z, ind. var. u, v

12.2. Classify each of the following equations as elliptic, hyperbolic or parabolic.

(a)

(b)

(c)

(d)

(e)

Then B2 - 4AC = -4xy.

In the region xy > 0 the equation is elliptic.
In the region xy < 0 the equation is hyperbolic.
If xy = 0, the equation is parabolic.

(A)

(B)

(C)

(D)

(E)
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SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12.3. Show that u(x,t) = e~Kt sin2x is a solution to the boundary-value problem

u(0,t) - u(v,t) = 0, u(x,0) = sin2x

From u(x, t) = e~8t sin 2x we have
u(Q, t) = e~at sin 0 = 0, u(v, t) = e~8« sin 2ir = 0, u(x, 0) = «-° sin 2x = sin 2*

and the boundary conditions are satisfied.

Also

Then substituting into the differential equation, we have
-8e-** sin 2x = 2(-4e-8t sin 2x)

which is an identity.

12.4. (a) Show that v = F(y — Sx), where F is an arbitrary differentiable function, is a
general solution of the equation

(&) Find the particular solution which satisfies the condition v(Q, y) = 4 sin y.
(a) Let y — 3x = u. Then v — F(u) and

Thus

Since the equation is of order one, the solution v = F(u) = F(y — 3#) which involves only
one arbitrary function is a general solution.

(6) v(x, y) - F(y - Zx). Then v(0, y) = F(y) = 4 sin y.

If F(y) = 4 sin y, then v(x, y) — F(y — 3x) = 4 sin (y — Zx) is the required solution.

12.5. (a) Show that y(x, t) = F(2x + 5t) + G(2x - 5t) is a general solution of

(6) Find a particular solution satisfying the conditions
y(Q,t) = y(*,t) = 0, y(x,Q) = sin2x, yt(x,0) = 0

(a) Let 2x + 5t = u, 2x-5t = v. Then y = F(u) + G(v).

(1)

(2)

(3)

(4)
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From (2) and (4), and the equation is satisfied. Since the equation is of
order 2 and the solution involves two arbitrary functions, it is a general solution.

(6) We have from y(x, t) - F(2x + 5t) + G(2x - 5t),

(5)

Also

s o t h a t ( « )

Differentiating (5),

From (6),

Then

from which

i.e.

Using y(0, t) = 0 or Y(n, t) = 0, ct + c2 = 0 so that

y(x> f) = % sin (2x + 5t) + $ sin (2x - 5t) = sin 2x cos 5t

which can be checked as the required solution.

SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS
12.6. If the temperature at any point (x, y, z) of a solid at time t is u(x, y, z, t) and if K, a and

T are respectively the thermal conductivity, specific heat and density of the solid,
assumed constant, show that

where K = Klar

Let V be an arbitrary volume lying within the solid, and let S denote its surface. The total
flux of heat across S, or the quantity of heat leaving S per unit time, is

Thus the quantity of heat entering S per unit time is

(J)

by the divergence theorem. The heat contained in a volume V is given by

Then the time rate of increase of heat is

(2)

Equating the right hand sides of (1) and (2),

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that

or if K, <r, T are constants,

The quantity K is called the diffusivity. For steady-state heat flow (i.e. du/dt = 0 or it is
independent of time) the equation reduces to Laplace's equation V2w = 0.
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12.7. Derive the vibrating string equation on page 259.
Referring to Fig. 12-4 assume that As represents

an element of arc of the string. Since the tension is
assumed constant the net upward vertical force acting
on As is given by

W

Since sin e — tan e approximately for small angles,
this force is

(2) Fig. 12-4

using the fact that the slope is tan e = 8y/dx. By Newton's law this net force is equal to the
52wmass of the string G»As) times the acceleration of As which is given by -gp + « where e-»0 as

As -» 0. Thus we have approximately

(3)

If the vibrations are small then As = Aw approximately so that (3) becomes on division by T A*,

Taking the limit as Ase -» 0 [in which case e -» 0 also], we have

METHODS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12.8. (a) Solve the equation

(6) Find the particular solution for which z(x, 0) = x2, 2(1, y) = cos y.

(a) Write the equation as Then integrating with respect to «, we find

W
where F(y) is arbitrary.

Integrating (1) with respect to y,

(2)
where G(x) is arbitrary.

The result (2) can be written

(S)
which has two arbitrary (essential) functions and is therefore a general solution.

(6) Since z(x, 0) = a;2, we have from (S)

(*)
Thus (5)

Since z(L, y) = cos y, we have from (5)

or (<?)

Thus using (6) in (5) we find the required solution
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12.9. Solve

Write the equation as Integrating with respect to x,

or

This is a linear equation having integrating factor e^(2/od* = e21nt = etat2 = t2. Then

Integrating,
the required general solution.

12.10. Find solutions of

Assume u = ea*+1)». Substituting in the given equation, we find
(a2 + 3a6 + 262)e°*'+t>s = 0 or a2 + Sab + 2&2 = 0

Then (a+ 6)(a + 26) = 0 and a = -6, a = -26. If a = -b, e-
bx+by = e«»-*> is a solution

for any value of b. If a — —26, e-2bx+b» — e^u-2*) is a solution for any value of 6.
Since the equation is linear and homogeneous, sums of these solutions are solutions. For

example, Ze^v-x) _ z^v-xt + §ev<.y-x) js a solution (among many others) and one is thus led to
F(y — x) where F is arbitrary, which can be verified as a solution. Similarly G(y — 2x) where G
is arbitrary is a solution. The general solution found by addition is then given by

12.11. Find a general solution of (a) (b)

 ig a
solution.

Thus u = exF(2y — 3x) is a general solution.

(6) Let M = eax+b!/. Then 4a2-4a6 + 62 = 0 and 6 = 2a, 2a. From this U = e°<*+2»> and so
F(x + 2y) is a solution.

By analogy with repeated roots for ordinary differential equations we might be led to
believe xG(x + 2y) or yG(x + 2y) to be another solution, and that this is in fact true is easy
to verify. Thus the general solution is

M = F(x + 2y) + xG(x + 2y) or u = F(x + 2y) + yG(x + 2y)

12.12. Solve

The homogeneous e q u a t i o n ) has general solution u = F(x + iy) + G(x — iy) by
Problem 12.42(c).

To find a particular solution of the given equation assume u = aezx+u where a is an unknown
constant. This is the method of undetermined coefficients as in ordinary differential equations.
We find a = 2 so that the required general solution is

u = F(x + iy) + G(x-iy) + 2e**+v
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12.13. Solve

The homogeneous equation has general solution
M = F(2x + y) + G(2x-y)

To find a particular solution, we would normally assume M = ae*x+» as in Problem 12.12 but
this assumed solution is already included in F(2x + y). Hence we assume as in ordinary differential
equations that u = axe2x+« (or u = aye2***). Substituting, we find a = J.

Then the general solution is
M = F(2x + y) + G(2x -y) + ±xe**+v

SEPARATION OF VARIABLES
12.14. Solve the boundary-value problem

by the method of separation of variables.
Let u = XY in the given equation. Then

Since X depends only on x and Y depends only on y and since x and y are independent variables,
each side must be a constant, say c.

Then X' - 4eX = 0, Y' - cY = 0 whose solutions are X = Ae*<*, Y = Be<v.
A solution is thus given by

u(x,y) = XY = ABe««*+»> = Ke^*x+^

From the boundary condition,
u(0,y) = Ke<» = 8e~3»

which is possible if and only if K = 8 and c = —3.
Then u(x, y) = 8e~3^4x+V> = %e-i2x-sy is the required solution.

12.15. Solve Problem 12.14 if u(Q,y) = 8e~3y + 4e~s».
As before a solution is Z6c<te+»>.
Then J5T1e<;i<4l+»> and K2e

c^4x+^ are solutions and by the principle of superposition so also is
their sum, i.e. a solution is

u(x,y) = JBT1eci<4*+»> + K2e
ci^x+^

From the boundary condition,
u(0,y) = K^'in + K2e

ci" = 8e~^ + 4e~5»
which is possible if and only if Kl = 8, K2 = 4, cs = —3, c2 = —5.

Then u(x,y) = 8e-3<4*+»> + 4e-5<4*+!'> = Se~12x-to + 4e-*<>x-Zy is the required solution.

12.16. Solve H = 2^, 0 < x < 3, t > 0, given that w(0, t) = u(S, t) = 0,

u(x,Q) = 5sin47ra; - SsinSTra; + 2 sin 1 OTTO;, |«(«,t)| < M
where the last condition states that u is bounded for 0 < x < 3, t > 0.

Let u = XT. Then
XT' = 2X"T and X"/X = T'/2T

Each side must be a constant which we call —X2. [If we use +X2, the resulting solution obtained
does not satisfy the boundedness condition for real values of X.] Then
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with solutions

A solution of the partial differential equation is thus given by
u(x, t) = XT = c^e-^* (At cos X» + Bl sin Xz) = e~2>ft (A cos \x + B sin X*)

Since u(0, t) = 0, e~2)A (A) = 0 or A = 0. Then
u(x,t) = Be-2*?* sinXse

Since u(S, t) = 0, Be~2>?t sin 3X = 0. If B = 0, the solution is identically zero, so we must
have sin 3X = 0 or 3X = mv, X = mv/3 where m = 0, ±1, ±2, .... Thus

is a solution.
Also, by the principle of superposition,

(1)

is a solution.

By the last boundary condition.

This is possible if and only if Bx = 5, m1 = 12, B2 = -S, m2 = 24, Ba = 2,ms = 30.

Substituting these in (1), the required solution is

u(x,t) = 5e-32^« sin4^o; - 3e-i28^« sinSffa; + 2e-2«o>A sinlOa-a; (2)

This boundary-value problem has the following heat flow, interpretation. A bar whose surface
is insulated [Fig. 12-5] has a length of 3 units and a diffusivity of 2 units. If its ends are kept at
temperature zero units and its initial temperature u(x, 0) = 5 sin fax — 3 sin 8vx + 2 sin Wvx,
find the temperature at position x at time t, i.e. find u(x, t). We shall assume that c.g.s. units are
used and that temperature is in degrees centigrade (°C). However, other units could of course be
used.

Fig. 12-5

SOLUTIONS USING FOURIER SERIES

12.17. Find the temperature of the bar in Problem 12.16 if the initial temperature is 25°C.
This problem is identical with Problem 12.16 except that to satisfy the initial condition

u(x, 0) = 25 it is necessary to superimpose an infinite number of solutions, i.e. we must replace
equation (1) of the last problem by

which for t = 0 yields

This amounts to the same thing as expanding 25 in a Fourier sine series. By the methods of
Chapter 7 we then find
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The result can be written

which can be verified as the required solution.
This problem illustrates the importance of Fourier series (and orthogonal series in general) in

solving boundary-value problems.

12.18. Solve the boundary-value problem

This is the same as Problem 12.17 except that the ends of the bar are at temperatures 10°C
and 40°C instead of 0°C. As far as the solution goes this makes quite a difference since we can
no longer conclude that A = 0 and X = mv/3 as in that problem.

To solve the present problem assume that u(x, t) — v(x, t) + $(x) where vK#) is to be suitably
determined. In terms of v(x, t) the boundary-value problem becomes

This can be simplified by choosing

from which we find t(x) — lOa; +10 so that the resulting boundary-value problem is

As in Problem 12.17 we now find from the first three of these,

The last condition yields

from which

Since u(x, t) = v(x, t) + ^(x), we have finally

as the required solution.
The term lOa; +10 is the steady-state temperature, i.e. the temperature after a long time has

elapsed.

12.19. A string of length L is stretched between
points (0,0) and (L,0) on the x axis. At
time t = 0 it has a shape given by f(x),
0 < x < L and it is released from rest.
Find the displacement of the string at any
later time.

The equation of the vibrating string is

where y(x, t) = displacement from x axis at time t
[Fig. 12-6]. Fig.12_6
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Since the ends of the string are fixed at x = 0 and x = L,

y(0,t) = y(L,t) = 0 t >0

Since the initial shape of the string is given by f(x),

y(x,Q) = f(x) Q<x<L

Since the initial velocity of the string is zero,

yt(x, 0) = 0 0<x<L

To solve this boundary-value problem, let y — XT as usual.

Then XT" = a?X"T or T"/a?T - X"IX

Calling the separation constant —X2, we have

T" + X%2r = 0, X" + \2X = 0

and T = A! sin Xot + B^ cos \at, X = A2 sin Xa; + Bz cos X*

A solution is thus given by

y(x, t) = XT — (A2 sin \x + B2 cos \x)(A1 sin Xat + Bl cos Xat)

From j/(0, t) = 0, A2 = 0, Then

y(x, t) — B2 sin Xa:(Aj sin Xat + Bl cos Xat) = sin \x(A sin Xat + B cos Xat)

From y(L, t) = 0, we have sin \L(A sin Xat + B cos Xat) = 0

so that sin XL = 0, XL = ma- or X = mv/L since the second factor must not be equal to zero. Now

yt(x, t) = sin \x(A\a cos Xat — B\a sin Xat)

and yt(x,0) = (sin\x)(A\a) = 0 from which A = 0. Thus

To satisfy the condition y(x, 0) = f(x), it will be necessary to superimpose solutions. This
yields

Then

and from the theory of Fourier series,

The result is

which can be verified as the solution.
The terms in this series represent the natural or normal modes of vibration. The frequency of

the mth normal mode fm is obtained from the term involving cos miLa and is given by
Li

Since all the frequencies are integer multiples of the lowest frequency flt the vibrations of the
string will yield a musical tone as in the case of a violin or piano string.
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12.20. A circular plate of unit radius, whose faces are
insulated, has half of its boundary kept at constant
temperature Ui and the other half at constant tem-
perature «2 [see Fig. 12-7]. Find the steady-state
temperature of the plate.

In polar coordinates (p, <f>) the partial differential equa-
tion for steady-state heat flow is

W
Fig. 12-7

The boundary conditions are

(2)

i.e. M is bounded in the region (3)

Let u(P,<t>) = P# where P is a function of p and * is a function of </>. Then equation (1)
becomes

Dividing by P*, multiplying by p2 and rearranging terms,

Setting each side equal to X2,

which have solutions

[See Problem 3.70(a), page 94.]

Since u(p, #) must have period 2ir in <f>, we must have X = m = 0,1,2,3

Also, since « must be bounded at p = 0, we must have B2 = 0. Thus

By superposition, a solution is

from which

Then from the theory of Fourier series,
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Then

by Problem 12.52.

SOLUTIONS USING FOURIER INTEGRALS
12.21. A semi-infinite thin bar x ^ 0 whose surface is insulated has an initial temperature

equal to f(x). A temperature of zero is suddenly applied to the end x = 0 and
maintained, (a) Set up the boundary-value problem for the temperature u(x,t) at
any point x at time t. (b) Show that

(a) The boundary-value problem is
(1)

«(*,0) = /(*), u(0,t) = 0, \u(x,t)\<M (2)

where the last condition is used since the temperature must be bounded for physical reasons.

(6) A solution of (1) obtained by separation of variables is
u(x, t) = e-Ktft (A cos \x + B sin X*)

From the second of boundary conditions (2) we find .4 = 0 so that

u(x,t) = Be-^sinX* (3)

Now since there is no restriction on X we can replace B in ($) by a function B(\) and still have
a solution. Furthermore we can integrate over X from 0 to °° and still have a solution. This
is the analog of the superposition theorem for discrete values of X used in connection with
Fourier series. We thus arrive at the possible solution

(4)

From the first of boundary conditions (2) we find

which is an integral equation for the determination of B(\). From page 201 we see that since
f(x) must be an odd function we have

Using this in (4) we find

12.22. Show that the result of Problem 12.21 can be written

Using sin \v sin X* = |[cos X(i> - x) — cos X(i> + *)] the result of Problem 12.21 can be
written
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From the integral

[see Problem 9.9, page 215] we find

Letting (v — x)/2^ici = w in the first integral and (v + a;)/2\/Kt = w in the second integral,
we find that

12.23. In case the initial temperature f(x) in Problem 12.21 is the constant Uo, show that

where erf (x/2}/Kt ) is the error function [see page 212].
If f(x) = M0, we obtain from Problem 12.22

SOLUTIONS USING BESSEL FUNCTIONS

12.24. A circular plate of unit radius [as in Fig. 12-7, page 270] has its plane faces insulated.
If the initial temperature is F(p) and if the rim is kept at temperature zero, find the
temperature of the plate at any time.

Since the temperature is independent of <f>, the boundary value problem for determining
u(p, t) is

(1)

u(l,t) = 0, u(P,Q) = F(P), \u(P,t)\ < M

Let u = P(p)T(t) = PT in equation (1). Then

or dividing by KPT,

from which

These have general solutions [see Chapter 10]

T = Cle-^t> P = A,J0(\P) + B1F0(XP)

Since M = PT is bounded at p = 0, B^ = 0. Then

where A = AjCj.
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From the first boundary condition,
u(l,t) = Ae-^t J0(X) = 0

from which J0(X) = 0 and X = X1,X2, ... are the positive roots.
Thus a solution is

m = 1,2,3, ...

By superposition, a solution is

From the second boundary condition,

Then by the methods of Chapter 10,

and so (2)

which can be established as the required solution.
Note that this solution also gives the temperature of an infinitely long solid cylinder whose

convex surface is kept at temperature zero and whose initial temperature is F(p).

12.25. A drum consists of a stretched circular membrane of unit radius whose rim rep-
resented by the circle of Fig. 12-7, page 270, is fixed. If the membrane is struck so
that its initial displacement is F(p,<t>) and is then released, find the displacement at
any time.

The boundary-value problem for the displacement z(p, <f>, t) from the equilibrium or rest position
(the xy plane) is

2(1, <f,,t) = 0, z(p,0,0) = 0, zt(p,<t>,0) = 0, z(p,>,0) = F(p,<t>)

Let z = P(P) *(0) T(t) = P4>r. Then

Dividing by a2P*r,

a n d s o ( i )

(*)

Multiplying equation (2) by p2, the variables can be separated to yield

s o t h a t ( # )

(4)

General solutions of (1), (5) and (4) are

(5)

(6)

(7)
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A solution z(p, <t>, t) is given by the product of these.
Since z must have period 2ir in the variable <j>, we must have /i = m where m = 0,1,2,3, ...

from equation (6).

Also, since z is bounded at p = 0 we must take B3 = 0.
Furthermore, to satisfy zt(p, <j>, 0) = 0 we must choose BI — 0.
Then a solution is

u(p, <f>, t) = Jm(\p) cos \at (A cos m</> + B sin m<j>)

Since z(l,<j>, t) - 0, Jm(X) = 0 so that X = X^, fc = 1,2,3, ..., are the positive roots.
By superposition (summing over both m and k),

(8)

Putting t = 0, we have

(9)

where
a<?)

But (9) is simply a Fourier series and we can determine Cm and Dm by the usual methods.
We find

From (10), using the results of Bessel series expansions, we have

Using these values of Amk and Bmk in (5) yields the required solution.

Note that the various modes of vibration of the drum are obtained by specifying particular
values of m and k. The frequency of vibration is then given by

Because these are not integer multiples of the lowest frequency, we would expect noise rather
than a musical tone.
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SOLUTIONS USING LEGENDRE FUNCTIONS

12.26. Find solutions to Laplace's equation in spherical coordinates which are independent
of 0.

Laplace's equation V2i> = 0 in spherical coordinates if there is no 0 dependence can be written

(1)

Let v = R(r) 6(0) = R® in (1). Then after dividing by RQ, the equation becomes separable
as follows

and we find(#)

W

Equation (1) can be written (4)

a Cauchy equation [see Problem 3.70(e), page 94] having solution

(5)

where we have placed n — —^ + VJ—~X* so that X2 = — n(n + 1).

Equation (S) with X2 = — n(n + 1) can be written

•j-(sme^) + w(n + l)sin«e = 0 (6)ctff \ do j

Now if we let cos 9 = x, then

so that

Then (6) becomes

or (7>)

which is Legendre's differential equation having solution

(*)
[see Chapter 11]. Thus the solution of (6) is

(9)

Using (5) and (8) or (9), we then see that a solution of (1) is

(10)
where x = cos e.



276 PARTIAL DIFFERENTIAL EQUATIONS [CHAP. 12

12.27. Find the potential v (a) interior to and (b) exterior to a hollow sphere of unit
radius if half of its surface is charged to potential v0 and the other half to potential
zero.

Choose the sphere in the position shown in Fig.
12-8. Then v is independent of <f> and we can use the
results of Problem 12.26. A solution is

where x = cos 6. Since v must be bounded at e = 0
and IT, i.e. x = ±1, we must choose B2 = 0. Then

The boundary conditions are

and v is bounded. Fig. 12-8

(a) Interior Potential, 0 S r < 1.

Since v is bounded at r = 0, choose B = 0. Then a solution is

By superposition,

When r = 1,

Then as in Problem 8.16,

from which

A0 = $v0, AI = |-w0, Az = 0, A3 = -T\v0. 44 = 0, A5 = I|v0

Thus V(r,e) = Y.[! + frP^cosff) - |r3P3(cos») + flP5(cos«) + • • • ]

(6) Exterior Potential, 1 < r < ».

Since v is bounded as r-*<*>, choose A = 0. Then a solution is

By superposition,

When r = 1,

Then Bn = An of part (a) and so
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SOLUTIONS USING LAPLACE TRANSFORMS

12.28. Solve by Laplace transforms the boundary-value problem

u(Q, t) = 0, u(B, t) = 0, u(x, 0) = 10 sin 2irX — 6 sin 4-n-x

Taking the Laplace transform of the given differential equation with respect to t, we have

which can be written as

or (1)

where

Using the given condition u(x, 0) = 10 sin 2irx — 6 sin 4vx, (1) becomes

(*)

Taking the Laplace transform of the conditions U(0, t) = 0, 17(3, t) = 0, we have

or (S)

Solving the ordinary differential equation (2) subject to conditions (8) by the usual elementary
methods, we find

Thus taking the inverse Laplace transform we find

which is the required solution.
Note that theoretically we could have taken the Laplace transform of the given differential

equation with respect to * rather than t. However, this would lead to various difficulties as is
evident upon carrying out the procedure. In practice we take Laplace transforms with respect
to the various independent variables and then choose that variable which leads to the greatest
simplification.

Supplementary Problems
CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

12.29. Determine whether each of the following partial differential equations is linear or nonlinear, state
the order of each equation, and name the dependent and independent variables.

( a ) ( c ) ( e )

(6) (d)
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12.30. Classify each of the following equations as elliptic, hyperbolic or parabolic.

( a ) ( d )

( b ) ( e )

(c)

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12.31. Show that z(x,y) = 4e~3x cosSy is a solution to the boundary-value problem

12.32. (a) Show that v(x, y) — xF(2x + y) is a general solution of
(6) Find a particular solution satisfying v(i, y) = j/2.

12.33. Find a partial differential equation having general solution u = F(x — 3j/) + G(2x + y).

12.34. Find a partial differential equation having general solution
(a) z = e*f(2y-3x), (b) z = f(2x + y) + g(x-2y)

SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS
12.35. If a taut, horizontal string with fixed ends vibrates in a vertical plane under the influence of

gravity, show that its equation is .2 ,2
a! = "'a**-*

where g is the acceleration due to gravity.

12.36. A thin bar located on the x axis has its ends at x = 0 and x = L. The initial temperature of the
bar is f(x), 0 < x < L, and the ends x = 0, x = L are maintained at constant temperatures TI, Tz

respectively. Assuming the surrounding medium is at temperature U0 and that Newton's law of
cooling applies, show that the partial differential equation for the temperature of the bar at any
point at any time is given by

and write the corresponding boundary conditions.

12.37. Write the boundary conditions in Problem 12.36 if the ends x = 0 and x = L are insulated.

12.38. The gravitational potential v at any point (x, y, z) outside of a mass ra located at the point (X, Y, Z)
is defined as the mass m divided by the distance of the point (x, y, z) from (X, Y, Z). Show that
v satisfies Laplace's equation V2v = 0.

12.39. Work Problem 12.38 for a solid.

12.40. Assuming that the tension of a vibrating string is variable, show that its equation is

METHODS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12.41. (a) Solve * ~- + ̂ - = 0. (6) Find the particular solution for which
dx dy dy

z(x,0) - x* + x, 2(2, y) = 3y*
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12.42. Find general solutions of each of the following.

(o)

12.43. Find general solutions of each of the following.

(6) (d)

12.44. Solve

12.45. Show that the general solution of

SEPARATION OF VARIABLES
12.46. Solve each of the following boundary-value problems by the method of separation of variables.

( a ) 0 , u(x, 0 ) = 40-*

( b ) , u(x, 0 ) = Ze~5x + 2e-3*

( c ) z t ( 0 , t) = 0, u(v, t) = 0, u(x, 0) = 2 sin Zx — 4 sin 5x

(d) ux(0,t) = 0, u(2,t) = 0, w(*,0) = 8cos^-6cos^

12.47. Solve the boundary-value problem

y(0,t) = y(5,t) - 0, y(x,0) = 0, yt(x,Q) = /(»)

if (a) f(x) — 5 sin wx, (b) f(x) = 3 sin Zvx — 2 sin 5irx.

SOLUTIONS USING FOURIER SERIES
12.48. (a) Solve the boundary-value problem

«(0,t) = M(4,<) = 0, M(*,0) - 25«

where 0 < x < 4, t > 0.

(6) Interpret physically the boundary-value problem in (a).

12.49. (a) Show that the solution of the boundary-value problem

ux(0, t) = ux(ir,t) - 0, u(x,Q) - f(x)

where 0 < x < ir, t>0 is given by

(b) Interpret physically the boundary-value problem in (a).

( B )

( A )

( A ) ( E )
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12.50. Find the steady-state temperature in a bar whose ends are located at x = 0 and x = 10 if these
ends are kept at 150°C and 100°C respectively.

12.51. A circular plate of unit radius [see Fig. 12-7, page 270] whose faces are insulated has its boundary
kept at temperature 120 + 60 cos 20. Find the steady-state temperature of the plate.

12.52. Show that
\ *

and thus complete Problem 12.20.

12.53. A string 2 ft long is stretched between two fixed points * = 0 and x = 2. If the displacement
of the string from the x axis at t = 0 is given by f(x) = .03#(2 - *) and if the initial velocity
is zero, find the displacement at any later time.

12.54. A square plate of side a has one side maintained at temperature /(») and the others at zero, as
indicated in Fig. 12-9. Show that the steady-state temperature at any point of the plate is
given by

Obtain the result for f(x) = u0, a constant.

12.55. Work Problem 12.54 if the sides are maintained at temperatures fi(x),gi(y),fz(x),gz(y) respectively.
[Hint. Use the principle of superposition and the result of Problem 12.54.]

Fig. 12-9 Fig. 12-10

12.56. An infinitely long plate of width a indicated by the shaded region of Fig. 12-10 has its two
parallel sides maintained at temperature 0 and its other side at constant temperature u0. (a) Show
that the steady-state temperature is given by

(6) Use Problem 12.52 to show that

12.57. Solve Problem 12.35 if the string has its ends fixed at x — 0 and x = I and if its initial displace-
ment and velocity are given by f(x) and g(x) respectively.

12.58. A square plate [Fig. 12-10] having sides of unit length has
its edges fixed in the xy plane and is set into transverse
vibration.
(a) Show that the transverse displacement z(x, y, t) of any

point (x, y) at time t is given by

I

where a2 is a constant.
(6) Show that if the plate is given an initial shape f ( x , y )

arid released with velocity g(x,y), then the displacement
is given by Fig. 12-11
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where

and \mn =

12.59. Show that the natural frequencies for the plate of Problem 12.57 are given by fmn = a^m2 + n2/2ir.
Would you expect to get a musical tone from the vibration? Explain.

12.60. A beam has its ends hinged at x = 0 and x ' = I. At time * = 0, a concentrated transverse load
of constant magnitude w is suddenly applied at the midpoint. Show that the resulting transverse
displacement of any point x of the beam at any time t > 0 is

if 0 < x < 1/2, while the corresponding result for 1/2 < x < I is obtained by symmetry.

12.61. Solve the boundary-value problem

u(0,t) = ult u(l,t) = u2, u(x,0) = 0

where a and I are constants, and interpret physically.

12.62. Show that the solution of the boundary-value problem

ux(0,t) = hu(0,t), ux(l,t) = -hu(l,t), u(x,0) = /(*)

where k, h and I are constants is

where Xn are solutions of the equation Give a physical interpretation.

SOLUTIONS USING FOURIER INTEGRALS

12.63. An infinite thin bar (— °° < x < «>) whose surface is insulated has an initial temperature equal to
f(x). Show that the temperature at any point x at any time t is given by

12.64. If f(x)-u0 in Problem 12.63, show that u(x,t) = Uoert&fti/ki) and explain the connection
with Problem 12.23.

12.65. Solve the boundary-value problem

showing that u(x, y)

and give a physical interpretation.
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12.66. Show that if in Problem 12.65, then

12.67. The region bounded by x > 0, y > 0 has one edge * = 0 kept at potential zero and the other
edge y = 0 kept at potential /(*). (a) Show that the potential at any point (*, y) is given by

(6) If /(«) = !, show that v(x,y) = -tan-i-.
H Jf

SOLUTIONS USING BESSEL FUNCTIONS
12.68. The temperature of a long solid circular cylinder of unit radius is initially zero. At t = 0 the

surface is given a constant temperature u0 which is then maintained. Show that the temperature
of the cylinder is given by

where \n, n = 1,2,3, ... , are the positive roots of J0(X) = 0 and fe is the diffusivity.

12.69. Show that if F(p) — w0(l — p2), then the temperature of the cylinder of Problem 12.23 is given by

12.70. A cylinder 0 < p < a, 0 < z < I has the end z = 0 at temperature /(p) while the other surfaces
are kept at temperature zero. Show that the steady-state temperature at any point is given by

where J0(\na) = 0, n = 1,2,3,... .

12.71. A circular membrane of unit radius lies in the xy plane with its center at the origin. Its edge
p = 1 is fixed in the xy plane and it is set into vibration by displacing it an amount /(p) and then
releasing it. Show that the displacement is given by

where Xn are the roots of J0(\) = 0.

12.72. (a) Solve the boundary-value problem

where 0 < p < 1, 0 < <f> < 2v, t > 0 if u is bounded, and
«(1, <&, t) = 0, u(p, 0,0) = p cos 30, ut(p, 0,0) = 0

(6) Give a physical interpretation to the solution.

12.73. Solve the boundary-value problem

given that y(x, 0) = /(*), yt(x, 0) = 0, y(l, t) = 0 and y(x, t) is bounded for 0 &x SI, t> 0.
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12.74. A chain of constant mass per unit length and length I is suspended
vertically from one end 0 as indicated in Fig. 12-12. If the chain
is displaced slightly at time t = 0 so that its shape is given by
/(*), 0 < x < I, and then released, show that the displacement of
any point x at time t is given by

where \n are the roots of J0(2\\/l/g) = 0 and

Fig. 12-12

12.75. Determine the frequencies of the normal modes and indicate whether you would expect music or
noise from the vibrations.

12.76. A solid circular cylinder 0 < p < a , 0 < z < I has its bases kept at temperature zero and the
convex surface at constant temperature u0. Show that the steady-state temperature at any point
of the cylinder is

where /0 is the modified Bessel function of order zero.

12.77. A membrane in the form of a circular ring a S p ̂  b is set into vibration. Show that the
frequencies of the various modes of vibration are given by

where T is the tension per unit length, a is the mass per unit area, and Xmn are roots of the
equation

12.78. Explain how you would determine the displacement of the membrane in Problem 12.77.

12.79. The surface p = 1 of an infinite cylinder is kept at temperature f(z). Show that the steady-state
temperature everywhere in the cylinder is given by

SOLUTIONS USING LEGENDRE FUNCTIONS
12.80. Find the potential i) (a) interior and (6) exterior to a hollow sphere of unit radius with center at

the origin if the surface is charged to potential v0(l + 3 cos e) where v0 is constant.

12.81. Solve Problem 12.80 if the surface potential is 1*0 sin2 e.

12.82. Find the steady-state temperature within the region bounded by two concentric spheres of radius
a and 2a if the temperatures of the outer and inner spheres are u0 and 0 respectively.

12.83. Find the gravitational potential at any point outside a solid uniform sphere of radius a of mass m.

12.84. Is there a solution to Problem 12.82, if the point is inside the sphere? Explain.

12.85. Find the potential at any point due to a thin circular ring of radius a and mass m lying in the
xy plane with center at the origin. [Hint. First find the potential at any point on the axis.]

12.86. Work Problem 12.85 for a solid circular disc.

12.87. Show that a solution of Laplace's equation V2t> = 0 in spherical coordinates is given by

where P™ and Q™ are the associated Legendre functions.
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SOLUTIONS USING LAPLACE TRANSFORMS
12.88. Solve each of the following boundary-value problems by using Laplace transforms.

( a ) u ( x , 0 ) = 4e~2*

( 6 ) ,  u ( x , 0 )  =  1 0 e - *  -  6 e - 4 *

( e ) u ( Q , t) = 0, «(4, t) = 0, u(x, 0) = 6 sin (vxlZ) + 3 sin

(d) u

12.89. Work (a) Problem 12.46(d), (b) Problem 12.47, by use of Laplace transforms.

12.90. Show how you would attempt to solve Problem 12.17 by Laplace transforms. Explain what dif-
ficulties arise. [Problems of this type can best be solved by using the methods of Chapter 14.]

Answers to Supplementary Problems
12.29. (a) linear, dep. var. u, ind. var. x, y, order 2 (d) linear, dep. var. y, ind. var. x, t, order 2

(b) linear, dep. var. T, ind. var. x, y, z, order 4 (e) nonlinear, dep. var. z. ind. var. r, s, order 1
(c) nonlinear, dep. var. <j>, ind. var. x, y, order 3

12.30. (a) hyperbolic (b) hyperbolic (c) elliptic (d) parabolic
(e) elliptic if x2 + y2 < 1, hyperbolic if a;2 + y2 > 1, parabolic if x2 + y2 = 1

12.32. (6) x(Zx + y - 2)2

12.33.

12.34. (a) (b)

12.37. ux(0,t) = 0, ux(L,t) = 0

12.41. (a) xz = F(x) + G(y) (b) xz = x6 + x2 + Gj/4 - 68

12.42. (a) u = F(x + y) + G(x - y) (d) z = F(Bx + y) + G(y - x)
(b) u = eSzĵ  _ 2x) (e) z = F(x + y) + xG(x + y)

(c) u - F(x + iy) + G(x - iy)

12.43. (a) u = F(y - Zx) + ̂  (c)
Z

(6) y = F(x-t) + G(x + t)-t* (d)

12.44. u = F(x + iy) + G(x - iy) + xH(x + iy) + xJ(x - iy) + 4(x* + y2)*

12.46. (a)
(b)

(c)

(d)
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12.47. (a) (b) :

12.48. (a)

12.50. 150 - 5x

12.51.

1253.

12.72. where are the positive roots of Jg(\) = 0 and

12.73.

12.80. (a)

12.81. (a)

12.82.

12.83. m/r where r > a is the distance from the center of the sphere

if r < a
12.85.

if r > a

if r > a

12.88. (a) u = 4e-2*-»»
(b) u - lOe-x-M - 6e-4x-6t

(c) u = 6e~"*v* sin (n-a/2) + 3e~^« sin vx

(d) u = 46-T2' cos w* — 2e-9jr2t/4 cos3ir»

1 2 . 8 6 i f  r  >  a



Chapter 13

Complex Variables
and Confer ma I Mapping

FUNCTIONS

If to each of a set of complex numbers which a variable z may assume there corre-
sponds one or more values of a variable w, then w is called a function of the complex
variable z, written w = /(z). The fundamental operations with complex numbers have
already been considered in Chapter 1.

A function is single-valued if for each value of z there corresponds only one value of w,
otherwise it is multiple-valued or many-valued. In general we can write w = f(z) =
u(x, y) + iv(x, y), where u and v are real functions of x and y.

Example 1. w = z2 = (x + iy)* - x2 - y2 + 2ixy = u + iv so that u(x, y) = x2 — yz, v(x, y) - Zxy.
These are called the real and imaginary parts of w = *2 respectively.

Unless otherwise specified we shall assume that f(z) is single-valued. A function
which is multiple-valued can be considered as a collection of single-valued functions.

LIMITS AND CONTINUITY

Definitions of limits and continuity for functions of a complex variable are analogous
to those for a real variable. Thus f(z) is said to have the limit I as z approaches za if,
given any « > 0, there exists a 8 > 0 such that \f(z) -l\<c whenever 0 < \z - z»| < 8.

Similarly, f(z) is said to be continuous at z0 if, given any e > 0, there exists a 8 > 0
such that whenever Alternatively, f(z) is continuous at z0 if

DERIVATIVES

If f(z) is single-valued in some region of the z plane the derivative of f(z), denoted by
f'(z), is defined as

W

provided the limit exists independent of the manner in which Az -» 0. If the limit (1)
exists for z = z0, then f(z) is called analytic at Zo. If the limit exists for all z in a region <5£,
then /(z) is called analytic in ̂  In order to be analytic, /(z) must be single-valued and
continuous. The converse, however, is not necessarily true.

We define elementary functions of a complex variable by a natural extension of the
corresponding functions of a real variable. Where series expansions for real functions
f(x) exist, we can use as definition the series with x replaced by z.

Example 2. We define

From these we can show that ez = ex+i>> = ex(eos y + i sin y),
as well as numerous other relations.

286
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Example 3. We define ab as eblno even when a and b are complex numbers. Since e2klrf = 1,
it follows that <?** = eK4>+ZM an<j we define In« = In (pe**) = In p + i(<f> + 2kv).
Thus In z is a many-valued function. The various single-valued functions of which
this many-valued function is composed are called its branches.

Rules for differentiating functions of a complex variable are much the same as for
those of real variables. Thus etc.

CAUCHY-RIEMANN EQUATIONS

A necessary condition that w = f(z) = u(x, y) + iv(x, y) be analytic in a region <K
is that u and v satisfy the Cauchy-Riemann equations

(2)

(see Problem 13.7). If the partial derivatives in (2) are continuous in <R, the equations are
sufficient conditions that f(z) be analytic in <^.

If the second derivatives of u and v with respect to x and y exist and are continuous,
we find by differentiating (2) that

(3)

Thus the real and imaginary parts satisfy Laplace's equation in two dimensions. Functions
satisfying Laplace's equation are called harmonic functions.

INTEGRALS

If f(z) is defined, single-valued and continuous in a region ^ we define the integral
of f(z) along some path C in ̂  from point Zi to point zz, where Zi — Xi + iyi, z2 = xz + iy%, as

with this definition the integral of a function of a complex variable can be made to
depend on line integrals for real functions already considered in Chapter 6. An alterna-
tive definition based on the limit of a sum, as for functions of a real variable, can also
be formulated and turns out to be equivalent to the one above.

The rules for complex integration are similar to those for real integrals. An important
result is

(-4)

where M is an upper bound of |/(z)| on C, i.e. |/(z)| ̂  M, and L is the length of the path C.

CAUCHY'S THEOREM

Let C be a simple closed curve. If /(z) is analytic within the region bounded by C
as well as on C, then we have Cauchy's theorem that

(5)

where the second integral emphasizes the fact that C is a simple closed curve.
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Expressed in another way, (5) is equivalent to the statement t h a t h a s a
value independent of the path joining Zi and z2. Such integrals can be evaluated as
F(zz) - F(ZI) where F'(z) = f(z). These results are similar to corresponding results for
line integrals developed in Chapter 6.

Example 4. Since f(z) = Zz is analytic everywhere, we have for any simple closed curve C

Also,

CAUCHY'S INTEGRAL FORMULAS

If f(z) is analytic within and on a simple closed curve C and a is any point interior
to C, then

(«)

where C is traversed in the positive (counterclockwise) sense.
Also, the %th derivative of f(z) at z = a is given by

(7)

These are called Cauchy's integral formulas. They are quite remarkable because
they show that if the function f(z) is known on the closed curve C then it is also known
within C, and the various derivatives at points within C can be calculated. Thus if a
function of a complex variable has a first derivative, it has all higher derivatives as well.
This of course is not necessarily true for functions of real variables.

TAYLOR'S SERIES

Let f(z) be analytic inside and on a circle having its center at z = a. Then for all
points z in the circle we have the Taylor series representation of f(z) given by

(*)

See Problem 13.21.

SINGULAR POINTS

A singular point of a function f(z) is a value of z at which f(z) fails to be analytic.
If f(z) is analytic everywhere in some region except at an interior point z = a, we call
z = a an isolated singularity of f(z).

Example 5. If then z = 3 is an isolated singularity of /(«).

POLES

If where <f>(z) is analytic everywhere in a region including
z = a, and if n is a positive integer, then f(z) has an isolated singularity at z = a which is
called a pole of order n. If n = 1, the pole is often called a simple pole; if n = 2 it is
called a double pole, etc.
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Example 6. has two singularities: a pole of order 2 or double pole at
2 = 3, and a pole of order 1 or simple pole at z = —1.

Example 7. has two simple poles at z = ±2i.

A function can have other types of singularities besides poles. For example,
has a branch point at z = 0 (see Problem 13.36). The f u n c t i o n h a s a singularity

Ql fl 4J

at z = 0. However, due to the fact that lim —^— is finite, we call such a singularity a
removable singularity. z~*

LAURENT'S SERIES
If /(z) has a pole of order n at z = a but is analytic at every other point inside and

on a circle C with center at a, then (z -a)nf(z) is analytic at all points inside and on C
and has a Taylor series about z = a so that

(9)

This is called a Laurent series for f(z). The part a0 + ai(z — a) + Oz(z — a)2 + • • • is called
the analytic part, while the remainder consisting of inverse powers of z — a is called the

00

principal part. More generally, we refer to the series 2 a*(z ~~ a)k as a Laurent series
fc=-oo

where the terms with k < 0 constitute the principal part. A function which is analytic
in a region bounded by two concentric circles having center at z = a can always be
expanded into such a Laurent series (see Problem 13.82).

It is possible to define various types of singularities of a function f(z) from its Laurent
series. For example, when the principal part of a Laurent series has a finite number of
terms and a-n¥= 0 while a-n-i, a-n-z, ... are all zero, then z = a is a pole of order n.
If the principal part has infinitely many terms, z = a is called an essential singularity or
sometimes a pole of infinite order.

Example 8. The function has an essential singularity at « = 0.

RESIDUES
The coefficients in (9) can be obtained in the customary manner by writing the coeffi-

cients for the Taylor series corresponding to (z — a)nf(z). In further developments, the
coefficient a-i, called the residue of /(z) at the pole z = a, is of considerable importance.
It can be found from the formula

(10)

where n is the order of the pole. For simple poles the calculation of the residue is of
particular simplicity since it reduces to

(11)

RESIDUE THEOREM
If /(z) is analytic in a region <R except for a pole of order n at z = a and if C is any

simple closed curve in <3{. containing z = a, then /(z) has the form (9). Integrating (9),
using the fact that
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(12)

(see Problem 13.13), it follows that

(IS)

i.e. the integral of f(z) around a closed path enclosing a single pole of f(z) is 2?rt times
the residue at the pole.

More generally, we have the following important

Theorem 13.1. If f(z) is analytic within and on the boundary C of a region "K except at a
finite number of poles a, b, c, ... within "2 ,̂ having residues a-i, 6-1, c-i, ...
respectively, then

(**)

i.e. the integral of f(z) is 2id times the sum of the residues of f(z) at the
poles enclosed by C.

Cauchy's theorem and integral formulas are special cases of this result which we call the
residue theorem.

EVALUATION OF DEFINITE INTEGRALS

The evaluation of various definite integrals can often be achieved by using the residue
theorem together with a suitable function f(z) and a suitable path or contour C, the choice
of which may require great ingenuity. The following types are most common in practice.

1. is an even function.

Consider <P F(z)dz along a contour C consisting of the line along the x axisJc
from — R to +R and the semi-circle above the x axis having this line as diameter.
Then let R^<*>. See Problems 13.29, 13.30.

2. G is a rational function of sin 0 and cos 0.

Let z = eie Then and dz^ieied0 or do =

dz/iz. The given integral is equivalent to <l> F(z)dz where C is the unit circle
Jc

with center at the origin. See Problems 13.31, 13.32.

3. is a rational function.

Here we c o n s i d e r : where C is the same contour as that in Type 1.
See Problem 13.34.

4. Miscellaneous integrals involving particular contours. See Problems 13.35, 13.37.
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CONFORMAL MAPPING
The analytic function w - f(z) = u(x, y) + iv(x, y) defines a transformation u - u(x, y),

v — v(x, y) which establishes a correspondence between points of the uv and xy planes.
Suppose that under this transformation point (xo,y<>) of the xy plane is mapped into

point (u0, v0) of the uv plane [see Figs. 13-1 and 13-2] while curves Ci and C2 [intersecting
at (x0,yo)] are mapped respectively into curves C{ and C2' [intersecting at (UO,VQ)]. Then if
the transformation is such that the angle at (xo,y0) between Ci and C2 is equal to the
angle at (uo,v<>) between Ci and C2' both in magnitude and sense, the transformation or
mapping is said to be conformal at (x0, yo). A mapping which preserves the magnitudes
of angles but not necessarily the sense is called isogonal.

Fig. 13-1 Fig. 13-2

The following theorem is fundamental.
Theorem 13.2. If f(z) is analytic and f'(z) ¥= 0 in a region <K, then the mapping w = f(z)

is conformal at all points of "2 .̂
For conformal mappings or transformations, small figures in the neighborhood of a

point zo in the z plane map into similar small figures in the w plane and are magnified
[or reduced] by an amount given approximately by |/'(zo)|2, called the area magnification
factor or simply magnification factor. Short distances in the z plane in the neighborhood
of z0 are magnified [or reduced] in the w plane by an amount given approximately by
|/'(z0)|, called the linear magnification factor. Large figures in the z plane usually map
into figures in the w plane which are far from similar.

RIEMANN'S MAPPING THEOREM
Let C [Fig. 13-3] be a simple closed curve in the z plane forming the boundary of a

region •?(. Let C" [Fig. 13-4] be a circle of radius one and center at the origin [the unit circle]
forming the boundary of region 9 '̂ in the w plane. The region It? is sometimes called
the unit disk. Then Riemann's mapping theorem states that there exists a function
w = f(z), analytic in ^, which maps each point of "̂  into a corresponding point of "5 '̂ and
each point of C into a corresponding point of C', the correspondence being one to one.

Fig. 13-3 Fig. 13-4



292 COMPLEX VARIABLES AND CONFORMAL MAPPING [CHAP. 13

This function f(z) contains three arbitrary real constants which can be determined
by making the center of C' correspond to some given point in <2^ while some point on C'
corresponds to a given point on C. It should be noted that while Riemann's mapping
theorem demonstrates the existence of a mapping function, it does not actually produce
this function.

It is possible to extend Riemann's mapping theorem to the case where a region bounded
by two simple closed curves, one inside the other, is mapped into a region bounded by
two concentric circles.

SOME GENERAL TRANSFORMATIONS
In the following a, ft are given complex constants while a, Go are real constants.
1. Translation. w = z + $

By this transformation, figures in the z plane are displaced or translated in
the direction of vector /?.

2. Rotation. w = ew<>z
By this transformation, figures in the z plane are rotated through an angle 0o.

If 0o > 0 the rotation is counterclockwise, while if 0o < 0 the rotation is clockwise.

3. Stretching. w = az
By this transformation, figures in the z plane are stretched (or contracted)

in the direction z if a > 1 (or 0 < a < 1). We consider contraction as a special
case of stretching.

4. Inversion. w = 1/z

5. Linear Transformation. w = az + ft
This is a combination of the transformations of translation, rotation and

stretching.

6. Bilinear or Fractional Transformation.

This is a combination of the transformations of translation, rotation, stretching
and inversion.

MAPPING OF A HALF PLANE ON TO A CIRCLE
Let z0 be any point P in the upper half of the z plane denoted by <•£ in Fig. 13-5 below.

Then the transformation
(15)

maps this upper half plane in a one to one manner on to the interior <K' of the unit circle
\w\ = 1, Fig. 13-6 below, and conversely. Each point of the x axis is mapped on to the
boundary of the circle. The constant 00 can be determined by making one particular point
of the x axis correspond to a given point on the circle.

In the above figures we have used the convention that unprimed points such as
A,B, C, etc., in the z plane correspond to primed points A',B', C', etc., in the w plane.
Also, in the case where points are at infinity we indicate this by an arrow such as at
A and F in Fig. 13-5 which correspond respectively to A' and F' (the same point) in
Fig. 13-6. As point z moves on the boundary of "2?. [i.e. the real axis] from —<» (point A)
to +00 (point F), w moves counterclockwise along the unit circle from A' back to A'.
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Fig. 13-5 Fig. 13-6

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
Consider a polygon [Fig. 13-7] in the w plane having vertices at w\, Wz,..., wn with

corresponding interior angles alt«2, ...«n respectively. Let the points w\, w2, .. ,,wn map
respectively into points Xi,x2, ...,xn on the real axis of the z plane [Fig. 13-8].

Fig. 13-7 Fig. 13-8

A transformation which maps the interior ^ of the polygon of the w plane on to the
upper half <3^' of the z plane and the boundary of the polygon on to the real axis is given by

(16)

or (17)

where A and B are complex constants.
The following facts should be noted:
1. Any three of the points Xi,x2, .. .,xn can be chosen at will.
2. The constants A and B determine the size, orientation and position of the polygon.
3. It is convenient to choose one point, say xn, at infinity in which case the last factor

of (16) and (17) involving xn is not present.
4. Infinite open polygons can be considered as limiting cases of closed polygons.

SOLUTIONS OF LAPLACE'S EQUATION BY CONFORMAL MAPPING
The problem of determining a function which is harmonic, i.e. satisfies Laplace's

equation, in some region ^ [Fig. 13-7] and which takes prescribed values on the boundary
C is often called a Dirichlet problem. It can often be solved by mapping ^ into the unit
circle or upper half plane. In such case C is mapped into a corresponding boundary C'
and boundary conditions on C are transformed into boundary conditions for C'. Since
Laplace's equation in ^ is transformed into Laplace's equation in <2?/ [see Problem 13.49],
the problem is thus reduced to solving Laplace's equation in ^' with boundary conditions
on C", which is generally simple to do. By then transforming back we obtain the required
solution.

For illustrations of the procedure see Problems 13.51-13.54.
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Solved Problems
FUNCTIONS, LIMITS, CONTINUITY
13.1. Determine the locus represented by

(o) |«-2| = 8, (6) |«-2| = |* + 4|, (c) |z-8| + |« + 3| = 10.

(a) Method 1.
circle with center at (2,0) and radius 3.
Method 2. \z — 2| is the distance between the complex numbers « = * + iy and 2 + Ot. If this
distance is always 3, the locus is a circle of radius 3 with center at 2 + (K or (2,0).

« = —1, a straight line.
Method 2. The locus is such that the distances from any point on it to (2,0) and (-4,0) are
equal. Thus the locus is the perpendicular bisector of the line joining (2,0) and (-4,0), or
* = —1.

(e) Method 1. The locus is given by or
Squarine and simplifying, 25 + 3* = 5V(* + 3)2 + j/2. Squaring and

simplifying again yields , an ellipse with semi-major and semi-minor axes of
lengths 5 and 4 respectively.
Method 2. The locus is such that the sum of the distances from any point on it to (3,0) and
(-3,0) is 10. Thus the locus is an ellipse whose foci are at (-3,0) and (3,0) and whose major
axis has length 10.

13.2. Determine the region in the z plane represented by each of the following,
(a) \z\ < 1.

Interior of a circle of radius 1. See Fig. 13-9.

(6) K|z + 2i| S2.
\z + 2i\ is the distance from z to -2i, so that |« + 2t| = 1 is a circle of radius 1 with center

at -2i, i.e. (0,-2); and \z + 2i\ = 2 is a circle of radius 2 with center at -2i. Then
1 < \z + 2i\ S 2 represents the region exterior to \z + 2i\ = 1 but interior to or on \z + 2i\ = 2
See Fig. 13-10. ' '

(c) 7r/B^argz^Tr/2.
Note that arg z = <t>, where z = Pe«*. The required region is the infinite region bounded

by the lines <f> = ?r/3 and </> = v/2, including these lines. See Fig. 13-11.

F»S-13-9 Fig. 13-10 Fig. 13-11

13.3. Express each function in the form u(x, y) + iv(x, y), where u and v are real:
(a) z\ (b) l/(l-z), (c) •&>, (d) In z.

sQUARING. WE FING(b) Method 1.
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(a) w = z3 = (x + %)3 = Xs + Sx2(iy) + 3a(%)2 + (tj/)3 = a3 + 3&;2j/ - 3wj/2 - tj/3

= »3 - Say2 + i(3a23/ - j/3)

Then M(OJ,J/) = x3 - Sxy2, v(x,y) = 3x*y - y3.

(b) w

Then

(c) e3z = eflix+iy) = e3a:e3i!/ = e3x (cos gy + i sin Sy) and M = e3*cos32/, v = e3x sin 3j/

(d) ln« = ln(pei*) = lap + i</> — In V»2 + J/2 + * tan"1 j//w and

M = ^ In (w2 + j/2), v = tan-ij/Ae

Note that In z is a multiple-valued function (in this case it is infinitely many-valued) since
<t> can be increased by any multiple of 2jr. The principal value of the logarithm is denned as
that value for which 0 S 0 < 2a- and is called the principal branch of In z.

13.4. Prove (a) sin (a; + iy) = sin a; cosh y + i cos a; sinh y
(b) cos (* + iy) — cos a; cosh y — i sin x sinh y

We use the relations &* = cos z + i sin 2, e~te = cos z — i sin «, from which

Then

Similarly,

DERIVATIVES. CAUCHY-RIEMANN EQUATIONS

13.5. Prove that -r-z, where z is the conjugate of z, does not exist anywhere.az
By definition, if this limit exists independent of the manner in

which Az = Ace + tAj/ approaches zero. Then

If Aj/ = 0, the required limit is

If Aa; — 0, the required limit is

These two possible approaches show that the limit depends on the manner in which Az -» 0, so
that the derivative does not exist; i.e. z is non-analytic anywhere.
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13.6. ( a ) I f f i n d -^-. ( b ) Determine where w i s non-analytic.v ' dz x '

(a) Method 1.

provided z ¥= 1, independent of the manner in which Az -* 0.

Method 2. The usual rules of differentiation apply provided z¥=l. Thus by the quotient rule
for differentiation,

(b) The function is analytic everywhere except at z = 1, where the derivative does not exist; i.e.
the function is non-analytic at z = 1.

13.7. Prove that a necessary condition for w = f(z) = u(x, y) + iv(x, y) to be analytic in
a region is that the Cauchy-Riemann e q u a t i o n s b e satisfied in
the region.

Since /(z) = f(x + iy) = u(x, y) + iv(x, y), we have
f(z + Az) = /[* + A* + i(y + Aj/)] = u(x + Ax, y + AV) + w(« + Aac, y + Aj/)

Then

If Aj/ = 0, the required limit is

If A« = 0, the required limit is

If the derivative is to exist, these two special limits must be equal, i.e.,

so that we must have

Conversely, we can prove that if the first partial derivatives of u and v with respect to x and y
are continuous in a region, then the Cauchy-Riemann equations provide sufficient conditions for /(z)
to be analytic.

13.8. (a) If f(z) = u(x, y) + iv(x, y) is analytic in a region ^, prove that the one parameter
families of curves u(x, y) - Ci and v(x, y) = C2 are orthogonal families, (b) Illustrate
by using f(z) — z2.
(a) Consider any two particular members of these families u(x, y) = u0, v(x, y) = v0 which intersect

at the point (x0,y0).

Since du — uxdx + uy dy — 0, we have

Also since
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When evaluated at (x0, y0), these
represent respectively the slopes of the
two curves at this point of intersection.

By the Cauchy-Riemann equations,
ux = vy, uy = —vx, we have the product
of the slopes at the point (x0, y0) equal to

so that any two members of the respec-
tive families are orthogonal, and thus
the two families are orthogonal.

(b) If /(«) = z2, then u - X* - y2, v = 2xy.
The graphs of several members of
x2 — y2 = GI, 2xy = C2 are shown in
Fig. 13-12. Fig. 13-12

13.9. In aerodynamics and fluid mechanics, the functions <f> and ^ in f(z) = <j> + i$, where
f(z) is analytic, are called the velocity potential and stream function respectively. If
<j> = x2 + 4x - y2 + 2y, (a) find 4, and (6) find /(«).

(a) By the Cauchy-Riemann equations, Then

(0 (2)

Method 1. Integrating (1), $ = 2xy + 4y + F(x).
Integrating (2), $ = 2xy — 2x + G(y).

These are identical if F(x) = —2x + e, G(y) = 4y + c where c is any real constant. Thus
^ = 2xy + 4y — 2x + c.

Method 2.
Integrating (1), $ = 2xy + 4y + F(x). Then substituting in (2), 2y + F'(x) = 2y — 2 or

F'(x) = -2 and F(x) = -2x + c. Hence ^ = 2xy + ty - 2x + c.

(b) From (a),

where ct is a pure imaginary constant.
This can also be accomplished by noting that z = x + iy, z = x — iy so that

The result is then obtained by substitution; the terms involving z drop out.

INTEGRALS, CAUCHY'S THEOREM, CAUCHY'S INTEGRAL FORMULAS

13.10. Evaluate

(a) along the parabola x = t, y = t2 where 1 S t g 2,
(b) along the straight line joining 1 + i and 2 + 4i,
(c) along straight lines from 1 + i to 2 + i and then to 2 + 4i.

We have
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Method 1.
(a) The points (1,1) and (2,4) correspond to t — 1 and t — 2 respectively. Then the above line

integrals become

4 1
(6) The line joining (1,1) and (2,4) has the equation y — 1 = , (x — 1) or y = 3* — 2. Then

we find

(c) From 1 + * to 2 +1 [or (1,1) to (2,1)], y = 1, dy = 0 and we have

From 2 +1 to 2 + 4i [or (2,1) to (2,4)], a; = 2, dx = 0 and we have

Adding, (f + 3i) + (-30-9t) = -f - 6t.
Method 2.

By the methods of Chapter 6 it is seen that the line integrals are independent of the path,
thus accounting for the same values obtained in (a), (b) and (c) above. In such case the integral
can be evaluated directly, as for real variables, as follows:

13.11. (a) Prove Cauchy's theorem: If /(z) is analytic inside and on a simple closed curve
C, then

(6) Under these conditions prove t h a t i s independent of the path joining
Pi and P2.

(«)

By Green's theorem (Chapter 6),

where ^ is the region (simply-connected) bounded by C.

Since /(«) is analytic, ^ = ̂ -, ̂ - = -^ (Problem 13.7), and so the above integrals are-* ox oy ox oy
zero. Then d> /(z) dz = 0, assuming f'(z) [and thus the partial derivatives] to be continuous.

J c
(6) Consider any two paths joining points Pt and P2 (see

Fig. 13-13). By Cauchy's theorem,

Then

or
Fig. 13-13
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i.e. the integral along Pl AP2 (path 1) = integral along Pt BP2 (path 2), and so the integral is
independent of the path joining Pl and P2.

This explains the results of Problem 13.10, since f(z) = z2 is analytic.

13.12. If f(z) is analytic within and on the boundary
of a region bounded by two closed curves Ci
and Cz (see Fig. 13-14), prove that

As in Fig. 13-14, construct line AB (called a cross-
cut) connecting any point on C2 and a point on Cj.
By Cauchy's theorem (Problem 13.11),

Fig. 13-14

since /(z) is analytic within the region shaded and also on the boundary. Then

<*)

But

i.e.

Note that /(«) need not be analytic within curve C2.

13.13. (a) Prove that where C is a simple closed
curve bounding a region having z — a as interior point.

(b) What is the value of the integral if n - 0, -1, -2, -3,... ?
(a) Let Cl be a circle of radius e having center at z = o

(see Fig. 13-15). Since (z — a)~n is analytic within
and on the boundary of the region bounded by C
and Ci, we have by Problem 13.12,

To evaluate this last integral, note that on
Ci, \z — a\ = e or « — a = eeie and dz = itew de.
The integral equals FiS-13'15

If n = 1, the integral equals

(b) For n = 0, —1, —2, ... the integrand is 1, (z — a), (z — a)2, ... and is analytic everywhere inside
Ci, including z = a. Hence by Cauchy's theorem the integral is zero.

13.14. Evaluate where C is (a) the circle \z\ = 1, (b) the circle \z + i\ - 4.
(a) Since z = 3 is not interior to |z| = 1, the integral equals zero (Problem 13.11).
(6) Since z - 3 is interior to \z + i\ = 4, the integral equals 2vi (Problem 13.13).
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13.15. If f(z) is analytic inside and on a simple closed curve C, and a is any point within C,
prove that

Referring to Problem 13.12 and the figure of Problem 13.13, we have

Letting z — a = eele, the last integral b e c o m e s B u t since /(z) is analytic,
it is continuous. Hence

and the required result follows.

13.16. Evaluate (a) where C is the circle \z —1| = 3.

(a) Since z = ir lies within by Problem 13.15 with /(z) = cos z,

(6)

by Problem 13.15, since z = 0 and z = — 1 are both interior to C.

13.17. Evaluate dz where C is any simple closed curve enclosing 2 = 1.

Method 1. By Cauchy's integral formula,

If n = 2 and f(z) = 5z2 - 3z + 2, then /"(I) = 10. Hence

Method 2. 5z2 - 3z + 2 = 5(z - 1)2 + 7(z - 1) + 4. Then

by Problem 13.13.
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SERIES AND SINGULARITIES
13.18. For what values of z does each series converge?

(a) The ttth term Then

By the ratio test the series converges if |z| < 2 and diverges if |z| > 2. If |z| = 2 the
ratio test fails.

However, the series of absolute v a l u e s c o n v e r g e s if |z| = 2, since
» .. i
2 —5- converges.

n=l«2

Thus the series converges (absolutely) for |z| S 2, i.e. at all points inside and on the circle
|z| = 2.

(6) We have

Then the series, which represents sin z, converges for all values of z.

(«)

The series converges if \z — i\ < 3, and diverges if |z — i\ > 3.
oo

If \z — i\ = 3, then z — i = 3eie and the series becomes 2 e<"9- This series diverges
since the nth term does not approach zero as n -» ». "=1

Thus the series converges within the circle |z — i\ = 3 but not on the boundary.

00

13.19. If 2 a"2" ig absolutely convergent for \z\ g R, show that it is uniformly convergent
n=0

for these values of z.
The definitions, theorems and proofs for series of complex numbers are analogous to those for

real series.
In this case we have Since by hypothesis converges, it follows

by the Weierstrass M test that ' converges uniformly for |z| § R.

13.20. Locate in the finite z plane all the singularities, if any, of each function and name
them.

(a) is a pole of order 3.

(6) is a pole of order 2 (double pole); z = i and z = 1 — 2i are

poles of order 1 (simple poles).

<c> -2 +"2̂ 1 2 ' ™ < ^ 0 . Since z2 + 2« + 2 = 0 when we
can write z» + 2z + 2 = {z - (-1 + i)}{z - (-1 - i)} = (z + 1 - i)(z + 1 + i).

The function has the two simple poles: z = — 1 + i and « — — 1 — i.
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(d) appears to be a singularity. However, s i n c e i t is a

removable singularity.

Another method.

Since we see that z = 0

is a removable singularity.

(«)

This is a Laurent series where the principal part has an infinite number of non-zero terms.
Then z = 1 is an essential singularity.

(/) e*.
This function has no finite singularity. However, letting 2 = 1/u, we obtain e1/" which

has an essential singularity at u = 0. We conclude that z = <*> is an essential singularity
of e*.

In general, to determine the nature of a possible singularity of f(z) at z = <*>, we let
e = I/M and then examine the behavior of the new function at u — 0.

13.21. If f(z) is analytic at all points inside and on a circle of radius R with center at a, and
if a + h is any point inside C, prove Taylor's theorem that

By Cauchy's integral formula (Problem 13.15), we have

(D
By division,

(2)

Substituting (2) in (1) and using Cauchy's integral formulas, we have

where

Now when z is on C, and \z-a\= R, so that by (4), page 287, we have,

since 2irR is the length of C,

As n -» », \Rn\ -» o. Then Rn -> 0 and the required result follows.

If /(«) is analytic in an annular region rt •& \z - a\ S r2, we can generalize the Taylor series
to a Laurent series (see Problem 13.82). In some cases, as shown in Problem 13.22, the Laurent
series can be obtained by use of known Taylor series.
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13.22. Find Laurent series about the indicated singularity for each of the following
functions. Name the singularity in each case and give the region of convergence of
each series.

(«)

2 = 1 is a pole of order 2, or double pole.

The series converges for all values of 2 ¥• 1.

(6)

2 = 0 is an essential singularity.

The series converges for all values of z ¥* 0.

(«)

2 = ir is a removable singularity.

The series converges for all values of 2.

(d] Then

z = —1 is a pole of order 1, or simple pole.

The series converges for values of 2 such that 0 < \z +1| < 1.

M

Case 1, 2 = 0. Using the binomial theorem,

2 = 0 is a pole of order 1, or simple pole.

The series converges for 0 < |2| < 2.
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Case 2, z = -2. Let z + 2 = u. Then

z = — 2 is a po/e o/ order 5.

The series converges for 0 < |z + 2| < 2.

RESIDUES AND THE RESIDUE THEOREM

13.23. If /(z) is analytic everywhere inside and on a simple closed curve C except at z = a
which is a pole of order n so that

where a-n =£ 0, prove that

(a)

(6)

(a) By integration, we have on using Problem 13.13

Since only the term involving o_j remains, we call o_! the residue of /(z) at the pole z = a.

(b) Multiplication by (z — a)n gives the Taylor series

(«-«)»/(«) = a_n + a_n + 1(z-o) + • • • + o.^z-a)"-! + •••

Taking the (n — l)st derivative of both sides and letting z -» a, we find

from which the required result follows.

13.24. Determine the residues of each function at the indicated poles.

(«) These are simple poles. Then:

Residue at z — 2 is

Residue at z = i is

Residue at z = — i is
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(&) is a simple pole, z — —2 is a pole of order 3. Then:

Residue at 2 = 0 is

Residue at z = —2 is

Note that these residues can also be obtained from the coefficients of 1/z and l/(z + 2) in
the respective Laurent series [see Problem 13.22(e)].

ze*t
\°> iz _ 3x2 '• * = 3, a pole of order 2 or double pole. Then:

Residue is

(d) cot,?; z = 5v, a pole of order 1. Then:

Residue is

where we have used L'Hospital's rule, which can be shown applicable for functions of a complex
variable.

13.25. If f(z) is analytic within and on a simple closed curve C except at a number of poles
a,b,c, ... interior to C, prove that

{sum of residues of /(z) at poles a, b, c, etc.}

Refer to Fig. 13-16.
By reasoning similar to that of Problem 13.12 

(i.e. by constructing cross cuts from C to C1(C2,C3, 
etc.), we have

For pole a, Fig. 13-16

hence, as in Problem 13.23,

Similarly for pole b,

so that

Continuing in this manner, we see that

(sum of residues)



306 COMPLEX VARIABLES AND CONFORMAL MAPPING [CHAP. 13

13.26. Evaluate where C is given by (a) |z| = 3/2, (6) \z\ = 10.

Residue at simple pole

Residue at double pole « = —3 is

(a) Since \z\ = 3/2 encloses only the pole z = 1,

the required integral

(6) Since |z[ = 10 encloses both poles z = 1 and z — —3,

the required integral

EVALUATION OF DEFINITE INTEGRALS
M

13.27. If \f(z)\ ^^ for z = Re», where k > 1 and
M are constants, prove that lim ( f(z) dz = 0

R-K» JY

where r is the semi-circular arc of radius R
shown in Fig. 13-17.

By the result (4), page 287. we have

Fig. 13-17
since the length of arc L — vR. Then

13.28. Show that for

I f i f  R  i s  l a r g e  e n o u g h  ( s a y
R > 2, for example) so that M = 2, k = 4.

Note that we have made use of the i n e q u a l i t y w i t h Zj = jB^e4** and
*, = !.

13.29. Evaluate

Consider where C is the closed contour of Problem 13.27 consisting of the line from

—R to R and the semi-circle r, traversed in the positive (counterclockwise) sense.

Since «4 + l = 0 when z = e*1/*, eSirf/4, esvi/*t e™/4, these are simple poles of !/(«* +1). Only
the poles e^u and e3lri/4 lie within C. Then using L'Hospital's rule,
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Residue at e^1*

Residue at eSlri/*

T h u s &

i.e. (*)

Taking the limit of both sides of (2) as R -» «° and using the results of Problem 13.28, we have

Since the required integral has the value

13.30. Show that

The poles of enclosed by the contour C of Problem 13.27 are z — i of
order 2 and z — —1 + i of order 1.

Residue at z = i is

Residue at z = — 1 + i is

Then

or

Taking the limit as R -» « and noting that the second integral approaches zero by Problem
13.27, we obtain the required result.

13.31. Evaluate

Let z - e*». Then so that

where C is the circle of unit radius with center at the origin, as shown in Fig. 13-18 below.
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The poles of are the simple poles

Fig. 13-18

Only — i/S lies inside C.

rule.

Then the required value.

13.32. Show that

If

Then

where C is the contour of Problem 13.31.
The integrand has a pole of order 3 at z = 0 and a simple pole z = •£ within C.

Residue at z — 0 is

Residue at z = \ is

Then as required.

M13.33. If \f(z)\ ^ -^ for z- Reie, where k > 0 and M are constants, prove that

where r is the semi-circular arc of the contour in Problem 13.27 and m is a positive
constant.

If

Then

rESIDUE AT BY l'hOSPITAL'S
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Now sin 9 S 2e/v for 0 S 6 £ v/2 [see Problem 14.3, page 327]. Then the last integral is
less than or equal to

As R -* <*> this approaches zero, since m and k are positive, and the required result is proved.

13.34. Show that

Consider where C is the contour of Problem 13.27.

The integrand has simple poles at « = ±i, but only « = i lies within C.

Residue at z = i is

Then

or

i.e.

and so

Taking the limit as R-* <*> and using Problem 13.33 to show that the integral around T
approaches zero, we obtain the required result.

13.35. Show that

The method of Problem 13.34 leads us to
consider the integral of eizfz around the contour
of Problem 13.27. However, since z — 0 lies
on this path of integration and since we cannot
integrate through a singularity, we modify that
contour by indenting the path at z = 0, as
shown in Fig. 13-19, which we call contour C'
or ABDEFGHJA.

Since z = 0 is outside C', we have

Fig. 13-19

or

Replacing x by —* in the first integral and combining with the third integral, we find,

or
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13.36. Let w--\fz define a transformation from the z plane to the w plane. A point moves
counterclockwise along the circle \z\ = 1. Show that when it has returned to its
starting position for the first time its image point has not yet returned, but that when
it has returned for the second time its image point returns for the first time.

Let z = e™. Then w = Vz = e®'2. Let * = 0 correspond to the starting position. Then
x = 1 and w = 1 [corresponding to A and P in Figs. 13-20 and 13-21].

Fig. 13-20 Fig. 13-21

When one complete revolution in the z plane has been made, 9 = Zir, z = 1 but w = ei9lz =
eiv = —1 so the image point has not yet returned to its starting position.

However, after two complete revolutions in the z plane have been made, e = 4ir, z = 1 and
w = ei6'2 = e2™ = 1 so the image point has returned for the first time.

It follows from the above that w is not a single-valued function of « but is a double-valued
function of z; i.e. given z, there are two values of w. If we wish to consider it a single-valued
function, we must restrict e. We can, for example, choose 0 S e < 2v, although other possibilities
exist. This represents one branch of the double-valued function w = Vz. In continuing beyond
this interval we are on the second branch, e.g. 2jr S 8 < 4jr. The point z = 0 about which the
rotation is taking place is called a branch point. Equivalently, we can insure that /(«) = Viz
will be single-valued by agreeing not to cross the line Ox, called a branch line.

13.37. Show that

Consider Since z = 0 is a branch point,

choose C as the contour of Fig. 13-22 where AB and GH
are actually coincident with the x axis but are shown
separated for visual purposes.

The integrand has the pole z = —1 lying within C.
Residue at z = — 1 = e17* is

Then

or, omitting the integrand,

Fig. 13-22
We thus have

where we have to use z = xe2*1 for the integral along GH, since the argument of z is increased by
2v in going around the circle BDEFG.
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Taking the limit as r -» 0 and R -» «° and noting that the second and fourth integrals
approach zero, we find

or

so that

CONFORMAL MAPPING
13.38. Consider the transformation w = f(z) where f(z) is analytic at z0 and /'(«<>) ̂  0.

Prove that under this transformation the tangent at z0 to any curve C in the z plane
passing through z0 [Fig. 13-23] is rotated through the angle arg/'(zo).

Fig. 13-23 Fig. 13-24

As a point moves from z0 to z0 + Az along C [Fig. 13-23] the image point moves along C' in the
w plane [Fig. 13-24] from w0 to t00 + Aw. If the parameter used to describe the curve is t, then
corresponding to the path z — z(t) [or x = x(t), y = y(t)] in the z plane, we have the path w = w(t)
[or u = u(t), v = v(t)] in the w plane.

The derivatives dz/dt and dw/dt represent tangent vectors to corresponding points on C and C'.

Now and, in particular at Z0 and W0,

u>
provided /(z) i s analytic a t z = z0. W r i t i n g w e
have from (1)

(2)

so that, as required, (3)

Note that if /'(z0) = 0, then a is indeterminate. Points where /'(z) = 0 are called critical points.

13.39. Prove that the angle between two curves Ci and Cz passing through the point z<> in
the z plane [see Figs. 13-1 and 13-2, page 291] is preserved [in magnitude and sense]
under the transformation w = f(z), i.e. the mapping is conformal, if f(z) is analytic
at 20 and f'(z0) *£ 0.

By Problem 13.38 each curve is rotated through the angle arg /'(z0). Hence the angle between
the curves must be preserved, both in magnitude and sense, in the mapping.
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13.40. If w = f(z) = u + iv is analytic in a region <!R, prove that
If /(«) is analytic in <R, then the Cauchy-Riemann equations

are satisfied in % Hence

13.41. If z<> is in the upper half of the z plane,
show that the bilinear transformation

maps the upper half
of the z plane into the interior of the
unit circle in the w plane, i.e. \w\ = 1.

We have

From Fig. 13-25 if z is in the upper half plane,
\z — z0\ S \z — z0\, the equality holding if and
only if z is on the x axis. Hence \w\ § 1, as
required. Fig. 13-25

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

13.42. Establish the validity of the Schwarz-Christoffel transformation.
We must show that the mapping function obtained from

^ = A(z-x1)«i'"-i(z-x2)<*i'«-i---(z-xn)<'n'«-i W

maps a given polygon of the w plane [Fig. 13-26] into the real axis of the z plane [Fig. 13-27].
To show this observe that from (1) we have

W

As z moves along the real axis from the left toward xlt let us assume that w moves along a side
of the polygon toward wt. When z crosses from the left of x^ to the right of xv el — arg (z — xt)
changes from JT to 0 while all other terms in (2) stay constant. Hence axgdw decreases by
(ajAr-1) arg (z —*!> = (<*!/"•-IV = «i — r or, what is the same thing, increases by ir-a-^ [an
increase being in the counterclockwise direction].

Fig. 13-26 Fig. 13-27
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It follows from this that the direction through wt turns through the angle v — alt and thus w
now moves along the side w^w^ of the polygon.

When z moves through xz>
 ei — ar& (z ~ *i) an^ *2 — arS (g ~ #2) change from v to 0 while

all other terms stay constant. Hence another turn through angle TT — <*2 in *he w plane is made.
By continuing the process we see that as z traverses the x axis, w traverses the polygon, and
conversely.

We can prove that the interior of the polygon (if it is closed) is mapped on to the upper
half plane by (1).

13.43. Prove that for closed polygons the sum of the exponents
in the Schwarz-Christoffel transformation (16) or (17), page 293, is equal to —2.

The sum of the exterior angles of any closed polygon is 2jr. Then
(IT —at]) + (ir — a2) + ••• + (v — <*„) = 2ir

and dividing by — v, we obtain as required,

13.44. If in the Schwarz-Christoffel transformation (16) or (17), page 293, one point, say x»,
is chosen at infinity, show that the last factor is not present.

In (16), page 293, let A = Jf/(—*„)««/»-! where K is a constant. Then the right side of (16)
can be written

fx — z\"»/'r~ *
K(z - «!)«!/"-1 (z - xz)

aiiv-1 • • • (z - *n_ t) «„-1/*-1 ( — )
\ xn /

As *„-»», this last factor approaches 1; this is equivalent to removal of the factor.

13.45. Determine a function which maps the region of Fig. 13-28 in the w plane on to the
upper half of the z plane of Fig. 13-29.

Fig. 13-28 Fig. 13-29

Let points P,Q,S and T [Fig. 13-28] map respectively into P',Q',S' and 2" [Fig. 13-29].
We can consider PQST as a limiting case of a polygon (a triangle) with two vertices at Q and
S and the third vertex P or T at infinity.

By the Schwarz-Christoffel transformation, since the angles at Q and S are equal to w/2,
we have

Integrating,

When g = l, w = b. Hence (1) 6 = K sin-i (1) + B = Kjr/2 + B.

When z = -l,w = -b. Hence, (2) -b = K sin-i (-1) + B = -Kir/2 + B.

Solving (1) and (2) simultaneously, we find B = 0, K = 2b/v. Then
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SOLUTIONS OF LAPLACE'S EQUATION BY CONFORMAL MAPPING

13.46. Show that the functions (a) x2-y2 + 2y and (6) sin x cosh y are harmonic in any
finite region "5?. of the z plane.

(a) I f * = a2 - y2 + 2y , we h a v e T h e n a n d * i s har-
monic in 9{.

( 6 ) I f * = s i n x cosh y , w e h a v e T h e n
and * is harmonic in %

13.47. Show that the functions of Problem 13.46 are harmonic in the w plane under the
transformation z = w3.

If z = w3, then x + iy = (u + iv)3 = u3 — 3«i>2 + i(Su2v — vs) and x = u3 — Buv2, y = 3w2v — v3.

(a) * = x2 - y2 + 2y - (u3- 3w-y2)2 - (Bu2v - v3)2 + 2(3w2v - v3)

= u6 - 15w*v2 + 15MV - v6 + 6w2v - 2v3

Then

and as required.

(6) We must show that * = sin (u3 - 3wt>2) cosh (3w2i> - v3) satisfies |̂  + |-f = 0. This can
readily be established by straightforward but tedious differentiation.

This problem illustrates a general result proved in Problem 13.49.

13.48. Prove that where w = f(z) is analytic and f(z) ¥* 0.

The function *(«, y) is transformed into a function &[x(u,v), y(u,v)] by the transformation.
By differentiation we have

Similarly,

Adding,

W
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Since u and v are harmonic, Also, by the Cauchy-Riemann

equations, Then

Hence (1) becomes

13.49. Prove that a harmonic function §(x, y) remains harmonic under the transformation
w = f(z) where f(z) is analytic and f'(z) ¥= 0.

This follows at once from Problem 13.48, since if and /'(z) ¥• 0, then

13.50. If a is real, show that the real and imaginary parts of w = In(2-a) are harmonic
functions in any region ^ not containing z = a.
Method 1. If 'R, does not contain a, then w = In (z — a) is analytic in <^. Hence the real and
imaginary parts are harmonic in «£.
Method 2. Let z — a — reie. Then if principal values are used for 9, w — u + iv = ln(z — a) =
In r + ie so that u = In r, v = 6.

In the polar coordinates (r, e), Laplace's equation is and by direct
substitution we find that u = In r and v = e are solutions if .̂ does not contain r = 0, i.e.
z — a.

Method 3. If z — a = rete, then x — a = r cos 6, y = r sin e and

r - V(* - «)2 + V2, e = tan-1 {y/(x — a)}

Then w — u + iv = £ In {(x — a)2 + y2} + i tan"1 {y/(x — a)} and u = £ In {(x — a)2 + y2}, v —

tan*1 {y/(x — a)}. Substituting these into Laplace's equation —r + 7-5- = 0, we find afterox'' oyz

straightforward differentiation that u and v are solutions if z ¥° a.

13.51. Find a function harmonic in the upper half of the z plane, Im {z} > 0, which takes
f l x > 0the prescribed values on the x axis given by G(x) = J.
[0 x < 0

We must solve for 4>(a;, y) the boundary-value problem

V > 0;

This is a Dirichlet problem for the upper half plane [see Fig. 13-30],
The function A9 + B, where A and B are real

constants, is harmonic since it is the imaginary
part of A In z + Bi.

To determine A and B note that the boundary
conditions are * = 1 for x > 0, i.e. 9 = 0 and
* = 0 for x < 0, i.e. e = ir. Thus

(1) 1 = A(0) + B, (2) 0 = A(v) + B
from which A = —I/B-, B = 1.

Then the required solution is

Pig. 13-30
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13.52. Solve the boundary-value problem

where T0, Ti, T2 are constants.
This is a Dirichlet problem for the upper half

plane [see Pig. 13-31].

The function A0t + Be2 + C where A, B and C
are real constants, is harmonic since it is the imagi-
nary part of A In (* + 1) + B In (z - 1) + Ci. Fig. 13-31

To determine A, B, C note that the boundary conditions are: * = T2 for * > 1, i.e. ev = ez — 0;
4> = Tl for —1 < * < 1, i.e. e^ = 0, 62 = ir; * = T0 for * < —1, i.e. ffj = v, e2 = v. Thus

(1) T2 = A(0) + B(0) + C (2) Tt = A(0) + B(v) + C (3) T0 = A(w) + B(w) + C

from which C - T2, B = (Tl - T2)/v, A = (T0- Tj/v.

Then the required solution is

13.53. Find a function harmonic inside the unit circle \z\ = 1 and taking the prescribed
values given by on its circumference.

This is a Dirichlet problem for the unit circle [Fig. 13-32] in which we seek a function satisfying
Laplace's equation inside |z| = 1 and taking the values 0 on arc ABC and 1 on arc CDE.

Fig. 13-32 Fig. 13-33

We map the interior of the circle |«| = 1 on to the upper half of the w plane [Fig. 13-33] by

using the mapping f u n c t i o n o r o b t a i n e d by using (15), page 292, with
w and z interchanged.

Under this transformation, arcs ABC and CDE are mapped on to the negative and positive real
axis A'B'C' and C'D'E' respectively of the w plane. Then the boundary conditions * = 0 on
arc ABC and * = 1 on arc CDE become respectively # = 0 on A'B'C' and <J> = 1 on C'D'E'.

Thus we have reduced the problem to finding a function * harmonic in the upper half w plane
and taking the values 0 for u < 0 and 1 for u > 0. But this problem has already been solved in
Problem 13.51 and the solution (replacing x by u and y by v) is given by

(1)

these in (1), we find the required solution

Now from w we findu Then substituting
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(2)

or in polar coordinates (r, 6), where x = r cos e, y — r sin e,

(3)

13.54. A semi-infinite slab (shaded in Fig. 13-34) has its boundaries maintained at the
indicated temperatures where T is constant. Find the steady-state temperature.

Fig. 13-34 Fig. 13-35

We can solve this problem by methods of conformal mapping since the steady-state temperature
satisfies Laplace's equation.

The shaded region of the z plane is mapped into the upper half of the w plane [Fig. 13-35]
by the mapping function w = sin (a-z/a) which is equivalent to u = sin (irx/a) cosh (iryla), v —
cos (vx/a) sinh (try/a).

We must now solve the equivalent problem in the w plane. We use the method of Problem 13.52
to find that the solution in the w plane is

and the required solution to the problem in the z plane is therefore

Supplementary Problems
FUNCTIONS, LIMITS, CONTINUITY

13.55. Describe the locus represented by (a) |« + 2 — 3t| = 5, (6) \z + 2| = 2|z -1|, (c) \z + 5\ - \z - 5| = 6.
Construct a figure in each case.

13.56. Determine the region in the z plane represented by each of the following:
(a) |«-2 + i|i=4, (6) |z| S3, OSarg«s|, (c) |z-3| + |z + 3| < 10.
Construct a figure in each case.

13.57. Express each function in the form u(x, y) + iv(x, y), where u and v are real,
(a) «« + 2iz, (6) z/(3 + z), (c) e*1, (d) ln(l + «).

13.58. Prove that (a) lim «« = z* (6) /(«) = «2 is continuous at z = «0 directly from the definition.
Z-+ZQ

13.59. (a) If z = a, is any root of z5 - 1 different from 1, prove that all the roots are 1, w, w2, u3, w4.
(6) Show that 1 + a + «2 + os + a* = 0.
(c) Generalize the results in (a) and (6) to the equation z» = 1.
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DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

13.60. (a) If w = f(z) = z + -, find ̂  directly from the definition.z az
(6) For what finite values of z is /(z) non-analytic?

13.61. Given the function w = z*. (a) Find real functions u and v such that w = u + iv. (b) Show that
the Cauchy-Riemann equations hold at all points in the finite z plane, (c) Prove that u and v are
harmonic functions, (d) Determine dw/dz.

13.62. Prove that /(z) = z\z\ is not analytic anywhere.

13.63. Prove that /(z) = is analytic in any region not including z = 2.z &

13.64. If the imaginary part of an analytic function is 2#(1 — y), determine (a) the real part, (6) the
function.

13.65. Construct an analytic function /(z) whose real part is e~x(x cos y + y sin y) and for which /(O) = 1.

13.66. Prove that there is no analytic function whose imaginary part is x2 — 2y.

13.67. Find /(z) such that /'(z) = 4z - 3 and /(I +i) = -3i.

13.68. If z = pe'* and /(z) = u(p, <f>) + iv(p, <t>), where p and 0 are polar coordinates, show that the
Cauchy-Riemann equations are

INTEGRALS, CAUCHY'S THEOREM, CAUCHY'S INTEGRAL FORMULAS

13.69. Evaluate

(a) along the path x = 2t + 1, y = 4t2 - t - 2 0 S t § 1,
(b) along the straight line joining 1 — 2i and 3 + i,
(c) along straight lines from 1 — 2i to 1 + i and then to 3 + i.

13.70. E v a l u a t e w h e r e C is the upper half of the circle \z\ = 1 traversed in the positive
direction.

13.71. Evaluate , where C is the circle (a) |z| = 2, (6) \z — 3| = 2.

13.72. E v a l u a t e d z , where C is: (a.) a square with vertices at —1 — i, — 1 + i, —3 +1,

—B-i; (b) the circle |z + i| = 3; (c) the circle |z| = \/2.

13.73. Evaluate (a) (6) where C is any simple closed curve enclosing z = 1.

13.74. Prove Cauchy's integral formulas.
[Hint. Use the definition of derivative and then apply mathematical induction.]

13.75. If f(z) is analytic inside and on the circle |z — a| = R, prove Cauchy's inequality, namely,

where |/(z) = M\ on the circle. [Hint: Use Cauchy's integral formulas.]

SERIES AND SINGULARITIES
13.76. For what values of z does each series converge?

(«) (6) (c)
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13.77. Prove that the s e r i e s i s (a) absolutely convergent, (6) uniformly convergent for
|*| S 1.

13.78. Prove that the s e r i e s c o n v e r g e s uniformly within any circle of radius R such that
|z + i\ < R < 2.

13.79. Locate in the finite z plane all the singularities, if any, of each function and name them:

(a) (6) (c) (d) (e) (/)

13.80. Find Laurent series about the indicated singularity for each of the following functions, naming the
singularity in each case. Indicate the region of convergence of each series.

(«) (6) (c)

13.81. Find a Laurent series expansion for the function /(«) = . , •. u • »-, which converges for
1< |z| < 2 and diverges elsewhere. (z + )(z '

Hint: Write

13.82. If o + h is any point in the annular region bounded by Ct and C2, and /(z) is analytic in this region,
prove Laurent's theorem that

where

C being any closed curve in the angular region surrounding Cj.

different ways.

RESIDUES AND THE RESIDUE THEOREM
13.83. Determine the residues of each function at its poles:

(a) (b) (c) (d)

13.84. Find the residue of ez* tan z at the simple pole z — 3n-/2.

13.85. Evaluate where C is a simple closed curve enclosing all the poles.

13.86. If C is a simple closed curve enclosing z — ±i, show that

13.87. If f(z) = P(z)/Q(z), where P(z) and Q(z) are polynomials such that the degree of P(z) is at least

two less than the degree of Q(z), prove that <j> /(«) dz = 0, where C encloses all the poles of /(«).
Jc

EVALUATION OF DEFINITE INTEGRALS

Use contour integration to verify each of the following

13.89. 13.91.

Hing wrint and expand in two

1 3 . 8 8 1 3 . 9 0
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13.92. 13-95.

13.93. 13.96.

13.94. 13.97.

13.98.

13.99.

13.100. 13.103.

13.101. 13.104.

13.102. 13.105.

13.106. [Hint. C o n s i d e r w h e r e C is a rectangle with vertices

at (-#,0), (R,0), (R,v), (-R,*-). Then let R -» <*>.]

CONFORMAL MAPPING
13.107. Prove that (a) w = z + 0 represents a translation, (6) w — eie«z represents a rotation, (c) w =

az + b represents a stretching [or contraction].

13.108. Prove that (a) w — az + ft represents a combination of translation, rotation and stretching.

13.109. Prove that represents a combination of translation, rotation, stretching and inversion
if aS — /3y ¥> 0. Discuss the case a8 — /3y = 0.

13.110. (a) Prove that under the transformation w = (z — i)/(iz — 1) the region Im {z} S 0 is mapped into
the region \w\ S 1. (6) Into what region is Im {z} £ 0 mapped under the transformation?

13.111. Determine the equation of the curve in the w plane into which the straight line x + y = 1 is
mapped under the transformations (a) w = z2, (6) w — 1/z.

13.112. Show t h a t m a p s the unit circle on to a wedge-shaped region and illustrate
graphically.

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
13.113. Use the Sehwarz-Christoffel transformation to determine a function which maps each of the

indicated regions in the w plane on to the upper half of the z plane.
(a)

Fig. 13-36 Fig. 13-37
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Fig. 13-38 Fig. 13-39

Fig. 13-40 Fig. 13-41

Fig. 13-42 Fig. 13-43

13.114. Find a function which maps the upper half plane on to the interior of a triangle with vertices at
w = 0,1, i corresponding to z = 0,1, » respectively.

13.115. Show that the functions (a) 2xy + y3 — Sx2y, (b) e~x sin y are harmonic.

13.116. Show that the functions of Problem 13.115 remain harmonic under the transformations (a) z — w2,
(b) z = sin w.

13.117. Find a function harmonic in the upper half z plane Im {z} > 0 which takes the prescribed values

on the x axis given by G(x) =

13.118. Work Problem 13.117 if G(x) -

13.119. Find a function harmonic inside the circle |z| = 1 and taking the values F(e) =
on its circumference.

13.120. Work Problem 13.119 if F(e) =
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13.121. Find the steady-state temperature at the point (5,2) in the shaded region of Fig. 13-44 below if the
temperatures are maintained as shown.

Fig. 13-44 Fig. 13-45

13.122. An infinite conducting plate has in it a circular hole ABCD of unit radius [Fig. 13-45 above].
Temperatures of 20°C and 80°C are applied to arcs ABC and ADC and maintained indefinitely.
Find the steady-state temperature at any point of the plate.

Answers to Supplementary Problems
13.55. (a) Circle (x + 2)2 + (y - 3)2 = 25, center (-2,3), radius 5.

(6) Circle (x-2)* + y* = 4, center (2,0), radius 2.
(c) Branch of hyperbola »2/9 — j/2/16 = 1, where * B 3.

13.56. (a) Boundary and exterior of circle (x - 2)2 + (y + I)2 = 16.
(6) Region in the first quadrant bounded by w2 + y2 = 9 the x axis and the line y = x.
(c) Interior of ellipse «2/25 + j/2/16 = 1.

13.57. (a) M = x3 - Sxj/2 - Zy, v = Sx*y -ys + 2x

W

(e) u = ex ~v cos 2xy, v = ex*~y* sin 2xy

(d) u = £ln{(l + a02+j,2}, „ = tan-»j-2~£+2fcr, fe = 0,±1,±2,...

13.60. (a) 1-1/z2, (6) z = 0

13.61. (a) u = x* - 6»2j/2 + y\ v = 4x3y-4xy3 (d) 4z»

13.64. (a) y*-x*-2y + c, (b) Ziz -z* + c, where c is real

13.65. ze~» + 1

13.67. /(«) = 2z2 - 3« + 3 - 4t

13.69. 17 + 19i in all cases

13.71. (a) 0, (6) 5«/2

13.72. (a) -8«/3 (6) -2vi (c) 2*i/3~

13.73. (a) -2vi (b) vie/3

13.76. (a) all? (6) |z-i| < 1 (c) z = -l±i
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13.79. (a) z = — £, pole of order 4 (d) z = 0, essential singularity
(6) « = 1, simple pole; z = —2, double pole (e) z — ir/3, removable singularity
(c) Simple poles z — —1 ± i (/) z = —2t, double poles

13.80. (a), simple pole, all z ¥• ir

( b ) e s s e n t i a l  s i n g u l a r i t y ,  a l l  z ¥ =  0

(c) double pole, 0 < \z - 1| < 4

13.81.

13.83. (a) z = 2; 7/4, « = -2; 1/4 (c) 2 = 2; £<2e2«
(6) « = 0; 8/25, « =-5; -8/25 (d) z = i; 0, z = -t; 0

13.84. -«8Tt/2

13.85. -8«

13.111. (a) w2 + 2v = 1, (6) w2 + 2wv + 2v2 = u + v

13.113. (a) w = z3, (b) w = cosh Grz/2), (c) w = e", (d) w = z*™

13.114.

13.117. 1 - (2M tan-i (y/x)

13.118.

13.119.

13.121. 45.9° C

( b )

simple pole



Chapter 14

THE COMPLEX INVERSION FORMULA
If F(s) = £ {/(*)}, then £-* (F(s)} is given by

(*)

and f(t) = 0 for t < 0. This result is called the complex inversion integral or formula. It
is also known as Bromwich's integral formula. The result provides a direct means for
obtaining the inverse Laplace transform of a given function F(s).

The integration in (1) is to be performed along a line s = y + iy in the complex plane
where s = x + iy. The real number y is chosen so that s = y lies to the right of all the
singularities (poles, branch points or essential singularities) but is otherwise arbitrary.

THE BROMWICH CONTOUR

In practice, the integral in (1) is evaluated
by considering the contour integral

(*)

where C is the contour of Fig. 14-1. This con-
tour, sometimes called the Bromwich contour,
is composed of line AB and the arc BJKLA of
a circle of radius R with center at the origin O.

If we represent arc BJKLA by r, it follows
from (1) that since T = -\/R" — y2, Fig. 14-1

(3)

USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

Suppose that the only singularities of F(s) are poles all of which lie to the left of the
line s = y for some real constant y. Suppose further that the integral around r in (5)
approaches zero as /?-*<». Then by the residue theorem we can write (3) as

/(*) = sum of residues of est F(s) at poles of F(s)

= 2 residues of estF(s) at poles of F(s) ^

324
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A SUFFICIENT CONDITION FOR THE INTEGRAL AROUND r
TO APPROACH ZERO

The validity of the result (4) hinges on the assumption that the integral around r in (3)
approaches zero as R-* °°. A sufficient condition under which this assumption is correct
is supplied in the following
Theorem 14-1. If we can find constants M > 0, k > 0 such that on r (where s = Re19),

(5)

then the integral around r of estF(s) approaches zero as R-*•<*>, i.e.,

(*)

The condition (5) always holds if F(s) = P(s)/Q(s) where P(s) and Q(s) are polynomials
and the degree of P(s) is less than the degree of Q(s).

The result is valid even if F(s) has other singularities besides poles.

MODIFICATION OF BROMWICH CONTOUR
IN CASE OF BRANCH POINTS

If F(s) has branch points, extensions of the
above results can be made provided that the
Bromwich contour is suitably modified. For
example, if F(s) has only one branch point at
s = 0, then we can use the contour of Fig. 14-2.
In this figure, BDE and LNA represent arcs of
a circle of radius R with center at origin O,
while HJK is the arc of a circle of radius e with
center at 0. For details of evaluating inverse
Laplace transforms in such cases see Prob. 14.9. Fig. 14-2

CASE OF INFINITELY MANY SINGULARITIES

If we wish to find the inverse Laplace transform of functions which have infinitely
many isolated singularities, the above methods can be applied. In such case the curved
portion of the Bromwich contour is chosen to be of such radius Rm so as to enclose only a
finite number of the singularities and so as not to pass through any singularity. The
required inverse Laplace transform is then found by taking an appropriate limit as m-*•<*>.
See Problems 14.13 and 14.14.

APPLICATIONS TO BOUNDARY-VALUE PROBLEMS

The method of Laplace transforms combined with the complex inversion formula pro-
vide powerful tools in the solution of various boundary-value problems arising in science
and engineering. See Problems 14.15-14.19.
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Solved Problems

THE COMPLEX INVERSION FORMULA
14.1. Establish the validity of the complex inversion formula.

We have, by definition, Then

Letting s = y + iy, ds = i dy, this becomes

by Fourier's integral theorem [see Chapter 8]. Thus we find

as required.
In the above proof, we assume that e~yuf(u) is absolutely integrable in (0,«°), i.e.

converges, so that Fourier's integral theorem can be applied. To insure this
condition it is sufficient that f(t) be of exponential order y where the real number y is chosen so that
the line # = y in the complex plane lies to the right of all the singularities of F(s). Except for
this condition, y is otherwise arbitrary.

14.2. Let r denote the curved portion BJPKQLA
of the Bromwich contour [Fig. 14-3] with
equation s = Rew, 00 S= 6 S= 2ir — 00, i.e. r is
the arc of a circle of radius R with center
at O. Suppose that on r we have

where k > 0 and M are constants. Show
that

Fig. 14-3

If r1( r2, T3 and T4 represent arcs BJ, JPK,
KQL and LA respectively, we have

Then if we can show that each of the integrals on the right approach zero as R -» « we will have
proved the required result. To do this we consider these four integrals.

Case 1. Integral over T1 or BJ.

Along Tj we have, since s = Reie, e0 g 8 ̂  ir/2,
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Then

where we have used the given condition \F(s)\ § M/Rk on rt and the transformation e = ir/2 — $
where 00 = ir/2 — 00 = sin"1 (y/R).

Since sin <f> S sin <f>0 S cos «0 = y/R, this last integral is less than or equal to

But as R-*<*>, this last quantity approaches zero [as can be seen by noting, for example, that
sin-1 (y/R) ~ y/R for large R], Thus lim 7X = 0.

R-+ oo

Case 2. Integral over T2 or JPK.

Along T2 we have, since s = Rew, ir/2 £ e S v,

Then, as in Case 1, we have

upon letting 0 = v/2 + <f>.

Now sin 0 S 2<f>/ir for 0 S <f> S ir/2 [see Problem 14.3], so that the last integral is less than
or equal to

which approaches zero as Thus

Case 3. Integral over Ts or KQL.

This case can be treated in a manner similar to Case 2 [see Problem 14.28(a)].

Case 4. Integral over l\ or LA.

This case can be treated in a manner similar to Case 1 [see Problem 14.28(6)].

14.3. Show that sin 0 § 2<£/ir for 0 ̂  <£ g ir/2.
Method 1. Geometrical proof.

From Fig. 14-4, in which curve OPQ represents
an arc of the sine curve y = sin 0 and y = 2<j>/ir
represents line OP, it is geometrically evident that
sin 0 g 2(6/jr for 0 S 4, S jr/2.

Method 2. Analytical proof. Fig. 14-4

Consider G(<&) = &B£. We have
<t>

|? = G'(0) = * C O » ^ - r i H » (i)
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If . then

(2)

Thus for 0 g -f < T/2, H'(<j>) S 0 and #(0) is a decreasing function. Since H(0) = 0, it follows
that H(<t>) g 0. Then from (1) we see that G'(<f>) £ 0, or <?(#) is a decreasing function. Denning
G(0) — lim G(0) = 1, we see that G(0) decreases from 1 to 2Ar as <f> goes from 0 to ?r/2. Thus

cf>-»0

from which the required result follows.

(
USE OF RESIDUE THEOREM IN FINDING INVERSE LAPLACE TRANSFORMS

14.4. Suppose that the only singularities of F(s) are poles which all lie to the left of the line
x = y for some real constant y. Suppose further that F(s) satisfies the condition
given in Problem 14.2. Prove that the inverse Laplace transform of F(s) is given by

f(t) = sum of residues of estF(s) at all the poles of F(s)

We have

where C is the Bromwich contour of Problem 14.2 and T is the circular arc BJPKQLA of Fig. 14-3.
By the residue theorem,

—: <fc est F(s) ds = sum of residues of est F(s) at all poles of F(s) inside C2rtJc

= 2 residues inside C

Thus

Taking the limit as R -» °°, we find by Problem 14.2,

f(t) = sum of residues of est F(s) at all the poles of F(s)

14.5. (a) Show that satisfies the condition in Problem 14.2.

(6) Find the residue of at the pole s — 2.

(c) Evaluate by using the complex inversion formula.

(a) For s = Re^, we have
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for large enough R (e.g. R > 4). Thus the condition in Problem 14.2 is satisfied when fc = 1,
M = 2. Note that in establishing the above we have used the result |«t — z2| ^ |zi| — |«2| which
follows from the result [a + b\ S \a\ + |6| if a = «i — «2, & = «2-

(6) The residue at the simple pole s — 2 is

(c) By Problem 14.4 and the results of parts (a) and (6), we see that

sum of residues of est f(s) = e2t

Note that the Bromwich contour in this case is chosen so that y is any real number greater
than 2 and the contour encloses the pole s — 2.

14.6. Evaluate by using the method of residues.

Since the function whose Laplace inverse is sought satisfies condition (5) of the theorem on
page 325 [this can be established as in Problem 14.5], we have

= 2 residues of at poles s — —1 and s = 2

Now the residue at simple pole s = —1 is

and the residue at double pole s = 2 is

Then

14.7. Evaluate

As in Problem 14.6, the required inverse is the sum of the residues of

at the poles « = —1 and s = 1 which are of orders three and two respectively.
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Now the residue at s — —1 is

and the residue at 8 = 1 is

Then

14.8. Evaluate

We have

The required inverse is the sum of the residues of

at the poles s = i and s = — i which are of order two each.

Now the residue at s = i is

and the residue at s = —i is

which can also be obtained from the residue at s = i by replacing i by —i. Then

Compare with Problem 4.37, page 113.

INVERSE LAPLACE TRANSFORMS OF
FUNCTIONS WITH BRANCH POINTS

14.9. Find by use of the complex

inversion formula.
By the complex inversion formula, the re-

quired inverse Laplace transform is given by

w
Since 8 = 0 is a branch point of the integrand,
we consider
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where C is the contour of Fig. 14-5 consisting of the line AB (s = y + iy), the arcs BDE and LNA
of a circle of radius R and center at origin O, and the arc HJK of a circle of radius e with center
at 0.

Since the only singularity s = 0 of the integrand is not inside C, the integral on the left is zero
by Cauchy's theorem. Also, the integrand satisfies the condition of Problem 14.2 so that on taking
the limit as R -* <*> the integrals along BDE and LNA approach zero. It follows that

(2)

Along J3H, s = xe™, V« — V* «rt/2 = *V* and as s goes from — R to —«, x goes from R to e.
Hence we have

Similarly, along KL, s = xe-™, \fs = -\fx e~'!ri/2 = —i\fx and as s goes from —e to —R, x goes
from « to R. Then

Along HJK, s = eeli and we have

Thus (2) becomes

Since the limit can be taken underneath the integral sign, we have

and so we find ($)

This can be written (see Problem 14.10) as

U)

(3)
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14.10. Prove that and tnus establish the final result
(4) of Problem 14.9.

Letting x = t&, the required integral becomes

Then differentiating with respect to a and using Problem 9, we have

Hence, using the fact that / = 0 when a, = 0,

and the required result is established.

14.11. Find XT1 {<roVr}.
H -C {/(*)} = F(s), then we have £{f'(t)} = «F(s)-/(0) = »/(«) if F(0) = 0. Thus if

•C-itfX*)} = /(«) and /(O) = 0, then ^-i{«^(«)} = /'(*).
By Problems 14.9 and 14.10, we have

so that /(O) = 0 and

Then it follows that

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY
MANY SINGULARITIES

14.12. Find all the singularities of

Because of the presence of V«, it would appear that * = 0 is a branch point. That this is
not so, however, can be seen by noting that

from which it is evident that there is no branch point at 8 = 0. However, there is a simple pole
at 8 = 0.

The function F(s) also has infinitely many poles given by the roots of the equation



CHAP. 14] COMPLEX INVERSION FORMULA FOR LAPLACE TRANSFORMS 333

These occur where e2^ = -1 = 6'rt+2k1ri k = 0, ±1, ±2, ...

from which Vs = (k + $)*i or s = -(fc + £)V2

These are simple poles.

Thus F(s) has simple poles at

s = 0 and s = sn where sn = — (n — £)2ir2, w = 1,2,3,...

14.13. Find

The required inverse can be found by using
the Bromwich contour of Fig. 14-6. The line AB
is chosen so as to lie to the right of all the poles
which, as seen in Problem 14.12, are given by

We choose the Bromwich contour so that the
curved portion BDEFGHA is an arc of a circle
rm with center at the origin and radius

where m is a positive integer. This choice insures
that the contour does not pass through any of
the poles. Fig. 14-6

We now find the residues of

at the poles. We have:

Residue at 8 = 0 is

Residue at s = -(n-$)W, n = 1,2,3,... is

If Cm is the contour of Fig. 14-6, then

Taking the limit as m -> » and noting that the integral around rm approaches zero, we find
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14.14. Find where 0 < x < a.

The f u n c t i o n h a s poles at s = 0 and at values of s for which cosh sa = 0,
i.e.,

Because of the presence of sz, it would appear that 8 = 0 is a pole of order two. However, by
observing that near 8 = 0,

we see that s = 0 is a pole of order one, i.e. a simple pole. The poles sk are also simple poles.

Proceeding as in Problem 14.13, we obtain the residues of es*/(s) at these poles.

Residue at s — 0 is

using L'Hospital's rule.

Residue at s = sk is

By an appropriate limiting procedure similar to that used in Problem 14.13, we find on taking
the sum of the residues the required result,
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APPLICATIONS TO BOUNDARY-VALUE PROBLEMS

14.15. A semi-infinite solid x > 0 [see Fig. 14-7]
is initially at temperature zero. At time
t = 0, a constant temperature w» > 0 is
applied and maintained at the face x = 0.
Find the temperature at any point of the
solid at any later time t > 0.

The boundary-value problem for the deter-
mination of the temperature u(x, t) at any point x
and any time t is Fig. 14-7

u(x, 0) = 0, u(0, t) = MO, \u(x, t)\ < M

where the last condition expresses the requirement that the temperature is bounded for all x and t.

Taking Laplace transforms, we find

(1)

where (2)

and U = U(x, s) is required to be bounded.

Solving (1), we find

Then we choose cl = 0 so that u is bounded as « -» «, and we have

(*)
From (2) we have c2 = tt</s, so that

Hence by Problems 14.9 and 14.10 we find

14.16. Work Problem 15 if at t = 0 the temperature applied is given by g(t), t>0.

The boundary-value problem in this case is the same as in the preceding problem except that
the boundary condition u(Q, t) - MO is replaced by w(0, t) = g(t). Then if the Laplace transform
of ff(t) is G(s), we find from (3) of Problem 14.15 that c2 = G(s) and so

Now by Problem 14.11,

Hence by the convolution theorem,

on letting v — x2/iicu.
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14.17. A tightly stretched flexible string has its ends fixed at x = 0 and x = I. At time
t = 0 the string is given a shape defined by f(x) = nx(l — x), where ju. is a constant,
and then released. Find the displacement of any point x of the string at any time
t>0.

The boundary-value problem is

Taking Laplace transforms, we find, if Y(x, s) = „£ {y(x, t)},

where (2)

The general solution of (1) is

(S)

Then from conditions (2) we find

(4)

so that (S) becomes

By using residues we find

or

14.18. A semi-infinite beam which is initially at rest on the x axis is at time t — 0 given a
transverse displacement h at its end x = 0. Determine the transverse displacement
y(x, t) at any position x > 0 and at any time t > 0.

The boundary-value problem is

W

(*)
Taking Laplace transforms, we find

Y(0,s) - his, Yxx(0,s) = 0, Y(x, s) is bounded (3)

The general solution of the differential equation is

From the boundedness condition we require ct = c2 = 0 so that

o r ( 1 )
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From the first and second boundary conditions in (3), we find c4 = 0 and c3 = h/s so that

The inverse Laplace transform is, by the complex
inversion formula,

To evaluate this we use the contour of Fig. 14-8 since
s = 0 is a branch point. Proceeding as in Problem 14.9,
we find, omitting the integrand for the sake of brevity,
that

Along EH, and we find FiS-14'8

Along KL, and we find

Along HJK, s = eeU and we find

Then (4) becomes

Letting u/2b = v2, this can be written

The result can also be written in terms of Fresnel integrals as

14.19. An infinitely long circular cylinder of unit
radius has a constant initial temperature Uo.
At t — 0 a temperature of 0°C is applied to
the surface and is maintained. Find the tem-
perature at any point of the cylinder at any
later time t.

If (r, <f>, z) are cylindrical coordinates of any point
of the cylinder and the cylinder has its axis coinci-
dent with the z axis [see Fig. 14-9], it is clear that
the temperature is independent of <f> and z and can
thus be denoted by u(r, t). The boundary-value
problem is

(1)

u(l, t) = 0, u(r, 0) = u0, \u(r, t)\ < M (2) Fig. 14-9
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It is convenient to consider instead of (1) the equation

and then to replace t by xt.

Taking Laplace transforms, we find

£7(1, s) = 0, U(r, s) is bounded

The general solution of this equation is given in terms of Bessel functions as

Since Y0(i\fsr) is unbounded as r-» 0, we must choose c2 = 0. Then

From 17(1, s) = 0, we find

Thus

By the inversion formula,

Now J0(i\fs) has simple zeros where i^/s = X1( X2, ... \n, .... Thus the integrand has simple poles
at s = —x|, re = 1,2,3, ... and also at s = 0. Furthermore it can be shown that the integrand
satisfies the conditions of Problem 14.2 so that the method of residues can be used.

We have:

Residue of integrand at s = 0 is

Residue of integrand at s = —X^ is

where we have used L'Hospital's rule in evaluating the limit and also the fact that J'0(u) = —J^u).
Then

Replacing t by «*, we obtain the required solution
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Supplementary Problems
THE COMPLEX INVERSION FORMULA AND USE OF RESIDUE THEOREM

14.20. Use the complex inversion formula to evaluate

(a)

14.21. Find the inverse Laplace transform of each of the following using the complex inversion formula:

14.22. (a) Show that F(s) = -= p , 0 satisfies the conditions of the inversion formula. (6) Find
JL~i{F(s)}. * 3s + 2

V
14.23. Evaluate justifying all steps. ^<-__ ,_^^

9 N* D

14.24. (a) E v a l u a t e j u s t i f y i n g all steps and / \v
/ _\^ x_

(b) check your answer. T . y .

14.25. (a) Evaluate ds around the contour C \^

shown in Fig. 14-10 where R is 3 and y > 1. "̂"""~ ~"^
(6) Give an interpretation of your answer as far as

Laplace transform theory is concerned. Fig. 14-10

14.26. Use the inversion formula to e v a l u a t e w h e r e a and b are any positive
constants.

14.27. Use the inversion formula to work: (a) Problem 4.39, page 113, (6) Problem 4.40, page 113,
(c) Problem 4.41, page 114, (d) Problem 4.78(c), page 118.

14.28. Complete the proofs of (a) Case 3 and (6) Case 4 of Problem 14.2.

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH BRANCH POINTS

14.29. Find using the complex inversion formula.

14.30. Find . by the inversion formula.

14.31. Show thatby using the inversion formula.

14.32. Find by using the complex inversion formula.

14.33. (a) Use the complex inversion formula to evaluate J^*1 {s~1/3} and (6) check your result by another
method.

14.34. E v a l u a t e b y using the inversion formula.
14.35. Evaluate by the inversion formula.

INVERSE LAPLACE TRANSFORMS OF FUNCTIONS WITH INFINITELY MANY SINGULARITIES

14.36. Find asing the complex inversion formula.

14.37. Prove that

14.38. Find

by using the inversion formula
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14.39. By using the complex inversion formula, prove that

14.40. Show that

14.41. Show that for

APPLICATIONS TO BOUNDARY-VALUE PROBLEMS

14.42. A semi-infinite solid « S 0 is initially at temperature zero. At t = 0 the face x = 0 is suddenly
raised to a constant temperature u0 and kept at this temperature for a time t0, after which the
temperature is immediately reduced to zero. Show that after an additional time t0 has elapsed,
the temperature is a maximum at a distance given by * = 2V«*o m 2 where K is the diffusivity,
assumed constant.

14.43. A semi-infinite solid x > 0 has its initial temperature equal to zero. A constant heat flux A is
applied at the face * = 0 so that —Kux(Q,t) = A. Show that the temperature at the face after

time t is

14.44. Find the temperature at any point x > 0 of the solid in Problem 14.43.

14.45. A solid 0 S x S I is insulated at both ends x = 0 and x = I. If the initial temperature is equal
to ax(l — x) where a is a constant, find the temperature at any point x and at any time t.

14.46. A tightly stretched flexible string has its ends fixed at * = 0 and x = I. At t = 0 its midpoint
is displaced a distance h and released. Find the resulting displacement at any time t > 0.

14.47. Solve the boundary-value problem

and interpret physically.

14.48. At t = 0, a semi-infinite solid x > 0 which is at temperature zero has a sinusoidal heat flux
applied to the face x = 0 so that — Kux(Q, t) = A + B sin«t, t > 0. Show that the temperature
of the face at any later time is given by

14.49. A solid, 0 < x < I, is initially at constant temperature u0 while the ends * = 0 and x = I are
maintained at temperature zero. Show that the temperature at any position * at any time t is
given by

14.50. A beam has its ends hinged at x = 0 and x = I. At time t = 0, a concentrated transverse load
of magnitude w is suddenly applied at the midpoint. Show that the resulting transverse displace-
ment of any point x of the beam at any time t > 0 is

if 0 < x < 1/2, while the corresponding result for 1/2 < x < I is obtained by symmetry.
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14.51. An infinite circular cylinder of unit radius has its initial temperature zero. A constant flux A is
applied to the convex surface. Show that the temperature at points distant r from the axis at any
time t is given by

where .Xn are the positive roots of «70 (X) = 0.

14.52. A cylinder of unit radius and height has its circular ends maintained at temperature zero while its
convex surface is maintained at constant temperature u0. Assuming that the cylinder has its axis
coincident with the z axis, show that the steady-state temperature at any distance r from the axis
and z from one end is

Answers to Supplementary Problems

14.20.

14.21.

14.22.

14.23.

14.34.

14.35.

14.38.

14.44.

14.45.

14.46.

14.47.



Chapter 15

DEFINITION OF A MATRIX

A matrix of order m x n, or m by n matrix, is a rectangular array of numbers having
m rows and n columns. It can be written in the form

(1)

Each number ajk in this matrix is called an element. The subscripts j and k indicate
respectively the row and column of the matrix in which the element appears.

We shall often denote a matrix by a letter, such as A in (1), or by the symbol (a^) which
shows a representative element.

A matrix having only one row is called a row matrix [or row vector] while a matrix
having only one column is called a column matrix [or column vector]. If the number of
rows m and columns n are equal the matrix is called a square matrix of order n x n or
briefly n. A matrix is said to be a real matrix or complex matrix according as its elements
are real or complex numbers.

SOME SPECIAL DEFINITIONS AND OPERATIONS INVOLVING MATRICES

1. Equality of Matrices. Two matrices A = (ajk) and B = (bik) of the same order [i.e.
equal numbers of rows and columns] are equal if and only if aik = bik.

2. Addition of Matrices. If A = (aik) and B = (bjk) have the same order we define the
sum of A and B as A + B = (aik + bjk).

Example 1. If then

Note that the commutative and associative laws for addition are satisfied by
matrices, i.e. for any matrices A, B, C of the same order

A + B = B + A, A + (B + C) = (A +B) + C (2)

3. Subtraction of Matrices. If A = (a}k), B = (bik) have the same order, we define the
difference of A and B as A - B = (ajk - bik).

Example 2. If A and B are the matrices of Example 1, then

342

<M*ti|*i;
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4. Multiplication of a Matrix by a Number. If A - (aik) and X is any number [or scalar],
we define the product of A by A. as XA = A\ = (Attjic).

Example 3. If A is the matrix of Example 1 and X = 4, then

5. Multiplication of Matrices. If A = (ajfc) is an mxn matrix while B = (&#) is an
nxp matrix, then we define the product A-B or AB of A and 5 as the matrix
C = (Cjk) where

(3)

and where C is of order mxp.

Note that matrix multiplication is defined if and only if the number of columns of
A is the same as the number of rows of B. Such matrices are sometimes called
conformable.

Example 4. Let Then

Note that in general AB ¥* BA, i.e. the commutative law for multiplication of
matrices is not satisfied in general. However, the associative and distributive laws
are satisfied, i.e.

A(BC) = (AB)C, A(B + C) = AB + AC, (B + C)A = BA + CA (4)

A matrix A can be multiplied by itself if and only if it is a square matrix. The
product A - A can in such case be written A2. Similarly we define powers of a square
matrix, i.e. A3 = A'A2, A4 = A«A3, etc.

6. Transpose of a Matrix. If we interchange rows and columns of a matrix A, the
resulting matrix is called the transpose of A and is denoted by AT. In symbols, if
A = (ajfc) then AT = (akj).

Example 5. The transpose of is

We can prove that

(5)

1. Symmetric and Skew-Symmetric Matrices. A square matrix A is called symmetric if
AT — A and skew-symmetric if AT = —A.

Example 6. The matrix is symmetric while is skew-symmetric.

Any real square matrix [i.e. one having only real elements] can always be expressed
as the sum of a real symmetric matrix and a real skew-symmetric matrix.
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8. Complex Conjugate of a Matrix. If all elements ajk of a matrix A are replaced by
their complex conjugates aik, the matrix obtained is called the complex conjugate of A
and is denoted by A. .

9. Hermitian and Skew-Hermitian Matrices. A square matrix A which is the same as
the complex conjugate of its transpose, i.e. if A = AT, is called Hermitian. If
A = —AT, then A is called skew-Hermitian. If A is real these reduce to symmetric
and skew-symmetric matrices respectively.

10. Principal Diagonal and Trace of a Matrix. If A = (aik) is a square matrix, then the
diagonal which contains all elements ajk for which j = k is called the principal or
main diagonal and the sum of all such elements is called the trace of A,

Example 7. The principal or main diagonal of the matrix

is indicated by the shading, and the trace of the matrix is 5 + 1 + 2 = 8.
A matrix for which ajk = 0 when j ¥= k is called a diagonal matrix.

11. Unit Matrix. A square matrix in which all elements of the principal diagonal are
equal to 1 while all other elements are zero is called the unit matrix and is denoted by
/. An important property of 7 is that

AI •= IA = A, I* = I, % = 1,2,3, ... (6)

The unit matrix plays a role in matrix algebra similar to that played by the
number one in ordinary algebra.

12. Zero or Null Matrix. A matrix whose elements are all equal to zero is called the
null or zero matrix and is often denoted by O or simply 0. For any matrix A having
the same order as 0 we have

A + 0 = 0 + A=A (7)
Also if A and 0 are square matrices, then

AO = OA = 0 (8)

The zero matrix plays a role in matrix algebra similar to that played by the number
zero of ordinary algebra.

DETERMINANTS

If the matrix A in (1) is a square matrix, then we associate with A a number denoted by

W

called the determinant of A of order n, written det (A). In order to define the value of a
determinant, we introduce the following concepts.

1. Minor. Given any element ajk of A we associate a new determinant of order (n — 1)
obtained by removing all elements of the jth row and Mh column called the minor of ajk.
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Example 8. The minor corresponding to the element 5 in the 2nd row and 3rd column of the
fourth order determinant

which is obtained by removing the elements shown shaded.

2. Cofactor. If we multiply the minor of ajfc by (-l)'+k, the result is called the coj'actor
of cijk and is denoted by A}k.

Example 9. The cofactor corresponding to the element 5 in the determinant of Example 8 is
(—l)2+s times its minor, or

The value of a determinant is then defined as the sum of the products of the elements
in any row [or column] by their corresponding cofactors and is called the Laplace expansion.
In symbols,

(10)

We can show that this value is independent of the row [or column] used [see Problem 15.7],

THEOREMS ON DETERMINANTS

Theorem 15-L The value of a determinant remains the same if rows and columns are
interchanged. In symbols, det (A) = det (AT).

Theorem 15-2. If all elements of any row [or column] are zero except for one element, then
the value of the determinant is equal to the product of that element by its
cofactor. In particular, if all elements of a row [or column] are zero the
determinant is zero.

Theorem 15-3. An interchange of any two rows [or columns] changes the sign of the
determinant.

Theorem 15-4. If all elements in any row [or column] are multiplied by a number, the
determinant is also multiplied by this number.

Theorem 15-5. If any two rows [or columns] are the same or proportional, the determinant
is zero.

Theorem 15-6. If we express the elements of each row [or column] as the sum of two terms,
then the determinant can be expressed as the sum of two determinants
having the same order.

Theorem 15-7. If we multiply the elements of any row [or column] by a given number and
add to corresponding elements of any other row [or column], then the value
of the determinant remains the same.

Theorem 15-8. If A and B are square matrices of the same order, then
det (AS) = det (A) det (B) (11)
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Theorem 15-9. The sum of the products of the elements of any row [or column] by the
cofactors of another row [or column] is zero. In symbols,

(12)

If p = q, the sum is det (A) by (10).

Theorem 15-10. Let v\, v2,..., vn represent row vectors [or column vectors] of a square
matrix A of order n. Then det (A) - 0 if and only if there exist constants
[scalars] Ai, A2, ..., \n not all zero such that

(13)

where O is the null or zero row matrix. If condition (13) is satisfied we
say that the vectors v\, Vz,..., vn are linearly dependent. Otherwise they
are linearly independent. A matrix A such that det (A) = 0 is called a
singular matrix. If det (A) ¥° 0, then A is a non-singular matrix.

In practice we evaluate a determinant of order n by using Theorem 15-7 successively
to replace all but one of the elements in a row or column by zeros and then using Theorem
15-2 to obtain a new determinant of order » —1. We continue in this manner, arriving
ultimately at determinants of orders 2 or 3 which are easily evaluated.

INVERSE OF A MATRIX

If for a given square matrix A there exists a matrix B such that AB — I, then B is
called an inverse of A and is denoted by A"1. The following theorem is fundamental.

Theorem 15-11. If A is a non-singular square matrix of order n [i.e. det(A)^0], then
there exists a unique inverse A"1 such that AA"1 = A"1 A = 7 and we
can express A"1 in the following form

(U)

where (Ajk) is the matrix of cofactors ASk and (Ajfc)T = (Aki) is its
transpose.

The following express some properties of the inverse:
(15)

ORTHOGONAL AND UNITARY MATRICES

A real matrix A is called an orthogonal matrix if its transpose is the same as its
inverse, i.e. if AT = A"1 or ATA = 7.

A complex matrix A is called a unitary matrix if its complex conjugate transpose is
the same as its inverse, i.e. if AT = A"1 or ATA = 7. It should be noted that a real
unitary matrix is an orthogonal matrix.

ORTHOGONAL VECTORS

In Chapter 5 we found that the scalar or dot product of two vectors ad + a2j + ask and
&ii + &2J + &sk is ai&i + tt2&2 + as&s and that the vectors are perpendicular or orthogonal if
«i&i + oz&2 + a3&s = 0. From the point of view of matrices we can consider these vectors
as column vectors
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from which it follows that
This leads us to define the scalar product of real column vectors A and B as ATB and to
define A and B to be orthogonal if ATB = 0.

It is convenient to generalize this to cases where the vectors can have complex com-
ponents and we adopt the following definition:
Definition 1. Two column vectors A and B are called orthogonal if ATB = 0, and ATB

is called the scalar product of A and B.

It should be noted also that if A is a unitary matrix then ATA = 1, which means that the
scalar product of A with itself is 1 or equivalently A is a unit vector, i.e. having length 1.
Thus a unitary column vector is a unit vector. Because of these remarks we have the
following
Definition 2. A set of vectors Xi, X2, ... for which

is called a unitary set or system of vectors or, in the case where the vectors
are real, an orthonormal set or an orthogonal set of unit vectors.

SYSTEMS OF LINEAR EQUATIONS

A set of equations having the form

(16)

is called a system of m linear equations in the n unknowns x\,xz,...,xn. If r\,r2,...,rn
are all zero the system is called homogeneous. If they are not all zero it is called non-
homogeneous. Any set of numbers x\,xz, ...,%«. which satisfies (16) is called a solution of
the system.

In matrix form (16) can be written

(17)

or more briefly (18)

where A,X,R represent the corresponding matrices in (17).

SYSTEMS OF n EQUATIONS IN n UNKNOWNS. CRAMER'S RULE
If m = n and if A is a non-singular matrix so that A"1 exists, we can solve (17) or

(18) by writing
(iy)

and the system has a unique solution.
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Alternatively we can express the unknowns x\,xz,.. .,xn as

(20)

where called the determinant of the system, is given by (9) and Afc,
k = 1,2, ..., n is the determinant obtained from A by removing the fcth column and
replacing it by the column vector R. The rule expressed in (20) is called Cramer's rule.

The following four cases can arise.
Case 1, In this case there will be a unique solution where not all x* will

be zero.
Case 2, In this case the only solution will be x\ = 0, x% = 0, ..., xn = 0,

i.e. X = 0. This is often called the trivial solution.

Case 3, A = 0, R = 0. In this case there will be infinitely many solutions other than
the trivial solution. This means that at least one of the equations can be obtained
from the others, i.e. the equations are linearly dependent.

Case 4, A = 0, R ¥* 0. In this case infinitely many solutions will exist if and only if all
of the determinants Afe in (20) are zero. Otherwise there will be no solution.

The cases where m ¥* n are considered in Problems 15.93-15.96.

EIGENVALUES AND EIGENVECTORS

Let A = (Ojk) be an n x n matrix and X a column vector. The equation
AX = AX (21)

where A is a number can be written as

(22)

or

(23)

The equation (23) will have non-trivial solutions if and only if

(24)

which is a polynomial equation of degree n in A. The roots of this polynomial equation are
called eigenvalues or characteristic values of the matrix A. Corresponding to each eigen-
value there will be a solution X ¥* 0, i.e. a non-trivial solution, which is called an eigen-
vector or characteristic vector belonging to the eigenvalue. The equation (24) can also
be written

det(A-A7) = 0 (25)

and the equation in A is often called the characteristic equation.
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THEOREMS ON EIGENVALUES AND EIGENVECTORS
Theorem 15-12. The eigenvalues of a Hermitian matrix [or symmetric real matrix] are

real. The eigenvalues of a skew-Hermitian matrix [or skew-symmetric
real matrix] are zero or pure imaginary. The eigenvalues of a unitary
[or real orthogonal matrix] all have absolute value equal to 1.

Theorem 15-13. The eigenvectors belonging to different eigenvalues of a Hermitian matrix
[or symmetric real matrix] are orthogonal.

Theorem 15-14 [Cayley-Hamilton]. A matrix satisfies its own characteristic equation
[see Problem 15.40].

Theorem 15-15 [Reduction of matrix to diagonal form]. If a non-singular matrix A has
distinct eigenvalues Xi, A2, A.S, ... with corresponding eigenvectors written
as columns in the matrix

then

i.e. B~1AB, called the transform of A by B, is a diagonal matrix containing
the eigenvalues of A in the main diagonal and zeros elsewhere. We say
that A has been transformed or reduced to diagonal form. See Problem
15.41.

Theorem 15-16 [Reduction of quadratic form to canonical form].
Let A be a symmetric real matrix, for example,

Then if , we obtain the quadratic form

The cross product terms of this quadratic form can be removed by letting X = BU
where U is the column vector with elements u\, u2, u3 and B is an orthogonal matrix which
diagonalizes A. The new quadratic form in u\, Uz, u3 with no cross product terms is called
the canonical form. See Problem 15.43. A generalization can be made to Hermitian quad-
ratic forms [see Problem 15.114].

OPERATOR INTERPRETATION OF MATRICES
If A is an n x n matrix, we can think of it as an operator or transformation acting on a

column vector X to produce AX which is another column vector. With this interpretation
equation (21) asks for those vectors X which are transformed by A into constant multiples
of themselves [or equivalently into vectors which have the same direction but possibly
different magnitude].

Then if x
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If case A is an orthogonal matrix, the transformation is a rotation and explains why
the absolute value of all the eigenvalues in such case are equal to one [Theorem 15-12], since
an ordinary rotation of a vector would not change its magnitude.

The ideas of transformation are very convenient in giving interpretations to many
properties of matrices.

Solved Problems
OPERATIONS WITH MATRICES

15.1. If find (a) A + B, (b) A-B,

(c) 2A - 3C, (d) 3A + 2B- 4(7, (e) AB, (/) BA, (g) (AB)C, (h) A(BC), (i) AT + BT,
(j) BTAT.

(a)

(6)

<«)

(d)

(')

(/)

Note that AB ¥= BA using (e), illustrating the fact that the commutative law for products
does not hold in general.

(9)

(K)

Note that (AB)C = A(BC) using (g), illustrating the fact that the associative law for
products holds.

(i)

Note that AT + B* = (A + B)? using (a).

0)

Note that BTAf = (AB)? using (e).



CHAP. 15] MATRICES 351

15.2. If A = B = show that

(A+B)2 = A2 + AB + BA + B2

We have

T h e n ( A + B ) 2 = (A+B)(A+B) =

Now

Thus A* + AB + BA + B2 = \ = (A + B)2

153. Prove that any real square matrix can always be expressed as the sum of a real
symmetric matrix and a real skew-symmetric matrix.

If A is any real square matrix, then
A = $(A+AT) + %(A-AT)

But since (A+A?)? - AT + A = A + AT, it follows that £(A+AT) is symmetric. Also, since
(A-AT)i = AT -A = -(A-AT), it follows that %(A-AT) is skew-symmetric. The required
result is thus proved.

15.4. Show that the matrix is Hermitian.

We have Thus A is Hermitian.
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15.5. Prove that a unit matrix 7 of order n commutes with any square matrix A of order
n and the resulting product is A.

We illustrate the proof for n = 3. In such case

Then

i.e. IA = AI = A.

Extensions are easily made for n > 3.

DETERMINANTS
15.6. Use the definition of a determinant [Laplace expansion] as given on page 345 to

evaluate a determinant of (a) order 2, (&) order 3.

(a) Let the determinant b « U s e the elements of the f i rs t row. The corresponding
cofactors are

Then by the Laplace expansion the determinant has the value

The same value is obtained by using the elements of the second row [or first and second
columns].

(6) Let the determinant be The cofactors of the elements in the first row are

Then the value of the determinant is

The same value is obtained by using elements of the second or third rows [or first, second and
third columns].
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15.7. Prove that the value of a determinant remains the same regardless of which row [or
column] is taken for the Laplace expansion.

Consider the determinant A = (ajk) of order n. The result is true for n = 2 by Problem 15.6.
We use proof by induction, i.e. assuming it to be true for order n — 1 we shall prove it true for
order n. The plan will be to expand A using two different rows p and q and show that the expan-
sions are the same.

Let us first expand A by elements in the pth row. Then a typical term in the expansion is

(1)

where Mpk is the minor corresponding to the cofactor Apk of Oj,k. Since this minor is of order
n — 1, any row can be used in its expansion.

We shall use the qth row where we assume that q > p since a similar argument holds if
q < p. This row consists of elements aqr where r ¥= k and corresponds to the (q — l)st row of Mpk.

Now if r < k, aqr is located in the rth column of Mpk so that in the expansion the term corre-
sponding to aqr is

(2)

where Mpkqr is the minor corresponding to the element aqr in Mpk. From (1) and (2) it follows that
a typical term in the expansion of A is

(»)
If r > k then aqr is located in the (r — l)st column and so there is an additional minus sign in (3).

If we now expand A by elements in the qih row, a typical term is

(4)

We can expand Mqr by elements in the pth row where p > q. As before if k> r, a typical term
in the expansion of Mqr is

(5)

From (4) and (5) we see that a typical term in the expansion of A is

(«)

which is the same as (3). If k < r an additional minus sign appears in (6), agreeing with the
case corresponding to r > k using the first expansion. Thus the required result is proved.

In a similar manner we can prove that expansion by columns is the same and gives the same
result as the expansion by rows [Theorem 15-1, page 345].

15.8. Evaluate by the Laplace expansion the determinant (a) using elements

in the first row and (&) using elements in the second row.

(a) Using elements in the first row, the expansion is

(6) Using elements in the second row, the expansion is
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15.9. Prove Theorem 15-4, page 345.
Let the determinant be

a)

and suppose that the elements in the fcth row are multiplied by X to give the determinant

(2)

Expanding (1) and (2) according to elements in the fcth row, we find respectively

(S)

(4)

from which . as required.

15.10. Prove Theorem 15-5, page 345.
(a) If two rows have the same elements, then the value of the determinant will not change if the

rows are interchanged. However, according to Theorem 15-3, page 345, the sign must change.
Thus we have A = —A or A = 0.

(6) If the two rows have proportional elements, then they can be made the same by factoring out
the proportionality constants and thus the determinant must be zero by (a).

15.11. Prove Theorem 15-6, page 345.
Write the determinant as

in which the first row has each element expressed as the sum of two terms. Then by the Laplace
expansion we have

W

where An, A12,.. .,Aln are the cofactors of the corresponding elements in the first row. But (1)
can be written as

as required. A similar procedure proves the result if any other row [or column] is chosen.
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15.12. Prove Theorem 15-7, page 345.
Suppose we multiply the elements of the second row of A = (ajk) by X and add to the elements

of the first row [a similar proof can be used for any other rows or columns]. Then the determinant
can be written as

But by Problem 15.11 this can be written as

Then the required result follows since the second determinant is zero because the elements of its
first and second rows are proportional [Theorem 15-5].

15.13. Evaluate

Multiplying the elements of the first row by —3,2,3 and adding to the elements of the second,
third and fourth rows respectively, we find

which by Theorem 15-7 has a value equal to that of the given determinant. Note that this new
determinant has three zeros in the 2nd column, which was precisely our intention in choosing the
numbers —3,2,3 in the first place.

Multiplying each element in the second column by its cofactor, we see that the value of the
determinant is

on removing the factor 5 from the second row, using Theorem 15-4.

Now multiplying the elements in the second row by 5 and —1 and adding to the elements of
the first and third rows respectively, we find

which on expanding by the elements in the second column gives
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15.14. Verify Theorem 15-8 if

The theorem states that det (AB) = det (A) det (B). Then since

it states that

or (7)(84) = (17)(14)
But since this is correct, the theorem is verified for this case.

15.15. Let vi - (2-1 3), vz = (1 2-1), va = (-3 4-7). (a) Show that Vi,v2fva are
linearly dependent. (6) Illustrate Theorem 15-10, page 346, by showing that

(a) We must show that there exist constants XL X2, X3 not all zero such that \lvl + X2v2 + X3v8 =
0 = (0 0 0). Now

when

Assuming that X3 = 1, for example, the equations become 2Xj + X2 = 3, Xj — 2X2 = 4,
3Xj — X2 = 7. Solving any two of these simultaneously, we find Xt = 2, X2 = —1. Thus
Xt = 2, X2 = —1, X3 = 1 provide the required constants.

(6) Multiplying the elements of the second row by —2,3 and adding to the first and third rows
respectively, the given determinant equals

15.16. Prove Theorem 15-9, page 346.
By definition the determinant

when expanded according to the elements of the pth row has the value

(1)

Let us now replace the elements opfc in the pth row of A by corresponding elements aqk of the gth
row where p ¥° q. Then two rows will be identical and the new determinant thus obtained will be
zero by Theorem 15-5. Since apk — a,qk, (l) is replaced by

i.e. (2)
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Similarly by using columns rather than rows we can show that

(»)

If p = q, then (2) and (3) become respectively

(4)

(5)

INVERSE OF A MATRIX

15.17. Prove that

We must show that AA~l — I, the unit matrix. To do this consider the product

Now by the rule for multiplying determinants [which is the same as that for multiplying matrices],
the element cpq in the resulting determinant is found by taking the sum of the products of elements
in the gth row of the first determinant and the pth column of the second determinant. We thus
have

But by the results of Problem 15.16,

It follows that

Then if det (A) ¥> 0, this can be written

and it thus follows that AB = I where

15.18. (a) Find the inverse of the m a t r i x a n d (6) check the answer by
direct multiplication.

(a) The matrix of cofactors of A is given by
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The transpose of this matrix is

Since det (A) = 35 [see Problem 15.8], we have

(6)

We can also show that A~1A = /. This supplies the required check.

15.19. Prove that (AB)~l = B^A'1.
Let X = (AB)-1. Then (AB)X = I where / is the unit matrix. By the associative law this

becomes A(BX) = I. Multiplying by A"1, we have A~1[A(BX)] = A~ll — A~l which again using
the associative law becomes (A~1A)(BX) = A"1 or I(BX) = A"1, i.e. BX - A'1. Multiplying by
B~l and using the associative law once more, we have B~1(BX) — B~1A~1

> (B~1B)X = B~1A~1,
IX = B~iA-i, i.e. X = B-1A~1, as required.

15.20. Prove that if A is a non-singular matrix, then det

Since A A ~ 1 = I, det (A A -') = det (/) = !. But by Theorem 15-8, det (A A ~») = det (A) det (A -').
Thus det (A-1) det (A) = 1 and the required result follows.

ORTHOGONAL AND UNITARY MATRICES. ORTHOGONAL VECTORS

15.21. Show that is an orthogonal matrix.

We have, using the fact that A is real,

since cos2 6 + sin2 e = 1. Thus A is an orthogonal matrix.

15.22. Show that is a unitary matrix.

Since A is complex, we must show that ATA = /. We have

so that A is a unitary matrix.
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15.23. If A is an orthogonal matrix, prove that det (A) = ±1.
If A is orthogonal, then ATA = I so that by Theorem 15-8, page 345,

det (A^A) = det (AT) det (A) = det/ = 1 (1)

But det(AT) = det (A) so that (1) becomes
[det (A)]* = 1 or det (A) = ±1

15.24. Show that the vectors

form an orthonormal set or system of vectors.
Since the vectors are real, we must show that

If j = k = 1, we have

T TSimilarly we find if j — k = 2 and j = k — 3, A2A2 = 1, A3A3 = 1. Thus A1(A2,As are unit
vectors.

To show the orthogonality of any two of the vectors consider, for example, j = 1, k = 2.
Then we have

T TSimilarly A1A3 = 0, A2A3 = 0 and so the vectors are mutually orthogonal. Thus the vectors
form an orthonormal system.

SYSTEMS OF LINEAR EQUATIONS

15.25. Prove Cramer's rule (20), page 348, for solving the system of equations (16), page
347, in the case where m = n.

The system of equations can be written

Multiplying by Akp and adding from k = 1 to «, we have

and

This can be written (i)

Now by equations (3) and (5) of Problem 15.16, we have
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Thus (1) becomes det

so that if A = det (A),

(2)

Now the numerator of (2) is a determinant in which the pth column is replaced by the column
vector (TI r2 ... rn)

T, and so Cramer's rule follows.

15.26. Work Problem 15.25 by using the inverse matrix.

As on page 347, we solve the system (17) or (18) in the form (19), i.e.

X = A~1R

Now

Thus we have

from which it follows that

agreeing with (2) of Problem 15.25.

15.27. Solve the system of equations

(a) by Cramer's rule and (6) by using inverse matrices.
(a) By Cramer's rule,

where the determinant of the coefficients is

See Problem 15.8. Evaluation of the other determinants yields the solution xl = 2, x2 = —3,
xs = —1.
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(6) The system can be written in matrix form as

CO

Now the inverse of the first matrix A in (1) was found in Problem 15.18, so that multiplying
both sides of (1) by this matrix we have on using the fact that A~1A = I,

Thus »i - 2, x2 = —3, xs — —1.
Geometrically the equations with xt = x, xz = y, xs = « represent three planes inter-

secting in the point (2, —3, —1).

15.28. Solve

Cramer's rule gives

where

Evaluation of the determinants gives formally

U)

illustrating the fact that the system has no solution.
On multiplying the first of the given equations by 2, the second by 3, and adding, we obtain

7*1 + 4a;2 — Sxa = 12 which is not consistent with the third equation given, i.e. 7xl + 4#2 — Sx3 — —4.
Thus the system of equations is inconsistent.

Geometrically the first two equations represent two planes which intersect in a line. The
third equation represents a plane which is parallel to this line. Theoretically the planes meet at
a point at infinity, which is a possible interpretation of (1).

15.29. Solve

In this case a formal application of Cramer's rule gives

since theoretically 0/0 can represent any number, our result illustrates the fact that the system
has infinitely many solutions.
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On multiplying the first equation by 2, the second by 3 and adding, we obtain the third
equation. Thus the third equation can be obtained from the first two and so is not needed. We
call the system of equations dependent or more precisely linearly dependent.

Geometrically the planes represented by the first two equations intersect in a line. The plane
represented by the third equation passes through the line.

To obtain possible solutions, assign different values to x3 for example. Thus if xs = 1, then
and we have a point on the line whose coordinates are Other solutions

can be obtained similarly.

15.30. Solve

Cramer's rule gives the solution [see Problem 15.8]

so that the only solution is the trivial solution.

Geometrically the equations represent three planes which intersect in the point (0,0,0).

15.31. Solve

Formal application of Cramer's rule gives

illustrating the fact that there are infinitely many solutions besides the trivial and obvious one
xl = 0, x2 — 0, #3 = 0. Such solutions can be found by assigning different values to x3 as in
Problem 15.29. Note that the third equation is obtained by adding twice the first equation to
three times the second equation, so the equations are dependent.

15.32. For what values of k will the system

have non-trivial solutions?
Solving formally by Cramer's rule, we would have

Then if A ¥= 0, the system would have the trivial solution x — 0, y = 0, z = 0. In order that
the system have non-trivial solutions, we must then have A = 0, i.e.

or

Solving, we find that k - 1, 9/4.
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EIGENVALUES AND EIGENVECTORS

15.33. Find the eigenvalues of the matrix

Method 1.

If we must consider the equation AX = \X, i.e.

or

Equating corresponding elements of these matrices, we find

w

This system will have non-trivial solutions if

(2)

Expansion of this determinant yields

X« - 6X2 + 11X - 6 = o or (X - 1)(\ - 2)(X - 3) = 0

Then the eigenvalues are X = 1,2,3.

Method 2.
We can write AX — \X as AX = \IX or (A — \I)X = 0 where / and 0 are the unit and

zero matrix and

Then non-trivial solutions will exist if det (A — X/) = 0 and we can then proceed as in method 1.
Note that equation (2) can be written at once by subtracting X from each of the diagonal elements
of A.

15.34. (a) Find eigenvectors corresponding to the eigenvalues of the matrix A in Problem
15.33 and (6) determine a set of unit eigenvectors.
(a) Corresponding to X = 1, equations (1) of Problem 15.33 become

Solving for x1 and xs in terms of x2 we find xs — 3x2, xl = 2x2. Then an eigenvector is

since any eigenvector is a scalar (constant) multiple of this.
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Similarly, corresponding to X = 2 equations (1) of Problem 15.33 lead to x3 = 2x2,
Xi — sc2 which in turn leads to the eigenvector

Finally if X = 3 we obtain x3 = x2, xl = —xz, giving the eigenvector

(b) The unit eigenvectors have the property that they have length 1, i.e. the sum of the squares
of their components = 1. To obtain such eigenvectors we divide each vector by the square
root of the sum of the squares of the components. Thus the above become respectively

15.35. Find the (a) eigenvalues and (&) eigenvectors of

(a) The eigenvalues are solutions of which gives X = 1,4,6.

(6) From the equations (A — \I)X = 0 we obtain

Then corresponding to X = 1 we find the eigenvector

Corresponding to X = 4 we find the eigenvector

Corresponding to X = 6 we find the eigenvector

15.36. Find the (a) eigenvalues and (6) eigenvectors of A =

(a) By the usual procedure the eigenvalues are solutions of

or

Then
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(6) The equations for determining the eigenvectors are found from

i.e. (-0

Using X = e'e = cos e + i sin e we find from (1), x2 = —ite, so that a corresponding eigen-
vector is

or simply

Using X = e~w = cose — i sin $ we find xz = ixt so that a corresponding eigenvector is

or simply

THEOREMS ON EIGENVALUES AND EIGENVECTORS

15.37. Prove that the eigenvalues of a Hermitian matrix [or symmetric real matrix] are real.
Let A be a Hermitian matrix and X an eigenvalue. Then by definition there is a non-trivial

eigenvector X such that

Multiplying by XT,(1)

Taking the conjugate, (#)

Taking the transpose, using the second and third equations in (5), page 343, we find

(3)

Now since A is Hermitian, AT = A so that (3) becomes

(•*)

Subtracting (4) from (1) we thus obtain

Then since XTX cannot be zero, it follows that X = X or that X must be real.

15.38. Prove that the eigenvectors of a Hermitian matrix [or symmetric real matrix]
belonging to different eigenvalues are orthogonal.

Let Xj and X2 be eigenvectors belonging to eigenvalues X1( X2. Then denoting the matrix by
A, we have

(1)

Multiplying these by X* and X* respectively, we find

(2)

Taking the conjugate of the first equation in (2), we find since Xt is real,

(*)

Now taking the transpose of (3),

W

(1)
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Since A is Hermitian, i.e. AT = A, (4) becomes

Subtracting this from the second of equations (2),

Then since Xj n4 \2, we have or Xl and X2 are orthogonal.

15.39. (a) Illustrate by an example the results of Problems 15.37 and 15.38.
(b) If a matrix has real eigenvalues, must it be Hermitian? Explain.
(a) The matrix A of Problem 16.35 is real and symmetric and thus Hermitian. As shown in that

problem, the eigenvalues are all real. Also the eigenvectors

are mutually orthogonal as is easily verified.

(6) A matrix can have real eigenvalues without being Hermitian. See, for example, the matrix
of Problem 15.33.

15.40. Verify the Cayley-Hamilton Theorem 15-14, page 349, for the matrix
The characteristic equation is

or X2 - 7X + 14 = 0

To verify the theorem we must show that the matrix A satisfies

A2 - 7A + 147 = 0
where X in the characteristic equation is replaced by A, the constant term [in this case 14] is
replaced by 147 and 0 is replaced by 0.

We have

as required.

15.41. Verify Theorem 15-15, page 349, by transforming the matrix of Problem 15.33 into
diagonal form.

The eigenvectors for the matrix of Problem 15.33 are the columns of

as shown in Problem 15.34. The inverse of B is then given by
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Thus

15.42. Prove Theorem 15-15.
We prove the theorem for the case of a third order matrix, since the proof for any square

matrix is exactly analogous. Denote the eigenvectors of A by the columns in

and the corresponding distinct eigenvalues by Xlf X2, X$. Then by definition,

from which

Thus multiplying by B~l we have, as required,

15.43. (a) Show that the quadratic form 2x\ + 4x2
2 + 5x1 ~ 4%iXs = XTAX where

(6) Find a linear transformation from x\, Xz, Xz to Ui,U2,us which will remove the
cross product term in the quadratic form of (a) and thus write the resulting
quadratic form in u\, Uz, Ua.

(a) We have
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Note that the coefficients of x\,x\, *| namely 2, 4, 5 appear in the main diagonal while half
the coefficients of XjXk, j ¥* k appear as elements in the /th row and feth column.

(6) A linear transformation from xlt X2, xa to ult U2,u3 can be written as X = BU where

and B is a 3 X 3 matrix. Then we have

XTAX - (BU)TA(BU) = UT(BTAB)U (1)

Now the right side of (1) will not have cross product terms if BTAB is a diagonal matrix. Thus
we see that if BT = B~l [i.e. if B is an orthogonal matrix] the problem becomes one of finding
the eigenvalues and eigenvectors of A. This has already been done in Problem 15.35. We choose
B as the matrix of unit eigenvectors, i.e.

from which we easily find that BT = B~l so that B is orthogonal and we have

as required. Then (1) becomes

which is the required quadratic form, called the canonical form. The transformation from X to
U is X = BU, from which we find

Supplementary Problems
OPERATIONS WITH MATRICES

15.44. (a) If verify that A(B + C) = AB + AC,

(A + B)(A - B) = A* - £2 + BA - AB, and (ABC)T = CTBTAT.

(b) Find 2A - SB - C and (A - 2B)(C + SB) where A,B, C are the matrices in (a).

15-45. If B = (4 -2), C = (~1} find (a) AC, (b) CA, (c) BC, (d) CTBT,

(e)A(Bi+C), (f)BBT.

15-46. If  (a) CTA, (b) A^C, (c) AA^BC.

15-47- If find (a)(A-B)(A+B), (b)A*-B*, (c) AB - BA,

(d) ATB + B*A.
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15.48. Prove that for any m X n matrices (a) A + B = B + A, (b) A + (B+ C) = (A + B) + C,
(c) X(A + B) = \A + \B where X is any scalar.

15.49. Find x and y such that

15.50. If A and B are square matrices such that AB = 0, prove that we can have A ¥* 0, B ¥= 0. Is
the result true for non-square matrices?

15.51. If AB = AC, is it true that B = C? Explain.

15.52. If A,B and C are any square matrices of the same order, prove that (a) A(BC) = (AB)C,
(6) A(B + C)=AB + AC, (c) (ABC)T - CTBfAf and generalize these results.

15.53. A linear transformation from an (xlt xz) to a (ylt j/2) coordinate system is denned as j/j = a-uXi +

a-12%2, 2/2 — &2ix\ + «22*2' (a) ^ show that the

transformation can be written Y = AX. (b) If X = BU where

show that xl = bnUi + bl2u2, x2 = &2iwi + &22M2- Thus obtain ylt j/2 in terms
of MI( «2 and explain how you can use the approach to motivate a definition of AB.

15.54. Generalize the ideas of Problem 15.53 to 3 or more dimensions.

15.55. Let P [Fig. 15-1] have coordinates (xtf/) relative to an xy coordinate system and (x1, y') relative to
an x'y' coordinate system which is rotated through angle 8 relative to the xy coordinate system.
(a) Prove that the relationship between the coordinates or transformation from (x,y) to (x',y')
is given by

(6) Show that the square matrix in (a) is skew-symmetric.

Fig. 15-1 Fig. 15-2

15.56. A vector with components (xt, yt) in an xy coordinate system [Fig. 15-2] is rotated through angle 6
so that its new components are (x2,y2). Show that

and explain the relationship with Problem 15.55.

15.57. Let A(e) denote the square matrix in Problems 15.55 or 15.56. Show that (a) A(el + $2) =
A(e1)A(e2), (b) A(»l +9Z+••• + en) = A(e1)A(e2)-•-A(en), (c) [A(«)]» = A(ne) and discuss the
significance of these results in terms of the transformations in Problems 15.55 and 15.56.
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15.58. Let (a) Show that which

is called a quadratic form in xlt ...,xn. (b) Show that if A is a real symmetric matrix, i.e.
°jfc = akj> then XTAX = an»\ + o^l + • • • + «„„«£ + 2ai2*i»2 + 2a13a;1*s + • • •, which is called
a symmetric quadratic form, (c) What does the quadratic form become if A is skew-symmetric?

15.59. Write the quadratic forms
in terms of matrices.

15.60. If A is Hermitian or skew-Hermitian, the quadratic form XTAX is called a Hermitian or skew-
Hermitian form respectively. Prove that for every choice of X (a) the value of a Hermitian form
is always real, (b) the value of a skew-Hermitian form is zero or pure imaginary.

15.61. Prove that every square matrix C can be written as A + B where A is Hermitian and B is
skew-Hermitian.

15.62. The concept of a matrix whose elements are real or complex numbers can be extended to one whose
elements themselves are matrices. In such case the elements are called submatrices. Rules for
addition, multiplication, etc., analogous to those on pages 312-313 can be made. Prove that if, for

example, where the elements are matrices, then

assuming the submatrices are conformable.

DETERMINANTS

15.63. Evaluate the determinants

15.64. Evaluate

15.65. Express each of the following as a single determinant and verify the result:

15.66. Illustrate each step of the proof in Problem 15.7 by referring to the determinant of Problem
15.64(a).

15.67. Prove Theorem 15-1 and illustrate by an example.

15.68. A triangular matrix A has all elements above [or below] the main diagonal equal to zero. Prove
that det (A) = 0.

15.69. If A and B are the matrices of Problem 15.50, prove that at least one of them is singular.

15.70. Prove Theorem 15-2, page 345, and illustrate by an example.

15.71. Prove Theorem 15-3, page 345, and illustrate by an example. [Hint: Use Problem 15.7.]

15.72. (a) Show that
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(6) By transforming the fourth order determinant in (a) using Theorem 15-7, page 345, show that
it is equal to

Thus prove Theorem 15-8, page 345, for 2 X 2 matrices.

15.73. Generalize Problem 15.72 and thus prove Theorem 15-8 for square matrices of any order.

15.74. Illustrate Theorem 15-9, page 346, by an example.

15.75. Prove Theorem 15-10, page 346.

INVERSE OF A MATRIX
15.76. Find the inverse of each of the following matrices and check results.

15.77. (a) Prove that if AB — I, then B — A~l. Use this result to find directly the inverses of

611> 612> &21> 622-]

15.78. Prove that (.A-1)-1 — A where A is a non-singular matrix and illustrate by an example.

15.79. Is it true that if det(A)^0 (a) (A"1)2 = (A2)-i, (&) (Am)n - (An)m = Amnl Justify your
statements.

15.80. Prove that (ABC)-1 = C~1B-^A-1 and generalize.

15.81. Discuss the significance of the inverse of a matrix with special reference to (a) Problem 15.53,
(6) Problems 15.55 and 15.56.

ORTHOGONAL AND UNITARY MATRICES. ORTHOGONAL VECTORS

15.82. Show that are orthogonal matrices.

15.83. Show that are unitary matrices.

15.84. Determine the form of the most general second order unitary square matrix of (a) order 2,
(6) order 3.

15.85. If A is a unitary matrix, prove that det (A) = eia for some constant a. Illustrate by an example.

15.86. (a) Show that the vectors are mutually orthogonal. (6) From the vectors

in (a) determine a set of mutually orthonormal vectors.

a n d H i n t :  i n  ( a )  a s s u m e  B a n d  f i n d
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15.87. Find a unit vector which is orthogonal to each of the vectors

15.88. If are mutually orthogonal, prove that is an orthogonal

matrix. Can you determine an analogous result for a unitary matrix?

SYSTEMS OF LINEAR EQUATIONS
15.89. Solve the systems of equations

15.90. The currents /i,/2.^s and I* in an electric network satisfy the system of equations

Find Is.

15.91. Classify each of the following systems of equations according as they (i) have a unique solution,
(ii) are inconsistent (iii) are dependent. Determine solutions where they exist.

15.92. For what value or values of k will the system of equation

have solutions other than the trivial one? Determine some of these solutions.

15.93. Given the system of equations show that any two of xlt x&x3 can be

solved in terms of the remaining one and thus that there are infinitely many solutions.

15.94. Given the system of equations determine whether any two of xltx2,xs

can be solved in terms of the remaining one.
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15.95. Investigate each of the following systems for possible solutions.

EIGENVALUES AND EIGENVECTORS
15.96. Find eigenvalues and corresponding eigenvectors for each of the following matrices.

15.97. Determine sets of unit eigenvectors corresponding to the matrices of Problem 15.96.

15.98. (a) Prove that if the eigenvalues of a matrix A are X1( X2 then the eigenvalues of A* are
Xj , x|,... . (6) Generalize the result in (a).

15.99. Prove that the eigenvalues of a skew-Hermitian matrix [or skew-symmetric real matrix] are
either zero or pure imaginary.

15.100. Illustrate the result of Problem 15.99 by means of an example.

15.101. Prove that the eigenvalues of a unitary [or real orthogonal matrix] all have absolute value equal
to one.

15.102. Illustrate the result of Problem 15.101 by means of an example.

15.103. Find matrices which transform those of Problem 15.96 to diagonal form.

15.104. Prove that the eigenvalues of A and B~1AB are the same and illustrate by an example.

15.105. If the eigenvector corresponding to a given eigenvalue of a matrix A is X, prove that the eigen-
vector corresponding to the same eigenvalue of B~1AB [see Problem 15.104] is B~1X. Illustrate
by an example.

15.106. (a) Write the quadratic form 5x* — 2x\ — Sx* + IZx^Xz — 8xtx3 + Z0xzxs
 m *ne matrix form

XTAX. (b) Find the eigenvalues and eigenvectors of A. (c) Find the matrix B and the trans-
formation equations X = BU when U = (% u.2 us)

T so that the quadratic form in (a) is reduced
to canonical form, (d) Write the new quadratic form.

15.107. (a) Find a transformation which removes the xy term in x2 + xy + y2 — 16 and (b) give a geometric
interpretation to the result.

15.108. Discuss the relationship between Problem 15.107 and the problem of finding the maximum or
minimum of x2 + y2 subject to the condition x2 + xy + y2 = 16. [Hint. Use the method of Lagrange
multipliers.]

15.109. (a) Discuss the relationship between the problem of removing the cross product terms in
5x1 ~ 2a!2 ~ 3a;3 + 12^1*2 — SajXg + 20^2*3 = 100 [Problem 15.106] and finding the maximum or
minimum of x\ + x\ + x\ subject to this constraint. Give geometric interpretations. (6) What
is a corresponding problem for reduction of any quadratic form to canonical form?
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15.110. (a) Verify that the eigenvalues of are X = 1,1,2.

(6) Show that an eigenvector corresponding to X = 2 is and that there are two linearly

independent eigenvectors, namely , corresponding to the single eigenvalue X = 1.

(o) Can Theorem 15-15 be used to transform the matrix in (a) to diagonal form? Justify your
answer.

15.111. Reduce to canonical form.
15.112. Explain how to reduce a Hermitian matrix to diagonal form and illustrate by an example.
15.113. Explain how to reduce a Hermitian quadratic form [see Problem 15.60] to canonical form and

illustrate by an example.
15.114. (a) Prove that the sum of the diagonal elements of any square matrix, i.e. the trace, is equal to

the sum of the eigenvalues of the matrix, (b) Illustrate by using the matrices of Problems
15.33, 15.35, 15.96. (o) Is there a relationship between the trace of a matrix A and the matrix
B~1AB1 Explain your answer.

15.115. (a) Verify the Cayley-Hamilton theorem for a third order matrix. (6) Prove the Cayley-Hamilton
theorem for any nth order matrix.

Answers to Supplementary Problems
15.49. * = -33/5, y = -26/5

15.76. (a) (b) (c) (d) (e)

15.77. (6)

15.89. (a) *! = 3, *2 = -4 (b) x^ = 4, x2 - —1, xa = 2 (c) art = -2, *2 = 4, *3 = -3
15.90. 40

15.91. (a) inconsistent. (6) has unique solution x1 = —1, »2 = 2, x3 = —4. (c) has only trivial solution
xl = 0, *2 = 0, *3 = 0. (d) dependent, (e) dependent and has solutions other than trivial one.

15.96. (a) 3,4; (i),(j) (6> °'5= (i). (4) (c) 5> 3 ± 4i'

(d) 1,-1,2;|

/ 5 6 -A AA
15.106. (o) (»! xz xa) I 6 -2 10 ) x2 ) (6) 5,9, -15

\-4 10 -8/\*,/

(c) B ~ , x\ = i(-2ttx + 2tt2 + M3), *2 = £(MI + 2w2 - 2u3),

xa = £(2Ml + «2 + 2u3) (d) Gul + 9«1 - I5ul



Chapter 16

Calculus of Variations

MAXIMUM OR MINIMUM OF AN INTEGRAL

One of the main problems of the calculus of variations is to determine that curve con-
necting two given points which either minimizes or maximizes some given integral. For
example, the problem of determining that curve connecting two points (#1,2/1) and (#2,2/2)
whose length is a minimum is the same as that of finding the curve Y = y(x) where
2/(#i) = 2/1, 2/(#2) = 2/2 such that

W
is a minimum.

In the general case we want to find the curve Y = y(x) where y(xi) = y\, y(x£) = 2/2
such that for some given function F(x, y, y'),

(2)

is either a maximum or minimum, also called an extremum or stationary value. A curve
which satisfies this property is called an extremal. An integral such as (2) which assumes
a numerical value for some class of functions y(x) is often called a functional.

EULER'S EQUATION

In order to find the required curve Y — y(x), we
consider the effect on the integral (2) of neighboring
curves [see Fig. 16-1]

(3)

where i)(x) is an arbitrary function and e is an arbi-
trary parameter. In order for the curve (3) to pass
through (xi, 2/1) and (xz, 1/2), we require that

W

We can show [see Problems 16.1 and 16.2] that the
required curve Y - y(x) satisfies the equation Fig.l6-l

(5)

which is called Euler's equation. The condition (5) is a necessary condition for y = y(x)
to be an extremal but it is not a sufficient condition.

In case F(x,y,y') does not contain x explicitly, a first integral of (5) is found to be
[see Problem 16.4]

W

375
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CONSTRAINTS

In certain problems we want to find that curve which makes a given integral

(7)

a maximum or minimum but at the same time keeps the integral

(*)

equal to some constant. This type of problem in the calculus of variations is one which
involves a constraint condition, namely that the integral (8) is a constant. A special case
of this is the problem of determining that curve having a given perimeter which encloses
the largest area [Problem 16.8]. Because of this special case, we often refer to this class
of problems as isoperimetric problems.

Such problems can generally be solved by using the method of Lagrange multipliers.
To do this we consider the integral formed by adding (7) to A. multiplied by (8), whose A. is
the Lagrange multiplier. The resulting integral given by

(9)

must be an extremum and leads to the Euler equation

where (10)

Using this we can find the required extremal. Extensions can be made to cases where there
are more constraint conditions.

THE VARIATIONAL NOTATION

It is often convenient to use a variational symbol 8 having properties which are in many
ways analogous to the differential d of the calculus.

Given a function F(x, y(x), y'(x)), or briefly F(x,y,y') where we consider x as fixed,
we define

(11)

where « and 17 = rj(x) have the same meaning given on page 375. Using the Taylor
expansion

(12)

(11) can be written
(IS)

The sum of the first two terms on the right of (13) is denoted by 8F called the variation
of F, i.e.

(U)

If in particular F = y or F = y' in (14), we have

(15)

so that (14) can be written
(16)
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From (15) we see that

(17)

i.e. (18)

showing that the operators 8 and d/dx are commutative.

The variational symbol and its properties provide approaches alternative to those
involving t and r)(x) for dealing with problems of finding extrema of integrals. Thus we
can show for example that a necessary condition for the integral (2) to be an extremum is

(19)

which in turn leads to the Euler equation. See Problem 16.11.

GENERALIZATIONS

The ideas above can be extended. An example is the problem of finding curves
Xi = Xi(t), Xz = xz(t), ..., Xn = xn(t) such that using Xi = dxi/dt, ..., xn = dxjdt,

(20)

is a maximum or minimum. A necessary condition for this is that the Euler equations

(21)

are satisfied. A solution of these equations leads to the required curves. See Problem 16.12.

Generalizations to cases where there are constraints are also possible. See Problem 16.13.

It is also possible to generalize to cases where multiple integrals are used rather than
single integrals, and also where endpoints may not be fixed. See Problems 16.14-16.16.

HAMILTON'S PRINCIPLE

According to Newton's laws, a particle of mass m moves in a path according to the
equation

(22)

where F is the external force acting on the particle, r is the position vector with respect to
the origin of some fixed coordinate system, and * is the time.

Now if the force field is conservative, then there exists a potential function V such that
(23)

The kinetic energy of the particle is defined as

(24)

if r = xi + yj + zk.
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We can then show that equation (22) follows as a consequence of the problem of finding
the path of the particle such that the integral

(25)

is an extremum, actually a minimum. In this integral ti and fe are two specified times and
the path is required to join the positions of the particles at these times.

The principle that a particle moves in such a way that (25) is a minimum is often called
Hamilton's principle. It can be generalized to systems of two or more particles.

LAGRANGE'S EQUATIONS

Very often in practice the position of a particle at any time can be described by a certain
minimum number of variables called generalized coordinates. For example, if we consider
the pendulum bob of a pendulum to be a point mass [Fig. 16-2] then its position is defined
by using the generalized coordinate 0 given by the angle made between the pendulum rod
and the vertical.

Fig. 16-2 Fig. 16-3

Similarly in the case of a double pendulum with two masses mi, mz, as in Fig. 16-3, the
positions are specified by using two angles 9i, 02 which are the generalized coordinates.

The potential and kinetic energy can be expressed in terms of these generalized
coordinates which are often denoted by q\, QZ, ...,QN. The number N of required coordinates
is often called the number of degrees of freedom of the system.

According to Hamilton's principle the system moves so that

(26)

is an extremum where (27)

is called the Lagrangian of the system. Euler's equations then become

(28)

which are then called Lagrange's equations. From these equations the motion of the
system can be obtained.

STURM-LIOUVILLE SYSTEMS AND RAYLEIGH-RITZ METHODS

The calculus of variations often provides important methods for solving boundary-
value problems. For example, the eigenvalues and eigenfunctions of the Sturm-Liouville
system
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(29)

<hy(a) + a2y'(a) = 0, biy(b) + b2y'(b) = 0 (80)

considered in Chapter 11 can be formulated as a problem in finding extrema of suitable
functionals.

Methods for finding approximate solutions of boundary-value problems by use of
variational principles are called Rayleigh-Ritz methods. See Problems 16.22-16.25.

Solved Problems

EULER'S EQUATION AND APPLICATIONS
16.1. Let Y = y(x) be the curve joining points (xi, y\), (x2,3/2) which m a k e s d x

an extremum and Y = y(x) + ̂ (x), 77(0:1) = 0, r)(x?) = 0 be a neighboring curve join-
ing these points. Prove that a necessary condition for this extremum is

The value of the integral along the neighboring curve is

a)
Now this function of e is a maximum or minimum for the curve Y = y(») when

at e = 0 (2)

If we denote the integrand in (1) by Fc, we have by differentiating under the integral sign
[Leibnitz' rule]

At « = 0 we thus have

(S)

using integration by parts and the fact that u(*i) = 0, ij(«2) = 0. Since this is equal to zero from
(2), the required result follows.
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16.2. Prove that a necessary condition for the extremum in Problem 16.1 is

From Problem 16.1 we must show that the condition

W

where TI(X) is arbitrary implies that the integrand is also zero. i.e.

(2)

To show this we suppose the contrary, i.e. the coefficient of ii(x) is not identically zero. Then

since ii(x) is arbitrary, we can always choose it to be positive where and

negative where In such case the left side of (1) will be positive and so will

give us a contradiction. Thus (2) follows.

16.3. Show that Euler's equation can be written in the form

We have

Also

Then by subtraction

and using Euler's equation gives the required result.

16.4. If F does not involve x explicitly, show that the Euler equation can be integrated to
yield

If F does not depend explicitly on x, then dF/dx = 0 so that from Problem 16.3 we have

16.5. A curve C joining points (x\, yi) and (xa, y2)
[see Fig. 16-4] is revolved about the x axis.
Find the shape of the curve so that the sur-
face thus generated is a minimum.

The surface area is given by

Since the integrand is independent of x, we can
use Problem 16.4 with F — y\fl + y'% to show
that the required curve is a solution of

Fig. 16-4
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which becomes on simplification

U)

Separating the variables and integrating,

i.e. (2)

where the constants e and fc are determined from points (*j, j/i), («%, 1/2). The curve (2) is often
called a catenary from the Latin meaning chain, since this is the shape in which a chain would
hang if suspended from the points (xlt j/x) (x2, yz). The problem is also of importance in connection
with soap films which are known to take shapes having minimum surfaces.

It should be mentioned that we have not proved that the surface is actually a minimum, which
requires further analysis.

16.6. Work Problem 16.5 without using the results of Problems 16.3 and 16.4.
In this case we use in Euler's equation to obtain

which simplifies to (1)

Letting y' = p so that(1) becomes on separating variables and
integrating,

Solving for p,

and the result can be found as in Problem 16.5.

16.7. A wire in a vertical plane connects origin O and point
Pz(xz,y2) as indicated in Fig. 16-5. A bead of mass
m placed at O slides without friction down the wire
to P2 under the influence of gravity. Find the shape
of the wire so that the bead goes from O to P2 in
the least time.

Assume that at time t the bead is at P(x, y) and that arc
OP = s. Then from mechanics we have

Kinetic energy at 0 + Potential energy at O = Kinetic energy at P + Potential energy at P

or

i.e.

Thus the time for the bead to go from O to Pl is

Letting
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The time will be a minimum when the integral is a minimum. Letting and
using Problem 16.4,

which simplifies to

Letting and solving for y',

Separating variables and integrating,

(1)

L e t t i n g ( 2 )

in (1), we have

Thus the parametric equations of the curve are given by

x = 6(0 — sin 0) + k, y = 6(1 — cos 0) (3)

where 6 = a/2, 0 = 2s. Since the curve passes through the origin we must have fc = 0 so that
the required equations are

x = 6(0 — sin 0), y = 6(1 — cos 0) (4)

The constant 6 is determined from the fact that the curve must pass through (xz, y2).

The curve represented by (4) is a cycloid and is the path of a fixed point A on a circle of radius
6 as it rolls along the x axis [see Fig. 16-6].

The problem is often called the brachistochrone problem from the Greek words brachistos
meaning shortest and ehronos meaning time.

Fig. 16-6

CONSTRAINTS

16.8. Find that curve C having given length I which encloses a maximum area.
By Problem 6.17, page 164, the area bounded by C is

U)

while the arc length is (2)

Using the method of Lagrange multipliers, we consider

(3)
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we find

i.e.

Solving for y',

Then on integrating,

i.e. (7)

which is a circle. A problem of this type is often referred to as an isoperimetric problem.

Another method. By carrying out the integration in (6), we have

which shows that the curvature of C must be constant, i.e. C is a circle.

THE VARIATIONAL NOTATION
16.9. Let Fi and F2 be functions of x,y,y'. Prove that (a) 8(Fi+F2) = 8Fi + $F2,

(b) 8(FiF2) = FiSFi + FzSFi.

(a) By definition,
8(Fj + F2) =

(6) By definition,

S(F1Fli) =

16.10. Prove that

Method 1.

F r o m  t h e  E u l e r  e q u a t i o n ( 4 )

w h r e ( 5 )

o r ( 6 )
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Then by definition we have as required,

Method 2.

where we have used Leibnitz's rule for differentiating under the integral sign.

16.11. Show that a necessary condition for to be an extremum is

By Problem 16.1, equation ($), we see on multiplying by e that a necessary condition for an
extremum is

But this can be written

as required.

/
*2

F dx = 0, we can arrive at the
auier equation as in rrooiem 10.2. *i

GENERALIZATIONS

16.12. Show that a necessary condition for

to be an extremum [maximum or minimum] is that

As in the one dimensional case, a necessary condition for an extremum is

i.e.

Using the fact that S^ = d(Sxl)/dt, ..., Sxn = d(Sxn)/dt and integrating by parts, we have

and since Sxlt .. ,,8xn are arbitrary we have

k - 1,2, ...,n

The result can also be found without the use of 8.
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16.13. Show that a necessary condition for

to be an extremum subject to the constraint condition G(XI, #2) = 0 is

where A is a Lagrange multiplier which may be a function of t.
We must have as in Problem 16.12,

or (1)

Also from G(x\, x%) = 0 we have

(*)

Multiplying (2) by X, which may be a function of t, and integrating we have

(3)

Adding (1) and (3) gives

Then since Sa^ and Sx2 are arbitrary the required equations follow. Generalizations to any number
of variables xlt .. ,,xn are immediate.

16.14. If G — G(x, y) and ̂  is a region bounded by a simple closed curve C in the xy plane,
show that a necessary condition for

to be an extremum is that G satisfy Laplace's equation, i.e. V2G = 0, in ^.
A necessary condition is

W

Now " ^

Let <£ be a region such as indicated in Fig. 16-7
where lines parallel to the x and y axes meet C in
no more than two points.

We have Fig. 16-7
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using the fact that &G = 0 on C. Similarly we find

It follows from (1) that

so that since 8G is arbitrary,

16.15. If y(x) makes dx an extremum where y(xi) is fixed but y(x2) may vary,
prove that we must have

As in Problem 16.1 we find the necessary condition for an extremum to be

w
Then since *! is fixed but x2 is not, we have TI(XJ) = 0 while q(x2) is not necessarily zero. Thus
(1) becomes

(2)

Now since i» is arbitrary subject only to i)(*i) = 0, it must in particular hold for i/(*2) = 0, i.e.

(3)

from which (4)

Using (4) in (£), we must then have
(S)

Thus if we are to satisfy (5) for y(x2) not necessarily zero, we must have

16.16. A frictionless wire in a vertical plane connects the origin 0 of an xy coordinate
system to a point P2 located somewhere on a given vertical line x = #2 [see Fig. 16-8].
Find the shape of the wire so that a bead of mass m placed on it at O will slide down
under the influence of gravity to Pz in the least time.

The problem is identical with that of Problem
16.7 except that instead of being fixed at (xz, y2) the
endpoint P2 can vary along the line x = x2 where x2
is prescribed.

As in Problem 16.7 the total time taken to go
from 0 to Po is

<*)

Then b y Problem 16.15, t a k i n g , w e
have Fig. 16-8
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(*>

The first condition in (2) leads as in Problem 16.7 to the fact that the shape of the wire must be a
cycloid. The second condition in (2), i.e.

shows that y' = 0 at x — x2 or that the tangent to the cycloid at P2 must be parallel to the
x axis or, in other words, that the cycloid must be perpendicular to the line « — «2 at P2. These
conditions are enough to enable us to obtain the equations of the cycloid.

HAMILTON'S PRINCIPLE AND LAGRANGE'S EQUATIONS
16.17. Derive Hamilton's principle for a system of n particles from Newton's laws.

Assume the n particles have masses mk, k = 1,2, ..., n, that they have position vectors rk,
k = 1,2, ..., n, relative to an xyz coordinate system and that the forces acting on them are
Fk, k = 1,2, ..., n. Then the path Ck of the fcth particle is determined from the equation

(1)

Assume that we vary the path of the feth particle without changing the endpoints and let this
variation, often called virtual displacement, be 3rfc; then from (1),

(2)

Summing over all particles, we obtain

(3)

where the right hand side of (8) is the total work SW done under the displacement of the path, i.e.

(4)
on using (1).

Now the total kinetic energy of the system is

(5)

from which we have

(«)

But (7)

so that on multiplying by mk and summing from k — 1 to n,

where we have used (4) and (6). Integrating this with respect to t from *t to tz which represent
the times at the endpoints of the path C, we have

(*)

since 8rfc = 0 at tj and t2. If the force field is conservative there is a potential V so that W = —V.
Thus (8) becomes
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which is Hamilton's principle, i.e. a system moves from time ti to time tz in such a way that

is an extremum, actually a minimum.

16.18. Derive Lagrange's equations from Hamilton's principle.
If the generalized coordinates specifying the position of a body are given by qltq%, ...,q$,

then the position vector rfc of each particle of the body is a function of qit q%, .. •, q^ so that its
velocity rfc = dik/dt is a function of qi,qz, • • • » q r w »nd q\,kz> • • • > t f w Thus the kinetic energy T
is a function of qlt qz,..., qN, glf qz, .. •, ?N- Also the potential energy, which we shall assume
depends only on position, is a function of <?i, q% qN.

Now by Hamilton's principle the body moves so that

is an extremum. Thus by Euler's equations we have on writing L = T — V, called the Lagrangian,

k = l,...,N

which are often also referred to as Lagrange's equations.

16.19. A mass m, suspended at the end of a vertical spring which has spring constant «
and negligible mass, is set into vertical vibration [see Fig. 16-9]. Find the equation
of motion of the mass.

If we let x be the displacement of m from the equilibrium position,
then by Hooke's law the force is given by

M

where i is a unit vector in the downward direction. Since

(2)

where V is the potential energy, we have from (1) and (2)

taking the arbitrary constant as zero. Fig. 16-9

The kinetic energy of the mass is

Thus the Lagrangian is

Then Lagrange's equation describing the motion of the mass is

or

which agrees with the result obtained from Newton's laws.
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16.20. A particle of mass ra moves in the xy plane under the influence of a force of attrac-
tion to the origin O of magnitude F(P) > 0 where p is the distance of the mass from
O. Set up the equations describing the motion.

Use polar coordinates (p, <f>) to locate the position, of m
[Pig. 16-10]. Since the rectangular coordinates (x, y) of m
are related to the polar coordinates by

the position vector is given by

where i and j are unit vectors in the x and y directions
respectively. Thus Fig. 16-10

so that the kinetic energy is

since the force is given by
where pt is a unit vector in the direction of p and since

we have

Then the Lagrangian is

Thus the Lagrange equations

become (1)

From the second equation of (1) we have
(2)

where K is a constant. Then using $ = /e/p2 in the first of equations (1), we obtain

(*)

These equations can be used to describe the motion if F(p) is known.
This problem is useful in discussing the motion of the planets around the sun.

16.21. Use Hamilton's principle to find the equation for the
small vibrations of a flexible stretched string of
length I and tension T fixed at its endpoints.

In the vibration [see Fig. 16-11] an element of length dx
of the string is stretched into an element of length ds where

approximately, using the binomial theorem and the fact that
(dy/dx)2 is small compared with 1. Fig. 16-11
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The work done per unit length against the force of tension T is then given by

Thus the total work done for the whole string [which by definition is the potential energy] is given by

U)

The velocity of the string is dy/dt and if the density [mass per unit length] is n then the total
kinetic energy of the string is

(2)

Then Hamilton's principle states that

(S)

or equivalently (4)

Thus by Problem 16.52 with y = t, z — Y we have

(5)

where F is the integrand in (4) given by

(«)

Using (6) in (5) we obtain (7)

or if T and /t are constants and o2 = T//I we have the required equation

(*)

STURM-LIOUVILLE SYSTEMS AND RAYLEIGH-RITZ METHODS

16.22. Show that t h e extremals o f s u b j e c t t o t h e constraint

are solutions of the Sturm-Liouville equation

We shall find it convenient to use the Lagrange multiplier —X rather than X. Then proceeding
as in Problem 16.8, we must make

an extremum. Denoting the integrand by F and using the Euler equation

we obtain the required Sturm-Liouville equation.



CHAP. 16] CALCULUS OF VARIATIONS 391

16.23. Show that the extremals of

where the denominator need not be equal to 1 as in Problem 16.22, are also solutions
of the same Sturm-Liouville system of Problem 16.22.

The ratio of the integrals can be denoted by
X = IIJ

Then we have if X is an extremal,

using the fact that Sy = 0 at xl and x2. Since Sy is arbitrary we are again led to Sturm-Liouville
equation

(py'Y + qy + \ry = 0

16.24. Show how to use Problem 16.23 to find eigenvalues and eigenfunctions of the Sturm-
Liouville system

ai#(a) + a2y'(a) = 0, biy(b) + b2y'(b) = 0
Problem 16.23 with x^ = a, x2 = b shows that we can find the eigenfunctions of the Sturm-

Liouville equation by determining the non-trivial functions y(x) which satisfy the conditions
«i2/(«) + <*22/'(a) — 0, bjy(b) + b2y'(b) = 0 and which make the ratio X = 113 an extremum. The
corresponding values of X are then the eigenvalues. That this is true can be seen by noting that if
an eigenfunction and eigenvalue are given by y\(x) and Xj respectively, then for this eigenfunction j/t

(1)

On integrating the numerator by parts, we have

using the boundary conditions to show that and the fact that

Thus it follows from (1) that X = Xt.

It can be proved that the smallest eigenvalue is the minimum value of the ratio in (1) for all
possible functions satisfying the boundary conditions in the Sturm-Liouville problem. This is often
called Rayleigh's principle.
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16.25. (a) Find approximately the smallest eigenvalue of the Sturm-Liouville system

y" + \y = 0, y(0) = 0, »(I) = 0

and (6) obtain the corresponding approximate eigenfunction.

(a) This is a special case of Problem 16.24 where p = 1, q = 0, r = 1, a = 0, 6 = 1, ax = 1,
«2 = o, 6j = 1, 62 = 0. To find the smallest eigenvalue, we consider

V)

Assume that y — A0 + Atx + A2x
z + Asx

3 (2)

To satisfy j/(0) = 0, j/(l) = 0 we require A0 = 0, A3 = —(Aj + A2) so that (2) becomes

y = A !<* - x*) + A2(*2 - *») (5)

Substituting into (1) we find

(4)

on dividing numerator and denominator by A§ and writing B = Aj/A2. Then X is a minimum
when d\/dB — 0, which leads to

168B2 - 1792B - 637 = 0 (5)

with solutions B - 11.01102, -.3443521 (6)

The second value leads to a negative value for X which is clearly impossible from the form of (1).
The first value leads to X = 10.5289. As is easily found, the true eigenvalue is »r2 = 9.8696
approximately so that the error is less than 7%. Note that instead of (3) we could have
assumed directly that

y = cc(l-a;)(a0+ 64*)

which automatically satisfied the boundary conditions and then proceeded as above. Better
approximations could then be arrived at by choosing a convenient number of terms in the series

y = *(1 — «)(ao + ctiX + o2*2 + • • •)

(6) Since B = Aj/A2 = 11.01102, we find from (5)

y = 11.01102A2(a; - x3) + A2(a;2 - a;3) = A2(11.01102a; + x2- 12.01102a;8)
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Supplementary Problems
EULER'S EQUATION AND APPLICATIONS
16.26. If F(x, y, y') does not involve y explicitly, show that the extremals of

are solutions of

16.27. Find the extremals of and thus show that the shortest distance between two

points in a plane is a straight line.

16.28. (a) Show that the shortest distance between two points expressed in polar coordinates (p, 0) by
(pi»0i) and (p2, ^2) ig

(6) By minimizing the integral in (a) obtain the equation of a straight line in polar coordinates.

16.29. Work Problem 16.7, page 381, without using the result of Problem 16.4, showing that the differential
equation to be solved is 1 + y'2 — 2yy" = 0.

16.30. Show that if F is a function of y' alone, then the extremals of are straight lines.

16.31. The shortest distance between two points on any surface is called a geodesic of the surface. Show
that the geodesies on the surface of a sphere of radius a are the arcs of great circles. [Hint:
First show that the element of arc length on the sphere is given by ds2 — a2(de2 + sin2 e d<f>2)
where e and 0 are spherical coordinates.]

16.32. Find the geodesies for (a) a right circular cylinder, (6) a right circular cone.

16.33. Find the extremals of such that

16.34. According to Fermat's principle, a light ray travels in a medium from one point to another so
that the time of travel given by

where s is arc length and v is velocity, is a minimum. Show that the path of travel is given by

16.35. Work Problem 16.34 if (a) v — y, (b) v = \/y, (c) v = 1/VJ7 and show that the same types of
curves are obtained if we use x in place of y.

THE VARIATIONAL NOTATION

16.36. Prove that (a) (b) (c)

16.37. If F is a function of x,y,y', we have so that by analogy we

would expect to h a v e D e t e r m i n e whether this analogy i s correct
or not by comparing with the result in equation (16), page 376.
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16.38. Use the variational notation to justify the method of Lagrange multipliers given on page 376.

16.39. Work (a) Problem 16.5, (6) Problem 16.7, (c) Problem 16.33 by direct use of the variational symbol.

CONSTRAINTS
16.40. If the curve o of Problem 16.5 is required to have a given length I, what is the shape of c so that

when it is revolved about the * axis the surface generated will be a minimum? Compare the result
with that of Problem 16.5 and explain.

16.41. A curve c of given length I connects points (xlt j/j) and (xz, y2). Find the shape of o so that the
area bounded by c, the lines x = xlt x = x2 and the * axis will be a maximum.

16.42. A rope of length I suspended vertically from two fixed points hangs so that its center of gravity
is as low as possible. Prove that the curve in which the rope hangs is a catenary. [The principle
involved here is equivalent to the principle of minimum potential energy in mechanics.]

16.43. Find a function y(x) for whichis an extremum ifand j/(0) = 0,
»« = I-

16.44. Of all curves enclosing a region of given area A which one will have the minimum length? Discuss
the relationship of this problem with Problem 16.8.

GENERALIZATIONS

16.45. Use the results of equations (20) and (21), page 377, to find extremals ofand
interpret the results.

16.46. Find extremals of and interpret the results.

16.47. Show that a necessary condition for

subject to the two constraint conditions

to be a maximum or minimum is

where X1; \2 are Lagrange multipliers and G = Ft + \1F1 + \2F2.

16.48. Show that a necessary condition for

to be an extremum is

and explain how the result can be generalized.

16.49. Find a function y(x) such t h a t w h i c h m a k e s a minimum if j/(0) = 0 ,
VW = 0, »"(0) = 0, y"(r) = 0.

16.50. If G = G(x, y, z) in a closed region ^, show that a necessary condition for

to be an extremum [in this case a minimum] is that V2G = 0 in %

dx is an extremum if and
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16.51. (a) Show that in orthogonal curvilinear coordinates %, u2, u3

where the element of arc length is

(6) Use Problem 16.51 and the fact that dx dy dz = h^hg dut du2 dus to show that Laplace's
equation in these curvilinear coordinates is

16.52. A surface S having equation z = z(x, y) is bounded by
a closed curve C whose projection on the xy plane is C'
which forms the boundary of a region ̂  [see Fig. 16-12].
Show that a necessary condition for z = z(x, y) to be
an extremal of

where p = dz/dx, q — dz/dy, is

16.53. (a) Show that the surface area of S in Problem 16.52 is

(6) Show that the surface with minimum surface area must be a solution of the equation

which can be written as

where

(c) Show that is an exact differential.

16.54. Generalize Problem 16.52 by showing that a necessary condition for z — z(x, y) to be an extremal of

where r, s, t are defined in Problem 16.53, is

16.55. Generalize Problem 16.52 to the case where F — F(x,y,z,u,zx, zv,ux,uy).

16.56. (a) Find a necessary condition for z = z(x, y) to be an extremal of

if (a constant)

(6) Give a geometric interpretation to part (a).
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16.57. Show that the problem of finding geodesies on a surface <j>(x, y, z) = 0 joining points (xlt ylt zt)
and (»2» 2/2' zz> can be found by obtaining the minimum of

and thus show that these geodesies can be found by solving simultaneously the equations

16.58. Assuming that the line x = x2 in Problem 16.16 is replaced by a curve g(x, y) = 0 in the vertical
plane, show that the shape of the wire should be a cycloid which intersects the curve at right
angles.

16.59. Investigate the problem of the brachistochrone (a) from a curve to a fixed point and (6) between
two curves.

HAMILTON'S PRINCIPLE AND LAGRANGE'S EQUATIONS
16.60. In a simple pendulum a mass m is suspended from a rod of negligible mass and length I and the

system can vibrate in a plane [see Fig. 16-13].
(a) Show that the potential energy of the mass is V = mgl(l — cos e) apart from an additive

constant.
(6) Show that the kinetic energy is
(c) Use Lagrange's equations to show that '0 + (g/l) sin e — 0.
(d) Show that if e is small so that sin e = e very nearly, then the period of vibrations is

Zir't/l/g approximately.

Fig. 16-13 Fig. 16-14 Fig. 16-15

16.61. Two masses ml and m2 are suspended vertically from an inextensible string which in turn passes
around a fixed pulley as shown in Fig. 16-14. Use Lagrange's equations to show that the accelera-
tion of either mass is given numerically by

16.62. A system consisting of masses mllm2 connected to massless springs having stiffness factors
K1,K2 [Fig. 16-15] is free to vibrate vertically under the influence of gravity.
(a) If xl and x2 are the displacements of m,l and m2 respectively from their equilibrium positions,

show that the potential energy of the system is

(6) Write the equations of motion of the masses and solve.

16.63. (a) Show that for small angles elt 02 the equations of motion of the double pendulum of Fig. 16-3,
page 378, are given by

and (6) find the natural frequencies of the motion.
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16.64. Use Lagrange's equations to determine the motion of a mass m sliding without friction down an
inclined plane of angle a.

16.65. Show that the equations of motion of a particle of mass m in spherical coordinates (r, e, <t>) if the
potential is V(r, e, <t>) are given by

16.66. Use Hamilton's principle to prove that a system which is in equilibrium has minimum potential
energy.

16.67. A particle of mass m resting on top of a fixed sphere of radius a is given a slight displacement
so that it slides down the sphere. Assuming no friction, determine the place where it leaves the
sphere.

16.68. (a) A membrane situated in the xy plane executes small transverse vibrations denoted by
z(x, y, t). Assuming that the density and tension are given by n and r respectively, show that
the membrane vibrates so that

*\.

where ̂  is the region in the xy plane occupied by the membrane.

(6) Use part (a) to show that

where a2 = T//I.

STURM-LIOUVILLE SYSTEMS AND RAYLEIGH-RITZ METHODS
16.69. Compare the approximate and exact eigenfunctions of Problem 16.25(6) by first normalizing them

so that and then plotting their graphs on the same set of axes.

16.70. Express in variational form the problem of solving y" + \y = 0, y(0) = 0, y'(i) = 0 and find the
lowest eigenvalue and the corresponding eigenfunction. Compare with the exact solution.

16.71. Obtain an approximate solution for the extremals of

and compare with the exact solution.

16.72. Show that y - 6t sin vx + 62
 sm 2jr» satisfies the boundary conditions in Problem 16.25 and

use this to find the approximate eigenvalue and eigenfunction. Discuss the significance of your
findings.

16.73. Use an appropriate trigonometric expansion to obtain an approximate solution to Problem 16.71.

16.74. The equation for a vibrating spring [see Problem 16.19] is m x + KX — 0. Assuming the boundary
conditions x(0) = 0, i(0) = v0, express the problem in variational form and show how to find the
period approximately by a Rayleigh-Ritz method.

16.75. Express the equation (1 - x2)y" - 2xy' + 12y = 0, j/(0) = 0, yd) = 1 in variational form and
obtain approximate solutions. Compare with the exact solution.

16.76. Is it possible to solve Problem 16.25 by finding extremals ofof the form
y = x(l — x)(a0 + 04;*;)? Justify your answer.

dx of the form
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16.77. Show that eigenvalues and eigenfunctions for the fourth order Sturm-Liouville type differential
equation

can be obtained by considering the extremals of

16.78. In the periodic transverse vibrations y(», t) = v(x) sin at of a beam which is simply supported
at its endpoints x = 0, x = I, the boundary-value problem which arises is given by

V(0) - v(l) = V"(Q) = v"(l) = o

(a) Express this in variational form using Problem 16.77 and (6) obtain the lowest "critical"
frequency for the beam.

Answers to Supplementary Problems
16.28. (6) p cos (<t> + Cj) = c2

16.33. y = Bn sin nx, n = 1,2,3, ...

16.35. (a) Circles (x - ctf + (y - c2)2 = e\ (6) Catenaries

(c) Parabolas

16.43. y = £(1 - cos x) + £(2 - TT) sin *

16.49. y = Bn sin nx, n = 1,2,3, ...

16.70. Exact solution y = B sin ~, exact eigenvalue ^~
& 4

16.71. y = 2jr cos * — 2 sin * + 2x

16.75. y = $(5x*-3x)
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Abel's identity, 80
Absolute value, 3

of complex numbers, 12
Absolutely convergent series, 6, 7, 21

complex, 301
rearrangement of terms in, 6

Acceleration, 42,126,137
centripetal, 137
in cylindrical and spherical coordinates, 145
due to gravity, 42
along a space curve, 137
tangential and normal components of, 137

Amperes, 42
Amplitude, 57

of a complex number, 12, 29
Analytic continuation, 210
Analytic functions, 286, 296

condition for, 287
Analytic part of a Laurent series, 289
Anti-derivative, 5
Applications of differential equations, 41, 42,

77, 102, 115, 116
to chemistry, 43, 60
to deflection of beams, 43
to electric circuits, 42, 92, 93, 105,116
to mechanics, 42, 90-92, 115, 116
to miscellaneous problems, 43
to orthogonal trajectories, 43

Approximate integration, 19, 20, 23
Approximate solutions to differential

equations, 43, 44
Arbitrary constant, 38
Arc length, 126

in cylindrical and spherical coordinates,
140, 141

Area magnification factor, 291
Area under curve, 5,19, 20
Argand diagram, 12
Argument of a complex number, 12, 29
Associated Legendre functions, 243, 244, 251

orthogonality of, 244
Associative law, for addition and

multiplication of numbers, 1
for addition and multiplication of vectors,

122, 130
for convolutions, 102
failure of for cross products, 124,135

Asymptotic formula, for Bessel functions, 227
for gamma function, 211

Asymptotic series or expansions, 212, 213,
220, 221

Auxiliary equation, 73
Axioms, 2

Base of logarithms, 2
Battery, 42

Beams, 43
bending of, 43, 61
semi-infinite, 336, 337

Bending moment, 43
Ber and bei functions, 226, 235, 236
Bernoulli's equation, 40, 52
Bessel functions, 224-241

of first kind and order n, 224, 229-232
functions related to, 235, 236
graphs of, 224
half odd integer order, 224, 229, 230
integral representation of, 233
integrals of, 230, 231
modified, 226
orthogonality of, 227, 236, 237
of second kind and order n, 224, 225, 233-235
series of, 227, 228, 237, 238
solutions of partial differential equations

using, 260, 272-274
zeros of, 227

Bessel's differential equation, 224
equations transformed into, 226, 236
general solution of, 224, 229, 233-235

Beta function, 211, 212, 215-218
relation of to gamma function, 211

Bilinear transformation, 292
Binomial coefficients, 2
Binomial theorem, 2
Binomial vector, unit, 144
Box product, 124
Boundary-value problems, 41, 42, 46-48, 258, 262

[see also Differential equations]
methods of solving, 260, 261, 268, 271, 272
solution of by complex inversion formula,

335-338
Brachistochrone problem, 382, 386, 387
Branches, 287
Branch line, 310
Branch points, 289, 310

inverse Laplace transforms of functions with,
330, 331

Bromwich contour, 324, 325, 333
Bromwich's integral formula, 324

Calculus of variations, 375-398
Canonical form, of a linear second order

differential equation, 76, 77, 87
of a quadratic form, 349

Capacitance, 42
Capacitor or condenser, 42
Catenary, 381
Cauchy or Euler equation, 76, 86
Cauchy-Riemann equations, 287, 295-297

in polar coordinates, 318
Cauchy's inequality, 318
Cauchy's integral formulas, 288

399
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Cauchy's theorem, 287, 288, 297-300
proof of, 298, 299

Cayley-Hamilton theorem, 349, 366
Centimeter, 42
Centrifugal force, 92
Centroid, 157

of a surface, 168
C. G. S. units, 42
Characteristic equation, 73, 348
Characteristic functions, 245
Characteristic values, 245

of a matrix, 348
Characteristic vector, 348
Chemistry, applications of differential

equations to, 43, 60
Clairaut's equation, 41, 53
Collection, 1
Commutatitive law, for addition and

multiplication of numbers, 1, 12
for addition and multiplication of vectors, 122
for convolutions, 102
for dot products, 123

Complementary equation, 71
solution of, 72, 73

Complete equation, 71, 81-83
Completeness, 194
Complex inversion formula for Laplace

transforms, 324-341
applications of to boundary-value problems,

325
Complex notation for Fourier series, 184
Complex numbers, 1, 11, 12, 28-30

commutative, associative and distributive
laws for, 12

operations with, 11, 28, 29
polar form of, 12, 29, 30

Complex plane, 12
Complex variables, 286-323

methods for solving partial differential
equations by, 261

Components, of a vector, 123
Component vectors, 123
Condenser or capacitor, 42
Conformal mapping, 291, 311-317

definition of, 291
of half plane on to a circle, 292
solutions of Laplace's equation by, 293,

314-317
Conjugate of a complex number, 12
Conservative force field, 152, 176, 377
Constant coefficients, differential equations

with, 71, 73-76
Constant of integration, 38
Constraints, 11

in calculus of variations problems, 376,
382, 383

Continuity, 4, 14, 15
definition of, 4
for functions of a complex variable, 286,

294, 295
for functions of two or more variables, 8
in an interval, 4
piecewise, 99,105

Continuity (cont.)
relationship of with derivatives, 4, 16
of vector functions, 125

Contour, 290
Convergence, of sequences, 6

absolute [see Absolutely convergent series]
of series, 6
uniform [see Uniform convergence of series]

Convolution theorem, for Fourier transforms,
203, 206

for Laplace transforms, 102
Coordinate curve, 128
Cosine integral, 212
Coulombs, 42
Cramer's rule, 10, 25, 26

proof of, 359, 360
used in solutions of differential equations, 89

Critical points, 311
Critically damped motion, 91
Cross-cut, 164
Cross or vector products, 124

distributive law for, 124, 132,133
expressed as determinants, 129,133
failure of associative and commutative

laws for, 124,132
Curl, 127, 137-140

of the gradient, 127
in orthogonal curvilinear coordinates, 129

Curvature, 137,144
Curve, 2

simple closed, 151
Curvilinear coordinates, 128,140-142

special, 129
used in integrations, 148,149

Cycloid, 382, 387
Cylinder, temperature in, 337, 338
Cylindrical coordinates, 129

Damped oscillatory motion, 91
Damping force, 91
De Moivre's theorem, 12, 29, 30
Definite integrals, 5

evaluation of by complex variables, 290
Deflection curve, 43
Deflection of beams, 43
Degree, of a polynomial, 2
Degrees of freedom, 378

Del (V), 126
formulas involving, 127

Density, 259, 263
Density function, 185
Dependent variable, 2, 8, 261
Derivatives, 4, 15-18

definition of, 4
of functions of a complex variable, 286,

295-297
higher order, 4
Laplace transforms of, 106,107
relationship of with continuity, 4, 16
theorems on, 15-18
of vector functions, 125

Determinants, 9,10, 344-346, 352-357
cofactors of, 345
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Determinants (cont.)
Cramer's rule for [see Cramer's rule]
Laplace expansion of, 345, 353
minors of, 344, 345
of second order, 9
solutions of differential equations using, 89
theorems on, 345, 346
of third order, 10
value of, 345, 352, 355

Dextral system, 123
Difference, of matrices, 342

of vectors, 122
Differentiable functions, 4
Differential, 4, 9,18, 24, 25

exact, 25
of vector, 125,136,137

Differential equations, 38-70, 258-285
classification of, 38, 44, 45
definition of, 38
of families of curves, 39, 46, 47
first order, 39, 40, 45, 46
general solutions of, 39, 45-49
of higher order than first, 41, 53, 54
Laplace transform solutions of, 102,114,115
linear, 71-97
order of, 38, 258
ordinary, 38-70
partial, 258-285

[see also Partial differential equations]
particular solutions of, 39, 45, 46, 48, 258, 262
singular solutions of, 39, 46, 59, 258
solutions of, 38, 45, 46,102,114,115
solvable for one unknown, 41, 53

Differential operators, 71
Differentiation, 4

formulas, 4, 5
Diffusivity, 259, 263
Dirac delta function, 119
Directional derivative, 140
Dirichlet conditions, 183,188,189, 201
Dirichlet integrals, 212, 219, 220
Dirichlet problem, 293
Discharge coefficient, 59
Discontinuity, 15,186,189 [see also Continuity]

of sum of series, 21
Distributive law, for convolutions, 102

for dot products, 123,131
for numbers, 1,12
for vectors, 122

Divergence, of the curl, 127, 139
in cylindrical coordinates, 129, 141
in orthogonal curvilinear coordinates, 128
of a sequence or series, 6
in spherical coordinates, 129
of a vector, 126, 137-140

Divergence theorem, 154, 169-172
proof of, 169,170

Division, 1
Dot product, 123, 124, 131, 132
Double integrals, 147,155,156

in curvilinear coordinates, 158
transformation of, 158

Drum, vibrations of, 273, 274

Duplication formula for gamma function,
211, 218

Dynes, 42

Eigenvalues and eigenfunctions, 245, 378, 379,
391, 392

Eigenvalues and eigenvectors, 348, 349, 363-365
of a Hermitian matrix, 365, 366
theorems on, 349, 365-368

Elastic curve, 43
Electric and magnetic field vectors, 145
Electric circuits, 42, 56, 57
Electric potential, 259
Electricity, principles of, 42, 259
Electromagnetic theory, 145
Electromotive force, 42
Element, 2
Elementary functions of a complex variable, 286
E.m.f., 42
Envelope, 46, 59
Equality, of complex numbers, 12

of matrices, 342
of vectors, 121

Error function, 212, 221, 272, 331, 332
Essential arbitrary constants, 38
Essential arbitrary functions, 258
Essential singularity, 289, 302, 303
Euler's constant, 222, 225
Euler's equation, 76, 86, 375, 379-382
Euler's formulas or identities, 12, 30,184
Euler's method for differential equations, 43,

61-63
Even and odd functions, 30,183,190-193, 201
Even extension, 193
Exact differential, 25, 39, 152
Exact Differential equation, 39, 40, 49-51, 77, 87
Existence and uniqueness theorems, 41, 71
Exponential function, 2
Exponential integral, 212
Exponential order, 99,105
Exponents, 2
Extremal, 375
Extremum, 27, 375

necesary condition for integral to be,
375, 377, 379, 380, 384-386

Factorial function, 210
[see also Gamma function]

Factorial n, 2
Factorization of operators, method of, 77, 87, 88
Farads, 42
Format's principle, 393
Flexural rigidity, 43
Flow problems, 59
Force, 42

field, 152
Fourier coefficients, 182, 188

generalized, 199
Fourier cosine series, 183, 184
Fourier expansion [see Fourier series]
Fourier integrals, 201-210

methods of solving partial differential
equations by, 260, 271, 272
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Fourier series, 182-200
approximation to functions by, 194
complex notation for, 184
convergence of, 195-197
definition of, 182,183
differentiation and integration of, 184,195
half range, 183, 184, 190-193
methods for solving partial differential

equations by, 260, 267-271
Fourier sine series, 183, 184, 267
Fourier's integral theorem, 201

[see also Fourier integrals]
connection of with complex inversion

formula, 326
proof of, 206-208

Fourier transforms, 202, 203-205
symmetric form for, 202

Fractional transformation, 292
Frenet-Serret formulas, 144
Frequency, 57

critical, 398
of vibration of a membrane, 274
of vibration of a string, 269

Fresnel sine or cosine integrals, 212
Frobenius, method of, 77, 88, 89

solution of Bessel's equation, 228, 229
solution of Legendre's equation, 246

Frobenius series, 77
Functional, 375
Functions, 2,13,14

of a complex variable, 286, 294, 295
[see also Complex variables]

multiple-valued, 286
single-valued, 286
of two or more variables, 8, 23-25

Fundamental theorem of calculus, 5

Gamma function, 99,103, 210-223
Bessel functions in terms of, 224
Beta function in terms of, 211
recursion formula for, 99

Generalized coordinates, 378
General solutions, of ordinary differential

equations, 39, 45-49
of partial differential equations, 260

Generating functions, for Bessel functions,
225, 232, 233

for Hermite polynomials, 244, 252
for Legendre polynomials, 247

Generator, 42
Geometry problems, 58, 59
Gradient, 126, 127,137-140

in cylindrical coordinates, 129, 141
in orthogonal curvilinear coordinates, 128

Gram, 42
Gravitation, theory of, 259
Gravitational potential, 259
Gravity, acceleration due to, 42
Greater than, 1
Green's theorem in space, 154
Green's theorem in the plane, 151,152,162-165

proof of for multiply-connected regions,
163,164

Green's theorem in the plane (cont.)
proof of for simply-connected regions, 162,163

Half plane, mapping of on to the unit circle,
292, 293, 312, 316

Half range Fourier series, 183, 184, 190-193
Hamilton-Cayley theorem

[see Cayley-Hamilton theorem]
Hamilton's principle, 377,378, 387, 388
derivation of Lagrange's equations from, 388
proof of, 387, 388

Hankel functions of first and second kinds,
226, 235

Harmonic functions, 287, 314, 315
Heat conduction equation, 259

derivation of, 263
Heat flow, 43, 267
Heaviside's unit step function

[see Unit step function]
Henries, 42
Hermite polynomials, 244, 252, 253

generating function for, 244, 252
orthogonality of, 252, 253
Rodrigue's formula for, 244

Hermitian matrix, 344, 249
eigenvalues of, 365, 366

Homogeneous differential equations, 40, 51, 52
Homogeneous equation, 71, 81, 82

solution, 72, 73
Hooke's law, 90
Hyperbolic functions, 3
Hypocycloid, 59

Infinite series, 6
convergence and divergence of, 6
theorems on, 6, 7

Initial point, of a vector, 121
Integers, 1
Integral equations, 113, 204, 206
Integral test, 7, 20, 21
Integrals, 5, 18-20

of functions of a complex variable, 287,
297-300

line [see Line integrals]
maximum or minimum of, 375
multiple [see Multiple integrals]

Integrating factors, 40, 50, 51
depending on only one variable, 50, 51

Integration, 5
formulas, 5, 6
interchange of order of, 148
by parts, 5,19
by substitution, 6,19

Interval of convergence, 8
Inverse, of addition, 1

of logarithmic functions, 2
of a matrix, 346, 357, 358, 360, 361
of multiplication, 1

Inverse Fourier transform, 202
Inverse hyperbolic functions, 3

expressed as logarithms, 3,14
Inverse Laplace transforms, 99,100

complex inversion formula for, 324-341
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Inverse Laplace transforms (cent.)
elementary, 106
of functions with branch points, 325, 330-332
of functions with infinitely many

singularities, 332-334
theorems for finding, 111-113
uniqueness of, 100

Inverse operators, 75, 76
Inverse trigonometric functions, 3
Inversion, 292
Irrational number, 1

proof that -\/2 is an, 13
Isogonal, 291
Isolated singularity, 288
Isoperimetric problem, 376, 383
Iterated integrals, 147, 148

Jacobian, 127, 128, 142
for analytic function, 312
of a transformation, 128
used in transforming integrals, 149

Kilogram, 42
Kinetic energy, 377, 378, 387
Kirchhoff's laws, 42, 56, 57, 93
Kronecker's symbol, 185
Kutta-Runge method, 44, 64, 65

Lagrange multipliers, method of, 11, 26-28
proof of, 27, 28
used in calculus of variations, 376

Lagrange's equations, 378, 388
Lagrangian, 378, 388
Laguerre polynomials, 244, 245, 253

orthogonality of, 253
Laplace inversion formulas, 102

complex, 102
Laplace transform operator, 98

linearity of, 98, 105
Laplace transforms, 98-120

convolution theorem for, 102
definition of, 98
of elementary functions, 98,103-105
existence of, 98, 105
integration of, 101
inverse [see Inverse Laplace transforms]
methods of solving partial differential

equations by, 260, 277
special theorems on, 101,102, 108-111

Laplace's equation, 259, 263, 287
Laplacian, 127

in cylindrical coordinates, 129,142
in orthogonal curvilinear coordinates, 129

Laurent's series, 289, 302, 303
Laurent's theorem, 319
Law of the mean, 8
Left and right hand limits, 183
Legendre functions, 242-251

[see also Legendre polynomials]
associated [see Associated Legendre functions]
of the second kind, 242, 243, 248, 249

Legendre polynomials, 242, 246, 247
[see also Legendre functions]

Legendre polynomials (cont.)
generating function for, 242
orthogonality of, 243, 249, 250
recurrence formulas for, 242
series of, 243, 250, 251
solutions of partial differential equations

using, 275, 276
Legendre's differential equation, 242,243

general solution of, 242
Leibnitz's rule for differentiating an integral,

11,28
Length or magnitude of a vector, 121
Lerch's theorem, 100
Less than, 1
Limits, 3, 4,14,15

definition of, 3
for functions of a complex variable,

286, 294, 295
for functions of two or more variables, 8
theorems on, 4,15
of vector functions, 125

Linear dependence and independence, 72, 73,
79,80

connection of with Wronskians
[see Wronskians]

Linear differential equations, 40, 51, 71-97, 258
first order, 40, 51
general, 71
homogeneous, 40, 51, 52, 258
solution of by determinants, 89

Linear equations, 9,10, 25, 26
determinant of system of, 348
homogeneous, 347
inconsistent, 361
linearly dependent, 348, 362
matrix form of, 347
non-homogeneous, 347
solution of by Cramer's rule

[see Cramer's rule]
systems of, 347, 359-362
trivial solutions of, 348

Line integrals, 149-152,160-162
connection of with complex integrals, 287
evaluation of, 150,151
Green's theorem and [see Green's theorem]
independence of path of, 152
properties of, 151
vector notation for, 150

Logarithmic functions, 2
rules of, 13

Magnetic and eelctric field vectors, 145
Magnification factor, 291
Magnitude or length of a vector, 121
Mapping, conformal [see Conformal mapping]
Mass, 42, 167, 259
Mathematical formulation of physical

problems, 42
Mathematical models, 42
Matrices, 342-374

addition of, 342
associative and distributive laws for, 343, 350
column, 342
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Matrices (cent.)
complex, 342
complex conjugates of, 344
conformable, 343
definition of, 342
determinants of [see Determinants]
diagonal, 344
elements of, 342
equality of, 342
failure of commutative law for, 343, 350
Hermitian, 344, 349, 351, 365, 366
inverses of, 346, 357, 358, 360, 361
linear dependence of, 346, 356
multiplication of, 343
null or zero, 344
operations with, 350-352
as operators, 349
orthogonal, 346, 347, 358, 359, 365, 366
powers of, 343
principal or main diagonal of, 344
real, 342, 343
reduction of to diagonal form, 349
row, 342
singular, 346
skew-Hermitian, 344, 349
skew-symmetric, 343, 351
square, 342
subtraction of, 342
symmetric, 343, 351
trace of, 344
transform of, 349
transpose of, 343
unitary, 346, 347, 349, 358, 359
zero or null, 344

Maxima and minima, 11, 26-28
[see also Extremum]

for integrals, 375
Lagrange multipliers for finding, 11, 26-28
relative, 11

Maxwell's equations, 145
Mean, 183
Mean square error, 194, 200
Mean-value theorem, 8
Mechanics, 42, 126

problems, 54-56
Member, 2
Membrane, vibrations of, 273, 274, 397
Meter, 42
M.K.S. system, 42
Modulus, of complex number, 12, 29

of elasticity, 259, 260
Young's, 43

Moebius strip, 169
Moment of inertia, 43, 155, 167, 260

polar, 155-157
Moments, 157, 167

bending, 43
Momentum, 42
Multiple integrals, 147-149,155-160

evaluation of, 155-157
transformation of, 158-160

Multiple-valued functions, 295
Multiply-connected regions, 164

Musical tone, 269, 274

Natural base of logarithms, 2
Natural frequency, 91
Natural logarithms, 2
Natural modes, of a vibrating membrane, 274

of a vibrating string, 269
Natural numbers, 1
Negative numbers, 1
Negative sense for traversing a curve, 151,162
Neumann function, 224
Newtons, 42
Newton's law of cooling, 60
Newton's law of mechanics, 42, 54

derivation of Hamilton's principle from,
387, 388

Noise, 274
Non-analytic functions, 295, 296
Non-homogeneous equation, 71, 347
Non-linear differential equation, 71
Normalized functions, 185
Normal line to a surface, 139 -
Normal modes of vibration [see Natural modes]
Normal plane to a space curve, 139,140
Normal vector to a surface, 126,138

unit, 137
Null vector, 122
Numerical methods, for integration, 19, 20, 23

for obtaining eigenvalues, 379, 390-392
for solving differential equations, 43, 44, 61-65

Odd extension, 192
Odd functions [see Even and odd functions]
Ohms, 42
Operator, linear, 71, 78
Operator notation, 71
Operator polynomials in D, 71
Operator techniques for solving differential

equations, 75, 76, 83-86
Orthogonal curvilinear coordinates, 127, 128
Orthogonal functions, 184, 185, 197, 198
Orthogonal trajectories, 43, 58, 297
Orthogonality, of Bessel functions, 227,236, 237

of Hermite polynomials, 244
of Laguerre polynomials, 244
of Legendre polynomials, 243

Orthonormal series, 185
Orthonormal set of functions, 185,197

as solutions of Sturm-Liouville systems, 245
Orthonormal vectors, 359

Parabolic cylindrical coordinates, 145
Parallel vectors, condition for, 124
Parallelepiped, volume of, 124, 134
Parallelogram, area of, 124,133
Parallelogram law, for complex numbers, 35

for vectors, 121
Parameters, 39, 43, 47, 48
Parseval's identity, 184,193,194, 241

for Fourier transforms, 202, 203, 205
Partial derivatives, 8, 9, 23-25
Partial differential equations, 258-285

classification of, 261
definition of, 258
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Partial differential equations (cont.)
elliptic, 258, 261
existence and uniqueness theorems for, 258
general solution of, 258, 262, 263, 277
homogeneous, 258
hyperbolic, 258, 261
linear, 258, 261
non-homogeneous, 258
non-linear, 258, 261
order of, 258
parabolic, 258, 261
particular solution of, 258, 262
singular solutions of, 258
solutions of, 258, 262-264
sone important, 259, 260, 263, 264

Partial fractions, 84
used in finding inverse Laplace transforms,

102,113,114
Partial sums, 6
Particular solution, 39, 45, 46, 258, 262, 263

of a linear differential equation, 72-74, 260
Pendulum, 378
Period, 57,182
Periodic functions, 2, 182

Laplace transforms of, 101
Perpendicular vectors, condition for, 124
Picard's method, 44, 63, 64
Piecewise continuity, 99,105
Plane, equation of, 135
Planets, motion of, 389
Points, on a line, 1
Polar coordinates, 158, 168
Polar form of complex numbers, 12, 29, 30
Polar moment of inertia, 155
Poles, 288, 289
Polynomials, 2
Position vector, 123
Positive integers, 1
Positive normal, 154
Positive numbers, 1
Positive sense for traversing a curve, 151,162
Postulates, 2
Potential, 42, 377, 378, 387

equation, 259
function, 377, 378
of a hollow sphere, 276, 277

Potential energy, principle of minimum, 394
Power series, 8

uniform convergence of, 8
Primitive, 39
Principal branch, 295
Principal normal vector to a space curve,

137, 144
Principal part of a Laurent series, 289
Principal value of logarithms, 295
Product, cross [see Cross product]

dot [see Dot product]
of matrices, 343

Quadratic equation, 29
Quadratic form, 349, 367, 368, 370

in n variables, 370

Quadratic form (cont.)
reduction of to canonical form, 349, 368
symmetric, 370

Quotient, 1

Radioactivity, 43
Radium, decay of, 60
Radius of curvature, 137,144
Radius of torsion, 144
Radius vector, 123
Ratio test, 7
Rational numbers, 1
Rayleigh-Ritz methods, 379, 390-392
Rayleigh's principle, 391
Real numbers, 1,13
Real part, of a complex number, 12, 286
Rectangular component vectors, 123
Rectangular coordinate system, right handed,

122
Rectangular coordinates, 128
Rectified sine wave, 111
Recurrence or recursion formulas, 77

for Bessel functions, 225, 230
for gamma function, 210
for Hermite polynomials, 244
for Laguerre polynomials, 245
for Legendre polynomials, 248
for modified Bessel functions, 235

Reduced equation, 71, 80, 81
Reduction of order, method of, 75, 77, 81
Region of convergence of series, 7
Relative maxima and minima, 11

[see also Maxima and minima]
Remainder, in Taylor series, 8
Removable singularity, 289, 303
Residue theorem, 289, 290, 304-306

evaluation of integrals by, 306-311
proof of, 304, 305
use of in finding inverse Laplace transforms,

324, 328-338
Residues, 289, 304-306 [see also Residue Theorem]
Resistance, 42
Resistor, 42
Resonance, 91
Resultant of vectors, 121
Riemann-Cauchy equations

[see Cauchy-Riemann equations]
Riemann's mapping theorem, 291, 292
Riemann's theorem, 195, 207
Right and left hand limits, 183
Right handed coordinate system, 123
Rodrigue's formula, for Hermite polynomials,

244
for Laguerre polynomials, 244
for Lagendre polynomials, 242, 247

Roots, of complex numbers, 12
of polynomial equations, 2

Rotation, 292
expressed in matrix form, 350

Rules of algebra, 1
Runge-Kutta method, 44, 64, 65

Saturated solutions, 60
Scalar field, 125
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Scalar product [see Dot product]
of column vectors, 347

Scalar triple product, 124
expressed as a determinant, 134

Scalars, 121
Scale factors, 128, 140, 141
Schwarz-Christoffel transformation, 293,

312, 313
proof of, 312, 313

Semi-infinite solid, temperature in, 335
Separation of variables, for first order

differential equations, 39, 48, 49
for partial differential equations, 260, 266, 267

Sequence, 6, 7, 20, 21
definition of, 6
limit of, 6, 20

Series, 6, 7
absolutely convergent

[see Absolutely convergent series]
complex, 301-304
infinite, 6
methods, 77, 88, 89
power [see Power series]

Set, 1
Signs, rules of, 2
Simple closed curves, 151
Simple harmonic motion, 91, 92
Simple pole, 288, 303
Simply-connected regions, 151,164

Green's theorem for, 162, 163
Simpson's rule, 32
Simultaneous differential equations, 77, 89
Sine integral, 212
Singular points, 288

[see also Essential singularity]
defined from Laurent series, 289

Singular solution, 39, 46, 59, 258
Slope, 4, 11
Soap films, 381
Space curve, 126

normal plane to, 139, 140
parametric equations for, 126
tangent line to, 139,140

Special functions, 212, 220, 221
Specific heat, 259, 263
Speed, 126
Spherical coordinates, 129
Spring, weight suspended from, 90, 91, 388
Stationary value, 375
Steady-state current, 56, 92
Steady-state heat flow, 263
Steady-state temperature, 259, 268

of a plate, 270, 271
of a semi-infinite slab, 317

Step by step or Euler method, 43
Stirling's asymptotic formula and series,

211, 219
Stokes' theorem, 154, 172-176

proof of, 172, 173
Strain, 259
Stream function, 297
Stress, 259
Stretching, 292

Sturm-Liouville systems, 245, 254, 255, 378,
379, 390-392

formulated in terms of calculus of variations,
378, 379

orthogonality of solutions of, 255
reality of eigenvalues of, 254, 255

Submatrices, 370
Subset, 1
Subtraction, 1
Sum, of infinite series, 6

of matrices, 342
of vectors, 121

Superposition principle, 72,260, 267
Surface area, 167,168
Surface integrals, 153, 166, 167

minimum, 380, 381
Surfaces, 8

one sided, 169
two sided, 153
vectors perpendicular to, 138

Tangent line, 4
to a space curve, 139,140

Tangent plane to a surface, 139
Tangent vector, unit, 126, 137, 144
Taylor series, 8, 23

for functions of a complex variable, 288,302
for functions of two or more variables, 9, 25
method for solving differential equations,

44, 63, 65
Taylor's theorem, 302
Temperature, 43

in a bar, 266, 267, 271, 272
in a circular plate, 272, 273
problem on, 60
in a solid, 259, 263
steady-state [see Steady-state temperature]

Tension, 259, 264
Terminal point, of a vector, 121
Thermal conductivity, 259, 263
Thermodynamics, 145
Torsion, 144
Transformation equations, 127
Transformations, 6

general, 292
integration using, 6,158-160
involving complex variables, 310
involving matrices, 349, 350
of variables, 76, 77

Transient current, 56, 92
Translation, 292
Translation theorems, for Laplace transforms,

101
Transverse vibrations, of a beam, 260, 336, 337

of a string, 259, 336
Trapezoidal rule, 20, 32
Trial solution, 73, 74, 81, 82
Triangle, area of, 134
Trigonometric functions, 2, 3
Triple integrals, 148, 156,157

in cylindrical coordinates, 160
in curvilinear coordinates, 159
transformation of, 159
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Triple products, 124, 125, 134, 135
Trivial solution, 362

Undetermined coefficients method, 73, 74, 81, 82
for solving partial differential equations,

265, 266
Uniform convergence of series, 7, 21-23

with complex terms, 301
connection of with Fourier series, 184,188,193
continuity and, 22
and termwise integration, 22

theorems on, 7
Weierstrass M test for, 7, 22

Uniqueness and existence, of Laplace
transforms, 100

of solutions of differential equations, 41, 258
Unit circle or disk, 291
Unit step function, 100,107,108

Laplace transform of, 100, 107
Unit vectors, 122, 185

rectangular, 122, 123
Units, 42

Value of a function, 2
Variable coefficients, differential equations with,

71, 76, 77
Variation of parameters, 74, 77, 82
Variational notation, 376, 377, 383, 384
Vector [see also Vectors]

algebra, 121,122, 130,131
analysis, 121-146
column, 342
field, 125
functions, 125
multiplication of by a scalar, 122
product, 124
row, 342
triple product, 124

Vectors, 121
geometric interpretation for derivatives of,

126
orthogonal, 346

Velocity, 42,126,137
of light, 145
along a space curve, 137

Velocity potential, 297
Vibrating spring, 90, 91, 388
Vibrating string equation, 259, 268, 269,

336, 389, 390
derivation of, 264, 389, 390

Vibrations of a beam, longitudinal, 259
transverse, 260

Vibrations of a membrane, 273, 274, 397
Virtual displacement, 387
Voltage, 42
Volts, 42
Volume element, in cylindrical and spherical

coordinates, 129
in curvilinear coordinates, 128

Weierstrass M test, 7, 301
for integrals, 33, 208

Weight function, 185
Work, 150, 152,162, 176, 387
Wronskians, 72-74, 79, 80

of Bessel functions, 232

xy coordinate system, 2

Young's modulus, 43

Zero, 1
matrix, 344
vector, 122
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