
for Students
Software
Engineering

for Students

Douglas Bell

A Programming Approach

So
ft

w
ar

e
En

gi
ne

er
in

g
fo

r
St

ud
en

ts
A

Pr
og

ra
m

m
in

g
Ap

pr
oa

ch

So
ftw

are
Engineering

fo
rStudents

A Program
m

ing Approach

This fully revised version of Douglas Bell’s Software Engineering: A Programming Approach continues to use
the successful formula of the previous editions. The author’s approach is to present the main principles,
techniques and tools used in software engineering, one by one, chapter by chapter. He provides the reader
with the knowledge to select the appropriate techniques for the project in hand. He builds on the reader’s
experience of coding small-scale applications, and examines everything they will need to begin programming
large-scale software systems. This book is a unique introduction to software engineering for all students of
computer science and its related disciplines. It is also ideal for practitioners wishing to remain current with
new developments in the area.

Features

● Pragmatic, non-mathematical approach

● Self-test questions within each chapter help the reader to fully understand the concepts

● Numerous exercises are provided at the end of each chapter

● Consistent use of the UML as a design notation

● Case studies used throughout

● An accompanying website with even more teaching and learning resources

Douglas Bell is a lecturer at Sheffield Hallam University in the UK. He has authored and co-authored
a number of texts, including the best-selling Java for Students.

“Bell covers the main areas of software engineering with
accuracy and authority, and without getting bogged down
in superfluous detail. My students actually like this book;
it's very readable.”

Martin Bush, South Bank University

D
o

uglas Bell

D
o

ug
la

s
Be

ll Software Engineering

www.pearson-books.com

fourth edition

fo
urth editio

n

fo
ur

th
 e

di
ti

o
n

an imprint of

9jabaz
Download more books at 9jabaz.ng for free!

https://9jabaz.ng/category/study-tips
https://9jabaz.ng/category/academics/past-questions/
https://9jabaz.ng/category/textbooks/
http://www.9jabaz.ng
http://www.9jabaz.ng

Software Engineering
for Students

BELL_A01.QXD 2/2/05 3:20 PM Page i

9jabaz
Download more books at 9jabaz.ng for free!

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best learning
practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high quality print and
electronic publications which help readers to
understand and apply their content, whether
studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web
at: www.pearsoned.co.uk

BELL_A01.QXD 2/2/05 3:20 PM Page ii

9jabaz
Download more books at 9jabaz.ng for free!

Software Engineering
for Students

A Programming Approach

Fourth Edition

DOUGLAS BELL

BELL_A01.QXD 2/2/05 3:20 PM Page iii

9jabaz
Download more books at 9jabaz.ng for free!

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published under the Prentice Hall imprint 1987
Second edition 1992
Third edition 2000
Fourth edition 2005

© Prentice Hall International 1987, 1992
© Pearson Education Limited 2000, 2005

The right of Douglas Bell to be identified as author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a licence permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London W1T 4LP.

The programs in this book have been included for their instructional value. They have been tested with
care but are not guaranteed for any particular purpose. The publisher does not offer any warranties or
representations nor does it accept any liabilities with respect to the programs.

All trademarks used herein are the property of their respective owners. The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor
does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 0 321 26127 5

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Bell, Doug, 1944-

Software engineering for student/Douglas Bell. -- 4th ed.
p. cm.

Rev. ed. of: Software engineering. 2000.
ISBN 0-321-26127-5
1. Software engineering. 2. Computer programming. I. Bell, Doug, 1944-

Software engineering. II. Title.
QA76.758.B45 2005
005.1--dc22

2004062346

10 9 8 7 6 5 4 3 2 1
09 08 07 06 05

Typeset in 9.75/12pt Galliard by 71
Printed in Great Britain by Henry Ling Ltd, at the Dorset Press, Dorchester, Dorset

The publisher’s policy is to use paper manufactured from sustainable forests.

BELL_A01.QXD 2/2/05 3:20 PM Page iv

9jabaz
Download more books at 9jabaz.ng for free!

Contents

Part A � Preliminaries 1

1. Software – problems and prospects 3
2. The tasks of software development 22
3. The feasibility study 30
4. Requirements engineering 36

Part B � Design 51

5. User interface design 53
6. Modularity 67
7. Structured programming 87
8. Functional decomposition 102
9. Data flow design 111

10. Data structure design 121
11. Object-oriented design 139
12. Design patterns 151
13. Refactoring 165

Part C � Programming languages 173

14. The basics 175
15. Object-oriented programming 200
16. Programming in the large 221
17. Software robustness 237
18. Scripting 259

Preface xix

v

BELL_A01.QXD 2/2/05 3:20 PM Page v

9jabaz
Download more books at 9jabaz.ng for free!

vi Contents

19. Testing 267
20. Groups 283

Part D � Verification 265

Part E � Process models 289

21. The waterfall model 291
22. The spiral model 297
23. Prototyping 303
24. Incremental development 314
25. Open source software development 322
26. Agile methods and extreme programming 330
27. The unified process 337

Part F � Project management 345

28. Teams 347
29. Software metrics and quality assurance 357
30. Project management 370

Part G � Review 383

31. Assessing methods 385
32. Conclusion 392

Appendices 405

A. Case studies 407
B. Glossary 411
C. UML summary 412

Bibliography 417
Index 419

BELL_A01.QXD 2/2/05 3:20 PM Page vi

9jabaz
Download more books at 9jabaz.ng for free!

Detailed contents

Preface xix

1 Software – problems and prospects 3

1.1 Introduction 3

1.2 Meeting users’ needs 4

1.3 The cost of software production 5

1.4 Meeting deadlines 10

1.5 Software performance 10

1.6 Portability 11

1.7 Maintenance 11

1.8 Reliability 13

1.9 Human–computer interaction 16

1.10 A software crisis? 16

1.11 A remedy – software engineering? 17

Summary 18

Exercises 19

Answers to self-test questions 20

Further reading 20

2 The tasks of software development 22

2.1 Introduction 22

2.2 The tasks 23

2.3 Process models 26

2.4 Methodology 27

2.5 Hacking 28

Summary 28

Exercises 28

Answer to self-test question 29

Part A � Preliminaries 1

vii

BELL_A01.QXD 2/2/05 3:20 PM Page vii

9jabaz
Download more books at 9jabaz.ng for free!

3 The feasibility study 30

3.1 Introduction 30

3.2 Technical feasibility 31

3.3 Cost-benefit analysis 31

3.4 Other criteria 32

3.5 Case study 32

3.6 Discussion 34

Summary 34

Exercises 34

Answers to self-test questions 35

Further reading 35

4 Requirements engineering 36

4.1 Introduction 36

4.2 The concept of a requirement 37

4.3 The qualities of a specification 38

4.4 How to elicit requirements 40

4.5 The requirements specification 41

4.6 The structure of a specification 42

4.7 Use cases 45

4.8 Use case diagrams 46

Summary 47

Exercises 47

Answers to self-test questions 48

Further reading 49

5 User interface design 53

5.1 Introduction 53

5.2 An inter-disciplinary field 54

5.3 Styles of human–computer interface 54

5.4 Different perspectives on user interface design 56

5.5 Design principles and guidelines 57

5.6 Interface design 60

5.7 Case study 62

5.8 Help systems 63

Summary 64

Exercises 64

Part B � Design 51

viii Detailed contents

BELL_A01.QXD 2/2/05 3:20 PM Page viii

Detailed contents ix

Answers to self-test questions 65

Further reading 65

6 Modularity 67

6.1 Introduction 67

6.2 Why modularity? 68

6.3 Component types 70

6.4 Component size and complexity 70

6.5 Global data is harmful 73

6.6 Information hiding 74

6.7 Coupling and cohesion 76

6.8 Coupling 77

6.9 Cohesion 79

6.10 Object-oriented programming 82

6.11 Discussion 84

Summary 84

Exercises 85

Answers to self-test questions 85

Further reading 86

7 Structured programming 87

7.1 Introduction 87

7.2 Arguments against goto 89

7.3 Arguments in favor of goto 92

7.4 Selecting control structures 94

7.5 What is structured programming? 96

Summary 98

Exercises 99

Answer to self-test question 100

Further reading 101

8 Functional decomposition 102

8.1 Introduction 102

8.2 Case study 103

8.3 Discussion 107

Summary 109

Exercises 109

Answer to self-test question 110

Further reading 110

BELL_A01.QXD 2/2/05 3:20 PM Page ix

9 Data flow design 111

9.1 Introduction 111

9.2 Identifying data flows 113

9.3 Creation of a structure chart 115

9.4 Discussion 117

Summary 118

Exercises 119

Answers to self-test questions 120

Further reading 120

10 Data structure design 121

10.1 Introduction 121

10.2 A simple example 122

10.3 Processing input files 126

10.4 Multiple input and output streams 127

10.5 Structure clashes 130

10.6 Discussion 134

Summary 136

Exercises 136

Answers to self-test questions 138

Further reading 138

11 Object-oriented design 139

11.1 Introduction 139

11.2 Design 140

11.3 Looking for reuse 144

11.4 Using the library 145

11.5 Class–responsibility–collaborator cards 145

11.6 Iteration 146

11.7 Discussion 147

Summary 147

Exercises 148

Answers to self-test questions 149

Further reading 149

12 Design patterns 151

12.1 Introduction 151

12.2 Inheritance 152

12.3 Delegation 153

x Detailed contents

BELL_A01.QXD 2/2/05 3:20 PM Page x

9jabaz
Download more books at 9jabaz.ng for free!

Detailed contents xi

12.4 Singleton 154

12.5 Factory method 155

12.6 Façade 156

12.7 Immutable 157

12.8 Model, view controller (observer, observable) 157

12.9 Mediator 158

12.10 Pipe and Filter 158

12.11 Proxy 159

12.12 Layers 159

12.13 Blob – an anti-pattern 161

12.14 Discussion 161

Summary 162

Exercises 163

Answers to self-test questions 163

Further reading 164

13 Refactoring 165

13.1 Introduction 165

13.2 Encapsulate data 166

13.3 Move method 167

13.4 Move data 167

13.5 Extract class 167

13.6 Inline class 167

13.7 Identify composition or inheritance 168

13.8 Use polymorphism 170

13.9 Discussion 171

Summary 171

Exercises 172

Answers to self-test questions 172

14 The basics 175

14.1 Introduction 175

14.2 Classifying programming languages and features 176

14.3 Design principles 176

14.4 Language syntax 178

14.5 Control structures 179

14.6 Selection 180

Part C � Programming languages 173

BELL_A01.QXD 2/2/05 3:20 PM Page xi

14.7 Repetition 183

14.8 Methods 186

14.9 Parameter-passing mechanisms 188

14.10 Primitive data types 190

14.11 Data typing 190

14.12 Strong versus weak typing 191

14.13 User-defined data types (enumerations) 193

14.14 Arrays 194

14.15 Records (structures) 195

Summary 196

Exercises 197

Answers to self-test questions 198

Further reading 199

15 Object-oriented programming 200

15.1 Introduction 200

15.2 Encapsulation 200

15.3 Library classes 206

15.4 Inheritance 207

15.5 Polymorphism 209

15.6 Single versus multiple inheritance 212

15.7 Generics 212

15.8 Dynamic data structures and pointers 213

15.9 Garbage collection 215

Summary 217

Exercises 217

Answers to self-test questions 218

Further reading 220

16 Programming in the large 221

16.1 Introduction 221

16.2 Packages 223

16.3 Using packages 224

16.4 Creating packages 226

16.5 Scoping in large programs 226

16.6 Interfaces 227

16.7 Interfaces and interoperability 229

16.8 Multiple interfaces 230

16.9 Separate compilation 232

xii Detailed contents

BELL_A01.QXD 2/2/05 3:20 PM Page xii

Detailed contents xiii

Summary 233

Exercises 233

Answers to self-test questions 234

Further reading 235

17 Software robustness 237

17.1 Introduction 237

17.2 Fault detection by software 239

17.3 Fault detection by hardware 242

17.4 Dealing with damage 244

17.5 Exceptions and exception handlers 245

17.6 Recovery blocks 249

17.7 n-version programming 252

17.8 Assertions 253

17.9 Discussion 254

Summary 255

Exercises 255

Answers to self-test questions 257

Further reading 258

18 Scripting 259

18.1 Introduction 259

18.2 Unix 259

18.3 Discussion 262

Summary 263

Exercises 263

Answers to self-test questions 263

Further reading 263

19 Testing 267

19.1 Introduction 267

19.2 The nature of errors 268

19.3 The problem of testing 269

19.4 Black box (functional) testing 269

19.5 White box (structural) testing 272

19.6 Other testing methods 274

Part D � Verification 265

BELL_A01.QXD 2/2/05 3:20 PM Page xiii

19.7 Unit testing 276

19.8 System (integration) testing 277

19.9 Discussion 278

Summary 278

Exercises 279

Answers to self-test questions 281

Further reading 282

20 Groups 283

20.1 Introduction 283

20.2 The individual and the error 283

20.3 Structured walkthroughs 284

20.4 Inspections 286

20.5 Pair programming 286

20.6 Discussion 287

Summary 287

Exercises 288

Further reading 288

21 The waterfall model 291

21.1 Introduction 291

21.2 Principles of the model 291

21.3 Feedback between stages 293

21.4 Discussion 294

Summary 295

Exercises 295

Answers to self-test questions 296

22 The spiral model 297

22.1 Introduction 297

22.2 The spiral model 297

22.3 Case study 300

22.4 Discussion 301

Summary 301

Exercises 301

Answer to self-test question 302

Further reading 302

Part E � Process models 289

xiv Detailed contents

BELL_A01.QXD 2/2/05 3:20 PM Page xiv

Detailed contents xv

23 Prototyping 303

23.1 Introduction 303

23.2 Definition 303

23.3 Throwaway or evolutionary? 304

23.4 Throwaway prototyping 305

23.5 Evolutionary prototyping 307

23.6 Rapid prototyping techniques 308

23.7 Discussion 310

Summary 312

Exercises 312

Answers to self-test questions 313

24 Incremental development 314

24.1 Introduction 314

24.2 Big-bang implementation 315

24.3 Test beds 315

24.4 Top-down implementation 316

24.5 Bottom-up implementation 317

24.6 Middle-out implementation 318

24.7 Use case driven implementation 319

24.8 Discussion 319

Summary 320

Exercises 320

Answers to self-test questions 321

Further reading 321

25 Open source software development 322

25.1 Introduction 322

25.2 The principles of open source development 322

25.3 The schism within open source development 323

25.4 Techniques of open source development 324

25.5 Case Study: the GNU/Linux operating system 325

25.6 Discussion 326

Summary 327

Exercises 328

Answers to self-test questions 328

Further reading 328

BELL_A01.QXD 2/2/05 3:20 PM Page xv

26 Agile methods and extreme programming 330

26.1 Introduction 330

26.2 The agile manifesto 330

26.3 Extreme programming 332

Summary 335

Exercises 336

Answers to self-test questions 336

Further reading 336

27 The unified process 337

27.1 Introduction 337

27.2 Overview 337

27.3 Phases of the UP 338

27.4 Techniques 339

27.5 Iteration 341

27.6 Case study 341

27.7 Discussion 343

Summary 343

Exercises 344

Further reading 344

28 Teams 347

28.1 Introduction 347

28.2 The principles of teams 347

28.3 The functional team 351

28.4 The project team 351

28.5 The chief programmer team 351

28.6 The object-oriented team 353

28.7 Discussion 354

Summary 355

Exercises 355

Answer To self-test question 355

Further reading 356

29 Software metrics and quality assurance 357

29.1 Introduction 357

29.2 Basic metrics 358

29.3 Complexity metrics 358

Part F � Project management 345

xvi Detailed contents

BELL_A01.QXD 2/2/05 3:20 PM Page xvi

9jabaz
Download more books at 9jabaz.ng for free!

Detailed contents xvii

29.4 Faults and reliability – estimating bugs 361

29.5 Software quality 362

29.6 Quality assurance 364

29.7 Process improvement 365

29.8 The Capability Maturity Model 366

Summary 367

Exercises 367

Answers to self-test questions 368

Further Reading 368

30 Project management 370

30.1 Introduction 370

30.2 Project inception 371

30.3 Cost estimation 372

30.4 Selecting tools and methods 375

30.5 The project plan 376

30.6 In the heat of the project 377

30.7 Managing people 378

Summary 380

Exercises 380

Answers to self-test questions 381

Further reading 381

31 Assessing methods 385

31.1 Introduction 385

31.2 How to assess methods 386

31.3 Case study – assessing verification techniques 387

31.4 The current state of methods 388

31.5 A single development method? 389

31.6 Introducing new methods 390

Summary 390

Exercises 390

Further reading 391

32 Conclusion 392

32.1 Introduction 392

32.2 Software tools 392

32.3 The world of programming languages 393

Part G � Review 383

BELL_A01.QXD 2/2/05 3:20 PM Page xvii

32.4 Software reuse 394

32.5 The real world of software engineering 395

32.6 Control versus skill 397

32.7 Future methods and tools 398

32.8 History 400

32.9 The future of software engineering 400

Summary 401

Exercises 402

Further reading 402

xviii Detailed contents

Appendices 405

A Case studies 407

A.1 The ATM 407

A.2 The word processor 408

A.3 Computer game 408

A.4 The library 409

A.5 Patient monitoring system 410

B Glossary 411

C UML Summary 412

C.1 Use case diagrams 412

C.2 Class diagrams 413

C.3 Package diagrams 414

C.4 Activity diagrams 414

Further reading 416

Bibliography 417
Index 419

BELL_A01.QXD 2/2/05 3:20 PM Page xviii

Preface

Software engineering is about the creation of large pieces of software that consist of
thousands of lines of code and involve many person months of human effort.

One of the attractions of software engineering is that there is no one single best
method for doing it, but instead a whole variety of different approaches. Consequently
the software engineer needs a knowledge of many different techniques and tools. This
diversity is one of the delights of software engineering, and this book celebrates this by
presenting the range of current techniques and tools.

We shall see that some software engineering methods are well-defined while others
are ill-defined. And the processes of software development are always under debate.

Software engineering is about imagination and creativity – the process of creating some-
thing apparently tangible from nothing. Software engineering methods have not yet
been completely analyzed and systematized. Thus there is still great scope for using
imagination and creativity. The exercise of skill and flair is one of the joys of software
engineering.

Ideally you, the reader, will have savored the joy of devising an elegant solution to a pro-
gramming problem. You will also have experienced the intense frustration of trying to find
an elusive bug – and the satisfaction of subsequently tracking it down and eliminating it.

This book is for people who have experienced the pleasures of writing programs and
who want to see how things change in the scale up to large programs and software systems.

This book provides an introduction to software engineering for students in under-
graduate programs in Computer Science, Computer Studies, Information Technology,

Who is this book for?

Challenge and creativity

What is software engineering?

xix

BELL_A01.QXD 2/2/05 3:20 PM Page xix

Software Engineering and related fields at the college or university level. The book is
also aimed at practising software developers in industry and commerce who wish to
keep abreast of current ideas in software engineering.

The prerequisites for understanding this book are:

� some familiarity with a modern programming language

� some experience with developing a moderately sized program of a few hundred lines.

This book explains the different principles, techniques and tools that are used in soft-
ware development. These are the mainstream methods that are currently used through-
out the industrialized world.

This book doesn’t present easy answers about the value of these techniques. Indeed,
it asks the reader to make an assessment of the techniques. This is what the software
engineer has to do – now and in the future – choose the appropriate techniques for the
project in hand from the multiplicity of techniques that are on offer.

UML (Unified Modeling Language) is used as appropriate within the text as a graphi-
cal design notation. Some other graphical notations – flowcharts, structure charts and
data flow diagrams are also used.

Java is used as an illustrative programming language and sometimes also pseudo code
(program design language).

Yes, but each chapter deals with a separate topic. This is to enable each chapter to focus
exclusively and thoroughly on a single idea.

Because the chapters are independent, you do not need to read them in any particular
sequence – you can dip into the book at random. But you might choose to read
Chapters 1 and 2 first because they set the scene. You might choose to spend one week
on each chapter.

How to read this book

So many chapters

Notations

xx Preface

What do I need to know?

What is covered in this book?

BELL_A01.QXD 2/2/05 3:20 PM Page xx

Preface xxi

The chapters are grouped into sections on:

� preliminaries

� design

� programming languages

� verification

� process models

� project management

� review.

Several of these sections present a variety of alternative techniques, for example, a vari-
ety of design approaches.

A number of case studies are used throughout the book to illustrate the use of the var-
ious techniques. They constitute a range of typical software systems and are presented
in Appendix A. Many chapters use one of the case studies. The case studies are also used
as part of the exercises at the end of each chapter.

You could also use the case studies as projects carried out in parallel to the study of
this book.

These are placed throughout the text so that you can check your understanding of top-
ics. They promote active learning. The answers are at the end of each chapter.

With the notable exception of four chapters on languages, we do not have a separate
chapter on software tools. Instead we ask the reader in the exercises to suggest suitable
tools for use with each technique.

This book is about the theories behind software engineering and gives an explanation
of current techniques. But many people would argue you really need to experience the
reality of software development to fully appreciate the ideas. Probably, therefore, you

Is this all I need to know?

Software tools

Self-test questions

Case studies

The organization of this book

BELL_A01.QXD 2/2/05 3:20 PM Page xxi

are engaged on a project of some size while you study this book. Good luck with your
practical project. (The case studies in Appendix A may serve as projects.)

Visit the website associated with the book to see additional material and any updates at
www.pearsoned.co.uk/bell.

Special thanks to my closest collaborator on this book, Alice Bell, particularly for writing
Chapter 25. Many thanks to current and past colleagues, including (in alphabetical order)
Babak Akhgar, Chris Bates, Andy Bissett, Pete Collingwood, Gordon Doole, Chuck
Elliot, Jan Graba, Chris Hall, Babak Khazaei, Mehdi Mir, Ian Morrey, Mehmet Ozcan,
Mike Parr, John Pugh, Chris Roast, Dharmendra Shadija, Jawed Siddiqi. All misconcep-
tions are, of course, the author’s.

Acknowledgments

Website

xxii Preface

BELL_A01.QXD 2/2/05 3:20 PM Page xxii

9jabaz
Download more books at 9jabaz.ng for free!

PART

A PRELIMINARIES

BELL_CPARTA.QXD 1/30/05 4:29 PM Page 1

9jabaz
Download more books at 9jabaz.ng for free!

BELL_CPARTA.QXD 1/30/05 4:29 PM Page 2

9jabaz
Download more books at 9jabaz.ng for free!

Software Engineering is about methods, tools and techniques used for developing soft-
ware. This particular chapter is concerned with the reasons for having a field of study
called software engineering, and with the problems that are encountered in developing
software. This book as a whole explains a variety of techniques that attempt to solve the
problems and meet the goals of software engineering.

Software surrounds us everywhere in the industrialized nations – in domestic appli-
ances, communications systems, transportation systems and in businesses. Software comes
in different shapes and sizes – from the program in a mobile phone to the software to
design a new automobile. In categorizing software, we can distinguish two major types:

� system software is the software that acts as tools to help construct or support appli-
cations software. Examples are operating systems, databases, networking software,
compilers.

� applications software is software that helps perform some directly useful or enjoyable
task. Examples are games, the software for automatic teller machines (ATMs), the
control software in an airplane, e-mail software, word processors, spreadsheets.

Within the category of applications software, it can be useful to identify the following
categories of software:

� games

� information systems – systems that store and access large amounts of data, for ex-
ample, an airline seat reservation system

1.1 � Introduction

CHAPTER

1 Software – problems
and prospects

This chapter:
� reviews the goals of software engineering

� describes the difficulties of constructing large-scale software

� analyses the problems that software engineers face.

BELL_C01.QXD 1/30/05 4:13 PM Page 3

4 Chapter 1 � Software – problems and prospects

� real-time systems – in which the computer must respond quickly, for example, the
control software for a power station

� embedded systems – in which the computer plays a smallish role within a larger sys-
tem, for example, the software in a telephone exchange or a mobile phone.
Embedded systems are usually also real-time systems

� office software – word processors, spreadsheets, e-mail

� scientific software – carrying out calculations, modeling, prediction, for example,
weather forecasting.

Software can either be off-the-shelf (e.g. Microsoft Word) or tailor-made for a particu-
lar application (e.g. software for the Apollo moon shots). The latter is sometimes called
bespoke software.

All these types of software – except perhaps information systems – fall within the
remit of software engineering. Information systems have a different history and, gener-
ally, different techniques are used for their development. Often the nature of the data
(information) is used to dictate the structure of the software, so that analysis of the data
is a prime step, leading to the design of the database for the application. This approach
to software development is outside the scope of this book.

Constructing software is a challenging task, essentially because software is complex.
The perceived problems in software development and the goals that software develop-
ment seeks to achieve are:

� meeting users’ needs

� low cost of production

� high performance

� portability

� low cost of maintenance

� high reliability

� delivery on time.

Each goal is also considered to be a problem because software engineering has gener-
ally been rather unsuccessful at reaching them. We will now look at each of these goals
in turn. Later we will look at how the goals relate one to another.

In the remainder of this book we shall see that the development of particular types
of software requires the use of special techniques, but many development techniques
have general applicability.

It seems an obvious remark to make that a piece of software must do what its users want
of it. Thus, logically, the first step in developing some software is to find out what the
client, customer or user needs. This step is often called requirements analysis or require-
ments engineering. It also seems obvious that it should be carried out with some care.

1.2 � Meeting users’ needs

BELL_C01.QXD 1/30/05 4:13 PM Page 4

9jabaz
Download more books at 9jabaz.ng for free!

1.3 The cost of software production 5

There is evidence, however, that this is not always the case. As evidence, one study of
the effectiveness of large-scale software projects, Figure 1.1, found that less than 2%
were used as delivered.

These figures are one of the few pieces of hard evidence available, because (not sur-
prisingly) organizations are rather secretive about this issue. Whatever the exact fig-
ures, it seems that a large proportion of systems do not meet the needs of their users
and are therefore not used as supplied. It may be, of course, that smaller systems are
more successful.

We might go further and deduce that the main problem of software development
lies in requirements analysis rather than in any other areas, such as reliability or cost,
which are discussed below.

The task of trying to ensure that software does what its users want is known as
validation.

Examples of costs
First of all, let us get some idea of the scale of software costs in the world. In the USA
it is estimated that about $500 billion are spent each year on producing software. This
amounts to 1% of the gross national product. The estimated figure for the world is that
$1,000 billion is spent each year on software production. These figures are set to rise
by about 15% each year. The operating system that IBM developed for one of its major
range of computers (called OS 360) is estimated to have cost $200 million. In the
USA, the software costs of the manned space program were $1 billion between 1960
and 1970.

These examples indicate that the amount spent on software in the industrialized
nations is of significant proportions.

1.3 � The cost of software production

Delivered but
not used 47%

Abandoned
or reworked 19%

Paid for but
not delivered 29%

Were used
after change 3%

Used as delivered 2%

Figure 1.1 Effectiveness of typical large software projects

BELL_C01.QXD 1/30/05 4:13 PM Page 5

9jabaz
Download more books at 9jabaz.ng for free!

6 Chapter 1 � Software – problems and prospects

Programmer productivity
The cost of software is determined largely by the productivity of the programmers and
the salaries that they are paid. Perhaps surprisingly, the productivity of the average pro-
grammer is only about 10–20 programming language statements per day. To the layper-
son, a productivity of 20 lines of code per day may well seem disgraceful. However, this
is an average figure that should be qualified in two ways. First, enormous differences
between individual programmers – factors of 20 – have been found in studies. Second, the
software type makes a difference: applications software can be written more quickly than
systems software. Also, this apparently poor performance does not just reflect the time
taken to carry out coding, but also includes the time required to carry out clarifying the
problem specification, software design, coding, testing and documentation. Therefore,
the software engineer is involved in many more tasks than just coding. However, what
is interesting is that the above figure for productivity is independent of the programming
language used – it is similar whether a low-level language is used or a high-level language
is used. It is therefore more difficult than it initially appears to attribute the level of pro-
ductivity to laziness, poor tools or inadequate methods.

SELF-TEST QUESTION

1.1 A well-known word processor consists of a million lines of code.
Calculate how many programmers would be needed to write it, assum-
ing that it has to be completed in five years. Assuming that they are each
paid $50,000 per year, what is the cost of development?

Predicting software costs
It is very difficult to predict in advance how long it will take to write a particular piece
of software. It is not uncommon to underestimate the required effort by 50%, and
hence the cost and delivery date of software is also affected.

Hardware versus software costs
The relative costs of hardware and software can be a lively battleground for contro-
versy. In the early days of computers, hardware was costly and software relatively cheap.
Nowadays, thanks to mass production and miniaturization, hardware is cheap and soft-
ware (labor intensive) is expensive. So the costs of hardware and software have been
reversed. These changes are reflected in the so-called “S-shaped curve”, Figure 1.2,
showing the relative costs as they have changed over the years. Whereas, in about 1955,
software cost typically only about 10% of a project, it has now escalated to 90%, with
the hardware comprising only 10%. These proportions should be treated carefully.
They hold for certain projects only and not in each and every case. In fact, figures of
this kind are derived largely from one-off large-scale projects.

BELL_C01.QXD 1/30/05 4:13 PM Page 6

9jabaz
Download more books at 9jabaz.ng for free!

1.3 The cost of software production 7

We will now look at a number of issues that affect the popular perception of soft-
ware and its costs.

The impact of personal computers
Perhaps the greatest influence on popular perceptions of software costs has come about
with the advent of personal computing. Many people buy a PC for their home, and so
come to realize very clearly what the costs are.

First is the “rock and roll” factor. If you buy a stereo for $200, you don’t expect to
pay $2,000 for a CD. Similarly, if you buy a PC for $1,000, you don’t expect to pay
$10,000 for the software, which is what it would cost if you hired a programmer to
write it for you. So, of course, software for a PC either comes free or is priced at about
$50 or so. It can be hard to comprehend that something for which you paid $50 has
cost millions of dollars to develop.

Second is the teenager syndrome. Many school students write programs as part of
their studies. So a parent might easily think, “My kid writes computer programs. What’s
so hard about programming? Why is software so expensive?”

SELF-TEST QUESTION

1.2 Someone buys a PC, with processor, monitor, hard disk and printer.
They also buy an operating system and a word processing package.
Calculate the relative costs of hardware and software.

100%

10%

Hardware

Software

2000199019801970

Year

Figure 1.2 Changes in the relative costs of hardware and software

BELL_C01.QXD 1/30/05 4:13 PM Page 7

8 Chapter 1 � Software – problems and prospects

Software packages
There has been another significant reaction to the availability of cheap computers. If
you want to calculate your tax or design your garden, you can buy a program off the
shelf to do it. Such software packages can cost as little as $50. The reason for the
remarkably low price is, of course, that the producers of the software sell many identi-
cal copies – the mass production of software has arrived. The problem with an off-the-
shelf package is, of course, that it may not do exactly what you want it to do and you
may have to resort to tailor-made software, adapt your way of life to fit in with the soft-
ware, or make do with the inadequacies.

Nonetheless, the availability of cheap packages conveys the impression that software
is cheap to produce.

Application development tools
If you want to create certain types of applications software very quickly and easily, sev-
eral development tools are available. Notable examples of these tools are Visual Basic
and Microsoft Access. These tools enable certain types of program to be constructed
very easily, and even people who are not programmers can learn to use tools like a
spreadsheet (e.g. Microsoft Excel). Thus a perception is created that programming is
easy and, indeed, that programmers may no longer be necessary.

The truth is, of course, that some software is very simple and easy to write, but most
commercially used software is large and extremely complex.

The IT revolution
The sophistication of today’s software far outstrips that of the past. For example, com-
plex graphical user interfaces (GUI’s) are now seen as essential, systems are commonly
implemented on the web, and the sheer size of projects has mushroomed. People and
organizations expect ever more facilities from computers. Arguably, as hardware becomes
available to make previously impractical software projects feasible, software costs can only
continue to escalate.

In summary, what we see today is that software is expensive:

� relative to the gross national product

� because developers exhibit apparently low productivity

� relative to the cost of hardware

� in popular perception.

How is the cost made up?
It is interesting to see which parts of a software development project cost most money.
Figure 1.3 shows typical figures.

Clearly the cost of testing is enormous, whereas coding constitutes only a small part
of software development. One interpretation of this is that if a new magical development

BELL_C01.QXD 1/30/05 4:13 PM Page 8

1.3 The cost of software production 9

method was devised that ensured the software was correct from the start, then testing
would be unnecessary, and therefore only half the usual effort would be needed. Such
a method would be a discovery indeed!

If mistakes are a major problem, when are they made? Figure 1.4 shows figures
showing the number of errors made at the various stages of a typical project:

However, this data is rather misleading. What matters is how much it costs to fix
a fault. And the longer the fault remains undiscovered, the more a fault costs to fix.
Errors made during the earlier stages of a project tend to be more expensive, unless they
are discovered almost immediately. Hence Figure 1.5 showing the relative costs of fix-
ing mistakes in a typical project is probably more relevant.

A design flaw made early in the project may not be detected until late on in system
testing – and it will certainly involve a whole lot of rework. By contrast, a syntax error
in a program made late in the project will be automatically detected on a first compila-
tion and then easily corrected.

Analysis
and

design
1/

3

Testing
1/

2

Coding
1/

6

Figure 1.3 Relative costs of the stages of software development

Programming
and
logic

1/
3

Design
1/

2

Syntax
1/

6

Figure 1.4 Relative numbers of errors made during the stages of software development

BELL_C01.QXD 1/30/05 4:13 PM Page 9

10 Chapter 1 � Software – problems and prospects

Meeting deadlines has always been a headache in software production. For example, sur-
veys have consistently shown that this is the worst problem faced by project managers.
The problem is related to the difficulty of predicting how long it will take to develop
something. If you do not know how long it is going to take, you cannot hope to meet
any deadline. It is a common experience for a software project to run late and over
budget, disappointing the client and causing despair among the software team. Evidence
suggests that around 60% of projects exceed their initial budgets and around 50% are
completed late. Whatever the exact figures, meeting deadlines is clearly a problem.

Back in the 1980s, IBM’s major new operating system (called OS 360) for its prime
new range of computers was one year late. The computers themselves languished in
warehouses waiting to be shipped. Microsoft’s NT operating system was allegedly also
a year late.

This is sometimes called efficiency. This terminology dates from the days when the cost
and speed of hardware meant that every effort was made to use the hardware – primarily
memory and processor – as carefully as possible. More recently a cultural change has
come about due to the increasing speed of computers and the fall in their cost.
Nowadays there is more emphasis on meeting people’s requirements, and conse-
quently we will not spend much time on performance in this book. Despite this, per-
formance cannot be completely ignored – often we are concerned to make sure that:

� an interactive system responds within a reasonably short time

� a control signal is output to a plant in sufficient time

� a game runs sufficiently fast that the animation appears smooth

� a batch job is not taking 12 hours when it should take one.

1.5 � Software performance

1.4 � Meeting deadlines

Design
80%

Programming
logic, syntax

20%

Figure 1.5 Relative cost of fixing different types of fault

BELL_C01.QXD 1/30/05 4:13 PM Page 10

1.7 Maintenance 11

SELF-TEST QUESTION

1.3 Identify two further software systems in which speed is an important
factor.

The problem with fast run time and small memory usage is that they are usually
mutually contradictory. As an example to help see how this comes about, consider a pro-
gram to carry out a calculation of tax. We could either carry out a calculation, which
would involve using relatively slow machine instructions, or we could use a lookup table,
which would involve a relatively fast indexing instruction. The first case is slow but small,
and the second case is fast but large. Generally, of course, it is necessary to make a judg-
ment about what the particular performance requirements of a piece of software are.

The dream of portability has always been to transfer software from one type of com-
puter to another with the minimum expenditure of effort. With the advent of high-level
languages and the establishment of international standards, the prospects looked bright
for the complete portability of applications programs.

The reality is that market forces have dominated the situation. A supplier seeks to
attract a customer by offering facilities over and above those provided by the standard
language. Typically these may lessen the work of software development. An example is
an exotic file access method. Once the user has bought the system, he or she is locked
into using the special facilities and is reliant on the supplier for developments in equip-
ment that are fully compatible. The contradiction is, of course, that each and every user
is tied to a particular supplier in this way, and can only switch allegiance at a consider-
able cost in converting software. Only large users, like government agencies, are pow-
erful enough to insist that suppliers adopt standards.

Given this picture of applications software, what are the prospects for systems soft-
ware, like operating systems and filing systems, with their closer dependence on specific
hardware?

Maintenance is the term for any effort that is put into a piece of software after it has
been written and put into operation. There are two main types:

� remedial maintenance, which is the time spent correcting faults in the software (fix-
ing bugs)

� adaptive maintenance, which is modifying software either because the users’
needs have changed or because, for example, the computer, operating system or
programming language has changed

1.7 � Maintenance

1.6 � Portability

BELL_C01.QXD 1/30/05 4:13 PM Page 11

12 Chapter 1 � Software – problems and prospects

Remedial maintenance is, of course, a consequence of inadequate testing. As we shall
see, effective testing is notoriously difficult and time-consuming, and it is an accepted
fact of life in software engineering that maintenance is inevitable.

It is often difficult to predict the future uses for a piece of software, and so adaptive
maintenance is also rarely avoided. But because software is called soft, it is sometimes
believed that it can be modified easily. In reality, software is brittle, like ice, and when
you try to change it, it tends to break rather than bend.

In either case, maintenance is usually regarded as a nuisance, both by managers, who
have to make sure that there are sufficient people to do it, and by programmers, who
regard it as less interesting than writing new programs.

Some idea of the scale of what has been called the “maintenance burden” can be
appreciated by looking at a chart, Figure 1.6, showing typical figures for the amount of
time spent in the different activities of developing a particular piece of software.

In a project like this, the maintenance effort is clearly overwhelming. It is not unusu-
al for organizations that use well-established computer systems to be spending three-
quarters of their programming time on maintenance.

Here are some more estimates:

� world-wide, there are 50 billion lines of Cobol in use today

� in the United States, 2% of the GNP is spent on software maintenance

� in the UK, £1 billion (about $1.5 million) annually are spent on software
maintenance

The millions of lines of program written in what many people consider to be out-
dated programming languages (like Cobol) constitute what are known as legacy systems.
These are software systems that are up to 30 years old, but in full use in organizations
today. They are often poorly documented, either because there was no documentation

Maintenance
67%

Specification 3%

Requirements 3%Design 5%

Coding 7%

Unit test 8%

System test 7%

Figure 1.6 Relative costs of the stages of software development

BELL_C01.QXD 1/30/05 4:13 PM Page 12

1.8 Reliability 13

in the first place or because the documentation is useless because it has not been kept
up to date as changes have been made. Legacy systems have been written using
expertise in tools and methods that are rarely available today. For these reasons, it is expen-
sive to update them to meet ever-changing requirements. Equally, it would be expen-
sive to rewrite them from scratch using a contemporary language and methods. Thus
legacy systems are a huge liability for organizations.

Another major example of the problems of maintenance was the millennium bug.
A great deal of software was written when memory was in short supply and expensive.
Dates were therefore stored economically, using only the last two digits of the year, so
that, for example, the year 1999 was stored as 99. After 2000, a computer could treat
the date value 99 as 1999, 2099 or even 0099. The problem is that the meaning that
is attached to a year differs from one system to another, depending on how the indi-
vidual programmer decided to design the software. The only way to make sure that a
program worked correctly after the year 2000 (termed year 2000 compliance) was to
examine it line by line to find any reference to a date and then to fix the code appro-
priately. This was an immensely time-consuming, skilled and therefore costly process.
The task often needed knowledge of an outdated programming language and certain-
ly required an accurate understanding of the program’s logic. The penalties for not
updating software correctly are potentially immense, as modern organizations are totally
reliant on computer systems for nearly all of their activities.

A piece of software is said to be reliable if it works, and continues to work, without
crashing and without doing something undesirable. We say that software has a bug
or a fault if it does not perform properly. We presume that the developer knew what
was required and so the unexpected behavior is not intended. It is common to talk
about bugs in software, but it is also useful to define some additional terms more
clearly:

� error – a wrong decision made during software development

� fault – a problem that may cause software to depart from its intended behavior

� failure – an event when software departs from its intended behavior.

In this terminology, a fault is the same as a bug. An error is a mistake made by a
human being during one of the stages of software development. An error causes one or
more faults within the software, its specification or its documentation. In turn, a fault
can cause one or more failures. Failures will occur while the system is being tested and
after it has been put into use. (Confusingly, some authors use the terms fault and fail-
ure differently.) Failures are the symptom that users experience, whereas faults are a
problem that the developer has to deal with. A fault may never manifest itself because
the conditions that cause it to make the software fail never arise. Conversely a single
fault may cause many different and frequent failures.

1.8 � Reliability

BELL_C01.QXD 1/30/05 4:13 PM Page 13

14 Chapter 1 � Software – problems and prospects

The job of removing bugs and trying to ensure reliability is called verification.
There is a close but distinct relationship between the concept of reliability and

that of meeting users’ needs, mentioned above. Requirements analysis is concerned
with establishing clearly what the user wants. Validation is a collection of techniques
that try to ensure that the software does meet the requirements. On the other hand,
reliability is to do with the technical issue of whether there are any faults in the
software.

Currently testing is one of the main techniques for trying to ensure that software
works correctly. In testing, the software is run and its behavior checked against what is
expected to happen. However, as we shall see later in this book, there is a fundamental
problem with testing: however much you test a piece of software, you can never be sure
that you have found every last bug. This leads us to assert fairly confidently the unset-
tling conclusion that every large piece of software contains errors.

The recognition that we cannot produce bug-free software, however hard we try, has
led to the concept of good enough software. This means that the developer assesses what
level of faults are acceptable for the particular project and releases the software when
this level is reached. By level, we mean the number and severity of faults. For some
applications, such as a word processor, more faults are acceptable than in a safety criti-
cal system, such as a drive-by-wire car. Note that this means that good enough software
is sold or put into productive use knowing that it contains bugs.

On the other hand, another school of thought says that if we can only be careful
enough, we can create zero defect software – software that is completely fault free. This
approach involves the use of stringent quality assurance techniques that we will exam-
ine later in this book.

One way of gauging the scale of the reliability problem is to look at the following
series of cautionary tales.

In the early days of computing – the days of batch data-processing systems – it used
to be part of the folklore that computers were regularly sending out fuel bills for (incor-
rectly) enormous amounts. Although the people who received these bills might have
been seriously distressed, particularly the old, the situation was widely regarded as
amusing. Reliability was not treated as an important issue.

IBM’s major operating system OS 360 had at least 1,000 bugs each and every time
it was rereleased. How is this known (after all we would expect that IBM would have
corrected all known errors)? The answer is that by the time the next release was issued,
1,000 errors had been found in the previous version.

As part of the US space program, an unmanned vehicle was sent to look at the
planet Venus. Part way through its journey a course correction proved necessary. A
computer back at mission control executed the following statement, written in the
Fortran language:

DO 3 I = 1.3

This is a perfectly valid Fortran statement. The programmer had intended it to be a rep-
etition statement, which is introduced by the word DO. However, a DO statement should

BELL_C01.QXD 1/30/05 4:13 PM Page 14

9jabaz
Download more books at 9jabaz.ng for free!

1.8 Reliability 15

contain a comma rather than the period character actually used. The use of the period
makes the statement into assignment statement, placing a value 1.3 into the variable
named DO3I. The space probe turned on the wrong course and was never seen again.
Thus small errors can have massive consequences. Note that this program had been
compiled successfully without errors, which illustrates how language notation can be
important. Bugs can be syntactically correct but incorrect for the job they are required
for. The program had also been thoroughly tested, which demonstrates the limitations
of testing techniques.

In March 1979, an error was found in the program that had been used to design the
cooling systems of nuclear reactors in the USA. Five plants were shut down because
their safety became questionable.

Some years ago, the USA’s system for warning against enemy missiles reported that
the USA was being attacked. It turned out to be a false alarm – the result of a computer
error – but before the error was discovered, people went a long way into the procedures
for retaliating using nuclear weapons. This happened not just once, but three times in
a period of a year.

Perhaps the most expensive consequence of a software fault was the crash, 40 sec-
onds after blast-off, of the European Space Agency’s Ariane 5 launcher in June 1996.
The loss was estimated at $500 million, luckily without loss of life.

In 1999, the website for eBay, the internet auction site went down for 22 hours. As
the markets began to doubt that eBay could adequately maintain its key technology, $6
billion was wiped off the share value of the company.

The incidents related above are just a few in a long catalog of expensive problems
caused by software errors over the years, and there is no indication that the situation is
improving.

How does the reliability of software compare with the reliability of hardware? Studies
show that where both the hardware and software are at comparable levels of develop-
ment, hardware fails three times as often as software. Although this is grounds for
friendly rivalry between software and hardware designers, it can be no grounds for com-
placency among software people.

There are particular applications of computers that demand particularly high reli-
ability. These are known as safety-critical systems. Examples are:

� fly-by-wire control of an aircraft

� control of critical processes, such as a power station

� control of medical equipment

In this book, we will look at techniques that can be used in developing systems such as
these.

It is not always clear whether a piece of software is safety related. The example men-
tioned earlier of the faulty software used in designing a power plant is just one example.
Another example is communications software that might play a critical role in summon-
ing help in an emergency.

The conclusion is that, generally, software has a poor reputation for reliability.

BELL_C01.QXD 1/30/05 4:13 PM Page 15

We have discussed various perceived problems with software:

� it fails to do what users want it to do

� it is expensive

� it isn’t always fast enough

� it cannot be transferred to another machine easily

� it is expensive to maintain

� it is unreliable

� it is often late

� it is not always easy to use.

1.10 � A software crisis?

16 Chapter 1 � Software – problems and prospects

The user interface is what the human user of a software package sees when they need to
use the software. There are many examples of computer systems that are not easy to use:

� many people have difficulty programming a video cassette recorder (VCR)

� some people find it difficult to divert a telephone call to another user within an
organization

In recent years, many interfaces have become graphical user interfaces (GUIs) that
use windows with features like buttons and scroll bars, together with pointing devices
like a mouse and cursor. Many people saw this as a massive step in improving the user
interface, but it remains a challenging problem to design a user interface that is simple
and easy to use.

1.9 � Human–computer interaction

SELF-TEST QUESTION

1.4 Identify three further examples of software systems that are safety criti-
cal and three that are not.

SELF-TEST QUESTION

1.5 Think of two computer-based systems that you know of that are diffi-
cult to use in some way or another. Alternatively, think of two features
of a program you use that are difficult to use.

BELL_C01.QXD 1/30/05 4:13 PM Page 16

9jabaz
Download more books at 9jabaz.ng for free!

1.11 A remedy – software engineering? 17

Cost of
production

PerformanceReliability

Meeting
deadlines

Ease of
maintenance

Conflicting goals
Complementary goals

Figure 1.7 Complementary and conflicting goals in a software project

Of these, meeting users’ needs (validation), reducing software costs, improving reli-
ability (verification) and delivery on time are probably the four most important present-
day problems.

Many people argue that things have been so bad – and continue to be so bad – that
there is a continuing real “crisis” in software development. They argue that something
must be done about the situation, and the main remedy must be to bring more scien-
tific principles to bear on the problem – hence the introduction of the term software
engineering. Indeed, the very term software engineering conveys that there is a weight-
ier problem than arises in small-scale programming.

One of the obstacles to trying to solve the problems of software is that very often
they conflict with each other. For example, low cost of construction and high reliabil-
ity conflict. Again, high performance and portability are in conflict. Figure 1.7 indicates
the situation.

Happily, some goals do not conflict with each other. For example, low cost of main-
tenance and high reliability are complementary.

As we have seen, it is generally recognized that there are big problems with develop-
ing software successfully. A number of ideas have been suggested for improving the
situation. These methods and tools are collectively known as software engineering.
Some of the main ideas are:

� greater emphasis on carrying out all stages of development systematically.

� computer assistance for software development – software tools.

� an emphasis on finding out exactly what the users of a system really want (requirements
engineering and validation)

� demonstrating an early version of a system to its customers (prototyping)

� use of new, innovative programming languages

1.11 � A remedy – software engineering?

BELL_C01.QXD 1/30/05 4:13 PM Page 17

18 Chapter 1 � Software – problems and prospects

� greater emphasis on trying to ensure that software is free of errors (verification).

� incremental development, where a project proceeds in small, manageable steps

We will be looking at all of these ideas in this book. These solutions are not mutually
exclusive; indeed they often complement each other.

Verification, prototyping and other such techniques actually address only some of the
problems encountered in software development. A large-scale software project will com-
prise a number of separate related activities, analysis, specification, design, implementation,
and so on. It may be carried out by a large number of people working to strict deadlines,
and the end product usually has to conform to prescribed standards. Clearly, if software
projects are to have any chance of successfully delivering correct software on time within
budget, they must be thoroughly planned in advance and effectively managed as they are
executed. Thus the aim is to replace ad hoc methods with an organized discipline.

One term that is used a lot these days in connection with software is the word qual-
ity. One might argue that any product (from a cream bun to a washing machine) that
fulfills the purpose for which it was produced could be considered to be a quality prod-
uct. In the context of software, if a package meets, and continues to meet, a customer’s
expectations, then it too can be considered to be a quality product. In this perspective,
quality can be attained only if effective standards, techniques and procedures exist to be
applied, and are seen to be properly employed and monitored. Thus, not only do good
methods have to be applied, but they also have to be seen to be applied. Such proce-
dures are central to the activity called “quality assurance”.

The problem of producing “correct” software can be addressed by using appropri-
ate specification and verification techniques (formal or informal). However, correctness
is just one aspect of quality; the explicit use of project management discipline is a key
factor in achieving high-quality software.

Summary

We have considered a number of goals and problem areas in software development.
Generally, software developers have a bad image, a reputation for producing soft-
ware that is:

� late

� over budget

� unreliable

� inflexible

� hard to use.

Because the problems are so great, there has been widespread talk of a crisis in soft-
ware production. The general response to these problems has been the creation of a
number of systematic approaches, novel techniques and notations to address the soft-
ware development task. The different methods, tools and languages fit within a plan
of action (called a process model). This book is about these approaches. Now read on.

BELL_C01.QXD 1/30/05 4:13 PM Page 18

Exercises 19

These exercises ask you to carry out an analysis and come to some conclusion about a sit-
uation. Often there is no unique “right answer”. Sometimes you will have to make reasonable
assumptions or conjectures. The aim of the exercises is to clarify your understanding of the
goals of software engineering and some of the problems that lie in the path of achieving
these goals.

1.1 Write down a list of all of the different items of software that you know about, then
categorize them within types.

1.2 What are your own personal goals when you develop a piece of software? Why? Do
you need to re-examine these?

1.3 Is software expensive? What criteria did you use in arriving at your conclusion?

1.4 Is programming/software development easy? Justify your answer.

1.5 The evidence suggests that there are enormous differences between programmers in
terms of productivity. Why do you think this is? Does it matter that there are differences?

1.6 For each of the applications described in Appendix A assess the importance of the
various goals identified in this chapter. For each application, rank the goals in order.

1.7 What would you expect the relative costs of hardware and software development to
be in each of the cases above?

1.8 How do you personally feel about software maintenance? Would you enjoy doing it?

1.9 Think of an example of a program in which the aims of minimizing run time and mem-
ory occupancy are mutually contradictory. Think of an example where these two are
in harmony.

1.10 Analyze the conflicts and consistencies between the various goals of software
engineering.

1.11 In addition to the goals described in this chapter, are there any other goals that soft-
ware engineering should strive for? What about making sure that it is fun to do it? What
about exercising creativity and individuality?

Exercises•

BELL_C01.QXD 1/30/05 4:13 PM Page 19

20 Chapter 1 � Software – problems and prospects

Answers to self-test questions

1.1 50 people at a cost of $12.5 million.

1.2 Hardware: $1,000.
Software: $100.
To buy, the hardware is approximately ten times the cost of the software.

1.3 Examples are a Web browser and a telephone switching system.

1.4 Examples of safety critical systems: an ABS braking system on a car, a fire
alarm system, a patient record system in a health center.

Examples of systems that are not safety critical are a payroll system, a
word processor, a game program.

1.5 Some well-known word processor programs incorporate the facility to
search for a file. This facility is not always easy to use, especially when it
fails to find a file that you know is there somewhere.

The DOS operating system provides a command-line command to delete
a file or any number of files. Coupled with the “wild card” feature, denoted
by an asterisk, it is easy to delete more files than you plan, for example:

del *.*

Further reading•
Accounts of failed projects are given in Stephen Flowers, Software Failure: Management

Failure: Amazing Stories and Cautionary Tales, Stephen Flowers, John Wiley, 1996,
and in Robert Glass, Software Runaways, Prentice Hall, 1998.

This is a good read if you are interested in how software projects really get done and
what life is like at Microsoft. G. Pasacal Zachary, Show-Stopper: The Breakneck Race
to Create Windows NT and the Next Generation at Microsoft, Free Press, a division
of Macmillan, Inc., 1994.

A very readable and classic account of the problems of developing large-scale software
is given in the following book, which was written by the man in charge of the devel-
opment of the software for an IBM mainframe range of computers. It has been
republished as a celebratory second edition with additional essays. Frederick P.
Brooks, The Mythical Man-Month, Addison-Wesley, 2nd edn, 1995.

One of the key design goals of Java is portability. A compelling account of the argu-
ments for portable software is given in Peter Van Der Linden, Not Just Java, Sun
Microsystems Press; Prentice Hall, 1998.

BELL_C01.QXD 1/30/05 4:13 PM Page 20

Further reading 21

Analyses of the costs of the different stages of software development are given in the
following classic book, which is still relevant despite its age: B.W. Boehm, Software
Engineering Economics, Prentice Hall International, 1981.

A fascinating review of disasters caused by computer malfunctions (hardware, software
and human error) is given in Peter G. Neumann, Computer-Related Risks, Addison-
Wesley; ACM Press, 1995.

In conjunction with the ACM, Peter Neumann also moderates a USENET newsgroup
called comp.risks, which documents incidents of computer-related risks. Archives are
available at http://catless.ncl.ac.uk/Risks/

For an up-to-date look at how software professionals see their role, look at the
newsletter of the ACM Special Interest Group in Software Engineering, called
Software Engineering Notes (SEN), published bi-monthly. Its Web address is
http://www.acm.org/sigs/sigsoft/SEN/

The equivalent periodical from the IEEE is simply called Software. This is produced by
and for practitioners, reflecting their current concerns and interests, such as software
costs.

BELL_C01.QXD 1/30/05 4:13 PM Page 21

9jabaz
Download more books at 9jabaz.ng for free!

In this chapter we identify the significant tasks of software development. The bulk of
this book describes techniques for carrying out these tasks. As part of the story, we
clarify the nature of two important activities that take place throughout software
development – validation and verification.

If you have ever written a program, there a number of activities that you know you
are going to have to carry out, for example, testing. The same is true of larger devel-
opments, but for big programs and large software systems, there are additional ele-
ments. The activities are:

� a feasibility study

� requirements engineering
� user interface design
� architectural design
� detailed design
� programming
� system integration
� validation
� verification (testing)
� production

CHAPTER

2 The tasks
of software
development

This chapter:
� identifies the activities within software development

� explains the idea of a process model

� explains the term methodology

� explains the term hacking.

2.1 � Introduction

BELL_C02.QXD 1/30/05 4:14 PM Page 22

9jabaz
Download more books at 9jabaz.ng for free!

2.2 The tasks 23

� documentation

� maintenance

� project management.

A process model is a plan that makes provision for all these required activities and seeks
to incorporate the stages in a methodical way. At the end of this chapter, we introduce
the idea of process model, which is an overall strategy for accomplishing software devel-
opment. However, while it may seem obvious that they are carried out in a certain order,
we shall see that this is not always the best strategy. For example, it may not be ideal to
carry out validation as the final step. Similarly, not all process models incorporate the
activities as distinct steps.

2.2 � The tasks

Feasibility study
Before anything else is done, a feasibility study establishes whether or not the project is
to proceed. It may be that the system is unnecessary, too expensive or too risky. One
approach to a feasibility study is to perform cost-benefit analysis. The cost of the pro-
posed system is estimated, which may involve new hardware as well as software, and
compared with the cost of likely savings. This comparison then determines whether the
project goes ahead or not.

Requirements engineering (specification)
At the start of a project, the developer finds out what the user (client or customer)
wants the software to do and records the requirements as clearly as possible. The prod-
uct of this stage is a requirements specification.

User interface design
Most software has a graphical user interface, which must be carefully designed so that
it is easy to use.

Architectural (large-scale) design
A software system may be large and complex. It is sometimes too large to be written as
one single program. The software must be constructed from modules or components.
Architectural, or large-scale design breaks the overall system down into a number of
simpler modules. The products of this activity are an architectural design and module
specifications.

BELL_C02.QXD 1/30/05 4:14 PM Page 23

24 Chapter 2 � The tasks of software development

Detailed design
The design of each module or component is carried out. The products are detailed
designs of each module.

Programming (coding)
The detailed designs are converted into instructions written in the programming lan-
guage. There may be a choice of programming languages, from which one must be
selected. The product is the code.

System integration
The individual components of the software are combined together, which is sometimes
called the build. The product is the complete system.

Verification
This seeks to ensure that the software is reliable. According to Barry Boehm (one of the
all-time greats of software engineering), verification answers the question: Are we
building the product right? A piece of software that meets its specification is of limited
use if it crashes frequently. Verification is concerned with the developer’s view – the
internal implementation of the system.

Two types of verification are unit testing and system testing. In unit testing, each
module of the software is tested in isolation. The inputs to unit testing are:

1. the unit specification

2. the unit code

3. a list of expected test results.

The products of unit testing are the test results. Unit testing verifies that the behav-
ior of the coding conforms to its unit specification.

In system testing or integration testing, the modules are linked together and the
complete system tested. The inputs to system testing are the system specification and
the code for the complete system. The outcome of system testing is the completed, test-
ed software, verifying that the system meets its specification.

Validation
This seeks to ensure that the software meets its users’ needs. According to Boehm, val-
idation answers the question: Are we building the right product? Validation is to do
with the client’s view of the system, the external view of the system. It is no use creating
a piece of software that works perfectly (that is tested to perfection) if it doesn’t do what
its users want.

BELL_C02.QXD 1/30/05 4:14 PM Page 24

2.2 The tasks 25

An important example of a validation activity is acceptance testing. This happens at
the end of the project when the software is deemed complete, is demonstrated to its
client and accepted by them as satisfactory. The inputs to acceptance testing are the
client and the apparently complete software. The products are either a sign-off docu-
ment and an accepted system or a list of faults. The outcome is that the system com-
plies with the requirements of the client or it does not.

Current evidence suggests that many computer systems do not meet the needs of their
users, and that therefore successful validation is a major problem in software engineering
today. It is a common experience that users think they have articulated their needs to the
software engineer. The engineer will then spend months or even years developing the
software only to find, when it is demonstrated, that it was not what the user wanted. This
is not only demoralizing for both users and developers, but it is often massively costly in
terms of the effort needed to correct the deficiencies. As an extreme alternative the sys-
tem is abandoned.

It is too easy to blame the requirements analysis stage of development, when in
reality the basic problem is the quality of the communication between users and
developers. Users do not know (and usually do not care) about technicalities, where-
as the software engineer expects detailed instructions. Worst of all is the problem of
some common language for accurately describing what the user wants. The users are
probably happiest with natural language (e.g. English), whereas the software engineer
would probably prefer some more rigorous language that would be incomprehensible
to the users. There is a cultural gap.

Production
The system is put into use. (This is sometimes, confusingly, termed implementation.)
The users may need training.

Maintenance
When the software is in use, sooner or later it will almost certainly need fixing or
enhancing. Making these changes constitutes maintenance. Software maintenance often
goes on for years after the software is first constructed. The product of this activity is
the modified software.

Documentation
Documentation is required for two types of people – users and the developers.

Users need information about how to install the software, how to de-install the soft-
ware and how to use it. Even in the computer age, paper manuals are still welcome. For
general purpose software, such as a word processor, a help system is often provided.
User documentation concentrates on the “what” (the external view) of the software,
not the “how” (the internal workings).

Developers need documentation in order to continue development and to carry out
maintenance. This typically comprises the specification, the architectural design, the

BELL_C02.QXD 1/30/05 4:14 PM Page 25

26 Chapter 2 � The tasks of software development

detailed design, the code, annotation within the code (termed comments), test sched-
ules, test results and the project plan.

The documentation is typically large and costly (in people’s time) to produce. Also,
because it is additional to the product itself, there is a tendency to ignore it or skimp
on it.

Project management
Someone needs to create and maintain plans, resolve problems, allocate work to people
and check that it has been completed.

Database design
Many systems use a database to store information. Designing the database is a whole
subject in its own right and is not normally considered to be part of software engin-
eering. Consequently, we don’t tackle this topic within this book.

We will see that, in dividing the work into a series of distinct activities, it may
appear that the work is carried out strictly in sequence. However, it is usual, partic-
ularly on large projects, for many activities to take place in parallel. In particular, this
happens once the large-scale (or architectural) design is complete. It is at this stage
that the major software components have been identified. Work on developing the
components can now proceed in parallel, often undertaken by different individuals.

SELF-TEST QUESTION

2.1 Which stages of software development, if any, can be omitted if the
required software is only a small program?

2.3 � Process models

We have seen (Chapter 1) that software systems are often large and complex. There is
a clear need to be organized when embarking on a development. What do you need
when you set about a software project? You need:

� a set of methods and tools

� an overall plan or strategy.

The plan of action is known as a process model. It is a plan of what steps are going to
be taken as the development proceeds. This term is derived as follows: a process is a step
or a series of steps; a process model is a model in the sense that it is a representation of

BELL_C02.QXD 1/30/05 4:14 PM Page 26

2.4 Methodology 27

reality. Like any model, a model is only an approximation of reality. A process model
has two distinct uses:

� it can be used as a basis for the plan for a project. Here the aim is to predict what
will be done.

� it can be used to analyze what actually happens during a project. Here the aim is to
improve the process for the current and for future projects.

There are several mainstream process models:

� waterfall

� prototyping

� incremental

� agile

� rational

� open source

� seat of the pants, do it yourself or ad hoc.

Each of these approaches will be discussed later in this book, except for the last in
the list. An ad hoc approach is no plan at all, and no organization would admit to using
such an approach. A software development project can take several years and involve
tens or even hundreds of people. Moreover, software development is a complex task.
To avoid catastrophe, some way of organizing a project must be established. Thus most
approaches identify a series of distinct stages within a project, along with a plan of what
order they will occur in.

2.4 � Methodology

In common language, the word methodology means the study of method. It answers
such questions as: What is the basis of method x? How good is method y? However, in
software development, the term methodology has been kidnapped and come to mean
a complete package of techniques, tools and notations. Such a package is given a name,
say the XYZ methodology, and is often marketed by a corporation, together with
books, manuals and training. Consultants are also on hand to guide an organization in
using the methodology.

In this book, we have avoided describing any particular methodology, but we do
explain all the ingredients that go into making the mainstream methodologies avail-
able today.

BELL_C02.QXD 1/30/05 4:14 PM Page 27

28 Chapter 2 � The tasks of software development

2.1 Discussion question on validation and verification: What do the following mean, what is
the difference between them, and which is better?

� a program that works (but doesn’t meet the specification)

� a program that meets the specification (but doesn’t work).

2.2 Discussion question on validation and verification: What do the following terms mean
and how do they relate to one another (if at all):

� correctness

� working properly

Summary

We have identified a list of tasks that are part of software development. All of them
must be carried out somehow during development.

A process model is a strategic plan for the complete process. Different process mod-
els offer alternative suggestions as to exactly how and when tasks are carried out. As
we shall see, in some process models all of the stages are visible, while in other
process models some of the stages vanish or become part of some other stage.

A methodology is a complete (often proprietary) package of methods, tools and
notations.

Hacking is an approach to development that is highly skilled but ill-disciplined.

Exercises•

There is one notorious approach to software development, called hacking. There are
actually two types of hacker:

� the malicious hacker who breaks into computer systems, often using the internet, to
commit fraud, to cause damage or simply for fun

� the programmer hacker, who uses supreme skills, but no obvious method, to develop
software.

It is the second of these meanings that we will use in this book. Hacking is often dis-
paraged in software development circles because it appears to be out of control.
However, the display of skill also earns hackers praise. Hackers also obviously enjoy
what they do and relish their skills. We will return to the subject of hacking in the chap-
ter on open source development.

2.5 � Hacking

BELL_C02.QXD 1/30/05 4:14 PM Page 28

Answer to self-test question 29

� error free

� fault

� tested

� reliable

� meet the requirements.

Answer to self-test question

2.1 Architectural design, unit testing, project management, configuration man-
agement and version control.

BELL_C02.QXD 1/30/05 4:14 PM Page 29

9jabaz
Download more books at 9jabaz.ng for free!

Every software project begins with a judgment as to whether the project is worthwhile
or not. This is called a feasibility study. Sometimes this assessment is carried out in a
detailed and systematic fashion; and sometimes it is carried out in a hurried and ad hoc
fashion; and sometimes it is not carried out at all. In this chapter we outline a frame-
work for assessing whether a software system is worthwhile.

There are two types of computer system:

� a system that replaces an existing computer-based system

� a brand new system that replaces or enhances work that is not currently computer-
assisted.

Another categorization is:

� a general purpose system, such as a word processor or a game. This is written and
then sold in the market place

� a tailor-made one-off system for a specific application.

Remember also that there is often the choice between writing the software and buy-
ing it off the shelf.

3.1 � Introduction

CHAPTER

3 The feasibility study

This chapter:
� explains the role of a feasibility study

� suggests how to go about conducting a feasibility study.

BELL_C03.QXD 1/30/05 4:14 PM Page 30

3.3 Cost-benefit analysis 31

Before beginning a project, there is a crucial decision that must be made: Is the pro-
posal technically feasible? That is, will the technology actually work? We know, for
example, that a system to predict lottery results cannot work. But a system to recognize
voice commands is borderline. A system to download and play DVD-quality movies
into people’s homes is also borderline.

In engineering, there has long been a tradition of assessing available technology, for
example, the use of reinforced concrete in building. Similarly in computer-based infor-
mation systems, a number of techniques have been used in advance of building a system
in order to determine whether the system will be worthwhile.

Money provides the ready-made metric for measuring value. This kind of investiga-
tion is called investment appraisal or a cost-benefit analysis. The organization expects a
return on investment. In this approach two quantities are calculated:

1. the cost of providing the system

2. the money saved or created by using the system – the benefit.

If the benefit is greater than the cost, the system is worthwhile; otherwise it is not.
If there is some other way of accomplishing the same task, which may be manually,

then it is necessary to compare the two costs. Whichever technique gives the smaller
cost is the one to select, provided that the benefit is greater than the cost.

Costs and benefits are usually estimated over a five year period. This means that the
initial start-up costs are spread over the expected useful life of the system. Five years is
the typical lifetime of a computer-based system. Beyond this time, changes in technol-
ogy as well as changes in requirements make predictions uncertain.

Many evaluation criteria are common to all computer systems – and indeed to all
products designed for some useful purpose. Thus motor cars, buildings and televisions
need to be reliable, robust, easy to maintain, easy to upgrade. The obvious, central con-
sideration is the construction cost. With each of these criteria we can associate a cost,
though for some it is less easy:

� cost to buy equipment, principally the hardware

� cost to develop the software

� cost of training

� cost of lost work during switchover

3.3 � Cost-benefit analysis

3.2 � Technical feasibility

BELL_C03.QXD 1/30/05 4:14 PM Page 31

32 Chapter 3 � The feasibility study

� cost to maintain the system

� cost to repair the equipment in the event of failure

� cost of lost work in the event of failure

� cost to upgrade, in the event of changed requirements.

The upgrade cost is part of the cost of some future system and not strictly part of
the current costing, but is worth bearing in mind at the evaluation stage.

While all of these costs should be estimated in advance of developing a system, it is
in practice very difficult to estimate the cost of construction and of maintenance.

It is easy to be drawn into judging everything on the basis of costs, but there are other
approaches.

Many people develop software purely for fun. Open source programmers are a prime
example. Their motivations include providing useful tools, enjoying the act of pro-
gramming and collaborating with others.

Large military projects are sometimes funded because they are considered necessary
(militarily or politically), whatever the cost.

Some people, perhaps seduced by technology, take the view that a computer system
is obviously better than a manual system.

Some systems are, arguably, socially useful and, perhaps, outside the scope of a costing-
based approach. How can we meaningfully assess the value of a system that allows a patient
to book a medical appointment, or a system that provides information on bus arrival times
at bus stops?

3.4 � Other criteria

SELF-TEST QUESTION

3.1 Suggest another system for which cost-benefit analysis is probably not
appropriate.

We will examine carrying out a feasibility study of the software for an ATM, outlined
in Appendix A. An ATM is part hardware, part software, so we could either carry out
a feasibility study for the complete system or limit ourselves to the software component.
However, if we are assessing the viability on the basis of cost, we must look at the com-
plete system.

We first look at costs of construction. We expect that the ATM is not just a one-off
but that a number of them will be built and deployed. Let us assume that 200 machines
will be needed.

3.5 � Case study

BELL_C03.QXD 1/30/05 4:14 PM Page 32

3.5 Case study 33

The hardware cost includes the processor, the card reader, the display, the screen,
the key pad, the printer, a cash dispenser and a modem. We presume that these can be
bought off the shelf rather than specially designed and made. We could estimate the
cost of the hardware for each ATM at $10,000. In addition there is the cost of
installing the machines in a secure fashion. There will probably be a need for extra serv-
er capacity at the bank in order to handle the requests from ATMs. An estimate for the
total hardware costs is $20,000 per ATM.

Running costs include the telephone line charge, replacing printer paper, stocking
the ATM with cash.

Now we attempt to estimate the software cost. The software is relatively complex
because it uses a number of special devices. There is software in each ATM, plus the
software at the bank to handle requests from ATMs. The ATM software must be robust
and reliable because it is used by members of the public. We could adopt such tech-
niques as those explained in Chapter 30 to predict the software cost, but these tech-
niques are poor, and anyway, as we shall see, we only need a ball park figure. Suppose
we guess two person years for the software. Suppose that this equates to $100,000. But
this cost must be shared across the 200 machines, which is $500 per machine. This is
about 2–5% of the cost of each ATM – an insignificant component. This is typical of
software costs in embedded systems, where the software is simply one component
among many others.

What about the benefits of providing ATMs? No doubt ATMs are convenient,
available 24/7 hours in stations, stores and public buildings. But most banks are not
philanthropists – their mission is not to serve the public, but to make a profit. The
provision of ATMs might attract customers to the bank and this benefit could be
costed. This would probably be only a temporary advantage, until other banks
caught up. However, most banks in the industrialized world have reduced jobs by
computerization and this is probably the significant cost benefit. We might estimate
that a single 24-hour ATM would replace two full-time cashiers. This is a saving of,
say, $40,000 each per year. (This is not simply salaries, but includes other costs, such
as office space.)

So, in summary, over a five-year period for each ATM:

Costs Benefits

cost of hardware $20,000 staff costs $400,000
cost of software $500
cost of maintenance $4,500
total $25,000 total $400,000

Should the ATMs be developed? The conclusion speaks for itself.
Now, all these figures are indicative, but the point is to see how to go about cost-

benefit analysis. We can see that assessing the costs and the benefits of a system is com-
plicated and time-consuming. It is not an exact science and some guesses usually have
to be made.

BELL_C03.QXD 1/30/05 4:14 PM Page 33

34 Chapter 3 � The feasibility study

It is notoriously difficult to predict the cost of a system and therefore it is very difficult
to carry out a feasibility study. This may explain why it is common to ignore it. There is,
however, another common reason for avoiding a feasibility study: once an idea for a sys-
tem has been suggested, the project generates its own momentum, people become
committed to it and it cannot be stopped. Instead people talk about a business case for the
system, which tends to emphasize the positive aspects while minimizing the negative.

Bear in mind that sometimes the feasibility study plays a large part in deciding that
the project should be abandoned.

3.6 � Discussion

SELF-TEST QUESTION

3.2 If the software cost were doubled, would the decision be the same?

Summary

A feasibility study is an investigation to check that a development is worthwhile. It
is carried out at the start of a project. It assesses technical feasibility and costs.

Cost-benefit analysis compares the cost of developing the system with the money
saved by using it. The costs include development, additional hardware, maintenance
and training.

Exercises•
3.1 Suggest how a feasibility study would be conducted for each of the systems outlined

in Appendix A.

3.2 Discuss the validity of using cost-benefit analysis, especially in socially useful appli-
cations.

BELL_C03.QXD 1/30/05 4:14 PM Page 34

9jabaz
Download more books at 9jabaz.ng for free!

Further reading 35

Further reading•
A collection of papers that looks at the topic from a variety of perspectives is the fol-

lowing title. Some non-computer case studies are presented. Richard Layard and
Stephen Glaister (eds), Cost-Benefit Analysis, Cambridge University Press, 1994.

Answers to self-test questions

3.1 There are a number of possible systems. For example, aids for disabled
people.

3.2 Yes. The software cost is only a small part of the cost. The benefits over-
whelm the costs.

BELL_C03.QXD 1/30/05 4:14 PM Page 35

Logically the first stage of software development is to establish precisely what the users
of the system want. The dominant part of this stage is communication between the
users and the software developer or engineer. When the engineers are dealing with
requirements, they are normally referred to as systems analysts or, simply, “analysts”.
This is the term we shall use. As far as the users are concerned, they are sometimes
known as clients or customers. We will use the term “user”.

The story begins when a user has an idea for a new (or enhanced) system. He or she
summons the analyst and thereafter they collaborate on drawing up the requirements
specification. The user’s initial idea may be very vague and ill-defined, but sometimes
clear and well-defined.

Arguably, establishing the requirements is the single most important activity in soft-
ware development. It typically consumes 33% of the project development effort. If we
cannot accurately specify what is needed, it is futile to implement it. Conversely, we
could implement the most beautiful software in the world, but if it is not what is need-
ed, we have failed. In the real world of software development there are strong indica-
tions that many systems do not meet their users’ needs precisely because the needs were
not accurately specified in the first place.

4.1 � Introduction

CHAPTER

4 Requirements
engineering

This chapter:
� explains what happens during requirements engineering

� explains the nature of a requirements specification

� explains how to employ use cases in specifying requirements

� explains how to draw use case diagrams

� suggests guidelines and checklists for writing good specifications.

BELL_C04.QXD 1/30/05 4:15 PM Page 36

9jabaz
Download more books at 9jabaz.ng for free!

4.2 The concept of a requirement 37

Establishing the requirements for a software system is the first step in trying to
ensure that a system does what its prospective users want. This endeavor continues
throughout the software development and is called validation.

The requirements specification has a second vital role. It is the yardstick for assess-
ing whether the software works correctly – that it is free from bugs. The job of striving
to ensure that software is free from errors is a time-consuming and difficult process that
takes place throughout development. It is called verification.

Errors in specification can contribute hugely to testing and maintenance costs.
The cost of fixing an error during testing can be 200 times the cost of fixing it dur-
ing specification. It is estimated that something like 50% of bugs arise from poor
specification. The remedy of course is to detect (or prevent) bugs early, that is, dur-
ing specification.

It is easy to write poor requirements specifications for software; it is difficult to write
good specifications. In this chapter we will examine guidelines for writing specifications.

Remember that specifications are not usually written once and then frozen. More
typically, requirements change during the software development as the users’ require-
ments are clarified and modified.

The task of analyzing and defining the requirements for a system is not new or peculiar to
software. For generations, engineers have been carrying out these activities. For example,
the following is part of the requirements specification for a railway locomotive:

On a dry track, the locomotive must be able to start a train of up to 100 tonnes on an
incline of up to 30% with an acceleration of at least 30 km/h/h.

This statement serves to emphasize that a requirement tells us what the user (in this case
the railway company) wants. It says nothing about how the locomotive should be built.
Thus, it does not state whether the locomotive is diesel, coal or nuclear powered. It says
nothing about the shape or the wheel arrangements.

One of the great controversies in computing is whether it is desirable (or even possible)
to specify what a system should do without considering how the system will do it. This is
the relationship between specification and implementation. We will now look at both sides
of this argument.

On the one hand, there are several reasons why the requirements specification
should avoid implementation issues. The prime reason is that the user cannot reason-
ably be expected to understand the technical issues of implementation and cannot
therefore be expected to agree such elements of the specification. To emphasize the
point, how many users of a word processor really understand how software works? A
second reason for minimizing implementation considerations is to avoid unduly con-
straining the implementation. It is best if the developer has a free reign to use whatever
tools and techniques he or she chooses – so long as the requirements are met.

4.2 � The concept of a requirement

BELL_C04.QXD 1/30/05 4:15 PM Page 37

9jabaz
Download more books at 9jabaz.ng for free!

38 Chapter 4 � Requirements engineering

On the other hand, some people argue that it is impossible to divorce specification
and implementation. Indeed, in several major approaches to specification they are
intermixed. In such a method, the first task is to understand and to document the
workings of an existing system. (This might be a manual or a computer-based system,
or some combination.) This investigation serves as the prelude to the development of
a new computer system. Thus the implementation of one system (the old) acts as a
major ingredient in the specification for the new system. For example, suppose we
wished to develop a computer system for a library that currently does not use com-
puters. One approach would be to investigate and document all the current manual
procedures for buying books, cataloging, shelving, loaning, etc. Having accomplished
this task, the next step is to decide which areas of activity are to be computerized (for
example, the loans system). Finally, the specification of the new system is derived from
the design (implementation) of the old system. This approach to development seems
very appealing and logical. However, it does mean that implementation and specifica-
tion are intertwined.

There are several, additional and powerful reasons why the analyst must think about
implementation during specification. First, they must check that a requirement is tech-
nically possible. For example, is it possible to achieve a response time of 0.1 second?
Second, it is vital to consider implementation in order to estimate the cost and deliv-
ery date of the software. In order to estimate figures for performance and cost it will
almost certainly be necessary to carry out some outline development at least as far as
architectural design.

So, an ideal specification stipulates what, not how. But this is not always practical.

We have seen that, ideally, a specification should confine itself to what is needed. We
now present a list of desirable qualities for a specification. A good specification should
exhibit the following characteristics:

� implementation free – what is needed, not how this is achieved

� complete – there is nothing missing

� consistent – no individual requirement contradicts any other

� unambiguous – each requirement has a single interpretation

� concise – each requirement is stated once only, without duplication

� minimal – there are no unnecessary ingredients

� understandable – by both the clients and the developers

� achievable – the requirement is technically feasible

� testable – it can be demonstrated that the requirements have been met.

This list of desirable features can be used as a checklist when a specification is
drawn up. Additionally it can be used as a checklist to examine and improve an exist-
ing specification.

4.3 � The qualities of a specification

BELL_C04.QXD 1/30/05 4:15 PM Page 38

9jabaz
Download more books at 9jabaz.ng for free!

4.3 The qualities of a specification 39

A requirements specification should also be able to provide clear guidance as to
how to check that the system meets its users’ needs. In the specification for the loco-
motive given above there is plenty of quantitative information that would allow an
objective judgment of the success of the locomotive by using measuring instruments
like stopwatches.

We will examine some common deficiencies in specifications. We have seen that the
locomotive specification has the following positive characteristics:

1. it specifies requirements, not implementation

2. it is testable

3. it is clear.

However, the specification suffers from at least one deficiency: it is incomplete. For
example, there is no mention of cost or a deadline.

Let us now look at the requirements specification for a simple piece of software:

Write a Java program to provide a personal telephone directory. It should implement
functions to look up a number and to enter a new telephone number. The program
should provide a friendly user interface.

and apply the checklist above.
On the issue of implementation, the specification says that the program is to be

written in Java, which is definitely to do with the “how” of implementation.
Second, the specification gives no detail about the detail of the two functions; it is
incomplete. Often a requirement is simply unclear or susceptible to alternative
interpretations, and this, of course, may well be due to the use of natural language
in the specification. Vagueness is a common problem. Thus the requirement to pro-
vide a user-friendly interface is hopelessly vague, thereby making the specification
incomplete and untestable.

Some words are vague and therefore should be avoided within a specification.
Some typical examples are the words “flexible”, “fault tolerant”, “fast”, “adequate”,
“user friendly”.

Sometimes requirements contradict each other, as in these two:

the data will be stored on magnetic tape
the system will respond in less than 1 second.

because magnetic tape cannot provide a one-second response time.
Omissions or incompleteness can be difficult to identify. A typical area of specifica-

tion that is omitted is that of how to deal with faults, for example, input errors by a user
of the system.

All in all, constructing a successful specification is a demanding activity that needs
the clearest of thinking. It needs effective communication between client and develop-
er. It needs the most precise use of natural language. A review of the specification by a
number of people can help improve it.

BELL_C04.QXD 1/30/05 4:15 PM Page 39

9jabaz
Download more books at 9jabaz.ng for free!

40 Chapter 4 � Requirements engineering

The activity of eliciting requirements involves the analysts and users talking together,
with the former trying to understand the latter. It necessitates the clearest form of com-
munication. The skills involved on the part of the analyst are not the usual, technical
skills that are associated with developing software. It is beyond the scope of this book
to explore the issues of human communication that are involved, and we shall largely
concentrate on the notations and format of specifications. We will, however, touch on
the issue of viewpoints.

We can distinguish three activities that lead to a requirements specification:

1. listening (or requirements elicitation)

2. thinking (or requirements analysis)

3. writing (or requirements definition).

Elicitation involves listening to users’ needs or requirements, asking questions that
assist the users in clarifying their goals and constraints and finally recording the users’
viewpoint of the system requirements.

Requirements analysis is the stage where the software engineer simply thinks! He or
she transforms the users’ view of the system into an organized representation of the sys-
tem as seen by the analyst. And this may be complicated by the fact that there may be
a number of different users with different views of what is wanted.

Requirements definition is the writing of a clear statement, often in natural language,
of what the system is expected to provide for its user. This information is called the
requirements specification.

As in any complex process of communication and negotiation, these three activities
will usually take place repetitively and sporadically.

The conversation between clients and analysts will often be long and complicated.
There is primarily the need to communicate clearly and then to record the requirements
clearly. But then there is also the negotiating ingredient, during which the user may
baulk at the price quoted for a particular feature. Eventually, we hope, agreement can
be reached on the final requirement specification.

From the outset of any project there are at least two viewpoints – that of the users
and that of the developers. As we shall see, there are cultural differences between these
two groups, but also there will often be differences of view within the group of users.
For example, consider a computer system that is to be used by cashiers in a bank. The
cashiers may be concerned with giving good customer service, job satisfaction and with

4.4 � How to elicit requirements

SELF-TEST QUESTION

4.1 How are the two characteristics unambiguous and understandable
related?

BELL_C04.QXD 1/30/05 4:15 PM Page 40

9jabaz
Download more books at 9jabaz.ng for free!

4.5 The requirements specification 41

enriching their jobs. They may resent any attempt to speed up or intensify their work.
They may object to any facilities in the system to monitor their work rate. The man-
agement in the bank, however, will probably be concerned with costs, performance and
effectiveness. There may very well be a conflict of interest between the cashiers and the
managers. This paints an extreme picture, but illustrates that the users will not neces-
sarily present a single, uniform view.

Another example of a potential gulf between users and analysts is to do with the level
of expectation of users. Some users have seen science fiction films and come to believe
that computers can do anything – or at least can offer a high level of artificial intelli-
gence. Others, perhaps, are naive in the opposite direction and believe that computers
can carry out only the most mundane tasks.

To sum up, the role of the analyst is:

� to elicit and clarify the requirements from the users

� to help resolve possible differences of view amongst the users and clients.

� to advise users on what is technically possible and impossible.

� to document the requirements (see the next section).

� to negotiate and to gain the agreement of the users and clients to a (final) require-
ments specification.

The journey from the users’ initial idea to an agreed requirements specification will
often be long and tortuous.

The end product of requirements elicitation and analysis is the requirements specifica-
tion. It is a vital piece of documentation that is crucial to the success of any software
development project. If we cannot precisely state what the system should do, then how
can we develop the software with any confidence, and how can we hope to check that
the end product meets its needs? The specification is the reference document against
which all subsequent development is assessed.

Three important factors to be considered are:

1. the level of detail

2. to whom the document is addressed

3. the notation used.

The first factor is about the need to restrict the specification as much as possible to
specify what the system should do rather than how it should do it. As we have seen, the
specification should ideally be the users’ view of the system rather than anything about
how the system is to be implemented.

The second factor arises because the specification has to be understood by two dif-
ferent sets of people – the users and the developers. The people in these two sets have
different backgrounds, expertise and jargon. They share the common aim of clearly

4.5 � The requirements specification

BELL_C04.QXD 1/30/05 4:15 PM Page 41

9jabaz
Download more books at 9jabaz.ng for free!

42 Chapter 4 � Requirements engineering

describing what the system should do, but they will each be inclined to use a different
language. The users will have a preference for non-technical descriptions expressed in
natural language. Unfortunately, while natural language is excellent for poetry and love
letters, it is a poor vehicle for achieving a precise, consistent and unambiguous specifi-
cation. On the other hand, the analysts, being of a technical orientation, will probably
want to use precise (perhaps mathematical) notation in order to specify a system. This
brings us to the question of the notation.

Several notations are available for writing specifications:

� informal, writing in natural language, used as clearly and carefully as possible. In
this chapter we will concentrate on this approach.

� formal, using mathematical notation, with rigor and conciseness. This approach is
outside the scope of this book. Formal methods tend to be used only in safety crit-
ical systems.

� semi-formal, using a combination of natural language together with various dia-
grammatic and tabular notations. Most of these notations have their origins in
methods for software design, that is, in methods for the implementation of software.
Thus there is a potential problem of including information about the implementa-
tion. These notations are discussed later in this book and include pseudo-code, data
flow diagrams and class diagrams.

At the present time, most requirements specifications are written in natural lan-
guage, assisted by use case diagrams.

One approach is to draw up two documents:

1. a requirements specification written primarily for users, describing the users’ view
of the system and expressed in natural language. This is the substance of the con-
tract between the users and the developers.

2. a technical specification that is used primarily by developers, expressed in some
more formal notation and describing only a part of the information in the full
requirements specification.

If this approach is adopted, there is then the problem of ensuring that the two doc-
uments are compatible.

Given that a requirements specification will usually be written in natural language, it is
useful to plan the overall structure of the specification and to identify its component
parts. We can also identify those ingredients that, perhaps, should not be included at
all, because they are concerned with the implementation rather than the requirement.
The remainder of this section presents one way of structuring specifications.

One approach to giving a clear structure to a specification is to partition it into parts.
Software essentially consists of the combination of data and actions. In specifications,

4.6 � The structure of a specification

BELL_C04.QXD 1/30/05 4:15 PM Page 42

9jabaz
Download more books at 9jabaz.ng for free!

4.6 The structure of a specification 43

the corresponding elements are called functional and data requirements. One of the major
debates in computing is about which of these two main elements – data or function – is
primary. Some approaches to development, notably the object-oriented approach, are
holistic, treating function and data with equal importance. However, our concern here is
with specification, not with development approaches. However, the format of a specifica-
tion will tend to reflect the system development method being employed.

A checklist for the contents of a requirements specification is:

1. the functional requirements

2. the data requirements

3. performance requirements

4. constraints

5. guidelines.

We shall now look at these in turn.

Functional requirements
The functional requirements are the real essence of a requirements specification. They
state what the system should do. Examples are:

The system will display the titles of all the books written by the specified author.
The system will continuously display the temperatures of all the machines.

Functional requirements are characterized by verbs that perform actions.

Data requirements
Data requirements have three components:

1. users’ data that is input to or output from the system via screen, keyboard or
mouse.

2. data that is stored within the system, usually in files on disk, for example, informa-
tion about the books held in a public library.

3. information passed to or from another computer system, for example, to a server.

Performance requirements
These are measures of performance, some of which are quantitative, and some of which
can be used as part of testing. Examples are:

� cost

� delivery date

� response times (e.g. the system will respond to user requests within one second.)

BELL_C04.QXD 1/30/05 4:15 PM Page 43

44 Chapter 4 � Requirements engineering

� data volumes (e.g. the system must be able to store information on 10,000 employees.)

� loading levels to be coped with (e.g. the system must be able to cope with 100 trans-
actions per minute from the point-of-sale terminals).

� reliability requirements (e.g. the system must have a mean time between failure of six
months.)

� security requirements.

Constraints
These are influences on the implementation of a system. An example is:

The system must be written in Java.

Constraints deal with such items as:

� the computer hardware that is to be used

� the amount of memory available

� the amount of backing store available

� the programming language to be used

� interoperability constraints (e.g. the software must run under the latest version of
Windows).

Constraints often address implementation (e.g. the specification of the programming
language) and therefore should be included with caution. For example, this might be
unnecessarily constraining:

The search must use a binary chop method.

Guidelines
A guideline provides useful direction for the implementation in a situation where there
may be more than one implementation strategy. For example:

The response times of the system to mouse clicks should be minimized.

Or, as an alternative:

The usage of main memory should be as small as possible.

Many specifications mix up the areas identified above, so that, for example, design
guidelines are sometimes confused with functional requirements.

BELL_C04.QXD 1/30/05 4:15 PM Page 44

4.7 Use cases 45

One widely used approach to documenting requirements is “use cases”. These are
textual descriptions which can be augmented by UML use case diagrams. Use cases
take the point of view of the user or users of the system. A user who is carrying out
a particular role is called an actor. A use case is a task that an actor needs the system
to carry out.

For example, in the ATM system (Appendix A), one of the things that a user does is
withdraw cash. This is a use case. As part of withdrawing cash, the user will have to carry
out subtasks, such as offering up their card and entering a PIN, but these smaller tasks
are not use cases. It is the overall user task that constitutes a use case.

A use case both specifies what the user does and what the system does, but says noth-
ing about how the system performs its tasks. In the ATM system, the use case for with-
drawing cash is:

withdraw cash. The user offers up their card. The system prompts for the PIN. The user
enters the PIN. The system checks the PIN. If the card and PIN are valid, the system
prompts the user for their choice of function. The user selects dispense cash. The user
prompts for the amount. The user enters the amount. The system ejects the card. When
the user has withdrawn the card, the system dispenses the cash.

We see that the user’s task requires a whole number of detailed steps. Sometimes the
user’s objective is not achieved, for example, if the PIN is wrong. However, the overall
name of the use case describes what normally happens.

Other use cases for the ATM are check balance and transfer money.

4.7 � Use cases

SELF-TEST QUESTION

4.2 Write a use case for checking a balance.

You will see that sometimes different use cases have parts in common. This is no
problem.

In the above example, and in most cases, the actor is a person, but an actor can
be anything that interacts with the system. This could be, for example, another soft-
ware system or another computer communicating across the internet. For example,
in a web server (program), the actor is a web browser program running on another
computer.

It is sometimes difficult to identify distinct use cases. In the ATM, for example, is
entering and validating the PIN a use case? The answer is no because it is not a useful
function from the user’s point of view, whereas withdrawing cash is. Suppose a person

BELL_C04.QXD 1/30/05 4:15 PM Page 45

46 Chapter 4 � Requirements engineering

carries out a series of transactions, inserting their card, withdrawing cash, checking their
balance and then transferring money. Is this collection a single use case? No, because it
constitutes a number of useful user functions.

One way to identify distinct use cases is to identify a goal that an actor wishes to
accomplish. Another viewpoint is identifying some outcome of value to the user. The
task of correctly entering a PIN is neither a goal nor a valuable outcome. It is only a
part of some complete and useful function. It is therefore not a valid use case in itself.

For a large system, there will be many use cases. In order to control complexity, use
cases are grouped into use case packages. Each package contains a set of related use cases.
For example, a word processor has many commands, but the commands are in groups,
such as filing, editing text, setting styles and printing.

The set of use cases constitutes the functional specification of a system. This in itself
is valuable, but, as we shall see, use cases can also be used to:

� derive the software structure

� create test cases

� help write a user manual

� predict software cost.

In some approaches to development, such as Agile Methods and the Unified Process
(both discussed later in this book), use cases are the driving force behind the develop-
ment process.

We can document use cases, such as those we have met, as a UML use case diagram.
Figure 4.1 shows the use case diagram for the ATM. There is a single actor, shown as
a stick figure. The name of the role of the user is shown below. Arrows lead from the
actor to the use cases, shown as ovals with their function named beneath.

You will see that a use case diagram does not contain the detail associated with
a (textual) use case. However, it does give an overall picture of the actors and the
use cases. Thus a use case diagram is an informal graphical representation of
requirements.

4.8 � Use case diagrams

withdraw cash

check balance

Bank customer

Figure 4.1 Use case diagram for the ATM

BELL_C04.QXD 1/30/05 4:15 PM Page 46

9jabaz
Download more books at 9jabaz.ng for free!

Exercises 47

4.1 Appendix A gives specifications for several systems. For each specification identify
the functional, data and performance components of the specification. Use the guide-
lines and checklists given above to rewrite and thereby improve the specification.

4.2 Appendix A gives specifications for several systems. For each specification identify and
write the use cases. Draw a use case diagram.

Summary

The ideal characteristics of a requirements specification are that it is:

� implementation free

� complete

� consistent

� unambiguous

� concise

� minimal

� understandable

� achievable

� testable.

A number of notations and approaches are available to carry out requirement specifi-
cation. The notations range from informal (use case diagrams) through semi-formal
(e.g. use cases) to formal (mathematics).

A useful checklist for the ingredients of a specification is:

1. functional requirements

2. data requirements

3. performance requirements

4. constraints

5. guidelines.

A major vehicle for describing functional requirements are use cases and UML use
case diagrams. A use case is a textual description of a small, but complete user task.
A use case diagram shows all the actors and all the use cases for a system.

The main issue with specifications is good communication, both in discussions and
in writing.

Exercises•

BELL_C04.QXD 1/30/05 4:15 PM Page 47

9jabaz
Download more books at 9jabaz.ng for free!

48 Chapter 4 � Requirements engineering

4.3 Appendix A gives specifications for several systems. For each specification identify any
problems with the specification, such as ambiguities, inconsistencies and vagueness.

4.4 Group exercise. One way of understanding more clearly the difficulties of carrying out
requirements elicitation is to carry out a role-playing exercise. Students can split up
into groups of four people, in which two act as users (or clients), while the other two
act as software analysts.

The users spend ten minutes in deciding together what they want. Meanwhile the
analysts spend the ten minutes deciding how they are going to go about eliciting the
requirements from the users.

The users and analysts then spend 15 minutes together, during which the analysts
try to elicit requirements. At the end of this period an attempt is made to get all par-
ties to sign the requirements specification.

After the role play is complete, everyone discusses what has been learned from
the exercise.

Possible scenarios are the systems already specified in Appendix A.

4.5 Requirements specifications are sometimes very long – they can be as long as a
book. Suggest a software tool that could be used (in addition to a word processor) to
assist in writing, checking, browsing and maintaining a specification. Consider, for
example, using a web browser and including hyperlinks in a specification to promote
cross-referencing.

4.6 Who should be consulted when collecting the requirements of a computer-based sys-
tem to replace an existing information system?

4.7 Who should be consulted when collecting the requirements for a process control sys-
tem or an embedded system? (It is not immediately obvious who the users of these
systems will be.)

4.8 Define the terms completeness and consistency in a specification. How can we
achieve them?

4.9 What are the skills required to collect, analyze and record software requirements?

4.10 Explain the difficulties in using natural language for describing requirements.

4.11 Why is requirements engineering so important and why is it so difficult?

Answers to self-test questions

4.1 If something is ambiguous it cannot be clearly understandable. So ambi-
guity has to be removed to help achieve an understandable specification.

4.2 Check balance. The user offers up their card. The system prompts for the
PIN. The user enters the PIN. The system checks the PIN. If the card and
PIN are valid, the system prompts the user for their choice of function. The
user selects check balance. The system displays the current balance.

BELL_C04.QXD 1/30/05 4:15 PM Page 48

9jabaz
Download more books at 9jabaz.ng for free!

Further reading 49

Further reading•
A comprehensive and wide-ranging account of requirements analysis and specification

is given in: A.M. Davis, Software Requirements Analysis and Specification, Prentice
Hall, 1990.

The widely used approach called structured analysis is described in: E. Yourdon,
Modern Structured Analysis, Yourdon Press; Prentice Hall, 1989.

The object-oriented approach is described in: P. Coad and E. Yourdon, Object-Oriented
Analysis, Yourdon Press; Prentice Hall, 1990.

A wide ranging review of approaches to system development is given in: D.E. Avison
and G. Fitzgerald, Information Systems Development: Methodologies, Techniques and
Tools, Blackwell Scientific Publications, 1988.

A good review of approaches to analyzing and specifying data is: H.F. Korth and
Silberschatz, Database System Concepts, McGraw-Hill, 1986.

BELL_C04.QXD 1/30/05 4:15 PM Page 49

9jabaz
Download more books at 9jabaz.ng for free!

BELL_C04.QXD 1/30/05 4:15 PM Page 50

PART

B DESIGN

BELL_CPARTB.QXD 1/30/05 4:30 PM Page 51

BELL_CPARTB.QXD 1/30/05 4:30 PM Page 52

The interface that the user sees when they use the computer is the single, paramount
aspect of the system. The interface is the packaging for software. The user does not
know and probably does not care how the system works (provided that it is reliable and
fast), but they do care what it does and how to use it. If it is easy to learn, simple to
use, straightforward and forgiving, the user will be encouraged to make good use of
what’s inside. If not, they won’t. The user interface is often the yardstick by which a
system is judged. Interfaces can be hard to learn, difficult to use, unforgiving and some-
times totally confusing. An interface which is difficult to use will, at best, result in a high
level of user errors. At worst, it will cause the software to be discarded, irrespective of
its functionality. These are the challenges of user interface design.

User interface design offers the software engineer:

� some principles to guide interface design (e.g. simplicity, learnability)

� some guidelines for good interfaces

� a process for developing good interfaces, based on prototyping

� methods for evaluating interfaces.

Today prototyping (Chapter 23) is considered essential for user interface development –
a prototype is made available to users and the resulting feedback used to improve the inter-
face design.

5.1 � Introduction

CHAPTER

5 User interface
design

This chapter explains:
� the principles, techniques and guidelines for designing a user interface.

BELL_C05.QXD 1/30/05 4:15 PM Page 53

54 Chapter 5 � User interface design

It is common in user interface design to distinguish between principles and guide-
lines (or rules):

� principles are high level and general. An example of a principle is: maintain consis-
tency throughout the interface.

� guidelines are specific and detailed. An example of a guideline is: black text on a
white background is clearer than white text on a black background.

Guidelines are direct, immediate and therefore easy to apply, but principles have to be
interpreted and applied to the specific system.

User interface design or human–computer interaction (HCI) is very much an inter-
disciplinary subject, with contributions from computer science, cognitive psychology,
sociology and ergonomics. Cognitive scientists are concerned with how human beings
perceive the world, think and behave at an individual level. Sociologists study groups of
people and their interactions. Ergonomics is about designing systems that are easy to
use. Software engineers must often take responsibility for user interface design as well
as the design of the software to implement that interface. These different disciplines
bring different perspectives to bear on designing the human–computer interface.

User interface design has as much to do with the study of people as it does with tech-
nology. Who is the user? How does the user learn to interact with a new system? How
does the user interpret information produced by the system? What will the user expect
of the system? These are just a few of the questions that must be answered as part of
user interface design. User interface design must take into account the needs, experi-
ence and capabilities of the user. It is nowadays considered important that potential
users should be involved in the design process.

The different specialisms reflect different views about the interaction between people
and computers. At one level it is possible to view HCI as the interaction between one
individual and the computer. At this level, the concerns are about such things as the
amount of information displayed on the screen and the colors chosen. In the workplace,
however, the computer system is often part of the wider context of the work being car-
ried out. Usually, other people are also involved in the work, so that the sociology of
the workplace has a role. The questions here may be: Who does what? How can person
A and person B communicate most effectively?

The manner in which users tell the computer what they want to do has changed dra-
matically over the last ten years. Broadly, there have been three types of interface: com-
mand line, menu and GUI (graphical user interface).

In the early days of computing, the only mode of HCI was the command line inter-
face. Communication was purely textual and was driven either via commands or by

5.3 � Styles of human–computer interface

5.2 � An inter-disciplinary field

BELL_C05.QXD 1/30/05 4:15 PM Page 54

5.3 Styles of human–computer interface 55

responses to system-generated queries. If we take as an example the instruction to
delete a file, the command to do it typically looks like this:

del c:\file.txt

where the user has to key in this text (accurately), following a prompt from the system.
This type of command is associated with such operating systems as Unix. This kind of
interaction is error prone, very unforgiving if an error occurs, and relatively difficult to
learn. Clearly, command line interfaces are not suitable for casual and inexperienced
users. On the other hand, experienced users often prefer a command line interface.

A development of the command line is the menu interface. The user is offered a
choice of commands, like this:

To delete the file, key D

To display the file, key L

To open a file, key O

To save the file, key S

after which the user makes their selection by pressing the appropriate key.
Menu-based systems have several advantages over a command line interface:

� users do not need to remember what is on offer

� users do not need to know command names

� typing effort is minimal

� some kinds of user error are avoided (e.g. invalid menu options can be disabled)

� syntax errors are prevented

� context-dependent help can be provided.

The ATM, specified in Appendix A and designed later in this chapter uses a menu
interface. The user uses buttons to select options. Use of a mouse is inappropriate since
it is not sufficiently robust for use in open-air, public situations.

Developments in user interfaces have been largely enabled by more sophisticated
technology – early computers only had facilities for text input and output, whereas
modern computers have high-resolution bit mapped displays and pointing devices. As
hardware became more sophisticated, and software engineers learned more about
human factors and their impact on interface design, the modern window-oriented, point
and pick interface evolved – with a GUI or WIMP (windows, icons, menus and point-
ing devices). Such an interface presents the user with a set of controls or widgets (win-
dow gadgets), such as buttons, scroll bars and text boxes. Instead of typing an option
the user makes a selection using the mouse and mouse button.

The advantages of GUIs include:

� they are relatively easy to learn and use

� the user can use multiple windows for system interaction

� fast, full-screen interaction is possible with immediate access to anywhere on the
screen

BELL_C05.QXD 1/30/05 4:15 PM Page 55

56 Chapter 5 � User interface design

� different types of information can be displayed simultaneously, enabling the user to
switch contexts

� the use of graphical icons, pull-down menus, buttons and scrolling techniques
reduce the amount of typing.

One way of helping to achieve interface consistency is to define a consistent model
or metaphor for user–computer interaction, which is analogous to some real world
domain that the user understands. A direct manipulation interface presents users with
a visual model of their information space. The best known of these is the desktop
metaphor, familiar to users of Microsoft and Apple Macintosh operating systems.
Another example is a WYSIWYG (what you see is what you get) word processor.

While there is a massive trend towards multitasking, window-oriented, point and
pick interfaces which can make HCI easier, this only happens if careful design of the
interface is conducted. Using a GUI is, in itself, no guarantee of a good interface.

In designing a user interface it is as well to realize that there are several potentially dif-
ferent viewpoints. The perspectives are:

� the end-user who will eventually get to use the software

� different end-users with different personalities

� the novice or occasional user

� the experienced or power user

� users with different types of skill

� the software developer who designs and implements the system.

Most people do not apply any formal reasoning when confronted with a problem,
such as understanding what a computer is displaying. Rather, they apply a set of guide-
lines, rules and strategies based on their understanding of similar problems. These are
called heuristics. These heuristics tend to be domain specific – an identical problem,
encountered in entirely different contexts, might be solved by applying different heuris-
tics. A user interface should be developed in a manner that enables the human to develop
heuristics for interaction.

The problem is that different people often have different perspectives of the user
interface; they also have different skills, culture and personalities. Each person has some
model of how the system works and what it does. These different perspectives are some-
times called mental models.

An interface used by two individuals with the same education and background but
entirely different personalities may seem friendly to one and unfriendly to the other.
Therefore, the ideal user interface would be designed to accommodate differences in
personality, or, alternatively, would be designed to accommodate a typical personality
among a class of end users. A third possibility is to create an interface that is flexible and
can be used in different ways according to personality differences.

5.4 � Different perspectives on user interface design

BELL_C05.QXD 1/30/05 4:15 PM Page 56

5.5 Design principles and guidelines 57

A novice user or an occasional user is not likely to remember much about how to
use the system. Thus a direct manipulation interface may be the most suitable
approach. But an experienced and frequent user may be frustrated by an interface
designed for novices and may prefer shortcut commands and/or a command line
interface. For example, a number of applications provide a macro facility, in which a
series of commands can be grouped together, parameterized and invoked as a single
command. Again the need for flexibility in the interface becomes apparent.

The skill level of the end user has a significant impact on the ability to extract mean-
ingful information from the user interface, respond efficiently to tasks that are demand-
ed by the interaction, and effectively apply heuristics that create a rhythm of interaction.
It seems that context- or domain-specific knowledge is more important than overall
education or intelligence. For example, an engineer who uses a computer-based diag-
nostic system to find faults in automobiles understands the problem domain and can
interact effectively through an interface specifically designed to accommodate users
with an engineer’s background. This same interface might confuse a physician, even
though the physician has considerable experience of using a computer for diagnosing
illnesses in patients.

The software developer may unconsciously incorporate into the user interface some
assumptions about the implementation that are irrelevant or even confusing for the
users. Consider a word processor, for example. What the user wants is to create and edit
documents, and they know that documents reside in files on a disk. The user probably
understands the concept of opening a file, because this is a familiar concept in using
manual files, but the idea of saving a file may well be completely mysterious to them.
The reason is that the concept of saving a file derives from the developer’s mental model
of how a word processor works, that is, it keeps all or part of the document in main
memory. This example illustrates how the designer can get it wrong and therefore the
importance of the involvement of the user in design.

In conclusion, there are a number of different viewpoints taken by the users and
developers of a user interface. There is scope for either conflict or harmony between
these views. Conflict between the users’ perception and the developers’ concepts can
make for a system that is difficult to use, but involving the users in the design can
assist in recognizing users’ views, and flexibility in the interface can help cater for dif-
ferent users.

Design principles are high-level principles that can guide the design of a user interface.
Three overall principles are:

� learnability – how easily can new users learn to use the system?

� flexibility – does the interface support a variety of interaction styles? (We have
already seen why this is an important consideration.)

� robustness – how much feedback does the system give the user to confirm what is
going on?

5.5 � Design principles and guidelines

BELL_C05.QXD 1/30/05 4:15 PM Page 57

58 Chapter 5 � User interface design

Each of these qualities can be specified in greater detail as follows:
Learnability involves:

� predictability – is the effect of any of the user actions predictable? A user should
never be surprised by the behavior of a system.

� synthesizability – can the user see the effect of their actions? A counter-example of
this characteristic is some Unix commands, which give the user no information or
even a confirmation of what they have accomplished.

� familiarity – are the facilities familiar to the user from their previous experience? The
interface should use terms and concepts which are drawn from the anticipated class
of user. This attribute will clearly be more easily achieved with an direct manipula-
tion interface.

� generalizability – can the user safely assume that the same operation in different cir-
cumstances gives the same outcome? For example, does clicking the mouse button
on a folder icon have the same effect as clicking on a file icon?

� consistency – are comparable operations activated in the same way? For example, in
a word processor, is the selection of a single character, a word, a line or a paragraph
achieved in a consistent manner?

Flexibility involves:

� user initiative – can the user initiate any valid task whenever they desire? This is an
issue of who is in control, the user or the machine.

� multi-threading – can several tasks be carried out concurrently? For example, carry-
ing out text editing while printing is in progress?

� task migratability – can particular tasks be undertaken either by the user or the sys-
tem, or some combination of the two? For example, some e-mail systems provide
for automatic response to e-mail while the user is on vacation.

� substitutivity – can a facility be used in different ways? For example, selecting font
size either from a menu or by typing font size explicitly.

� customizability – can the user change the user interface? For example, hiding an
unwanted tool bar, adding macros or scripts.

Robustness involves:

� observability – does the system display information that allows the user fully to
know what is going on? Again, this attribute will clearly be more easily achieved
with a direct manipulation interface.

� recoverability – does the system allow the user to recover from an unintended situ-
ation? For example, the provision of an undo button can help rectify certain user
mistakes.

� responsiveness – does the system respond in a reasonable time? Response time has
two characteristics, length and variability. Variability refers to the deviation from
average response time, and is in some ways more important than length, because
it can affect the user’s rhythm. So it is sometimes better to have equal length

BELL_C05.QXD 1/30/05 4:15 PM Page 58

9jabaz
Download more books at 9jabaz.ng for free!

5.5 Design principles and guidelines 59

response times (even if they are long) in preference to response times that are
unpredictable.

� task conformance – does the system do everything that the user needs to do? Is
some facility missing?

It should be emphasized that this list of principles, useful though it is, constitutes
just one of several possible categorizations of desirable attributes. Alternative factors
that might be considered equally important include user error prevention, minimizing
the user’s memory requirements and maximizing productivity.

Principles like these are distilled from practical experience, controlled experiments
and an understanding of human psychology and perception. They serve as goals to aim
for during development. They can also act as quality factors (see Chapter 29 on met-
rics and quality assurance) that can be used to assess the quality of a completed design.
For example, if recoverability is important for a particular application, an assessment of
this quality can be made in order to evaluate the success of the product.

Let us see how a principle, such as those above, differs from a guideline. The prin-
ciple of task conformance, for example, tells us what to look for, what to aim for, but
not how to achieve it – and it can sometimes be difficult to identify something that is
missing. By contrast, a guideline, such as “black text on a white background is easier to
read than the opposite”, is immediately useful and applicable.

The drawback of principles is that they are not immediately applicable, but have
to be interpreted and applied (as with real life principles). The last example of a prin-
ciple, task conformance, illustrates a major problem with using these principles for
user interface design – it is not always obvious how or when to use them. The
designer could post the principles up above their desk so that they can see them and
use them while they carry out design, but there is no explicit way of using the prin-
ciples as part of a well-defined design methodology. Thus they are more akin to goals
than principles.

Design guidelines or rules give the designer more detailed and specific advice dur-
ing the process of designing an interface. There are many long lists of guidelines in the
literature and we give here only a sample of typical guidelines. If you were asked to
design an interface for an application running under Microsoft Windows, for example,
you would be provided with a comprehensive manual of guidelines specific to the look
and feel of Windows applications. Among the many guidelines this would stipulate, for
example, that the icon to close an application must be displayed at the top right of the
window as a cross. Using guidelines such as these promotes the principle of consistency
mentioned above.

Here, for illustration, are some examples of guidelines for designing GUI interfaces:

� ask the user for confirmation of any non-trivial destructive action (e.g. deleting a file)

� reduce the amount of information that must be memorized in between actions

� minimize the number of input actions required of the user, e.g. reduce the amount
of typing and mouse travel that is required

� categorize activities by function and group related controls together

� deactivate commands that are inappropriate in the context of current actions

BELL_C05.QXD 1/30/05 4:15 PM Page 59

9jabaz
Download more books at 9jabaz.ng for free!

The process for designing a user interface begins with the analysis of the tasks that the
user needs to carry out. The human- and computer-oriented tasks are then delineated,
general design principles and guidelines are considered, tools are used to prototype a
system, and the result is evaluated for quality. The prototype is then refined repeatedly
until it is judged satisfactory. This can be visualized as shown in Figure 5.1.

5.6 � Interface design

60 Chapter 5 � User interface design

� display only the information that is relevant to the current context

� use a presentation format that enables rapid assimilation of information, e.g. graphs
and charts to present trends

� use upper and lower case, indentation and text grouping to aid understanding

� use windows to compartmentalize different types of activity

� consider the available geography of the display screen and use it efficiently

� use color sparingly. (Designers should take account of the fact that a significant
number of people are color-blind.)

These guidelines are more detailed and specific than the rather more generalized
principles given earlier.

SELF-TEST QUESTION

5.1 Distinguish between user interface design guidelines and principles.

Construct
prototype

Check with
user

Refine
prototype

[User requires change]

[User happy]

Figure 5.1 Using prototyping in user interface design

BELL_C05.QXD 1/30/05 4:15 PM Page 60

5.6 Interface design 61

SELF-TEST QUESTION

5.2 What problems can you see with this approach to design?

In Chapter 2 we identified requirements analysis as an important early part of any
software development project. The process of user interface design, described above, is
similar to the requirements analysis phase. In interface design, the user of a system plays
a central role and thus user evaluation of prototypes is probably essential.

Once a user interface prototype has been created, it is evaluated to determine
whether it meets the needs of the user. Evaluation can range from an informal test drive
to formally designed studies that use statistical methods for the evaluation of ques-
tionnaires completed by a population of end users.

The evaluation cycle proceeds as follows. After a preliminary design has been com-
pleted, a first prototype is created. The prototype is evaluated by the user or users, who
provide the designer with comments about the efficacy of the interface. Design modifi-
cations based on the user comments are then made and the next prototype is created.
The cycle continues until no further modifications to the interface design are necessary.

A user interface evaluation is concerned with assessing the usability of the interface
and checking that it meets user requirements. Ideally, an evaluation is conducted
against a usability specification – the specification of a system should include, wherever
possible, quantitative values for usability attributes. Possible usability attributes are:

� learnability – the time taken to achieve a specified level of performance

� throughput – the speed at which the user can carry out tasks

� robustness when confronted with user errors

� recoverability from user errors

� adaptability – the extent to which the system can accommodate tasks that were not
envisaged during design

Metrics for each of these usability attributes can be devised. For example, a learn-
ability metric might state “a user who is familiar with the work supported by the system
will be able to use 80% of the system functionality after a three-hour training session”.
A recoverability metric might state that “a user who is familiar with the computer sys-
tem will be able to recover from an error that they made in less than two seconds”.

There are a number of techniques for user interface evaluation. Some involve directly
monitoring users as they use the system. There are several techniques:

� observation – someone watches users as they use the system

� video recording – users are video recorded as they use the system

� software monitoring – monitoring software is included to collect information as the
system is used

� verbalizing – the user speaks aloud as they use the system, relating what they are
doing and what they are thinking.

BELL_C05.QXD 1/30/05 4:15 PM Page 61

62 Chapter 5 � User interface design

Most large software development organizations maintain dedicated usability labora-
tories in which numbers of users are monitored while using prototypes of software
products under development.

An alternative approach is to use questionnaires or rating sheets to elicit views after
people have used the system. Questions may ask for:

� a simple yes or no response. For example, “Is the clear button easy to use?”

� a numerical score on a scale of, say 1 to 10. For example, “How easy is the clear
button to use?”

If desired the designer can extract quantitative feedback from this information, for
example, “70% of users found the clear button easy to use.”

As an example we will look at the development of the ATM software specified in
Appendix A. We start with the specification, which describes the functions that the ATM
must carry out when requested by a bank customer. These functions are to withdraw
cash and display a balance. The specification also tells us that part of the dialog with the
user is the entry of a PIN and its authentication.

5.7 � Case study

Figure 5.2 Simulated ATM user interface

BELL_C05.QXD 1/30/05 4:15 PM Page 62

5.8 Help systems 63

Our plan is to use prototyping to design the user interface. We assume that a
decision has been taken to provide a screen that displays characters, a keyboard
(with numeric keys, a cancel key and an enter key), a card reader, a printer and a
cash dispenser.

We assume that the system is for occasional untrained users rather than experts. We
should also realize that some users will be visually impaired and/or have difficulty
pressing keys.

We begin by roughly sketching an interface on paper. In constructing this first pro-
totype we note a list of guidelines. For example, in order to minimize overloading the
user with information, we design a number of screens. We can then easily translate
this into a simulated ATM using Visual Basic (or similar). One possible design is
shown in Figure 5.2. This prototype user interface does everything a real system
would do except read a card, dispense cash and print statements.

We now show several users the proposed interface. As they use the system, we
observe them, noting their difficulties, frustrations and annoyances.

Help systems are just one aspect of user guidance, which deals with three areas:

1. the messages produced by the system in response to user actions

2. the on-line help system

3. the documentation provided with the system.

The design of useful and clear information for users should be taken seriously and
should be subject to the same quality process as designs or programs.

Here are some guidelines for error messages. Error messages should always be polite,
concise, consistent and constructive. They must not be abusive and should not have
associated beeps or other noises which might embarrass the user. Error messages should:

� describe the problem in jargon the user can understand

� provide constructive advice for recovering from the error

� spell out any negative consequences of the error

� be accompanied by a visual cue

� not blame the user.

Help facilities may be either integrated or add-on. An integrated help facility is designed
into the software from the beginning. It is usually context-sensitive, providing information
relevant to what the user is doing. An add-on help facility is added to the software after the
system has been built. It is often merely an on-line manual with query capability. A num-
ber of design issues should be considered when a help facility is considered:

� will help be available for all system functions at all times?

� how will the user request help – help menu, function key, HELP command?

5.8 � Help systems

BELL_C05.QXD 1/30/05 4:15 PM Page 63

64 Chapter 5 � User interface design

� how will help be represented – separate window, reference to printed document,
one-line suggestion in a fixed screen location?

� how will the user return to normal interaction – return button, function key, con-
trol sequence?

� how will the information be structured – flat, layered, hypertext?

Summary

There are a number of different views of the user interface – the software engi-
neer’s, the user’s, the psychologist’s, the sociologist’s.

A number of design guidelines and principles are available to assist in user interface
design.

Prototyping is currently the most effective method for user interface design. It
means repeated evaluation of an interface until it meets usability standards

A set of guidelines is available to assist in the design of help systems.

Exercises

5.1 Identify a set of functions that might be provided by a word processor (Appendix A).
Design an interface. Suggest how the interface could be evaluated.

5.2 Design a user interface for a desk calculator. It must include at least one display to
show the number currently being used. It must have buttons for the functions pro-
vided. These include a button for each of the digit buttons and buttons for the com-
mon arithmetic operations. It should also have a clear button and an undo button.
Use the guidelines and principles from the text during the design, construct a pro-
totype and carry out an evaluation of the design.

5.3 Design a user interface for a website that allows the user to browse a catalog of
books and choose to buy selected books by entering a credit card number, a name
and address.

5.4 Perhaps the most notorious example of a poor user interface is the VCR. Design a
user interface for programming a VCR to record one or more television programs
using a remote control device. Assume that the television can be used as a display
device during programming.

•

BELL_C05.QXD 1/30/05 4:15 PM Page 64

Further reading 65

5.5 Design a user interface for a mobile phone. Design suitable buttons and assume that a
small display is available as part of the phone. Make assumptions about the tasks that
users of the phone want to carry out. Suggest criteria for evaluating your design and
suggest how the design could be evaluated (and thereby improved).

5.6 Suggest features for a web browser. Design a user interface for the browser. Suggest
how the interface of the browser could be evaluated.

5.7 “User interface design is in its infancy.” Discuss.

5.8 “User interface design methods are little more than a set of guidelines. There is no
proper methodology for user interface design.” Discuss.

5.9 Suggest features for a toolkit to assist in the development of graphical user interfaces.

5.10 Assess the strengths and weaknesses of user interface design methods.

5.11 Suggest a future for user interface devices and methods.

Answers to self-test questions

5.1 A principle is general, abstract; a guideline is specific, concrete and
applicable.

5.2 Who is the user? How many users do you involve? How many times should
you go round the loop?

Further reading•
Wilbert O. Galitz, The Essential Guide to User Interface Design, John Wiley, 2nd edn,

2002.

Susan Weinschenk, Pamela Jamar and Sarah C. Yeo, GUI Design Essentials, John Wiley,
1997.

This book by one of the gurus gives good accounts of guidelines for user interface
design: B. Schneiderman, Designing the User Interface: Strategies for Effective
Human–Computer Interaction, Addison-Wesley, 2nd edn, 1998.

A widely used and liked textbook on the subject is: Alan Dix, Janet Findlay, Gregory
Abowd and Russell Beale, Human–Computer Interaction, Prentice Hall, 2nd edn,
1998.

BELL_C05.QXD 1/30/05 4:15 PM Page 65

66 Chapter 5 � User interface design

Another popular textbook book is wide-ranging, readable and comprehensive. It
presents the views of a variety of people from different disciplines: Jenny Preece
et al., Human–Computer Interaction, Addison-Wesley, 1994.

Some light reading, guidelines and practical advice on designing GUI interfaces from
the creator of Visual Basic: Alan Cooper, About Face: The Essentials of User Interface
Design, IDG Books, 2003.

Alan Cooper has also written this valuable book: The Inmates Are Running the Asylum:
Why High Tech Products Drive Us Crazy and How To Restore The Sanity, Sams, 1999.

Well worth a read, an oldie but a goodie is: Donald Norman, The Psychology of Everyday
Things, Perseus Books, 1988.

This book shows how to implement GUIs using statecharts: Ian Horrocks,
Constructing the User Interface with Statecharts, Addison-Wesley, 1999.

BELL_C05.QXD 1/30/05 4:15 PM Page 66

Modularity is one of the key issues in software design. Modularity is to do with the
structure of software. This structure is the end product of all of the major current
design methods, such as functional decomposition, object-oriented design and data
structure design. A perfect design is the almost unobtainable Holy Grail.

If we were asked to design an automobile, we would probably design it in terms of
several subsystems – engine, transmission, brakes, chassis, etc. Let us call these subsys-
tems components. In identifying these particular components for an automobile, we
have selected items that are as independent of each other as possible. This is the essence
of good modularity.

The guidelines we shall describe in this chapter help to answer questions like:

� how big should a component be?

� is this component too complex?

� how can we minimize interactions between components?

Before we embark on these questions, we should identify what a “component” is.
Usually this is dictated by practical considerations, such as the facilities provided in the
available programming language and operating system.

6.1 � Introduction

CHAPTER

6 Modularity

This chapter explains:
� the reasons for modularity

� a classification of component types

� considerations for component size and complexity

� the argument against global data

� information hiding and encapsulation

� the terms coupling and cohesion

� how object-oriented programming supports modularity.

BELL_C06.QXD 1/30/05 4:18 PM Page 67

68 Chapter 6 � Modularity

Java is a typical modern language. At the finest level of granularity, a number of
statements and variable declarations can be placed in a method. A set of methods can
be grouped together, along with some shared variables, into a class. A number of
classes can be grouped into a package. Thus a component is a fairly independent piece
of program that has a name, some instructions and some data of its own. A compo-
nent is used, or called, by some other component and, similarly, uses (calls) other
components.

There is a variety of mechanisms for splitting software into independent compo-
nents, or, expressed another way, grouping together items that have some mutual affin-
ity. In various programming languages, a component is:

� a method

� a class

� a package.

In this chapter we use the term component in the most general way to encompass
any current or future mechanism for dividing software into manageable portions.

The scenario is software that consists of thousands or even hundreds of thousands of
lines of code. The complexity of such systems can easily be overwhelming. Some means
of coping with the complexity are essential. In essence, the desire for modularity is
about trying to construct software from pieces that are as independent of each other as
possible. Ideally, each component should be self-contained and have as few references
as possible to other components. This aim has consequences for nearly all stages of soft-
ware development, as follows.

Architectural design
This is the step during which the large-scale structure of software is determined. It is
therefore critical for creating good modularity. A design approach that leads to poor
modularity will lead to dire consequences later on.

Component design
If the architectural design is modular, then the design of individual components will be
easy. Each component will have a single well-defined purpose, with few, clear connec-
tions with other components.

Debugging
It is during debugging that modularity comes into its own. If the structure is modu-
lar, it should be easier to identify which particular component is responsible for the

6.2 � Why modularity?

BELL_C06.QXD 1/30/05 4:18 PM Page 68

9jabaz
Download more books at 9jabaz.ng for free!

6.2 Why modularity? 69

observed fault. Similarly, the correction to a single component should not produce
“knock-on” effects, provided that the interfaces to and from the component are not
affected.

Testing
Testing a large system made up of a large number of components is a difficult and time-
consuming task. It is virtually impossible to test an individual component in detail once
it has been integrated into the system. Therefore testing is carried out in a piecemeal
fashion – one component at a time (see Chapter 19 on testing). Thus the structure of
the system is crucial.

Maintenance
This means fixing bugs and enhancing a system to meet changed user needs. This activ-
ity consumes enormous amounts of software developers’ time. Again, modularity is cru-
cial. The ideal would be to make a change to a single component with total confidence
that no other components will be affected. However, too often it happens that obvious
or subtle interconnections between components make the process of maintenance a
nightmare.

Independent development
Most software is implemented by a team of people, often over months or years.
Normally each component is developed by a single person. It is therefore vital that
interfaces between components are clear and few.

Damage control
When an error occurs in a component, the spread of damage to other components will
be minimized if it has limited connections with other components.

Software reuse
A major software engineering technique is to reuse software components from a library
or from an earlier project. This avoids reinventing the wheel, and can save enormous
effort. Furthermore, reusable components are usually thoroughly tested. It has long
been a dream of software engineers to select and use useful components, just as an elec-
tronic engineer consults a catalog and selects ready-made, tried-and-tested electronic
components.

However, a component cannot easily be reused if it is connected in some complex
way to other components in an existing system. A heart transplant from one human
being to another would be impossible if there were too many arteries, veins and nerves
to be severed and reconnected.

BELL_C06.QXD 1/30/05 4:18 PM Page 69

70 Chapter 6 � Modularity

There are therefore three requirements for a reuseable component:

� it provides a useful service

� it performs a single function

� it has the minimum of connections (ideally no connections) to other components.

Components can be classified according to their roles:

� computation-only

� memory

� manager

� controller

� link.

A computation-only component retains no data between subsequent uses. Examples
are a math method or a filter in a Unix filter and pipe scheme.

A memory component maintains a collection of persistent data, such as a database
or a file system. (Persistent data is data that exists beyond the life of a particular pro-
gram or component and is normally stored on a backing store medium, such as disk.)

A manager component is an abstract data type, maintaining data and the operations
that can be used on it. The classical examples are a stack or a queue.

A controller component controls when other components are activated or how they
interact.

A link component transfers information between other components. Examples are a
user interface (which transfers information between the user of a system and one or
more components) and network software.

This is a crude and general classification, but it does provide a language for talking
about components.

How big should a software component be? Consider any piece of software. It can
always be constructed in two radically different ways – once with small components and
again with large components. As an illustration, Figure 6.1 shows two alternative struc-
tures for the same software. One consists of many small components; the other a few
large components.

If the components are large, there will only be a few of them, and therefore there
will tend to be only a few connections between them. We have a structure which is a
network with few branches and a few very big leaves. The complexity of the intercon-
nections is minimal, but the complexity of each component is high.

6.4 � Component size and complexity

6.3 � Component types

BELL_C06.QXD 1/30/05 4:18 PM Page 70

9jabaz
Download more books at 9jabaz.ng for free!

6.4 Component size and complexity 71

If the components are small, there will be many components and therefore many
connections between them in total. The structure is a network with many branches and
many small leaves. The smaller the components, the easier an individual component
should be to comprehend. But if the components are small, we run the risk of being
overwhelmed by the proliferation of interconnections between them.

The question is: Which of the two structures is the better? The alternatives are large
components with few connections, or small components with many connections.
However, as we shall see, the dilemma is not usually as simple as this.

A common point of view is that a component should occupy no more than a page of
coding (about 40–50 lines). This suggestion takes account of the difficulty of under-
standing logic that spills over from one page of listing (or one screen) to another.

A more extreme view is that a component should normally take up about seven lines
or less of code, and in no circumstances more than nine. Arguments for the “magic
number” seven are based on experimental results from psychology. Research indicates
that the human brain is capable of comprehending only about seven things (or con-
cepts) at once. This does not mean that we can remember only seven things; clearly we
can remember many more. But we can only retain in short-term memory and study as
a complete, related set of objects, a few things. The number of objects ranges from about
five to nine, depending on the individual and the objects under study. The implication
is that if we wish to understand completely a piece of code, it should be no more than
about seven statements in length. Relating lines of code to concepts may be oversimpli-
fying the psychological basis for these ideas, but the analogy can be helpful. We shall
pursue this further later in the chapter.

Clearly a count of the number of lines is too crude a measure of the size of a com-
ponent. A seven-line component containing several if statements is more complex than
seven ordinary statements. The next section pursues this question.

We have already met an objection to the idea of having only a few statements in a
component. By having a few statements we are only increasing the number of compo-
nents. So all we are doing is to decrease complexity in one way (the number of state-
ments in a component) at the cost of increased complexity in another way (the number
of components). So we gain nothing overall.

Do we need a few, large components or many small components? The answer is that
we need both. We pose the question of how a piece of software is examined. Studying

Figure 6.1 Two alternative software structures

BELL_C06.QXD 1/30/05 4:18 PM Page 71

72 Chapter 6 � Modularity

a program is necessary during architectural design, verification, debugging and main-
tenance, and it is therefore an important activity. When studying software we cannot
look at the whole software at once because (for software of any practical length) it is
too complex to comprehend as a whole.

When we need to understand the overall structure of software (e.g. during design or
during maintenance), we need large components. On other occasions (e.g. debugging)
we need to focus attention on an individual component. For this purpose a small com-
ponent is preferable. If the software has been well designed, we can study the logic of
an individual component in isolation from any others. However, as part of the task of
studying a component we need to know something about any components it uses. For
this purpose the power of abstraction is useful, so that while we understand what other
components do, we do not need to understand how they do it. Therefore, ideally, we
never need to comprehend more than one component at a time. When we have com-
pleted an examination of one component, we turn our attention to another. Therefore,
we conclude, it is the size and complexity of individual components and their connec-
tions with other components that is important.

This discussion assumes that the software has been well constructed. This means
that abstraction can be applied in understanding an individual component. However,
if the function of a component is not obvious from its outward appearance, then we
need to delve into it in order to understand what it does. Similarly, if the component
is closely connected to other components, it will be difficult to understand in isolation.
We discuss these issues later.

Small components can give rise to slower programs because of the increased over-
head of method calls. But nowadays a programmer’s time can cost significantly more
than a computer’s time. The question here is whether it is more important for a pro-
gram to be easy to understand or whether it is more important for it to run quickly.
These requirements may well conflict and only individual circumstances can resolve the
issue. It may well be better, however, first to design, code and test a piece of software
using small components, and then, if performance is important, particular methods that
are called frequently can be rewritten in the bodies of those components that use them.
It is, however, unlikely that method calls will adversely affect the performance of a pro-
gram. Similarly, it is unlikely that encoding methods in-line will give rise to significant
improvement. Rather, studies have shown that programs spend most of their time
(about 50%) executing a small fraction (about 10%) of the code. It is the optimization
of these small parts that will give rise to the best results.

In the early days of programming, main memory was small and processors were slow. It
was considered normal to try hard to make programs efficient. One effect of this was that
programmers often used tricks. Nowadays the situation is rather different – the pressure is
on to reduce the development time of programs and ease the burden of maintenance.
So the emphasis is on writing programs that are clear and simple, and therefore easy to
check, understand and modify.

What are the arguments for simplicity?

� it is quicker to debug a simple program

� it is quicker to test a simple program

BELL_C06.QXD 1/30/05 4:18 PM Page 72

6.5 Global data is harmful 73

� a simple program is more likely to be reliable

� it is quicker to modify a simple program.

If we look at the world of design engineering, a good engineer insists on maintain-
ing a complete understanding and control over every aspect of the project. The more
difficult the project the more firmly the insistence on simplicity – without it no one can
understand what is going on. Software designers and programmers have frequently been
accused of exhibiting the exact opposite characteristic: they deliberately avoid simple
solutions and gain satisfaction from the complexities of their designs. Perhaps pro-
grammers should try to emulate the approach of traditional engineers.

Many software designers and programmers today strive to make their software as
clear and simple as possible. A programmer finishes a program and is satisfied that it
both works correctly and is clearly written. But how do we know that it is clear? Is a
shorter program necessarily simpler than a longer one (that achieves the same end), or
is a heavily nested program simpler than an equivalent program without nesting? People
tend to hold strong opinions on questions like these; hard evidence and objective argu-
ment are rare.

Arguably, what we perceive as clarity or complexity is an issue for psychology. It is
concerned with how the brain works. We cannot establish a measure of complexity –
for example, the number of statements in a program – without investigating how such
a measure corresponds with programmers’ perceptions and experiences.

Just as the infamous goto statement was discredited in the 1960s, so later ideas of soft-
ware engineering came to regard global data as harmful. Before we discuss the argu-
ments, let us define some terms. By global data we mean data that can be widely used
throughout a piece of software and is accessible to a number of components in the sys-
tem. By the term local data, we mean data that can only be used within a specific com-
ponent; access is closely controlled.

For any particular piece of software, the designer has the choice of making data global
or local. If the decision is made to use local data, data can, of course, be shared by passing
it around the program as parameters.

Here is the argument against global data. Suppose that three components named A,
B and C access some global data as shown in Figure 6.2. Suppose that we have to study
component A in order, say, to make a change to it. Suppose that components A and B
both access a piece of global data named X. Then, in order to understand A we have to
understand the role of X. But now, in order to understand X we have to examine B. So
we end up having to study a second component (B) when we only wanted to under-
stand one. But the story gets worse. Suppose that components B and C share data.
Then fully to understand B we have to understand C. Therefore, in order to understand
component A, we have to understand not only component B but also component C.
We see that in order to comprehend any component that uses global data we have to
understand all the components that use it.

6.5 � Global data is harmful

BELL_C06.QXD 1/30/05 4:18 PM Page 73

74 Chapter 6 � Modularity

In general, local data is preferable because:

� it is easier to study an individual component because it is clear what data the com-
ponent is using

� it is easier to remove a component to use in a new program, because it is a self-
contained package.

� the global data (if any) is easier to read and understand, because it has been reduced
in size.

So, in general, the amount of global data should be minimized (or preferably abol-
ished) and the local data maximized. Nowadays most programming languages provide
good support for local data and some do not allow global data at all.

Most modern programming languages provide a facility to group methods and data
into a component (called variously a component, class or package). Within such a com-
ponent, the methods access the shared data, which is therefore global. But this data is
only global within the component.

Information hiding, data hiding or encapsulation is an approach to structuring software
in a highly modular fashion. The idea is that for each data structure (or file structure),
all of the following:

� the structure itself

� the statements that access the structure

� the statements that modify the structure

are part of just a single component. A piece of data encapsulated like this cannot be
accessed directly. It can only be accessed via one of the methods associated with the
data. Such a collection of data and methods is called an abstract data type, or (in object-
oriented programming) a class or an object.

6.6 � Information hiding

A B C

Global data
X

Figure 6.2 Global data

BELL_C06.QXD 1/30/05 4:18 PM Page 74

6.6 Information hiding 75

The classic illustration of the use of information hiding is the stack. Methods are
provided to initialize the stack, to push an item onto the stack top and to pop an item
from the top. (Optionally, a method is provided in order to test whether the stack is
empty.) Access to the stack is only via these methods. Given this specification, the
implementer of the stack has freedom to store it as an array, a linked list or whatever.
The user of the stack need neither know, nor care, how the stack is implemented. Any
change to the representation of the stack has no effect on the users (apart, perhaps,
from its performance).

Information hiding meets three aims:

1. Changeability
If a design decision is changed, such as a file structure, changes are confined to as few
components as possible and, preferably, to just a single component.

2. Independent development
When a system is being implemented by a team of programmers, the interfaces between
the components should be as simple as possible. Information hiding means that the
interfaces are calls on methods which are arguably simpler than accesses to shared data
or file structures.

3. Comprehensibility
For the purposes of design, checking, testing and maintenance it is vital to understand
individual components independently of others. As we have seen, global and shared
data weaken our ability to understand software. Information hiding simply eliminates
this problem.

Some programming languages (Ada, C++, Modula 2, Java, C#, Visual Basic .Net)
support information hiding by preventing any references to a component other than
calls to those methods declared to be public. (The programmer is also allowed to
declare data as publicly accessible, but this facility is only used in special circum-
stances because it subverts information hiding.) Clearly the facilities of the pro-
gramming language can greatly help structuring software according to information
hiding.

In summary, the principle of information hiding means that, at the end of the
design process, any data structure or file is accessed only via certain well-defined,
specific methods. Some programming languages support information hiding, while
others do not. The principle of information hiding has become a major concept in
program design and software engineering. It has not only affected programming lan-
guages (see Chapter 15), but led to distinctive views of programming (see below)
and design (see Chapter 11).

BELL_C06.QXD 1/30/05 4:18 PM Page 75

76 Chapter 6 � Modularity

In object-oriented programming, data and actions that are strongly related are
grouped together into entities called objects. Normally access to data is permitted only
via particular methods. Thus information hiding is implemented and supported by the
programming language. Global data is entirely eliminated.

The ideas of coupling and cohesion are a terminology and a classification scheme for
describing the interactions between components and within components. Ideally, a
piece of software should be constructed from components in such a way that there is a
minimum of interaction between components (low coupling) and, conversely, a high
degree of interaction within a component (high cohesion). We have already discussed
the benefits that good modularity brings.

The diagrams in Figure 6.3 illustrate the ideas of coupling and cohesion. The dia-
grams show the same piece of software but designed in two different ways. Both
structures consist of four components. Both structures involve 20 interactions
(method calls or accesses to data items). In the left-hand diagram there are many
interactions between components, but comparatively few within components. In con-
trast, in the right-hand diagram, there are few interactions between components and
many interactions within components. The left-hand program has strong coupling
and weak cohesion. The right-hand program has weak coupling and strong cohesion.

Coupling and cohesion are opposite sides of the same coin, in that strong cohesion
will tend to create weak coupling, and vice versa.

The ideas of coupling and cohesion were suggested in the 1970s by Yourdon and
Constantine. They date from a time when most programming languages allowed the
programmer much more freedom than modern languages permit. Thus the program-
mer had enormous power, but equally had the freedom to write code that would nowa-
days be considered dangerous. In spite of their age, the terminology of coupling and
cohesion is still very much alive and is widely used to describe interactions between soft-
ware components.

6.7 � Coupling and cohesion

Figure 6.3 Coupling and cohesion in two software systems

BELL_C06.QXD 1/30/05 4:18 PM Page 76

6.8 Coupling 77

We are familiar with the idea of one component making a method call on another, but
what other types of interaction (coupling) are there between components? Which types
are good and which bad?

First, an important aspect of the interaction between components is its “size”.
The fewer the number of elements that connect components, the better. If compo-
nents share common data, it should be minimized. Few parameters should be passed
between components in method calls. It has been suggested that no more than
about 2–4 parameters should be used. Deceit should not be practiced by grouping
together several parameters into a record and then using the record as a single
parameter.

What about the nature of the interaction between components? We can distinguish
the following ways in which components interact. They are listed in an order that goes
from strongly coupled (least desirable) to weakly coupled (most desirable):

1. altering another component’s code

2. branching to or calling a place other than at the normal entry point

3. accessing data within another component

4. shared or global data

5. method call with a switch as a parameter

6. method call with pure data parameters

7. passing a serial data stream from one component to another.

We now examine each of these in turn.

1. Altering another component’s code
This is a rather weird type of interaction and the only programming language that nor-
mally allows it is assembler. However, in Cobol the alter statement allows a program
to essentially modify its own code. The problem with this form of interaction is that a
bug in one component, the modifying component, appears as a symptom in another,
the one being modified.

2. Entering at the side door
In this type of interaction, one component calls or branches to another at a place other
than the normal entry point of the component. Again, this is impossible in most lan-
guages, except assembler, Cobol and early versions of Basic.

The objection to this type of interaction is part of the argument for structured pro-
gramming. It is only by using components that have a single entry (at the start) and
one exit (at the end) that we can use the power of abstraction to design and understand
large programs.

6.8 � Coupling

BELL_C06.QXD 1/30/05 4:18 PM Page 77

78 Chapter 6 � Modularity

3. Modifying data within another component
Allowing one component to alter another component’s data seems rather less harmful
than changing another component’s code. However, the objection is the same and the
coupling is strong because a fault that appears in one component may be caused by
another.

4. Shared or global data
Shared data is data that two or more components have access to. The data is in a dis-
tinct component. Global data means a collection of data that is accessible to a large
number of, perhaps all, components. The facility to access data in this way is present in
nearly all widely used programming languages.

We have already seen why this is undesirable.

SELF-TEST QUESTION

6.1 Give one reason why global data is undesirable.

5. A method call with a parameter that is a switch
We have seen that both shared data and unusual transfers of control result in strong
coupling between components. The solution is, of course, to use method calls with
their attendant parameters. Even so, it is possible to worsen the coupling by passing as
a parameter not pure data but an element of control. An example is where a compo-
nent is passed an indicator telling the method which action to take from among a
number of available actions. (This indicator is sometimes called a switch.) Here is an
example of a method call on a general-purpose input-output method:

inputOutput(command, device, buffer, length);

The parameter command has values 0, 1, 2, etc. that specify whether the operation is
a read, write, open, etc. This is undesirable simply because it is unnecessarily compli-
cated. This method can be divided into several methods – each carrying out a single
action. As an alternative to calling a single method and passing it a switch, we can
instead call the individual appropriate method, like this:

read(device, buffer, length);

We have eliminated a parameter from the interaction and at the same time created
well-defined methods, each with a specific function. This contrasts with a single, multi-
purpose method. Arguably this modularization is easier to understand and maintain.

BELL_C06.QXD 1/30/05 4:18 PM Page 78

6.9 Cohesion 79

6. Method calls with parameters that are pure data
Here we have a form of coupling that is nearly ideal. The components interact in a well-
defined manner, suffering none of the weaknesses discussed in the schemes described
above. In particular, it is quite clear what information is being communicated between
components. Remember, though, that for weak coupling the number of parameters
should be few.

7. Passing a serial data stream
The weakest (best) coupling is achieved without any transfer of control between com-
ponents. This is where one component passes a serial stream of data to another. We can
visualize this by imagining that one component outputs information as if to a serial file,
and the second component reads it, again as if from a file. The important feature is that
the outputting component has no access to the data once it has released it.

This type of interaction is available in some programming languages and most oper-
ating systems. Within the Java library, the classes java.io.PipedInputStream and
java.io.PipedOutputStream allow a producer object (data source) to send a serial
stream of data to a consumer object (data sink). Ada allows software to be constructed
from concurrent tasks that communicate by message passing. In the Unix system, pro-
grams called filters communicate via pipes, which again are serial data streams.

Conclusion
The conclusion from this review of the types of coupling is that the weakest (best) coupling
is to be achieved by using components that communicate by either

� method calls with a small number of data parameters

� passing a serial stream of data from one to the other.

Cohesion is about unity. How do we group actions together in the best way? Cohesion
describes the nature of the interactions within a method. A scheme has been drawn up
for classifying the various types of cohesion. These range from low cohesion (undesir-
able) at the top of the list to high cohesion (desirable) at the bottom. Some of these
types of cohesion are now only of historical interest; current design methods ensure that
they just don’t arise. The list of categories is:

1. coincidental

2. logical

3. temporal

6.9 � Cohesion

BELL_C06.QXD 1/30/05 4:18 PM Page 79

80 Chapter 6 � Modularity

4. communicational

5. functional.

We will now look in turn at each of the different types of cohesion. In each case our
analysis will be based on a statement of what a method will do. We will see that if a
method does a mixture of things, then it has poor cohesion. On the other hand, if a
method carries out one specific action, then it has good cohesion.

1. Coincidental cohesion
In coincidental cohesion the elements are in the method purely by coincidence. There
is no relationship between the elements; their coexistence is purely arbitrary. This type
of modularity would arise if someone had taken, say, an existing method and arbitrari-
ly chopped it up into methods each of one page in length. It would then be impossible
to write down a meaningful statement of what each method accomplishes.

2. Logical cohesion
In logical cohesion the method performs a set of logically similar functions. As an exam-
ple, we could during the design of a piece of software identify all of the output activi-
ties of the system and then combine them into a single method whose function could
be described as

output anything

Such a method is clearly multi-functional. It performs any of a range of (output) oper-
ations, such as:

� display text on screen

� output line to printer

� output record to file

On the face of it such a method is rational, even logical. It seems like an act of house-
keeping has been carried out to collect together logically related activities.

Another example of a logically cohesive method is one that is described by the name:

calculate

and which carries out any of a range of mathematical calculations (log, sine, cosine, etc.).
The problem with a logically cohesive method is that it is multifunctional; it carries

out any of a menu of actions rather than one single well-defined action. It is unneces-
sarily complex. If we need to modify any one ingredient within the method, we will find
it hard to ignore the other elements.

BELL_C06.QXD 1/30/05 4:18 PM Page 80

6.9 Cohesion 81

3. Temporal cohesion
In temporal cohesion the method performs a set of actions whose only relationship is that
they have to be carried out at the same time. The classic example is a set of initialization
operations. Thus a method that carried out the following collection of actions:

clear screen

open file

initialize total

would exhibit temporal cohesion.
A sequence of initialization actions like this is such a common feature of most programs

and systems that it is hard to see how to avoid it. But as we can see in our example, the
ingredients are not related to each other at all. The solution is to make the initialization
method call other, specialized components. In the above example the initialization
method would be improved if it consisted of the sequence of calls:

initialize terminal

initialize files

initialize calculation

Initialization plays a role in object-oriented programming. Whenever a new object is
created, a constructor method is executed to carry out any initialization of the object.
A constructor method is written as part of the class to which it belongs and has a very
specific remit.

4. Communicational cohesion
In communicational cohesion, functions that act on the same data are grouped together.
For example, a method that displays and logs temperature is carrying out two different
actions on the temperature data. A similar example is a method that formats and prints
a number.

Thus a communicationally cohesive method is described by several verbs and one
noun. The weakness of such a method is, again, that it is unnecessarily complex – too
many things are being grouped together. The actions can be distinguished and designed
as separate methods.

5. Functional cohesion
This is the best type of cohesion. A method with functional cohesion performs a single,
well-defined action on a single subject. Thus a sentence that accurately describes the
purpose of the method has only one verb and a single object that is acted upon by the
verb. Here are examples of descriptions of such methods:

� calculate average

� print result

BELL_C06.QXD 1/30/05 4:18 PM Page 81

82 Chapter 6 � Modularity

� input transaction

� open valve

� obtain date

As with the ideas of coupling, if we find that the methods in our software exhibit
poor cohesion, the concepts of cohesion do not provide us with a method for improv-
ing our structure – they merely tell us how poor our structure is. Another problem with
the classification scheme is that it is sometimes very difficult to identify which type of
cohesion is present.

SELF-TEST QUESTION

6.2 A library method draws a line from one set of coordinates to another.
What type of cohesion does it exhibit?

In this form of programming, methods and data that are strongly related are grouped
together into an object. This matches exactly the ideas of information hiding and encap-
sulation discussed above. The items within an object are strongly coupled and the object
as a whole possesses high cohesion. A well-designed object presents a few simple interfaces
to its clients. The interfaces are those public methods that are declared to be accessible out-
side of the object. Thus a well-designed object displays loose coupling with other objects –
method calls with pure data parameters to methods with functional cohesion. It is possible
to code an object that allows clients direct access to its variables, but this is regarded as
poor practice and is heavily discouraged because it is essentially making data global.

Object-oriented languages encourage the programmer to describe classes rather than
individual objects. For example, here is the description, in Java, of a graphical object, a
ball, which has x and y screen coordinates:

class Ball {

protected int x, y;

private int radius;

public void setRadius(int newRadius) {

radius = newRadius;

}

public void setX(int newX) {

x = newX;

}

6.10 � Object-oriented programming

>

BELL_C06.QXD 1/30/05 4:18 PM Page 82

9jabaz
Download more books at 9jabaz.ng for free!

6.10 Object-oriented programming 83

public void setY(int newY) {

y = newY;

}

}

Here the private and public elements are clearly distinguished. A third description,
protected, means that the item is not accessible to clients but is accessible to subclasses,
as we shall see shortly. Not shown in this example are private methods that are used by
a class as necessary to carry out its work.

It is of course possible to misuse objects, by grouping ingredients that are not related.
However it is the purpose of a good design approach to ensure that this does not arise
(see Chapter 11).

Object-oriented programming (OOP) completely eliminates global data; all data is
encapsulated within objects.

The open-closed principle
If you need to modify a class (or object), there is no need to make a separate edited
copy. Instead you can use the inheritance mechanism of OOP. So the original copy
of the class remains intact, but is reused with additional or changed methods. This
is called the open-closed principle. Using the example above, we can create a new
class called MovingBall with additional methods that cause the ball to move left and
right:

class MovingBall extends Ball {

public void moveLeft(int distance))

x = x - distance;

}

public void moveRight(int distance) {

x = x + distance;

}

}

The new class MovingBall has all the features of the class Ball, but as the keyword
extends denotes, the new class has additional methods. The variables x and y in the
superclass are accessible in this subclass because they were declared as protected.
MovingBall makes use of Ball without altering it. Thus the modularity and integrity
of the original component remain intact.

There is a snag: inheritance creates an additional type of coupling between a class
and its superclasses. Thus if a subclass is changed, the programmer needs to re-examine
all the superclasses.

>
>

>

BELL_C06.QXD 1/30/05 4:18 PM Page 83

9jabaz
Download more books at 9jabaz.ng for free!

84 Chapter 6 � Modularity

In this chapter we have discussed a range of considerations about the design of com-
ponents. The ideas can be grouped into two areas:

1. those that deal with interactions within components – length, cohesion

2. those that deal with interactions between components – information hiding, coupling,
shared components.

These guidelines help us in three ways:

1. they help us decide what to do during the act of design, guiding us to software that
is clear, simple and flexible

2. they provide us with criteria for assessing the structure of some completed software

3. they assist us in refactoring (restructuring) software in order to improve it.

This book describes a number of methods for software design – creating a structure
for the software. Unfortunately no method can claim to lead the designer to an ideal
structure, and so guidelines for modularity supplement design methods in providing
guidance during the process of design. In addition, they enable us to make judgments
on the quality of a piece of software that has been designed. They may enable the
designer to improve the software structure.

A problem with these guidelines is that they are largely qualitative rather than quan-
titative. In Chapter 29 on metrics we look at one attempt to establish a quantitative
measure for the complexity of a component.

We shall see more on the nature of the relationships between components in
Chapter 12 on patterns.

6.11 � Discussion

Summary

Modularity is important throughout software development including design, test-
ing and maintenance.

Restricting component size is one crude way of reducing complexity. An extreme
view is to restrict all components to no more than seven statements.

The principle of information hiding is that data should be inaccessible other than
by means of the methods that are specially provided for accessing the data.

Coupling and cohesion are terms that describe the character of the interaction
between components and within components, respectively. Coupling and cohesion
are complementary. Strong coupling and weak cohesion are bad; weak coupling
and strong cohesion are good. Thus coupling and cohesion provide a terminology
and a qualitative analysis of modularity.

Object-oriented programming explicitly supports information hiding, weak coupling
and strong cohesion.

BELL_C06.QXD 1/30/05 4:18 PM Page 84

Answers to self-test questions 85

6.1 What is modularity and why is it important?

6.2 Argue for and against restricting components to about seven statements.

6.3 Look at the way that the library methods are called within a library available to you –
say the Java or C# library. Assess what forms of coupling are demonstrated by the
methods.

6.4 Examine any software or software design that you have available. How are the
components coupled? What forms of coupling and cohesion are present? Analyze
the component types. Is information hiding in use? Can the structure be improved?

6.5 Is there any correspondence between:

(a) any one form of cohesion and information hiding?

(b) any form of coupling and information hiding?

6.6 Does functional decomposition tend to lead to components that possess a particular
form of cohesion? If so, which?

6.7 In functional decomposition, the components are functionally independent but they
may act upon shared data. Is functional decomposition compatible with information
hiding?

6.8 Does the data structure design method lead to a program structure that exhibits any
particular types of coupling and cohesion? How does information hiding relate to, or
contrast with, data structure design?

6.9 Does data flow design create a program structure that exhibits any particular types of
coupling and cohesion?

6.10 Does object-oriented design tend to create software structures that exhibit any par-
ticular types of coupling and cohesion?

6.11 Consider a programming language with which you are familiar. What types of cou-
pling are allowed? What types are not permitted?

6.12 Compare and contrast the features for modularity provided by C++, Ada, Java and
Unix.

Exercises•

Answers to self-test questions

6.1 In order to understand one component, we are forced into studying them
all.

6.2 The method performs a single well-defined action. The parameters are
pure data. This is functional cohesion.

BELL_C06.QXD 1/30/05 4:18 PM Page 85

86 Chapter 6 � Modularity

This is the paper that suggests the small capacity of the human brain when compre-
hending a set of items as a complete whole: G. A. Miller, The magical number seven,
plus or minus two; limits on our capacity for processing information, The
Psychological Review, 63 (2) (March 1956), pp. 81–97.

This classic paper introduced the idea of information hiding: D.L. Parnas, On the cri-
teria to be used in decomposing systems into component modules, Communications
of ACM, 15 (December 1972), pp. 1053–8. This paper is reprinted in P. Freemen
and A.I. Wasserman, Tutorial on Software Design Techniques, IEEE, 4th edn, 1983.

This is the book that first introduced the ideas of coupling and cohesion. There is also
treatment of the issue of the optimal size of a component: E. Yourdon and Larry L.
Constantine, Structured Design, Prentice Hall, 1979.

This book gives a more recent presentation of the ideas of coupling and cohesion: M.
Page-Jones, The Practical Guide to Structured Systems Design, Yourdon Press, 1980.

One of the first books on design patterns (architectures) – general software structures
that can be applied to a whole number of software systems. The book also analyses
the different mechanisms available for connecting components: Mary Shaw and
David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1966.

Further reading•

BELL_C06.QXD 1/30/05 4:18 PM Page 86

Structured programming is now part and parcel of most approaches to programming.
It is widely accepted that it is not only the best, but the only way to carry out pro-
gramming. This was not always the case. At one time there was a great debate about
structured programming, what it meant and whether it was a good idea. This chapter
reviews the principles and practice surrounding structured programming.

Once upon a time most programming languages provided a goto statement that
allowed control to be transferred to any desired place in a program. Here is an example
of goto in action:

label:

goto label

A label can be placed anywhere within a program. The goto statement transfers con-
trol to the specified label. The venerable language C provides a goto statement. Among
modern languages, Java does not support a goto but C# does.

This chapter seeks to answer questions like: What is the essence of structured pro-
gramming? What is the role of the goto statement? Why are certain control structures
favored?

7.1 � Introduction

CHAPTER

7 Structured
programming

This chapter explains:
� the principles of structured programming

� the arguments surrounding the goto statement.

BELL_C07.QXD 1/30/05 4:19 PM Page 87

88 Chapter 7 � Structured programming

One view of structured programming is that it holds that programs should only be
built from three components: sequences (normally written in the order in which the
statements are to be executed), selections (normally written as if-then-else), and
repetitions (written as while-do). The goto statement is, by implication, banned. In
this chapter we begin by examining the controversy about the goto statement. The
outcome of the argument is that gotos are an irrelevancy; the argument is about some-
thing else, good program structure. We go on to explore the significant principles of
structured programming.

There are some other principles. We will explore these using flowcharts, which
describe flow of control. A flowchart is read from the top downwards or in the direc-
tion of the arrows. Flowchart decisions (corresponding to if or while statements in
code) are drawn as diamonds. Flowchart activities are shown as rectangular boxes. A
flowchart is very similar to a UML activity diagram and conveys the same information.
If the three structures of structured programming are diagrammed as flowcharts
(Figure 7.1), the following characteristics become clear:

1. they have only one entry and exit

2. none of the constructs consists of more than three boxes

Figure 7.1 The three structures of structured programming

Figure 7.2 A control structure that is not structured

BELL_C07.QXD 1/30/05 4:19 PM Page 88

7.2 Arguments against goto 89

If we visualize any one of the three constructs as they are used, then a third character-
istic is evident:

3. the entry is at the start and the exit is at the end.

Why is it that these characteristics are important? Why are other constructs that
have the same characteristics (Figure 7.2) ruled out? We now go on to look at these
questions.

SELF-TEST QUESTION

7.1 Write a loop that repeats ten times, first using a while statement, then
using goto.

gotos are unnecessary
Fortunately there is a mathematical theorem (thanks to Bohm and Jacopini) guaran-
teeing that any program written using goto statements can be transformed into an
equivalent program that uses only the structured constructs (sequence, selection and
iteration). The converted program will, in general, need additional data items that are
used as flags to control the actions of the program. Indeed the new program may look
rather contrived; nonetheless, it can be done. On the face of it, therefore, there is no
need for programs with gotos in them.

Note, as an interesting side issue, that the theorem does not tell us how to transform
the unstructured program; only that it can be done.

Experimental evidence
Structured programming is well established and widely regarded as the best approach
to programming. You might think, therefore, that there would be clear evidence from
real software projects that it is beneficial, but this is not so; there are no convincing
results from real projects, largely because a carefully controlled experiment would be
difficult and expensive to mount. It would be necessary to develop a particular piece of
software in two ways: once using structured programming and again using “unstruc-
tured” programming. All other variables, like the expertise of the programmers, would
have to be held constant. The two versions of the software could be compared accord-
ing to criteria like development time and number of errors. Regrettably, there are no
results of this type.

However, experimenters have carried out small-scale studies comparing how easily
people can understand and debug small structured programs compared with unstruc-
tured ones. In a typical experiment, each of a group of subjects is presented with the

7.2 � Arguments against goto

BELL_C07.QXD 1/30/05 4:19 PM Page 89

listing of a program that is written in a structured way and asked a series of questions
that are designed to assess their comprehension of it. The accuracy of the replies and
the time taken to reply are both measured. These are measures of the ease with which
the program could be debugged or changed. A second group of subjects are given
copies of the same program rewritten in an unstructured way. The accuracy and
response times of the two groups are compared. The results of these experiments gen-
erally indicate that structured programs are superior to unstructured ones.

The results of empirical studies are reviewed in the literature given at the end of
the chapter. In a review published in 1984, long after the dust had settled on the
structured programming debate, Vessey and Weber concluded that “the evidence
supporting [structured programming] is weak”. This conclusion largely stems from
the difficulty of carrying out experiments that give trustworthy results.

Clarity and expressive power
Compare the following two equivalent program fragments:

------ -------

------ -------

label: while a > 0

------ -------

------ -------

if a > 0 goto label endwhile

------ -------

------ -------

As we read down the first program fragment, we are not immediately sure what the
roles of the label and goto are. It would take us some time to read and study the pro-
gram in order to discover that they are being used to create the repetition of a piece of
code. This is made immediately obvious by the while statement in the second pro-
gram. Worse, there is a remaining doubt in the first program that there may be another
goto aimed at this same label from some other point in the program.

The facilities of a programming language should allow people to describe what they
want to do in a meaningful way. If we examine a typical program written using gotos
we see that the gotos are used for a variety of purposes, for example:

� to avoid a piece of code (which is to be executed in different circumstances)

� to perform repetition

� to exit from the middle of a loop

� to invoke a shared piece of code.

When we see a goto, there are few clues that allow us to decide the purpose for
which the goto is being used. The alternative is, of course, a unique language con-
struct for use in each of these different circumstances. These are, respectively:

90 Chapter 7 � Structured programming

>
>

BELL_C07.QXD 1/30/05 4:19 PM Page 90

9jabaz
Download more books at 9jabaz.ng for free!

7.2 Arguments against goto 91

� if-then-else

� while-do or repeat-until

� exit

� method call

It is as if the goto is too primitive an instruction – like a machine instruction to load
a register – that can be used in a whole variety of circumstances, but does not clearly
convey its meaning in any of them.

In summary, the goto lacks expressive power and it is therefore difficult to under-
stand the logic of a program that is written using a lot of gotos. When we look at a
piece of coding, words like while and if give us a strong clue as to what is intended;
gotos do not.

How many pencils?
Suppose we want to read a program in order to understand it by tracing through it as
if we were a computer executing it. Suppose we have available a supply of pencils (or
fingers) to help us. The pencils will be used as markers, and are to be placed on the pro-
gram listing to point to places of interest.

If we are following a simple sequence, then we will only need one pencil to keep
track of our position. If we encounter a method call, we need two pencils, one to leave
at the point of the call (in order to know where to return) and another to proceed into
the method.

If we encounter a while statement or a for loop, then we need an integer, a counter,
to keep count of the number of times we have repeated the loop.

To summarize, if the program has been written in a structured way, we need:

� one pencil to point to the current position

� one pencil to point to each method call that has been executed but not returned from

� a counter for every uncompleted loop.

This may seem like a lot of equipment, but consider the alternative of a program that
contains a lot of gotos. As before, we will need to indicate the position of the current
statement. Next, we need a pencil to point at every goto that has been executed. But
now, whereas in the structured program we can remove a pencil whenever we return
from a method, finish a loop or complete an if statement, we can never dispense with
pencils; instead we need ever more. The increased number of pencils reflects the
increased complexity of the goto program.

The real problem becomes evident when we want to refresh our memory about what
happened before we arrived at the current point in the program. In the program with-
out gotos we simply look back up the program text. In the unstructured program,
when we look backwards we are defeated as soon as we reach a label, because we have
no way of knowing how we reached it.

BELL_C07.QXD 1/30/05 4:19 PM Page 91

9jabaz
Download more books at 9jabaz.ng for free!

92 Chapter 7 � Structured programming

Ease of reading (static and dynamic structures)
In the Western world we are used to reading left to right and top to bottom. To have to
begin by reading forwards and then to have to go backwards in the text is rather unnatural;
it is simpler if we can always continue onwards. It is an important feature of a structured pro-
gram that it can always be read from top to bottom – provided it has no methods. The excep-
tion to this rule arises in comprehending a while loop, during which repeated references
back to the terminating condition at the start of the loop are necessary.

Programs are essentially dynamic beings that exhibit a flow of control, while the pro-
gram listing is a static piece of text. To ease understanding, the problem is to bring the
two into harmony – to have the static text closely reflect the dynamic execution. In a
structured program, the flow of control is always down the page, which exactly corre-
sponds to the way that text is normally read.

Proving programs correct
Formally to prove all programs correct is not a practical proposition with present-day
techniques. Nonetheless there are some lessons that can be learned from proving.

In one technique of program proving, assertions are made at strategic points in the
program. An assertion is a statement of what things are true at that point in the pro-
gram. More exactly, an assertion describes the relationships that hold between data
items that the program acts upon. Assertions at the start and end of a piece of program
are called the input and output assertions respectively. Proving consists of rigorously
demonstrating that if the input assertion is true, then the action of the program will
lead to the output assertion being true.

A structured program consists solely of components that have a single entry and a
single exit point. This considerably aids the process of reasoning about the effect of the
program. In contrast, it is usually impossible to isolate single-entry, single-exit struc-
tures within a program with gotos in it.

Even when formal proof techniques are not being used, but where an informal study
of the program is being made, the single-entry and single-exit character of programs
aids checking and understanding.

Deskilling
The goto statement is one tool among many provided by the programming language. To
take it away from the programmer is to deprive him or her of a tool that can be validly
used in certain circumstances.

Consider a craftsperson who is an expert at making delicate objects from wood.
Suppose that we remove from that person a tool that we consider to be inappropriate,
say an ax. The skill of making a discriminating selection among the available tools is
reduced, because the choice is narrower. Furthermore, the skill in using the tool is no

7.3 � Arguments in favor of goto

BELL_C07.QXD 1/30/05 4:19 PM Page 92

7.3 Arguments in favor of goto 93

longer required. (Remember, however, that there may occasionally be circumstances in
which an ax is the most suitable tool.)

Exceptions
Often a program is required to detect an error and to take some special action to deal
with it. Suppose that such an error is detected many levels down in a chain of method
calls. One way of handling the error is to create an additional parameter associated with
each method call. This approach can become very unwieldy as methods receive and
merely pass on parameters that they do not need to act on.

An alternative is for the method detecting the error to simply goto a suitable place
in the program where the error can be dealt with. This can result in a significant sim-
plification to the program. The essence of the argument is that an exceptional situation
in the program demands an exceptional solution – a goto.

Some programming languages, such as Java, have solved this problem using a special
mechanism for handling exceptional situations.

Program performance
On occasions it is possible to write a program that will run more quickly using goto
statements. An example is a program to search an array a for an item x:

for i = 1 to tableSize

if a[i] = x then goto found endif

endfor

notfound:

found:

The nearest we can get to writing this as a structured program is to write:

i = 1

while i <= tableSize and a[i] not = x

i = i+1

endwhile

if i > m then

else

>
>

>

BELL_C07.QXD 1/30/05 4:19 PM Page 93

9jabaz
Download more books at 9jabaz.ng for free!

94 Chapter 7 � Structured programming

endif

which requires an additional test. Although both programs achieve the same end – finding
(or not finding) the desired item – the steps taken by the two programs differ. The first
(unstructured) program takes fewer steps, and there is no way of writing a structured pro-
gram that works in the same way. Thus it is possible to write goto programs that run
more quickly than structured ones.

Naturalness
Consider the table searching program above. Arguably the unstructured solution is the
best in the sense that it is the solution that solves the problem most naturally. Any trans-
formation of this program, or any other solution, is a distortion of the natural solution.
In other words, getting rid of gotos in existing programs (as can always be done), will
sometimes needlessly destroy a good program.

The trouble is deciding what is natural. It surely differs from person to person,
depending on individual psychology and cultural experiences. So it is a rather subjec-
tive judgment.

Rather than take part in a parochial debate about the merits of a particular control
structure, let us take a constructive approach. If we had a free choice and a blank piece
of paper, what control structures would we choose to use in programming? Perhaps our
first consideration should be to establish the principles that govern the selection. Let us
examine the following criteria:

� standardization

� abstraction

� expressive power

� orthogonality

� minimality.

We shall see that some of these conflict with each other. Note also that in our examin-
ation we are confining ourselves to sequential, imperative programming, in contrast to
concurrent or declarative programming (as in logic or functional programming).

Standardization
Domestic appliances exhibit enormous variety and yet all plug into a standard socket.
Similarly, it is desirable to build software from components that all exhibit the same
external interface.

7.4 � Selecting control structures

>

BELL_C07.QXD 1/30/05 4:19 PM Page 94

7.4 Selecting control structures 95

The simplest interface comprises one entry point, at the start, and one exit point at
the end. This has the strength of being consistent with the essence of sequential pro-
gramming. It also conforms to the important idea of calling a method. We are used to
the idea of calling a method as a sequential step and returning from it to the next
instruction in sequence. (We do not, for example, expect to supply a label as a param-
eter to which control is returned.)

Abstraction
This is probably the most important idea in structured programming. The human mind
cannot devise or understand the whole of a complex system. Instead we can only under-
stand one part of the system at a time. Nonetheless it is vital to understand the whole
system. The only way to resolve these contradictory statements is to be able to perceive
the overall structure in a digestible way. The solution is to use abstraction, that is, the
system must be described in a notation that allows subsystems to be seen as black boxes
whose task is readily understood but whose detail is invisible. In programming, the
method has long been a mechanism that fulfills this role.

Other constructs that possess the same single-entry at the start, single-exit at the end
property, are if-then-else and while-do.

Expressive power
In discussing the arguments against the goto statement, we saw that the goto is too
primitive. It has more to do with describing what a machine will do than what a pro-
grammer intends. Instead we look at the range of structures on offer, tempted on the
one hand to seize every mechanism available, while at the same time conscious of the
need for minimality.

Certainly we need some mechanism for repetition, and either a while statement or
recursion is sufficient to provide this facility. Many languages provide both a while
statement and a repeat-until statement. Most languages also support recursion.

Arguably we also require a statement to carry out a choice of actions following a test.
The if-then-else fulfills this requirement, but others are equally valid, including the
case statement. Again, we are torn between expressive power and minimality.

Orthogonality
When designing a set of facilities, a good design principle is to create features that are
each as different from each other as possible. If this is so, we can more easily satisfy the
goal of a minimum number of functions, while at the same time ensuring that the facil-
ities are sufficiently powerful for all our needs.

Minimality
The principle of minimality curbs our tendency to include too many facilities. A conse-
quence of Bohm and Jacopini’s theorem is that we know that the three control structures

BELL_C07.QXD 1/30/05 4:19 PM Page 95

9jabaz
Download more books at 9jabaz.ng for free!

96 Chapter 7 � Structured programming

(sequence, selection and iteration) are sufficient. (Strictly, a construct for iteration, such
as a while, is also unnecessary, because any loop that can be written iteratively can also,
in theory, be achieved using only recursion.) Consider the flowcharts of various control
structures. Sequence has one box, while has two, and if has three boxes. There are
other control structures that involve only three or less boxes; but from amongst them all,
these are the minimal feasible set.

It is easy to become engrossed in the arguments about the goto statement, but is this
the central issue of structured programming?

Can a program that is written using only the three structures claim to be well struc-
tured? The answer is no; it is possible to create a bad program structure using the three
structures, just as it is possible (with greater difficulty) to create a good structure that
uses goto statements. To illustrate why this is so, consider a badly structured program
that has been written using many gotos. If we now transform this into a program that
uses the three structures, we still have a badly structured program, since we have done
nothing significant to improve it.

As a second example, consider a program to search a table for a required item. Two
alternative solutions, one structured, the other not, were compared earlier. However,
arguably, neither of these is the best solution. Here is another, in which the item being
sought is first placed at the end of the table:

a[tableSize + 1] = x

i = 1

while a[i] not = x

i = i + 1

endwhile

if i = tableSize + 1

then

else

endif

This is arguably the best of the solutions because it is less complex (the condition in the
while statement is simpler) and would execute more quickly on a conventional computer
(for the same reason that there is only one condition to test). This example illustrates that
the use of the approved structures does not necessarily guarantee the best design.

A structured program is essentially one that can be understood easily, and the most
useful tool in understanding is abstraction. Abstraction is concerned with identifying
the major elements of what is being studied, and ignoring detail. Such is the complex-
ity of software that we have to do this in order to stand a chance of understanding it.

7.5 � What is structured programming?

>
>

BELL_C07.QXD 1/30/05 4:19 PM Page 96

9jabaz
Download more books at 9jabaz.ng for free!

7.5 What is structured programming? 97

Abstraction can only be achieved if the control flow constructs are used in a disci-
plined way, so that part of structured programming is the avoidance of gotos. For
example, consider the program in Figure 7.3.

We can draw boxes around components as shown. Because it is built from limited
control structures, we can view the program at all levels of detail as consisting of
abstract components that have only one entry and one exit. If we examine any subsys-
tem of the program, it is totally contained – the boxes do not overlap. If we look in
detail at its contents, it does not suddenly sprout connections with other subsystems.
When we uncover the nested contents of a traditional Russian wooden doll, we do not
expect suddenly to encounter a doll that affects any of those we have already seen.
(Structured programs are, of course, more complex than these dolls; it is as if, when we
open a doll, not just one, but several more are revealed.)

Suppose that in the above program we inserted a goto as shown in Figure 7.4. We
have now ruined the structure, since we can no longer view the program at different
levels of abstraction.

As an analogy compare the problems of understanding a plate of spaghetti as com-
pared with a plate of lasagna. In order to understand the spaghetti, we have to under-
stand it all; we cannot employ abstraction. With the lasagna, we can peel off layers, one
by one, uncovering the interesting detail of successive layers and understanding each
separately from the others.

while do

if
then

else

endif

endWhile

if
then

endif

Figure 7.3 A structured program, showing self-contained components

BELL_C07.QXD 1/30/05 4:19 PM Page 97

9jabaz
Download more books at 9jabaz.ng for free!

98 Chapter 7 � Structured programming

Notice, though, that throughout our discussion we have concentrated almost exclu-
sively on control structures and have neglected references to data. Although a program
that uses the three structures may have abstraction of control, it may well have global
data. This seriously weakens the abstraction, since at any level of detail all of the data
has to be considered. Thus control abstraction is only one side of the coin; the other
side is data abstraction – an important theme that is developed in the chapters on mod-
ularity, object-oriented design and object-oriented programming later in this book.

The idea of abstraction is a powerful tool in constructing software that is under-
standable, but, by itself, it is inadequate. In order to create programs that are well struc-
tured, we need a systematic method that takes us from the statement of the problem to
the structure of the program. There are a variety of methods, discussed in later chapters.

while do

if
then

else

endif

endWhile

if
then

endif

goto label

label:

Figure 7.4 An unstructured program

Summary

The arguments against the goto are:

1. it is unnecessary

2. the experimental evidence

3. the lack of expressive power of gotos

BELL_C07.QXD 1/30/05 4:19 PM Page 98

9jabaz
Download more books at 9jabaz.ng for free!

Exercises 99

7.1 Review the arguments for and against goto statements and criticize their validity.

7.2 State in your own words what structured programming is. Imagine that you meet a
friend who is used to programming using gotos. Explain in simple clear language what
structured programming is.

7.3 A while statement can be used instead of an if statement, because the statement:

if bool then s endif

can be rewritten as:

while bool do s bool = false endwhile

Show how an if-then-else statement can similarly be rewritten using while state-
ments. If the if statement is superfluous, why have it?

4. the difficulty of finding out where you came from in a program constructed
using gotos

5. the need to read backwards in a program with gotos in it.

6. the difficulty of proving the correctness of programs that use gotos.

The arguments for gotos are:

1. to ban them is to deskill programming

2. they have a use in exceptional circumstances

3. gotos are sometimes necessary in order to make programs perform well

4. it is sometimes “natural” to use gotos.

Much of the debate about structured programming has been conducted in this way.
Throughout the arguments, the need for clarity in programs is the dominant idea.

The avoidance of gotos does not necessarily lead to a structured program. The
central idea of structured programming is abstraction. Indeed, we can define struc-
tured programming as:

“the systematic use of (control) abstraction in programming”

(Abstraction can be applied not just to control, but to data as well. This is the sub-
ject of other chapters.)

Abstraction requires not only the use of suitable control structures but also a sys-
tematic design method.

Exercises•

BELL_C07.QXD 1/30/05 4:19 PM Page 99

100 Chapter 7 � Structured programming

7.4 Convert the following into a structured program.

i = start

loop:

if x = a[i] then goto found endif

if i = end then goto notFound endif

i = i + 1

goto loop

notFound:

display 'not found'

action1

goto end

found:

display 'found'

action2

end:

Compare and contrast the two programs.

7.5 Recursion can be used to accomplish repetition, as in the following example of a
method to skip spaces in a stream of input information:

method skipSpaces

read(char)

if char = space then skipSpaces endif

endmethod

Convert this example to a method that uses a while statement for repetition. Compare
and contrast the two solutions. What is the role of recursion in the programmer’s toolkit?

7.6 Argue for and against providing the following constructs in a programming lan-
guage:

� case

� repeat-until

� until-do

>
>

Answer to self-test question

7.1 count = 0

while count < 10 do

count = count + 1

endwhile

>
>

BELL_C07.QXD 1/30/05 4:19 PM Page 100

Further reading 101

The famous article that launched the debate about structured programming is: E.W.
Dijkstra, Go To statement considered harmful, Communications of the ACM, 11(3)
(March 1968), pp. 147–48.

It is widely agreed that structured programming is a vital ingredient of software devel-
opment. For a review of the (inconclusive) experimental evidence about the effec-
tiveness of structured programming, see: I. Vessey and R. Weber, Research on
structured programming: an empiricist’s evaluation, IEEE Trans on Software
Engineering, 10 (4) (1984), pp. 397–407.

A vigorous exposition of the argument that structured programming is de-skilling is
given in: P. Kraft, Programmers and Managers, Springer-Verlag, 1977.

count = 0

loop:

count = count + 1

if count < 10 goto loop

Further reading•

BELL_C07.QXD 1/30/05 4:19 PM Page 101

Functional decomposition is a technique for designing either the detailed structure or the
large-scale structure of a program or module. As its name suggests, functional decompo-
sition is a method that focuses on the functions, or actions, that the software has to carry
out. To use the method we first write down, in English, a single-line statement of what the
software has to do. If the software performs several functions (as most GUI-driven software
does) write down a single line for each function. For example, suppose we want to write a
program to direct a robot to make a cup of instant coffee. We could begin by writing:

make a cup of coffee

Then we express the problem solution in terms of a sequence of simpler actions:

boil water

get a cup

put coffee in cup

add water

add milk

add sugar to taste

Next we take each of these statements and write down what it does in greater detail.
This process of decomposition or refinement is continued until the solution is expressed
in sufficient detail. Usually this is when the solution corresponds to the statements
provided by the programming language to be used.

8.1 � Introduction

This chapter explains:
� how to use functional decomposition

� the principles behind the method.

CHAPTER

8 Functional
decomposition

BELL_C08.QXD 1/30/05 4:20 PM Page 102

8.2 Case study 103

A statement that is to be broken down may be regarded as a method call. The set of
more elementary steps into which it is decomposed can be viewed as the implementation
of the method.

The language that is used to express the solution is called pseudo-code (because it is
similar in some ways to programming language code), or program design language
(PDL). It consists of sequences of (natural language) sentences, each beginning with a
verb. It also involves the usual control structures – if-then-else for selection and while
for repetition. For example, the statement boil water above can be refined to:

boil water

switch on kettle

while water not boiling do

watch tv

endwhile

switch off kettle

Again we can refine add sugar to taste as:

add sugar to taste

if sugar required

then

put sugar in cup

stir

endif

We can restrict ourselves just to while and if or we can make use of the repeat,
for and case constructs.

In order to illustrate the use of functional decomposition, we will design the software
for a simple game called cyberspace invaders. The screen is shown in Figure 8.1. The
specification of the program (also given in Appendix A) is as follows:

A window displays a defender and an alien (Figure 8.1). The alien moves sideways.
When it hits a wall, it reverses its direction. The alien randomly launches a bomb that
moves vertically downwards. If a bomb hits the defender, the user loses and the game is
over. The defender moves left or right according to mouse movements. When the mouse
is clicked, the defender launches a laser that moves upwards. If a laser hits the alien, the
user wins and the game is over.

A button is provided to start a new game.

8.2 � Case study

>
>

>
>

BELL_C08.QXD 1/30/05 4:20 PM Page 103

The program responds to events from the play button, a timer, mouse clicks and
mouse move events. To create animation, we move all the objects and redisplay them
whenever the timer produces an event. So the overall logic is:

timer event

move all the objects

display all the objects

check hits

mouse clicked event

create laser

mouse moved event

move defender

104 Chapter 8 � Functional decomposition

Figure 8.1 Cyberspace invaders

>

BELL_C08.QXD 1/30/05 4:20 PM Page 104

8.2 Case study 105

start button event

create defender

create alien

start timer

We have hidden the detail in such statements as:

move all the objects

and we can study and check the high-level design without worrying about detail.
When we are satisfied with the high-level design, we choose one of the statements

and write down what it does in more detail. An obvious first candidate is:

move all the objects

move alien

move bomb

move laser

check boundaries

and then:

display all the objects

display background

display defender

display alien

display laser

display bomb

At this stage we have expressed the design in terms of a number of methods. The
most complex of these are check hits and check boundaries. So we now design
their detail:

check hits

if collides(laser, alien)

then

endOfGame(userWins)

else

if collides(bomb, defender)

then

endOfGame(alienWins)

endif

endif

>
>

BELL_C08.QXD 1/30/05 4:20 PM Page 105

check boundaries

if bomb is outside window

then

destroy bomb

endif

if laser is outside window

then

destroy laser

endif

This completes some of the detail. The next item that has some complexity is the
method collides. It has two parameters, the objects to be tested for impact. It
returns either true or false. It uses the x and y coordinates of the objects,
together with their heights and widths. We use the notation a.x to mean the x
coordinate of object a. (The joy of pseudo-code is that you can use any notation
that is convenient.)

collides(a, b)

if a.x > b.x

and a.y < b.y + b.height

and a.x + a.width < b.x + b.width

and a.y + a.width > b.y

then

return true

else

return false

endif

This illustrates how we have used the tool of abstraction to hide this complexity
within a method.

There is still some way to go with this particular design, but this much gives the flavor
of the design and of the method. Notice how the design is refined again and again. Notice
how, throughout, we can check the design without having to take account of a lot of
unnecessary detail. Notice the informality of the statements used; we can simply make up
new actions as necessary, but still within the discipline of the control structures – sequence,
if and while, supplemented with methods.

106 Chapter 8 � Functional decomposition

>
>

>

SELF-TEST QUESTION

8.1 Write method move alien assuming it is at window coordinates x
and y.

BELL_C08.QXD 1/30/05 4:20 PM Page 106

Abstraction
One way of visualizing functional decomposition is to see that at any stage of decompo-
sition the solution is expressed in terms of operations that are assumed to be available
and provided by an abstract (or virtual) machine, like a very high-level programming lan-
guage. This is the idea of “levels of abstraction”. In order to design and understand a
solution at any one level of detail, it is not necessary to understand anything about how
the levels beneath work. We know what they do, but not how they do it. Thus the human
mind has a much better chance of understanding the solution and therefore of getting
it right.

One approach to using functional decomposition is to refine the software design
level by level. The software structure can be visualized as an upside-down tree – always
with a very flat top that grows downwards uniformly. This is the breadth-first approach
to design; it matches the strict, abstract machine view of software design described
above.

An alternative approach is to pursue one of the branches of the tree, leaving the others
stunted until later. (This is called depth first.) Our motive for doing this might be to explore
what seems to be a difficult part of the software. We might thereby hope to gain insights
that guide us in refining the rest of the structure.

This idea of trying to ignore the detail of lower levels of the design is easier said
than done and takes some nerve. It is a real test of whether we believe software design
is worthwhile and whether we can resist the temptation to rush on to coding pieces of
the software.

What about data?
What is the role of data in the method? It does rather play second fiddle to the actions
that have to be taken. The making of the cup of coffee illustrates that, by concentrating
on what the software should do, considerations of data are ignored, or rather postponed.
The idea is that the data emerges during the decomposition as it becomes evident what
is necessary and what needs to be done with it. We defer decisions about pieces of data
and the structure of information until we have a very clear knowledge of what operations
have to be performed on them. When that stage is reached we can design data which is
tailored precisely to the operations.

There is a possible problem here. Suppose a program is written in this way and later
needs modifying. What happens if some new operation on the data is required? Remember
that the data was designed with the old operations in mind, so it may not be in a con-
venient form for the new.

Another question about functional decomposition is whether it is actually possible
to delay thinking about data in this way.

8.3 � Discussion

8.3 Discussion 107

BELL_C08.QXD 1/30/05 4:20 PM Page 107

Alternative solutions
A major characteristic of functional decomposition is its flexibility, or (put another way)
its lack of guidance. When you use the method you do not necessarily arrive at a unique
solution. On the contrary, you can often see several solutions. According to functional
decomposition they are all reasonable. The method gives us no guidance as to which
design is best. The only way to find out is to refine all the solutions to a level of detail
at which we can make a reasoned choice between them. The choice might be made on
the basis of clarity and simplicity, performance or some other criteria, but functional
decomposition, by itself, gives no guidance for selecting the best solution.

Because there is always more than one solution to a problem – more than one design
that meets the specification – the user of functional decomposition is duty bound to find
not just one solution, but to find the best solution. The criteria for the “best” solution
will differ from program to program – sometimes it will be maximum clarity, sometimes
it will be optimum performance. If in pursuing one design it turns out to be unsatis-
factory, we can retrace the design level by level, considering alternatives at each level. It
will often prove desirable to replace whole subtrees in this manner. This process is large-
ly under control because we know which part of the structure we are looking at, and it
has only one entry and exit point.

Review
Arguably functional decomposition was the first truly systematic method for software
design. It is associated with the names Dijkstra and Wirth. It evolved hand-in-hand with
the ideas of structured programming in the 1960s. Since then other methods that claim
to involve structured programming have been devised, so that nowadays functional
decomposition is just one variety of structured programming.

There is sometimes confusion about the terminology surrounding structured pro-
gramming and top-down methods. Let us try to clarify the situation. Functional decom-
position is a top-down method, since it starts with an overall task of the software, but
it is not unique in this respect. Functional decomposition is also called stepwise refine-
ment, though it is, of course, refinement of function.

Functional decomposition concentrates almost exclusively on defining the functions
(the actions) that software must take. The flexibility of functional decomposition means
that it can be used in the design of software for any type of application; it is generally
applicable. But because it concentrates on the actions that the software has to take, it is
perhaps most useful for problems in which the procedural steps are clearly evident. One
such area is numerical computation, like a program to calculate a square root. Another
is the control of a sequential process, like a washing machine.

Functional decomposition can be used either to design the detailed, low-level struc-
ture of a program. It can also be used to design the high-level or architectural structure
of software. Thus it is applicable to both small- and large-scale software.

Functional decomposition assumes that the structure of software must be a collection
of hierarchies (trees), one for each top-level function or use case. This distinguishes it
from other approaches.

If we want a completely well-defined method that we can use almost without think-
ing, then functional decomposition is inadequate, since its use requires considerable

108 Chapter 8 � Functional decomposition

BELL_C08.QXD 1/30/05 4:20 PM Page 108

Exercises 109

Exercises

skill. On the other hand, it is an excellent approach if we want a method that guides
our thinking but allows us plenty of scope for creativity. In a sense, therefore, the
method is not as advanced as some. For example, data structure design takes the pro-
grammer from a description of the structure of the data or files that the program is to
act upon, via a number of fairly precise steps to the program design. By contrast, the
use of functional decomposition encourages (some would say necessitates) the use of
creativity and imagination in devising software structures. Its use also needs careful
judgment in selecting the best structure from amongst any alternatives found.

In summary, functional decomposition is a general-purpose method for software
design, based around structured programming, but in allowing the development of
alternative designs for the same problem it poses several unanswered questions:

� where do we get the inspiration for alternative designs?

� how do we choose between designs?

� how do we know that we have arrived at the best possible design?

We have to look to other sources of ideas to answer these questions. These issues
have led some to say that functional decomposition is not really a serious method.

Summary

Functional decomposition proceeds by starting with a single statement of each
function of the software. Next these are rewritten as a series of simpler steps using
pseudo-code (program design language) as a notation. Pseudo-code consists of
natural language imperative sentences written as sequences, with if statements or
with while statements. The designs are refined (rewritten as more primitive steps)
until the required level of detail is achieved.

The method makes direct use of the power of abstraction provided by structured
programming, while requiring significant creativity and judgment to be
employed. It is applicable to the full range of computer application areas.

8.1 Complete the design of the game program.

8.2 Write pseudo-code for the withdraw cash function in the ATM (Appendix A).

8.3 Use functional decomposition to design the software for each of the systems
described in Appendix A.

8.4 What characteristics should a good software design method have? Does the function-
al decomposition exhibit them?

•

BELL_C08.QXD 1/30/05 4:20 PM Page 109

110 Chapter 8 � Functional decomposition

8.5 Evaluate functional decomposition under the following headings:

� special features and strengths

� weaknesses

� philosophy/perspective?

� systematic?

� appropriate applications

� inappropriate applications

� is the method top-down, bottom-up or something else?

� good for large-scale design?

� good for small-scale design?

8.6 Compare and contrast the principles behind the following design methods:

� functional decomposition

� data structure design

� data flow design

� object-oriented design

Answer to self-test question

8.1 move alien

if x > window width or x < 0

then

stepSize = -stepSize;

endif

x = x + stepSize;

Arguably the most important book about structured programming is: O.J. Dahl,
E.W. Dijkstra and C.A.R. Hoare, Structured Programming, Academic Press, 1997.

Further reading•

BELL_C08.QXD 1/30/05 4:20 PM Page 110

Data flow design is a method for carrying out the architectural (large-scale) design of
software. Data flow design depends on identifying the flows of data through the intend-
ed software, together with the transformations on the flows of data. The method leads
from a specification of the software to a large-scale structure for the software expressed
in terms of:

� the constituent components of the software

� the interrelationships between the components

What is a component? A component is a collection of lines of code, usually involv-
ing variables (descriptions of data) and actions. A component is usually self-contained;
it is somewhat separate from any other component or components. A component is
called from some other component and, similarly, calls other components.
Programming languages (nearly) always provide facilities for modularity – such fea-
tures as methods, classes and packages. Ideally, a component is as independent as it
can be. One of the goals of software design is to create software structures in which
all of the components are as independent as possible. Chapter 6 discusses various gen-
eral aspects of modularity.

We begin exploring data flow design method using an analogy. Suppose a chef works
in a kitchen all day preparing plates of spaghetti bolognese. The principal inputs to the
system are:

� spaghetti

� meat

9.1 � Introduction

CHAPTER

9 Data flow
design

This chapter explains:
� how to use the data flow design method

� the principles behind the method.

BELL_C09.QXD 1/30/05 4:21 PM Page 111

112 Chapter 9 � Data flow design

The output from the system is:

� plates of spaghetti bolognese

We can draw a diagram (Figure 9.1) to describe what is to happen in the kitchen.
In essence, data flows into the system, is transformed by actions (functions) and data

then flows out of the system.
The diagram is called a data flow diagram. Each line with an arrow on it represents

a stream of data flowing through the system. In this example there are three – spaghetti,
meat and plates of spaghetti bolognese. Each bubble represents a transformation, an
activity or a process that converts an input flow into an output flow. In this example
there is only one transformation – prepare food. Note that the diagram shows data flows
(which are dynamic), and does not show files (which are static objects).

We can now explore the detail that lies within the single bubble. We redraw it as
Figure 9.2 so as to show more clearly the steps that are involved.

prepare
food

spaghetti

meat

plates of
spaghetti
bolognese

Figure 9.1 Data flow diagram for making spaghetti bolognese

serve

boil

fry

plates of
spaghetti
bolognese

meat

spaghetti

boiled
spaghetti

fried
meat

Figure 9.2 More detailed data flow diagram for making spaghetti bolognese

BELL_C09.QXD 1/30/05 4:21 PM Page 112

9jabaz
Download more books at 9jabaz.ng for free!

9.2 Identifying data flows 113

Notice again the essential components – data flows (lines) and functions (bubbles).
Each line is labeled to describe exactly what data it is. Each bubble is labeled with a verb
to describe what it does.

We could go on redrawing our data flow diagram for the chef in the kitchen,
adding more and more detail. There are, for example, other ingredients, like tomatoes
to consider (data flows) and more detailed actions (bubbles), such as mixing in the
various ingredients.

We started with a single, high-level diagram in which all the detail was hidden. We
end with a richer, more detailed diagram in which the components of the system (and
their interrelationships) are revealed. In a computer system, the bubbles correspond to
the software components. We have created a design for the kitchen system expressed in
terms of components and the flows of data between the components.

We will use as a case study the design of software to monitor a patient in a hospital. The
specification (Appendix A) for the software is:

A computer system monitors the vital signs of a patient in a hospital. Sensors attached
to a patient send information continually to the computer:

� heart rate

� temperature

� blood pressure

Some of the readings require conversion to useful units of measurement (e.g. micro volts
into degrees centigrade). The computer displays the information on a screen. It also logs
the information in a file that can be retrieved and displayed. If any of the vital signs
exceeds safe limits, the screen flashes a warning and an alarm sounds. The limits have
default values, but can also be changed by the operator. If a sensor fails, the screen flashes
a warning and the alarm sounds.

The data flow diagram of the major data flow for this software is shown in Figure 9.3.
It is straightforward to draw this diagram simply by reading the specification closely and
picking out the functional steps that need to be carried out.

This diagram also shows some data stores. These are drawn as open boxes and rep-
resent files or databases. The difference between a data store and a data flow is that a
data store is static (it does not move).

Drawing the data flow diagram for a proposed piece of software is a vital step in the
method. How do we do it? There are three alternative approaches.

Method 1 is to start with a single bubble like Figure 9.4 that shows the overall func-
tion of the software and its input and output data flows. We then refine the bubble, or
break it down, into a set of smaller bubbles like Figure 9.5. We continue redrawing
bubbles as sets of smaller ones until we can’t do it any more.

In method 2 we start with the output data flow from the system and try to identify the
final transformation that has to be done to it. Then we try to identify the transformation
before that, and so on, until we have a complete diagram.

9.2 � Identifying data flows

BELL_C09.QXD 1/30/05 4:21 PM Page 113

114 Chapter 9 � Data flow design

read
data

convert

check

display
message

message

data

safe
limits

status
information

converted
data

raw
data

conversion
factors

Figure 9.3 Data flow diagram for patient monitoring software

overall
function

output
data
flow

input
data
flow

Figure 9.4 Initial data flow diagram

function
A

function
B

output
data
flow

data
flowinput

data
flow

Figure 9.5 Refined data flow diagram

BELL_C09.QXD 1/30/05 4:21 PM Page 114

9jabaz
Download more books at 9jabaz.ng for free!

9.3 Creation of a structure chart 115

Method 3 is the same as method 2, except that we start from the input flow to the
system and work out the sequence of transformations that should be applied to it.

There is no definite, systematic way of drawing these diagrams. Lots of paper, pencil
and erasers (or a software tool) are needed – together with a lot of creativity.

Now that we have obtained the data flow diagram using one of these methods, what
do we do with it? One option is to regard each bubble as a component that inputs a
serial stream of data from one component and outputs a serial stream to another. Some
operating systems (such as Unix) and some languages (such as the piped input and out-
put streams facility in Java) support this “filter and pipe” software architecture. This
means that we can directly implement a data flow diagram as a series of filters and pipes.
However, if pipes are not available, a data flow diagram must be transformed into a
structure in which components make method calls on each other.

A

B C

Figure 9.6 Structure chart in which component A calls B and C

SELF-TEST QUESTION

9.1 The data flow for the log file is omitted from the above data flow diagram.
Add this data flow.

The first and most crucial step of data flow design is drawing the data flow diagram. Such
a diagram shows the transformations and the flows of data between them. The next step
is to convert the data flow diagram into a structure chart or structure diagram. A struc-
ture chart shows the components that comprise the software and how they call each
other. Suppose, for example, that some software consists of three components named A,
B and C. Suppose that component A calls component B and also component C. The
structure chart for these components is shown in Figure 9.6.

A structure chart is thus a hierarchical diagram that shows components at the higher
levels calling components at lower levels. A structure chart is a tree, with one single root
at the top of the chart. Notice by contrast that a data flow diagram is not hierarchical.

Let us now consider the patient monitoring system and see how to convert the data
flow diagram into its equivalent structure chart. In this data flow diagram, arguably the

9.3 � Creation of a structure chart

BELL_C09.QXD 1/30/05 4:21 PM Page 115

116 Chapter 9 � Data flow design

central and most important bubble is the check bubble. We take this to be the main,
most important component. Imagine that we can touch and move the objects within
the diagram. Suppose that the bubbles are joined by pieces of string. Grasp the central
component and lift it into the air. Let the other bubbles dangle beneath. Next change
the bubbles into rectangles. We now have a structure chart that looks like Figure 9.7.

Each box is a software component. The components communicate by calls from
higher components to lower components. The data that flowed along lines in the data
flow diagram is now passed as parameters to and from the various components.

The check component calls the convert component which in turn calls the read
data component to obtain data. Then it calls the display message component to
display the output on the screen.

As we have illustrated, the steps for converting a data flow diagram into a structure
chart are:

1. identify the most important bubble (transformation)

2. convert this into the top-level component in the structure chart

3. allow the other components to dangle beneath the top-level component, creating
a hierarchical tree

4. convert the bubbles into rectangles and the data flows into lines representing
method calls.

The patient monitoring example illustrates how to use the data flow design method.
But the example chosen is simple and we have deliberately avoided drawing attention
to complications. Data flow diagrams typically have tens of bubbles and can be quite
complex. Often there are several input and output data flows. In more complex dia-
grams, it can be difficult to identify a single center of the diagram.

Notice that although the method leads us to a structure for a piece of software that
is expressed in terms of well-defined, independent components, we still have to design
the detail of each and every component; we have to carry out the low-level or detailed
design. This emphasizes that data flow design is a method for high-level or architec-
tural design.

check

display
messageconvert

read
data

Figure 9.7 Structure chart for patient monitoring software

BELL_C09.QXD 1/30/05 4:21 PM Page 116

9.4 Discussion 117

Why does the data flow method prescribe these steps? There are two main ideas behind
the method:

1. the connection between data flows and modularity

2. the idea of an idealized software structure.

The first concerns the data flow diagram. Why exactly do we draw a data flow diagram
and what is its significance? The answer is that the central aim of this technique is to cre-
ate a design with the best possible modularity. As described in Chapter 6, the different
types of modularity have been analyzed and classified in an attempt to identify which is
the best sort of modularity. Perfect modularity would mean that an individual component
could be designed, tested, understood and changed when necessary without having to
understand anything at all about any other component. The result of the analysis is that
out of all the types of relationships, the most independent components are those that
communicate with each other only by inputting and outputting serial streams of data – just
like the bubbles in a data flow diagram. This type of interaction is termed data coupling.

The second idea behind the data flow design method is the observation that many
software systems have a similar overall structure. Most software carries out some
input, performs some action on the input data and then outputs some information.
The most important of these three is the action or transformation on the data.
Therefore, in general, the ideal structure for any software is as shown in Figure 9.8.

We have seen that the component that does the main processing should be at the top.
If we now look at what the input component does, it is likely that it can be broken down
into two components, one that inputs some raw data and another that converts it into a
more convenient form. The corresponding structure diagram is shown in Figure 9.9.

9.4 � Discussion

SELF-TEST QUESTION

9.2 Enhance the structure chart for the patient monitoring software so as to
show the logging.

Process

Input Output

Figure 9.8 Idealized structure for software

BELL_C09.QXD 1/30/05 4:21 PM Page 117

118 Chapter 9 � Data flow design

In general, a piece of software will require that several transformations are carried
out on its input data streams and that, after the main processing, several transforma-
tions are carried out on its output data streams. We can use an analogy from outside
computing. To make wine, we have first to grow vines, pick the grapes, transport them
to the farm, and then press them. Only then can we carry out the central task of fer-
mentation. After this we have to pour the wine into bottles, store the bottles for some
time, and finally transport them to the shop.

Data flow design recognizes this as the archetypal structure for software systems.
As we have seen, data flow design concentrates on modeling the flows of data with-

in software. The essential ingredient is any application in which the flows of data are
important and can be identified easily. Data flows are significant because nearly every
software system involves data flows. In all computer systems information enters the
computer as a serial stream of data, simply because time flows serially. Similarly any
component within a software system is only capable of carrying out one task at any
time. Thus the demands placed on any component are a serial data stream. Therefore
data flows constitute a fundamental concept within software.

Process

Input Output

Input
raw
data

Convert

Figure 9.9 Converting raw data for input

Summary

Data flow design proceeds by initially analyzing the data flows and transformations
within a software system. The first task is to draw the data flow diagram (bubble
diagram), consisting of arcs (data flows) and bubbles (transformations). This dia-
gram can be arrived at by using any one of the following three methods:

1. starting with a single, large bubble, break it up into smaller bubbles

2. start with the output data stream from the software and trace it backwards

3. start with the input data stream to the system and trace it forwards.

BELL_C09.QXD 1/30/05 4:21 PM Page 118

Exercises 119

9.1 Complete the development of the patient monitoring system described in this chapter.

9.2 Apply data flow design to devising an architectural structure for each of the systems
described in Appendix A.

9.3 What characteristics should a good software design method possess? Does data flow
design exhibit them?

9.4 Suggest the facilities of a software tool that could assist in using data flow design.

9.5 Compare and contrast the principles behind the following design methods:

� functional decomposition

� data structure design

� data flow design

� object-oriented design.

9.6 Evaluate data flow design under the following headings:

� special features and strengths.

� weaknesses

� philosophy/perspective?

� systematic?

� appropriate applications

� inappropriate applications

� is the method top-down, bottom-up or something else?

During the second stage of data flow design, the data flow diagram is transformed
into a structure chart, showing the constituent components of the software and
their interrelationships, by:

1. identifying the most important or central transformation in the data flow dia-
gram

2. lifting this transformation into the air, leaving the others dangling beneath it.
This creates a hierarchical or tree-shaped structure for the software.

Arguably data flow design leads to the most modular structure for the software, since
the design is based on “data coupling” (the best type) between the components.

Exercises•

BELL_C09.QXD 1/30/05 4:21 PM Page 119

120 Chapter 9 � Data flow design

� good for large-scale design?

� good for small-scale design?

9.7 Suggest features for a software toolkit to assist in using data flow design.

Answers to self-test questions

9.1 Arrow from the convert bubble to a log bubble. Then arrow from this
bubble to a log file data store.

9.2 Line downwards from the check component to a component labeled
log.

Data flow design is described in: E. Yourdon and Larry L. Constantine, Structured
Design, Prentice Hall, 1979.

Further reading•

BELL_C09.QXD 1/30/05 4:21 PM Page 120

Starting with the specification of a program, this method, via a series of steps, leads to
a detailed design, expressed in pseudo-code. The method is variously called the Michael
Jackson program design method (after the name of its inventor), or Jackson Structured
Programming (JSP), and data structure design.

The basic idea behind the data structure design method is that the structure of a pro-
gram should match the structure of the information that the program is going to act
on. To get a feel for how this can be done, let us look at a few simple examples.

First, suppose we want a program to add a set of numbers held in an array, and ter-
minated by a negative number. Here’s some sample data:

29 67 93 55 –10

With experience of programming, we can, of course, immediately visualize the struc-
ture of this program. Its main feature is a while loop. But a more rigorous way of look-
ing at the design is to realize that because there is a repetition in the data, there must
be a corresponding repetition in the program. Thus we have gone from the data struc-
ture to the program structure.

Consider a program that is to print a bank statement. The bank statement will be
printed on a number of pages. Each page has a heading, a series of ordinary lines (rep-
resenting transactions) and a summary line. Ignore, for the time being, the structure of
any input data. Again, with some experience of programming, we can visualize that we

10.1 � Introduction

CHAPTER

10 Data structure
design

This chapter explains:
� how to use data structure design

� the principles behind the method.

BELL_C10.QXD 1/30/05 4:22 PM Page 121

122 Chapter 10 � Data structure design

will need statements to print a heading, print a transaction line and so on. But we can
also see that we will need:

� a loop to print a number of pages

� a loop to print the set of transaction lines on each page.

You can see that this description of the program structure matches the structure of
the report. What we have done is to derive the structure of the program from what we
know about the structure of the report.

These small examples show how it is possible to approach program design using the
structure of data. We will return to these examples later, showing exactly how the
method treats them.

Let us consider the design of a program to display the following pattern on a com-
puter screen. We will assume that, in drawing this pattern, the only possible cursor
movements are across the screen from left to right, and down to the beginning of a
new line.

*

*

The first step in the method is to analyze and describe the structure of the informa-
tion that the program is to create. The product of this step is called a data structure
diagram. The diagram for the pattern is given in Figure 10.1.

10.2 � A simple example

Top half

Line Line

Bottom
halfMiddle

* *

Picture

Figure 10.1 Data structure diagram for the asterisks pattern

BELL_C10.QXD 1/30/05 4:22 PM Page 122

10.2 A simple example 123

In English, this reads:

� the pattern consists of the top half followed by the middle, followed by the bot-
tom half

� the top half consists of a line of asterisks, which is repeated. The bottom half also
consists of a line of asterisks which is repeated.

In general, the diagrammatic notation has the following meaning:

� consists of – a line drawn downwards below a box means “consists of”. Thus
Figure 10.2 shows that A consists of B.

� sequence – boxes at the same level denote a sequence. Figure 10.3 shows that A
consists of B followed by C.

� repetition – an “*” in a box signifies zero or more occurrences of the component.
Figure 10.4 shows that A consists of B repeated zero or more times.

Having now described the data structure, the next step is to convert it into a program
structure. This is easy because, remember, the program structure must correspond to the

A

B

Figure 10.2 A consists of B

A

CB

Figure 10.3 A consists of B followed by C

A

B
*

Figure 10.4 A consists of B repeated

BELL_C10.QXD 1/30/05 4:22 PM Page 123

124 Chapter 10 � Data structure design

data structure, so all we have to do is to write “process” in every box of the data struc-
ture diagram. We thereby obtain a program structure diagram. For our program this is
shown in Figure 10.5.

A program structure diagram like this is interpreted as follows:

� the program as a whole (represented by the box at the top) consists of (lines lead-
ing downwards) a sequence of operations (boxes alongside one another)

� sometimes a program component is to be repeatedly executed (an “*” in the box).

The next step is to write down (in any order) a list of all the elementary operations
that the program will have to carry out. This is probably the least well-defined part of
the method – it does not tell us how to determine what these actions should be. For
the program we are working on they are:

1 display n asterisks

2 display blank line

3 display s spaces

4 increment s

5 decrement s

6 increment n

7 decrement n

8 initialize n and s

9 new line

For later reference, we number the operations, but the ordering is not significant.
Next each of these operations is placed in its appropriate position in the program

structure diagram. For example, operation 2 needs to be done once, for the middle
of the pattern. It is therefore associated with the box containing process middle.
Similarly, operation 1 is associated with the component process line (Figure 10.6).

This act of associating operations with positions is not automatic; instead, as indicated,
judgment has to be employed.

Process
line

Process
line

Process
bottom

half

Process
middle

Process
top half

* *

Process
picture

Figure 10.5 Program structure diagram for the pattern program

BELL_C10.QXD 1/30/05 4:22 PM Page 124

10.2 A simple example 125

Now comes the final step of transforming the program structure diagram into pseudo-
code. Expressed in pseudo-code, the structure of our example program is:

initialize n and s

while more lines do

display s spaces

display n asterisks

new line

decrement s

increment n

endwhile

display blank line

initialize n and s

while more lines do

display s spaces

display n asterisks

new line

decrement n

increment s

endwhile

To derive this pseudo-code from the diagram, start with the box at the top of the
diagram and write down its elementary operations. Then indent the code across the
page and go down a level on the diagram. Now write down the operations and struc-
tures present at this level. Repeatedly go down a level, indenting the code for each new
level. This transformation is straightforward and mechanical.

We have now arrived at a program design capable of being readily translated into
most conventional programming languages.

8

Process
picture

Process
line

Process
line

Process
bottom

half

Process
middle

Process
top half

* *

1 3 6 5 1

2

3 7 4

8

99

Figure 10.6 Annotated program structure diagram

>
>

BELL_C10.QXD 1/30/05 4:22 PM Page 125

To understand how to input and process information from a file, consider the follow-
ing problem:

A serial file consists of records. Each record describes a person. Design a program to
count the number of males and the number of females.

The data structure diagram is given in Figure 10.7.
The new notation here is the boxes with the letter “o” in them (meaning or) to

indicate alternatives. These boxes are drawn alongside each other. Depending on the
application, there are sometimes a number of alternatives.

10.3 � Processing input files

126 Chapter 10 � Data structure design

To sum up, the steps we have taken are:

1. draw a diagram showing the structure of the file

2. derive the corresponding program structure diagram

3. write down the elementary operations that the program will have to carry out

4. place the operations on the program structure diagram

5. derive the pseudo-code of the program.

SELF-TEST QUESTION

10.1 Check that operation 9 (new line) has been placed in all the right
places on the program structure diagram.

Body

Record

eof

Male Female

*

File

Figure 10.7 Data structure diagram for counting males and females

BELL_C10.QXD 1/30/05 4:22 PM Page 126

9jabaz
Download more books at 9jabaz.ng for free!

10.4 Multiple input and output streams 127

We now derive the program structure diagram as before (not shown).
After writing down operations and assigning them to the program structure diagram

(not shown), we arrive at the following pseudo-code design:

open file

initialize counts

read record

while not end of file

do

if record = male

then increment male-count

else increment female-count

endif

read record

endwhile

display counts

close file

This recognizes that the boxes with alternatives in them become if-then-else
statements.

There is just one small point to note. Data structure design did not help us to real-
ize that we would need an initial read record operation before the loop, followed by
another at the end of each loop. Data structure design gave us the structure or skeleton
in which we could place the elementary operations – it did not give us the fine detail.

We have now considered and used all the notations used by the data structure design
method. They are: sequence, selection, repetition and hierarchy.

>
>

SELF-TEST QUESTION

10.2 Suppose that instead of counting both males and females, the program
is only required to count males. How would the data structure diagram
be different?

So far we have just looked at programs that process a single input or a single output
stream. Now we turn to the more common situation of multiple streams. The method
is basically the same, except that we will have to describe all of the streams and make
the program structure reflect them all.

The basic principle, as always with the data structure design method, is that the pro-
gram structure should reflect the structures of all the input and output streams. So we
draw a data structure diagram for each input and output file and then devise a program
structure that incorporates all aspects of all of the data structure diagrams.

10.4 � Multiple input and output streams

BELL_C10.QXD 1/30/05 4:22 PM Page 127

128 Chapter 10 � Data structure design

*

Body

Record

TrailerHeader

Issue Receipt

Batch

Input
file

*

*

Figure 10.8 Data structure diagram for input file

Total

Report

*

Figure 10.9 Data structure diagram for report

Consider the following problem:

A serial file describes issues and receipts of stock. Transactions are grouped into batches. A
batch consists of transactions describing the same stock item. Each transaction describes
either an issue or a receipt of stock. A batch starts with a header record and ends with a
trailer record. Design a program to create a summary report showing the overall change
in each item. Ignore headings, new pages, etc. in the report.

The data structure diagrams are given in Figures 10.8 and 10.9.
We now look for correspondences between the two diagrams. In our example, the

report (as a whole) corresponds to the input file (as a whole). Each summary line in
the report matches a batch in the input file. So we can draw a single, composite pro-
gram structure diagram as in Figure 10.10.

BELL_C10.QXD 1/30/05 4:22 PM Page 128

10.4 Multiple input and output streams 129

Writing down operations, attaching them to the program structure diagram (not
shown) and translating into pseudo-code, gives:

open files

read header record

while not end of file

do

total = 0

read record

while not end of batch

do

update total

read record

endwhile

display total

read header record

endwhile

close files

Thus we have seen that, where a program processes more than one file, the method
is essentially unchanged – the important step is to see the correspondences between the
file structures and hence derive a single compatible program structure.

Process
body

Process
record

Process
header

Process
trailer

Process
issue

Process
receipt

Process batch
produce total

*

*

Process file
produce report

Figure 10.10 Program structure diagram for processing batches

>
>

BELL_C10.QXD 1/30/05 4:22 PM Page 129

130 Chapter 10 � Data structure design

In a minority of problems, the two or more data structures involved cannot be
mapped onto a single program structure. The method terms this a structure clash.
It happens if we try to use the method to design a program to solve the following
problem.

Design a program that inputs records consisting of 80 character lines of words and
spaces. The output is to be lines of 47 characters, with just one space between words.

This problem looks innocuous enough, but it is more complex than it looks. (Have
a go if you don’t agree!) A problem arises in trying to fit words from the input file neat-
ly into lines in the output file. Figures 10.11 and 10.12 show the data structure dia-
grams for the input and output files. Superficially they look the same, but a line in the
input file does not correspond to a line in the output file. The two structures are fun-
damentally irreconcilable and we cannot derive a single program structure. This situa-
tion is called a structure clash.

Although it is difficult to derive a single program structure from the data structure
diagrams, we can instead visualize two programs:

� program 1, the breaker, that reads the input file, recognizes words and produces
a file that consists just of words.

� program 2, the builder, that takes the file of words created by program 1 and
builds it into lines of the required width.

We now have two programs together with a file that acts as an intermediary between
the programs.

10.5 � Structure clashes

Input
file

Line
*

Figure 10.11 Data structure diagram for input file

*

Output
file

Line
*

Figure 10.12 Data structure diagram for output file

BELL_C10.QXD 1/30/05 4:22 PM Page 130

10.5 Structure clashes 131

As seen by the breaker, Figure 10.13 shows the data structure diagram for the
intermediate file, and it is straightforward to derive the program structure diagram
(Figure 10.14).

Similarly, Figure 10.15 shows the structure of the intermediate file as seen by the
second program, the builder, and again it is easy to derive the program structure dia-
gram for program 2, the builder (Figure 10.16).

Thus, by introducing the intermediate file, we have eradicated the structure clash.
There is now a clear correspondence both between the input file and the intermediate
file and between the intermediate file and the output file. You can see that choosing a
suitable intermediate file is a crucial decision.

From the program structure diagrams we can derive the pseudo-code for each of the
two programs:

program 1 (the breaker)

open files

read line

while not end of file do

while not end of line do

extract next word

write word

endwhile

read next line

endwhile

close files

Intermediate
file

Word
*

Figure 10.13 Data structure diagram for the intermediate file (as seen by the breaker)

Process input
produce

intermediate

Process
line

*

Process
word

*

Figure 10.14 Program structure diagram for the breaker program

>
>

BELL_C10.QXD 1/30/05 4:22 PM Page 131

132 Chapter 10 � Data structure design

To avoid being distracted by the detail, we have left the pseudo-code with operations
such as extract word in it. Operations like this would involve detailed actions on array
subscripts or on strings.

program 2 (the builder)

open files

read word

while more words

do

while line not full

and more words

do

insert word into line

read word

endwhile

output line

endwhile

close files

We began with the need to construct a single program. In order to eliminate the
structure clash, we have instead created two programs, plus an intermediate file, but at
least we have solved the problem in a fairly systematic manner.

Intermediate
file

Word
*

Figure 10.15 Data structure diagram for the intermediate file (as seen by the builder)

Process
intermediate

produce
output

Process
line

*

Input
word

*

Figure 10.16 Program structure diagram for the builder program

>
>

BELL_C10.QXD 1/30/05 4:22 PM Page 132

10.5 Structure clashes 133

Let us review the situation so far. We drew the data structure diagrams, but then saw
the clash between the structures. We resolved the situation by identifying two separate
programs that together perform the required task. Next we examine the two file struc-
tures and identify a component that is common to both. (In the example program this
is a word of the text.) This common element is the substance of the intermediate file
and is the key to dealing with a structure clash.

What do we do next? We have three options open to us.
First, we might decide that we can live with the situation – two programs with an

intermediate file. Perhaps the overhead of additional input-output operations on the
intermediate file is tolerable. (On the other hand, the effect on performance might be
unacceptable.)

The second option requires special operating system or programming language facil-
ities. For example, Unix provides the facility to construct software as collections of pro-
grams, called filters, that pass data to and from each other as serial streams called pipes.
There is minimal performance penalty in doing this and the bonus is high modularity.

For the above problem, we write each of the two programs and then run them with
a pipe in between, using the Unix command:

breaker < InputFile | builder > OutputFile

or the DOS command:

InputFile | breaker | builder > OutputFile

in which the symbol | means that the output from the filter (program) breaker is used
as input to the program (filter) builder.

The third and final option is to take the two programs and convert them back into
a single program, eliminating the intermediate file. To do this, we take either one and
transform it into a subroutine of the other. This process is known as inversion. We will
not pursue this interesting technique within this book.

On the face of it, structure clashes and program inversion seem to be very compli-
cated, so why bother? Arguably structure clashes are not an invention of the data struc-
ture design method, but a characteristic inherent in certain problems. Whichever
method that was used to design this program, the same essential characteristic of the
problem has to be overcome. The method has therefore enabled us to gain a funda-
mental insight into problem solving.

In summary, the data structure design method accommodates structure clashes like
this. Try to identify an element of data that is common to both the input file and the
output file. In the example problem it is a word of text. Split the required program into
two programs – one that converts the input file into an intermediate file that consists
of the common data items (words in our example) and a second that converts the inter-
mediate file into the required output. Now each of the two programs can be designed
according to the normal data structure design method, since there is no structure clash

BELL_C10.QXD 1/30/05 4:22 PM Page 133

134 Chapter 10 � Data structure design

in either of them. We have now ended up with two programs where we wanted only
one. From here there are three options open to us:

1. tolerate the performance penalties

2. use an operating system or programming language that provides the facility for
programs to exchange serial streams of data

3. transform one program into a subroutine of the other (inversion).

Principles
The basis of the data structure design method is this. What a program is to do, its spec-
ification, is completely defined by the nature of its input and output data. In other
words, the problem being solved is determined by this data. This is particularly evident
in information systems. It is a short step to saying that the structure of a program
should be dictated by the structure of its inputs and outputs. Specification determines
design. This is the reasoning behind the method.

The hypothesis that program structure and data structure can, and indeed should,
match constitutes a strong statement about the symbiotic relationship between actions
and data within programs. So arguably, this method not only produces the best design
for a program, but it creates the right design.

The correspondence between the problem to be solved (in this case the structure of
the input and output files) and the structure of the program is termed proximity. It has
an important implication. If there is a small change to the structure of the data, there
should only need to be a correspondingly small change to the program. And vice versa –
if there is a large change to the structure of the data, there will be a correspondingly large
change to the program. This means that in maintenance, the amount of effort needed will
match the extent of the changes to the data that are requested. This makes a lot of sense
to a client who has no understanding of the trials involved in modifying programs. Sadly
it is often the case that someone (a user) requests what they perceive as a small change to
program, only to be told by the developer that it will take a long time (and cost a lot).

Degree of systematization
The data structure design method can reasonably claim to be the most systematic pro-
gram design method currently available. It consists of a number of distinct steps, each
of which produces a definite piece of paper. The following claims have been made of
the method:

� non-inspirational – use of the method depends little or not at all on invention or
insight

� rational – it is based on reasoned principles (structured programming and program
structure based on data structure)

10.6 � Discussion

BELL_C10.QXD 1/30/05 4:22 PM Page 134

10.6 Discussion 135

� teachable – people can be taught the method because it consists of well-defined steps

� consistent – given a single program specification, two different people will come up
with the same program design.

� simple and easy to use

� produces designs that can be implemented in any programming language.

While these characteristics can be regarded as advantages, they can also be seen as a
challenge to the traditional skills associated with programming. It is also highly con-
tentious to say that data structure design is completely non-inspirational and rational.
In particular, some of the steps arguably require a good deal of insight and creativity,
for example, drawing the data structure diagram, identifying the elementary operations
and placing the operations on the program structure diagram.

Applicability
Data structure design is most applicable in applications where the structure of the
(input or output) data is very evident. Where there is no clear structure, the method
falls down.

For example, we can assess how useful this method is for designing computational
programs by considering an example. If we think about a program to calculate the
square root of a number, then the input has a very simple structure, and so has the out-
put. They are both merely single numbers. There is very little information upon which
to base a program structure and no guidance for devising some iterative algorithm that
calculates successively better and better approximations to the solution. Thus it is
unlikely that data structure design can be used to solve problems of this type.

The role of data structure design
Data structure design’s strong application area is serial file processing. Serial files are wide-
ly used. For example, graphics files (e.g. JPEG and GIF formats), sound files (e.g. MIDI),
files sent to printers (e.g. PostScript format), Web pages using HTML, spreadsheet files
and word processor files. Gunter Born’s book (see Further Reading) lists hundreds of
(serial) file types that need the programmer’s attention. So, for example, if you needed to
write a program to convert a file in Microsoft format to an Apple Macintosh format, data
structure design would probably be of help. But perhaps the ultimate tribute to the
method is the use of an approach used in compiler writing called recursive descent. In
recursive descent the algorithm is designed so as to match the structure of the program-
ming language and thus the structure of the input data that is being analyzed.

The main advantages of data structure design are:

� there is high “proximity” between the structure of the program and the structure of
the files. Hence a minor change to a file structure will lead only to a minor change
in the program

� a series of well-defined steps leads from the specification to the design. Each stage
creates a well-defined product.

BELL_C10.QXD 1/30/05 4:22 PM Page 135

136 Chapter 10 � Data structure design

10.1 Design a program to display a multiplication table such as young children use. For
example, the table for numbers up to 6 is:

1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 8 10 12
3 3 6 9 12 15 18
4 4 8 12 16 20 24
5 5 10 15 20 25 30
6 6 12 18 24 30 36

The program should produce a table of any size, specified by an integer input from a
text box. (The structure of the input is irrelevant to this design.)

10.2 A data transmission from a remote computer consists of a series of messages. Each
message consists of:

1. a header, which is any number of SYN bytes

Summary

The basis of the data structure method is that the structure of a program can be
derived from the structure of the files that the program uses. The method uses a dia-
grammatic notation for file and program structures. Using these diagrams, the method
proceeds step by step from descriptions of the file structures to a pseudo-code design.

The steps are:

1. draw a diagram (a data structure diagram) describing the structure of each of
the files that the program uses.

2. derive a single program structure diagram from the set of data structure
diagrams.

3. write down the elementary operations that the program will have to carry out.

4. associate the elementary operations with their appropriate positions in the pro-
gram structure diagram

5. transform the program structure diagram into pseudo-code.

In some cases, a problem exhibits an incompatibility between the structures of
two of its inputs or outputs. This is known as a structure clash. The method incor-
porates a scheme for dealing with structure clashes.

Exercises•

BELL_C10.QXD 1/30/05 4:22 PM Page 136

Exercises 137

2. a control block, starting with an F4 (hexadecimal) byte, and ending with F5
(hexadecimal). It contains any number of bytes (which might be control informa-
tion, e.g. to open an input-output device).

3. any number of data bytes, starting with F1 (hexadecimal), and ending with F2
(hexadecimal).

Messages must be processed in this way:

� store any control bytes in an array. When the block is complete, call an already
written method named obeyControl

� every data byte should be displayed on the screen

Assume that a readByte operation is available to obtain a byte from the remote
computer.

10.3 Compare and contrast the principles behind the following design methods:

� functional decomposition

� data structure design

� data flow design

� object oriented design.

10.4 Some proponents of the data structure design method claim that it is “non-inspirational”.
How much inspiration do you think is required in using the method?

10.5 Assess the advantages and disadvantages of data structure design.

10.6 Suggest facilities for a software tool that could assist in or automate using data struc-
ture design.

10.7 Evaluate data structure design under the following headings:

� special features and strengths

� weaknesses

� philosophy/perspective?

� systematic?

� appropriate applications

� inappropriate applications

� is the method top-down, bottom-up or something else?

� good for large-scale design?

� good for small-scale design?

� can tools assist in using the method?

BELL_C10.QXD 1/30/05 4:22 PM Page 137

138 Chapter 10 � Data structure design

The main reference on this method is: M.J. Jackson, Principles of Program Design,
Academic Press, 1997.

Read all about the many serial file formats in mainstream use in: Gunter Born, The File
Formats Handbook, International Thomson Publishing, 1995.

Answers to self-test questions

10.1 A new line is needed for each occurrence of process line.

10.2
Record

Male Not male

*

Further reading•

BELL_C10.QXD 1/30/05 4:22 PM Page 138

We begin this chapter by reviewing the distinctive features and principles of object-
oriented programming (OOP). This sets the scene as to what an OOD seeks to exploit.
Then we look at how to go about designing software. We use the Cyberspace
Invaders game as the case study.

The widely agreed principles of OOP are:

� encapsulation

� inheritance

� polymorphism.

The advantages of these features is that they promote the reusability of software com-
ponents. Encapsulation allows a class to be reused without knowing how it works – thus
modularity and abstraction are provided. Inheritance allows a class to be reused by
using some of the existing facilities, while adding new facilities in a secure manner.
Polymorphism further promotes encapsulation by allowing general purpose classes to
be written that will work successfully with many different types of object.

Object-oriented languages are usually accompanied by a large and comprehensive
library of classes. Members of such a library can either be used directly or reused by
employing inheritance. Thus the process of programming involves using existing library
classes, extending the library classes, and designing brand-new classes.

During OOD, the designer must be aware of the wealth of useful classes available
in the libraries. To ignore them would be to risk wasting massive design, programming

11.1 � Introduction

CHAPTER

11 Object-oriented
design

This chapter:
� explains how to carry out object-oriented design (OOD)

� explains how to use class–responsibility–collaborator (CRC) cards

� emphasizes the importance of using ready-made libraries.

BELL_C11.QXD 1/30/05 4:22 PM Page 139

140 Chapter 11 � Object-oriented design

and testing time. It is common experience for someone setting out to write OO soft-
ware to find that nearly all of the software already exists within the library. OO de-
velopment is therefore often regarded as (merely) extending library classes. This, of
course, requires a discipline – the initial investment in the time to explore and learn
about what might be a large library, set against the benefits that accrue later.

One of the principles used in the design of object-oriented software is to simulate real
world situations as objects. You build a software model of things in the real world. Here
are some examples:

� if we are developing an office information system, we set out to simulate users, mail,
shared documents and files

� in a factory automation system, we set out to simulate the different machines,
queues of work, orders, and deliveries.

The approach is to identify the objects in the problem to be addressed and to model
them as objects in the software.

One way to carry out OOD is to examine the software specification in order to
extract information about the objects and methods. The approach to identifying objects
and methods is:

1. look for nouns (things) in the specification – these are the objects

2. look for verbs (doing words) in the specification – these are the methods

Here is the specification for the cyberspace invaders program:

A panel (Figure 11.1) displays a defender and an alien. The alien moves sideways.
When it hits a wall, it reverses its direction. The alien randomly launches a bomb that
moves vertically downwards. If a bomb hits the defender, the user loses and the game is
over. The defender moves left or right according to mouse movements. When the mouse
is clicked, the defender launches a laser that moves upwards. If a laser hits the alien, the
user wins and the game is over.

A button is provided to start a new game.

Scanning through the specification, we find the following nouns. As we might
expect, some of these nouns are mentioned more than once, but the repetition does not
matter for the purpose of design.

panel, defender, alien, wall, bomb, mouse, laser

These nouns correspond to potential objects, and therefore classes within the pro-
gram. So we translate these nouns into the names of classes in the model. The noun
panel translates into the Panel class, available in the library. The nouns defender and
alien translate into the classes Defender and Alien respectively. The noun wall

11.2 � Design

BELL_C11.QXD 1/30/05 4:22 PM Page 140

11.2 Design 141

need not be implemented as a class because it can be simply accommodated as a detail
within the class Alien. The noun bomb translates into class Bomb. The noun mouse
need not be a class because mouse click events can be simply handled by the Panel class
or the Defender class. Finally we need a class Laser. Thus we arrive at the following
list of non-library classes:

Game, Defender, Alien, Laser, Bomb

These are shown in the class diagram (Figure 11.2). This states that the class Game
uses the classes Defender, Alien, Laser and Bomb.

We have not yet quite completed our search for objects in the program. In order that
collisions can be detected, objects need to know where other objects are and how big
they are. Therefore, implicit in the specification are the ideas of the position and size
of each object. These are the x and y coordinates, height and width of each object.
Although these are potentially objects, they can instead be simply implemented as int
variables within classes Defender, Alien, Laser and Bomb. These can be accessed via
methods named getX, getY, getHeight and getWidth.

One object that we have so far ignored in the design is a timer from the library that
is set to click at small regular time intervals, in order to implement the animation.
Whenever the timer ticks, the objects are moved, the panel is cleared and all the objects

Figure 11.1 The cyberspace invaders game

BELL_C11.QXD 1/30/05 4:22 PM Page 141

142 Chapter 11 � Object-oriented design

are displayed. Another object is a random number generator, created from the library
class Random, to control when the alien launches bombs.

We have now identified the classes that make up the game program.
We now scan the specification again, this time looking for verbs that we can attach

to the above list of objects. We see:

display, move, hit, launch, click, win, lose

Again, some of these words are mentioned more than once. For example, both the
alien and the defender move. Also all the objects in the game need to be displayed.

We now allocate methods to classes, with the help of the specification. This con-
cludes the design process.

Now although we used the specification to arrive at classes and methods, we could
have used an alternative formulation of the specification, use cases. Use cases were
explained in Chapter 4 on requirements specification. A use case is a simple, natural
language statement of a complete and useful function that a system carries out. For the
game, some use cases are:

� defender move – when the user moves the mouse left and right, the defender
object moves left and right on the screen

� fire laser – when the player clicks the mouse, a laser is launched upwards from the
defender object

� laser hits alien – when a laser hits the alien, the player wins and the game is over

Notice that some of the use cases are not initiated by the user of the system. Instead
they are initiated by objects within the game, such as when an alien launches a bomb.

A complete set of use cases constitutes a specification of what a system should do.
We can then use them to derive classes and their methods. Again, we seek verbs (which
are the classes) and verbs (which are the methods). Fortunately use cases are very suit-
ed to this process, because they emphasize actions acting on objects. So, for example,
the use case defender move implies that there is an object defender that embodies
methods moveLeft and moveRight.

Figure 11.2 The non-library classes involved in the game program

Defender

Alien

Laser

Bomb

Game

BELL_C11.QXD 1/30/05 4:22 PM Page 142

11.2 Design 143

While we are identifying classes and methods, we can document each class as a UML
class diagram. This type of class diagram shows more detail about a class than those we
have met so far. A large rectangle contains three sections. The first section simply shows
the class name. The second section shows the instance variables. The third section
shows the public methods provided by the class. We start with class Game:

SELF-TEST QUESTION

11.1 Derive information about objects and methods from the use case:

� laser hits alien – when a laser hits the alien, the player wins.

class Game

Instance variables

panel

timer

Methods

mouseMoved

mouseClicked

actionPerformed

class Defender

Instance variables

x

y

height

width

Methods

move

display

getX

getY

getHeight

getWidth

Next we consider the defender object. It has a position within the panel and a size.
In response to a mouse movement, it moves. It can be displayed. Therefore its class
diagram is:

BELL_C11.QXD 1/30/05 4:22 PM Page 143

We now have the full list of classes, and the methods and instance variables associated
with each class – we have modeled the game and designed a structure for the program.

The next act of design is to check to make sure that we are not reinventing the wheel.
One of the main benefits of OOP is reuse of software components. At this stage we
should check whether:

� what we need might be in one of the libraries
� we may have written a class last month that is what we need
� we may be able to use inheritance.

We see in the cyberspace invaders software can make good use of GUI components,
such as the panel, available in the library. Other library components that are useful are
a timer and a random number generator.

If we find classes that are similar, we should think about using inheritance. We look
at how to write the code to achieve inheritance in Chapter 15 on OOP. In Chapter 13
on refactoring, we look at identifying inheritance using the “is-a” and “has-a” tests.

11.3 � Looking for reuse

144 Chapter 11 � Object-oriented design

Next we design and document the Alien class. The alien has a position and a size.
Whenever the clock ticks, it moves. Its direction and speed is controlled by the step size
that is used when it moves. It can be created and displayed.

Class Alien

Instance variables

X

Y

height

width

xStep

Methods

Alien

move

display

getX

getY

getHeight

getWidth

SELF-TEST QUESTION

11.2 Write the class diagram for the Bomb class.

BELL_C11.QXD 1/30/05 4:22 PM Page 144

9jabaz
Download more books at 9jabaz.ng for free!

11.5 Class–responsibility–collaborator cards 145

We shall see how the game software can be considerably simplified by making use of
inheritance.

OOP is often called programming by extending the library because the libraries pro-
vided along with OO languages are so rich and so reusable. An organization will often
also create its own library of classes that have been created in earlier projects. There are
two distinct ways of using classes in a library:

1. creating objects from classes in the library

2. defining new classes by extending (inheriting from) classes in the library.

For example, in designing the game program, we expect the library to provide
classes that implement buttons and a panel – along with classes that support the event
handling associated with these widgets. For example in the Java library we can use the
Button class directly, by creating button objects as instances of the Button class:

Button button = new Button("start");

The Java library also provides classes and methods that display the graphical images that
the program uses.

Another way in which the library is commonly used is to form new classes by
inheritance.

It is worthwhile looking in the library at the outset of design and then again at
every stage of design, in case something useful can be incorporated into the design.
This takes some self-discipline because it is tempting to write a method again, rather
than develop an understanding of someone else’s code.

Class–responsibility–collaborator (CRC) cards are a way of helping to carry out OOD.
The technique uses ordinary index cards, made out of cardboard and widely available.
Each card describes an individual class as shown by the example of the Alien class in
Figure 11.3. The designer begins by writing the class name at the head of the card.
Then one area lists the methods provided by the class (its responsibilities). For the class
Alien, these are move, display, etc. A second area lists the classes that use this class
and the classes that are used by this class (the collaborators). For the class Alien, there
is only one, the library class Graphics that supports displaying graphical images.

The cards representing the constituent classes are placed on a table. This way the
cards can be moved around easily; their interrelationships can be visualized and adjust-
ed as necessary.

CRC cards offer advantages as compared with a software tool. They are cheap, read-
ily available and portable. Several people can easily collaborate, standing round the

11.5 � Class–responsibility–collaborator cards

11.4 � Using the library

BELL_C11.QXD 1/30/05 4:22 PM Page 145

table. It seems that the act of physically handling the cards contributes to an improved
understanding of the structure of the software.

Iteration is a crucial ingredient of OOD. This is because there is no guaranteed for-
mula for finding the right set of objects to model a problem. Therefore the process is
exploratory and iterative; it is common for classes to be initially proposed during a
design but subsequently be discarded as the design progresses. Similarly, the need for
some classes will not emerge until the implementation (coding) stage.

During each iteration, the design is refined and reanalyzed continuously. Indeed,
whereas design and implementation are considered largely distinct activities in tradition-
al software development, using the object-oriented paradigm the two activities are often
indistinguishable. There are a number of reasons for this, which we will now discuss:

Prototyping is seen as an integral part of the object-oriented software design and imple-
mentation process. Prototyping recognizes that in most cases the requirements for a sys-
tem are at best vague or not well understood. It is an exploratory process providing early
validation (or otherwise) of analysis, design and user interface alternatives. Prototyping dic-
tates that design and implementation proceed in at least large-grain iterative steps.

The activities which take place and the concerns which are addressed during the
refinement of an OOD are identical whether it is the design or a working prototype that
is being refined. Moreover, such activities as reorganizing the class to reflect some newly
recognized abstraction (see Chapter 13 on refactoring) are just as likely to take place
during the implementation of a prototype as during the design. The design must now
be updated to reflect this change – design and implementation are now proceeding in
small-grain iterative steps.

Designers must be far more aware of the implementation environment because of the
impact that a large reusable class library can have on a design. Designers must not only
be aware of the library classes but also design patterns (see Chapter 12).

To sum up, as noted by Meyer, one of the gurus of object-oriented development,
designing is programming and programming is designing.

11.6 � Iteration

146 Chapter 11 � Object-oriented design

Class name: Alien

Responsibilities Collaborators

moves Graphics

displays itself

provides its x coordinate

provides its y coordinate

provides its height

provides its width

Figure 11.3 A Sample CRC card – the class Alien in the cyberspace invaders game

BELL_C11.QXD 1/30/05 4:22 PM Page 146

Summary 147

OOD and OOP have become the dominant approach to software development. This is
assisted by the availability and widespread use of programming languages that fully sup-
port OOP – such languages as C++, Ada, Smalltalk, C#, Visual Basic.Net and Java.

A number of OOD methodologies have appeared and are used. The available
methodologies differ in:

� their degree of formality

� which features of the problem they choose to model (and not model)

� the types of application for which they tend to be most suited (e.g. information sys-
tems versus real-time control systems).

The strengths of the object-oriented approach are:

� the intuitive appeal of directly modeling the application as objects, classes and methods

� the high modularity (information hiding) provided by the object and class concepts

� the ease of reuse of software components (classes) using inheritance.

Note that OOD leads to structures that are non-hierarchical, which distinguishes it
from some approaches.

11.7 � Discussion

Summary

OOD can be characterized as a three-stage process:

1. find the classes, i.e. determine the objects involved and their classes

2. specify what the classes are responsible for, i.e. what they do (their methods)

3. specify their collaborators, i.e. other classes they need to get their jobs done.

The following techniques and notations can be used for design:

� identify nouns and verbs in the specification or the use cases to derive classes
and methods

� use the library – at every stage during design it is worthwhile looking in the
library for classes that can either be used directly or extended by inheritance

� use CRC cards – a means of establishing the responsibilities (methods provid-
ed) and collaborator classes of each of the classes.

BELL_C11.QXD 1/30/05 4:22 PM Page 147

148 Chapter 11 � Object-oriented design

11.1 Complete the design of the game presented in the chapter. In particular, establish
use cases and hence identify the methods associated with each class.

11.2 Design the software structure for each of the systems described in Appendix A.

11.3 Can OOD be characterized as a top-down, a bottom-up or some other process?

11.4 If programming and design are really two aspects of the same process (as OOD
suggests), does this mean that all designers must also be programmers?

11.5 To what extent is an OOD influenced by the class library of reusable components
that is available? To what extent must designers be knowledgeable about available
components?

11.6 What features or indicators might you use to help identify potential flaws in an OOD?
For example, what might be the problem with a class that has an excessive number of
methods? What could be done about this class? Again, is there a problem with a class
that only calls other classes and provides no methods that are used by other classes?
What might be done about this situation?

11.7 Design a program that allows two-dimensional shapes to be drawn on the screen. A
square, circle, triangle or rectangle can be selected from a list of options and posi-
tioned at a place on the screen using a mouse. A shape can be repositioned, delet-
ed or its size changed using the usual mouse operations.

11.8 Suggest features for a software tool that would support the creation, storage and
editing of class diagrams.

11.9 Suggest features for a software tool that would support the creation, storage and
editing of CRC cards. Suggest features for checking the consistency of a collection
of such cards.

11.10 Evaluate OOD under the following headings:

� special features and strengths.

� weaknesses

� philosophy/perspective?

� systematic?

� appropriate applications

� inappropriate applications

� is the method top-down, bottom-up or something else?

� good for large-scale design?

� good for small-scale design?

� can tools assist in using the method?

Exercises•

BELL_C11.QXD 1/30/05 4:22 PM Page 148

Further reading 149

11.11 Compare and contrast the principles behind the following design methods:

� functional decomposition

� data structure design

� data flow design

� object oriented design.

Answers to self-test questions

11.1 There are objects laser and alien and therefore classes Laser and
Alien. Class Laser has a method checkAlienHit.

11.2 class Bomb

Instance variables

x

y

height

width

yStep

Methods

Bomb

move

display

getX

getY

getHeight

getWidth

Object-oriented design
An excellent book which presents a view of the process and notation of OOD and also

contains five extensive design case studies. Widely regarded as the definitive book on
OOD: G. Booch, Object-Oriented Design with Applications, Addison-Wesley, 2nd edn,
1993.

A wide-ranging survey of approaches and notations. Very readable. An excellent
overview of the different methods and notations: Edward Yourdon, Object-Oriented
Systems Design: An Integrated Approach, Prentice Hall, 1994.

Further reading•

BELL_C11.QXD 1/30/05 4:22 PM Page 149

150 Chapter 11 � Object-oriented design

This book provides many valuable insights into the design and implementation of
object-oriented software. The early chapters provide an excellent and most readable
explanation of the principles of OOP. Examples are given using the programming
language Eiffel: B. Meyer, Object-Oriented Software Construction, Prentice Hall,
2nd edn, 1997.

This excellent book provides a coherent language independent methodology for OOD
known as “responsibility-driven design”: R.J. Wirfs-Brock, B. Wilkerson and L.
Weiner, Designing Object-Oriented Software, Prentice Hall, 1990.

Unified modeling language
Two simple books that one can read and understand: Martin Fowler with Kendall

Scott, UML Distilled, Addison-Wesley, 2000; Perdita Stevens with Rob Pooley,
Using UML, Addison-Wesley, 2000.

Object-oriented development
Written by a consultant who has seen many successful and unsuccessful projects. He

gives the results of his very practical experience. The book begins by identifying the
problems of software engineering. As part of this he suggests that successful pieces
of software have been written by just two people, young and without using
respectable methods. He goes on to look at the expected benefits of OOD. The
main part of the book is about practical OOD methods including management,
“software component foundries” and how to bring about change: Tom Love,
Object Lessons: Lessons Learned in OO Development Projects, SIGS Books, 1993.

This book complements Booch’s book about the technical aspects of design. It is a
companion book about the down-to-earth practical aspects of development. Very
readable: Grady Booch, Object Solutions: Managing the OO Project, Addison-Wesley,
1996.

BELL_C11.QXD 1/30/05 4:22 PM Page 150

Experienced programmers draw on half-remembered memories of software structures
that they have used themselves or seen used in the past. An example of a simple pro-
gramming pattern is the design of a program to find the largest number in an array of
numbers. The simplest algorithm uses a variable to record the largest value that has yet
been encountered. The program starts at the beginning of the array and proceeds item
by item, examining each number, updating this variable as necessary:

largest = list[0]

index = 0

while index <= list.size() do

if list[index] > largest then

largest = list[index]

end if

index = index + 1

end while

This is clearly a small piece of program that is easily constructed by any experienced
programmer, but to novice programmers, seeing this is something of a revelation. And
once seen, the programmer never forgets it. Or at least the programmer remembers
the idea of what is needed, rather than the detail. This is a software pattern. Over a

12.1 � Introduction

CHAPTER

12 Design patterns

This chapter explains:
� how to use design patterns during development

� several major design patterns

� some valuable anti-patterns.

>
>

BELL_C12.QXD 1/30/05 4:22 PM Page 151

152 Chapter 12 � Design patterns

period of time, experienced programmers build up a large repertoire of memories of
programming patterns such as this one.

A number of patterns have been identified, given names, cataloged and document-
ed in catalogs or books. These patterns are available for off-the-shelf use, just as classes
are available in class libraries. Software engineering patterns are patterns on a larger
scale than the simple program seen above. The established patterns specify the structure
of useful software at the architectural level. In object-oriented development, this means
structures expressed in terms of classes and their interrelationships.

The strength of design patterns is that good design ideas are recorded, given a name,
and explained with the aid of examples. This extends the vocabulary of software devel-
opers. It also extends the repertoire of ideas that they can use without reinventing the
wheel.

To make use of patterns, the software engineer needs some recollection of the stan-
dard patterns. This is obtained by browsing a patterns catalog prior to a project. The
engineer thereby retains some memory (perhaps only a partial recollection) of the pat-
terns, then, during the early phase of software architectural design, the engineer real-
izes that one or more patterns may be useful. They then consult the catalog to confirm
the appropriateness of the pattern and see exactly how to use it. The next step is to use
the pattern as part of the design.

In summary the stages are:

1. browse a design pattern catalog, to obtain some feel for the available patterns

2. embark on a new design with an awareness of the patterns

3. recognize the need for one of the established patterns

4. consult the catalog to check the applicability of the pattern

5. use the catalog for information on the how to use the pattern

6. use the pattern as part of the design.

As well as architectural structure, patterns are available for such domains as user
interfaces, file systems and multithreading. Patterns are also provided for activities such
as testing and project management.

In order to use design patterns the programmer needs considerable experience and
understanding of OOD and OOP.

Just as there are patterns (which are valuable structures) so there are anti-patterns,
which are undesirable structures. The reason for identifying and cataloguing anti-patterns
is to avoid them. We look at one such pattern.

In this chapter we present a number of useful patterns and use the cyberspace
invaders game as an example in explaining some of the patterns.

It bears repeating that one of the major goals of the object-oriented paradigm is to
produce reusable software components – components which can be reused both
within the application in which they were generated but also in future applications.

12.2 � Inheritance

BELL_C12.QXD 1/30/05 4:22 PM Page 152

12.3 Delegation 153

The concepts of inheritance and subclassing supported by object-oriented languages
allow:

� new classes of objects to be described as extensions or specializations of existing
classes, i.e. a new class can be defined as a subclass of an existing class

� subclasses to inherit the behavior and state of their superclasses.

These concepts add extra dimensions to the design process. Taking into account
inheritance means that a major design goal is to factor the responsibilities within a
hierarchy of classes so that a responsibility attached to a superclass can be shared by
all subclasses.

In Chapter 13 on refactoring we will see how the design of the cyberspace invaders
program can be improved using inheritance.

This is probably the simplest and most obvious pattern. It describes the situation where
one class uses another. Delegation is worth emphasizing as a pattern because there is
sometimes a tendency to use inheritance too enthusiastically. Delegation is, in fact, a
more general way of extending the functionality of a class.

As an example, we will use another game, draughts (UK) or checkers (US). This
game takes place on a chess board with a set of black pieces and a set of white pieces.
Let us image a program that displays the board and the pieces on the screen as a game
is played. A natural (but as we shall see later flawed) structure would be to see that black
and white pieces are instances of class Black and White and that these are in turn sub-
classes of class Piece. The class diagram, showing inheritance, is shown in Figure 12.1.

However, there is a problem. When a piece reaches the end of the board, it becomes
crowned and thereby gains extra powers. How do we accommodate this in the rela-
tionships between classes? The trouble is that once an object is an instance of White, it
remains a White. Objects cannot change their class. So inheritance, though appealing,
is inappropriate. A better relationship is shown in Figure 12.2. Here classes Black,
White, CrownedWhite and CrownedBlack use class Piece in the delegation pattern.
Inheritance is absent from this pattern. The class Piece still incorporates all the shared
features of the original class Piece – features such as the position on the board.

12.3 � Delegation

Piece

Black White

Figure 12.1 Game of draughts showing inheritance

BELL_C12.QXD 1/30/05 4:22 PM Page 153

9jabaz
Download more books at 9jabaz.ng for free!

In some systems there only needs to be one instance of a class. Normally, of course,
someone writes a class so that any number of objects can be created from it. But occa-
sionally there should only be one. An example is an object to manage the communi-
cation between a system and the database. It would be confusing if any number of
classes were interacting with the database. Now it would be possible to try to achieve
this affect by telling all the programmers on the team that there is one copy of the
object, with such-and-such a name, written by Mo. But in a large and complex system,
this could be forgotten. We can instead legislate (with the help of compiler checking)
using the Singleton pattern.

Another example of the Singleton pattern is evident in the cyberspace invaders game
(Appendix A), where there should only be one object representing the defender.

12.4 � Singleton

154 Chapter 12 � Design patterns

But the converse is not true.
The moral is:

� anything that can be accomplished by inheritance can be achieved through delegation

� everything that can be accomplished by delegation cannot be achieved through
inheritance. Delegation is more general mechanism than inheritance.

� inheritance can be useful for modeling static “is-a” situations

� inheritance is not appropriate for modeling “is-a-role-played-by” situations

� delegation is more widely used than inheritance.

SELF-TEST QUESTION

12.1 A soldier in the army is a private, a sergeant or a general. Do we model
this as inheritance or delegation?

Piece

UsesUses

Black White CrownedBlack CrownedWhite

Figure 12.2 Game of draughts using delegation

BELL_C12.QXD 1/30/05 4:22 PM Page 154

9jabaz
Download more books at 9jabaz.ng for free!

12.5 Factory method 155

The following coding shows how a singleton class Demo can be written in Java.

public class Demo {

private static final Demo demo = new Demo();

private Demo() {

}

private static Demo getInstance() {

return demo;

}

}

SELF-TEST QUESTION

12.2 Why is the constructor Demo labeled as private?

>
>

Suppose that we are writing some software to handle images. An image resides in a file
and there are several different common file formats – for example, jpeg and gif. We would
like the facility to create an object corresponding to a graphics image, in this manner:

Image image = new Image("picture.jpeg");

Once we have created the object, we can perform such operations as:

image.rotate(90);

image.display();

image.enlarge(2, 2);

The problem is that all of these methods will be different for each different graphics
file format. Indeed, the graphics object will be different for each file format. So one sin-
gle class – Image – will not suffice; we need a different class for each file format. One
approach would be to provide a number of classes and expect a user to call the con-
structor for the relevant class like this:

JpegImage image = new JpegImage("fileName.jpeg");

But this is clumsy. The alternative is to create an abstract class Image that has a fac-
tory method createImage. Now we create an image object conveniently like this:

Image image = Image.createImage("fileName.jpeg");

12.5 � Factory method

BELL_C12.QXD 1/30/05 4:22 PM Page 155

9jabaz
Download more books at 9jabaz.ng for free!

156 Chapter 12 � Design patterns

createImage is class (static) method of the class Image. It looks at the extension of
the file name parameter and creates an appropriate object. For example, if the file type
is jpeg, it creates a subclass of Image suitable for jpeg images. The sole purpose of this
method is to create the appropriate object, making the choice at run time. So now users
can treat all image file types in the same manner. The code for the factory method is:

class Image {

public static Image createImage(String fileName) {

String extension = getExtension(fileName);

if (extension.equals("jpeg"))

return (new JpegImage(fileName));

if (extension.equals("gif"))

return (new GifImage(fileName));

}

}

Here we have used a method getExtension (not shown) that returns the exten-
sion part of a file name.

We have buried the code that creates an appropriate class within the factory method,
providing a simple interface to the users.

Why could we not simply use the constructor method of class Image? The answer is
that a constructor can only return an object of its own class. This is a limitation of con-
structors and, if we need to do anything different, we need to use a factory method.

Suppose you write a group of classes that perform some useful functions. It could be a
filing system that allows other classes (users) to open a file, close a file, read and write
information. One option is to tell users which classes to use and how (Figure 12.3, left-
hand diagram). However, this means that a user needs to understand the structure of
the subsystem to use it effectively. In addition, changes to the structure of the subsys-
tem may require changes to its users.

A better option (Figure 12.3, right-hand diagram) is to tell users to use one class –
a façade class. The façade class presents a clean and simple interface for users. It has

12.6 � Façade

>
>

User User

Façade

Figure 12.3 The Façade pattern

BELL_C12.QXD 1/30/05 4:22 PM Page 156

12.8 Model, view controller (observer, observable) 157

methods that provide all the functionality of the system. The detailed structure of the
system is hidden from its users. The façade class knows about the structure of the group
of classes and uses them as necessary. However, the classes in the group do not need to
know about the façade class, so any changes to the group do not impact on the users.

An immutable object is one that, once created, does not change its state. In the cyber-
space invaders game, there could be objects that do not move and do not change while
the game is in progress. These objects do not change their state (their internal vari-
ables). We can write an Immutable class by providing methods to access the values of
the object, but none to change them. The variables within an immutable class must not
be declared as constants, because they are changed (once) by the constructor method.

Many software systems have at their center a model or a simulation of the application of
interest. The simulation consists of objects and a set of rules governing how they interact.
In the cyberspace invaders game, the model consists of such objects as the alien, lasers and
bombs that move and interact according to certain rules. The model ensures that bombs
moves vertically. If a bomb strikes the defender, the user loses and the game is over.

The core model is surrounded by classes that support a user interface. The user inter-
face consists of two parts: the elements that control the system (inputs) and the ele-
ments that allow us to view information (the outputs). In the game, the user moves the
mouse to move the defender object and can fire a laser by clicking on the mouse but-
ton. These are controls. The screen shows the position of the objects, such as the alien
and a laser. These are outputs (the view).

To summarize, systems often have three components:

� the model

� the view

� the controller.

The MVC pattern recognizes that many systems have this three-part structure –
model, view and controller – and that the software architecture should be explicitly par-
titioned in the same way. This has the advantage that the view and/or the control can be
changed without changing the core. For example, the user could control the defender
object with a joystick instead of the mouse, or the display could be sent across the inter-
net to the screens of multiple players. So, if the system is partitioned, we can easily change
the view or the control or both.

For this pattern to work properly there has to be clear communication between the
three components:

� when the user alters a control, the model must be told

� when the model changes, the view must be told.

12.8 � Model, view controller (observer, observable)

12.7 � Immutable

BELL_C12.QXD 1/30/05 4:22 PM Page 157

158 Chapter 12 � Design patterns

These relationships between components are the essence of the MVC pattern. The
advantages are that the model, the view or the controller can be changed without
affecting any other part of the system. Furthermore, additional views and controls can
be added easily.

In the software for the cyberspace invaders game, there must be a method or meth-
ods that test to see whether a laser has hit an alien and whether a bomb has hit the
defender. The question is: Where are these methods? One option is to place this col-
lision detection within class Laser and class Bomb. Unfortunately this leads to a com-
plex structure in which every bomb has to know about the defender object and every
laser has to know about every alien object. This is high coupling. For example, if we
introduce additional objects into the game we will need to modify class Bomb and
class Laser.

A better approach is to create a mediator class. As its name suggests, this is respon-
sible for handling relationships between objects – termed colleague objects. The
essence of the mediator pattern is that colleague objects are changing (because, in this
example, they are moving).

This is how the pattern is implemented. First, all the colleague objects register with
the mediator object. Thereafter, when a colleague object changes its state (in this exam-
ple, when it moves) it calls the mediator object. The mediator decides whether a
notable event has occurred (a collision in this example) and, if necessary, notifies appro-
priate colleague objects (the objects involved in the collision).

The advantages are:

� all the dependency logic is in one place

� the colleague objects are simpler because they do not embody code to check
dependencies.

12.9 � Mediator

SELF-TEST QUESTION

12.3 Identify differences between the Mediator pattern and the MVC pattern.

This pattern describes a way of building software from a group of components that
collaborate by passing a stream of information. The components behave like an
assembly line. Each component inputs some information from one component,
processes it and passes it on to another component, Figure 12.4. Each component is

12.10 � Pipe and Filter

BELL_C12.QXD 1/30/05 4:22 PM Page 158

12.12 Layers 159

known as a filter and the connections are known as pipes. The information flow
between components is a one-way serial stream of data. Each component knows
nothing about any other component. This scheme corresponds to the pipe and filter
scheme that Unix provides. Many of the Unix utility programs process a stream of
data and create a new output stream. Examples are given in Chapter 18 on scripting
languages. Arguably, this type of connection means that the components have mini-
mal coupling.

A proxy object acts instead of some other object or objects. It fields requests, passing
them on as necessary.

The classic example is that of a proxy server on the internet, which acts in place of
another server because the actual server is too busy. The proxy either handles requests
itself or passes a request on to an available server. A busy website, such as a success-
ful search engine, cannot handle all the requests using a single server. Instead it uses
a collection of servers, fronted by a proxy server that farms out the work to an avail-
able server.

12.11 � Proxy

Filter 1 Filter 2 Filter 3

Figure 12.4 Pipe and Filter pattern

SELF-TEST QUESTION

12.4 Compare and contrast the Proxy pattern with the Façade pattern.

The Layers pattern, sometimes called tiers, is a classic pattern that is used in many
systems. This pattern divides a software system into hierarchical layers. In one incar-
nation, Figure 12.5, there are three layers. The top layer handles the user interface
(sometimes called the presentation layer), the middle layer handles the application
logic (sometimes called the domain logic or the business logic) and the bottom layer
handles access to the database. Each layer makes requests on the services provided
by the layer immediately below it, and receives replies, but there are no other
dependencies in this structure.

The layers pattern can be used to structure the word processor (Appendix A). The
user interface provides the display of the current document and a set of commands. The

12.12 � Layers

BELL_C12.QXD 1/30/05 4:22 PM Page 159

9jabaz
Download more books at 9jabaz.ng for free!

160 Chapter 12 � Design patterns

database level stores and retrieves documents. The middle layer processes commands,
such as deleting text.

The strength of the Layers pattern is that it provides a large-scale structure for cer-
tain types of software. It also means that each layer of the software can be modified
without affecting the other layers. For example, in the word processor, we can alter the
way that commands are invoked (the presentation layer), for example, by adding
menus, without changing the database access layer.

The word processor is a single-machine application. However, many current
applications – such as an ATM – are network-based or internet-based. The simplest
network-based architecture is the client-server architecture. This consists of two layers –
the client software running on the client machine and the server software running on the
server. The classic example is a web browser and a web server. The client passes a request
to the server; the server responds.

A classic example of the Layers pattern is the structure of the software for internet
communication, called the TCP/IP stack. Every computer that uses the internet has
this software. A typical application program makes requests on the transport layer that
supports the TCP protocol. This in turn makes requests of the internet layer that sup-
ports the IP protocol. This in turn calls the physical layer which actually carries out
data transfers. Thus the software consists of four levels, including the application level.

Another version of the Layers pattern, with four levels, describes many networked
solutions, Figure 12.6. Again, each layer uses the layer below it. The communication
between presentation and server layer is carried out according to a chosen network pro-
tocol, such as HTTP.

In designing a distributed system, there are choices about which layer does what. In
a thin client system, the client software does very little, while the bulk of the work is
carried out on the server. In a fat client architecture, the business logic layer migrates
to the client machine. The decision about where to perform processing depends on
such issues as performance, maintenance and security.

Another benefit of the Layers pattern is facilitating security. The boundaries between
layers serve as well-defined interfaces where security checks can be carried out. For
example encryption can be used between the client and the server. Finally, Layers pro-
vide for scalability. A server acting as a proxy (see pattern above) can delegate its task
to other servers as the load increases.

Figure 12.5 Layers

user interface layer

business logic layer

database access layer

BELL_C12.QXD 1/30/05 4:22 PM Page 160

12.14 Discussion 161

SELF-TEST QUESTION

12.5 What is the similarity between the Layer pattern and the MVC pattern?

12.6 What are the differences between the Layers pattern and the Pipe and
Filter pattern.

The blob is a bad structure – an anti-pattern. All the classes in the program are merged
into one large class. There is structure in terms of constituent methods, but that is all.
There is no large-scale structure. The blob is what someone would create if they did
not really understand what OOP is about – or if they could not see how to structure
the software into meaningful classes.

At one extreme the designer has the option of creating a design that consists only of
one single class. This is always possible, and corresponds to a non-OOP. At the other
extreme, the designer might create an unnecessarily large number of classes with many
interconnections. Thus design is a matter of judgment in order to arrive at the optimal
classes for the problem.

Patterns represent a valuable type of reuse. You do not reuse code or classes, you reuse
a design or a software structure. Such a design is probably a revelation for a novice,
but is probably recognizable by experts. Giving patterns individual names means that
they can be discussed easily. Cataloging patterns makes them widely available.

12.14 � Discussion

12.13 � Blob – an anti-pattern

Figure 12.6 Layers in a distributed system

presentation layer

server

business logic layer

data access layer

BELL_C12.QXD 1/30/05 4:22 PM Page 161

162 Chapter 12 � Design patterns

Summary

Patterns embody the experience of developers. They document useful architectur-
al structures (Some patterns also record techniques for activities such as testing.) A
pattern has a name, an application domain and a suggestion for a solution. Patterns
enable novices to use the knowledge of experts. They provide a body of knowledge
and a language for talking about structure. Patterns are documented in catalogs
(see the reading list below) for browsing prior to and during architectural software
design.

This chapter explains how to use some useful design patterns (and some anti-
patterns):

� Inheritance – extending an existing class

� Delegation – using other classes to perform useful tasks

� Singleton – a class with only one instance

� Factory Method – creating the appropriate class at run time

� Façade – creating a front end to make using a collection of classes easier

� Immutable – an object that does not change

� Model-View-Controller – separating input, output and logic

� Mediator – encapsulating the interaction between classes

� Pipe and Filter – components that process a serial stream of data, passing it
from one to another

� Proxy – a component that accepts requests on behalf of other components

� Layers – separating large scale architecture into levels

� Blob – an anti-pattern, a single complex class.

Some people like to distinguish types of patterns:

� architectural patterns – the highest level structures, applicable to large numbers of
classes

� design patterns – patterns applicable at the level of small groups of classes

� coding patterns – applicable to detailed algorithms within methods

� anti-patterns – the opposites of patterns.

You know you understand patterns when you can see how to use two or more in
your project. Many software systems use two or sometimes more patterns.

BELL_C12.QXD 1/30/05 4:22 PM Page 162

Answers to self-test questions 163

Exercises

12.1 Review the architectural structure of the cyberspace invaders game (Appendix A).
Suggest which patterns would be useful.

12.2 In a word processor (Appendix A), how would you use the MVC pattern? Hints:
what views does a word processor display? What commands does it provide?

12.3 Show how the Layers pattern can be used in the ATM software and in the library sys-
tem (Appendix A).

•

Answers to self-test questions

12.1 If people had static roles, we could model the structures using inheri-
tance. We could say “a private is-a soldier”. But army personnel get pro-
moted, so the best structure is delegation.

12.2 It means that it can only be called from within the class. Thus no program
can call the constructor from another class. The only way to create an
instance is to call getInstance, and this always returns the same
object.

12.3 1. The MVC pattern is concerned only with the user interface, while the
Mediator pattern is more general.

2. A Mediator class is more complex because it embodies logic gov-
erning the interaction of the objects.

12.4 Both patterns act as a front end to a component or collection of compo-
nents. But the motivation for Façade is to provide a clean interface. Proxy
does it for performance reasons.

12.5 Both explicitly separate out the presentation software from the business
logic component.

12.6 Pipe and Filter passes data in one direction only, whereas in Layers it is
passed to and fro between layers. In Pipe and Filter, communication is
solely by passing a stream of data, whereas in layers, some of the com-
munication is via method calls.

BELL_C12.QXD 1/30/05 4:22 PM Page 163

164 Chapter 12 � Design patterns

The first and most significant of the books about reusable design patterns. Written by
authors now referred to as the Gang of Four (GoF). It presents a number of OO
patterns, each with a name, a rationale and examples. (The examples of use are
mainly in C++, but the designs are more widely applicable.) It is not an easy book
and many people report that reading it is a challenge: Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

This book is a readable catalog. Although the code examples are given in Java, you do
not need to know about Java, or use Java to understand the patterns: Mark Grand,
Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML, 2
vols, John Wiley, 1998, 1999.

This book explores what can go wrong (calling them anti-patterns) during software
development, particularly OO development, and explains how to recover from these
situations. Easy to read, enjoyable and refreshing: William Brown, Raphael Malveau,
Hays McCormick and Thomas Mowbray, Anti Patterns, John Wiley, 1998.

Further reading•

BELL_C12.QXD 1/30/05 4:22 PM Page 164

Refactoring is about improving an architectural design. Nowadays a design tends to be an
OOD, expressed in terms of classes and their interrelationships (methods). However,
design does not usually proceed in a straightforward, linear manner. Most often, design
tends to be an iterative process. First, candidate classes are identified. Then some will be
accepted while others will be rejected – perhaps because they have no methods or because
their methods are subsumed by some other class. Methods tend to migrate from one class
to another as a better understanding of the objects and their role within the problem
emerges. This process is known as refactoring. Refactoring is the transformation of a cor-
rect program structure (e.g., a class diagram) into an improved structure.

Good ideas for refactoring are published in catalogs. Each idea has a name so that it
can be referred to in conversations between developers. In this chapter we present some
of the most popular refactorings. We use as an example the cyberspace invaders game
(Appendix A) whose architecture is designed in the chapter on OOD.

So, the steps of refactoring are:

1. create a design

2. review the design

3. identify possible refactorings

4. carry out refactoring.

13.1 � Introduction

CHAPTER

13 Refactoring

This chapter:
� explains how to carry out refactoring

� explains several common refactorings.

BELL_C13.QXD 1/30/05 4:23 PM Page 165

166 Chapter 13 � Refactoring

An alternative approach is to refactor periodically as design proceeds:

1. carry out some partial design

2. review the design

3. identify possible refactorings

4. carry out refactoring

5. continue from step 1.

The term coupling describes the interaction between components, while cohesion
describes the interactions within a component. Many of the refactorings are aimed at
minimizing coupling between components and maximizing cohesion within compo-
nents. This combination promotes clarity, modularity and re-use.

A variable is defined as public and it is therefore unclear who uses it and why. The rem-
edy is to make it private and provide methods to access the data.

For example, in the game, the x coordinate of an alien could be declared (in Java) as:

public int x;

Instead, declare x as follows:

private int x;

And provide methods to read the value and change the value:

public void setX(int newX) {

x = newX;

}

public int getX() {

return x;

}

Encapsulating data makes it clear how data is being accessed and by whom. Data
declared as public can be accessed by any part of the software in an uncontrolled fashion.
Encapsulation is one of the central features of OOP.

This refactoring can always be used on any public data and its implementation is
straightforward.

13.2 � Encapsulate Data

>
>

BELL_C13.QXD 1/30/05 4:23 PM Page 166

13.6 Inline Class 167

A method is written within a class, but it uses very little of its current class. Instead it
uses many of the facilities of another class. The remedy is to move the method from one
class to the other.

In the game, the software needs to check whether pairs of items have collided, for
example, a laser and an alien. For clarity, this collision detection is carried out by a method.
This method is part of both class Laser and class Alien. This creates strong coupling
between the objects. Instead move the method to a class that is responsible for checking
collisions between all the objects in the game.

In general, moving a method may be necessary when:

� a class has too many methods

� a class has high coupling with another class.

Moving a method is a common refactoring situation.

A variable is declared within a class, but another class uses it more. The remedy is to
move the variable declaration. Clearly this also means moving the get and set methods.

A class has become too large and complex; it is doing the work of two classes. The rem-
edy is to create a new class, extracting the appropriate variables and methods from the
old class.

Ideally classes emerge from design as self-contained components that model some
element of the application. In practice, as design proceeds, classes sometimes take on
extra roles. Variables and methods are gradually added until the class becomes cumber-
some. It becomes a candidate for fission.

A class is very small, or it does not do very much. The remedy is to incorporate it into
some other class – ideally the class that uses it the most.

13.6 � Inline Class

13.5 � Extract Class

13.4 � Move Data

13.3 � Move Method

BELL_C13.QXD 1/30/05 4:23 PM Page 167

168 Chapter 13 � Refactoring

SELF-TEST QUESTION

13.1 Compare the factoring Inline Class with the factoring Extract Class.

Once we have identified the classes within a software system, the next step is to review
the relationships between the classes. The classes that make up the software collaborate
with each other to achieve the required behavior, but they use each other in different
ways. There are two ways in which classes relate to each other:

1. composition – one object creates another object from a class using new. An example
is a window object that creates a button object.

2. inheritance – one class inherits from another. An example is a class that extends the
library Frame class.

The important task of design is to distinguish these two cases, so that inheritance
can be successfully applied or avoided. One way of checking that we have correctly
identified the appropriate relationships between classes is to use the “is-a” or “has-a”
test:

� the use of the phrase “is-a” in the description of an object (or class) signifies that it
is probably an inheritance relationship.

� the use of the phrase “has-a” indicates that there is no inheritance relationship.
Instead the relationship is composition. (An alternative phrase that has the same
meaning is “consists-of ”.)

We return to the cyberspace invaders game, designed in Chapter 11, seeking to
find any inheritance relationships. If we can find any such relationships, we can sim-
plify and shorten the program, making good use of reuse. In the game, several of the
classes – Defender, Alien, Laser and Bomb – incorporate the same methods. These
methods are: getX, getY, getHeight and getWidth that obtain the position and
size of the graphical objects. We will remove these ingredients from each class and
place them in a superclass. We will name this class Sprite, since the word sprite is a
commonly used term for a moving graphical object in games programming. The
UML class diagram for the Sprite class is:

13.7 � Identify composition or inheritance

One way in which a class can become very small is when it has been the subject of
the Move Method and the Move Variable refactorings, so that it has become sucked
dry. This illustrates how many of the refactorings are interconnected – using one leads
to using another, and so on.

BELL_C13.QXD 1/30/05 4:23 PM Page 168

9jabaz
Download more books at 9jabaz.ng for free!

13.7 Identify composition or inheritance 169

class Sprite

Instance variables

x

y

height

width

Methods

getX

getY

getHeight

getWidth

Readers might see this more clearly if we look at the code. The Java code for the
class Sprite is as follows:

public class Sprite {

protected int x, y, width, height;

public int getX() {

return x;

}

public int getY() {

return y;

}

public int getWidth() {

return width;

}

public int getHeight() {

return height;

}

}

The classes Defender, Alien, Laser and Bomb now inherit these methods from this
superclass Sprite. Checking the validity of this design, we say “each of the classes
Defender, Alien, Laser and Bomb is a Sprite”. Figure 13.1 shows these rela-
tionships in a class diagram. Remember that an arrow points from a subclass to a
superclass.

>
>

BELL_C13.QXD 1/30/05 4:23 PM Page 169

Polymorphism enables objects that are similar to be treated in the same way. This means
classes that share some common superclass. A section of code that uses a number of if
statements (or a case statement) should be subject to scrutiny because it may be that

13.8 � Use polymorphism

170 Chapter 13 � Refactoring

We have now successfully identified inheritance relationships between classes in the
game program. This concludes the refactoring – we have transformed the design into a
better design.

When we see common methods or variables in two or more classes, they become
candidates for inheritance, but we need to be careful because delegation may be more
appropriate. So we need to distinguish between the two. To sum up, the two kinds of
relationship between classes are as follows.

Relationship between classes test Java code involves

SELF-TEST QUESTION

13.2 Analyze the relationships between the following groups of classes (are
they is-a or has-a):

1. house, door, roof, dwelling

2. person, man, woman

3. car, piston, gearbox, engine

4. vehicle, car, bus.

Inheritance is-a extends

Composition has-a or consists-of new

Sprite

Defender Alien Laser Bomb

Figure 13.1 Class diagram for inherited components in the game

BELL_C13.QXD 1/30/05 4:23 PM Page 170

Summary 171

Summary

Refactoring means improving the architectural structure of a piece of software.
This can be done at the end of design or during design.

A number of useful refactorings have been identified, given names and cataloged.

The refactorings described in this chapter are:

� Encapsulate Data

� Move Method

� Extract Class

� Inline Class

� identify composition or inheritance

� use polymorphism.

it is making poor use of polymorphism. The purpose of the if statements may be to
distinguish the different classes and thereby take appropriate action. But it may be sim-
pler to refactor the class, eliminate the if statements and exploit polymorphism.

In the game program, we identified the commonalities in a number of classes – Alien,
Defender, Bomb and Laser. We placed the common factors in a superclass called Sprite.
Now we can treat all the objects uniformly. We place the game objects in an array list
named game and write the following code to display them:

for (int s = 0; s < game.size(); s++) {

Object item = game.get(s);

Sprite sprite = (Sprite) item;

sprite.display(paper);

}

which is much neater than a whole series of if statements.

The idea of taking a design and changing it can be a surprise. It may seem akin to cre-
ating an ad hoc design and then experimenting with it. It has the flavor of hacking.
Some people argue that a good design method should produce a good design – that it
should not need improvement. Equally, many developers are reluctant to tinker with an
architectural design that has been created according to sound principles. However,
refactoring has a respectable pedigree. It recognizes that a perfect initial design is unlike-
ly and it offers a number of possible strategies for improving a structure. A refactoring
such as Extract Method gives the developer the green light to modify an initial design.

Note that refactoring implies that iteration is commonly used during OOD.

13.9 � Discussion

BELL_C13.QXD 1/30/05 4:23 PM Page 171

172 Chapter 13 � Refactoring

Answers to self-test questions

13.1 Inline Class is the opposite of the Extract Class.

13.2 1. a house has-a roof and a door. A house is-a dwelling

2. a man (and a woman) is-a person

3. an engine has-a piston and a gearbox and an engine

4. a car and a bus is-a vehicle.

Exercises•
13.1 In the cyberspace invaders game, we have already carried out a refactoring, identify-

ing a superclass Sprite and applying inheritance. Some of the graphical objects in the
game move vertically (bombs, lasers) while some move horizontally (alien, defender).
Consider new superclasses MovesVertically and MovesHorizontally and
draw the class diagrams for this new inheritance structure. Assess whether this refac-
toring is useful.

13.2 At what stage do you stop the process of refactoring?

13.3 Examine your architectural designs for the software case studies (Appendix A) and
see if refactoring is achievable and desirable.

BELL_C13.QXD 1/30/05 4:23 PM Page 172

PART

C PROGRAMMING
LANGUAGES

BELL_CPARTC.QXD 1/30/05 4:30 PM Page 173

BELL_CPARTC.QXD 1/30/05 4:30 PM Page 174

Everyone involved in programming has their favorite programming language, or lan-
guage feature they would like to have available. There are many languages, each with
their proponents. So this chapter is probably the most controversial in this book. This
chapter is not a survey of programming languages, nor is it an attempt to recommend
one language over another. Rather, we wish to discuss the features that a good pro-
gramming language should have from the viewpoint of the software engineer. We limit
our discussion to “traditional” procedural languages, such as Fortran, Cobol, Ada, C++,
Visual Basic, C# and Java. (Other approaches to programming languages are functional
programming and logic programming.)

The main theme of this chapter is a discussion of the basic features a language should
provide to assist the software development process. That is, what features encourage the
development of software which is reliable and maintainable?

A significant part of the software engineer’s task is concerned with how to model,
within a program, objects from some problem domain. Programming, after all, is large-
ly the manipulation of data. In the words of Niklaus Wirth, the designer of Pascal,
“Algorithms + Data Structures = Programs” – which asserts the symbiosis between data

14.1 � Introduction

CHAPTER

14 The basics

This chapter reviews the basic features of a programming
language suitable for software engineering, including:
� design principles

� syntax

� control structures

� methods and parameters

� data typing

� simple data structures.

BELL_C14.QXD 1/30/05 4:23 PM Page 175

176 Chapter 14 � The basics

and actions. The data description and manipulation facilities of a programming lan-
guage should therefore allow the programmer to represent “real-world” objects easily
and faithfully. In recent years, increasing attention has been given to the problem of
providing improved data abstraction facilities for programmers. We discuss this in
Chapter 15 on programming language features for OOP.

As we shall see, most mainstream programming languages have a small core and all
the functionality of the language is provided by libraries. This chapter addresses this
core. Facilities for programming in the large are reviewed in Chapter 16. Other features
of languages – exceptions and assertions – are dealt with in Chapter 17.

It is important to realize that programming languages are very difficult animals to
evaluate and compare. For example, although it is often claimed that language X is a
general purpose language, in practice languages tend to be used within particular
communities. Thus, Cobol has been the preferred language of the information sys-
tems community, Fortran, the language of the scientist and engineer, C, the language
of the systems programmer and Ada, the language for developing real-time or embed-
ded computer systems. Cobol is not equipped for applications requiring complex
numerical computation, just as the data description facilities in Fortran are poor and
ill suited to information systems applications.

Programming languages are classified in many ways. For example, “high-level” or
“low-level”. A high-level language, such as Cobol, Visual Basic or C#, is said to be
problem-oriented and to reduce software production and maintenance costs. A low-level
language, such as assembler, is said to be machine-oriented, facilitating the program-
mer’s complete control over the efficiency of their programs. Between high- and low-
level languages, another category, the systems implementation language or high-level
assembler, has emerged. Languages such as C attempt to bind into a single language the
expressive power of a high-level language and the ultimate control which only a language
that provides access at the register and primitive machine instruction level can provide.
Languages may also be classified using other concepts, such as whether they are weakly
or strongly typed. This is discussed below.

Simplicity, clarity and orthogonality
One school of thought argues that the only way to ensure that programmers will con-
sistently produce reliable programs is to make the programming language simple. For
programmers to become truly proficient in a language, the language must be small and
simple enough that it can be understood in its entirety. The programmer can then use
the language with confidence, probably without recourse to a language manual.

14.3 � Design principles

14.2 � Classifying programming languages and features

BELL_C14.QXD 1/30/05 4:23 PM Page 176

14.3 Design principles 177

Cobol and PL/1 are examples of languages which are large and unwieldy. For
example, Cobol currently contains about 300 reserved words. Not surprisingly, it is a
common programming error mistakenly to choose a reserved word as a user-defined
identifier. What are the problems of large languages? Because they contain so many
features, some are seldom used and, consequently, rarely fully understood. Also, since
language features must not only be understood independently, but also in terms of their
interaction with each other, the larger the number of features, the more complex it will
be and the harder to understand their interactions. Although smaller, simpler languages
are clearly desirable, the software engineer of the near future will often have to wrestle
with existing large, complex languages. For example, to meet the requirements laid
down by its sponsors, the US Department of Defense, the programming language Ada
is a large and complex language requiring a 300-page reference manual to describe it.

The clarity of a language is also an important factor. In recent years, there has been
a marked and welcome trend to design languages for the programmers who program
in them rather than for the machines the programs are to run on. Many older languages
incorporate features that reflect the instruction sets of the computers they were orig-
inally designed to be executed on. As one example, consider the Fortran arithmetic if
statement, which has the following form:

if (expression) label1,label2,label3

This statement evaluates expression and then branches to one of the statements
labeled label1, label2, or label3 depending on whether the result is positive, zero,
or negative. The reason for the existence of this peculiar statement is that early IBM
machines had a machine instruction which compared the value of a register to a value
in memory and branched to one of three locations. The language designers of the
1960s were motivated to prove that high-level languages could generate efficient code.
Although we will be forever grateful to them for succeeding in proving this point, they
introduced features into languages, such as Cobol and Fortran, which are clumsy and
error-prone from the programmer’s viewpoint. Moreover, even though the languages
have subsequently been enhanced with features reflecting modern programming ideas,
the original features still remain.

A programming language is the tool that programmers use to communicate their
intentions. It should therefore be a language which accords with what people find nat-
ural, unambiguous and meaningful – in other words, clear. Perhaps language designers
are not the best judges of the clarity of a new language feature. A better approach to
testing a language feature may be to set up controlled experiments in which subjects are
asked to answer questions about fragments of program code. This experimental psy-
chology approach is gaining some acceptance and some results are discussed in the sec-
tion on control abstractions.

A programmer can only write reliable programs if he or she understands precisely
what every language construct does. The quality of the language definition and sup-
porting documentation are critical. Ambiguity or vagueness in the language definition
erodes a programmer’s confidence in the language. It should not be necessary to have
to write and run a program fragment to confirm the semantics of some language feature.

BELL_C14.QXD 1/30/05 4:23 PM Page 177

178 Chapter 14 � The basics

Programming languages should also display a high degree of orthogonality. This
means that it should be possible to combine language features freely; special cases and
restrictions should not be prevalent. Java and similar languages distinguish between two
types of variables – built-in primitive types and proper objects. This means that these two
groups must be treated differently, for example, when they are inserted into a data struc-
ture. A lack of orthogonality in a language has an unsettling effect on programmers; they
no longer have the confidence to make generalizations and inferences about the language.

It is no easy matter to design a language that is simple, clear and orthogonal. Indeed, in
some cases these goals would seem to be incompatible with one another. A language design-
er could, for the sake of orthogonality, allow combinations of features that are not very use-
ful. Simplicity would be sacrificed for increased orthogonality! While we await the simple,
clear, orthogonal programming language of the future, these concepts remain good meas-
ures with which the software engineer can evaluate the programming languages of today.

The syntax of a programming language should be consistent, natural and promote the
readability of programs. Syntactic flaws in a language can have a serious effect on pro-
gram development.

One syntactic flaw found in languages is the use of begin-end pairs or bracketing
conventions, {}, for grouping statements together. Omitting an end or closing bracket
is a very common programming error. The use of explicit keywords, such as endif and
endwhile, leads to fewer errors and more readily understandable programs. Programs
are also easier to maintain. For example, consider adding a second statement with the
Java if statement shown below.

if (integerValue > 0)

numberOfPositiveValues = numberOfPositiveValues + 1;

We now have to group the two statements together into a compound statement using
a pair of braces.

if (integerValue > 0) {

numberOfPositiveValues = numberOfPositiveValues + 1;

numberOfNonZeroValues = numberOfNonZeroValues + 1;

}

Some editing is required here. Compare this with the explicit keyword approach in the
style of Visual Basic. Here the only editing required would be the insertion of the new
statement.

if (integerValue > 0)

numberOfPositiveValues = numberOfPositiveValues + 1;

endif

14.4 � Language syntax

>>
>

>
>>

BELL_C14.QXD 1/30/05 4:23 PM Page 178

14.5 Control structures 179

In addition, explicit keywords eliminate the classic “dangling else” problem preva-
lent in many languages – see the discussion of selection statements below

Ideally the static, physical layout of a program should reflect as far as is possible the
dynamic algorithm which the program describes. There are a number of syntactic con-
cepts which can help achieve this goal. The ability to format a program freely allows the
programmer the freedom to use such techniques as indentation and blank lines to high-
light the structure and improve the readability of a program. For example, prudent inden-
tation can help convey to the programmer that a loop is nested within another loop. Such
indentation is strictly redundant, but assists considerably in promoting readability. Older
languages, such as Fortran and Cobol, impose a fixed formatting style on the program-
mer. Components of statements are constrained to lie within certain columns on each
input source line. For example, Fortran reserves columns 1 through 5 for statement labels
and columns 7 through 72 for program statements. These constraints are not intuitive to
the programmer. Rather they date back to the time when programs were normally pre-
sented to the computer in the form of decks of 80-column punched cards and a program
statement was normally expected to be contained on a single card.

The readability of a program can also be improved by the use of meaningful identi-
fiers to name program objects. Limitations on the length of names, as found in early ver-
sions of Basic (two characters) and Fortran (six characters), force the programmer to use
unnatural, cryptic and error-prone abbreviations. These restrictions were dictated by the
need for efficient programming language compilers. Arguably, programming languages
should be designed to be convenient for the programmer rather than the compiler, and
the ability to use meaningful names, irrespective of their length, enhances the self-
documenting properties of a program. More recent languages allow the programmer to
use names of unrestricted length, so that program objects can be named appropriately.

Another factor which affects the readability of a program is the consistency of the syntax
of a language. For example, operators should not have different meanings in different con-
texts. The operator “=” should not double as both the assignment operator and the equal-
ity operator. Similarly, it should not be possible for the meaning of language keywords to
change under programmer control. The keyword if, for example, should be used solely for
expressing conditional statements. If the programmer is able to define an array with the
identifier if, the time required to read and understand the program will be increased as we
must now examine the context in which the identifier if is used to determine its meaning.

A programming language for software engineering must provide a small but power-
ful set of control structures to describe the flow of execution within a program unit.
In the late 1960s and 1970s there was considerable debate as to what control struc-
tures were required. The advocates of structured programming have largely won the
day and there is now a reasonable consensus of opinion as to what kind of primitive
control structures are essential. A language must provide primitives for the three basic
structured programming constructs; sequence, selection and repetition. There are,
however, considerable variations both in the syntax and the semantics of the control
structures found in modern programming languages.

14.5 � Control structures

BELL_C14.QXD 1/30/05 4:23 PM Page 179

180 Chapter 14 � The basics

Early programming languages, such as Fortran, did not provide a rich set of con-
trol structures. The programmer used a set of low-level control structures, such as the
unconditional branch or goto statement and the logical if to express the control flow
within a program. For example, the following Fortran program fragment illustrates
the use of these low-level control structures to simulate a condition controlled loop.

n = 10

10 if (n .eq. 0) goto 20

write (6,*) n

n = n - 1

goto 10

20 continue

These low-level control structures provide the programmer with too much freedom
to construct poorly structured programs. In particular, uncontrolled use of the goto
statement for controlling program flow leads to programs which are, in general, hard
to read and unreliable.

There is now general agreement that higher level control abstractions must be pro-
vided and should consist of:

� sequence – to group together a related set of program statements

� selection – to select whether a group of statements should be executed or not based
on the value of some condition

� repetition – to execute repeatedly a group of statements.

This basic set of primitives fits in well with the top-down philosophy of program
design; each primitive has a single entry point and a single exit point. These primitives
are realized in similar ways in most programming languages. For brevity, we will look
in detail only at representative examples from common programming languages. For
further details on this subject refer to Chapter 7 on structured programming.

Java, in common with most modern languages, provides two basic selection constructs
The first, the if statement, provides one or two-way selection and the second, the case
statement provides a convenient multiway selection structure.

Dangling else
Does the language use explicit closing symbols, such as endif, thus avoiding the
“dangling else” problem? Nested if structures of the form shown below raise the
question of how ifs and elses are to be matched. Is the “dangling” else associ-
ated with the outer or inner if? Remember that the indentation structure is of no
consequence.

14.6 � Selection

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 180

14.6 Selection 181

if (condition)

if (condition)

statement1

else

statement2

Java resolves this dilemma by applying the rule that an else is associated with
the most recent non-terminated if lacking an else. Thus, the else is associated
with the inner if. If, as the indentation suggests, we had intended the else to be
associated with the outer if, we have to resort to clumsy fixes. But the clearest and
cleanest solution is afforded by the provision of explicit braces (or key words) as
follows.

if (condition) {

if (condition) {

statement1

}

}

else {

statement2

}

Nesting
Nested if statements can quite easily become unreadable. Does the language provide
any help? For example, the readability of “chained” if statements can be improved by
the introduction of an elsif clause. In particular, this eliminates the need for multiple
endifs to close a series of nested ifs. Consider the following example, with and with-
out the elsif form. Java does not provide an elsif facility, but some languages do,
for example, Visual Basic.Net.

if condition1 then if condition1 then

statement1 statement1

else if condition2 then elsif condition2 then

statement2 statement2

else if condition3 then elsif condition3 then

statement3 statement3

else if condition4 then elsif condition4 then

statement4 statement4

else else

statement5 statement5

endif endif

endif

endif

endif

>
>

>
>

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 181

182 Chapter 14 � The basics

Case
Like other languages, Java provides a case or switch statement. Here is used to find
the number of days in each month:

switch (month) {

case 1:

case 3:

case 5:

case 8:

case 10:

case 12:

days = 31;

break;

case 4:

case 6:

case 9:

case 11:

days = 30;

break;

case 2:

days = 28;

break;

default:

days = 0;

break;

}

The break statement causes control to be transferred to the end of the switch
statement. If a break statement is omitted, execution continues onto the next case and
generally this is not what you would want to happen. So inadvertently omitting a break
statement creates an error that might be difficult to locate. If the default option is
omitted, and no case matches, nothing is done.

The expressiveness of the case statement is impaired if the type of the case selector
is restricted. It should not have to be an integer (as above), but in most languages it is.
Similarly, it should be easy to specify multiple alternative case choices (e.g. 1 | 5 | 7

meaning 1 or 5 or 7) and a range of values as a case choice (e.g. 1 .. 99). But Java does
not allow this.

The reliability of the case statement is enhanced if the case choices must specify
actions for all the possible values of the case selector. If not, the semantics should, at
least, clearly state what will happen if the case expression evaluates to an unspecified
choice. The ability to specify an action for all unspecified choices through a default
or similar clause is appealing.

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 182

14.7 Repetition 183

There is something of a controversy here. Some people argue that when a case state-
ment is executed, the programmer should be completely aware of all the possibilities that
can occur. So the default statement is redundant and just an invitation to be lazy and
sloppy. Where necessary, the argument goes, a case statement should be preceded by
if statements that ensure that only valid values are supplied to the case statement.

if-not
It would be reasonable to think that there would no longer be any controversy over lan-
guage structures for selection. The if-else is apparently well established. However,
the lack of symmetry in the if statement is open to criticism. While it is clear that the
then part is carried out if the condition is true, the else part is rather tagged on at the
end to cater for all other situations. Experimental evidence suggests that significantly
fewer bugs arise if the programmer is required to restate the condition (in its negative
form) prior to the else as shown below:

if condition

statement1

not condition else

statement2

endif

Control structures for repetition traditionally fall into two classes. There are loop struc-
tures where the number of iterations is fixed, and those where the number of iterations
is controlled by the evaluation of some condition. Fixed length iteration is often imple-
mented using a form similar to that shown below:

for control_variable =

initial_expression to final_expression step step_expression

do

statement(s)

endfor

The usefulness and reliability of the for statement can be affected by a number of
issues as now discussed

Should the type of the loop control variable be limited to integers? Perhaps any ordi-
nal type should be allowed. However, reals (floats) should not be allowed. For example,
consider how many iterations are specified by the following:

for x = 0.0 to 1.0 step 0.33 do

Here it is not at all obvious exactly how many repetitions will be performed, and things
are made worse by the fact that computers represent real values only approximately.

14.7 � Repetition

>
>

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 183

184 Chapter 14 � The basics

(Note how disallowing the use of reals as loop control variables conflicts with the aim
of orthogonality).

The semantics of the for is greatly affected by the answers to the following ques-
tions. When and how many times are the initial expression, final expression and step
expressions evaluated? Can any of these expressions be modified within the loop? What
is of concern here is whether or not it is clear how many iterations of the loop will be
performed. If the expressions can be modified and the expressions are recomputed on
each iteration, then there is a distinct possibility of producing an infinite loop. Similar
problems arise if the loop control variable can be modified within the loop.

The scope of the loop control variable is best limited to the for statement, as in
Java. If it is not, then what should its value be on exit from the loop, or should it be
undefined?

Condition-controlled loops are simpler in form. Almost all modern languages pro-
vide a leading decision repetition structure (while-do) and some, for convenience, also
provide a trailing decision form (repeat-until).

while condition do repeat

statement(s) statement(s)

endwhile until condition

The while form continues to iterate while a condition evaluates to true. Since the
test appears at the head of the form, the while performs zero or many iterations of the
loop body. The repeat, on the other hand, iterates until a condition is true. The test
appears following the body of the loop, ensuring that the repeat performs at least one
iteration. Thus the while statement is the more general looping mechanism of the two,
so if a language provides only one looping mechanism, it should therefore be the while.
However the repeat is sometimes more appropriate in some programming situations.

>
>

SELF-TEST QUESTION

14.1 Identify a situation where repeat is more appropriate than while.

Some languages provide the opposites of these two loops:

do

statement(s)

while condition

and:

until condition do

statement(s)

end until

>
>

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 184

14.7 Repetition 185

C, C++, C# and Java all provide while-do and do-while structures. They also pro-
vide a type of for statement that combines together several commonly used ingredi-
ents. An example of this loop structure is:

for (i = 0; i < 10; i++) {

statement(s)

}

in which:

� the first statement within the brackets is done once, before the loop is executed

� the second item, a condition, determines whether the loop will continue

� the third statement is executed at the end of each repetition.

We will meet yet another construct for repetition – the foreach statement – in the
chapter on object-oriented programming language features (Chapter 15). This is con-
venient for processing all the elements of a data structure.

The while and repeat structures are satisfactory for the vast majority of iterations
we wish to specify. For the most part, loops which terminate at either their beginning
or end are sufficient. However, there are situations, notably when encountering some
exceptional condition, where it is appropriate to be able to branch out of a repetition
structure at an arbitrary point within the loop. Sometimes it is necessary to break out
of a series of nested loops rather than a single loop. In many languages, the program-
mer is limited to two options. The terminating conditions of each loop can be enhanced
to accommodate the “exceptional” exit, and if statements can be used within the loop
to transfer control to the end of the loop should the exceptional condition occur. This
solution is clumsy at best and considerably decreases the readability of the code. A sec-
ond, and arguably better, solution is to use the much-maligned goto statement to
branch directly out of the loops. Ideally, however, since there is a recognized need for
n and a half times loops, the language should provide a controlled way of exiting from
one or more loops. Java provides the following facility where an orderly break may be
made but only to the statement following the loop(s).

while (condition) {

statement(s)

if (condition) break;

statement(s)

}

In the example above, control will be transferred to the statement following the loop
when condition is true. This may be the only way of exiting from this loop.

here:

while (condition) {

while (condition) {

>
>

>
>

>

BELL_C14.QXD 1/30/05 4:23 PM Page 185

9jabaz
Download more books at 9jabaz.ng for free!

186 Chapter 14 � The basics

statement(s)

if (exitCondition) break here;

statement(s)

}

}

In the second example above, control will be transferred out of both while loops
when exitCondition is true. Note how the outer while loop is labeled here: and
how this label is used by the if statement to specify that control is to be transferred to
the end of the while loop (not the beginning) when exitCondition is satisfied.

>

SELF-TEST QUESTION

14.2 Sketch out the code for a method to search an array of integers to find
some desired integer. Write two versions – one using the break mech-
anism and one without break.

The languages C, C++, Ada and Java provide a mechanism such as the above for
breaking out in the middle of loops.

There is some controversy about using break statements. Some people argue that it
is simply too much like the notorious goto statement. There is a difference, however,
because break can only be used to break out of a loop, not enter into a loop. Neither
can break be used to break out of an if statement. Thus it might be argued that
break is a goto that is under control.

Handling errors or exceptional situations is a common programming situation. In
the past, such an eventuality was handled using the goto statement. Nowadays features
are built in to programming languages to facilitate the more elegant handling of such
situations. We discuss the handling of exceptions in Chapter 17.

Procedural or algorithmic abstraction is one of the most powerful tools in the pro-
grammer’s arsenal. When designing a program, we abstract what should be done
before we specify how it should be done. Before OOP, program designs evolved as
layers of procedural abstractions, each layer specifying more detail than the layer
above. Procedural abstractions in programming languages, such as procedures and
functions, allow the layered design of a program to be accurately reflected in the
structure of the program text. Even in relatively small programs, the ability to factor
a program into small, functional modules is essential; factoring increases the read-
ability and maintainability of programs. What does the software engineer require
from a language in terms of support for procedural abstraction? We suggest the

14.8 � Methods

BELL_C14.QXD 1/30/05 4:23 PM Page 186

14.8 Methods 187

following list of requirements:

� an adequate set of primitives for defining procedural abstractions

� safe and efficient mechanisms for controlling communication between program units

� simple, clearly defined mechanisms for controlling access to data objects defined
within program units.

Procedures and functions
The basic procedural abstraction primitives provided in programming languages are
procedures and functions. Procedures can be thought of as extending the statements of
the language, while functions can be thought of as extending the operators of the lan-
guage. A procedure call looks like a distinct statement, whereas a function call appears
as or within an expression.

The power of procedural abstraction is that it allows the programmer to consider the
method as an independent entity performing a well-described task largely independent
of the rest of the program. When a procedure is called, it achieves its effect by modify-
ing the data in the program which called it. Ideally, this effect is communicated to the
calling program unit in a controlled fashion by the modification of the parameters
passed to the procedure. Functions, like their mathematical counterparts, return only
a single value and must therefore be embedded within expressions. A typical syntax for
writing procedures and functions is shown below:

void procedureName(parameters) {

declarations

procedure body

}

resultType functionName(parameters) {

declarations

function body

return value;

}

It is critical that the interface between program units be small and well defined if we
are to achieve independence between units. Ideally both procedures and functions
should only accept but not return information through their parameters. A single result
should be returned as the result of calling a function.

For example, to place text in a text box, use a procedure call as illustrated by the fol-
lowing code:

setText("your message here");

and a function call to obtain a value:

String text = getText();

>
>

BELL_C14.QXD 1/30/05 4:23 PM Page 187

188 Chapter 14 � The basics

Unfortunately, most programming languages do not enforce even these simple,
logical rules. Thus it is largely the responsibility of the programmer to ensure that pro-
cedures and functions do not have side effects. A side effect is any change to information
outside a method caused by a call – other than the parameters to a procedure. Most pro-
gramming languages do not prevent programmers from directly accessing and modify-
ing data objects (global data) defined outside of the local environment of the method.

Along with pointers and the goto statement, global data has come to be regarded
as a major source of programming problems. We shall see in Chapter 15? (on object-
oriented features of programming languages) how, in classes, access to global data is
controlled.

Many abstractions, particularly those which manipulate recursive data structures
such as lists, graphs, and trees, are more concisely described recursively. Some lan-
guages, for example Cobol and Fortran, do not support recursion.

We have seen that, ideally:

� parameters are passed to a procedure so that the procedure will accomplish some
task. There is no need for information to be passed back to the caller. So there is no
need for parameter values to change.

� functions communicate a value back to the caller as the return value. So again there
is no need for parameter values to be changed.

Two major schemes for parameters have emerged:

� call by value (termed value parameters) – this means that a copy of the information
is passed as the parameter. Therefore the method can use the information but can-
not change it.

� call by reference (termed reference parameters) – this means that a pointer to the
information is passed as the parameter. Therefore the method can both access and
change the information.

These pointers are not a problem because the pointers are not themselves accessible
to the programmer. (The programmer cannot access or change the pointer, merely the
information pointed to.) The pointer is simply the mechanism for communicating the
information. We discuss programming using pointers in Chapter 15 on object-oriented
programming.

The programming language could enforce a discipline where procedures and functions
can only be supplied with value parameters, but most do not. A number of parameter-
passing schemes are employed in programming languages but no language provides a
completely safe and secure parameter-passing mechanism.

There is a performance consideration for value parameters. Passing by value is inef-
ficient for passing large, aggregate data structures such as an array, as a copy must be
made. In such situations, it is commonplace to pass the data structure by reference even
if the parameter should not be modified by the method.

14.9 � Parameter-passing mechanisms

BELL_C14.QXD 1/30/05 4:23 PM Page 188

14.9 Parameter-passing mechanisms 189

Java provides the following scheme. All primitive data terms are passed by value, which
is most commendable, but all proper objects are passed by reference. No distinction is
made between procedures and functions. Thus a method of either type (procedure or
function) can modify any non-primitive parameter and it is left to the programmer to
enforce a discipline over changing parameters. A small concession is that the pointer to
an object cannot be changed, for example to point to another object.

Fortran employs only a single parameter passing mode: call by reference. Thus,
undesirably, all actual parameters in Fortran may potentially be changed by any sub-
routine or function. The programmer is responsible for ensuring the safe implemen-
tation of input and output parameters. Using call by reference, the location of the
actual parameter is bound to the formal parameter. The formal and actual parameter
names are thus aliases; modification of the formal parameter automatically modifies
the actual parameter. This is what you might expect of a language where arrays are
often used, and the performance hit of copying arrays is unacceptable. Fortran also,
unfortunately, restricts the type of result that may be returned from functions to
scalar types only (i.e. not arrays etc.).

Visual Basic.Net provides the choice of value or reference parameters, described by
the key words ByVal (the default) and ByRef in the method header. But when objects
are passed, they are always passed by reference.

In C#, by default, primitive data items are passed by value, objects are passed by ref-
erence. But you can pass a primitive data item by reference if the parameter is preceded
by the key word ref in both the method header and the method call. You can also pre-
cede an object name by ref, in which case you are passing a pointer to a pointer. This
means that the method can return an entirely different object.

Call by value-result is often used as an alternative to call by reference for input-output
parameters. It avoids the use of aliases at the expense of copying. Parameters passed by
value-result are initially treated as in call by value; a copy of the value of the actual param-
eter is passed to the formal parameter, which again acts as a local variable. Manipulation
of the formal parameter does not immediately affect the actual parameter. On exit from
the procedure, the final value of the formal parameter is assigned into the actual param-
eter. Call by result may be used as an alternative to call by reference for output parameters.
Parameters passed by value are treated exactly as those passed by value-result except that
no initial value is assigned to the local formal parameter.

Ada identifies three types of parameter:

� input parameters to allow a method read-only access to an actual parameter. The
actual parameter is purely an input parameter; the method should not be able to
modify the value of the actual parameter

� output parameters to allow a procedure write-only access to an actual parameter.
The actual parameter is purely an output parameter; the procedure should not be
able to read the value of the actual parameter

� input-output parameters to allow a procedure read-and-write access to an actual
parameter. The value of the actual parameter may be modified by the procedure.

Ada only allows input variables to functions. The parameter-passing mechanisms used
in Ada (described as in, out and in out) would therefore seem to be ideal. However,

BELL_C14.QXD 1/30/05 4:23 PM Page 189

190 Chapter 14 � The basics

Ada does not specify whether they are to be implemented using sharing or copying.
Though beneficial to the language implementer, since the space requirements of the
parameter can be used to determine whether sharing or copying should be used, this de-
cision can be troublesome to the programmer. In the presence of aliases, call by value-
result and call by reference may return different results.

Programmers are accustomed to being provided with a rudimentary set of primitive
data types. These are provided built in and ready made by the programming language.

They usually include:

� Boolean

� char

� integer

� real or floating point.

These data types are accompanied by a supporting cast of operations (relational,
arithmetic, etc.). For each type, it should be possible to clearly define the form of the
literals or constants which make up the type. For example, the constants true and
false make up the set of constants for the type Boolean. Similarly, we should be able
to define the operations for each type. For the type Boolean, these might include the
operations =, <>, not, and, and or.

In most languages the primitive data types are not true objects (in the sense of
objects created from classes). But in Eiffel and Smalltalk, every data type is a proper
object and can be treated just like any other object.

For certain application domains, advanced computation facilities, such as extended
precision real numbers or long integers, are essential. The ability to specify the range of
integers and reals and the precision to which reals are represented reduces the depend-
ence on the physical characteristics, such as the word size, of a particular machine. This
increases the portability of programs. However, some languages (for example C and
C++) leave the issue of the precision and range of numbers to the compiler writer for
the particular target machine. Java gets around this sloppiness by precisely defining the
representation of all its built-in data types. Whatever machine a program is executed on,
the expectation is that data is represented in exactly the same manner. Thus the pro-
gram will produce exactly the same behavior, whatever the machine.

A data type is a set of data objects and a set of operations applicable to all objects of
that type. Almost all languages can be thought of as supporting this concept to some
extent. Many languages require the programmer to define explicitly the type (e.g. in-
teger or character) of all objects to be used in a program, and, to some extent or another,
depending on the individual language, this information prescribes the operations that

14.11 � Data typing

14.10 � Primitive data types

BELL_C14.QXD 1/30/05 4:23 PM Page 190

14.12 Strong versus weak typing 191

can be applied to the objects. Thus, we could state, for example, that Fortran, Cobol,
C, C++, Ada, C#, Visual Basic.Net and Java are all typed languages. However, only
Ada, C#, Visual Basic.Net and Java would be considered strongly typed languages.

A language is said to be strongly typed if it can be determined at compile-time
whether or not each operation performed on an object is consistent with the type of
that object. Operations inconsistent with the type of an object are considered illegal. A
strongly typed language therefore forces the programmer to consider more closely how
objects are to be defined and used within a program. The additional information pro-
vided to the compiler by the programmer allows the compiler to perform automatic
type checking operations and discover type inconsistencies. Studies have shown that
programs written in strongly typed languages are clearer, more reliable, and more
portable. Strong typing necessarily places some restrictions on what a programmer may
do with data objects. However, this apparent decrease in flexibility is more than com-
pensated for by the increased security and reliability of the ensuing programs.

Languages such as Lisp, APL, and POP-2 allow a variable to change its type at run-
time. This is known as dynamic typing as opposed to the static typing found in languages
where the type of an object is permanently fixed. Where dynamic typing is employed,
type checking must occur at run-time rather than compile-time. Dynamic typing pro-
vides additional freedom and flexibility but at a cost. More discipline is required on the
part of the programmer so that the freedom provided by dynamic typing is not abused.
That freedom is often very useful, even necessary, in some applications, for example,
problem-solving programs which use sophisticated artificial intelligence techniques for
searching complex data structures would be very difficult to write in languages without
dynamic typing.

What issues need to be considered when evaluating the data type facilities provided
by a programming language? We suggest the following list:

� does the language provide an adequate set of primitive data types?

� can these primitives be combined in useful ways to form aggregate or structured
data types?

� does the language allow the programmer to define new data types? How well do
such new data types integrate with the rest of the language?

� to what extent does the language support the notion of strong typing?

� when are data types considered equivalent?

� are type conversions handled in a safe and secure manner?

� is it possible for the programmer to circumvent automatic type checking operations?

The debate as to whether strongly typed languages are preferable to weakly typed lan-
guages closely mirrors the earlier debate among programming language aficionados about
the virtues of the goto statement. The pro-goto group argued that the construct was
required and its absence would restrict programmers. The anti-goto group contended that
indiscriminate use of the construct encouraged the production of “spaghetti-like” code.

14.12 � Strong versus weak typing

BELL_C14.QXD 1/30/05 4:23 PM Page 191

9jabaz
Download more books at 9jabaz.ng for free!

192 Chapter 14 � The basics

The weakly typed languages group similarly argue that some types of programs are
very difficult, if not impossible, to write in strongly typed languages. For example, a
program that manipulates graphical images will sometimes need to perform arithmetic
on the image and at other times examine the data bit-by-bit.

The strongly typed languages group argue that the increased reliability and security
outweigh these disadvantages. A compromise has been struck; strong typing is gener-
ally seen as highly desirable but languages provide well-defined escape mechanisms to
circumvent type checking for those instances where it is truly required.

Weakly typed languages such as Fortran and C provide little compile-time type
checking support. However, they do provide the ability to view the representation of
information as different types. For example, using the equivalence statement in
Fortran, a programmer is able to subvert typing:

integer a

logical b

equivalence a, b

The variable b is a logical, which is the Fortran term for Boolean. The equival-
ence declaration states that the variables a and b share the same memory. While econ-
omy of storage is the primary use of the equivalence statement, it also allows the
same storage to be interpreted as representing an integer in one case and a logical
(Boolean) in the second. The programmer can now apply both arithmetic operations and
logical operations on the same storage simply by choosing the appropriate alias (a or b)
to reference it.

This incredible language feature is dangerous because programs using it are unclear.
Moreover such programs are not portable because the representations used for integers
and Booleans are usually machine dependent.

To a small number of programming applications, the ability to circumvent typing to
gain access to the underlying physical representation of data is essential. How can this be
provided in a language that is strongly typed? The best solution is probably to force the
programmer to state explicitly in the code that they wish to violate the type checking
operations of the language. This approach is taken by Ada, where an object may be rein-
terpreted as being of a different type only by using the unchecked conversion facility.

The question of conversion between types is inextricably linked with the strength of
typing in a language. Fortran, being weakly typed, performs many conversions (or co-
ercions) implicitly during the evaluation of arithmetic expressions. These implicit con-
versions may result in a loss of information and can be dangerous to the programmer.
As we saw earlier, Fortran allows mixed mode arithmetic and freely converts reals to
integers on assignment.

Java and other strongly typed languages perform implicit conversions only when
there will be no accompanying loss of information. Thus, an assignment of an integer
to a real variable results in implicit conversion of the integer to a real – the programmer
does nothing. However, an attempt to assign a real value to an integer variable will
result in a type incompatibility error. Such an assignment must be carried out using an
explicit conversion function. That is, the programmer is forced by the language to

BELL_C14.QXD 1/30/05 4:23 PM Page 192

14.13 User-defined data types (enumerations) 193

explicitly consider the loss of information implied by the use of the conversion function.
In Java, for example, a real can be converted to an integer, but only by using an explic-
it casting operator:

float f = 1.2345;

int i = (int) f;

The casting operator is the name of the destination type, enclosed in brackets – in
this case (int). When this is used, the compiler accepts that the programmer is truly
asking for a conversion and is responsibly aware of the possible consequences.

SELF-TEST QUESTION

14.3 Java provides shift and Boolean operations for integers and reals. Does
this violate strong typing?

The readability, reliability, and data abstraction capabilities of a language are enhanced
if the programmer can extend the primitive data types provided by the language. The
ability to define user-defined types separates the languages C, C++ and Ada from their
predecessors. For example, consider the following definition of a C++ enumerated type
which is introduced by the key word enum:

enum Day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,

Sunday};

The type Day is a new type. Variables of this type may only take on values that are
the literals of that type (that is Monday, Tuesday, etc). Now we can declare a variable
of this type, as follows:

Day today;

And we can perform such operations as

today = Monday;

if (today == Saturday) etc

We also get some type checking carried out by the compiler. Assignments such as the
following will be flagged as type errors by the compiler.

today = January;

today = 7;

14.13 � User-defined data types (enumerations)

BELL_C14.QXD 1/30/05 4:23 PM Page 193

194 Chapter 14 � The basics

In a language without this facility, we are forced to map the days of the week onto
integers, so that 1 means Monday etc. But then we get no help from the compiler when
we write (correct) statements, such as:

int today;

today = 2;

or even the “illegal”

today = 0;

since today is an integer variable and therefore may be assigned any integer value.

SELF-TEST QUESTION

14.4 Make the case for user-defined types.

Enumerated types, such as the C++ facility described above, have their limitations. An
enumerated type can be declared, variables created, assignments and comparisons carried
out, but these are the only operations and we cannot create any more. For example, in
the above example one cannot write a method nextDay. Moreover different enums can-
not contain identical names. For example, we are prevented from writing:

enum Weekend {Saturday, Sunday};

because the names clash with those already in enum Day.
Arguably, if the language provides classes (Chapter 15) it does not need enums. In

fact the Java enum facility is almost a class.

Composite data types allow the programmer to model structured data objects. The
most common aggregate data abstraction provided by programming languages is the
array: a collection of homogeneous elements (all elements of the same type) which may
be referenced through their positions (usually an integer) within the collection. Arrays
are characterized by the type of their elements and by the index or subscript range or
ranges which specify the size, number of dimensions and how individual elements of
the array may be referenced.

For example, the Java array definition shown below defines an array named table.
It is a one-dimensional array of integers with the subscript varying from 0 through 9.
In Java, subscripts always start at 0, betraying the C origins of the language as a lan-
guage close to machine instructions.

int table[] = new int[10];

14.14 � Arrays

BELL_C14.QXD 1/30/05 4:23 PM Page 194

14.15 Records (structures) 195

Individual elements of the array are referenced by specifying the array name and an
expression for each subscript, for example, table[2].

The implementation of arrays in programming languages raises the following con-
siderations:

� what restrictions are placed on the element type? For complete freedom of expression
there should be no restrictions.

� valid indices should be any subrange of numbers (e.g. 2010 to 2020)

� at what time must the size of an array be known? The utility of arrays in a pro-
gramming language is governed by the time (compile-time or run-time) at which
the size of the array must be known.

� what operations may be applied to complete arrays? For example, it is very convenient
to be able to carry out array assignment or comparison between compatible arrays
using a single concise statement.

� are convenient techniques available for the initialization of arrays?

The time at which a size must be specified for an array has implications on how the
array may be used. In Java, as in most languages, the size of an array must be defined
statically – the size and subscript ranges are required to be known at compile-time. This
has the advantage of allowing the compiler to generate code automatically to check for
out-of-range subscripts. However, the disadvantage of this simple scheme is that, to
allow the program to accommodate data sets of differing sizes, we would like to delay
deciding the size of the array until run-time. Most languages provide arrays whose size
is fixed at compile-time, so if variable size is needed, a dynamic data structure is the
answer (see Chapter 15).

SELF-TEST QUESTION

14.5 Argue for and against the language making array subscripts start at 0.

Data objects in problem domains are not always simply collections of homogeneous
objects (same types). Rather, they are often collections of heterogeneous objects (dif-
ferent types). Although such collections can be represented using arrays, many pro-
gramming languages provide a record data aggregate. Records (or structures as they are
termed in C and C++) are generalizations of arrays where the elements (or fields) may
be of different types and where individual components are referenced by (field) name
rather than by position.

For example, the C++ struct definition shown below describes information relat-
ing to a time. Each object of type Time has three components named hour, minute
and second.

14.15 � Records (structures)

BELL_C14.QXD 1/30/05 4:23 PM Page 195

196 Chapter 14 � The basics

struct Time {

int hour;

int minute;

int second;

}

We can now declare a variable of this type:

Time time;

Components of records are selected by name. The method used by Ada, PL/1 and
C++ first specifies the variable and then the component. For example,

time.minute = 46;

Each component of a record may be of any type – including aggregate types, such as
arrays and records. Similarly, the element type of an array might be a record type.
Programming languages which provide such data abstractions as arrays and records and
allow them to be combined orthogonally in this fashion allow a wide range of real data
objects to be modeled in a natural fashion.

The languages Cobol, PL/1, C, C++, C# and Ada support records. (In C, C++ and
C# a record is termed a struct.) The Java language does not provide records as
described above because this facility can simply be implemented as a class, using the
object-oriented features of the language (see Chapter 15). Simply declare a class, with
the requisite fields within it.

>

SELF-TEST QUESTION

14.6 Make the case for arrays and records.

Summary

In this chapter we have surveyed the basic characteristics that a programming lan-
guage should have from the viewpoint of the software engineer. It seems that small
things – like syntax – can affect software reliability and maintenance.

Some people think that a language should be rich in features – and therefore
powerful. Other people think that a language should be small but elegant so that
it can be mastered completely by the programmer.

>

BELL_C14.QXD 1/30/05 4:23 PM Page 196

Exercises 197

14.1 Suppose that you were asked to design a new programming language for software
engineering.

� select and justify a set of control structures

� select and justify a set of primitive data types.

14.2 Argue either for or against strong typing in a programming language.

14.3 How many kinds of looping structure do we need in a programming language? Make
suggestions.

14.4 From the discussion in this chapter, list the possible problem features with either pro-
gramming languages in general or a programming language of your choice.

14.5 “In language design, small is beautiful.” Discuss.

14.6 Argue for or against the inclusion of the break statement in a programming language

14.7 The language LISP has the ultimate simple syntax. Every statement is a list. For
example:

(+ 1 2)

returns the sum of the parameters.

Investigate the syntax of Lisp and discuss whether every language could and should
have syntax that is as simple.

The following issues are considered to be important:

� matching the language to the application area of the project

� clarity, simplicity, and orthogonality

� syntax

� control abstractions

� primitive data types

� data typing

� enumerations

� arrays

� records (structures).

Exercises•

BELL_C14.QXD 1/30/05 4:23 PM Page 197

198 Chapter 14 � The basics

Answers to self-test questions

14.1 When some input from the user’s keyboard is required. It must be
checked and, if necessary, new input solicited until the input is correct.

14.2 int[] table;

boolean search(int wanted) {

boolean found = false;

int i = 0;

endSearch:

while (i < table.length) {

if (table[i] == wanted) {

found = true;

break endSearch;

}

i++;

}

return found;

}

Without using break:

int[] table;

boolean search(int wanted) {

boolean found = false;

int i = 0;

while (i < table.length and found == false) {

if (table[i] == wanted)

found = true;

else

i++;

}

return found;

}

14.3 Yes and no.
Clearly these operations are not something that should be allowed

with integers and reals.
But in Java the bit structure of these data types is precisely defined.

Also the effects of these operations are precisely defined. So these par-
ticular data types have an extended set of valid operations.

BELL_C14.QXD 1/30/05 4:23 PM Page 198

Further reading 199

14.4 The benefits are program clarity, better modeling of the problem, compile-
time checking and run-time checking.

14.5 This is a case of expressive power and convenience versus fast per-
formance.

14.6 Arrays and records allow the programmer to create and use data struc-
tures that match the problem to be solved in a convenient and natural
fashion. This fosters fast development, reliability and maintainability.

See the references at the end of Chapter 16.

Further reading•

BELL_C14.QXD 1/30/05 4:23 PM Page 199

Most current mainstream languages embody OOP. The three pillars of OOP are encap-
sulation, inheritance and polymorphism. This chapter explains how the programming
language can support these concepts. The language used for illustration is Java, and the
case study is the cyberspace invaders game (Appendix A).

We go on to explain how classes can be made more general using the concept of
generics, sometimes termed templates.

Next we discuss approaches to creating dynamic data structure – structures that
expand and contract as necessary. In particular, we look at using pointers.

Finally we explore the challenge of garbage collection – what happens to computer
memory after it has been used as part of a dynamic data structure.

Encapsulation means bringing together data and actions that are related. In OOP such
a collection is called a class. It consists of some related variable declarations and some
methods. A class is a template or blueprint for any number of objects that can be cre-
ated from it. In many programming languages, including Java, this is accomplished
using the key word new. Creating an object is also known as instantiating an object.

We will use the example of the cyberspace invaders game, Figure 15.1, to illustrate
encapsulation. The program displays a number of graphical objects at various times on

15.2 � Encapsulation

15.1 � Introduction

This chapter:
� explains how encapsulation, inheritance and polymorphism are provided in a

programming language

� explains the role of libraries in object-oriented programming

� explains the idea of generics or templates

� explains provision for dynamic data structures and garbage collection.

CHAPTER

15 Object-oriented
programming

BELL_C15.QXD 1/30/05 4:23 PM Page 200

15.2 Encapsulation 201

the screen – an alien, a laser, a bomb and the user. We will represent each of these as
an object.

We will represent the alien as an object, but to create an object, we have to write a
class (a blueprint for any number of aliens). In Java, we write the class as follows:

class Alien {

private int x, y;

private int size;

private ImageIcon alienImage;

public Alien(int newX, int newY, int newSize) {

x = newX;

y = newY;

size = newSize:

alienImage = new ImageIcon("c:/alien.jpg");

}

public void display(JPanel panel) {

Graphics paper = panel.getGraphics();

alienImage.paintIcon(panel, paper, x, y);

}

Figure 15.1 Cyberspace invaders

>

BELL_C15.QXD 1/30/05 4:23 PM Page 201

202 Chapter 15 � Object-oriented programming

public void moveLeft(int amount) {

x = x – amount;

}

public void moveRight(int amount) {

x = x + amount;

}

}

As you can see, the class consists of a grouping of variable declarations, at the top,
followed by methods. The public methods act as the outward appearance of the class,
acting upon the private variables within it.

The method Alien is termed a constructor method or simply a constructor. (In Java
a constructor method has the same name as the class name.) It is called when an object
is created from the class to initialize variables within the object. A class can have any
number (including zero) constructors.

We can now create an object named alien from the class Alien as follows:

Alien alien = new Alien(100, 100, 10);

And then we can use it:

alien.moveLeft(100);

alien.display(paper);

Here we see the classic notation object.method which is so characteristic of OOP.

SELF-TEST QUESTION

15.1 Add a method named moveDown to the class Alien.

OOP supports the concept of information hiding, that is, users should be provided
with sufficient information to use the data type but nothing more. Users of a class
should be provided with a specification of the effect of each of the operations provid-
ed and a description of how to use each operation. They should not be required to
know the representation of the class nor be able to access the implementation other
than indirectly through a method provided.

The class Alien encapsulates and hides all the information about an alien and how
it is to be used. The interior of the class is inaccessible from outside the class; this is
enforced by the compiler. So no one can tamper – by mistake or malice – with the data
that represents an alien. The only way that an alien object can be accessed is via the
methods such as display and moveLeft that are provided. Thus access to an alien
object is carefully controlled. This constitutes the best form of modularity – access is
via method calls, rather than by direct access to data. Good style means that only in
rare cases will a class permit direct access to data within itself.

>

BELL_C15.QXD 1/30/05 4:23 PM Page 202

9jabaz
Download more books at 9jabaz.ng for free!

15.2 Encapsulation 203

Often (though not in the Alien example shown above) there will need to be ad-
ditional methods that the class needs in order to carry out its tasks. These are pri-
vate methods that need not and therefore should not be accessible from outside
the class.

A class represents a real fusion of data and actions. A class extends the built-in data
types provided by the language, so that the programmer can invent data suitable for the
problem being solved. The programmer specifies how the data can be manipulated and
thus creates truly abstract data.

The advantages of encapsulation are:

� to make useful classes generally available

� to use a class without the need to know how it works

� to have the flexibility to modify a class without affecting its users.

Properties
We have seen that it is very bad practice to make public any of the instance variables
of a class. Some languages, for example, C# and Visual Basic, provide a mechanism that
simulates accessing variables directly. This feature, called properties, enables users to
have convenient but controlled access to the data associated with an object. In general
there are two distinct kinds of access to data:

1. reading a value – called get access

2. writing the value – called set access.

For example, suppose we want to allow a user of an alien object to refer to (get) the
x coordinate of the alien and display its value in a text field. The value is held in the
private variable named x at the top of the class. Using a property named xCoord, we
can write:

textField.setText(Integer.toString(alien.xCoord));

Suppose also that we want the user to be able to change (set) the value of the x coor-
dinate. Using the property facility we can write:

alien.xCoord = 56;

The way to provide these facilities is to write a property. Here is the revised class that
includes the property code:

public class AlienWithProperties {

private int x;

private int y;

private int size;

private ImageIcon alienImage;

>

BELL_C15.QXD 1/30/05 4:23 PM Page 203

9jabaz
Download more books at 9jabaz.ng for free!

204 Chapter 15 � Object-oriented programming

public Alien(int newX, int newY, int newSize) {

x = newX;

y = newY;

size = newSize;

alienImage = new ImageIcon("c:/alien.jpg");

}

public void moveLeft(int amount) {

x = x - amount;

}

public void moveRight(int amount) {

x = x + amount;

}

public void display(JPanel panel) {

Graphics paper = panel.getGraphics();

alienImage.paintIcon(panel, paper, x, y);

}

public int xCoord {

get {

return x;

}

set {

x = value;

}

}

}

The header for a property looks similar to a method header, except that there are
no brackets to specify parameters. The property consists of two complementary com-
ponents – one has get as the heading and the other has set as the heading. The get
part is like a function method – it returns the desired value. The set part is like a
method – it assigns the value using the special keyword value as shown. Note that
this code is in the style of Java, but it is not Java, since Java does not support a prop-
erty mechanism.

If we only need a way of viewing a property (but not changing its value), we write
the property declaration like this:

public int xCoord {

get {

return x;

}

}

>
>

>

BELL_C15.QXD 1/30/05 4:23 PM Page 204

15.2 Encapsulation 205

If, on the other hand we need to change a value, but do not need the facility to view
it, we write:

public int xCoord {

set {

x = value;

}

}

When you see properties for the first time, you may be tempted to wonder why such
a long-winded mechanism is needed. Surely it would be easier simply to declare the
value x as public? Then the user of the object could simply refer to the value as
alien.x. This is possible, but it is very bad practice – for the reasons discussed above
to do with encapsulation. What the property feature gives is the appearance of direct
access to data, with all the security of access via methods.

>
>

SELF-TEST QUESTION

15.2 Write a property to allow a user only get access to the y coordinate of
an alien.

SELF-TEST QUESTION

15.3 In designing a class Account to represent a bank account, which of the
following should be methods and which should be properties?

creditAccount, debitAccount, currentBalance,

calculateInterest, name

Method or property?
Some programming languages provide both methods and properties as mechanisms for
accessing an object. So how do we choose which to use? The answer is to use methods
when you want an object to carry out some action. (A method usually has a name that
is a verb.) Use properties when you want to refer to some information associated with
an object. (A property usually has a name that is a noun.)

Examples of methods associated with an alien, discussed above, are: display,
moveUp, moveDown, moveLeft, and moveRight. Examples of alien properties are:
xCoord, yCoord, and size.

Sometimes there is a choice over whether to make something a property or a
method, and the choice is a matter of style. For example, to change the color of a com-
ponent we could have a method changeColor; alternatively we could provide a prop-
erty named color.

Some people argue that the only proper access to objects is via method calls and that
therefore properties are superfluous.

BELL_C15.QXD 1/30/05 4:23 PM Page 205

206 Chapter 15 � Object-oriented programming

Most modern languages are small – they provide a few simple facilities, such as control
structures and the ability to write classes. The power of the language is provided by the
libraries of ready-made classes that are supplied alongside the language.

For example, most modern languages (including Java) provide a class ArrayList,
which is like an array, but better. An array list is similar to an array in that it stores a
collection of items, each of which is referred to using an integer subscript (index).
But, in contrast to an array, items can be added or removed from anywhere within
an array list. Also an array list grows and shrinks as necessary to accommodate the
required data. An array list holds strings, integers, GUI components or any other
type of data.

To use an array list, you create an instance (an object) like this:

ArrayList arrayList = new ArrayList();

Then you can add items to it, as shown in the example:

arrayList.add(alien);

which inserts the item at the end of the data.
In common with other library classes, an array list comes with a useful set of meth-

ods. Here are some of the methods for array lists.

add(int index, Object item) inserts the specified item at the specified
position

add(Object item) appends the item to the end of the array list

clear() removes all the items from the array list

contains(Object item) returns true if the object is in the array list

get(int index) returns the element at the specified position

remove(int index) removes the element at the specified position

set(int index, Object item) replaces the item at the specified position
with the item

size() returns the number of elements in the
array list.

So, facilities such as array lists are not part of the language but are provided as part
of the library. Libraries typically provide a massive range of classes, so that the activity
of programming becomes a search for useful classes. This is a view of programming in
which the programmer writes very little code, instead making reuse of a vast repository
of ready-made components.

15.3 � Library classes

BELL_C15.QXD 1/30/05 4:23 PM Page 206

9jabaz
Download more books at 9jabaz.ng for free!

15.4 Inheritance 207

Real-world systems depend on our ability to classify and categorize. Elephants, tigers,
polar bears, horses and cows are all mammals; lead, silver and platinum are metals; sav-
ings, current and term deposits are types of bank accounts, and so on. Through classi-
fication, we are able to associate characteristics common to all members of a class. All
mammals are vertebrates (have backbones), are warm-blooded and have hair on their
bodies; all metals have atomic weights; and all bank accounts have balances.

We often think of objects as specializations of other objects. Precious metals are
specializations of metals, sports cars are specializations of cars, romance novels are spe-
cializations of books, and so on. All precious metals are metals but not all metals are
precious metals. Similarly, all sports cars are cars and all romance novels are books, but
the reverse is not true. Similarly, quadrilaterals and triangles are polygons, and squares
and rectangles are special kinds of quadrilaterals. Furthermore, a square is a special
kind of rectangle. Extending this notion, we can view one class of objects as a subclass
of another. We can also talk about one class being a superclass of another.

What does it mean to say that one class is a subclass of another? Intuitively, we mean
that the subclass has all the characteristics of the more general class but extends it in
some way. Precious metals have all the characteristics of metals but, in addition, they can
be distinguished from some metals on the basis of monetary value. Similarly, quadrilat-
erals are specializations of polygons with four sides. Polygons can have any number of
sides. Squares are specializations of quadrilaterals where all four sides have equal length,
and adjacent sides are perpendicular to one another. Applying these arguments in
reverse, we can describe the superclass of a class as being a generalization of the class.

One of the best ways to describe something new to someone else is to describe it in
terms of something that is similar, that is, by describing how it differs from something
known. An example is that a zebra is a horse with stripes! This concise definition conveys
a substantial amount of information to someone familiar with horses but not with zebras.

We now extend the cyberspace invaders program so that we can create and display
the other objects – the bomb, the laser and the user. We already have a class Alien that
describes aliens. We now consider writing a class Bomb to describe bombs. But we soon
realize that aliens and bombs have things in common, for example, their x, y coordi-
nates and their size, so although we could write completely separate classes, we can

15.4 � Inheritance

SELF-TEST QUESTION

15.4 Write a class Stack that implements a first-in, last-out structure. Use an
array list to hold items of type String. Provide public operations pop
and push. push adds an item to the top of the stack. push removes an
item from the top of the stack. The class could be used like this:

Stack stack = new Stack();

stack.push("Mary");

BELL_C15.QXD 1/30/05 4:23 PM Page 207

208 Chapter 15 � Object-oriented programming

exploit the common features of the classes. We do this by writing a class Sprite that
embodies the commonality. This name is chosen because, in computer games programs,
a sprite is the term for a graphical object. Here it is:

class Sprite {

protected int x, y;

protected size;

public void moveLeft(int amount) {

x = x - amount;

}

public void moveRight(int amount) {

x = x + amount;

}

}

You can see that the variables and methods within this class are relevant to all the
game objects. You will also notice that the variables declared at the head of the class
that were described as public, are now described as protected. This means that they
are accessible from any subclasses, as we shall see in a moment.

We can now write class Alien so as to exploit the class Sprite as follows:

class Alien extends Sprite {

private ImageIcon alienImage;

public Alien(int newX, int newY, int newSize) {

x = newX;

y = newY;

size = newSize;

alienImage = new ImageIcon("c:/alien.jpg");

}

public void display(JPanel panel) {

Graphics paper = panel.getGraphics();

alienImage.paintIcon(panel, paper, x, y);

}

}

and you can see that this is now shorter than it was. The operative word in this code is
extends. This is the Java keyword stating that class Alien inherits the features of class
Sprite. All the public variables and methods become part of class Alien. The ter-
minology is that Alien is a subclass of Sprite, Sprite is the superclass of Alien,
Alien extends Sprite, Sprite is the base class of Alien.

>
>

>
>

BELL_C15.QXD 1/30/05 4:23 PM Page 208

15.5 Polymorphism 209

The relationships between classes are often shown in a UML class diagram, such as
Figure 15.2. Each class is shown as a rectangle. An arrow points from a subclass to a
superclass. This diagram says that both Alien and Bomb are subclasses of Sprite.

The variables x, y, and size are labeled protected rather than private. This
means that they can be used within the subclass. But they are still inaccessible from
anywhere else.

Sprite

Alien Bomb

Figure 15.2 Class diagram showing inheritance

SELF-TEST QUESTION

15.5 Write class Bomb.

Inheritance is a way of exploiting commonality between classes. Another view is that
it is a mechanism for making use of an existing class, inheriting its useful features and
adding new features. So it is a scheme for software reuse. Inheriting means that an exist-
ing class is retained intact. To use it we do not need to make changes, which might dis-
rupt the existing class. So we can safely reuse classes.

When you start to write a new program, you look for useful classes in the library and
you look at any classes you have written in the past. This object-oriented approach to
programming means that, instead of starting programs from scratch, you build on earlier
work. It’s not uncommon to find a class that looks useful, and does nearly what you
want, but not exactly what you want. Inheritance is a way of resolving this problem.
With inheritance, you use an existing class as the basis for creating a modified class.

We again use as an example the cyberspace invaders program that displays graphical
images on the screen – an alien, a bomb and similar. The program uses a class named
Sprite, which describes all the shared attributes of these images, including where they
are in the window. Here is a program fragment that uses the classes Sprite, Alien and

15.5 � Polymorphism

BELL_C15.QXD 1/30/05 4:23 PM Page 209

210 Chapter 15 � Object-oriented programming

Bomb to create two objects, storing them in an array list named game, and displaying
them. The display is shown in Figure 15.1.

Alien alien = new Alien(20, 20, 100);

Bomb bomb = new Bomb(80, 80, 10);

ArrayList game = new ArrayList();

game.add(alien);

game.add(bomb);

for (int s = 0; s < game.size(); s++) {

Object item = game.get(s);

Sprite sprite = (Sprite) item;

sprite.display(paper);

}

Polymorphism is in use here – the method display is called on two occasions with
different results according to which object is in use. You can see that the two calls of
display within the for loop:

sprite.display(paper);

give two different outputs. Two different outputs are displayed because the Java sys-
tem automatically selects the version of display associated with the class of the object.
When method display is first called, the variable sprite contains the object alien
and so the version of display in the class Alien is called. Then the corresponding
thing happens with bomb. This is the essence of polymorphism.

The class of an object is determined when the object is created using new classes,
and stays the same whatever happens to the object. Whatever you do to an object in a
program, it always retains the features it had when it was created. An object can be
assigned to a variable of another class and passed around the program as a parameter,
but it never loses its true identity.

Polymorphism allows us to write a single concise statement, such as:

sprite.display(paper);

instead of a series of if statements like this:

if (sprite instanceof Alien) {

Alien alien = (Alien) sprite;

alien.display(paper);

}

if (sprite instanceof Bomb) {

Bomb bomb = (Bomb) sprite;

bomb.display(paper);

}

>
>

>
>

BELL_C15.QXD 1/30/05 4:23 PM Page 210

15.5 Polymorphism 211

which is clumsy and long-winded. This uses the keyword instanceof to ask if an
object is a member of a named class. If there are a large number of graphical objects,
there are a correspondingly large number of if statements. Avoiding this complexity
demonstrates how powerful and concise polymorphism is.

As we have seen in this small example, polymorphism often makes a segment of pro-
gram smaller and neater through the elimination of a series of if statements. But this
achievement is much more significant than it may seem. It means that such statements as:

sprite.display(paper);

know nothing about the possible variety of objects that may be used as the value of
sprite. So information hiding (already present in large measure in an OOP) is extend-
ed. We can check this by assessing how much we would need to change this program
to accommodate some new type of graphical object (some additional subclass of
Sprite), say a laser. The answer is that we would not need to modify it at all – we could
simply add the new object. This means that the program is enormously flexible. Thus
polymorphism enhances modularity, reusability and maintainability.

Polymorphism helps construct programs that are:

� concise (shorter than they might otherwise be)

� modular (unrelated parts are kept separate)

� easy to change and adapt (for example, introducing new objects).

In general, the approach to exploiting polymorphism within a particular program is
as follows:

1. identify any similarities (common methods and variables) between any objects or
classes in the program

2. design a superclass that embodies the common features of the classes

3. design the subclasses that describe the distinctive features of each of the classes,
whilst inheriting the common features from the superclass

4. identify any place in the program where the same operation must be applied to any
of the similar objects. It may be tempting to use if statements at this location.
Instead, this is the place to use polymorphism.

5. make sure that the superclass contains an abstract method corresponding to the
method that is to be used polymorphically.

The code fragment shown above, with an array list and a for loop, is an example of
a commonly occurring situation in software, where the entire contents of a collection
are processed. It is so common that some languages provide a foreach control struc-
ture. In Java, the above for loop can be rewritten more concisely as:

for (Object item : game) {

((Sprite) item).display(paper);

}

>
>

BELL_C15.QXD 1/30/05 4:23 PM Page 211

212 Chapter 15 � Object-oriented programming

Each time that the for statement repeats, it obtains the next element from the array
list game.

As we have seen, Java supports single inheritance – a class can inherit from only one
immediate superclass. Seen as a class diagram, the relationships between classes appear
as a tree (a computer science tree, with the root at the top). Smalltalk, Ada, C# and
Visual Basic.Net also provide single inheritance.

However, the widely used language C++ provides multiple inheritance, as does
Eiffel. In such a language, a class can inherit from not just one but several superclasses.
In life we are not just a person, we also belong to other categories, such as brothers,
daughters, soccer lovers, carnivores. So a class representing a person is a subclass of all
these superclasses, inheriting variables and methods from them all.

There is no doubt that multiple inheritance is more complicated – both to provide
in the language and to use. C++ was widely seen as an overcomplicated language and
subsequent languages, such as Java and C#, have seen simplifications in many areas,
including abandoning multiple inheritance in favor of single. In some languages,
including Java and C#, one role of multiple inheritance has been replaced by the inter-
face facility described in Chapter 16 on programming in the large.

The strong typing philosophy of programming languages like Java and Ada can have a
detrimental effect on programming efficiency. For example, suppose we defined a stack of
strings class with the normal stack operations of push and pop, as posed in the self-test
question above. If we subsequently needed another stack type but one in which the ele-
ments were Booleans rather than strings then clearly the specification and implementation
would be identical apart from the different stack element types. In some languages, our only
recourse would be to duplicate the stack code, but with minor differences. A more power-
ful stack abstraction is required which allows the stack element type to be parameterized.

We will use the Java cyberspace invaders game discussed above to see how generics
can be used. An array list named game contains objects representing various items
(alien, bomb, laser) at various positions within a panel. To display all the shapes, we exe-
cute a loop:

for (int s = 0, s < game.size(); s++) {

sprite sprite = (Sprite) game.get(s);

sprite.display(paper);

}

Notice that the objects retrieved from the array list need to be casted into Sprite
objects using a casting operator, (Sprite) in this case. This is because an array list

15.7 � Generics

15.6 � Single versus multiple inheritance

>
>

BELL_C15.QXD 1/30/05 4:23 PM Page 212

15.8 Dynamic data structures and pointers 213

holds only objects of the class Object. We can avoid this if we create an array list that
can only contain Sprite objects, as follows:

ArrayList <Sprite> shapes = new ArrayList();

The declaration, with the class Sprite enclosed in diamond brackets, says that this
new array list is to contain only Sprite objects. Remember that ArrayList is a Java
library class. We have qualified it by saying it must contain only Sprite objects. So now
we can avoid the casting operation, rewriting the above as follows:

for (int s = 0, s < game.size(); s++) {

Sprite sprite = game.get(s);

sprite.display(paper);

}

But there is much more to be gained than brevity. The compiler can check that only
objects of the class Sprite (or its subclasses) are added to the array list in statements
such as:

game.add(alien);

Thus errors can be caught at compile time, rather than at (more embarrassingly) run
time. The run-time error would be an InvalidCastException when an object copied
from the array list is casted.

In summary, generics allow more concise programming (by avoiding casting) and
better compile-time checking.

>
>

SELF-TEST QUESTIONS

15.6 Write a method that accepts as a parameter an array list of String objects.
Each string is an integer number. Return the sum of the numbers.

15.7 Suggest a drawback of generics.

Generics are provided in Ada, Java and C++ but are not provided in C.

Many programs need to acquire temporary memory to carry out their task. Examples
are a graphics program that needs to acquire sufficient memory to represent an image
in memory, and a word processor that needs memory to hold the text of a document.
In the cyberspace invaders game, objects representing lasers and bombs are created and
destroyed.

15.8 � Dynamic data structures and pointers

BELL_C15.QXD 1/30/05 4:23 PM Page 213

214 Chapter 15 � Object-oriented programming

In an object-oriented language, memory is required each time a new object is cre-
ated (instantiated) to provide space for the data associated with the object. This
space can be released when the object is no longer required. Similarly, if a non-
object-oriented language is used, a program will often need temporary workspace in
which to build a data structure that grows and shrinks according to the demand.
These are sometimes termed dynamic data structures, and clearly it requires dynamic
memory management.

SELF-TEST QUESTION

15.8 Think of an example of a program that needs to acquire memory
dynamically.

In C or C++, the programmer can explicitly issue a request (using the function malloc)
to the memory manager component of the operating system to obtain a region of mem-
ory. Subsequently a call to function free returns the space to the memory manager.

The pointer data type is provided by such modern languages as Ada and C++ but
not by older languages, such as Fortran and Cobol. More recently, the Java language
does not provide pointers accessible to the programmer. Pointers provide the pro-
grammer with the ability to refer to a data object indirectly. We can manipulate the
object “pointed” to or referenced by the pointer. Pointers are particularly useful in
conjunction with dynamic data structures – situations where the size of a data collec-
tion cannot be predicted in advance or where the structure of the collection is dynam-
ically varying. Typically pointers are used to link one record to another in what is called
a linked data structure.

In some languages, recursive data structures, such as lists and trees, are more easily
described using pointers. Similarly, such operations as deleting an element from a linked
list or inserting a new element into a balanced binary tree are more easily accomplished
using pointers. Although such data types can be implemented using arrays, the map-
ping is less clear and certainly less flexible. Also performance is often faster when a
dynamic structure is used.

SELF-TEST QUESTION

15.9 Compare inserting a new item into a structure implemented as:

� an array

� a dynamic linked data structure.

The use of pointers brings considerable power and flexibility, but with the conse-
quent responsibility. It is well recognized that the explicit use of pointers is extremely

BELL_C15.QXD 1/30/05 4:23 PM Page 214

15.9 Garbage collection 215

dangerous because it can lead to major errors (or subtle but dangerous errors). The
pointer is often mentioned in the same sentence as the infamous goto statement as a
potential source for obtuse and error-prone code. A number of issues should be con-
sidered when evaluating a language’s implementation of pointers.

Since the same data object may be referenced through more than one pointer vari-
able, care must be taken not to create a “dangling” pointer. That is, a pointer which
references a location that is no longer in use. Does the language provide any assistance
in reducing the opportunities for such errors?

The security of pointers is enhanced in such languages as Ada and Java, which
require the programmer to bind a pointer variable to reference only objects of a partic-
ular type. Programs written in such languages as C and C++, which allow pointers to
dynamically reference different types of object, are notoriously awkward to debug.

What provisions (e.g. scoping mechanisms, explicit programmer action or garbage
collection procedures) does the language provide for the reclamation of space which is
no longer referenced by any pointer variable? This issue is discussed below.

In Java, the program has no explicit access to memory addresses and it is therefore
impossible for such a program to make the kind of mistake possible in C++. When a
Java program needs memory, it creates a new object. For example, a program can
instantiate an object of type Button by:

Button aButton = new Button("Press here");

This creates a pointer to the new object aButton. In Java this pointer is termed a
reference, but there is no way in which the Java program can misuse this pointer. For
example, arithmetic is not permitted on a reference, nor can the pointer be used to refer
to an object of another class. (Both these operations are allowed in a C++ program.)
Thus the Java program is prevented from causing a whole class of subtle and danger-
ous errors.

A subtle source of errors can arise when memory is freed (or not) after being allocated
to hold some dynamic data structure. In C++, the programmer explicitly issues a func-
tion call to free memory. The memory manager then adds the retrieved memory to its
pool of available memory; this process is termed garbage collection. When used incor-
rectly, two types of errors can arise:

1. memory leaks – memory is no longer in use, but has not been reclaimed by the
memory manager

2. memory corruption (dangling pointer) – memory has been returned from use, but
is still in use.

In a memory leak, a program acquires some memory, uses it, but then fails to
return it for garbage collection. This memory is thereby rendered useless. In a pro-
gram that only runs for a short time, the memory is reclaimed when the program

15.9 � Garbage collection

BELL_C15.QXD 1/30/05 4:23 PM Page 215

216 Chapter 15 � Object-oriented programming

terminates, so that there is no great problem. However, if the program is a compo-
nent in a real-time system, it may have an effectively infinite lifetime, in which case
memory loss is serious.

In memory corruption, a program acquires some memory, uses it, returns it for
garbage collection, but then continues to use it. This is, of course, a programming
error, but in large complex programs such a mistake is not unusual. The memory man-
agement system may now allocate this same memory area to some other program (or
to the same program). The consequence is that two programs are now using the same
area of memory unknown to each other. This tends to result either in a program crash
– if we are lucky – but often the result is some subtle error, which manifests itself in some
strange manner, some time after the crime has been committed. For example, some
data has become mysteriously corrupted. In such a situation, debugging becomes a
nightmare.

In Java, the garbage collection system periodically and automatically checks for
objects that are no longer in use. It then frees any available memory. Thus the pro-
grammer is freed from the task of keeping track of what memory is in use and many
potential errors are therefore avoided. The disadvantage is that the programmer has
limited control over when the garbage collector does its work. This might be done in
a variety of ways, depending on the implementation:

� at periodic time intervals

� when available memory is exhausted

� never (planning that demand will not exceed supply)

� when a program explicitly requests it.

The garbage collector needs a stable situation in order to analyze and collect unused
memory and therefore an implementation will normally freeze all running programs
when the garbage collector goes into action. This means that programs may be sus-
pended at unpredictable times. For some applications this is probably acceptable.
However, for real-time programs, sudden unpredictable stops are unacceptable and a
special attention to scheduling the garbage collection is required.

In summary, C++ supports explicit allocation and deallocation of memory, with
explicit access to memory pointers. This is power with considerable responsibility. In
Java, allocation and deallocation is implicit and automatic, with no access to memory
pointers. This avoids a notorious class of programming bugs.

SELF-TEST QUESTION

15.10 Draw up a table that compares the memory allocation scheme of C++
with that of Java according to the criteria software reliability, develop-
ment effort and performance (run-time speed).

BELL_C15.QXD 1/30/05 4:23 PM Page 216

Exercises 217

Summary

Writing a class means that strongly related elements of data and actions are
grouped together. A class presents an interface to its users and hides information
about its internal workings. It means that the user of a class need not worry about
its implementation. This promotes abstraction in thinking about the structure of
software. It also means that a class can be changed without any effect on the rest
of the program (provided that it continues to present the same interface). Thus
classes promote modularity.

Extending (inheriting from) a class is another way of making use of existing com-
ponents (classes). A subclass inherits the facilities of its immediate superclass and
all the superclasses. Most languages support single inheritance. A class can extend
the facilities of an existing class by providing one or more of:

� additional methods

� additional variables

� methods that override (act instead of) methods in the superclass.

Polymorphism means that similarities between objects can be exploited in the
code that uses objects. This means that software is more concise and more easily
adapted.

Altogether encapsulation, inheritance and polymorphism mean that software is
modular, concise and adaptable. It also means that greater use can be made of
libraries of useful components. The programming language must explicitly support
these features for OOP to be viable.

Generics enable tailor-made collections to be constructed. This makes programs
more concise and assists with compile-time type checking, and consequently soft-
ware reliability.

There are a number of approaches to garbage collection for software that uses
dynamic allocation of memory. Some schemes are automatic but may create tim-
ing problems. Some schemes rely on the programmer to make explicit requests,
but this can lead to subtle memory problems.

15.1 Explain how classes, inheritance and polymorphism support software development.

15.2 Explain how classes, inheritance and polymorphism promote reusable software.

Exercises•

BELL_C15.QXD 1/30/05 4:23 PM Page 217

218 Chapter 15 � Object-oriented programming

Answers to self-test questions

15.1 public void moveDown(int amount) {

y = y + amount;

}

15.2 public int yCoord {

get {

return y;

}

}

15.3 Methods: creditAccount, debitAccount, calculateInterest
Properties: currentBalance, name

15.4 class Stack {

private Arraylist s = new Arraylist();

public void push(String item) {

s.add(0, item);

}

public String pop() {

String item = (String) s.get(0);

s.remove(0);

return item;

}

}

15.3 Suppose that you were asked to design a new programming language for software
engineering:

� select and justify a mechanism for encapsulation

� select and justify a mechanism for modularity.

15.4 Explain what the term modularity means. Assess how well the following features of
programming languages contribute to modularity:

� methods

� classes.

15.5 Assess the generics feature.

15.6 Argue for and against pointers in a programming language.

15.7 Argue for and against automatic garbage collection.

BELL_C15.QXD 1/30/05 4:23 PM Page 218

Answers to self-test questions 219

15.5 class Bomb extends Sprite {

private ImageIcon bombImage;

public Bomb(int newX, int newY, int newSize) {

x = newX;

y = newY;

size = newSize;

bombImage = new ImageIcon("c:/bomb.jpg");

}

public void display(Jpanel panel) {

Graphics paper = panel.getGraphics();

bombImage.paintIcon(panel, paper, x, y);

}

public void move() {

y = y - 20;

}

}

15.6 public int sum(ArrayList <String> list) {

int total = 0;

for (int i = 0; i < list.size(); i++) {

total = total + Integer.parseInt(list.get(i));

}

return total;

}

15.7 Generics complicate the language.

15.8 There are many possible answers. Here are just two:

1. a file sort program, because you never know how long the file will be

2. A web browser program, because you do not know in advance
how big a web page will be.

15.9 In an array, all items after the insertion point have to be moved down
the array, a time-consuming process. In a dynamic structure, only the
pointer in the immediately preceding item needs to be updated – a very
fast operation.

15.10 Factor C++ Java
reliability poor good
development effort greater smaller
performance faster unpredictable

BELL_C15.QXD 1/30/05 4:23 PM Page 219

220 Chapter 15 � Object-oriented programming

Smalltalk-80 is the Rolls Royce of object-oriented language. It is completely object-
oriented – even control structures like repetition and if statements are objects.
Like Java it supports single inheritance. Like Java it provides a large and compre-
hensive library that the programmer uses and inherits from to provide facilities
including windowing, graphics and data structures. The definitive book on
Smalltalk-80: Adele Goldberg and David Robson, Smalltalk 80, the Language,
Addison-Wesley, 1989.

The definitive book on the Eiffel language. The first few chapters are a wonderfully
clear exposition of the principles of OOP: Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, New York, 2000.

Further reading•

BELL_C15.QXD 1/30/05 4:23 PM Page 220

The programming of very large, complex software projects, or programming in the
large, introduces many new problems for the software engineer. First, what are the
characteristics of such software systems? The size of the code is an obvious factor. Large
systems consist of tens of thousands of lines of source code; systems with hundreds of
thousands of lines are not uncommon. Projects of this size must be developed by teams
of programmers; for very large projects the programming team may consist of hundreds
of programmers. Such systems are implemented over a long period of time and when
completed are expected to undergo continual maintenance and enhancement over an
extended lifetime.

Many of the problems associated with such large projects are logistical, caused by the
sheer size of the task and the number of personnel involved. Methodologies for man-
aging such projects have been developed and are discussed in other sections of this
book. Clearly, many software tools, other than the programming language being used,
are required to assist and control the development of such large systems. A recent trend
has been to integrate these software tools with a particular programming language to
form an integrated software development environment. In this section we concentrate
on support for programming in the large at the programming language level.

16.1 � Introduction

CHAPTER

16 Programming
in the large

This chapter:
� reviews the facilities needed for large programs

� explains the ideas of packages and their scopes

� explains scopes for large software

� explains using interfaces to describe the structure of software

� explains using interfaces for interoperability

� discusses separate compilation.

BELL_C16.QXD 1/30/05 4:24 PM Page 221

222 Chapter 16 � Programming in the large

It is useful to divide up the discussion into those features required to support pro-
gramming in the small and those required to support programming in the large.

By programming in the small, we mean those features of the language required to
support the coding of individual program modules or small programs. In this catego-
ry, we include the simplicity, clarity and orthogonality of the language, the language
syntax and facilities for control and data abstraction. We reviewed these features in
Chapters 14 and 15.

By programming in the large, we mean those features of the language which sup-
port the development of large programs. Here, we define a “large” program as one
whose size or complexity dictates that it be developed by a number of programmers
and which consists of a collection of individually developed program modules. In this
category we include facilities for the separate compilation of program modules, fea-
tures for controlling the interaction between program modules, high-level functional
and data abstraction tools and programming environments or support tools associated
with the language.

What support can we expect from a programming language? The programmer’s
chief tool in managing complexity is abstraction. Abstraction allows the programmer to
keep a problem intellectually manageable. The programming language must therefore
provide mechanisms which can be used to encapsulate the most common abstractions
used by programmers: functional (or procedural) abstraction and data abstraction. The
simplest mechanism, provided by nearly all programming languages, is the method, a
program unit which allows the encapsulation of a functional abstraction. Programming
in the large requires that higher-level abstraction primitives than the method be pro-
vided. We have already met one such structure – the class. This helps considerably, but
we need still higher-level structuring mechanisms.

The use of abstractions promotes modularity which itself encourages the production
of reusable code and promotes the notion of information hiding. Modularity and mod-
ule independence are essential in an environment where individual modules will most
often be developed by different programmers. The programming language can support
development in multiprogrammer environments by providing mechanisms for hiding
from a user irrelevant detail concerning the implementation of a module. Additionally,
the interface between modules must be carefully controlled. It is essential to eliminate
the possibility that the implementation of one module may affect another module in
some unanticipated manner. This is also important when a system is being maintained
or enhanced in some way. It must be possible to localize the effect of some system
enhancement or error fix to specific modules of the system; side effects of changes
should not propagate throughout the complete system. Clearly, many of these issues are
as much system design issues as they are programming language issues. No program-
ming language will solve the problems of a poor system design. On the other hand, the
implementation of a good system design can be hampered if the implementation lan-
guage is of limited expressive power.

If components are to be developed independently, the programming language must
also provide facilities for independent compilation. In addition, the language should
provide strong type checking across component boundaries to ensure the consistency of
calls to externally defined components. All the major modern programming languages

BELL_C16.QXD 1/30/05 4:24 PM Page 222

16.2 Packages 223

for software engineering (C++, Ada, C# and Java) carry out such checks. Another
acute problem in large programs concerns the handling of unexpected events during
the execution of a program. Programming language features for exception handling
are discussed in Chapter 17.

In summary we can identify several needs for programming in the large:

� to be able to see the overall structure of the system

� to compile separately and link program modules

� to be able to access software libraries, e.g. graphics or mathematical methods

� to be able to reuse software components that have been created for one system
as part of a new system – in order to reduce development costs

� to provide facilities that support the construction of a large piece of software by
a team.

The idea of a class is to group together a set of methods and data that are related in
some way. This then constitutes a programming unit that is bigger than a single method
or data item. So instead of describing a large program as consisting of 50 methods and
10 data items, we can view it as a collection of, say, 10 classes. This is potentially easier
to understand, design, code, debug, test and maintain. (Even worse, we could think of
a program in terms of 10,000 lines of coding.)

The next stage is to group classes into packages. Again, instead of thinking of a
program as 100 classes, we can see it as a collection of 10 packages. The Java libraries
provide thousands of useful classes. For convenience, the classes are grouped into
packages. Here, for example, are some of the Java library packages with an outline of
their contents:

java.lang contains the classes that support the main features of the language like
Object, String, number, exception and threads

java.util these are useful utility classes, such as Random and ArrayList

java.io text input and output streams for characters and numbers

java.net classes that carry out networking functions, socket programming,
interacting with the internet

javax.swing this includes the classes to provide GUI components, such as buttons
(JButton), labels (JLabel) and sliders (JSlider).

java.awt awt stands for Abstract Window Toolkit. The graphics methods, such
as drawLine, are here.

java.applet the classes provide support for Java applets (programs run from a web
browser).

16.2 � Packages

BELL_C16.QXD 1/30/05 4:24 PM Page 223

224 Chapter 16 � Programming in the large

UML provides a graphical notation for describing packages. Figure 16.1 shows a
package named util which consists of three classes Random, ArrayList and Stack.
Showing the contents of a package is optional. This notation is useful for visualizing the
large-scale architectural structure of software.

Packages represent the highest-level programming units, which ranges from the
small size to the large, as follows:

� statements

� methods

� classes

� packages.

The languages C++ and C# provide a mechanism termed namespaces that is similar
to packages.

We will now see how packages are used within a programming language.

Java programs typically start with import statements, such as:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

java.awt, java.awt.event and javax.swing are the names of packages. Each of
these packages contains a number of useful classes. For example, the class JButton is
in the package javax.swing.

The import statements enable a program conveniently to use the classes provided by
the packages. Because the import statement is present, we can simply refer to JButton

16.3 � Using packages

util

Stack
Random

ArrayList

Figure 16.1 A package diagram

BELL_C16.QXD 1/30/05 4:24 PM Page 224

16.3 Using packages 225

In C and C++, a program almost always begins with an include declaration. For a
system package the declaration is typically:

#include <stdio.h>

or, for a programmer’s own package:

#include "myFile.h"

The include statement is a directive to the compiler to include within the cur-
rent source file a copy of the named file. A file with the suffix .h is, by convention,
a header file and it is files of this type that normally appear in the include state-
ment. A header file is a source code file that contains the declaration of the methods
to be found within a package. These declarations are, in C terminology, the proto-
types of the available methods – their names and parameters. The C and C++ lan-
guages have a rule that a method has to be declared (textually) before it can be used.
When a declaration like this is present, the program can refer to the methods with-
in the package described and it will compile successfully. Subsequently the object
code of the packages is linked.

SELF-TEST QUESTION

16.1 Classes called Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday and Sunday are grouped in a package called week. Write
down the Java import statement that will be needed to use the class
Friday. Write the statement to create an object friday of the class
Friday. Write down the import statement that will be needed to use all
the classes in the package.

without difficulty. For example:

JButton button = new JButton("go");

If the import statement was omitted, we could still use the class JButton, but we
would need to refer to it by its full name – javax.swing.JButton. This would be
inconvenient and cumbersome. Hence we see the value of the import statement.

If we only need to import an individual class, say JButton, from within a package,
we can spell it out:

import javax.swing.JButton;

Using * means that we want to import all the classes within the named package. So
if we need to use more than one from a package, it is simpler to use the * notation.

BELL_C16.QXD 1/30/05 4:24 PM Page 225

We have already seen how a program can access other packages using import or
include statements. The issue is: What packages, methods and (rarely) variables are
accessible to any given package? When you create and use packages, some new scope
rules come into play. The essence is that classes within the same package can access each
other very easily.

When you write a method in Java, you specify that it is private, public, pro-

tected or simply give it no prefix. The prefix determines who can access the method:
public means that the method is available to all. private means that it is accessible
only within the class. protected means that the method can be used by any subclass.

If you give a method no prefix, it means that the method is accessible from anywhere
within the same package, but inaccessible from outside. This is also true of classes, con-
structors and variables. This means that the programmer can establish a close relation-
ship between methods in the same package. This accords with the idea that classes in
the same package are related to each other.

16.5 � Scoping in large programs

226 Chapter 16 � Programming in the large

Suppose a system consists of three groups of classes:

1. classes that handle the user interface

2. classes that access the database

3. classes that handle the central logic of the program.

We create three packages, named gui, database and logic. Next we need to
ensure that individual classes are in the correct package. In Java this is accomplished
using the package statement written at the head of the class. So, if we have a class
named Login that handles the login part of the GUI, we write the following at the
head of the class:

package gui;

public class Login

If you omit a package statement, it means that the class is placed, by default, in a
package with no name.

16.4 � Creating packages

SELF-TEST QUESTION

16.2 A class named Backup is to be placed in a package named database.
Write the package statement and the class heading.

BELL_C16.QXD 1/30/05 4:24 PM Page 226

16.6 Interfaces 227

The structure of a large program is often derived by using some design method, as
described in other chapters in this book. Typically the structure is described in a graph-
ical notation, such as a class diagram. However, some programming languages enable
this large-scale, or architectural, structure to be expressed within the programming lan-
guage itself. In Java, for example, the specification of each class can be written in the
programming language. The collection of specifications then constitutes a description
of the architecture of the software. The notation used to describe these components is
termed an interface or a module interconnection language.

We will use the Java notation to illustrate how classes can be described. First, here is
the description of a stack class.

interface StackInterface {

void push(int item);

int pop();

}

A user of the stack class does not need to know how it works, but knows how to call
it. The stack might be represented as an array, a linked list or even (if it was large
enough) as a file. This is abstraction at work. It frees the programmer from thinking
about detail in order that they can concentrate on the bigger picture. The implemen-
tation of the stack could be changed (because of performance improvement or the elim-
ination of bugs), but any packages that use it would not be affected. The stack class
could easily be reused in some other program because the interface to it is clean.

16.6 � Interfaces

SELF-TEST QUESTION

16.3 Suggest one drawback to this kind of specification.

An interface can be compiled along with any other classes, but clearly cannot be exe-
cuted. However, someone who is planning to use a class can compile the program along
with the interface and thereby check that it is being used correctly.

Once the classes that comprise a new software project have been identified and spec-
ified, the classes can then either be written from scratch or retrieved from an existing
library. A person who is implementing an interface can specify in the heading of the
class that a particular interface is being implemented. For example, in Java:

class Stack implements StackInterface

Notice that the class as a whole is described as implementing the StackInterface
interface. The compiler will then check that this class has been written to comply with
the interface declaration, that is, it provides the methods push and pop together with
their appropriate parameters. The rule is that if you implement an interface, you must

BELL_C16.QXD 1/30/05 4:24 PM Page 227

9jabaz
Download more books at 9jabaz.ng for free!

228 Chapter 16 � Programming in the large

implement every method described in the interface. Any deviation results in compiler
errors.

We can describe the relationship between a class and its interface using a UML class
diagram. See for example Figure 16.2. In a UML class diagram, an interface is shown
as a rectangle. The interface name is preceded by the word <<interface>>. The
implements relationship is shown as a dotted arrow.

Interfaces can also be used to describe an inheritance structure. For example, sup-
pose we wanted to describe an interface for a BetterStack that is a subclass of the
Stack interface described above. We can write in Java:

public interface BetterStackInterface

extends StackInterface {

boolean empty();

}

which inherits the interface StackInterface and states that the interface
BetterStackInterface has an additional method, named empty, to test whether
the stack is empty. We could similarly describe a whole tree structure of classes as
interfaces, describing purely their outward appearance and their subclass–superclass
relationships.

In summary, the characteristics of an interface facility (module description language)
are:

� it is textual (though we could think of tools to convert the text into graphics)

� it is an extension of the programming language (therefore consistent, easy to learn
and checkable by the compiler)

� it allows specification of the external appearance of classes – their names, their visible
methods, the parameters required.

The advantages of being able to write descriptions like this are:

� during design, we can describe the grand structure of a piece of software in a fairly
formal way. The description can be checked by a language processor.

<<interface>>
StackInterface

Stack

Figure 16.2 A class and its interface

BELL_C16.QXD 1/30/05 4:24 PM Page 228

9jabaz
Download more books at 9jabaz.ng for free!

16.7 Interfaces and interoperability 229

Household appliances, such as toasters and electric kettles, come with a power cord
with a plug on the end of it. The design of the plug is standard (throughout a country)
and ensures that an appliance can be used anywhere (within the country). Thus the
adoption of a common interface ensures interoperability. In Java, interfaces can be used
in a similar fashion to ensure that objects exhibit a common interface. When such an
object is passed around a program, we can be sure that it supports all the methods spec-
ified by the interface description.

16.7 � Interfaces and interoperability

SELF-TEST QUESTION

16.4 Write specifications (interfaces) for the classes in the following software
system.

A patient monitoring system (Appendix A) monitors the vital signs of a single
hospital patient and delivers messages to the nurses’ station. It consists of the fol-
lowing classes, each followed by their methods. Make assumptions about the
parameters associated with the methods.

� class Clock provides methods init, waitSeconds, getHours, getMinutes,
getSeconds

� class Display provides methods init, flashLight, unflashLight,
soundKlaxon, unsoundKlaxon, displayMessage and clearScreen

� class Heart provides methods readRate and readPressure

� class Lungs provides method readRate

� class Temp provides method readTemp

� during coding, the description can be used as part of the class specification. The com-
piler can also check for consistency between the description and the class coding.

� during maintenance, the description can be used as documentation in order to
learn about the overall structure of the system. It can be used as input to a tool
that creates various reports on the structure – e.g., a class diagram. Finally, fol-
lowing update of the software, consistency checking can be reapplied using the
compiler.

What interfaces cannot describe are:

� the implementations of methods (but that is the whole point of interfaces)

� which classes use which other classes, the has-a relationships (this needs some other
notation).

BELL_C16.QXD 1/30/05 4:24 PM Page 229

230 Chapter 16 � Programming in the large

Just as a TV has interfaces both to a power source and to a signal source, so can we
specify that a class implements a number of interfaces.

Java, for example, is a language that provides single inheritance – a class can inherit
from (or be the subclass of) only one class. The class structure is a tree, with the root at
the top, in which a class can have many subclasses but only one superclass. Figure 16.3
shows illustrative classes Circle and Game as subclasses of superclass JFrame. Each class
appears only within a single tree and each class has only a single superclass.

16.8 � Multiple interfaces

SELF-TEST QUESTION

16.5 We wish to write a new class Circle that implements the
Displayable interface. Write the header for the class.

As an example, we declare an interface named Displayable. Any class complying
with this interface must include a method named display which displays the object.
The interface declaration in Java is:

public interface Displayable {

void display(Graphics paper);

}

Now we write a new class, named Square, which represents square graphical
objects. We say in the header of the class that it implements Displayable. We include
within the body of the class the method display:

public class Square implements Displayable {

private int x, y, size;

public void display(Graphics paper) {

paper.setColor(Color.black);

paper.drawRectangle(x, y, size, size);

}

// other methods of the class Square

}

As the heading states, this class (and any object created from it) conforms to the
Displayable interface. It means that any object of this class can be passed around a
program and we are confident that, when necessary, it can be displayed by calling its
method display.

>
>

BELL_C16.QXD 1/30/05 4:24 PM Page 230

16.8 Multiple interfaces 231

Sometimes we would like a class to inherit from more than one superclass as
described in the following class header and shown in Figure 16.4.

public class Game extends JFrame, Thread // error

But this heading is wrong because it attempts to extend two classes. This would be
called multiple inheritance. Some languages, such as C++, permit multiple inheritance
while Java does not. Multiple inheritance allows a class to inherit sets of methods from
a number of classes, and it is therefore potentially very powerful.

If we think about classification systems in science and nature, it is often the case
that objects belong to more than one class. We humans, for example, belong to one
gender class, but also to a class that likes a particular type of music. So we all belong
in one inheritance tree for gender, another for musical taste, another for mother
tongue, and so on.

Interfaces provide a way of emulating a facility similar to multiple inheritance. This
is because, while a class can only extend a single class, it can implement any number of
interfaces.

Multiple interfaces are illustrated in Figure 16.5. This example is coded in Java as
follows:

public class Game extends JFrame implements InterfaceA, InterfaceB

If Game inherited from InterfaceA and InterfaceB, it would inherit a set of
methods from InterfaceA and InterfaceB. But instead Game is implementing inter-
faces InterfaceA and InterfaceB, and these interfaces have no methods on offer.

JFrame

Circle Game

Figure 16.3 Single inheritance

Game

JFrame Thread

Figure 16.4 Multiple inheritance (supported in C++ but not in Java)

BELL_C16.QXD 1/30/05 4:24 PM Page 231

232 Chapter 16 � Programming in the large

What this means is that class Game agrees to provide the methods described in
InterfaceA and InterfaceB – that Game has agreed to conform to certain behavior.
The code for implementing InterfaceA and InterfaceB has to be written as part of
the class Game.

A programming language is ill suited for the development of large, complex programs
if it does not provide facilities for the separate compilation of program modules. Large
programs must necessarily be developed by teams of programmers; individual pro-
grammers must be able to work independently and at the same time be able to access
programs written by other members of the team. Programming language support is
required for the integration of routines that have been developed separately. Additional sup-
port in this area is often provided by environmental tools, such as linkers, cross-reference
generators, file librarians and source code control systems. What support should the
programming language itself provide? We suggest the following:

� independent compilation of program modules

� easy access to libraries of precompiled software

� the ability to integrate together components written in different languages

� strong type checking across module boundaries

� the ability to avoid the unnecessary recompilation of precompiled modules.

One of the foremost reasons for the continued popularity of Fortran is the tremen-
dous resource of reusable software available to scientists and engineers through the
readily accessible libraries of scientific and engineering subroutines. Fortran provides
independent compilation of modules at the subroutine level and easy access to library
routines but performs no run-time checking of calls to external routines. It is the
responsibility of the programmer to check that the correct number and type of param-
eters are used in the calling program.

Java and similar languages provide far greater support for separate compilation than
Fortran. Classes may be compiled as separate modules with strong type checking across
module boundaries to ensure that they are used in accordance with their specifications.
The specification and implementation of a class may be compiled in two separate parts.

16.9 � Separate compilation

Game

JFrame
<<interface>>
InterfaceB

<<interface>>
InterfaceA

Figure 16.5 Multiple interfaces

BELL_C16.QXD 1/30/05 4:24 PM Page 232

Exercises 233

This has a number of advantages for the software engineer. The strong type checking
ensures that all specifications stay in line with their implementations. Also, it means that
once the specification for a class has been compiled, modules which use that class may
also be compiled (even before the implementation of the class has been completed).

C, C++, C# and Java are all (fairly) small languages and most of their functionality is
provided by large and comprehensive libraries. These libraries are separately compiled.

Summary

It is often convenient to group the classes of a large program into packages. Each
package is given a name. Classes within a package can be used by giving the full
name of the package and class. A more convenient alternative is to use a statement
such as the Java import statement. The classes can be placed in the appropriate
package by employing the Java package statement.

Scope rules mean that classes within the same package have special access rights to
each other.

Interfaces are used to describe the services provided by a class. Interfaces are use-
ful for describing the structure of software. This description can be checked by the
compiler. Interfaces can also be used to ensure that a class conforms to a particu-
lar interface. This supports interoperability. Most modern languages support mul-
tiple interfaces, but only support single inheritance.

For large software, separate compilation is a vital facility.

16.1 Assess the difficulties of developing large-scale software and suggest program-
ming language features to help solve the problems that you have identified.

16.2 The facility to describe interfaces as seen in modern languages enables specifica-
tion of the services provided by a class. Consider extending such a language so
that it also describes:

� the classes that each class uses

� the classes that use each class.

What would be the advantages and disadvantages of this notation?

16.3 Assess whether and how it would be possible to extend the interface notation to
packages.

16.4 The design goals of Ada were readability, strong typing, programming in the large,
exception handling data abstraction, and generic units. Explain the meanings of

Exercises•

BELL_C16.QXD 1/30/05 4:24 PM Page 233

234 Chapter 16 � Programming in the large

these objectives and comment on their validity. Assess whether they are comple-
mentary or contradictory. If you are familiar with Ada, assess it against these aims.

16.5 Some of the stated design aims for Java are that it should be simple, object-oriented,
network-savvy, interpreted, robust, secure, architecture neutral, portable, high-per-
formance and dynamic.

Explain the meanings of these objectives. Assess whether they are complemen-
tary or contradictory. If you are familiar with Java, assess it against these aims.

16.6 Take a language of your choice. Search out the design aims and explain their mean-
ing. Assess how well the language matches the design aims. Assess the language
against the criteria developed in this chapter.

16.7 What aims and what language features would you expect to find in a language
designed for each of the following application domains?

� information systems

� scientific programming

� systems programming

� real-time embedded systems.

How suitable is your favorite language for each of these application domains?

16.8 Compare and contrast Ada with C++.

16.9 Compare and contrast C++ with Java.

16.10 Cobol (or Fortran) is an outdated language. Discuss.

Answers to self-test questions

16.1 To use class Friday put:

import week.Friday;

To create an object of the class Friday put:

Friday friday = new Friday();

To use all the classes in the package put:

import week.*;

16.2 package database;

public class Backup

BELL_C16.QXD 1/30/05 4:24 PM Page 234

Further reading 235

16.3 A specification of this kind only specifies the method names and their
parameters. It does not specify any more closely what a method does –
other than via any comments.

16.4 interface Clock {

void init();

void waitSeconds(int seconds);

int getHours();

int getMinutes();

int getSeconds();

}

interface Display {

void init();

void flashLight();

void unflashLight();

void soundKlaxon();

void unsoundKlaxon();

void displayMessage(String message);

void clearScreen();

}

interface Heart {

int readRate();

int readPressure();

}

interface Lungs {

int readRate();

}

interface Temp {

int readTemp();

}

16.5 public class Circle implements Displayable

Further reading•
A good collection of papers from the computer science literature which critically evaluate

and compare these three programming languages: A. Feuer and N. Gehani, Comparing
and Assessing Programming Languages, Ada, Pascal and C, Prentice Hall, 1984.

An excellent text for students wishing to explore further the fundamental principles
underlying programming languages: B.J. Maclennan, Principles of Programming
Languages: Design, Evaluation and Implementation, Dryden Press, 1987.

BELL_C16.QXD 1/30/05 4:24 PM Page 235

236 Chapter 16 � Programming in the large

An authoritative account of the ANSI standard version of the language in a classic book.
Ritchie was the designer of C, a language originally closely associated with the UNIX
operating system: Brian W. Kernighan and Dennis Ritchie, The C Programming
Language, Prentice Hall, 2nd edn, 1988.

The definitive source on C++, but not an easy read: Bjarne Stroustrup, The C++
Programming Language, Addison-Wesley, 2nd edn, 1991.

This is a selection of books that look at programming languages in general:

Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, John Wiley, 1997.

Terence Pratt, Programming languages: Design and Implementation, Prentice Hall, 1995.

Michael L. Scott, Programming Language Pragmatics, Morgan Kaufman, 1998.

Mark Woodman (ed.), Programming languages, International Thomson Computer
Press, 1996.

BELL_C16.QXD 1/30/05 4:24 PM Page 236

Robust software is software that tolerates faults. Computer faults are often classified
according to who or what causes them:

� user errors

� software faults (bugs)

� hardware faults.

An example of a user error is entering alphabetic data when numeric data is expect-
ed. An example of a software fault is any of the many bugs that inhabit most software
systems. An example of a hardware fault is a disk failure or a telecommunication line
that fails to respond.

In fault tolerance, the hardware and software collaborate in a kind of symbiosis.
Sometimes the hardware detects a software fault; sometimes the software detects a
hardware fault. In some designs, when a hardware fault occurs, the hardware copes with
the situation, but often it is the role of the software to deal with the problem. When a
software fault occurs, it is usually the job of the software to deal with the problem. In

17.1 � Introduction

CHAPTER

17 Software robustness

This chapter explains:
� how to categorize faults

� how faults can be detected

� how recovery can be made from faults

� exception handling

� recovery blocks

� how to use n-version programming

� how to use assertions.

BELL_C17.QXD 1/30/05 4:24 PM Page 237

238 Chapter 17 � Software robustness

some systems, when a user error arises, again it is the role of the software to cope. In many
situations, of course, when a fault arises nothing is done to cope with it and the system
crashes. This chapter explores measures that can be taken to detect and deal with all types
of computer fault, with emphasis on remedial measures that are implemented by software.

We will see in Chapter 19 on testing that eradicating every bug from a program is
almost impossible. Even when formal mathematical methods for program development
are used to improve the reliability of software, human error creeps in so that even math-
ematical proofs can contain errors. As we have seen, in striving to make a piece of soft-
ware as reliable as possible, we have to use a whole range of techniques

Software fault tolerance is concerned with trying to keep a system going in the face
of faults. The term intolerance is sometimes used to describe software that is written
with the assumption that the system will always work correctly. By contrast, fault toler-
ance recognizes that faults are inevitable and that therefore it is necessary to cope with
them. Moreover, in a well-designed system, we strive to cope with faults in an organ-
ized, systematic manner.

We will distinguish between two types of faults – anticipated and unanticipated.
Anticipated faults are unusual situations, but we can fairly easily foresee that they will
occasionally arise. Examples are:

� division by zero

� floating point overflow

� numeric data that contains letters

� attempting to open a file that does not exist.

What are unanticipated faults? The name suggests that we cannot even identify, pre-
dict or give a name to any of them. (Logically, if we can identify them, they are antici-
pated faults.) In reality this category is used to describe very unusual situations.
Examples are:

� hardware faults (e.g. an input-output device error or a main memory fault)

� a software design fault (i.e. a bug)

� an array subscript that is outside its allowed range

� the detection of a violation by the computer’s memory protection mechanism.

Take the last example of a memory protection fault. Languages like C++ allow the
programmer to use memory addresses to refer to parameters and to data structures.
Access to pointers is very free and the programmer can, for example, actually carry out
arithmetic on pointers. This sort of freedom is a common source of errors in C++ pro-
grams. Worse still, errors of this type can be very difficult to eradicate (debug) and may
persist unseen until the software has been in use for some time. Of course this type of
error is a mistake made by a programmer, designer or tester – a type of error sometimes
known as a logic error. The hardware memory protection system can help with the
detection of errors of this type because often the erroneous use of a pointer will even-
tually often lead to an attempt to use an illegal address.

BELL_C17.QXD 1/30/05 4:24 PM Page 238

17.2 Fault detection by software 239

Faults can be prevented and detected during software development using the following
techniques:

� good design

� using structured walkthroughs

� employing a compiler with good compile-time checking

� testing systematically

� run-time checking.

17.2 � Fault detection by software

SELF-TEST QUESTION

17.1 Categorize the following eventualities:

1. the system stack (used to hold temporary variables and method
return addresses) overflows

2. the system heap (used to store dynamic objects and data struc-
tures) overflows

3. a program tries to refer to an object using the null pointer (a point-
er that points to no object)

4. the computer power fails

5. the user types a URL that does not obey the rules for valid URLs.

Clearly, the difference between anticipated and unanticipated faults is a rather arbi-
trary distinction. A better terminology might be the words “exceptional circum-
stances” and “catastrophic failures”. Whatever jargon we use, we shall see that the two
categories of failure are best dealt with by two different mechanisms.

Having identified the different types of faults, let us now look at what has to be done
when a fault occurs. In general, we have to do some or all of the following:

� detect that a fault has occurred

� assess the extent of the damage that has been caused

� repair the damage

� treat the cause of the fault.

As we shall see, different mechanisms deal with these tasks in different ways.
How serious a problem may become depends on the type of the computer applica-

tion. For example power failure may not be serious (though annoying) to the user of a
personal computer. But a power failure in a safety critical system is serious.

BELL_C17.QXD 1/30/05 4:24 PM Page 239

240 Chapter 17 � Software robustness

Techniques for software design, structured walkthroughs and testing are dis-
cussed elsewhere in this book. So now we consider the other two techniques from
this list – compile-time checking and run-time checking. Later we go on to discuss
the details of automatic mechanisms for run-time checking.

Compile-time checking
The types of errors that can be detected by a compiler are:

� a type inconsistency, e.g. an attempt to perform an addition on data that has been
declared with the type string.

� a misspelled name for a variable or method

� an attempt by an instruction to access a variable outside its legal scope.

These checks may seem routine and trivial, but remember the enormous cost of the
NASA probe sent to Venus which veered off course because of the erroneous Fortran
repetition statement:

DO 3 I = 1.3

This was interpreted by the compiler as an assignment statement, giving the value 1.3
to the variable DO 3 I. In the Fortran language, variables do not have to be declared
before they are used and if Fortran was more vigilant, the compiler would have signaled
that a variable DO 3 I was undeclared.

Run-time checking
Errors that can be automatically detected at run-time include:

� division by zero

� an array subscript outside the range of the array.

In some systems these are carried by the software and in others by hardware.
There is something of a controversy about the relative merits of compile-time and

run-time checking. The compile-time people scoff at the run-time people. They com-
pare the situation to that of an aircraft with its “black box” flight recorder. The black
box is completely impotent in the sense that it is unable to prevent the aircraft from
crashing. Its only ability is in helping diagnose what happened after the event. In
terms of software, compile-time checking can prevent a program from crashing, but
run-time checking can only detect faults. Compile-time checking is very cheap and it
needs to be done only once. Unfortunately, it imposes constraints on the language –
like strong typing – which limits the freedom of the programmer (see Chapter 14 for a
discussion of this issue). On the other hand run-time checking is a continual over-
head. It has to be done whenever the program is running and it is therefore expen-
sive. Often, in order to maintain good performance, it is done by hardware rather
than software.

BELL_C17.QXD 1/30/05 4:24 PM Page 240

17.2 Fault detection by software 241

Another term used to describe software that attempts to detect faults is defensive pro-
gramming. It is normal to check (validate) data when it enters a computer system – for
example, numbers are commonly scrupulously checked to see that they only contain
digits. But within software it is unusual to carry out checks on data because it is nor-
mally assumed that the software works correctly. In defensive programming the pro-
grammer inserts checks at strategic places throughout the program to provide detection
of design errors. A natural place to do this is to check the parameters are valid at the
entry to a method and then again when a method has completed its work. This
approach has been formalized in the idea of assertions, explained below.

SELF-TEST QUESTION

17.3 Devise an audit module that checks whether an array has been sorted
correctly.

SELF-TEST QUESTION

17.2 Add to the list above checks that can only be done at run-time and
therefore, by implication, cannot be done at compile-time.

Incidentally, it is common practice to switch on all sorts of automatic checking for
the duration of program testing, but then to switch off the checking when develop-
ment is complete – because of concern about performance overheads. For example,
some C++ compilers allow the programmer to switch on array subscript checking (dur-
ing debugging and testing), but also allow the checking to be removed (when the pro-
gram is put into productive use). C.A.R Hoare, the eminent computer scientist, has
compared this approach to that of testing a ship with the lifeboats on board but then
discarding them when the ship starts to carry passengers.

We have looked at automatic checking for general types of fault. Another way of
detecting faults is to write additional software to carry out checks at strategic times
during the execution of a program. Such software is sometimes called an audit mod-
ule, because of the analogy with accounting practices. In an organization that handles
money, auditing is carried out at different times in order to detect any fraud. An
example of a simple audit module is a method to check that a square root has been
correctly calculated. Because all it has to do is to multiply the answer by itself, such a
module is very fast. This example illustrates that the process of checking for faults by
software need not be costly – either in programming effort or in run-time performance.

In general, it seems that compile-time checking is better than run-time checking.
However, run-time checking has the last word. It is vital because not everything can
be checked at compile time.

BELL_C17.QXD 1/30/05 4:24 PM Page 241

9jabaz
Download more books at 9jabaz.ng for free!

242 Chapter 17 � Software robustness

We have already seen how software checks can reveal faults. Hardware also can be vital
in detecting consequences of such software errors as:

� division by zero, more generally arithmetic overflow

� an array subscript outside the range of the array

� a program which tries to access a region of memory that it is denied access to, e.g.
the operating system.

Of course hardware also detects hardware faults, which the hardware often passes on
to the software for action. These include:

� memory parity checks

� device time-outs

� communication line faults.

Memory protection systems
One major technique for detecting faults in software is to use hardware protection mech-
anisms that separate one software component from another. (Protection mechanisms
have a different and important role in connection with data security and privacy, which
we are not considering here.) A good protection mechanism can make an important
contribution to the detection and localization of bugs. A violation detected by the
memory protection mechanism means that a program has gone berserk – usually
because of a design flaw.

To introduce the topic we will use the analogy of a large office block where many
people work. Along with many other provisions for safety, there will usually be a num-
ber of fire walls and fire doors. What exactly is their purpose? People were once allowed
to smoke in offices and public buildings. If someone in one office dropped a cigarette
into a waste paper basket and caused a fire, the fire walls helped to save those in other
offices. In other words, the walls limited the spread of damage. In computing terms,
does it matter how much the software is damaged by a fault? – after all it is merely code
in a memory that can easily be re-loaded. The answer is “yes” for two reasons. First, the
damage caused by a software fault might damage vital information held in files, dam-
age other programs running in the system or crash the complete system. Second, the
better the spread of damage is limited, the easier it will be to attempt some repair and
recovery. Later, when the cause of the fire is being investigated, the walls help to pin-
point its source (and identify the culprit). In software terminology, the walls help find
the cause of the fault – the bug.

One of the problems in designing buildings is the question of where to place the fire-
walls. How many of them should there be, and where should they be placed? In soft-
ware language, this is called the issue of granularity. The greater the number of walls,
the more any damage will be limited and the easier it will be to find the cause. But walls
are expensive and they also constrain normal movement within the building.

17.3 � Fault detection by hardware

BELL_C17.QXD 1/30/05 4:24 PM Page 242

17.3 Fault detection by hardware 243

Let us analyze what sort of protection we need within programs. At a minimum we
do not want a fault in one program to affect other programs or the operating system.
We therefore want protection against programs accessing each other’s main memory
space. Next it would help if a program could not change its own instructions, although
this would not necessarily be true in functional or logic programming. This idea
prompts us to consider whether we should have firewalls within programs to protect
programs against themselves. Many computer systems provide no such facility – when
a program goes berserk, it can overwrite anything within the memory available to it.
But if we examine a typical program, it consists of fixed code (instructions), data items
that do not change (constants) and data items that are updated. So, at a minimum, we
should expect these to be protected in different ways. But of course, there is more struc-
ture to a program than this. If we look at any program, it consists of methods, each with
its own data. Methods share data. One method updates a piece of data, while another
merely references it. The ways in which methods access variables can be complex.

In many programs, the pattern of access to data is not hierarchical, nor does it fit
into any other regular framework. We need a matrix in order to describe the situation.
Each row of the matrix corresponds to method. Each column corresponds to a data
item. Looking at a particular place in the table gives the allowed access of a method to
a piece of data.

To summarize the requirements we might expect of a protection mechanism, we
need the access rights of software to change as it enters and leaves methods. An indi-
vidual method may need:

� execute access to its code

� read access to parameters

� read access to local data

� write access to local data

� read access to constants

� read or write access to a file or i/o device

� read or write access to some data shared with another program

� execute access to other methods.

SELF-TEST QUESTION

17.4 Sum up the pros and cons of fine granularity.

SELF-TEST QUESTION

17.5 Investigate a piece of program that you have lying around and analyze
what the access rights of a particular method need to be.

BELL_C17.QXD 1/30/05 4:24 PM Page 243

244 Chapter 17 � Software robustness

Different computer architectures provide a range of mechanisms, ranging from the
absence of any protection in most early microcomputers, to sophisticated segmentation
systems in the modern machines. They include the following systems:

� base and limit registers

� lock and key

� mode switch

� segmentation

� capabilities.

A discussion of these topics is outside the scope of this book, but is to be found in
books on computer architecture and on operating systems.

This completes a brief overview of the mechanisms that can be provided by the
hardware of the computer to assist in fault tolerance. The beauty of hardware mech-
anisms is that they can be mass-produced and therefore can be made cheaply, whereas
software checks are tailor-made and may be expensive to develop. Additionally,
checks carried out by hardware may not affect performance as badly as checks car-
ried by software.

Dealing with the damage caused by a fault encompasses two activities:

1. assessing the extent of the damage

2. repairing the damage.

In most systems, both of these ends are achieved by the same mechanism. There are
two alternative strategies for dealing with the situation:

1. forward error recovery

2. backward error recovery.

In forward error recovery, the attempt is made to continue processing, repairing any
damaged data and resuming normal processing. This is perhaps more easily under-
stood when placed in contrast with the second technique. In backward error recovery,
periodic dumps (or snapshots) of the state of the system are taken at appropriate
recovery points. These dumps must include information about any data (in main mem-
ory or in files) that is being changed by the system. When a fault occurs, the system
is “rolled back” to the most recent recovery point. The state of the system is then
restored from the dump and processing is resumed. This type of error recovery is
common practice in information systems because of the importance of protecting
valuable data.

If you are cooking a meal and burn the pan, you can do one of two things. You can
scrape off the burnt food and serve the unblemished food (pretending to your family
or friends that nothing happened). This is forward error recovery. Alternatively, you can
start the preparation of the damaged dish again. This is backward error recovery.

17.4 � Dealing with damage

BELL_C17.QXD 1/30/05 4:24 PM Page 244

17.5 Exceptions and exception handlers 245

Now that we have identified two strategies for error recovery, we return to our analy-
sis of the two main types of error. Anticipated faults can be analyzed and predicted.
Their effects are known and treatment can be planned in detail. Therefore forward
error recovery is not only possible but most appropriate. On the other hand, the effects
of unanticipated faults are largely unpredictable and therefore backward error recovery
is probably the only possible technique. But we shall also see how a forward error recov-
ery scheme can be used to cope with design faults.

We have already seen that we can define a class of faults that arise only occasionally,
but are easily predicted. The trouble with occasional error situations is that, once
detected, it is sometimes difficult to cope with them in an organized way. Suppose,
for example, we want a user to enter a number, an integer, into a text field, see
Figure 17.1.

The number represents an age, which the program uses to see whether the person
can vote or note. First, we look at a fragment of this Java program without exception
handling. When a number has been entered into the text field, the event causes a
method called actionPerformed to be called. This method extracts the text from
the text field called ageField by calling the library method getText. It then calls
the library function parseInt to convert the text into an integer and places it in the
integer variable age. Finally the value of age is tested and the appropriate message
displayed:

17.5 � Exceptions and exception handlers

SELF-TEST QUESTION

17.6 You are driving in your car when you get a flat tire. You change the tire
and continue. What strategy are you adopting – forward or backward
error recovery?

Figure 17.1 Program showing normal behavior

BELL_C17.QXD 1/30/05 4:24 PM Page 245

246 Chapter 17 � Software robustness

public void actionPerformed(ActionEvent event) {

String string = ageField.getText();

age = Integer.parseInt(string);

if (age > 18)

response.setText("you can vote");

else

response.setText("you cannot vote");

}

This piece of program, as written, provides no exception handling. It assumes that
nothing will go wrong. So if the user enters something that is not a valid integer,
method parseInt will fail. In this eventuality, the program needs to display an error
message and solicit new data, (see Figure 17.2).

To the programmer, checking for erroneous data is additional work, a nuisance, that
detracts from the central purpose of the program. For the user of the program, how-
ever, it is important that the program carries out vigilant checking of the data and when
appropriate displays an informative error message and clear instructions as to how to
proceed. What exception handling allows the programmer to do is to show clearly what
is normal processing and what is exceptional processing.

Here is the same piece of program, but now written using exception handling. In
the terminology of exception handling, the program first makes a try to carry out some
action. If something goes wrong, an exception is thrown by a piece of program that
detects an error. Next the program catches the exception and deals with it.

public void actionPerformed(ActionEvent event) {

String string = ageField.getText();

try {

age = Integer.parseInt(string);

}

catch (NumberFormatException e){

response.setText("error. Please re-enter number");

return;

}

if (age > 18)

response.setText("you can vote");

else

response.setText("you cannot vote");

}

In the example, the program carries out a try operation, enclosing the section of pro-
gram that is being attempted. Should the method parseInt detect an error, it throws
a NumberFormatException exception. When this happens, the section of program
enclosed by the catch keyword is executed. As shown, this displays an error message
to the user of the program.

>
>

>
>

BELL_C17.QXD 1/30/05 4:24 PM Page 246

9jabaz
Download more books at 9jabaz.ng for free!

17.5 Exceptions and exception handlers 247

The addition of the exception-handling code does not cause a great disturbance to
this program, but it does highlight what checking is being carried out and what action
will be taken in the event of an exception. The possibility of the method parseInt
throwing an exception must be regarded as part of the specification of parseInt. The
contract for using parseInt is:

1. it is provided with one parameter (a string)

2. it returns an integer (the equivalent of the string)

3. it throws a NumberFormatException if the string contains illegal characters.

There are, of course, other ways of dealing with exceptions, but arguably they are
less elegant. For example, the parseInt method could be written so that it returns a
special value for the integer (say -999) if something has gone wrong. The call on
parseInt would look like this:

age = Integer.parseInt(string);

if (age == -999)

response.setText("error. Please re-enter number");

else

if (age > 18)

response.setText("you can vote");

else

response.setText("you cannot vote");

You can see that this is inferior to the try-catch program. It is more complex and
intermixes the normal case with the exceptional case. Another serious problem with this
approach is that we have had to identify a special case of the data value – a value that
might be needed at some time.

Yet another strategy is to include in every call an additional parameter to convey
error information. The problem with this solution is, again, that the program becomes
encumbered with the additional parameter and additional testing associated with every
method call, like this:

age = Integer.parseInt(string, error);

if (error) etc

>
>

Figure 17.2 Program showing exceptional behavior

BELL_C17.QXD 1/30/05 4:24 PM Page 247

248 Chapter 17 � Software robustness

Let us turn to examining how an exception is thrown, using the same example. In
Java, the method parseInt can be written as follows:

public int parseInt(String string) throws NumberFormatException {

int number = 0;

for (int i = 0; i < string.length(); i++) {

char c = string.charAt(i);

if (c < '0' || c > '9') throw new NumberFormatException();

number = number * 10 + (c - '0');

}

return number;

}

You can see that in the heading of the method the exception that may be thrown
is declared, along with the specification of any parameters and return value. If this
method detects that any of the characters within the string are illegal, it executes a
throw instruction. This immediately terminates the method and transfers control to
a catch block designed to handle the exception. In our example, the catch block
is within the method that calls parseInt. Alternatively the try-catch combination
can be written within the same method as the throw statement. Or it can be writ-
ten within any of the methods in the calling chain that led to calling parseInt. Thus
the designer can choose an appropriate place in the software structure at which to
carry exception handling. The position in which the exception handler is written
helps both to determine the action to be taken and what happens after it has dealt
with the situation.

>
>

SELF-TEST QUESTION

17.7 The method parseInt does not throw an exception if the string is
of zero length. Amend it so that it throws the same exception in this
situation.

What happens after an exception has been handled? In the above example, the catch
block ends with a return statement, which exits from the current method,
actionPerformed and returns control to its caller. This is the appropriate action in
this case – the program is able to recover and continue in a useful way. In general the
options are either to recover from the exception and continue or to allow the program
to gracefully degrade. The Java language mechanism supports various actions:

� handle the exception. Control flow then either continues on down the program or
the method can be exited using a return statement.

� ignore the exception. This is highly dangerous and always leads to tears, probably
after the software has been put into use.

BELL_C17.QXD 1/30/05 4:24 PM Page 248

17.6 Recovery blocks 249

In the above example, the application program itself detected the exception.
Sometimes, however, it is the operating system or the hardware that detects an excep-
tion. An example is an attempt to divide by zero, which would typically be detected by
the hardware. The hardware would alert the run-time system or operating system,
which in turn would enter any exception handler associated with this exception.

The mechanism described above is the exception handling facility provided in Java.
Similar mechanisms are provided in Ada and C++.

In old software systems the simplest solution to handling exceptions was to resort to
the use of a goto statement to transfer control out of the immediate locality and into
a piece of coding designed to handle the situation. The use of a goto was particularly
appealing when the unusual situation occurred deep within a set of method calls. The
throw statement has been criticized as being a goto statement in disguise. The
response is that throw is indeed a “structured goto”, but that its use is restricted to
dealing with errors and therefore it cannot be used in an undisciplined way.

In summary, exception handlers allow software to cope with unusual, but anticipated,
events. The software can take appropriate remedial action and continue with its tasks.
Exception handlers therefore provide a mechanism for forward error recovery. In Java,
the mechanism consists of three ingredients:

1. a try block, in which the program attempts to behave normally

2. the program throws an exception

3. a catch block handles the exceptional situation.

Recovery blocks are a way of structuring backward error recovery to cope with unantic-
ipated faults. In backward error recovery, periodic dumps of the state of the system are
made at recovery points. When a fault is detected, the system is restored to its state at the
most recent recovery point. (The assumption is that this is a correct state of the system.)

The system now continues on from the recovery point, using some alternative course
of action so as to avoid the original problem.

An analogy: if you trip on a banana skin and spill your coffee, you can make a fresh
cup (restore the state of the system) and carry on (carefully avoiding the banana skin).

17.6 � Recovery blocks

SELF-TEST QUESTION

17.8 What happens if the return statement is omitted in the above example
of the exception handler?

� throw another exception. This passes the buck to another exception handler further
up the call chain, which the designer considers to be a more appropriate place to
handle the exception.

BELL_C17.QXD 1/30/05 4:24 PM Page 249

250 Chapter 17 � Software robustness

As shown in Figure 17.3, backward error recovery needs:

1. the primary software component that is normally expected to work

2. a check that it has worked correctly

3. an alternative piece of software that can be used in the event of the failure of the
primary module.

We also need, of course, a mechanism for taking dumps of the system state and for
restoring the system state. The recovery block notation embodies all of these features.
Taking as an example a program that uses a method to sort some information, a fault
tolerant fragment of program looks like this:

ensure dataStillValid

by

superSort

else by

quickSort

else by

slowButSureSort

else error

Here supersort is the primary component. When it has tried to sort the infor-
mation, the method dataStillValid tests to see whether a failure occurred. If there
was a fault, the state of the program is restored to what it was before the sort method
was executed. The alternative method quickSort is then executed. Should this now
fail, a third alternative is provided. If this fails, there is no other alternative available,
and the whole component has failed. This does not necessarily mean that the whole
program will fail, as there may be other recovery blocks programmed by the user of
this sort module.

What kinds of fault is this scheme designed to cope with? The recovery block mech-
anism is designed primarily to deal with unanticipated faults that arise from bugs
(design faults) in the software. When a piece of software is complete, it is to be expected
that there will be residual faults in it, but what cannot be anticipated is the whereabouts
of the bugs.

User Normal
module

Checking
module

Alternative
module

Figure 17.3 Components in a recovery block scheme

>
>

BELL_C17.QXD 1/30/05 4:24 PM Page 250

17.6 Recovery blocks 251

Recovery blocks will, however, also cope with hardware faults. For example, suppose
that a fault develops in the region of main memory containing the primary sort method.
The recovery block mechanism can then recover by switching over to an alternative
method. There are stories that the developers of the recovery block mechanism at
Newcastle University, England, used to invite visitors to remove memory boards from
a live computer and observe that the computer continued apparently unaffected.

We now examine some of the other aspects of recovery blocks.

The acceptance test
You might think that acceptance tests would be cumbersome methods, incurring high
overheads, but this need not be so. Consider for example a method to calculate a square
root. A method to check the outcome, simply by multiplying the answer by itself, is short
and fast. Often, however, an acceptance test cannot be completely foolproof – because
of the performance overhead. Take the example of the sort method. The acceptance test
could check that the information had been sorted, that is, is in sequence. However, this
does not guarantee that items have not been lost or created. An acceptance test, there-
fore, does not normally attempt to ensure the correctness of the software, but instead
carries out a check to see whether the results are acceptably good.

Note that if a fault like division by zero, a protection violation, an array subscript out
of range occurs while one of the sort methods is being executed, then these also con-
stitute the result of checks on the behavior of the software. (These are checks carried
out by the hardware or the run-time system.) Thus either software acceptance tests or
hardware checks can trigger fault tolerance.

The alternatives
The software components provided as backups must accomplish the same end as the
primary module. But they should achieve this by means of a different algorithm so that
the same problem doesn’t arise. Ideally the alternatives should be developed by differ-
ent programmers, so that they are not unwittingly sharing assumptions. The alterna-
tives should also be less complex than the primary, so that they will be less likely to fail.
For this reason they will probably be poorer in their performance (speed).

Another approach is to create alternatives that provide an increasingly degraded service.
This allows the system to exhibit what is termed graceful degradation. As an example of
graceful degradation, consider a steel rolling mill in which a computer controls a machine
that chops off the required lengths of steel. Normally the computer employs a sophisticat-
ed algorithm to make optimum use of the steel, while satisfying customers’ orders. Should
this algorithm fail, a simpler algorithm can be used that processes the orders strictly
sequentially. This means that the system will keep going, albeit less efficiently.

Implementation
The language constructs of the recovery block mechanism hide the preservation of vari-
ables. The programmer does not need to explicitly declare which variables should be
stored and when. The system must save values before any of the alternatives is executed,

BELL_C17.QXD 1/30/05 4:24 PM Page 251

9jabaz
Download more books at 9jabaz.ng for free!

252 Chapter 17 � Software robustness

and restore them should any of the alternatives fail. Although this may seem a formidable
task, only the values of variables that are changed need to be preserved, and the nota-
tion highlights which ones these are. Variables local to the alternatives need not be
stored, nor need parameters passed by value. Only global variables that are changed need
to be preserved. Nonetheless, storing data in this manner probably incurs too high an
overhead if it is carried out solely by software. Studies indicate that, suitably implement-
ed with hardware assistance, the speed overhead might be no more than about 15%.

No programming language has yet incorporated the recovery block notation. Even
so, the idea provides a framework which can be used, in conjunction with any pro-
gramming language, to structure fault tolerant software.

This form of programming means developing n versions of the same software compo-
nent. For example, suppose a fly-by-wire airplane has a software component that
decides how much the rudder should be moved in response to information about
speed, pitch, throttle setting, etc. Three or more version of the component are imple-
mented and run concurrently. The outputs are compared by a voting module, the
majority vote wins and is used to control the rudder (see Figure 17.4).

It is important that the different versions of the component are developed by differ-
ent teams, using different methods and (preferably) at different locations, so that a mini-
mum of assumptions are shared by the developers. By this means, the modules will use
different algorithms, have different mistakes and produce different outputs (if they do)
under different circumstances. Thus the chances are that when one of the components
fails and produces an incorrect result, the others will perform correctly and the faulty
component will be outvoted by the majority.

Clearly the success of an n-programming scheme depends on the degree of inde-
pendence of the different components. If the majority embody a similar design fault,
they will fail together and the wrong decision will be the outcome. This is a bold
assumption, and some studies have shown a tendency for different developers to com-
mit the same mistakes, probably because of shared misunderstandings of the (same)
specification.

The expense of n-programming is in the effort to develop n versions, plus the pro-
cessing overhead of running the multiple versions. If hardware reliability is also an issue,

17.7 � n-version programming

Version 1

Version 2

Version 3

Voting
module

Input
data

Output
data

Figure 17.4 Triple modular redundancy

BELL_C17.QXD 1/30/05 4:24 PM Page 252

17.8 Assertions 253

as in fly-by-wire airplanes, each version runs on a separate (but identical) processor. The
voting module is small and simple, consuming minimal developer and processor time.

For obvious reasons, an even number of versions is not appropriate.
The main difference between the recovery block and the n-version schemes is that

in the former the different versions are executed sequentially (if need be).
Is n-programming forward error recovery or is it backward error recovery? The

answer is that, once an error is revealed, the correct behavior is immediately available
and the system can continue forwards. So it is forward error recovery.

Assertions are statements written into software that say what should be true of the data.
Assertions have been used since the early days of programming as an aid to verifying the
correctness of software. An assertion states what should always be true at a particular
point in a program. Assertions are usually placed:

� at the entry to a method – called a precondition, it states what the relationship
between the parameters should be

� at the end of a method – called a postcondition, it states what the relationship
between the parameters should be

� within a loop – called a loop invariant, it states what is always true, before and after
each loop iteration, however many iterations the loop has performed.

� at the head of a class – called a class invariant, it states what is always true before
and after a call on any of the class’s public methods. The assertion states a relation-
ship between the variables of an instance of the class.

An example should help see how assertions can be used. Take the example of a class
that implements a data structure called a stack. Items can be placed in the data struc-
ture by calling the public method push and removed by calling pop. Let us assume that
the stack has a fixed length, described by a variable called capacity. Suppose the class
uses a variable called count to record how many items are currently in the stack. Then
we can make the following assertions at the level of the class. These class invariant is:

assert count >= 0;

assert capacity >= count;

These are statements which must always be true for the entire class, before or after
any use is made of the class. We can also make assertions for the individual methods.
Thus for method push, we can say as a postcondition:

assert newCount = oldCount + 1;

For the method push, we can also state the following precondition:

assert oldCount < capacity;

17.8 � Assertions

BELL_C17.QXD 1/30/05 4:24 PM Page 253

254 Chapter 17 � Software robustness

Note that truth of assertions does not guarantee that the software is working cor-
rectly. However, if the value of an assertion is false, then there certainly is a fault in the
software. Note also that violation of a precondition means that there is a fault in the
user of the method; a violation of a postcondition means a fault in the method itself.

There are two main ways to make use of assertions. One way is to write assertions as
comments in a program, to assist in manual verification. On the other hand, as indicated
by the notation used above, some programming languages (including Java) allow asser-
tions to be written as part of the language – and their correctness is checked at run-
time. If an assertion is found to be false, an exception is thrown.

There is something of an argument about whether assertions should be used only
during development, or whether they should also be enabled when the software is put
into productive use.

Fault tolerance in hardware has long been recognized – and accommodated. Electronic
engineers have frequently incorporated redundancy, such as triple modular redundancy,
within the design of circuits to provide for hardware failure. Fault tolerance in software
has become more widely addressed in the design of computer systems as it has become
recognized that it is almost impossible to produce correct software. Exception handling
is now supported by all the mainstream software engineering languages – Ada, C++,
Visual Basic, C# and Java. This means that designers can provide for failure in an organ-
ized manner, rather than in an ad hoc fashion. Particularly in safety-critical systems,
either recovery blocks or n-programming is used to cope with design faults and enhance
reliability.

Fault tolerance does, of course, cost money. It requires extra design and program-
ming effort, extra memory and extra processing time to check for and handle excep-
tions. Some applications need greater attention to fault tolerance than others, and
safety-critical systems are more likely to merit the extra attention of fault tolerance.
However, even software packages that have no safety requirements often need fault
tolerance of some kind. For example, we now expect a word processor to perform
periodic and automatic saving of the current document, so that recovery can be per-
formed in the event of power failure or software crash. End users are increasingly
demanding that the software cleans up properly after failures, rather than leave them
with a mess that they cannot salvage. Thus it is likely that ever-increasing attention
will be paid to improving the fault tolerance of software.

17.9 � Discussion

SELF-TEST QUESTION

17.9 Write pre- and post-conditions for method pop.

BELL_C17.QXD 1/30/05 4:24 PM Page 254

Exercises 255

17.1 For each of the computer systems detailed in Appendix A, list the faults that can
arise, categorizing them into user errors, hardware faults and software faults. Decide
whether each of the faults is anticipated or unanticipated. Suggest how the faults
could be dealt with.

17.2 Explain the following terms, giving an example of each to illustrate your answer: fault tol-
erance, software fault tolerance, reliability, robustness, graceful degradation.

Summary

Faults in computer systems are caused by hardware failure, software bugs and user
error. Software fault tolerance is concerned with:

� detecting faults

� assessing damage

� repairing the damage

� continuing.

Of these, faults can be detected by both hardware and software.

One hardware mechanism for fault detection is protection mechanisms, which have
two roles:

1. they limit the spread of damage, thus easing the job of fault tolerance

2. they help find the cause of faults.

Faults can be classified in two categories – anticipated and unanticipated.

Recovery mechanisms are of two types:

� backward – the system returns to an earlier, safe state

� forward – the system continues onwards from the error.

Anticipated faults can be dealt with by means of forward error recovery. Exception
handlers are a convenient programming language facility for coping with these faults.

Unanticipated faults – such as software design faults – can be handled using either of:

� recovery blocks, a backward error recovery mechanism

� n-programming, a forward error recovery mechanism.

Assertions are a way of stating assumptions that should be valid when software exe-
cutes. Automatic checking of assertions can assist debugging.

Exercises•

BELL_C17.QXD 1/30/05 4:24 PM Page 255

256 Chapter 17 � Software robustness

17.3 Consider a programming language with which you are familiar. In what ways can you
deliberately (or inadvertently) write a program that will:

1. crash

2. access main memory in an undisciplined way

3. access a file protected from you.

What damage is caused by these actions? How much damage is possible?
Assuming you didn’t already know it, is it easy to diagnose the cause of the prob-
lem? Contemplate that if it is possible deliberately to penetrate a system, then it is
certainly possible to do it by accident, thus jeopardizing the reliability and security
of the system.

17.4 “Compile-time checking is better than run-time checking.” Discuss.

17.5 Compare and contrast exception handling with assertions.

17.6 The Java system throws an IndexOutOfBoundsException exception if a pro-
gram attempts to access elements of an array that lie outside the valid range of
subscripts. Write a method that calculates the total weekly rainfall, given an array
of floating point numbers (values of the rainfall for each of seven days of the
week) as its single parameter. The method should throw an exception of the same
type if an array is too short. Write code to catch the exception.

17.7 Outline the structure of recovery block software to cope with the following situation.
A fly-by-wire aircraft is controlled by software. A normal algorithm calculates the opti-
mal speed and the appropriate control surface and engine settings. A safety module
checks that the calculated values are within safe limits. If they are not, it invokes an
alternative module that calculates some safe values for the settings. If, again, this
module fails to suggest safe values, the pilots are alerted and the aircraft reverts to
manual control.

17.8 Compare and contrast the recovery block scheme with the n-programming scheme
for fault tolerance. Include in your review an assessment of the development times
and performance overheads associated with each scheme.

17.9 Searching a table for a desired object is a simple example of a situation in which it
can be tempting to use a goto to escape from an unusual situation. Write a piece
of program to search a table three ways:

1. using goto

2. using exceptions

3. avoiding both of these.

Compare and contrast the three solutions.

BELL_C17.QXD 1/30/05 4:24 PM Page 256

Answers to self-test questions 257

17.10 Consider a program to make a copy of a disk file. Devise a structure for the program
that uses exception handlers so that it copes with the following error situations:

1. the file doesn’t exist (there is no file with the stated name)

2. there is a hardware fault when reading information from the old file

3. there is a hardware fault when writing to the new file.

Include in your considerations actions that the filing system (or operating system)
needs to take.

17.11 Explain the difference between using a goto statement and using a throw state-
ment. Discuss their relative advantages for dealing with exceptions.

17.12 “There is no such thing as an exceptional situation. The software should explicitly
deal with all possible situations.” Discuss.

17.13 Some word processors provide an undo command. Suppose we interpret a user
wanting to undo what they have done as a fault, what form of error recovery does
the software provide and how is it implemented?

17.14 Examine the architecture and operating system of a computer for which you have
documentation. Investigate what facilities are provided for detecting software and
hardware faults.

17.15 Compare and contrast approaches to fault tolerance in software with approaches for
hardware.

Answers to self-test questions

17.1 1. unanticipated

2. unanticipated

3. unanticipated

4. anticipated

5. anticipated

17.2 stack overflow
use of a null pointer

17.3 The module could check that all the items in the new array are in order.
(This is not foolproof because the new array could contain different data
to the old.)

17.4 Pro: prevent the spread of damage, assist in diagnosing the cause.
Cons: expensive hardware and software, reduction in performance (speed).

�

BELL_C17.QXD 1/30/05 4:24 PM Page 257

258 Chapter 17 � Software robustness

The programming language Pascal has a strong reputation for being a secure lan-
guage, with extensive compile-time checking to prevent software faults. But these
three authors set out to show how vulnerable it actually is. It is a study in paranoia:
J. Walsh, W.J. Sneeringer and C.A.R. Hoare, Ambiguities and insecurities in
Pascal, Software – Practice and Experience, 7 (1977), pp. 685–96.

For a more detailed treatment of some of the topics described in this chapter, see:
Hoang Pham (ed.), Fault-Tolerant Software Systems: Techniques and Applications, IEEE
Computer Society Press, 1992.

The following book has a chapter that explains how software errors can be quantified:
M.L. Shooman, Software Engineering, McGraw-Hill International, 1986.

17.5 The answer depends on the particular software

17.6 Forward, because you continued your journey. It was an anticipated fault.
However, as far as the tire is concerned, it is backward error recovery,
because it is replaced by some other component.

17.7 Add the line:

if (string.length() == 0) throw new

NumberFormatException();

at the start of the method.

17.8 Control continues down the program, which dangerously tests the value
of the information returned by parseInt.

17.9 The precondition is assert oldCount > 0;
The postcondition is assert newCount = oldCount - 1;

Further reading•

BELL_C17.QXD 1/30/05 4:24 PM Page 258

Scripting is the duct tape or glue of computing. It is a means of constructing soft-
ware quickly, usually by combining existing components and programs. The product
may not be elegant, but it works. For example, suppose we write an e-mail program.
We would like the user to be able to click on a URL within an e-mail and get taken
immediately into a web browser that displays the page. So we need the e-mail program
to be able to invoke the web browser. This is the kind of interoperability that can be
provided by a scripting language.

A scripting language is a particular kind of programming language. Examples include
the Unix shell scripting language, Perl and Python. However, general-purpose lan-
guages, such as Visual Basic and C, can also be used for scripting.

Traditionally scripting languages have been interpreted, but this is no longer an iden-
tifying feature.

In this chapter, we use the Unix shell language as the example to expose the script-
ing approach.

Unix is a general-purpose operating system available widely on personal computers,
servers and mainframe computers. Two workers at Bell telephones reputedly developed
it in an attic. This pedigree explains its conceptual simplicity and beauty. From such
small beginnings, Unix has become widely popular and has spawned such derivatives as

18.2 � Unix

18.1 � Introduction

CHAPTER

18 Scripting

This chapter:
� explains the principles of scripting languages

� gives examples of using scripting languages.

BELL_C18.QXD 1/30/05 4:24 PM Page 259

260 Chapter 18 � Scripting

GNU/Linux. For reasons that we shall shortly see, Unix can act as an excellent basis
for scripting.

Unix provides:

� a textual command language, based on command verbs followed by parameters

� the facility to write programs in the command language

� a filing system, with tree-structured directories (folders)

� a set of useful utility programs, called filters, e.g. a file copy tool

� a facility, called pipes, for joining filters together.

These facilities are now commonly found in many operating systems, but Unix was
the first system to provide them.

Unix consists of a small kernel, augmented by a rich set of small utility programs, the
filters. An example of a filter is a program to display a list of the files within a particu-
lar directory. Perhaps because only two people designed it, Unix is built around a few
simple concepts. One of the fundamental ideas of Unix is the notion that software
(including Unix itself) should be built from small general-purpose components that are
developed individually. These components can be used individually but also can be
combined as necessary in order to satisfy a new requirement. A filter is a program that
inputs a serial stream of information, processes it and outputs a second serial stream.
Other examples of Unix-provided filters:

� count the number of lines or characters in a file

� a file copy program

� print a file with specified formatting

� spool a file to the printer

� print all lines in a file that contain a specified textual pattern

� a lexical analyzer.

Filters are combined by taking the output from one and feeding it as input to
another. The stream of data that flows from one filter to another is known as a pipe.
This combination of filters and pipes is carried out by Unix under the control of the
command language.

An example of using a filter is the command:

ls

When you type a Unix command such as this, you invoke the filter with the same
name. The filter named ls displays on the screen the names of all the files in the current
directory, one per line. Another tool, named wc, inputs a file and gives a line, word and
character count for that file. The output of wc can be controlled by providing parameters,
and the parameter -l specifies that lines should be counted, so that the command:

wc -l file

BELL_C18.QXD 1/30/05 4:24 PM Page 260

9jabaz
Download more books at 9jabaz.ng for free!

18.2 Unix 261

tells us how many lines the file file contains. (The majority of Unix commands offer
a choice of parameters to modify their output). Putting these two tools together, the
Unix command:

ls | wc -l

pipes the output from the filter ls into the input for the filter wc. The final output is
therefore the number of files in the current directory.

SELF-TEST QUESTION

18.1 The command:

grep "Alice" < file

outputs those lines in the file file that contain the string Alice. Write
a pipelined command to count how many lines in the file contain the
string Alice.

The vertical bar symbol in a Unix command signifies that the output stream from
one filter is to be directed not to its default file, but to the input of another filter.

We have seen that Unix provides a useful but limited number of facilities as filters,
plus a facility to combine filters. Thus when some new software is required, there are
three options:

1. use an existing filter

2. combine the existing filters using pipes

3. write a new filter and combine it with existing filters using pipes.

Combining filters is rather like writing programs, but at a higher level – the Unix
filters are the language primitives, and pipes provide the mechanism for combining
them to produce more powerful facilities. The command language describes the
interactions.

Filters tend to be short and simple – 90 of the standard Unix filters (other than
compilers) are less than 1,200 lines (about 20 pages) of high-level programming
language statements. An individual filter is usually written in the programming lan-
guage C, which is the core language of Unix. A filter reads from an input pipe and
outputs to an output pipe. It opens an input pipe just as if it was opening a file,
then it reads data serially from the pipe (or file) until the end of data (file) is
encountered. The filter sends its output to an output stream by writing data as if
to a serial file.

All the Unix tools are designed to do a specific single task well, rather than sup-
porting many, optional features. However, any options are specified using parameters.

BELL_C18.QXD 1/30/05 4:24 PM Page 261

262 Chapter 18 � Scripting

A successful scripting language needs to provide the following features:

� easy manipulation of file and folder (directory) names. The user needs to be able to
change file names, create files, create folders, move files and copy files with ease.

� good string manipulation. The user needs to be able to analyze strings, such as an
HTML file, and create files of new strings.

� calling other programs and components. The user needs a convenient facility to call
programs and components written in other languages. This includes accessing a
large and comprehensive library of classes and methods.

� combining programs and components. This is the facility to combine existing com-
ponents or programs. In Unix, this is accomplished using the pipe mechanism.

� weak data typing. A scripting language is often used to read data from a file (or an
internet connection), analyze it and convert it into some other form. An example is
a file in a particular graphics file format which needs to be rendered or converted
into some other file format. Thus the program needs to be relaxed about the exact
type of the data it is processing. In contrast, a strongly typed data language insists
on the clear separation of data types.

What is the essential difference between a scripting language and a programming
language? In a programming language, a typical operation is adding two numbers; in
a scripting language a typical operation is invoking a program (perhaps to add two
numbers).

18.3 � Discussion

SELF-TEST QUESTION

18.2 Name another mechanism for connecting components.

In summary, the main virtues of Unix as a basis for scripting are:

� a number of small, highly modular, general-purpose components called filters are
provided

� under the control of the command language, software is constructed by combining
filters with other filters using pipes.

The Unix approach is based on the assumption that connecting programs via serial
streams is modular and flexible.

BELL_C18.QXD 1/30/05 4:24 PM Page 262

Answers to self-test questions 263

Exercises

Summary

A scripting language is a language that glues existing programs together. It allows
us to combine existing programs in useful ways. It is a means of reusing software.

The key characteristic of a scripting language is that it provides a facility to invoke
other programs. The programs can be passed information as parameters or alter-
natively the programs can pass information as data streams.

In addition scripting languages typically provide comprehensive facilities for
manipulating strings, files and directories.

18.1 Compare and contrast the facilities of a language for scripting with those required of
a conventional programming language.

18.2 Review the features of the Unix scripting language.

18.3 Compare and contrast the Unix pipes and filters approach to constructing software
with an approach that makes the maximum reuse of libraries, as in Java and C#.

18.4 Assess Perl or Python as a scripting language.

•

Answers to self-test questions

18.1 grep "Alice" < file | wc -l

18.2 Method calls

There are lots of good books on Unix. But if you want to read the original classic paper,
it is: B.W. Kernighan and J.R. Mashey, The Unix programming environment, IEEE
Computer, April 1981, pp. 12–24.

Further reading•

BELL_C18.QXD 1/30/05 4:24 PM Page 263

BELL_C18.QXD 1/30/05 4:24 PM Page 264

PART

D VERIFICATION

BELL_CPARTD.QXD 1/30/05 4:30 PM Page 265

BELL_CPARTD.QXD 1/30/05 4:30 PM Page 266

Verification is the general term for techniques that aim to produce fault-free software.
Testing is a widely used technique for verification, but note that testing is just one tech-
nique amongst several others. This chapter explains several approaches to testing.

Remember that there is a separate collection of techniques for carrying out valida-
tion – which are techniques which strive to make sure that software meets its users needs

Software is complex and it is difficult to make it work correctly. Currently the dom-
inant technique used for verification is testing. And testing typically consumes an enor-
mous proportion (sometimes as much as 50%) of the effort of developing a system.
Microsoft employ teams of programmers (who write programs) and completely sepa-
rate teams of testers (who test them). At Microsoft there are as many people involved
in testing as there are in programming.

Arguably, verification is a major problem and we need good techniques to tackle it.
Often, towards the end of a project, the difficult decision has to be made between con-
tinuing the testing or delivering the software to its customers or clients.

19.1 � Introduction

CHAPTER

19 Testing

This chapter:
� identifies the problem of effective testing

� explains how to carry out black box (functional) testing

� explains how to carry out white box (structural) testing

� explains the principles behind these approaches to testing

� introduces some other testing techniques

� explains how to carry out unit testing

� explains how to carry out system (integration) testing.

BELL_C19.QXD 1/30/05 4:25 PM Page 267

268 Chapter 19 � Testing

We begin this chapter by discussing the general problem of testing – and discover
that there is a significant problem. We consider approaches called black box and white
box testing.

There are a whole number of associated testing techniques, which we outline.
The problems of testing large pieces of software that consist of many components

are severe – particularly if all the components are combined at one and the same time.

It would be convenient to know how errors arise, because then we could try to avoid
them during all the stages of development. Similarly, it would be useful to know the
most commonly occurring faults, because then we could look for them during verifica-
tion. Regrettably, the data is inconclusive and it is only possible to make vague state-
ments about these things.

Specifications are a common source of faults. A software system has an overall
specification, derived from requirements analysis. In addition, each component of
the software ideally has an individual specification that is derived from architectural
design. The specification for a component can be:

� ambiguous (unclear)

� incomplete

� faulty.

Any such problems should, of course, be detected and remedied by verification of
the specification prior to development of the component, but, of course, this verifica-
tion cannot and will not be totally effective. So there are often problems with a com-
ponent specification.

This is not all – there are other problems with specifications. During programming,
the developer of a component may misunderstand the component specification.

The next type of error is where a component contain faults so that it does not meet
its specification. This may be due to two kinds of problem:

1. errors in the logic of the code – an error of commission

2. code that fails to meet all aspects of the specification – an error of omission.

This second type of error is where the programmer has failed to appreciate and cor-
rectly understand all the detail of the specification and has therefore omitted some nec-
essary code.

Finally, the kinds of errors that can arise in the coding of a component are:

� data not initialized

� loops repeated an incorrect number of times.

� boundary value errors.

19.2 � The nature of errors

BELL_C19.QXD 1/30/05 4:25 PM Page 268

19.4 Black box (functional) testing 269

Boundary values are values of the data at or near critical values. For example, suppose
a component has to decide whether a person can vote or not, depending on their age.
The voting age is 18. Then boundary values, near the critical value, are 17, 18 and 19.

As we have seen, there are many things that can go wrong and perhaps therefore it
is no surprise that verification is such a time-consuming activity.

We now explore the limitations of testing. Consider as an illustration a method to cal-
culate the product of its two integer parameters. First, we might think of devising a
selection of test data values and comparing the actual with the expected outcome. So we
might choose the values 21 and 568 as sample values. Remembering negative numbers,
we might also choose –456 and –78. If we now look at possible coding for the proce-
dure, we can immediately see the drawback with this approach:

public int product(int x, int y) {

int p;

p = x * y;

if (p == 42) p = 0;

return p;

}

The problem is that, for some reason – error or malice – the programmer has cho-
sen to include an if statement, which leads to an incorrect value in certain cases. The
test data that was chosen above would not reveal this error, nor, almost certainly, would
any other selection of test data. Thus use of selective test data cannot guarantee to
expose bugs. Now it could be argued that the bug is obvious in this example – simply
by looking at the program. But looking at a program is not testing – it is a technique
called inspection that is discussed later in this chapter.

A second method of testing, called exhaustive testing, would be to use all possible
data values, in each case checking the correctness of the outcome. But even for the
method to multiply two 32-bit integers would take 100 years (assuming a 1 millisec-
ond integer multiply instruction is provided by the hardware of the computer). So
exhaustive testing is almost always impracticable.

These considerations lead us to the unpalatable conclusion that it is impossible to test
any program exhaustively. Thus any program of significant size is likely to contain bugs.

Knowing that exhaustive testing is infeasible, the black box approach to testing is to
devise sample data that is representative of all possible data. We then run the program,
input the data and see what happens. This type of testing is termed black box testing
because no knowledge of the workings of the program is used as part of the testing –
we only consider inputs and outputs. The program is thought of as being enclosed

19.4 � Black box (functional) testing

19.3 � The problem of testing

>
>

BELL_C19.QXD 1/30/05 4:25 PM Page 269

270 Chapter 19 � Testing

within a black box. Black box testing is also known as functional testing because it uses
only knowledge of the function of the program (not how it works).

Ideally, testing proceeds by writing down the test data and the expected outcome of
the test before testing takes place. This is called a test specification or schedule. Then
you run the program, input the data and examine the outputs for discrepancies between
the predicted outcome and the actual outcome. Test data should also check whether
exceptions are handled by the program in accordance with its specification.

Consider a program that decides whether a person can vote, depending on their age
(Figure 19.1). The minimum voting age is 18.

We know that we cannot realistically test this program with all possible values, but
instead we need some typical values. The approach to devising test data for black box
testing is to use equivalence partitioning. This means looking at the nature of the input
data to identify common features. Such a common feature is called a partition. In the
voting program, we recognize that the input data falls into two partitions:

1. the numbers less than 18

2. the numbers greater than or equal to 18

This can be diagrammed as follows:

Figure 19.1 The voting checker program

0 17 18 infinity

There are two partitions, one including the age range 0–17 and the other partition
with numbers 18 to infinity. We then take the step of asserting that every number with-
in a partition is equivalent to any other, for the purpose of testing this program. (Hence
the term equivalence partitioning.) So we argue that the number 12 is equivalent to
any other in the first partition and the number 21 is equivalent to any number in the

BELL_C19.QXD 1/30/05 4:25 PM Page 270

19.4 Black box (functional) testing 271

We have reasoned that we need two sets of test data to test this program. These two
sets, together with a statement of the expected outcomes from testing, constitute a test
specification. We run the program with the two sets of data and note any discrepancies
between predicted and actual outcome.

Unfortunately we can see that these tests have not investigated the important distinction
between someone aged 17 and someone aged 18. Anyone who has ever written a program
knows that using if statements is error prone, so it is advisable to investigate this particu-
lar region of the data. This is the same as recognizing that data values at the edges of the
partitions are worthy of inclusion in the testing. Therefore we create two additional tests:

1 12 cannot vote

2 21 can vote

Test number Data Outcome

3 17 cannot vote

4 18 can vote

Test number Data Outcome

first number: 0 54 10,000

second number: 0 142 10,000

In summary, the rules for selecting test data for black box testing using equivalence
partitioning are:

1. partition the input data values

2. select representative data from each partition (equivalent data)

3. select data at the boundaries of partitions.

In the last program, there is a single input; there are four data values and there-
fore four tests. However, most programs process a number of inputs. Suppose we
wish to test a program that displays the larger of two numbers, each in the range
0–10,000, entered into a pair of text boxes. If the values are equal, the program dis-
plays either value.

Each input is within a partition that runs from 0 to 10,000. We choose values at
each end of the partitions and sample values somewhere in the middle:

Now that we have selected representative values, we need to consider what combi-
nations of values we should use. Exhaustive testing would mean using every possible
combination of every possible data value, but this is, of course, infeasible. Instead, we
use every combination of the representative values. So the tests are:

second. So we devise two tests:

BELL_C19.QXD 1/30/05 4:25 PM Page 271

272 Chapter 19 � Testing

This form of testing makes use of knowledge of how the program works – the struc-
ture of the program – as the basis for devising test data. In white box testing every state-
ment in the program is executed at some time during the testing. This is equivalent to
ensuring that every path (every sequence of instructions) through the program is exe-
cuted at some time during testing. This includes null paths, so an if statement with-
out an else has two paths and every loop has two paths. Testing should also include
any exception handling carried out by the program.

Here is the Java code for the voting checker program we are using as a case study:

public void actionPerformed(ActionEvent event) {

int age;

age = Integer.parseInt(textField.getText());

if (age >= 18) {

result.setText("you can vote");

}

19.5 � White box (structural) testing

1 0 0 0

2 0 142 142

3 0 10,000 10,000

4 54 0 54

5 54 142 142

6 54 10,000 10,000

7 10,000 0 10,000

8 10,000 142 10,000

9 10,000 10,000 10,000

Test number 1st number 2nd number Outcome

SELF-TEST QUESTION

19.1 In a program to play the game of chess, the player specifies the desti-
nation for a move as a pair of indices, the row and column number. The
program checks that the destination square is valid, that it is not out-
side the board. Devise black box test data to check that this part of the
program is working correctly.

Thus the additional step in testing is to use every combination of the (limited) rep-
resentative data values.

>

BELL_C19.QXD 1/30/05 4:25 PM Page 272

19.5 White box (structural) testing 273

else {

result.setText("you cannot vote");

}

}

In this program, there are two paths (because the if has two branches) and there-
fore two sets of data will serve to ensure that all statements are executed at some time
during the testing:

>

1 12 cannot vote

2 21 can vote

Test number Data Expected outcome

3 17 cannot vote

4 18 can vote

Test number Data Expected outcome

If we are cautious, we realize that errors in programming are often made within the
conditions of if and while statements. So we add a further two tests to ensure that
the if statement is working correctly:

Thus we need four sets of data to test this program in a white box fashion. This hap-
pens to be the same data that we devised for black box testing. But the reasoning that
led to the two sets of data is different. Had the program been written differently, the
white box test data would be different. Suppose, for example, the program used an array,
named table, with one element for each age specifying whether someone of that age
can vote. Then the program is simply the following statement to look up eligibility:

result.setText(table[age]);

and the white box testing data is different.

SELF-TEST QUESTION

19.2 A program’s function is to find the largest of three numbers. Devise
white box test data for this section of program. The code is:

int a, b, c;

int largest;

�

BELL_C19.QXD 1/30/05 4:25 PM Page 273

274 Chapter 19 � Testing

Stepping through code
Some debuggers allow the user to step through a program, executing just one instruc-
tion at a time. This is sometimes called single-shotting. Each time you execute one
instruction you can see which path of execution has been taken. You can also see (or
watch) the values of variables. It is rather like an automated structured walkthrough.

In this form of testing, you concentrate on the variables and closely check their val-
ues as they are changed by the program to verify that they have been changed correctly.

A debugger is usually used for debugging (locating a bug); here it is used for
testing (establishing the existence of a bug).

19.6 � Other testing methods

if (a >= b) {

if (a >= c) {

largest = a;

}

else {

largest = c;

}

}

else {

if (b >= c) {

largest = b;

}

else {

largest = c;

}

}

19.3 In a program to play the game of chess, the player specifies the desti-
nation for a move as a pair of integer indices, the row and column num-
ber. The program checks that the destination square is valid, that is, not
outside the board. Devise white box test data to check that this part of
the program is working correctly.

The code for this part of the program is:

if ((row > 8) || (row < 1)) {

JOptionPane.showMessageDialog(null, "error");

}

if ((col > 8) || (col < 1)) {

JOptionPane.showMessageDialog(null, "error");

}

BELL_C19.QXD 1/30/05 4:25 PM Page 274

19.6 Other testing methods 275

Testing the test data
In a large system or program it can be difficult to ensure that the test data is adequate.
One way to try to test whether it does indeed cause all statements to be executed is to
use a profiler. A profiler is a software package that monitors the testing by inserting
probes into the software under test. When testing takes place, the profiler can expose
which pieces of the code are not executed and therefore reveal the weakness in the data.

Another approach to investigating the test data is called mutation testing. In this
technique, artificial bugs are inserted into the program. An example would be to
change a + into a –. The test is run and if the bugs are not revealed, then the test data
is obviously inadequate. The test data is modified until the artificial bugs are exposed.

Team techniques
Many organizations set up separate teams to carry out testing and such a team is some-
times called a quality assurance (QA) team. There are, of course, fruitful grounds for
possible conflict between the development group and the QA team.

One way of actually exploiting conflict is to set up an adversary team to carry out
testing. Such a team is made up of what we might normally think of as being anti-social
people – hackers, misfits, psychotics. Their malice can be harnessed to the effective dis-
covery of bugs.

Another approach is to set up bounty hunters, whose motivation for finding errors is
financial reward.

Other techniques for collaborative working are explained in Chapter 20 on groups.

Beta testing
In beta testing, a preliminary version of a software product is released to a selected mar-
ket, the customer or client, knowing that it has bugs. Users are asked to report on faults
so that the product can be improved for its proper release date. Beta testing gets its name
from the second letter of the Greek alphabet. Its name therefore conveys the idea that it
is the second major act of testing, following on after testing within the developing organ-
ization. Once Beta testing is complete and the bugs are fixed, the software is released.

Automated testing
Unfortunately this is not some automatic way of generating test data. There is no magical
way of doing that. But it is good practice to automate testing so that tests can be reapplied
at the touch of a button. This is extra work in the beginning but often saves time overall.

Regression testing
An individual test proceeds like this:

1. apply a test

2. if a bug is revealed, fix it

BELL_C19.QXD 1/30/05 4:25 PM Page 275

276 Chapter 19 � Testing

3. apply the test again

4. and so on until the test succeeds.

However, when you fix a bug you might introduce a new bug. Worse, this new bug
may not manifest itself with the current test. The only safe way to proceed is to apply
all the previous tests again. This is termed regression testing. Clearly this is usually a for-
midable task. It can be made much easier if all the testing is carried out automatically,
rather than manually. In large developments, it is common to incorporate revised com-
ponents and reapply all the tests once a day.

Formal verification
Formal methods employ the precision and power of mathematics in attempting to ver-
ify that a program meets its specification. They place emphasis on the precision of the
specification, which must first be rewritten in a formal mathematical notation. One such
specification language is called Z. Once the formal specification for a program has been
written, there are two alternative approaches:

1. write the program and then verify that it conforms to the specification. This
requires considerable time and skill.

2. derive the program from the specification by means of a series of transformations,
each of which preserve the correctness of the product. This is currently the favored
approach.

Formal verification is very appealing because of its potential for rigorously verifying
a program’s correctness beyond all possible doubt. However, it must be remembered
that these methods are carried out by fallible human beings, who make mistakes. So
they are not a cure-all.

Formal verification is still in its infancy and is not widely used in industry and com-
merce, except in a few safety-critical applications. Further discussion of this approach is
beyond the scope of this book.

When we discussed black box and white box testing above, the programs were very
small. However, most software consists of a number of components, each the size of a
small program. How do we test each component? One answer is to create an environ-
ment to test each component in isolation (Figure 19.2). This is termed unit testing. A
driver component makes method calls on the component under test. Any methods that
the component uses are simulated as stubs. These stubs are rudimentary replacements
for missing methods. A stub does one of the following:

� carries out an easily written simulation of the mission of the component

� displays a message indicating that the component has been executed

� nothing.

19.7 � Unit testing

BELL_C19.QXD 1/30/05 4:25 PM Page 276

19.8 System (integration) testing 277

Thus the component under test is surrounded by scaffolding. This is a large under-
taking. In many developments, the collections of drivers and stubs is often as big as the
software itself.

Thus far we have only considered unit testing – testing an individual software compo-
nent, a method or a class. We have implicitly assumed that such a component is fairly
small. This is the first step in the verification of software systems, which typically con-
sist of tens or hundreds of individual components. The task of testing complete systems
is called system or integration testing.

Suppose that we have designed and code all the components for a system. How can
we test these components and how can we test the complete system?

Here are three different approaches to system testing:

1. big bang – bring all the components together, without prior testing, and test the
complete system

2. improved big bang – test each component individually (unit testing), bring them
all together and test the complete system

3. incremental – build the system piece by piece, testing the partial system at each
stage.

The first approach – big bang or monolithic testing – is a recipe for disaster. There is
no easy way of knowing which component is the cause of a fault, and there is an enor-
mous debugging task. The second approach is slightly better because when the com-
ponents are brought together, we have some confidence in them individually. Now any
faults are likely to be caused by the interactions between the components. Here again,
there is a major problem of locating faults.

An alternative is to use some form of incremental testing. In this approach, first one
component of the system is tested, then a second component is linked with the first
and the system tested. Any fault is likely to be localized either in the newly incorpo-
rated component or in the interface between the two. We continue like this, adding
just one component at a time. At each stage, any fault that presents itself is likely to be
caused by the new component, or by its interface to the system. Thus fault finding is

19.8 � System (integration) testing

Stub

Stub

Stub

Driver Component
under test

Figure 19.2 Unit testing

BELL_C19.QXD 1/30/05 4:25 PM Page 277

9jabaz
Download more books at 9jabaz.ng for free!

278 Chapter 19 � Testing

made considerably easier. Various approaches are explained in Chapter 24 on incre-
mental development.

We have seen that exhaustive testing is infeasible. Therefore complete testing is impossible
and, whatever testing methods are used, they can never ensure that the software is free
from bugs. Thus testing is a poor technique but until formal verification becomes wide-
ly applicable it is a vital technique.

However much we test our programs, using all our skill and intuition, we can never
be sure that we have eradicated all the faults. The situation is well summed up by one
of computing’s gurus, Dijkstra, in his famous remark, “Testing can only show the pres-
ence of bugs, never their absence.” This has been (anonymously) rephrased as, “Just
because you have never seen a mermaid doesn’t mean that they don’t exist.” It can be
reassuring to adopt the view that a test that reveals no bugs is a successful test. But
rather we should look upon such a test as unsuccessful!

It is difficult to get accurate data on the number of bugs present in production soft-
ware because, unsurprisingly, organizations do not want to reveal this kind of informa-
tion. The indications are that there are typically between 2 and 50 bugs per 1,000 lines
of source code in commercial production software. A figure like this is more properly
called a fault density. It measures the number of known faults per 1,000 lines of code
(LOC). A figure of 2 is considered to be most creditable. Ways of measuring this quan-
tity are explained in Chapter 29 on metrics and quality assurance.

The trouble is, of course, that bugs always surface at the worst possible time, for
example, when you are demonstrating the completed software to the client. This phe-
nomenon has long been known to students of reliability, who quote Murphy’s laws:

1. “If a system can fail, it will,”

2. “and at the worst possible moment.”

Another, more objective, observation is that some bugs create serious faults, while
others lie dormant and do not give any trouble.

Chapter 31 on assessing methods looks at the evidence that is available to compare
verification techniques, including testing. The surprising indications are that simply
inspecting code is more effective than carrying out testing.

The worrying conclusion to any discussion of verification is that all software (of any
significant size) contains faults.

19.9 � Discussion

Summary

Testing is one set of techniques for verifying software.

Exhaustive testing is a practical impossibility.

BELL_C19.QXD 1/30/05 4:25 PM Page 278

Exercises 279

19.1 Consider a program that has 16 if-then statements in it. Then there are 216 possi-
ble paths through it. If each test takes 50 microseconds and each action takes 50
microseconds (a gross underestimate), how much computer time is needed to test all
program paths?

19.2 Devise black box and white box test data to test the following program. The program
specification is:

The program inputs a series of integers from the keyboard using a text field. The
program finds the largest of the numbers. The numbers are terminated when a but-
ton labeled Start Again is pressed.

Try not to look at the text of the program, given below, until you have completed the
design of the black box data.

The program involves the following class:

class Biggest {

private int largest;

public Biggest() {

largest = 0;

}

public void nextNumber(int n) {

if (n > largest)

largest = n;

}

public void display(TextField textField) {

textField.setText("largest so far is" + largest);

}

public void startAgain() {

largest = 0;

}

}

Exercises

In black box (or functional) testing, sample data based on the specification is used.
This is termed equivalence partitioning.

In white box (or structural) testing, the internal structure of the software is used
to select test data. This means that every path through the program is tested.

Unit testing tests each component in isolation. Drivers and stubs are used to sub-
stitute for missing components. Integration testing tests components as they are
brought together.

•

BELL_C19.QXD 1/30/05 4:25 PM Page 279

280 Chapter 19 � Testing

19.3 Devise black box and white box test data to test the following program. The program
specification is:

The program is to determine insurance premiums for a holiday, based upon the
age and gender (male or female) of the client.

For a female of age >= 18 and <= 30 the premium is $5. A female aged >= 31
pays $3.50. A male of age >= 18 and <= 35 pays $6. A male aged >= 36 pays $5.50.
People aged 50 or more pay half premium. Any other ages or genders are an error,
which is signaled as a premium of zero.

The Java code for this program is:

public float calcPremium(float age, String gender) {

float premium;

if (gender.equals("female"))

if ((age >= 18) && (age <= 30))

premium = 5.0f;

else

if (age >= 31)

premium = 3.50f;

else

premium = 0.0f;

else

if (gender.equals("male"))

if ((age >= 18) && (age <= 35))

premium = 6.0f;

else

if (age >= 36)

premium = 5.5f;

else

premium = 0.0f;

else

premium = 0.0f;

if (age >= 50)

premium = premium * 0.5f;

return premium;

}

19.4 Suggest features for software tools that could assist in using each of the following
techniques:

� black box testing

� white box testing.

19.5 Substantial testing of a system uncovers not a single error. What conclusions would
you draw?

BELL_C19.QXD 1/30/05 4:25 PM Page 280

Answers to self-test questions 281

Answers to self-test questions

19.1 A row number is in three partitions:

1. within the range 1–8

2. less than 1

3. greater than 8.

If we choose one representative value in each partition (say 3, –3 and 11
respectively) and a similar set of values for the column numbers (say 5,
–2 and 34), the test data will be:

1 3 5 OK

2 –3 5 invalid

3 11 5 invalid

4 3 –2 invalid

5 –3 –2 invalid

6 11 –2 invalid

7 3 34 invalid

8 –3 34 invalid

9 11 34 invalid

Test number Row Column Outcome

We now remember that data near the boundary of the partitions is
important and therefore add to the test data for each partition so that it
becomes:

1. within the range 1–8 (say 3)

2. less than 1 (say –3)

3. greater than 8 (say 11)

4. boundary value 1

5. boundary value 8

6. boundary value 0

7. boundary value 9.

which now gives many more combinations to use as test data.

�

BELL_C19.QXD 1/30/05 4:25 PM Page 281

282 Chapter 19 � Testing

This book surveys studies of the types of fault that occur and explains the different test-
ing methods, in a very readable way: Marc Roper, Software Testing, McGraw-Hill,
1994.

A readable practical review of testing techniques: Cem Kaner, Testing Computer
Software, John Wiley, 1999.

The following book describes lessons in debugging and testing learned at Microsoft.
The author, Steve Maguire, is a strong advocate of stepping through code using the
debugger as a good way of finding bugs. The examples given are in C: Steve
Maguire, Writing Solid Code, Microsoft Press, 1993.

19.2 There are four paths through the program, which can be exercised by the
following test data:

1 3 2 1 3

2 3 2 5 5

3 2 3 1 3

4 2 3 5 5

Test number Outcome

19.3 There are three paths through the program extract, including the path
where neither of the conditions in the if statements are true. But each
of the error messages can be triggered by two conditions. Suitable test
data is therefore:

1 5 6 OK

2 0 4 invalid

3 9 4 invalid

4 5 9 invalid

5 5 0 invalid

Test number Row Column Outcome

Further Reading•

BELL_C19.QXD 1/30/05 4:25 PM Page 282

This chapter is about collaborative ways of working – both informal and semi-formal.
We look at structured walkthroughs, inspections and pair programming. These aim to
improve software productivity and quality, and perhaps also enhance the enjoyment of
programming.

Programmers are often seen as loners. Given a clear specification, a programmer often
carries out the complete process of program design, coding and testing entirely on their
own. Programmers are seen as low-profile technicians in contrast to the articulate extro-
vert systems analysts. Thus a program is sometimes seen as a personal work of art, the
creation of an individual programmer. These attitudes deny that “two heads are better
than one”, that through discussion with others we can produce better work.

The common experience that someone else can spot errors better than the author
lead to the invention of the structured walkthrough. Credit for its invention belongs to
G. Weinberg, in his book The Psychology of Computer Programming. Weinberg suggest-
ed that programmers see their programs as an extension of themselves. He suggested
that we get very involved with our own creations and tend to regard them as manifesta-
tions of our own thoughts. We are unable to see mistakes in our own programs, since to
do so would be to find a fault in ourselves, and this, apparently, is unacceptable to us.

20.2 � The individual and the error

20.1 � Introduction

CHAPTER

20 Groups

This chapter explains:
� how to use structured walkthroughs

� how to use inspections

� how to carry out pair programming.

BELL_C20.QXD 1/30/05 4:25 PM Page 283

284 Chapter 20 � Groups

The term for this is cognitive dissonance. The solution is to seek help with fault finding. In
doing this we relinquish our private relationship with our work. Programming becomes
ego-less programming. This is a completely informal technique, carried out by colleagues in
a friendly manner. It is not a formalized method carried out at fixed times and made into
a rigid procedure of the organization. Indeed, to formalize ego-less programming would
be to destroy its ethos and therefore its effectiveness. If you get a friend or a colleague to
inspect your program, it is extraordinary to witness how quickly someone else can see a
fault that has been defeating you for hours. Studies also show that different people tend to
uncover different types of fault. This further suggests the use of team techniques.

This is simply the term for an organized meeting at which a program (or some other
product) is examined by a group of colleagues. The major aim of the meeting is to try
to find bugs which might otherwise go undetected for some time. (There are other
goals, which are explained later.) The word “structured” simply means “well organ-
ized”. The term “walkthrough” means the activity of the programmer explaining step
by step the working of his/her program. The reasoning behind structured walk-
throughs is just this: that by letting other people look at your program, errors will be
found much more quickly.

To walkthrough a program you need only:

� the specification

� the text of the program on paper.

In carrying out a walkthrough, a good approach is to study it one method at a time.
Some of the checks are fairly straightforward:

� variables initialized

� loops correctly initialized and terminated

� method calls have the correct parameters.

Another check depends on the logic of the method. Pretend to execute the method
as if you were a computer, avoiding following any calls into other methods. Check that:

� the logic of the method achieves its desired purpose.

During inspection you can also check that:

� variable and method names are meaningful

� indentation is clear and consistent.

The prime goal of a walkthrough is to find bugs, but checking for a weakness in style
may point to a bug.

The evidence from controlled experiments suggests that walkthroughs are a very
effective way of finding errors. In fact walkthroughs are at least as good a way of iden-
tifying bugs as actually running the program (doing testing).

20.3 � Structured walkthroughs

BELL_C20.QXD 1/30/05 4:25 PM Page 284

20.3 Structured walkthroughs 285

Although structured walkthroughs were initially used to find bugs in program code,
the technique is valuable for reviewing the products at every stage of development – the
requirements specification, a software specification, architectural design, component
design, the code, the test data, the results of testing, the documentation.

There are several key points in organizing walkthroughs successfully:

� gauge the size and membership of the group carefully so that there are plenty of
ideas, but so that everyone is fully involved

� expect participants to study the material prior to the meeting

� concentrate attention on the product rather than the person, to avoid criticizing the
author

� limit the length of the meeting, so that everyone knows that it is business-like

� control the meeting with the aid of agreed rules and an assertive chairperson

� restrict the activity to identifying problems, not solving them

� briefly document the faults (not the cures) for later reference.

The benefits of structured walkthroughs can be:

1. software quality is improved because

� more bugs are eliminated

� the software is easier to maintain, because it is clearer

2. programmer effort is reduced because

� specifications are clarified before implementation

� errors are detected early, and so costly rework is avoided

� the time spent at the meeting (and in preparation for it) is more than repaid in
time saved

3. meeting deadlines is improved because

� visibility of the project is better (so potential catastrophes are prevented)

� major errors are avoided early

4. programmer expertise is enhanced because

� everyone learns from everyone else

5. programmer morale is improved because

� people gain satisfaction from better work

� people get to find out what is going on

� people enjoy the discussions with colleagues.

BELL_C20.QXD 1/30/05 4:25 PM Page 285

286 Chapter 20 � Groups

Of course walkthroughs do mean that the individual has to be relaxed about pre-
senting their work to colleagues.

These are similar to structured walkthroughs – a group of people meet to review a piece
of work. But they are different from walkthroughs in several respects. Checklists are used
to ensure that no relevant considerations are ignored. Errors that are discovered are clas-
sified according to type and carefully recorded on forms. Statistics on errors are com-
puted, for example in terms of errors per 1,000 lines of code. Thus inspections are not
just well organized, they are completely formal. In addition management is informed of
the results of inspections, though usually they do not attend the meeting. Thus inspec-
tions are potentially more threatening to the programmer than walkthroughs.

There are other, minor, differences between inspections and walkthroughs.
Normally there are only four members in an inspection team:

� the moderator, who co-ordinates activities

� the person who designed the program component being inspected

� the programmer

� the tester – a person who acts as someone who will be responsible for testing the
component.

The essence of inspections is that the study of products is carried out under close
management supervision. Thus inspections are overtly a mechanism for increased con-
trol over programmers’ work, similar to the way that quality control is carried out on a
factory floor. Some programmers might feel threatened in this situation and become
defensive, perhaps trying to hide their mistakes. Perhaps this makes the discovery of
errors more painful, and programming a less enjoyable activity.

From an organizational point of view, keeping records of faults discovered during
inspections provides information to predict the quality of the software being written.
Also, by highlighting common mistakes it can be used to improve programmers self-
awareness and thereby improve their skills.

Here two people sit down together, looking at the same computer screen, and carry out
programming, including writing and applying tests.

The people have different roles. One has the use of the keyboard and mouse. They
are thinking and working on the implementation of the current piece of code (usually
a particular method). They are thinking on a small scale and locally. The other person
does two things:

� observe, looking for errors

� think more strategically.

20.5 � Pair programming

20.4 � Inspections

BELL_C20.QXD 1/30/05 4:25 PM Page 286

Summary 287

The strategic thinking considers the role of the method within the class, and whether
this method is appropriate within the context of the whole system. The person thinks
about such questions as: Which other components use it? Can the system be simplified so
that this method is just not needed? Can the method be generalized so that it is more wide-
ly useful? Is this method in the right place, or should it be relocated into some other class?

The pair periodically switch roles, so that overall they are working as equals. Pairs
don’t stay together, but change from day to day. It simply depends on who is available,
but the people are drawn from the same project team, so they have a shared under-
standing of the project. And no one forces people to pair up if they do not get along.

When a pair starts work, it may be that one person will have more experience or
expertise. Later, the gap narrows, so that they are genuinely collaborating on an equal
basis, one person’s strengths compensating for the other’s weaknesses.

The central feature of pair programming is that two people are communicating
intensely, sharing ideas, learning from each other, supporting each other, articulating
ideas verbally and solving problems. It is creative, sociable, enjoyable and effective. It is
claimed that pair programming improves productivity, code quality and job satisfaction.
Even though, at first sight, twice the effort is spent on development, the time is more
than reclaimed in more effective working.

Of course, pair programming means that pairs of people are working closely – almost
intimately – together. This depends on an organizational culture that is collaborative
and supportive.

Perhaps the ultimate method for collaborative working aimed at reducing bugs is open
source development. This is such an important technique that we devoted a whole sep-
arate chapter to the topic.

How effective are the techniques of walkthroughs, inspections and pair program-
ming? The answer is that they are surprisingly effective as compared with using testing.
We review the evidence in Chapter 31 on assessing methods.

20.6 � Discussion

Summary

A structured walkthrough is a meeting at which a document is examined by a group
of people in order to find errors. Structured walkthroughs are based on the prem-
ise that ideas that are shared will be the better for it. The careful organization of a
walkthrough is important. Walkthroughs can lead to improved software quality –
reliability and maintainability – because of the scrutiny of project material by a
group. Effort can be reduced and deadlines more easily met.

Inspections are a more formal approach to a group review meeting.

In pair programming, two people sit at the computer, working closely together on
design, coding and testing.

BELL_C20.QXD 1/30/05 4:25 PM Page 287

288 Chapter 20 � Groups

20.1 Assess the effectiveness of structured walkthroughs.

20.2 Evaluate pair programming.

20.3 Compare and contrast the structured walkthrough technique with pair programming.

20.4 Argue a case for either walkthroughs or pair programming and suggest how it might
be introduced into an organization.

20.5 Try to introduce ego-less programming into your college, university or organization
in the following way. When you have written your next program and have a clean-
compiled listing, ask one of your colleagues to look through it for you. Explain that
you would appreciate comments of any kind on the program’s clarity, correctness,
etc. Explain that you are trying to identify problems sooner rather than later. Offer to
do the same in return.

20.6 Suggest features for software tools that could assist in using each of the following
techniques:

� walkthroughs

� inspections.

Exercises•

Further reading•
The classic book which introduced the idea of ego-less programming, the precursor to

walkthroughs and inspections. It deals at length and in a most interesting way with
the informal, social aspects of working in a team. It is most enjoyable to read. G.
Weinberg, The Psychology of Computer Programming, Van Nostrand Reinhold, l971.

The original reference describing the technique of inspections: M.E. Fagan, Design
and code inspections to reduce errors in program development, IBM Systems
Journal, 15 (3) (July 1976), pp. 182–211.

Full of practical advice and case studies, jointly authored by one of the industry gurus,
all you ever wanted to know about inspections is explained in: Tom Gilb and
Dorothy Graham, Software Inspection, Addison-Wesley, 1993.

A collection of useful papers on how to do inspections and what the benefits are: David
A. Wheeler, Bill Brykczynski and Reginald N. Meeson, Software Inspection: An
Industry Best Practice, IEEE Computer Society Press, 1996.

There is a website simply for pair programming, with links to sites that report on eval-
uations, at: http://www.pairprogramming.com/

This is a useful book on pair programming: Laurie Williams and Robert Kessler, Pair
Programming Illuminated, Addison-Wesley, 2002.

BELL_C20.QXD 1/30/05 4:25 PM Page 288

PART

E PROCESS MODELS

BELL_CPARTE.QXD 1/30/05 4:31 PM Page 289

BELL_CPARTE.QXD 1/30/05 4:31 PM Page 290

9jabaz
Download more books at 9jabaz.ng for free!

The waterfall model is an established approach that dominated software development
for a number of years and is widely used. It has the virtue of simplicity.

In the waterfall model, software development is split up into a number of independent
steps (Figure 21.1). These steps are carried out in sequence one after the other. Each
stage produces a product which is the input into the next stage. It is important to real-
ize that each stage is pursued until its conclusion before the next stage is begun. Thus,
for example, all the coding is completed before testing starts.

Like all process models, the waterfall model says nothing about what methods are
used at any of its stages, nor does it stipulate what notations are used for the products
at each stage. (This whole book is about the different methods and notations that are
available.) It merely provides a framework for a development.

Different people and authors have slightly different ideas about what exactly the
steps should be. For example, some people include a feasibility study as the first step.
However, the essentials of the approach are the same.

21.2 � Principles of the model

21.1 � Introduction

CHAPTER

21 The waterfall model

This chapter explains:
� how to use the waterfall model for software development

� the principles behind the waterfall model.

BELL_C21.QXD 1/30/05 4:25 PM Page 291

9jabaz
Download more books at 9jabaz.ng for free!

292 Chapter 21 � The waterfall model

The principles of the waterfall model are:

� it is a series of steps (like a factory production line)

� each step is well defined

� each step creates a definite product (in some cases a piece of paper)

� each product forms the basis for the next step

� the correctness of each step can be checked (verification or validation).

The waterfall model gets its name because each stage produces a product, like a
stream of water which passes on to the next stage. So the complete development
process is like a series of small waterfalls – see Figure 21.1. Just as water cannot flow up
a waterfall, information does not flow backwards in the waterfall model. Once a step is
complete, there is no going back.

Requirements
Engineering

Architectural
design

Detailed
design

Coding

Acceptance

Unit
testing

System
testing

Figure 21.1 The waterfall model

SELF-TEST QUESTION

21.1 Draw up a process model for preparing a meal, including buying the
ingredients and washing up afterwards. Don’t forget to identify the
product at each stage.

The inputs and outputs for each step of the waterfall model are shown in this
table.

BELL_C21.QXD 1/30/05 4:25 PM Page 292

9jabaz
Download more books at 9jabaz.ng for free!

21.3 Feedback between stages 293

One of the drawbacks of a strict waterfall model is that the water cannot flow upwards –
if a problem is found at a particular stage in development, there is no way of redoing an
earlier stage in order to rectify the problem. For example, testing usually finds errors in
the (preceding) coding stage, but in the strict waterfall approach, the coding cannot be
corrected. When preparing a meal, if you find that some ingredient is missing when you
get to the stage of cooking the vegetables, you need to go back to the shopping stage.

To overcome this obvious drawback, a variation of the waterfall model provides for
feedback between adjoining stages, so that a problem uncovered at one stage can cause
remedial action to be taken at the previous stage. Thus the waterfall model with feed-
back between stages is as shown in Figure 21.2.

You will see, however, that this approach only provides for feedback to the immedi-
ately preceding step. But, in reality, any step may necessitate changes in any of the pre-
ceding stages. For example:

� during system testing, an architectural design fault is revealed

� during user acceptance, a problem with the specification becomes evident.

So the reality of using the waterfall model is that development does not proceed in
one direction, step by step. Instead, there is commonly frequent feedback to earlier
stages, requiring rework (which can seriously disrupt the timescale of a project). To be
more realistic, Figure 21.2 should show arrows leading backwards from every activity
to every preceding activity. This, of course, undermines the model and any planning.

21.3 � Feedback between stages

requirements engineering none requirements specification

architectural design requirements specification architectural design

detailed design architectural design module specifications

coding module specifications coding

unit testing coding tested modules

system testing tested modules tested system

acceptance tested system satisfied client

Stage Input Output

SELF-TEST QUESTION

21.2 Someone enhances the waterfall model by including a user interface
design stage immediately after the requirements engineering stage.
What are its inputs and outputs?

BELL_C21.QXD 1/30/05 4:25 PM Page 293

9jabaz
Download more books at 9jabaz.ng for free!

294 Chapter 21 � The waterfall model

The instigators of the waterfall model clearly and wrongly perceived software devel-
opment to be simple and straightforward, with development proceeding smoothly
onwards from stage to stage without disruption. But, as we have seen, there are funda-
mental problems with using the waterfall model as a basis for a project plan.
Nonetheless, it is common to use this process model.

The strengths of the waterfall model are:

� it divides a complex task into smaller, more manageable tasks

� each task produces a well-defined deliverable.

Thus the process is well-defined. Anyone can see exactly what has been completed and
what remains to be done.

Perhaps the most serious problem with the waterfall model is that the client only gets
to see the product at the very end of the development – and if it is not what they
want, it is too late! The problem is the huge gap between requirements analysis at an
early stage in a project and acceptance testing near the end. There is no opportunity
to validate the user requirements at an early stage in development. This is a major prob-
lem with the waterfall model.

But there are also less obvious, but equally important drawbacks. If a problem is dis-
covered at any stage which reveals a mistake at an earlier stage, nothing can be done
about it.

21.4 � Discussion

Requirements
Engineering

Architectural
design

Detailed
design

Coding

Acceptance

Unit
testing

System
testing

Figure 21.2 Modified waterfall model with feedback

BELL_C21.QXD 1/30/05 4:25 PM Page 294

Exercises 295

21.1 Draw up a waterfall process model for a large civil engineering project, such as
building a road bridge across the channel between England and France. Identify
similarities and differences between this project and a large software development
project.

21.2 Validation and verification are clearly important. Identify where validation is carried out
and where verification is carried out in the waterfall model.

21.3 Create an outline plan for developing each of the systems in Appendix A using the
waterfall model.

21.4 Evaluate the waterfall model using the following criteria:

� capability to accommodate risk

� capability to meet user requirements

� capability to respond to changed requirements

� visibility of the progress of the project.

21.5 Identify the main goals and the main techniques of each of the following process
models:

� waterfall

� spiral

� prototyping

� incremental

� open source

� XP

� UP

21.6 “The waterfall model is useless.” Discuss.

Exercises

Summary

The essence and the strengths of the waterfall model are that:

� it divides a complex task into smaller, more manageable tasks

� each task produces a well-defined deliverable.

� each stage is carried out in sequence – there is no going back.

The goal of this approach is to maintain control during development.

•

BELL_C21.QXD 1/30/05 4:25 PM Page 295

296 Chapter 21 � The waterfall model

Answers to self-test questions

21.1 1. buy ingredients (product is ingredients)

2. prepare vegetables (prepared vegetables)

3. cook meat (cooked meat)

4. cook vegetables (cooked vegetables)

5. serve meal (meal on table)

6. wash up (clean utensils).

21.2 The input is the requirements specification.
The output is the specification of the user interface.

BELL_C21.QXD 1/30/05 4:25 PM Page 296

The main feature of the spiral model is the recognition that there is often enormous
uncertainty at many stages during a software development project. It therefore incor-
porates periodic risk assessment. These assessments are followed by identifying alterna-
tive actions, selection of the best action and re-planning.

This model is shown in Figure 22.1. Progress is shown as a line that spirals out from near
the centre of the diagram. Each cycle of the project passes through four steps, shown as
the four quarters of the diagram. The project spirals outwards from the center of the dia-
gram to convey the increasing expenditure of time, effort – and progress.

As the diagram shows, each cycle consists of four steps:

1. analyze risks and plan

2. analyze requirements

3. construct

4. evaluate.

22.2 � The spiral model

22.1 � Introduction

CHAPTER

22 The spiral model

This chapter:
� explains the principles behind the spiral model

� explains some of the practical aspects of using this model.

BELL_C22.QXD 1/30/05 4:26 PM Page 297

298 Chapter 22 � The spiral model

The distinctive feature of the spiral model is that it makes explicit the idea of risk.
We have seen (Chapter 1) that during software development there can be difficult prob-
lems to be overcome. The spiral model explicitly recognizes that there are uncertainties
associated with software development and that they should be dealt with as carefully as
possible. Examples of risks that are commonly experienced are:

� the client changes some of the requirements

� during a long development, the users’ requirements are neglected

� someone leaves the development team

� one of the component tasks of the development goes beyond its deadline

� the software performs too slowly

� the software occupies too much main memory

� a new software development tool or technology becomes available

� a user requirement was misunderstood

� the target hardware configuration changes

� an intransigent bug

� a competitor launches a rival package onto the market.

Ideally, any process model should make provision for these and any other pitfalls.
However, the spiral model makes explicit and repeated provision for dealing with areas of
uncertainty like these and thereby minimizes the risk to the software project. Thus the
most important phase of each cycle is the risk analysis stage. Actions can then be taken to
control the project, rescue the project, or, as happens sometimes, abandon the project.

Many decisions are taken during software development, and for every decision there
is a risk that something will go wrong or a mistake will be made. The later a problem
is detected, the more effort is needed to fix it. The spiral model approach is therefore

Construct

Analyze
requirements

Evaluate

Analyze risks
and plan

Figure 22.1 The spiral model

BELL_C22.QXD 1/30/05 4:26 PM Page 298

22.2 The spiral model 299

to try to discover errors frequently – at each cycle. This means they are uncovered early.
Then something can be done about them immediately.

In detail, the four steps of each cycle are as follows.

Stage 1 – risk analysis and planning
This stage is the essential ingredient of the spiral model. It consists of:

1. establishing the objectives of the product of this stage (e.g. performance, func-
tionality, ease of change)

2. identifying the constraints that affect this stage (e.g. cost, deadlines, interfaces with
other software components)

3. identifying risks

4. identifying the alternative ways of implementing this stage (buying it, reusing
something else, developing it one way, developing it another way)

5. evaluating the alternative implementation schemes against the criteria set by the
objectives and the constraints

6. deciding how to overcome the risk

7. establishing deadlines for the next stage of the project and deciding how many
people will be involved.

It is at this stage in each phase of the project that considerable flexibility can be exer-
cised. In effect, the whole of the progress of the project is reviewed and options for con-
tinuing are investigated. Use is made of whatever method is appropriate at that stage of
the project.

For example, if meeting user requirements is identified as a potential problem,
then the decision might be taken to carry out some prototyping to clarify the users
needs. (But the use of prototyping, or any other specific technique, is not part of the
spiral model.)

Stage 2 – analysis of requirements
This consists of establishing the requirements for the next stage of the project.

Stage 3 – construction
Next the development of a product is carried out. This stage may involve design, imple-
mentation, validation and verification, depending on the nature of the product. Examples
of the product of this stage are a specification, an architectural design, a prototype or a
software component.

Stage 4 – evaluation
Finally, an evaluation is used to establish whether the project is on track and whether all
the participants are happy with the plans. This leads on to the next cycle of the project.

BELL_C22.QXD 1/30/05 4:26 PM Page 299

300 Chapter 22 � The spiral model

Note that the number of cycles is not prescribed by the spiral model – as many cycles
as necessary are used. Further, the number of cycles is not known at the outset of a proj-
ect, but is decided as the project proceeds on the basis of the evaluations that are car-
ried out at the end of each cycle.

To illustrate how the spiral model works, we will use the example of the ATM software
described in Appendix A. Consider part of the project – the creation of a driver for the
card reader. We treat this as one spiral model cycle.

At the outset of this cycle, stage 1, the objective is confirmed as the production of a
driver to interface with the card reader, providing high-level facilities for the application.
There is a deadline (to fit in with the timescales of the project) and a budgeted cost.

Risks are as follows:

� the driver is delivered late, so that the overall project is delayed

� the driver is unreliable

� the specification of the behavior of the card reader is inaccurate

� the card reader does not work properly

� the card reader is not available in time for testing

� the driver is over-budget

� the driver does not meet the specification for interfacing with the application

� there is a shortage of person power to carry out the development.

Possible implementation plans are:

� commission another developer

� write the driver in-house

� modify the primitive driver provided by the card reader supplier.

The decision as to which minimal-risk approach to use depends on factors that are
peculiar to the organization, such as the availability of appropriate people. Writing the
driver in-house may reduce some of the risks, because the development is under direct
control. If the decision is made to develop in-house, appropriate methods for design,
coding and testing are selected. (These depend on factors outside the scope of the spi-
ral model.) Finally the deadlines are decided and people allocated.

At stage 2, the detailed requirements are drawn up. This includes the specification
for the interface with the application, the specification of the card reader and the nature
of validation and verification.

At stage 3, the driver is designed, coded and tested.
At stage 4, the degree of success of the driver is assessed against its requirements.

This leads to any necessary remedial action in the first stage of the next cycle.

22.3 � Case study

BELL_C22.QXD 1/30/05 4:26 PM Page 300

Exercises 301

Along with other process models, the spiral model does not say how each step (for
example design) is carried out. But it is common to use another process model, pro-
totyping, during one or more cycles in order to resolve uncertainty. This might be
either to clarify requirements or to establish the technical feasibility of some course
of action.

The spiral model attempts to solve some of the problems of the waterfall model,
while incorporating its best features – planning, phases, intermediate products. The spi-
ral model therefore offers greater flexibility than the waterfall model.

22.4 � Discussion

Exercises

SELF-TEST QUESTION

22.1 Identify one advantage and one disadvantage of the spiral model.

Summary

The spiral model consists of a series of cycles. Each cycle consists of a series of steps.
At every cycle, any risks to the successful progress of the project are assessed. Then
an appropriate method is selected in order to minimize that risk. Thus the spiral
model is essentially a cautious and robust approach to development.

The spiral model consists of a repeated cycle of small steps designed to assess and
deal with risks at every cycle. Thus the spiral model is termed an iterative approach.

22.1 You are preparing a meal for special guests. What risks can you anticipate? How could
you use the ideas of the spiral model to cope with problems as they unexpectedly
arise? (Suggestions for possible disruptions are: power failure, late guests, missing
ingredients and burnt food. But make plans for other contingencies.)

22.2 Using the spiral model, plan how to carry out the development of the user interface
part of the ATM system (Appendix A).

22.3 Assess the spiral model for software development. To do this, formulate a list of cri-
teria and then use them.

•

BELL_C22.QXD 1/30/05 4:26 PM Page 301

302 Chapter 22 � The spiral model

For the definitive explanation of the spiral model see: Barry W. Boehm, A spiral model
of software development and enhancement, IEEE Computer, 21 (5) (May 1988),
pp. 61–72.

Answer to self-test question

22.1 Advantage: flexibility in the face of risks.

Disadvantage: absence of an early fixed plan.

Further reading•

BELL_C22.QXD 1/30/05 4:26 PM Page 302

Prototyping is a process model that offers a solution to the problem of ensuring that
the customer gets what they want. In prototyping, the customer is presented at a very
early stage with a working version of the system. (It may not be a complete system, but
it is at least part of the system and it works.) They can check that it does what they want,
or specify modifications. The developer amends the system and demonstrates it again
and again until it does what the customer wants. Thus the main purpose of prototyp-
ing is ensuring that the user’s needs are satisfied. (We shall see that there are, however,
sometimes other goals of prototyping.)

When a new car is being developed, one or more prototypes will be individually built.
These prototypes are tested intensively before a production line is set up. It is possible
to follow a similar approach with software development. Prototyping is the practice of
building an early version of a system which does not necessarily reflect all the features
of the final system, but rather those which are of interest.

The purpose is to aid the analysis and design stages of a project by enabling users to
see very early what the system will do, that is, to facilitate validation. Users seldom have

23.2 � Definition

23.1 � Introduction

CHAPTER

23 Prototyping

This chapter:
� explains how to carry out prototyping

� explains the principles behind prototyping

� distinguishes between evolutionary and throwaway prototyping.

BELL_C23.QXD 1/30/05 4:26 PM Page 303

304 Chapter 23 � Prototyping

a clear, concise understanding of their needs. The conventional specification is a narra-
tive description of a system that may be technical and time-consuming to read. The
larger the development team, including user representatives, the more difficult com-
munication becomes. Prototyping is one technique that attempts to address these prob-
lems and provide possible solutions. The benefits of developing and demonstrating a
prototype early in the software process are:

� misunderstandings between software developers and users may be identified

� missing facilities may be revealed

� difficult-to-use or confusing facilities may be identified and refined

� software developers may find incomplete and/or inconsistent requirements.

There are sometimes other objectives:

� to create an acceptable user interface

� a working, albeit limited, system is available quickly to demonstrate the feasibility
and usefulness of the application to management

� user training – a prototype system can be used for training users before the final sys-
tem has been delivered

� to establish that some new technology will provide the facilities needed (e.g. does
Java provide sufficient security for electronic transfer of funds?).

An example of using prototyping for user interface design is given in Chapter 5.

There are two types of prototype:

1. throwaway – the various versions of the system are constructed and then thrown
away. (The final system is implemented in some different way.)

2. evolutionary – an initial implementation evolves towards the final version. (The
prototype becomes the final system.)

For example, a throwaway prototype might be written very quickly in Visual Basic
to demonstrate the essential functions that a system will carry out. But then the soft-
ware might be rewritten using careful and systematic development methods.

Alternatively, an evolutionary prototype might be implemented in C# to demon-
strate to the user the main features of the system. Having checked that the system does
what is required, new features and facilities are added to the prototype, gradually trans-
forming it into its complete form.

In throwaway prototyping, the priority is to understand requirements that are
unclear and therefore requirements that are straightforward may never need to be
prototyped. In evolutionary prototyping, the first priority is to incorporate well-
understood requirements into the prototype then to move on to those requirements
that are unclear.

23.3 � Throwaway or evolutionary?

BELL_C23.QXD 1/30/05 4:26 PM Page 304

23.4 Throwaway prototyping 305

Therefore, in summary:

� the product of a throwaway prototype is a specification

� the product of an evolutionary prototype is a system.

The starting point for throwaway prototyping is an outline specification for the soft-
ware. A throwaway prototype implements only those requirements that are poorly
understood. It is discarded after the desired information is learned. After the prototype
is complete, the developer writes a full specification, incorporating what was learned,
and then constructs a full-scale system based on that specification. Thus the purpose of
throwaway prototyping is the formulation of a validated specification.

Throwaway prototyping is sometimes called rapid prototyping and as the name
suggests, a rapid prototype should cost very little and take very little time to develop.
The emphasis is on using whatever methods are available to produce a system that can
be demonstrated to the user. Typically the only noticeable difference between the
prototype and the desired system is its performance, or in the volumes of data that it
handles. Rapid prototyping seems to contradict the idea of using systematic, careful
methods during development; a prototype is produced in as quick (and perhaps as
dirty) a manner as possible.

To be effective, throwaway prototyping is carried out within a systematic framework.
An overview of throwaway prototype development is shown in Figure 23.1.

The stages of throwaway prototyping are:

1. draw up an outline specification – the first step in throwaway prototyping is the
creation of an initial, often partial, specification. This specification contains areas
of uncertainty.

2. establish objectives – what is the prototype to be used for? What aspects of the pro-
posed system should it reflect? What can be learned from the prototype? The
objective may be to develop a system to prototype the user interface, to validate
functional requirements, to explore uncertain new technologies or to demonstrate
the feasibility of the application to management. The same prototype cannot meet
all objectives. The areas that are most often prototyped are the user interface, and
uncertain or vague functions.

3. select functions – the next stage is to decide what to put into and what to leave out
of the prototype. This is determined by the objectives of the system. If the purpose
of prototyping is to clarify users’ requirements, then the uncertain areas are the
candidates for prototyping. The development of a working model allows the devel-
opers to make sure that the solution they are proposing will satisfy the require-
ments and perform effectively. Depending on the objectives, it may be decided to
prototype all system functions but at reduced level. Alternatively a subset of system
functions may be included in the prototype.

23.4 � Throwaway prototyping

BELL_C23.QXD 1/30/05 4:26 PM Page 305

306 Chapter 23 � Prototyping

4. construct prototype – speed and cost of construction of the prototype is crucial. Fast,
low-cost construction is normally achieved by ignoring the normal quality require-
ments for the final product (a “quick and dirty” approach), unless this is in conflict
with the objectives.

5. evaluate (check with the user) – the users use the prototype. This is more effective
than watching a demonstration of the software. During evaluation, inconsistencies
and shortcomings in the developer’s perception of the customer requirements are
uncovered. The prototype acts as an effective communication medium between the
developer and customer.

6. iterate (refine) – the prototype is rapidly modified, evaluation is carried out and
the process repeated until the prototype meets the objectives (usually an agreed
specification).

7. deliver the specification – the product of the prototyping process is a specifica-
tion that meets the users’ requirements. Since the working prototype has been
validated through interaction with the client, it is reasonable to expect that the
resultant specification document will be correct. When the requirements are
clearly established, the prototype is thrown away. At this stage, a different soft-
ware process model, such as the waterfall model, is employed to develop the
software.

Construct
prototype

Check with
user

Refine
prototype

Deliver the
specification

Draw up an outline
specification

[User requires change]

[User happy]

Figure 23.1 Throwaway prototyping

BELL_C23.QXD 1/30/05 4:26 PM Page 306

23.5 Evolutionary prototyping 307

Users should resist the temptation to turn a throwaway prototype into a delivered
system that is put into use. The reasons for this are:

1. important system characteristics, such as performance, security and reliability, will
probably have been ignored during prototype development

2. during the prototype development, the prototype will have been changed to reflect
user needs. It is likely that these changes will have been made in an uncontrolled
way and not properly documented other than in the prototype code

3. the changes made during prototype development will probably have degraded the
architectural structure of the software. Therefore the software may be difficult and
expensive to maintain.

This type of prototyping is based on the idea of developing an initial implementation,
exposing it to user comment and refining it through repeated stages until an adequate
system has been developed.

To be effective, evolutionary prototyping is carried out within a systematic frame-
work. Evolutionary prototype development is shown in Figure 23.2. Note the similar-
ities and differences between this figure and Figure 23.1.

23.5 � Evolutionary prototyping

Construct
prototype

Check with
user

Refine
prototype

Deliver the working
system

Draw up initial
specification

[User requires change]

[User happy]

Figure 23.2 Evolutionary prototyping

BELL_C23.QXD 1/30/05 4:26 PM Page 307

308 Chapter 23 � Prototyping

A throwaway prototype needs to be created quickly so that users can comment on it at
an early stage. A prototype also needs to be altered quickly to incorporate the users’
views as the prototype changes to meet their requirements. What we really need is some
magical tool that would enable us to create prototypes at high speed. But there are no
magical tools. If there were, we would use them for everything. Instead we use what-
ever tools and methods that are suitable.

Here are some techniques for fast prototyping.

Use a high-level language
High-level languages include many facilities which normally have to be built from more
primitive constructs in other languages. Smalltalk is a language that can be used to pro-
totype adventurous GUIs with very little programmer effort. A drawback of Smalltalk
is that it can be a massive consumer of processor time and memory, so that after pro-
totyping it may be necessary to rewrite the system in some other language. So Smalltalk
may only be usable for throwaway prototyping.

Visual Basic has features for rapid software development, including the capacity to
create a GUI using drag-and-drop from a palette.

23.6 � Rapid prototyping techniques

The stages are:

1. requirements definition (initial specification) – a stage of thorough analysis is used
to create an initial specification for the software.

2. prototype construction – a prototype is built in a quality manner, including design,
documentation, and thorough verification.

3. evaluation (check with the user) – during evaluation, problems in the developer’s
perception of the customer requirements are uncovered. The prototypes are the
communication medium that enables the developer and customer to communicate
with each other.

4. iteration (refine the prototype) – evaluation is carried out repeatedly until the pro-
totype meets the objectives. The specification is updated with every iteration.

The product is a fully working system.

SELF-TEST QUESTION

23.1 What are the differences between throwaway and evolutionary proto-
typing?

BELL_C23.QXD 1/30/05 4:26 PM Page 308

9jabaz
Download more books at 9jabaz.ng for free!

23.6 Rapid prototyping techniques 309

Reuse components
The time needed to develop a prototype can be reduced if many parts of the system can
be reused rather than designed and implemented. Prototypes can be constructed quick-
ly if there is a library of reusable components and some mechanism to combine the
components into systems. The reusable components may also be used in the final sys-
tem, thus reducing its development cost. An example of this approach to prototyping
is found in the Unix operating system (Chapter 18 on Scripting). The success of
Smalltalk as a prototyping language is as much due to its reusable component libraries
as to the inbuilt language facilities.

Use a stand-alone machine
It is often possible to construct a system that appears realistic, but is in fact massively
incomplete. For example, if a network solution is to be developed, a prototype running
on a stand-alone computer is created. This simulates the complete system for the pur-
pose of validation. But the developer is freed from considerations of networking, large
data volumes and possible performance problems that would need to be considered in
the production version of the system.

Ignore error handling
In many systems as much as one-half of the software is concerned with error handling.
This includes:

� validation of user data input from keyboards

� handling input-output device errors

� exception handling software

� fault tolerant software.

Omit features
It may be that some features can simply be omitted in a prototype. Examples are log-
ging software, security and authentication features. These components of a production-
quality system can be significantly costly in development effort and so their omission
makes construction of a prototype quicker.

Ignore functionality
This type of prototype is aimed simply at establishing an acceptable user interface. For
example, suppose we were setting out to develop a new word processor (Appendix A).
We could, very quickly, create a mock-up of what would appear on the screen, while the
actual functions of the word processor are simply not implemented. This type of pro-
totype is often used during the design of the user interface (see Chapter 5).

BELL_C23.QXD 1/30/05 4:26 PM Page 309

310 Chapter 23 � Prototyping

Advantages
What are the advantages of prototyping? During requirements specification, the devel-
oper can show the user a suggested working system at a very early stage. Users are not
always certain what they want a system to do. It is difficult for users to understand prop-
erly and be able to state detailed functional requirements unambiguously before they
have an opportunity to experiment interactively with the options. A prototype gives the
user a very clear picture of what the system will look like and what it will do. By exam-
ining options in the various versions of the prototype, the users are stimulated to dis-
cover requirements that they might not have thought of until after full implementation
using any other method. The user is able to tell the developer their views about the sys-
tem, and modifications can be made. The value lies in better communication between
user and analyst and validation is carried out early in the life of the project. Thus pro-
totyping can eliminate many of the requirement errors in the very early stages of a proj-
ect. The greatest savings in time and effort stem from avoiding the work in changing a
system that does not do what the user really wanted.

Prototyping promotes a participatory approach to development, and when users are
involved, they often gain confidence in a system. They see first hand the problems and
errors, but they also see the mistakes being resolved quickly.

The advantages of prototyping can be:

� enables developers to cope with lack of clarity in requirements

� gives the user the opportunity to change their mind before commitment to the final
system

� user requirements are easier to determine

� systems are developed faster

� development effort is reduced because the resultant system is the right system

� maintenance effort is reduced because the system meets the users’ needs

� end user involvement is facilitated

� user-developer communication is enhanced

� users are not frustrated while they wait for the final system, because they can see a
working system

� increased chance that a system will be more user friendly

� systems are easier for end users to learn and use because users know what to expect

� enables a system to be gradually introduced into an organization

� facilitates user training while development is going on

� increased customer satisfaction with the delivered software.

The question about prototyping is whether the cost of constructing the prototypes
is offset by the savings.

23.7 � Discussion

BELL_C23.QXD 1/30/05 4:26 PM Page 310

23.7 Discussion 311

Pitfalls
For users, the problems of prototyping are:

� because prototyping is carried out in an artificial environment, users may miss some
of the shortcomings

� undue user expectations – the ability of the developers to create a prototype quick-
ly may raise undue expectations that the final system will soon be complete. They
see a partial system and may not understand that it is not the finished system

� inconsistencies between a prototype and the final system – if the prototype is a
throwaway, the end product may not be exactly like the prototype. In other words,
what the user sees may not be what the user gets

� users who are never satisfied because they are given too much opportunity to
change the development of the system.

For software engineers, the problems can be:

� incomplete analysis – because prototypes are produced quickly, developers may be
tempted to plunge into prototyping before sufficient requirements analysis has
taken place. This may result in a system that has a good user interface but is not
properly functional. This is how the reputation of prototypes which are quick but
dirty came about.

� iteration is not easily accepted by some designers, because it necessitates discarding
their own work

� omission of non-functional requirements, since a prototype focuses only on func-
tionality.

The project management problems of using prototyping may be:

� estimating, planning and managing a prototyping project can be difficult because it
can be hard to predict how many iterations of prototyping will take place

� procedures for change and configuration management may be unsuitable for con-
trolling the rapid change inherent in prototyping

� many project management structures are set up assuming a process model, like the
waterfall model, that generates regular deliverables to assess progress. However,
prototypes usually evolve so quickly that it is not cost effective to keep pace with the
documentation.

Maintenance of a system constructed using evolutionary prototyping can be difficult
and costly because continual change tends to corrupt the structure of the prototype.

Prototyping may not always be an appropriate technique, for example, in:

� embedded software

� real-time control software

� scientific and engineering numerical computational software.

BELL_C23.QXD 1/30/05 4:26 PM Page 311

312 Chapter 23 � Prototyping

23.1 Draw up a prototyping model for preparing a meal, including buying the ingredi-
ents and washing up afterwards. Don’t forget to identify the product at each stage.

23.2 Draw up a prototyping model for a large civil engineering project, such as building
a road bridge across the channel between England and France. Identify similarities
and differences between this project and a large software development project.

23.3 Validation and verification are clearly important during software development. Identify
where validation and verification are carried out in prototyping.

23.4 Compare and contrast throwaway with evolutionary prototyping.

23.5 Review the advantages of prototyping.

23.6 Review the techniques that are available for constructing a prototype easily and
quickly.

23.7 Assess whether and how prototyping might be used in the development of each of
the systems described in Appendix A.

SELF-TEST QUESTION

23.2 Identify one advantage and one disadvantage of prototyping.

Summary

The central goal of prototyping is to satisfy users’ requirements. The key feature
of the prototyping process model is the repeated demonstration of prototypes
to users.

There are two approaches to prototyping – evolutionary and throwaway:

� in evolutionary prototyping an initial prototype evolves as requirements are
clarified so that it becomes the final system

� throwaway prototyping uses rapid techniques to construct prototypes that are
thrown away once users’ requirements have been established.

It is important to establish the goal of using prototyping as part of a particular
project. Although the goal is usually clarifying requirements, prototyping can also
be used to design the user interface, demonstrate feasibility, verify that new tech-
nology will work or provide a training system.

Exercises•

BELL_C23.QXD 1/30/05 4:26 PM Page 312

Answers to self-test questions 313

23.8 Compare and contrast the process models waterfall, spiral, extreme programming
and prototyping using the following criteria:

� capability to accommodate risk

� capability to respond to changed requirements

� capability to meet user requirements.

23.9 How is prototyping different from hacking?

Throwaway Evolutionary

Answers to self-test questions

23.1

23.2 Advantage: early validation of user requirements.

Disadvantage: need for suitable tool.

product specification system

starting point unclear requirements outline specification

construction quick and dirty quality

BELL_C23.QXD 1/30/05 4:26 PM Page 313

This chapter looks at approaches to developing software bit by bit. The appeal of these
approaches is reduced risk and a product that appears (at least in part) earlier. The risks
that can be accommodated include changed requirements and delays to deadlines.
Piecemeal product delivery is a great morale booster and helps ensure that requirements
are being met.

Some of these approaches address the whole of software development, while others
concentrate on system integration and testing.

There are several approaches to incremental implementation:

� top-down

� bottom-up

� middle-out

� use case based.

24.1 � Introduction

CHAPTER

24 Incremental
development

This chapter:
� explains the need for incremental development

� explains how to carry out top-down development

� explains how to carry out bottom-up development

� explains how to carry out middle-out development

� explains how to carry out use case based development.

BELL_C24.QXD 1/30/05 4:26 PM Page 314

24.3 Test beds 315

Here is a possible scenario: a client and a developer establish a requirements specifica-
tion and a deadline for some software. The two part company until some time later,
near the deadline. Then they have this conversation:

Client: “How is it going?”
Developer: “Very well. It is 95% complete.”
Client: “What can you show me.”
Developer: “Well, er, nothing.”

This is somewhat frustrating for the client. Some time has passed but there is noth-
ing visible. There may well be some design documents, such as UML diagrams, but they
are unintelligible to the client. The client has to continue to trust that the developer will
deliver the goods. Incremental development avoids this unfortunate conversation.

There is another problem scenario. Anyone who has ever written a sizeable program
knows that if you code the whole thing, compile it and run it, there is a gigantic prob-
lem of testing and debugging. Similarly with software, if all the components are put
together simultaneously, it is almost impossible to locate the bugs. Instead some piece-
meal strategy is essential.

Why is it that system testing is so time-consuming? After all, if all the individual com-
ponents work correctly, why don’t they all work when they are combined? The answer
is, of course, that it is precisely in their interaction that errors will be exposed. For
example, there may be a discrepancy in understanding the exact task of a method or the
nature of the parameters to be supplied.

Thus we have seen that there are problems with big bang approaches.

We have established the need to construct software in an incremental fashion and we
will look at four approaches. We will look at each of these in turn, after we have exam-
ined the problem of test beds. When a bridge or a building is being constructed, scaf-
folding is used. It has two purposes – to enable access to the structure and to support
the structure. For example, an arched stone bridge needs considerable support as it is
being built. Similarly, software needs support structures as it is being integrated.

An early and essential task is to construct a test harness or test bed for individual
components. This is specially constructed software whose sole function is to invoke a
component under test in a way that is consistent with its eventual role in the com-
plete system. A test bed consists of drivers to call the methods of the components,
and stubs to substitute for methods not yet integrated into the testing.

Once unit testing has been completed, further support software is required as the
system is integrated. Rather than bring all the components together at once, which is a
big bang approach, it is probably better to assemble them one by one. But then we need
stubs to stand in for the missing components.

24.3 � Test beds

24.2 � Big-bang implementation

BELL_C24.QXD 1/30/05 4:26 PM Page 315

Considerable time can be spent on the construction of test harnesses. Worse still,
they are usually thrown away when testing is complete. This is like a carpenter who spe-
cially makes a new set of tools to build a new house, and then destroys the tools when
the house is complete. (The analogy is intended to demonstrate the waste of effort that
is involved.)

Finding out exactly where a fault is located is easier using incremental implementa-
tion. This is because components are incorporated one at a time. Thus there is a high
probability that any fault lies in the single new component or in its interface with the
existing components

This starts with the architectural design for the software. Top-down development is
an incremental approach that starts with the top components of the software. Now
object-oriented systems do not usually possess a top – object-oriented software does
not naturally possess a hierarchical structure. But while most object-oriented systems
are non-hierarchical, some are. Chapter 12 on software patterns describes an archi-
tecture in which the software consists of layers. However, arguably, the user interface
is the top-most component of object-oriented software. It is the layer of software that
calls up the functionality provided by the remainder of the software. So top-down
development starts with the implementation of the user interface. Stubs are used to
stand in for called but as yet unwritten lower-level components. Test data is con-
structed, the system is assembled and tested. An immediate outcome is that we can
very quickly have something that works. Not only that but it is the most visible part
of the system. We also can have something that can be demonstrated to the client as
performing an imitation of the total system.

Implementation proceeds by selecting lower-level components (formerly stubs) for
coding and incorporation into the system. In general, at any stage in the development
there are (see Figure 24.1):

� higher-level components which have already been tested

� the single component which is under test

� stubs.

The strengths of top-down implementation are:

� drivers are not required (the system acts as its own drivers), so time is saved

� there is an early visible (but non-functional) product

� some components of the system are repeatedly tested.

The weaknesses of top-down implementation are:

� stubs are needed at nearly every stage

� not all systems are hierarchical.

24.4 � Top-down implementation

316 Chapter 24 � Incremental development

BELL_C24.QXD 1/30/05 4:26 PM Page 316

24.5 Bottom-up implementation 317

Tested
component

Tested
component

Component
under test

Tested
component

Stub Stub Stub

Figure 24.1 Top-down implementation

This type of implementation starts with an architectural design for the software.
Bottom-up implementation starts with the lowest-level components of the system.
These are the components that everything else depends on, but that don’t use anything
themselves. In an OOD design these are the shared, reusable classes that form a com-
mon library for the application to use. In many systems this is the software that access-
es the database.

The bottom-up implementation starts with the lowest-level components of the sys-
tem. These are the components that everything else uses, but that don’t use anything
themselves. The first task is to construct a test bed for each component. Figure 24.2
shows two components at the lowest level of a system and their test beds.

When the lowest level components have been tested in this manner, components are
combined into subsystems that are tested in a similar manner, again using a test bed
(Figure 24.3). The procedure continues until the complete system is finally assembled
and tested as a whole.

Bottom-up implementation suffers from the following drawbacks:

� drivers are required during almost all the development

24.5 � Bottom-up implementation

Component 1
under test

Component 2
under test

Test bed 1 Test bed 2

Figure 24.2 Bottom-up testing of the lowest-level components

BELL_C24.QXD 1/30/05 4:26 PM Page 317

� there is no visible, working system until a very late stage, system testing, is complete.
True there are tested components and subsystems, but there is normally nothing
that can be demonstrated to the client as even providing a limited vision of what the
system will eventually do.

� not all systems have a bottom.

Middle-out development starts with an architectural design for the software. It then
chooses some central component as the starting point for testing. A driver and stubs are
written and the component is tested. Then some adjoining component is added to the
system and testing carried out. The system emerges from its centre.

This approach could be useful in developing a large software system that involves a
number of developers. In such a development, the work needs to be divided among a
number of people who work concurrently. Hopefully the architecture can be cleanly
divided into weakly coupled subsystems, which are initially developed independently.
These subsystems need to be surrounded by drivers and stubs, developing in a middle-
out fashion.

This approach suffers from all the combined drawbacks of bottom-up and top-down
development.

24.6 � Middle-out implementation

318 Chapter 24 � Incremental development

Component
1

Component
2

Component
under
test

Test
bed

Figure 24.3 Bottom-up implementation

SELF-TEST QUESTION

24.1 Suggest a drawback of middle-out development

BELL_C24.QXD 1/30/05 4:26 PM Page 318

9jabaz
Download more books at 9jabaz.ng for free!

24.8 Discussion 319

A use case is a single independent function that a system provides for a user. For example,
the word processor (Appendix A) provides tens of functions to carry out the tasks of
editing, formatting and displaying text. Each of these is a use case. This approach takes
one use case at a time and implements it.

In the word processor example, we might first choose to implement the save file
function. This is a good choice because, once it is implemented, this feature is useful in
providing a mechanism for testing the other use cases. Implementing this function
means single-mindedly concentrating on it to the exclusion of all the other functions.
Only the methods necessary to achieving this end are implemented. Drivers are not
needed and a minimal number of stubs are required.

The use case approach is different to the top-down approach explained above. Top-
down starts with the user interface and implements each of the various functions in a
breadth-first fashion. It creates a forest of trees that grow simultaneously. In contrast, the
use case approach is a depth-first approach. It creates individual trees one after the other.

The stages of the use case approach are:

1. choose an initial use case to implement

2. implement the use case

3. test the use case

4. demonstrate the use case to the client.

These stages are repeated until the user is satisfied with the product.
The strengths of this approach are:

� the system acts as its own drivers

� there are immediate and repeated, visible products.

24.7 � Use case driven implementation

SELF-TEST QUESTION

24.2 Suggest a second use case for implementation.

We have assumed in the above explanation that architectural design is complete prior
to incremental implementation. This is one approach, but an alternative is to allow the
architectural structure to emerge from the implementation. This means that the struc-
ture will probably be subject to frequent refactoring (see Chapter 13). This takes some
courage and it might be too risky an approach for a large project.

24.8 � Discussion

BELL_C24.QXD 1/30/05 4:26 PM Page 319

9jabaz
Download more books at 9jabaz.ng for free!

320 Chapter 24 � Incremental development

Summary

The aim of incremental development is easier bug detection. The mechanism is
incorporation of components one by one. Incremental methods include:

� top-down

� bottom-up

� middle-out

� use case based.

Use case based development provides early and frequent functionality. This in turn
means:

� improved confidence by the client and the developer

� the opportunity for the user to change their requirements

� the opportunity for the user to decide what should be implemented next.

Use case based development also reduces the work of creating test drivers and
stubs.

Exercises•
24.1 Draw up an incremental process model for preparing a meal, including buying the

ingredients and washing up afterwards. Don’t forget to identify the product at each
stage.

24.2 Draw up an incremental process model for writing a student assignment. The assign-
ment is to write an essay reviewing the process models that are explained in this book.
The non-incremental approach is:

Step 1 read and digest all the relevant chapters

Step 2 write the review.

24.3 Draw up an incremental process model for a large civil engineering project, such as
building a road bridge across the channel between England and France. Identify
similarities and differences between this project and a large software development
project.

24.4 Create an outline plan for developing each of the systems in Appendix A, using an
incremental approach.

24.5 Compare and contrast the following approaches to development:

� top-down

� bottom-up

BELL_C24.QXD 1/30/05 4:26 PM Page 320

9jabaz
Download more books at 9jabaz.ng for free!

Further reading 321

� middle-out

� use case based.

24.6 Evaluate the incremental process model the following criteria:

� capability to accommodate risk

� capability to respond to changed requirements

� capability to meet user requirements

� visibility of the development to developers and clients.

24.7 Identify the main goals and the main techniques of each of the following process
models:

� waterfall

� spiral

� prototyping

� incremental

� open source

� XP

� UP.

Answers to self-test questions

24.1 The need to create many drivers and stubs.

24.2 The open file use case.

For a discussion of evolutionary development see: Felix Redmill, Software Projects:
Evolutionary vs. Big-Bang Delivery, John Wiley, 1997.

Kent Beck suggests an incremental approach to development that is based entirely on
writing a series of tests: Test Driven Development, Addison-Wesley, 2003.

Further reading•

BELL_C24.QXD 1/30/05 4:26 PM Page 321

9jabaz
Download more books at 9jabaz.ng for free!

Open source is a development approach in which the source code of the software is
entirely free to access. The term “open source” is used to refer to both the product
and the development approach. Any individual is able to view the code, modify it or
duplicate it. Access to the source code facilitates the distributed and cooperative
approach to software development that is fundamental to an open source style of
development.

Some examples of larger open source products are: Mozilla web browser; Apache
web server; GNU/Linux and GNU/HURD operating systems; MySQL database soft-
ware; Perl programming language; MyOffice and OpenOffice office suites. The range
of products illustrates that open source software development can produce a diverse
range of products.

The open source development approach is an extension of the hacker community’s atti-
tude to the building of software. The term hacker has been associated with negative
aspects of computing. However, hackers are now recognized as a community of highly
skilled programmers who relish the act of writing code and participate for enjoyment or
to enhance their programming reputation. It is fundamental to the hacker ethic that
information and knowledge should be freely shared without restriction because this
stimulates collaborative thinking, leading to superior ideas overall.

25.2 � The principles of open source development

25.1 � Introduction

CHAPTER

25 Open source
software
development

This chapter explains:
� the principles behind open source development

� the schism in the open source movement

� how to carry out open source development.

BELL_C25.QXD 1/30/05 4:27 PM Page 322

9jabaz
Download more books at 9jabaz.ng for free!

Whilst there is a common belief in collaboration and openness within the development
community, a schism does exist in terms of the motivation and underlying philosophy
of open source. The main split is between the Free Software Foundation (FSF) and the
Open Source Movement (OSM).

The FSF was founded by Richard Stallman in 1985. This software development
community promotes free software projects and places emphasis on the social benefits
of working collaboratively. The FSF refer to their software as “freeware”, emphasizing
the absence of restrictions associated with this type of development. It is intended to be

25.3 � The schism within open source development

SELF-TEST QUESTION

25.1 What is the primary goal of open source development?

25.2 Can you write and sell software with a GPL license?

The same principle is applied in open source development. Rather than the code
being confined to a small core of developers, as in proprietary methods, a greater audi-
ence facilitates a greater influx of ideas and a greater degree of innovation. It is also
believed that because the source code is examined by a larger audience than proprietary
software, any imperfections stand a greater chance of being identified and consequent-
ly rectified. The sharing of code therefore leads to more reliable code.

Hackers comprise a large portion of the open source development community.
Head figures within open source organizations are very often notorious hackers, whose
reputation for highly proficient programming strengthens their influence on the open
source community.

Because of the openness of the program code, the community has devised its own
license agreement for use on products developed as open source. The GNU General
Public License (GPL) is a software license which protects its “openness”, actually
making it illegal for anyone to make the code proprietary or “closed”. The GPL
restricts private modification to source code without publication and disallows the
incorporation of any GPL-covered software into a proprietary program. Some larger
open source development projects have devised their own open source licenses, which
differ in varying degrees from the GPL. However, the majority of projects still deploy
the GPL, particularly most of the founding open source projects and smaller devel-
opment communities that are not affiliated with proprietary companies.

However, the openness and concept of code sharing does not always mean that
open source products are free to buy. Open source is “free as in freedom, not as in free
beer”. Open source companies do offer their program code for free, most commonly
to download from their website. However, they often also sell their software as a com-
plete package, shrink wrapped, sometimes including user manuals and additional help
services.

25.3 The schism within open source development 323

BELL_C25.QXD 1/30/05 4:27 PM Page 323

9jabaz
Download more books at 9jabaz.ng for free!

a totally embracing ethic, increasing access to the practice of software development and
also the resultant products.

The philosophy of the FSF is that individual freedom should never be compromised
and that all individual action should also benefit the wider community. Therefore,
whilst individual programmers are encouraged and admired, they are also expected to
feed their findings and their skills back into the community of programmers to which
they ultimately belong. This is done through the sharing of code and the distribution
of good programming practice.

The FSF is absolutely resolute in not allowing any proprietary software to be incor-
porated into their software and were integral in the creation of the GPL. All their prod-
ucts are covered under the GPL, and they are largely unaffiliated with larger software
development companies.

The Open Source Movement is spearheaded by Eric S. Raymond. Their emphasis is
on the benefits of open source as a development approach, rather than the moral ben-
efits that can be brought by using this approach. They stress that open source can pro-
duce higher-quality software than proprietary software.

The OSM are more willing to collaborate with larger software companies, sometimes
including developers of proprietary products. They wish to appeal to the business sec-
tor because this enables greater distribution of their product. However, unlike the FSF,
greater use of their products is motivated primarily because of the quality, rather than
because of the freeness of the software. Forming contracts with larger companies is one
way of exposing OSM products to a larger potential market. However, it also means
that the product must compete with other commercial package products.

Despite the schism within open source in terms of ethics and philosophy, the develop-
ment practices principally remain the same between the two.

Within the open source development community, there is often no formal mechanism
for gathering initial user requirements. The process often consists of a software require-
ment that is instigated by a sole developer, with requests for collaboration, targeting the
hacker community. The Internet facilitates communication between developers and also
the distribution of source code, via the Web, File Transfer Sites and e-mail.

The head developer specifies most requirements. Additional user requirements are
either implemented by individual developers themselves via personal modification of
the source code, or through a communal process known as “code forking”. Code fork-
ing occurs when the developer base has alternative requirements or conflicting ideas on
how to implement a requirement. The code is seen to “fork” because it is split and each
copy of the code is developed in parallel. After this split occurs, the code is irreconcil-
able and therefore two different products exist, both growing from the same base code.
Each fork competes for developer attention, so that the most popular or the most reli-
able version survives.

The code writing on an open source project is sustained through voluntary contri-
butions. Developers are motivated by the enjoyment of programming, the belief in the

25.4 � Techniques of open source development

324 Chapter 25 � Open source software development

BELL_C25.QXD 1/30/05 4:27 PM Page 324

9jabaz
Download more books at 9jabaz.ng for free!

sharing of software or their own requirement for the software product. Code is com-
monly implemented via reuse and most open source projects begin immediately by
rewriting the code of existing products, with enhancements and alterations made where
necessary. When there is no original from which to copy, a core developer base begins
writing the code before offering it to the wider community for critique.

The design of the code is communicated via web-based tools. Sometimes UML dia-
grams or other cross-reference displays, using hyperlinks to depict the overall structure
of the are deployed. However, generally, there is a lack of design documentation with-
in open source products.

An explicit project manager or management group is generally in place on open
source projects. They decide on the usefulness and appropriateness of contributions
that are made by the wider developer community. They also usually add the patch to
the code and therefore act as chief implementer on the project.

Once contributions have been implemented, beta versions of open source products
are released. Releases are made frequently, so that the effectiveness of contributions can
be tested immediately. Feedback on the latest version is received and contributions
again incorporated into the code in a continuous cycle, which continues until the com-
munity is satisfied with the eventual outcome. Contributions then slow down or cease.

Development communities and product websites act as sources of support for users
of open source software. The websites contain installation tutorials and user forum
groups providing technical support. The development community mostly provides
these voluntarily.

As an alternative means of support, commercially supported versions of open source
software are available to buy. This software is an exact replica of the source code, but
is provided with supporting manuals and services. These do not exist for all products
and therefore many smaller open source products are only used by technically adept
users. However, most of the larger open source projects now have their own com-
mercial subsidiaries.

SELF-TEST QUESTIONS

25.3 What is the main technique of open source development?

25.4 What is the main tool of open source development?

GNU/Linux is an open source operating system, loosely based upon Unix. It contains
over 10 million lines of code and has been developed using over 3,000 major contrib-
utors of code throughout 90 countries.

Linus Torvalds, who still oversees the project today, instigated the project in 1991.
Torvalds originally began the project because none of the current operating systems
served his own requirements. They were either unreliable, too expensive or devoid of

25.5 � Case study: the GNU/Linux operating system

25.5 Case study: the GNU/Linux operating system 325

BELL_C25.QXD 1/30/05 4:27 PM Page 325

the functionality he required. He also feared that another open source operating sys-
tem, GNU/HURD, was far off completion. He could not wait. Torvalds began to
write the kernel for his operating system. He was also motivated by the enjoyment of
writing code and claims that he wrote it “just for fun”!

Torvalds targeted developer forums and websites, posting an early release of the ker-
nel and requesting feedback and contributions. Increased contributions and collabora-
tions between GNU/Linux and GNU groups meant that distribution of beta versions
was frequent and continuous. The GNU/Linux operating system is licensed under the
GPL, ensuring that the source code remains open.

After years of continuous development, GNU/Linux is now a renowned open
source operating system, competing on the world market with other commercial and
proprietary software companies. What began as a personal project is now widely used
and technically reputable. The GNU/Linux software code is still available in its origi-
nal non-supported format. However, a number of commercial organizations also exist
to provide appropriate support for various user markets. GNU/Linux remains in con-
tinuous development, often responding to technological advancements.

Open source development’s most attractive asset is the enormous enthusiasm and pas-
sion that resonates throughout the developer community and their building of soft-
ware. Developers have an unrelenting belief in what they do; voice their pride in their
hacker roots; find nothing more fulfilling than the art of programming.

Forking ensures that developer requirements are established and implemented in
a democratic process. This means that the requirements of the majority of the devel-
opment community are satisfied. Similarly, any specific personal modification can be
made by individuals, providing that they have the technical ability to implement
them.

However, it is worth noting that this process largely ignores non-developer user
requirements. The general user does not have the power to register their vote via code
implementation; neither can they personally modify their own code.

The reuse of code is an important development approach. However, in the case of
open source projects that attempt to rewrite entire systems and applications, a reuse
approach can only be facilitated by source code that is not covered by a proprietary
license. Liability issues may hinder entire projects because developers may not have legal
access to any code that they would like to rewrite. However, the overall expertise of the
hacker community usually means that volunteers are willing to take on the alternative
and more difficult task of writing entire systems from scratch.

Releasing frequent versions of the software brings benefits of continuous feedback.
Whilst the beta code may not contain all the functionality that is required, it means
that the developer base can immediately evaluate the code and get a feel for the soft-
ware. Crucially, the potentially vast audience of testers can immediately begin to track
and fix bugs, so that changes can be made incrementally, continuously and at a rela-
tively fast pace.

25.6 � Discussion

326 Chapter 25 � Open source software development

BELL_C25.QXD 1/30/05 4:27 PM Page 326

Summary 327

Inappropriate patches, once incorporated into code can irreparably damage a
project. Having an explicit manager on all open source projects means that all
contributions are monitored and approved. This ensures that the freedom to con-
tribute is upheld, but lessens the risk of any sabotage attempts.

Open source program code is extremely reliable because bugs are found and fixed by
a huge viewing audience with highly proficient programming abilities. Proprietary soft-
ware corporations are being forced to acknowledge open source development as a valid
approach and are beginning to experiment with its techniques. The high viewing audi-
ence that can track and fix bugs is seen as an efficient way of “cleaning up” software
that is proving to be unreliable. Consequently, some companies have now opened up
previously closed code. This suggests that the open source development approach can
influence other mainstream techniques.

Contributors to open source projects have a passion for programming, so that writ-
ing code is seen as more of a hobby than a chore or a job. They gain enormous satis-
faction in seeing their patches integrated into a program. However, because open
source projects generally rely upon voluntary contributions, there is always the risk that
the community will cease to contribute to the project. This would result in a stagnation
of a development project and an unfinished product.

Similarly, the lack of documentation also potentially limits maintenance to the orig-
inal developer base and lessens the ability of someone else being able to take on the
project. If the initial developer base tires of a project, it is not easy for another devel-
oper to take on the project without documentation as a means of communicating the
design of the program.

The usefulness of informal support mechanisms is questionable, particularly for the
general user. Website tutorials are often aimed at a technically adept audience. In addi-
tion, since support services are voluntary, there is no guarantee that someone will be avail-
able when required and users may have to wait until someone responds to their enquiry.

Summary

Open source development is a collaborative approach relying upon voluntary con-
tributions of program code. It has its roots in a hacker ethic that promotes indi-
vidual skill, but also upholds the importance of community.

The approach produces extremely reliable software because open source code
means bugs are exposed to a vast audience. More bugs are likely to be found and
fixed. The regular release of the software also means that program code is contin-
ually tested before the final product version is released.

Non-commercial open source is generally deficient in supporting the general user.
However, the commercial sector, acknowledging the superiority of the program
code, is addressing this problem, providing support services for open source prod-
ucts and adopting open source development techniques.

BELL_C25.QXD 1/30/05 4:27 PM Page 327

328 Chapter 25 � Open source software development

25.1 Can you think of any situations or products for which the open source procedure
might be most appropriate?

25.2 Can you think of examples of situations in which open source development of prod-
ucts might be unwise?

25.3 Assess whether open source would be suitable for each of the developments given in
Appendix A.

25.4 Compare and contrast the approaches of the Free Software Foundation and the Open
Source Movement.

25.5 Is open source development just hacking?

Exercises•

Answers to self-test questions

25.1 Reliable software.

25.2 Yes.

25.3 Code sharing.

25.4 The internet.

This book provides a rare insight into the history of hacking, from its origins at MIT
in the 1950s to the rise of open source software: S. Levy, Hackers: Heroes of the
Computer Revolution, Anchor Books, 2002.

The following title is a comprehensive collection of essays covering topics from licens-
ing issues to the engineering of such major open source products as Mozilla and
Perl: Open Sources: Voices from the Open Source Revolution, C. DiBona, S. Ockman
and M. Stone, O’Reilly, 1st edn, 1999.

This is a very accessible book which depicts the development of the GNU/Linux
Operating System, including interviews with major contributors in the open source
field: G. Moody, Rebel Code: Inside Linux and the Open Source Revolution, Perseus
Publishing, 2001.

This is a response to Fred Brooks’s seminal proprietary software development text The
Mythical Man Month (1974). Raymond argues why the open source approach to
software development will provide a higher-quality product: E.S. Raymond, The

Further reading•

BELL_C25.QXD 1/30/05 4:27 PM Page 328

Further reading 329

Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary, O’Reilly, rev. edn, 2001.

Primarily focusing on the life and moral crusade of Stallman, this text also describes the
development of GNU project and other projects of the Free Software Foundation:
S. Williams, Free as in Freedom: Richard Stallman’s Crusade for Free Software, O’Reilly,
2002.

SourceForge.com is a website that coordinates open source development projects. If
you want to contribute to projects, this is the place. The URL is
http://www.sourceforge.net

A social scientist’s view of open source development, showing how it challenges con-
ventional wisdom: Steven Weber, The Success of Open Source, Harvard University
Press, 2004.

BELL_C25.QXD 1/30/05 4:27 PM Page 329

Agile methods is a term that embraces a number of techniques that share common prin-
ciples. These principles are articulated in what is called the agile Manifesto. The principles
emerged from an analysis that older methods (referred to as heavyweight) were simply too
big and unwieldy; that there was a need to use more lightweight approaches to develop-
ment. These new methods explicitly recognize that software development is primarily
about individual skill and communication between people (between developers and with
the clients). One of the best-known of the methods is named extreme programming
(XP), but others are DSDM, SCRUM, Crystal and FDD.

The manifesto begins with a statement of four core values:

1. individuals and interactions over process and tools

2. working software over comprehensive documentation

3. customer collaboration over contract negotiation

4. responding to change over following a plan.

26.2 � The agile manifesto

26.1 � Introduction

CHAPTER

26 Agile methods
and extreme
programming

This chapter explains:
� the principles behind agile methods

� the practice of agile methods

� the principles behind extreme programming

� how to carry out extreme programming.

BELL_C26.QXD 1/30/05 4:27 PM Page 330

These are qualified by the statement that while there is value in the items on the
right, the items on the left are valued more. Thus agile methods do not throw out the
baby with the bath water; they simply give precedence to certain choices.

The first value recognizes that individual creativity and group collaboration are more
effective than following a prescriptive methodology. The second value recognizes that
software is code, not the accompanying documentation. The third value recognizes that
a good relationship between the clients and the developers is more important than
arguing about contracts. The fourth value prioritizes users’ changing needs rather than
adhering to some meaningless inflexible plan.

Twelve supporting “statements” give guidance on achieving the four core values:

1. our highest priority is to satisfy the customer through early and frequent delivery
of software

2. deliver working software frequently, from a couple of weeks to a couple of
months, with a preference for the shorter timescale

3. working software is the primary measure of progress

4. welcome changing requirements, even late in development

5. business people and developers work together daily throughout the project

6. build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

7. the most efficient and effective method of conveying information to and within a
development team is face-to-face conversation

8. the best architectures, requirements and designs emerge from self-organizing
teams

9. continuous attention to technical excellence and good design enhance agility

10. agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely

11. simplicity – the art of maximizing the amount of work not done – is essential

12. at regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

We shall see how these can be put into practice shortly, when we look at extreme
programming.

Tools for agile methods
Many people believe that appropriate software tools are vital to successful software
projects. Agile methods take an independent attitude to tools and use whatever tools
are useful, particularly the simplest tools available. This might mean a computer aided
software engineering (CASE) tool but it also includes non-computer tools. Here are
examples.

Sketches can be made on paper, using color as appropriate for all sorts of diagrams,
informal and more formal (such as UML diagrams). A scanner or digital camera can
record the results for computer storage.

26.2 The agile manifesto 331

BELL_C26.QXD 1/30/05 4:27 PM Page 331

A whiteboard and colored pens are useful for drawing diagrams, such as use case dia-
grams, class diagrams, user interface mock-ups and also informal sketches. It is easy to
change the diagram, and it can be viewed collaboratively and discussed by a group of
people. A digital camera is a convenient way of capturing the information on a whiteboard.

Index cards and a large table are useful for designing the class structure of software,
using CRC (Class–Responsibility–Collaborator) modeling (see Chapter 11). The cards
can easily be moved around, changed or removed. Again a digital camera can record the
end product.

Sticky notes can be used with a whiteboard or a large sheet of paper to create dia-
grams during design.

Simple tools such as those mentioned are cheap, portable, quick to use, flexible,
assist collaborative working and can be used for communication with the user. On the
other hand, simple tools can be limited, are not amenable to computer-assisted check-
ing and do not support distributed working.

This is perhaps the best-known of the agile methods. Its name conveys something dan-
gerous and foolhardy, but this is far from true. The name instead denotes a radical per-
spective which is a contrast to heavyweight methods. Centrally, extreme programming
(XP) recognizes that requirements continually change and the method embraces the
changes, rather than considering them to be disruptive.

Before we look at the values of XP and its full set of techniques, we will explore its
principal approaches.

In XP, the client (or a representative) is always present as a member of the development
team. This person writes use cases, termed stories in XP. (We met these in Chapter 4 on
requirements engineering.) A use case is a small individual function that is required of the
software. It is written in English (or another natural language) in non-technical language
and typically occupies three sentences. It is a statement of a requirement, not a statement
of implementation – what to implement, not how to implement. Thus a use case is a use-
ful fragment of a requirements specification. For each use case, the developers make an
estimate of how much effort will be needed for implementation. Because use cases are
small, this will typically be a few weeks of person time. A longer estimate means that the
use case is too large and needs to be broken down into smaller use cases. Once a use case
has been priced, and a decision has been taken to implement it, then the client provides
more detailed information about the requirement.

The client specifies acceptance tests for each use case. These are a set of black box
(functional) tests to ascertain whether the use case has been implemented correctly. XP
uses the term acceptance test, rather than functional test, to emphasize their role in
guaranteeing a system that is acceptable to the client. Acceptance tests are automated,
so that they can be run repeatedly easily and objectively. A use case has not been suc-
cessfully implemented until all its acceptance tests have been passed. The client is
responsible for checking that tests have ultimately been successful.

Acceptance tests drive the project. They are written before implementation of the
use case is begun. They are repeatedly applied before and while the use case is being

26.3 � Extreme programming

332 Chapter 26 � Agile methods and extreme programming

BELL_C26.QXD 1/30/05 4:27 PM Page 332

26.3 Extreme programming 333

developed. Initially, of course, the tests fail, but as development proceeds they will be
passed one by one, and eventually the implementation is complete. This approach is
termed test-driven development.

SELF-TEST QUESTION

26.1 Write an acceptance test for a boiling kettle.

The client has a third role. In XP, development takes place incrementally. At any
time, only a subset of use cases are selected for implementation. Because the use cases
are small, it is possible to estimate with some confidence how long they will take. But
usually it is not possible to implement all the use cases at once. It is the client who
decides which are implemented next, and which are postponed until later. Usually, the
client selects those use cases that meet the most immediate business need.

At the outset of each phase of development (termed a release in XP), the project
team (including the client) meet to decide what to do next. It is the client who decides
what shall be undertaken next. The information available is:

� the list of use cases, together with estimates of their development times

� the number of developers available.

Ideally a client would like everything done as soon as possible. But the client who is
a member of an XP team knows that software cannot be delivered to an acceptable stan-
dard in less time than the estimate.

SELF-TEST QUESTION

26.2 What roles does the client take in XP?

XP values
Extreme programming is based on four clearly articulated values:

1. communication

2. simplicity

3. feedback

4. courage.

Maximizing communication between the members of the development team and
between the clients and the team is clearly vital in any project. But instead of regarding
communication as a problem, XP exploits it, both as a principle and in practice.

BELL_C26.QXD 1/30/05 4:27 PM Page 333

334 Chapter 26 � Agile methods and extreme programming

Software that has a simple structure (and does the required job) is better than a com-
plex structure. However, XP realizes that achieving simplicity is not easy.

Feedback is about obtaining frequent reliable information about the state of the soft-
ware as it is being developed, so that any problems can be accommodated. It also
describes a relationship between the developers and the client in which the client is
immediately aware of the consequences of their requests.

Finally, the most surprising value is courage, which is not a concept that you expect
to see in the context of software development. What it means is that the developers
must have the courage to throw away code, or even re-design large parts of the archi-
tecture, if the need arises. This is dramatically different from the common approach,
which attempts to patch up software when it demonstrates faults, minor or serious.

Techniques
Extreme programming uses a combination of 12 techniques (called, in the terminology
of XP, practices). The 12 techniques are:

1. replan frequently – quickly determine the scope of the next release by resolving
business priorities and technical estimates. As reality overtakes the plan, update
the plan.

2. small releases – put a simple system into production quickly, and then release new
versions on a very short cycle

3. metaphor – guide all development with a simple shared story of how the whole
system works

4. maintain a simple design – the system should be designed as simply as possible at
any given moment. Extra complexity is removed as soon as it is discovered.

5. testing – programmers continually write unit tests, which must run flawlessly for
development to continue. Customers write tests demonstrating that features are
finished.

6. refactoring – programmers restructure the system without changing its behavior
to remove duplication, improve communication, simplify or add flexibility.

7. pair programming – all production code is written with two programmers at one
machine.

8. collective ownership – anyone can change any code anywhere in the system at any
time.

9. continuous integration – integrate and build the system many times a day, and every
time a task is completed

10. avoid overwork – work no more than 40 hours a week as a rule. Never work over-
time a second week in a row.

11. involve the client – include a real, live user on the team, available full-time to answer
questions

12. coding standards – programmers write all code in accordance with rules, empha-
sizing communication through the code.

BELL_C26.QXD 1/30/05 4:27 PM Page 334

Summary 335

Frequent replanning means that the client should decide which function is most
important and should therefore be implemented next. The team estimates how long the
next stage of the project will take and gains agreement (or not) for it to proceed. This
way everyone takes responsibility for the planning.

Pair programming (see Chapter 28 on teams) is a novel idea, which sounds expen-
sive, but in reality saves time and improves quality by harnessing collaboration.

A maximum 40-hour week emphasizes that no good is achieved by continually work-
ing too hard. In a conventional project, it is common to resort to overtime to remedy
delays. But this is usually a sign that something has gone wrong and the project is at
the start of the slippery slope that leads to a disaster. XP avoids the need for desperate
measures in two principal ways. First, continual testing prevents unpleasant surprises.
Second, frequent releases means that any planning mistakes are quickly evident.

The provision of an on-site customer is quite radical. It stresses that meeting the user
requirements is so important that it needs continual special treatment – the permanent
involvement of a client representative – which, though time-consuming, saves time over-
all because reworking is avoided.

The use of coding standards illustrates that some aspects of XP are quite rigorous.
Also the code is the paramount product of a project. Emphasis is placed on clear code,
rather than auxiliary documentation, such as UML diagrams.

It is important to realize that these techniques complement each other, so that it is
sometimes ineffective to use one without another. It is possible, but undesirable to use
one of the XP techniques on its own. This is because they complement each other – a
weakness in one practice is compensated by strength in another. For example, it would
seem expensive in time continually to refactor the design, but the practice of keeping
to a simple design ensures that refactoring is easy.

SELF-TEST QUESTION

26.3 Which of the techniques suggest that XP is an incremental approach?

Summary

Agile methods are a range of lightweight techniques that subscribe to the agile
manifesto.

XP is one agile method with its own values and techniques. The values are com-
munication, simplicity, feedback and courage. The twelve techniques include pair
programming, test-driven development and continual refactoring.

XP makes the coding, rather than any other documentation, the center of the
product.

BELL_C26.QXD 1/30/05 4:27 PM Page 335

336 Chapter 26 � Agile methods and extreme programming

26.1 Assess extreme programming.

26.2 Compare and contrast heavyweight methods (in general) with lightweight methods (in
general).

26.3 Assess how extreme programming could be used in developing each of the systems
described in Appendix A.

26.4 Compare and contrast extreme programming with open source development.

26.5 Assess how well the values and methods of extreme programming match up with
those of the agile manifesto.

26.6 “Extreme programming is just hacking”. Discuss.

Exercises•

Answers to self-test questions

26.1 The whistle sounds.

26.2 Providing use cases, supplying acceptance tests, verifying that accept-
ance test have succeeded, deciding what will be implemented next.

26.3 The use of small releases and continuous integration strongly suggest an
incremental approach.

Kent Beck, Extreme Programming Explained, Addison-Wesley, 2000.

http://www.extremeprogramming.org/index.html

Alistair Cockburn, Agile Software Development, Addison-Wesley, 2002.

Further reading•

BELL_C26.QXD 1/30/05 4:27 PM Page 336

The unified process (UP) is a process model for developing software. In common with
other available process models, it provides an overall plan for a software development
project. It also incorporates some recommendations for the techniques to be used as
part of the process. The UP provides a general purpose strategy that can be tailored for
an individual project – large or small, straightforward or risky.

The UP is sometimes known as the rational unified process or RUP after the company
that first promoted it. The word “Rational” was the company name and, of course, it
also implies rationality. The “Unified” part of its name derives from the same source as
the unified modeling language (UML). The founders of UML, Booch, Rumbaugh and
Jacobson, were formerly rivals, but later collaborated (and were then termed the three
amigos) to devise UML and the UP. UML is the notation; the UP is the process.

The UP is the most recent process model to be widely used. As we shall see, the UP
incorporates many of the ideas we have met in other chapters in this book.

UP primarily aims to:

� meet user needs

� accommodate risks.

27.2 � Overview

27.1 � Introduction

CHAPTER

27 The unified process

This chapter explains:
� the aims of the unified process

� the techniques involved in the unified process

� how to use the unified process.

BELL_C27.QXD 1/30/05 4:27 PM Page 337

338 Chapter 27 � The unified process

Meeting the user’s needs requires no explanation. The second aim of the UP recog-
nizes that there are always risks associated with a development. Examples are changes
in user requirements and deadline overruns for components of the software. These can
seriously disrupt a project or even cause it to be abandoned.

To meet its aims, the UP makes use of a number of techniques including use cases,
iteration and emphasis on the architecture of the software.

A use case describes (in natural language) a small self-contained function that the sys-
tem provides for the user. A collection of use cases specify the requirements for a sys-
tem. (Use cases were discussed in Chapter 4 on requirements engineering.)

The UP mechanism for coping with risk is to proceed iteratively. This means that an
initial plan is constructed. Then some small amount of development is carried out.
Next, the outcome is assessed. In the light of the evaluation, a new plan is devised (or,
in the worst case, the project is abandoned).

The UP also emphasizes getting the architecture of the software right. By architec-
ture is meant the grand-scale structure of the software. For example, in a web-based
solution, what components run on the server and what components run on the client?
What type of database is to be used?

In summary the method makes heavy use of:

� use cases

� iteration

� software architecture.

The UP consists of four phases: inception, elaboration, construction and transition.
We will now explore what they involve.

The UP consists of four phases: inception, elaboration, construction and transition, as
shown in Figure 27.1. We shall see later that within each phase are a number of itera-
tions. The four phases are, in outline:

Phase 1, inception
This consists of a feasibility study to establish whether the proposed system is worth-
while. (We discussed how to carry out feasibility studies in Chapter 3.) An outline of the
major requirements is established. A decision is made to commit to the project, or not.

Phase 2, elaboration
During this phase:

� the list of requirements is completed

� the general architecture of the system is devised

27.3 � Phases of the UP

BELL_C27.QXD 1/30/05 4:27 PM Page 338

27.4 Techniques 339

� the major risks are identified and assessed

� a plan for the development is drawn up and agreed.

Phase 3, construction
This is the actual system development.

Phase 4, transition
This phase means putting the system into use. This may involve such measures as train-
ing or running the new system in parallel with a former system. Other methods call this
phase implementation.

Usually the construction phase consumes the most effort, followed by the elabora-
tion phase. Both inception and transition usually take up much less effort.

The UP uses several practical techniques designed to ensure successful projects. They are:

Iteration
The UP proceeds in an iterative fashion in order to accommodate ongoing risks. We
discuss this in a separate section below.

27.4 � Techniques

Elaboration

Construction

Transition

Inception

Figure 27.1 The phases of the unified process

BELL_C27.QXD 1/30/05 4:27 PM Page 339

340 Chapter 27 � The unified process

Use cases
Meeting user’s needs is accomplished by employing use cases to record user’s functional
requirements. Use cases also drive the project – the developers are always aware of the use
cases. Use cases are discussed in Chapter 4 on requirements engineering.

Focus on providing executable code
Many projects create pages of documentation – such as specifications, UML diagrams
and test schedules – at the expense of working code. The problem is that users do not
understand these products and cannot understand how they contribute to the product.
The UP emphasizes the overwhelming need to create and show the client demonstrable
products.

Establishing a working architecture early on
The architecture is the grand-scale structure of the software. The UP emphasizes the
need to devise a good structure early in the development process. Many current appli-
cations are internet based and this means that there is usually client software and server
software. But there are many options. One option is the balance of work between the
client and server. Other options are whether to use applets, servlets, RPC, CGI, ASP,
web services, etc. The choice of technologies will be determined by performance, inter-
operability, scalability, security, expertise and cost. The decision determines the archi-
tecture for the software.

Using components
Using such encapsulated components as Java beans, .Net components or simply classes
means that local changes do not disrupt the remainder of the software.

Establishing an effective team
In an effective team, developers communicate effectively and are committed to the
project. The UP recommends setting up a single project team, devoted to the project,
rather than using a number of functional teams. (These differences are discussed in
Chapter 28 on teams.)

Incorporating quality throughout
The main quality goals are to ensure that the software meets its user’s needs and works
properly. The UP aims to ensure quality by carrying out validation and verification at
every cycle.

BELL_C27.QXD 1/30/05 4:27 PM Page 340

27.6 Case study 341

Iteration is a major feature of the UP and it is the mechanism for controlling risks. The
UP recognizes that problems (risks) will arise as a project proceeds. Examples are:

� changes to requirements – because they were recorded incorrectly in the first place
and because users change and clarify their ideas

� the architecture of the software needs modification

� implementation errors are discovered requiring correction

� difficulty integrating with a legacy system.

If a software project takes large steps, then any problems are hidden for a long time – and
their effects can be devastating. If a project employs small steps, each concluding with an
evaluation, then progress is more visible and the effects of any changes can be accommodat-
ed more easily. Thus the UP accommodates change by taking small steps, repeatedly assess-
ing the cost of changes and making explicit decisions about whether to make changes.

We have seen that the UP consists of four phases. Each of the four phases of the UP
consists of one or more iterations. Smaller projects usually require fewer iterations and
bigger projects more iterations. Typically the inception phase might employ one itera-
tion, the elaboration phase two, the construction phase three and the transition two.
The number of iterations is carefully planned – as is the goal of each iteration. At the
end of every iteration, an assessment is carried out.

Each iteration consists of analysis, design, coding and testing. Earlier iterations
emphasize analysis and design, while later iterations emphasize coding and testing. Each
iteration produces working software that is part of the target system.

The ATM (Appendix A) is a medium-sized project, network based with many clients
and a server. At the outset of a project of this kind, the project manager can identify
a number of obvious risks. These threats are anything that might adversely affect the
project success, deadline or cost. These might include:

� the specialized devices (e.g. the card reader) do not work according to the specification

� the communications protocol between ATM and server does not function properly

� requirements change

� there is difficulty interfacing with the database on the server.

It is also likely that unforeseen eventualities will occur, for example, late delivery of
some of the specialized ATM hardware. However, small iterations mean that damage to
the project is controlled and limited.

27.6 � Case study

27.5 � Iteration

BELL_C27.QXD 1/30/05 4:27 PM Page 341

342 Chapter 27 � The unified process

The inception phase
The goal of this phase is to understand the scope of the project, build a business case
and obtain stakeholder agreement.

Understanding the scope involves interviewing the client and recording their require-
ments. The functional requirements are recorded as use cases and we saw in Chapter 4
on requirements how to accomplish this activity for the ATM system.

Building a business case means carrying out a calculation of the financial costs and
benefits, which was outlined (for the ATM) in Chapter 3 on the feasibility study. This
calculation reveals that the system is hugely cost effective.

Obtaining stakeholder agreement means checking with the identified groups that
they are happy and committed to the project. In the case of the ATM, the stakeholders
may include the client, the bank workers, the bank’s customers, the senior management
of the bank, the bank IT department and relevant public authorities. Let us assume that
these various groups are happy for the project to go ahead.

The elaboration phase
This involves completing the statement of requirements, devising the general architec-
ture of the system, identifying and assessing the major risks and drawing up and agree-
ing a plan for the development.

For the ATM, the user functions can be established and documented as use cases.
For the ATM, a decision about the division of labor between ATM software and

server software needs to be made. The protocol for the communication between ATMs
and server needs establishing. Then the architecture is checked by constructing a work-
ing skeletal system.

Now that the requirements are well established and the architecture is trustworthy,
there is greater certainty in the project. However, an assessment is made of any risks to
the project and plans made accordingly.

Now, a detailed plan for the remainder of the project can be drawn up.

The construction phase
This phase constitutes the actual construction of the software.

This consists of four iterations. The first is an implementation of the user interface
(with no functionality). This establishes that the design of the user interface is accept-
able. It also confirms that it will provide the desired functionality.

The second iteration is a program to interface with the database on the server, in
order to ascertain that a satisfactory connection can be made, providing the function-
ality required by the ATM application.

The next iteration is a full implementation of the system, but using only a single
ATM. This establishes that the system is technically feasible for a single user.

Finally a multi-user system is constructed.
This account of the four iterations assumes that all goes well. In practice, the assess-

ment at the end of an iteration might reveal that there is a problem. This would need to
be solved by such measures as rescheduling the project or using an alternate technology.

BELL_C27.QXD 1/30/05 4:27 PM Page 342

Summary 343

The transition phase
This phase means putting the system into use. It involves installing the ATM hardware,
the software and communication lines. It means arranging for the ATMs to be serviced,
supplied with cash and printer paper. It means installing the server software.

Rather than install a whole number of ATMs at once, it makes sense to install just
one in some convenient location to act as a beta test. This first iteration, once success-
fully concluded, is followed by the installation of multiple ATMs.

The UP is not a single process model. It is a framework from which a project manager
can select a process model suitable for a particular project. So the model can be applied
to large and small projects, involving a few developers or many.

27.7 � Discussion

Summary

The UP is a process model that primarily aims to:

� meet user requirements

� accommodate risks.

The process consists of four phases:

1. inception

2. elaboration

3. construction

4. transition.

Each phase consists of one or more iterations. Each iteration consists of analysis,
design, coding and testing. The purpose of iteration is to accommodate risks.

The UP employs a number of techniques:

� iteration

� use cases

� focus on providing executable code

� establishing a working architecture early on

� using components

� establishing an effective team

� incorporating quality throughout.

BELL_C27.QXD 1/30/05 4:27 PM Page 343

344 Chapter 27 � The unified process

27.1 Assess the UP.

27.2 Compare and contrast the UP with the waterfall model, extreme programming and the
spiral model.

27.3 Create an outline plan for developing each of the systems in Appendix A, using the UP.

27.4 Evaluate the UP using the following criteria:

� capability to accommodate risk

� capability to meet user requirements

� capability to respond to changed requirements

� visibility of the progress of the project.

27.5 Identify the main goals and the main techniques of each of the following process
models:

� waterfall

� spiral

� prototyping

� incremental

� open source

� XP

� UP.

Exercises•

Further reading•
The following book clearly explains the RUP. It also compares it with waterfall, agile

methods and heavyweight approaches: Per Kroll and Philippe Kruchten, The Rational
Unified Process Made Easy, Addison-Wesley, 2003.

Another straightforward read: Philippe Kruchten, The Rational Unified Process, an
Introduction, Addison-Wesley, 3rd edn, 2004.

BELL_C27.QXD 1/30/05 4:27 PM Page 344

PART

F PROJECT
MANAGEMENT

BELL_CPARTF.QXD 1/30/05 4:31 PM Page 345

BELL_CPARTF.QXD 1/30/05 4:31 PM Page 346

Software developers seldom work alone. More commonly, several developers share an
office, working on different projects or collaborating on larger projects. The process of
establishing requirements usually involves significant face-to-face meetings. So software
development is essentially a social activity.

This chapter is about structures that are formally set up to organize a team or group
of software developers.

We begin by analyzing some of the problems of group work. We go on to explain
techniques for software team organization – functional teams, project teams, chief pro-
grammer teams and OO teams.

Two major aspects of team activity are:

1. the communication between the people in the team

2. deciding who does what work.

These issues are now discussed in turn.

28.2 � The principles of teams

28.1 � Introduction

CHAPTER

28 Teams

This chapter explains:
� the principles behind team working

� how functional teams and project teams operate

� how the chief programmer team operates.

BELL_C28.QXD 1/30/05 4:28 PM Page 347

348 Chapter 28 � Teams

The communication problem
When two or more people are working on a piece of software, they obviously have to liaise
with each other. At the very least they have to communicate component specifications –
component names, component functions, parameter types, and so on. Often such inter-
faces are complex, perhaps involving detailed file layouts. Always there are queries, because
of the difficulty of specifying interfaces precisely. During the lifetime of a project someone
always leaves, is ill or goes on holiday. Someone has to sort out the work in their absence.
New people join the team and have to be helped to understand what the software is for,
what has been done and why the structure is as it is. They may need to learn about the
standards and procedures being used on the project, or even learn a new programming
language. This induction of a new person takes up the time of those who remain.

All this adds up to a great deal of time spent in communication that would not be
necessary if only a single person were developing the software. Adding two people to a
team of four does not increase the communication overhead by half – it more than
doubles it. Clearly, as more and more people are added to a team, the time taken in
liaising can completely swamp a project.

Compare the activity of picking potatoes. Imagine a large field with a relatively small
number of people. They can each get on with the job without getting in each other’s
way. If we increase the number of people, the work will get done proportionately quickly,
at least until there are so many people that they are tripping each other up. The graph
of potatoes picked against people employed looks like Figure 28.1.

If we now turn to the task of having a baby, we realize that increasing the number
of people will do nothing to the timescale – it remains nine months. The graph is shown
in Figure 28.2.

Software development comes somewhere between these two extremes. Initially, if we
increase the number of people, the job will get done faster (like the potato picking).
But, eventually, the communication overheads will become overwhelming, and the
project will actually slow down. The graph looks like Figure 28.3.

One of the gurus of computing, Frederick P. Brooks, has described this problem as
follows: if a project is late, then adding further people will only make it even later.

Number of people

Po
ta

to
es

 p
ic

ke
d

Figure 28.1 Picking potatoes

BELL_C28.QXD 1/30/05 4:28 PM Page 348

28.2 The principles of teams 349

To make matters worse, human beings are not well known for precise communica-
tion with each other. It is therefore likely that there will be faults in a system con-
structed by a team.

The division of labor
The second major question in team organization is deciding how to break down the
large task into smaller tasks so that several people can carry them out. Developers carry
out a whole variety of tasks, some of which, like design, are challenging and others, like
keying corrections or filing listings, are less demanding. One way of dividing the work
of software development amongst a set of people is to expect everyone to do a mix of
tasks. Another approach is to separate out tasks that require different degrees of skill so
that, for example, one person does all the design and another all the keying in of test
data. This principle of the division of labor has long been recognized.

Number of people

Ti
m

e
ta

ke
n

Figure 28.2 Having a baby

Number of people

Ti
m

e
ta

ke
n

Figure 28.3 Typical software development

BELL_C28.QXD 1/30/05 4:28 PM Page 349

350 Chapter 28 � Teams

Figure 28.4 illustrates a (controversial) conjecture about the differing skills involved
during the development of software.

Creating specialist roles has several advantages. First, it means that each person
becomes an expert, highly skilled and productive at the particular task. Another feature
of this type of organization is that instead of paying several highly skilled people uni-
formly high wages, management can pay people who have different skills different
salaries. Overall the wages of the people with unequal skills will be lower than those of
the skilled people. Thus the wages bill is reduced. To give a crude example, it would be
cheaper to employ a programmer at $50,000 and a designer at $100,000, rather than
employ two designer/programmers each at $180,000. It is no coincidence that Charles
Babbage, one of the founding fathers of computing, was well aware of this effect.

R
eq

u
ir

em
en

ts
sp

ec
if

ic
at

io
n

A
rc

h
it

ec
tu

ra
l

d
es

ig
n

Pr
o

g
ra

m
d

es
ig

n

C
o

d
in

g

D
eb

u
g

g
in

g
an

d
 t

es
ti

n
g

Stage of project

Le
ve

l o
f

sk
ill

 r
eq

u
ir

ed

Figure 28.4 Skill requirements at each stage of a project

SELF-TEST QUESTION

28.1 Identify the different roles of the workers in the kitchen of a restaurant.

In summary, specialization offers:

1. greater productivity, since the team member does just one type of work and
becomes very skilled at it

2. the chance to pay the different team members according to the separate skills
involved in their work, rather than pay everyone at the same rate for the most highly
skilled work.

BELL_C28.QXD 1/30/05 4:28 PM Page 350

28.5 The chief programmer team 351

As we shall see, some techniques exploit this principle of the division of labor.
How are teams usually organized? There are two common methods of organizing

teams involved in software development – functional teams and project teams.

In the functional team organization, all the members of the team carry out the same
type of work, so that there is a team of programmers, a team of analysts, a team of
testers, and so on. At any one time, the members of a team are working on different
projects; the work of a single project is carried out by people from different teams.

A major problem of functional teams is that the people who are working on a single
project are not a cohesive team. They may even be physically separated in different
offices. Close and easy communication is inhibited.

Another problem of the functional team is that the person responsible for a project
is not the manager or leader of the people working on his or her project. Thus he or
she may not have as much control over them as they would like.

In a project team, everyone in the team is engaged on developing the same system.
The team therefore usually consists of people who carry out all the work of the
development – requirements analysis, programming, testing and so on. Initially, a
team of this kind consists of only a single person. As requirements engineering gets
under way, the team grows to two or three people. When the project is fully under
way, during coding and testing, it expands to its maximum. Towards the end of the
project, members leave the team until finally it is disbanded. The project manager is
usually a member of the team, and in control of the team.

The drawback of a project team is that its membership waxes and wanes as the
demands of the project change. Initially only one or two people may carry out analysis
and architectural design. During implementation the numbers grow to full strength.
Then, towards the end, when the system is being put into operation, the numbers
diminish.

The chief programmer team is a project-based organization in which specialization is
implemented in an extreme form. The principles behind the chief programmer team
organization are:

� to divide the work amongst skilled specialists.

� to structure the team in a well-defined way so that each individual’s role is clear and
communication is minimized.

28.5 � The chief programmer team

28.4 � The project team

28.3 � The functional team

BELL_C28.QXD 1/30/05 4:28 PM Page 351

352 Chapter 28 � Teams

A chief programmer team is like a surgical team in which the chief surgeon is assist-
ed by an assistant surgeon, an anesthetist, and one or two nurses. Each team member
is a highly trained specialist. In the chief programmer team the job titles are chief pro-
grammer, back-up programmer, librarian and other specialist programmers as and when
necessary.

The roles of the team members are as follows

Chief programmer
This is a highly skilled software engineer who produces the crucial parts of the system.
It is usually the designer of the software who determines and specifies the architectural
components of the software.

The chief programmer specifies all the other components in the system and oversees
the integration or system testing of the complete system.

The chief programmer’s role is intended to be almost entirely a technical one. To
this end, administrative affairs like reporting to management and monitoring budgets
and timescales are dealt with by a project manager. This frees the chief programmer
from non-technical matters. The project manager is not really part of the team and will
usually deal with the administrative aspects of several teams.

Back-up programmer
This is a programmer whose skill is comparable to that of the chief programmer. The job
is to help the chief programmer with his or her tasks and act as the chief programmer
when the latter is absent for any reason. Should the chief programmer leave the organi-
zation, the back-up programmer can immediately take over.

Librarian
The librarian maintains the documentation associated with the project. He or she may
be a secretary with some training in using a computer system.

Other specialist programmers
When needed, other programmers are brought into the team to develop any subsystems
specified by the chief programmer. Each of these programmers is an expert in a partic-
ular software area, such as user interfacing, databases or graphics.

The structure of the team is hierarchical, with the chief programmer at the top. In
contrast to a network of people each of whom communicates with everyone else, the
hierarchy restricts information so that it flows along far fewer paths – only up and down
the hierarchy. The use of structured programming (Chapter 7) and top-down imple-
mentation and testing (Chapter 24), both of which are hierarchical, complement this
scheme very neatly.

There can be no doubt that the technique of the chief programmer team represents
a creative application of scientific management to team programming.

BELL_C28.QXD 1/30/05 4:28 PM Page 352

28.6 The object-oriented team 353

The benefits of the chief programmer team to the organization are thus:

(a) improved programmer productivity because

� less time is spent in communication

� each programmer is carrying out specialized work at which they are highly
skilled

(b) improved software quality because

� the team is organized around a highly skilled programmer

� the interfaces between software components are clearer

� fewer bugs arise from communication problems because there are fewer pro-
grammers

(c) meeting deadlines more reliably because

� there is greater visibility of the project through the high technical involvement
of the chief programmer.

Other benefits that are cited concern career paths. Someone who is a good program-
mer but does not want to go into management can become a chief programmer – largely
a technical role.

A number of problems arise for the management of a large project. First, since any
team is only manageable with up to about nine people, what do we do if a project is
sufficiently large that it needs more than this number? One suggestion (but it is only
that) is to start the project with a chief programmer team to carry out the high-level
software design and the top-level implementation. When this is complete the original
team is broken up and its members become chief programmers within the set of teams
that carry out developments of the subsystems. A remnant of the original team carries
out system integration and validation.

Another problem of chief programmer team organization is this: the team is sup-
posed to be made up of good experienced programmers, so how do inexperienced pro-
grammers gain expertise? Here the suggestion is that they train by doing maintenance
on existing programs.

Object-oriented development tries to achieve two objectives:

� reuse of existing components from either the standard library or the in-house library

� the creation of new reuseable components for the in-house library.

Thus, organizations using the object-oriented paradigm have found it desirable to
divide their personnel into teams of application programmers on the one hand, and
teams of class or component programmers on the other. The motivation here is that the

28.6 � The object-oriented team

BELL_C28.QXD 1/30/05 4:28 PM Page 353

354 Chapter 28 � Teams

benefits of the object-oriented paradigm are only be realized if a concerted effort is
made to identify reusable software components and to organize such components with-
in an accessible library. A domain-specific class library becomes viewed as one of the
major assets of the organization. Indeed, some large companies have reported that they
have been able to reduce the amount of new code written on large projects by a factor
of 50% through the use of such libraries.

In such a scenario, application programmers are thought of as consumers; they
implement application-specific classes, but are always seeking to reuse existing library
components whenever possible. They seek better reusable components from the class
programmers and also have a responsibility to identify useful abstractions that can be
migrated from the application to the library.

Class programmers (or component developers) are thought of as producers; they pro-
duce reusable components of general use to the organization. Their job is to polish,
generalize, reorganize and augment library classes. Their task should not be underesti-
mated – producing reusable components is more difficult than writing components for
a specific project.

In a moderate-size project the developers are divided up along class versus applica-
tion lines. The architecture team contains the key designers and programmers; their
responsibility is to oversee the project as a whole and also to take responsibility for crit-
ical modules of the system. They are supported by teams of subsystem developers who
are responsible for the development of “large grain” subsystems. The class developers
are responsible for the development of a reusable component library. This kind of
approach has given rise to a plethora of new job titles and functions, for example, appli-
cation directors, class managers, reuse evaluators.

The key to the success of such an approach is communication between team mem-
bers, particularly between the architecture/subsystem teams and the component devel-
opers. It is highly desirable to develop a culture in which team members are rewarded
for producing components that have a broad applicability or design frameworks that
can be reused.

The chief programmer team is hierarchical and tree-structured. Its organizational struc-
ture tends to produce software that has a matching structure. This may be completely
appropriate for certain types of software. Indeed, much software is hierarchical in struc-
ture. Generalizing, it can be hypothesized that teams tend to produce software whose
structure matches their own structure. Suppose, for example, that some software is
designed by a committee, acting democratically. What would the structure of the soft-
ware look like? Perhaps it would be complex, with many interactions (reflecting the
many interactions between its designers) or perhaps it would display haphazard struc-
ture, without the single clear vision provided by a charismatic leader. But for certain
types of software – for example, expert systems – these structures might be completely
appropriate. Thus it may be that different forms of organization are appropriate for dif-
ferent types of software project.

28.7 � Discussion

BELL_C28.QXD 1/30/05 4:28 PM Page 354

Answer to self-test question 355

Summary

There are two major issues associated with organizing a team that has been set up
to develop a piece of software. One is preventing the overhead of communication
between team members from overwhelming the project. The second is deciding
how the work should be divided amongst the members of the team.

A project team develops a single project while a functional team does specialized
work for a number of projects.

The idea of the chief programmer team is to use a few specialized people, each per-
forming a well-defined task within a hierarchical organization with minimal com-
munication paths. Thus the number of people in the team is reduced and the
communication overhead controlled.

An objected-oriented team tries to develop reusable software for the current and
future projects.

Exercises•
28.1 Investigate the importance of the time taken in communicating within a team.

Assume initially that there are four people in a team. Each is capable of developing
3,000 lines of code per year left to themselves. However, 250 lines per year are sac-
rificed for each communication path to or from an individual. Assume that the team
is organized so that everyone needs to discuss problems with everyone else.

Calculate the productivity (lines of code per year) of each member of the team
and investigate how it changes as the team expands to five and then to six members.

28.2 Carry out the same calculations assuming that a chief programmer team is in operation.
(In this case each member of the team communicates only with the chief programmer.)

28.3 Compare and contrast the conventional project team organization with that of a chief
programmer team.

28.4 Assess the chief programmer team organization.

28.5 Compare and contrast the functional team with the project team organization.

28.6 Assess the OO team organization suggested in this chapter.

Answer to self-test question

28.1 Head chef, assistant chef, salad chef, pudding chef, kitchen porter.

BELL_C28.QXD 1/30/05 4:28 PM Page 355

356 Chapter 28 � Teams

The following book is largely concerned with describing the management of software
development. Parts of the book describe how to organize teams of programmers:
J.D. Aron, The Program Development Process, Part II, The Programming Team,
Addison-Wesley, 1983.

This classic book contains fascinating sections about the problems of developing large-
scale software, using a team of people. There is a section on chief programmer teams:
F.P. Brooks, The Mythical Man-Month, Addison-Wesley, 1995.

Further reading•

BELL_C28.QXD 1/30/05 4:28 PM Page 356

The issue of quality and quality assurance has become generally important throughout the
industrialized world. It has become particularly important for software because of the
increasing reliance of business on software and because of the notorious reputation that
software enjoys. As a minimum, software is of good quality if it:

� meets its users needs

� is reliable (i.e. it does not fail)

� is easy to maintain (i.e. to correct or change).

There are, of course, other factors involved in quality which we will review shortly.
Quality assurance means the measures that are taken to ensure that software is of

good quality.
A vital aspect of quality is measurement. In software engineering, measures are

termed metrics. A metric is a measure, such as cost or size, that can be applied to soft-
ware. Metrics can be obtained and applied throughout the software development
process. Metrics address issues like:

� how big will the software be?

� how complex is this component?

� how reliable is this software?

29.1 � Introduction

CHAPTER

29 Software metrics and
quality assurance

This chapter:
� explains the nature of metrics

� explains the concept of a complexity metric

� reviews reliability metrics and how to estimate bugs

� explains the meaning of the terms quality and quality assurance

� explains how to prepare a quality assurance plan for a project.

BELL_C29.QXD 1/30/05 4:28 PM Page 357

358 Chapter 29 � Software metrics and quality assurance

� how much will this software cost?

� how much effort will be needed to alter this software to meet changed needs.

In this chapter we review various ways of applying metrics to software. The purposes
of metrics in software engineering include:

� predicting qualities of software that is about to be developed

� making judgments on the quality of a piece of software that has been developed

� monitoring and improving the software development process

� comparing and assessing different development approaches.

In this chapter we first review metrics, then look at the application of quality assurance.

The simplest measure of software is its size. Two possible metrics are the size in bytes
and the size in number of statements. The size in statements is often termed LOCs
(lines of code), sometimes SLOCs (source lines of code). The size in bytes obviously
affects the main memory and disk space requirements and affects performance. The size
measured in statements relates to development effort and maintenance costs. But a
longer program does not necessarily take longer to develop than a shorter program,
because the complexity of the software also has an effect. A metric such as LOCs takes
no account of complexity. (We shall see shortly how complexity can be measured.)

There are different ways of interpreting even a simple metric like LOCs, since it is
possible to exclude, or include, comments, data declaration statements, and so on.
Arguably, blank lines are not included in the count.

The second major metric is person months, a measure of developer effort. Since
people’s time is the major factor in software development, person months usually
determine cost. If an organization measures the development time for components,
the information can be used to predict the time of future developments. It can also be
used to gauge the effectiveness of new techniques that are used.

The third basic metric is the number of bugs. As a component is being developed, a
log can be kept of the bugs that are found. In week 1 there might be 27, in week 2
there might be 13, and so on. As we shall see later, this helps predict how many bugs
remain at the end of the development. These figures can also be used to assess how good
new techniques are.

Collecting and documenting quality information can be seen as threatening to devel-
opers but a supportive culture can help.

In the early days of programming, main memory was small and processors were slow.
It was considered normal to try hard to make programs efficient. One effect of this was

29.3 � Complexity metrics

29.2 � Basic metrics

BELL_C29.QXD 1/30/05 4:28 PM Page 358

29.3 Complexity metrics 359

that programmers often used tricks. Nowadays the situation is rather different – the
pressure is on to reduce the development time of programs and ease the burden of
maintenance. So the emphasis is on writing programs that are clear and simple, and
therefore easy to check, understand and modify.

What are the arguments for simplicity?

� it is quicker to debug simple software

� it is quicker to test simple software

� simple software is more likely to be reliable

� it is quicker to modify simple software.

If we look at the world of design engineering, a good engineer insists on maintain-
ing a complete understanding and control over every aspect of the project. The more
difficult the project the more firmly the insistence on simplicity – without it no one can
understand what is going on. Software designers and programmers have sometimes
been accused of exhibiting the exact opposite characteristic; they deliberately avoid simple
solutions and gain satisfaction from the complexities of their designs.

However, many software designers and programmers today strive to make their
software as clear and simple as possible. A programmer finishes a program and is sat-
isfied both that it works correctly and that it is clearly written. But how do we know
that it is clear? Is a shorter program necessarily simpler than a longer one (that achieves
the same end), or is a heavily nested program simpler than an equivalent program
without nesting?

Arguably what we perceive as clarity or complexity is an issue for psychology. It is con-
cerned with how the brain works. We cannot establish a measure of complexity – for
example, the number of statements in a program – without investigating how such a
measure corresponds with programmers’ perceptions and experiences. We now describe
one attempt to establish a meaningful measure of complexity. One aim of such work is
to guide programmers in selecting clear program structures and rejecting unclear struc-
tures, either during design or afterwards.

The approach taken is to hypothesize about what factors affect program complexity.
For example, we might conjecture that program length, the number of alternative paths
through the program and the number of references to data might all affect complexity.
We could perhaps invent a formula that allows us to calculate the overall complexity of
a program from these constituent factors. The next step is to verify the hypothesis. How
well does the formula match up with reality? What correlation is there between the
complexity as computed from the formula and, for example, the time it takes to write
or to understand the program?

Amongst several attempts to measure complexity is McCabe’s cyclomatic complex-
ity. McCabe suggests that complexity does not depend on the number of statements.
Instead it depends only on the decision structure of the program – the number of if,
while and similar statements. To calculate the cyclomatic complexity of a program,
count the number of conditions and add one. For example, the program fragment:

BELL_C29.QXD 1/30/05 4:28 PM Page 359

360 Chapter 29 � Software metrics and quality assurance

x = y;

if (a == b)

c = d;

else

e = f;

p = q

has a complexity of 2, because there are two independent paths through the program.
Similarly a while and a repeat each count one towards the complexity count.
Compound conditions like:

if a > b and c > d then

count two because this if statement could be rewritten as two, nested if statements.
Note that a program that consists only of a sequence of statements, has a cyclomatic
complexity of 1, however long it is. Thus the smallest value of this metric is 1.

There are two ways of using McCabe’s measure. First, if we had two algorithms that
solve the same problem, we could use this measure to select the simpler. Second, McCabe
suggests that if the cyclomatic complexity of a component is greater than 10, then it is
too complex. In such a case, it should either be rewritten or else broken down into sev-
eral smaller components.

Cyclomatic complexity is a useful attempt to quantify complexity, and it is claimed
that it has been successfully applied. It is, however, open to several criticisms as follows.

First, why is the value of 10 adopted as the limit? This figure for the maximum
allowed complexity is somewhat arbitrary and unscientific.

Second, the measure makes no allowance for the sheer length of a module, so that a
one-page module (with no decisions) is rated as equally complex as a thousand-page
module (with no decisions).

Third, the measure depends only on control flow, ignoring, for example, references
to data. One program might only act upon a few items of data, while another might
involve operations on a variety of complex objects. (Indirect references to data, say via
pointers, are an extreme case.)

Finally, there is no evidence to fully correlate McCabe’s measure with the complex-
ity of a module as perceived by human beings.

So McCabe’s measure is a crude attempt to quantify the complexity of a software
component. But it suffers from obvious flaws and there are various suggestions for
devising an improved measure. However, McCabe’s complexity measure has become
famous and influential as a starting point for work on metrics.

>
>

SELF-TEST QUESTION

29.1 Suggest a formula for calculating the complexity of a piece of program.

BELL_C29.QXD 1/30/05 4:28 PM Page 360

29.4 Faults and reliability – estimating bugs 361

A valid complexity measure can potentially help software developers in the following
ways:

� in estimating the effort needed in maintaining a component

� in selecting the simplest design from amongst several candidates

� in signaling when a component is too complex and therefore is in need of restruc-
turing or subdivision.

The terminology adopted in this book is that a human error in developing software
causes a fault (a bug) which may then cause a failure of the system (or several differ-
ent failures). We have seen in Chapter 19 on testing that every significant piece of soft-
ware contains faults. Therefore if we are buying a piece of software it makes sense to
ask the supplier to tell us how many faults there are. If they respond by saying that
there are none, then they are either lying or incompetent. Similarly if we have devel-
oped a piece of software, it would be professional (if we are honest) to be able to tell
users how many (estimated) faults there are and thus give the users some idea of the
expected reliability.

A commonly used metric for faults is fault density, which is the estimated number of
faults per 1,000 lines of code. Faults are detected both during verification and during
normal use after the software is put into productive use. Some faults are, of course, cor-
rected and therefore do not count towards the fault density. We must not forget that, in
addition to known faults, there are faults that are present but undetected. In commer-
cially written software, there is an enormous variation in fault densities – figures observed
are between 2 and 50 faults per KLOC (kilo lines of code). A figure of 2 is rated high-
ly creditable. The fault density metric is useful in assessing the effectiveness of verifica-
tion methods and as a measure of correctness (see below) in quality assurance.

Experimental studies suggest that most faults cause only rare failures, whereas a small
number of faults cause most of the failures. Thus it is more cost-effective to fix the small
number of faults which cause most of the trouble – if they can be found.

It would seem to be impossible to gauge how many faults remain in a thoroughly
tested system. After all if we knew what faults there are, we could correct them. One
technique arises from the earth sciences. How do you find out how many fish there are
in a lake? It would be costly (and kill many fish) to drain the lake. An alternative is to
insert additional, specially marked fish into the lake. These could be fish of a different
breed or slightly radioactive fish. After waiting a sufficient time for the fish to mix thor-
oughly, we catch a number of fish. We measure the proportion of specially marked fish,
and, knowing the original number of special fish, scale up to find the total number of
fish. We can do the same thing in software by deliberately putting in artificial faults into
the software some time before testing is complete. By measuring the ratio of artificial
to real faults detected, we can calculate the number of remaining real faults. Clearly
this technique depends on the ability to create faults that are of a similar type to the
actual faults.

29.4 � Faults and reliability – estimating bugs

BELL_C29.QXD 1/30/05 4:28 PM Page 361

362 Chapter 29 � Software metrics and quality assurance

One major problem with utilizing the fault density metric is that, as we have just
seen, some bugs are more significant than others. Thus a more useful metric for users
of a system is mean time to failure (MTTF). This is the average time for a system to per-
form without failing. This can be measured simply by logging the times at which fail-
ures occur and simply calculating the average time between successive failures. This
then gives a prediction for the future failure rate of the system.

How do you know when you have produced good-quality software? There are two ways
of going about it:

� measuring the attributes of software that has been developed (quality control)

� monitoring and controlling the process of development of the software (quality
assurance).

Let us compare developing software with preparing a meal, so that we can visualize
these options more clearly. If we prepare a meal (somehow) and then serve it up, we
will get ample comments on its quality. The consumers will assess a number of factors
such as the taste, color and temperature. But by then it is too late to do anything about
the quality. Just about the only action that could be taken is to prepare further meals,
rejecting them until the consumers are satisfied. We can now appreciate a commonly
used definition of quality:

a product which fulfills and continues to meet the purpose for which it was produced is
a quality product.

There is an alternative course of action: it is to ensure that at each stage of prepara-
tion and cooking everything is in order. So we:

1. buy the ingredients and make sure that they are all fresh

2. wash the ingredients and check that they are clean

3. chop the ingredients and check that they are chopped to the correct size

4. monitor the cooking time.

At each stage we can correct a fault if something has been done incorrectly. For
example, we buy new ingredients if, on inspection, they turn out not to be fresh. We
wash the ingredients again if they are not clean enough. Thus the quality of the final
meal can be ensured by carrying out checks and remedial action if necessary through-
out the preparation. Putting this into the jargon of software development, the quality
can be assured provided that the process is assured.

For preparing the meal we also need a good recipe – one that can be carried out accu-
rately and delivers well-defined products at every stage. This corresponds to using good
tools and methods during software development.

Here is a commonly used list of desirable software qualities. It corresponds to factors
like taste, color, texture and nutritional value in food preparation. The list is designed to

29.5 � Software quality

BELL_C29.QXD 1/30/05 4:28 PM Page 362

29.5 Software quality 363

encompass the complete range of attributes associated with software, except the cost of
construction.

� correctness – the extent to which the software meets its specification and meets its
users’ requirements

� reliability – the degree to which the software continues to work without failing

� performance – the amount of main memory and processor time that the software uses

� integrity – the degree to which the software enforces control over access to infor-
mation by users

� usability – the ease of use of the software

� maintainability – the effort required to find and fix a fault

� flexibility – the effort required to change the software to meet changed requirements

� testability – the effort required to test the software effectively

� portability – the effort required to transfer the software to a different hardware
and/or software platform

� reusability – the extent to which the software (or a component within it) can be
reused within some other software

� interoperability – the effort required to make the software work in conjunction with
some other software

� security – the extent to which the software is safe from external sabotage that may
damage it and impair its use.

These attributes are related to the set of goals discussed in Chapter 1. As we saw,
some of these qualities can be mutually contradictory, for example, if high performance
is required, portability will probably suffer. Also, not every attribute is desired in every
piece of software. So for each project it is important to identify the salient factors before
development starts.

SELF-TEST QUESTION

29.2 Software is to be developed to control a fly-by-wire airplane. What are
likely to be the important factors?

This list of quality factors can be used in one or more of the following situations:

1. at the outset of a software development, to clarify the goals

2. during development, to guide the development process towards the goals

3. on completion, to assess the completed piece of software.

The above quality attributes are, of course, only qualitative (rather than quantitative)
measures. And as we have seen earlier in this chapter, the purpose of metrics is to quan-
tify desirable or interesting qualities. Thus a complexity measure, such as McCabe’s, can

BELL_C29.QXD 1/30/05 4:28 PM Page 363

364 Chapter 29 � Software metrics and quality assurance

Quality assurance means ensuring that a software system meets its quality goals. The
goals differ from one project to another. They must be clear and can be selected from
the list of quality factors we saw earlier. To achieve its goals, a project must use effective
tools and methods. Also checks must be carried out during the development process at
every available opportunity to see that the process is being carried out correctly.

To ensure that effective tools and methods are being used, an organization distills its
best practices and documents them in a quality manual. This is like a library of all the
effective tools, methods and notations. It is like a recipe book in cooking, except that
it contains only the very best recipes. This manual describes all the standards and pro-
cedures that are available to be used.

A standard defines a range, limit, tolerance or norm of some measurable attribute
against which compliance can be judged. For example, during white box testing, every
source code statement must be executed at least once. In the kitchen, all peeled pota-
toes must be inspected to ensure there is no skin remaining on them.

A procedure prescribes a way of doing something (rules, steps, guidelines, plans). For
example, black box testing, white box testing and a walkthrough must be used to ver-
ify each component of software. In the kitchen, all green vegetables will be steamed,
rather than boiled.

To be effective, quality assurance must be planned in advance – along with the plan-
ning of all other aspects of a software project. The project manager:

1. decides which quality factors are important for the particular project (e.g. high reli-
ability and maintainability). In preparing a family meal, perhaps flavor and nutri-
tional value are the paramount goals.

2. selects standards and procedures from the quality manual that are appropriate to
meeting the quality goals (e.g. the use of complexity metrics to check maintain-
ability). If the meal does not involve potatoes, then those parts of the quality man-
ual that deal with potatoes can be omitted.

3. assembles these into a quality assurance plan for the project. This describes what
the procedures and standards are, when they will be done, and who does them.

More and more the organizations that produce software are having to convince their
customers that they are using effective methods. More and more commonly they must

29.6 � Quality assurance

be used to measure maintainability. Reliability can be measured as MTTF. However, for
many of these attributes, it is extremely difficult to make an accurate judgment and a
subjective guess must suffice – with all its uncertainties.

SELF-TEST QUESTION

29.3 List some other quality factors that can be quantified.

BELL_C29.QXD 1/30/05 4:28 PM Page 364

29.7 Process improvement 365

We have seen how quality can be measured, attained and ensured. A more ambitious
goal is to improve quality. One perspective on improving quality is suggested by
W. Edwards Deming, an influential management guru, who suggests that processes can
be continuously improved. In his approach, the work processes are subject to continu-
ous examination by the workers themselves as well as the organization in order to see
how things can be done better.

So, for example, suppose that the number of faults discovered during testing is meas-
ured. But simply measuring does not achieve anything; measurements may help to
ensure repeatability, but this is not the same as improvement. To improve the process,
someone looks at how and why the faults were caused and what can be done to improve
the processes. So, for example, it might be that a significant number of faults arise
because of lack of clarity in module specifications. Therefore, to improve the process it
might be decided that module specifications should be subject to walkthroughs before
they are used. Alternatively it might be suggested that a more formal notation is to be

29.7 � Process improvement

specify what methods they are using. In addition, the organization must demonstrate
that they are using the methods. Thus an organization must not only use sound meth-
ods but must be seen to be using them. Therefore a quality plan describes a number of
quality controls. A quality control is an activity that checks that the project’s quality fac-
tors are being achieved and produces some documentary evidence. In the kitchen, an
example is an inspection carried out after potatoes have been peeled. The documentary
evidence is the signature of the chief cook on a checklist recording that this has been
done. These documents are then available to anyone – such as the customer – with an
interest in checking that the quality of the product is assured. Depending on the quality
factors for the project, quality controls might include:

Collect a complexity metric Data on complexity Maintainability
for each component in the system

Component test Test result Correctness

Walkthrough to examine component Minutes of walkthrough Reusability
for re-usability

Action Document Factor being checked

SELF-TEST QUESTION

29.4 What quality factors would the measurement of fault density help
achieve?

BELL_C29.QXD 1/30/05 4:28 PM Page 365

366 Chapter 29 � Software metrics and quality assurance

used for documenting module specifications. After any changes have been made, meas-
urements are continued, and the search goes on for further improvements. Deming
suggests that improvements can continue to be made indefinitely.

Deming argues that quality improvements of this type benefit everyone:

� workers, because they can take control and pride in their work

� organizations, because they can make increased profits

� customers, because they get better quality.

The Capability Maturity Model (CMM) is a grading system that measures how good an
organization is at software development. This scheme specifies five levels, ranging from
level 1 (bad) to level 5 (good). An organization’s ranking is determined by questionnaires
administered by the Software Engineering Institute of Carnegie Mellon University, USA.
The levels are:

� Level 1, initial – the development process is ad hoc and even, occasionally, chaotic.
Few processes are defined and the success of any project depends on effort by
individuals. Thus the organization survives through the actions of individual
heroes and heroines who help ensure some success in spite of the way that the
organization is run.

� Level 2, repeatable – basic project management processes are established within the
organization to track cost, schedule and functionality. The processes enable the
organization to repeat its success obtained with earlier, similar applications.

� Level 3, defined – the development process for both management and software en-
gineering activities is documented, standardized and integrated into an organization-
wide development process. All projects use an approved and documented version of
the standard process. This level includes all the characteristics defined for level 2.

� Level 4, managed – detailed measures of the development process and of the soft-
ware product are collected. Both are quantitative and measured in a controlled
fashion. This level includes all the characteristics defined for level 3.

� Level 5, optimizing – measurements are continuously used to improve the process.
New techniques and tools are used and tested. This level includes all the character-
istics defined for level 4.

Any particular development organization will typically use a mix of good and bad
practice and so the level achieved is the average for the organization. An organization
with a good rating can clearly advertise the fact to get increased business. If an organ-
ization, or individual, is buying or commissioning software, it is clearly better to buy
from a CMM level 5 software development organization, who will probably supply
better software and not necessarily at a more expensive price. Indeed, the evidence is
that an organization that uses better methods achieves higher quality software at a
lower cost.

29.8 � The Capability Maturity Model

BELL_C29.QXD 1/30/05 4:28 PM Page 366

Exercises 367

29.1 Write down two different programs to search a table for a desired element. Calculate
the cyclomatic complexity of each and hence compare them from the point of view of
clarity.

29.2 What factors do you think affect program complexity? What is wrong with McCabe’s
approach to calculating complexity? Devise a scheme for calculating a satisfactory
complexity measure.

29.3 Devise a plan to measure faults and failures revealed during the course of a software
development project. How could this data be used?

29.4 Compare the list of software quality factors identified above in the text with the list of
software engineering goals given in Chapter 1.

29.5 Suggest appropriate quality factors for each of the software systems described in
Appendix A.

Summary

Metrics support software engineering in several ways:

1. they help us decide what to do during the act of design, guiding us to soft-
ware that is clear, simple and flexible.

2. they provide us with criteria for assessing the quality of software

3. they can help in predicting development effort

4. they help choose between methods

5. they help improve working practices.

Software complexity can be measured using McCabe’s cyclomatic complexity
measure, which is based upon the number of decisions within the software.

Coupling and cohesion are qualitative terms that describe the character of the
interaction between modules and within modules, respectively. These are described
in Chapter 6 on modularity.

Correctness can be measured using fault density as a metric. Reliability can be
measured using MTTF as a metric.

The quality goals for a project can be clarified using a list of factors.

Quality assurance is the application of a plan involving procedures, standards and
quality factors to ensure software quality.

The CMM is a classification scheme to assess an organization’s ability to develop
quality software.

Exercises•

BELL_C29.QXD 1/30/05 4:28 PM Page 367

368 Chapter 29 � Software metrics and quality assurance

29.6 It is common practice for software development organizations to lay down standards
for coding. Suggest a number of coding standards for a programming language
of your choice. Suggest quality factors that are enhanced by adherence to the
standards.

29.7 Suggest a quality assurance plan for each of the software development projects listed
in Appendix A. Assume that each project will use the waterfall model as its process
model.

Answers to self-test questions

29.1 There are many possible suggestions. One formula that builds on
McCabe, but takes some account of references to data is:

complexity = number of decisions + (number of data references –
number of statements)

This has the characteristic that if each statement refers to one data item
only, the second term is zero.

29.2 Correctness and reliability.

29.3 Cost, size.

29.4 Correctness, reliability.

A most comprehensive and readable book is: N.E. Fenton and S. Lawrence Pfleeger,
Software Metrics: A Rigorous and Practical Approach, International Thomson
Computer Press, 1996.

McCabe’s famous original cyclomatic complexity is described in this paper: J.T.
McCabe, A complexity measure, IEEE Transactions on Software Engineering, SE-2
(4) (December 1976).

A well-known book that presents a whole number of ways of measuring software: M.H.
Halstead, Elements of Software Science, Elsevier, 1977.

A most readable book on software quality. It explains what measures can be used dur-
ing each stage of software development: Darrel Ince, Software Quality Assurance: A
Student Introduction, McGraw-Hill, 1995.

The seminal book on continuous process improvement: W. Edwards Deming, Out of
the crisis: quality, productivity and competitive position, Cambridge University Press,
1986.

Further reading•

BELL_C29.QXD 1/30/05 4:28 PM Page 368

Further reading 369

The definitive paper on the CMM is: Mark C. Paulk, Bill Curtis, Mary Beth Chrissis
and Charles V. Weber, Capability maturity model, version 1.1, IEEE Software, 10 (4)
(July 1993), pp. 18–27.

There is also a book on CMM: Mark C. Paulk, Charles V. Webber, Bill Curtis and Mary
Beth Chrissis (principal contributors and eds), The Capability Maturity Model:
Guidelines for Improving the Software Process, Addison-Wesley, 1995.

BELL_C29.QXD 1/30/05 4:28 PM Page 369

Project management is the activity of trying to ensure that a software development is
successful. The meaning of success will differ from one project to another, but it usu-
ally includes meeting the deadline, implementing the required features and meeting the
budget. Chapter 1 discussed the goals of software engineering (in general) and these
often coincide with the goals of particular projects.

30.1 � Introduction

CHAPTER

30 Project management

This chapter:
� identifies the tasks of project management

� explains how to estimate the cost of a software project

� explains how to select tools and methods

� explains how to plan a development

� suggests how to make teams run smoothly.

SELF-TEST QUESTION

30.1 Identify another typical goal for a software project.

Project management aims to set up an orderly process so that a project runs smoothly
from inception to completion. There are a number of different ways of going about this.
What is certain is that difficulties and crises will arise during a project. Project manage-
ment is difficult. Software projects commonly run late, are over budget and fail to meet
the users’ requirements.

Why is a large-scale software project such a complex task?

BELL_C30.QXD 1/30/05 4:28 PM Page 370

� it comprises a number of individually complex and interacting activities

� it is often carried out by large numbers of people working over lengthy time spans

� it aims to develop a complex product that should conform to prescribed, sometimes
stringent, requirements and standards.

Any project manager has the legacy of bad publicity to overcome – the widespread
perception that projects nearly always run over budget and beyond deadline. There is
no doubt that this is due to the near-impossibility of predicting in advance how much
effort is required to develop software. Estimates are commonly too low; the result is
embarrassing.

The problems are compounded by the knowledge that there are immense differences
between individual developers – it is common to see a twenty-fold difference in pro-
ductivity between individual developers in the same organization. If you estimate the
development time for a software component and then assign the job of designing and
coding it to an individual, you have no real idea of how long it should take or will take.
This is a nightmare situation for any project manager.

The problems are not helped by the available software engineering techniques. What
a manager wants is a well-defined method, with clear products delivered at short inter-
vals. With such a weapon, the manager can closely monitor progress and, if necessary,
do something about it. Regrettably, no such technique exists. Instead it is common to
experience the well-known “90% complete” paralysis. The manager asks the engineer
about progress. The engineer replies, “Fine – it’s 90% complete.” Reassured the man-
ager does nothing. A week later, they ask the same question and receive exactly the
same reply. And so on. Given the nature of software development there is no good way
in which the manager can verify whether the report is accurate or misleading. The
schedule slips out of control.

At the outset of a project, management involves the following tasks:

1. establishing the goals of the project. What are the priorities – is it meeting a dead-
line? Is it high reliability software? Or what?

2. choosing a process model

3. estimation – estimating the effort required (person months), the duration of the
project and its cost

4. choosing appropriate techniques and tools that ensure that the software product
attains its required quality factors

5. setting up the team, organized in way that they can communicate effectively in carry-
ing out the different parts of the development work

6. planning – scheduling deliverables, milestones, allocating people to the project.

30.2 � Project inception

30.2 Project inception 371

BELL_C30.QXD 1/30/05 4:28 PM Page 371

As we have seen, a process model is a model for the framework or plan for a project.
Individual tasks, tools and techniques fit within this overall skeleton. Earlier in this
book, we described a number of process models – waterfall, incremental, prototyping,
open source, agile methods and the unified process. The project manager can choose
between these, or create their own.

Similarly the project manager needs to select a package of techniques and tools that fit
within the process model. These techniques are what the main part of this book is all
about. For example, a decision has to be made about the choice of programming language.

Different organizations of teams were reviewed in Chapter 28.
Project management usually involves monitoring and control: monitoring ascertains

what is happening. Then control remedies things that are going wrong. In order to
monitor a project, what is happening must be visible and therefore reliable information
about the state of the development must be available.

Another important task associated with project management is people management –
dealing with people’s needs, behavior and foibles. This involves trying to ensure that
people are well motivated. At the end of this chapter, we look at ideas for influencing
the behavior of a development team.

The classic way of estimating software costs is to guess a figure, double it and hope for
the best. A better way, often used, is to check whether the organization has carried out
a similar project and use the actual figures from that project as a basis for the estimate.

Early methods for cost estimation rely on being able to guess the eventual size of the
software. The effort is then derived from this figure. The steps are:

1. guess the size of the product (measured in lines of code)

2. divide by a factor (say 40) to give the effort (measured in person months).

However, this simply shifts the difficulty from one intractable problem (estimating cost)
to another (estimating lines of code).

30.3 � Cost estimation

372 Chapter 30 � Project management

SELF-TEST QUESTION

30.2 Check whether these tasks are needed for a project to prepare a meal,
carried out by a group of people.

SELF-TEST QUESTION

30.3 It is estimated that size of some software will be 10,000 lines. The pro-
ductivity of the organization developing it is 100 lines per week.
Calculate the effort required.

BELL_C30.QXD 1/30/05 4:28 PM Page 372

30.3 Cost estimation 373

The most recent methods recognize that a number of factors affect the required effort:

� size of the product

� difficulty of the project

� expertise of the developers

� effectiveness of tools

� how much software can be reused from elsewhere.

At the outset of a project, it is impossible to estimate the development effort. If
someone says, “We want to develop a new word processor,” the requirement is so vague
that any estimate of effort is meaningless. It is not until requirements analysis is com-
plete that some estimate can be made. Thus in a word processor, for example, it is rel-
atively easy to assess the effort required to write the software for one small function,
such as to save text in a file. Even then there are too many uncertainties to make an
accurate estimate. It is only as the project continues that the situation becomes clearer
and more accurate estimates can be achieved.

Nonetheless, it is often necessary to make an initial estimate of software cost so that a
decision can be made about the feasibility of the project. This is sometimes called investment
appraisal or a feasibility study (Chapter 3). An estimate of the software development cost is
compared with the financial value of the benefits that will accrue. If the benefits are greater
than the costs, the project goes ahead; otherwise it is canceled. This makes sense until you
realize that a crucial decision depends upon an estimate that is almost impossible to make.

A well-known approach to cost estimation is the COCOMO (Constructive Cost
Model) approach, developed by Barry Bohm. This suffers from the drawback men-
tioned above – the cost estimate is based on a size estimate. However, the most recent
version of this approach, COCOMO 2.0, adopts an approach similar to the next method
we will describe.

Probably the best approach to cost estimation is called function point analysis. It
assumes that the effort required to develop a piece of software depends on what the
software does – the number of functions it implements. Function points are another
name for use cases that we met in Chapter 4 on requirements.

Let us consider, for example, an information system that allows the user to browse infor-
mation and update information held in a database. The system holds information about the
employees in an organization. A screen is to be implemented that allows information about
a single employee to be displayed. This is one of the function points of the system. Because
this is a small task and we can visualize the implementation, we predict with some confi-
dence that the effort required will be 1 person month. This includes clarifying the require-
ments, creating the specification, testing and validation. Obviously there will be other
screens available to users, for example, a screen to change the details of an employee. The
number of functions is measured by the number of screens available to the user and the
development effort is proportionate. Thus for 6 screens, we estimate 6 person months.

But where does the figure of 1 person month per function point come from? The
assumption is that we can accurately predict the effort to implement a fairly small func-
tion. But this figure is likely to differ from one organization to another, depending per-
haps on the general level of expertise within the organization. To obtain the appropriate
factor, a calibration needs to be carried out within the particular organization. This means

BELL_C30.QXD 1/30/05 4:28 PM Page 373

374 Chapter 30 � Project management

measuring the development effort on an initial series of projects to obtain an average fig-
ure. This might be 0.75 person months per function point. Whatever the factor, the
assumption of this prediction model is that the effort is proportional to the number of func-
tion points, and the number of function points is determined by the number of screens.

There are, however, additional considerations – we have neglected to consider the
effort to design and access the database. For each table in the relational database we add
1 to the count of function points and therefore an additional person month to the total
effort. As part of the information system, reports are probably required – on-screen and
on hard copy. Again, for each report we add 1 to the count of function points.

In summary, the count of function points is the sum of:

� the number of data input screens

� the number of data display screens

� the number of database tables

� the number of reports

� the number of interfaces with other software systems.

Perhaps the system is implemented across a network of PCs, linked to a server that
maintains the database. This involves extra complexity and therefore effort. A complex-
ity multiplier of, say, 1.6 can be applied to the effort figure to take account of imple-
mentation complexity.

Finally, the new software may be able to reuse software either from a library or from
earlier projects, thus reducing the development effort. This can be estimated by deduct-
ing the proportion of the software that is being implemented by reuse.

Thus the function point approach caters for factors including the size of a project, the
expertise of the developers, the power of the software tools, the complexity of the imple-
mentation and the degree of reuse. Most of the factors need to be calibrated within the
context of a particular organization, with its own staff expertise, tools and methods.

The function point estimate method uses as its foundation a knowledge of the num-
ber of functions that the software needs to provide and this is based on the number of
input and output activities. These are sometimes not precisely known at the outset of a
project, but become clearer during requirements analysis.

Although software cost estimation models such as this attempt to take account of all
relevant factors, they are notoriously inaccurate in their predictions. There are a num-
ber of reasons. One problem is that assigning the same weighting to all function points
is very crude. Another difficulty is that there are widely different productivity rates
amongst developers.

SELF TEST QUESTION

30.4 Estimate the effort to develop the above system, assuming 6 screens,
4 database tables, 2 reports, no interfaces to other systems, 1 person
month per function point, no software reuse, a difficulty factor of 1.5
because it is a web-based solution.

BELL_C30.QXD 1/30/05 4:28 PM Page 374

30.4 Selecting tools and methods 375

You are the manager of a software development project. What tools and methods would
you select for use? How can you go about deciding whether a particular tool or method
is worth using?

Chapter 31 looks at ways of assessing techniques, but the results of studies are not
generally helpful.

Some development methods are inapplicable to particular domains and can therefore
be disregarded. For example, prototyping is not usually of any use in developing scien-
tific or mathematical software. Again, data structure design is only really applicable for
serial file processing and it would be difficult or impossible to apply it to scientific pro-
gramming or to process control.

The customer may demand the use of particular methods. For example, a military
client may require the use of Ada in conjunction with formal specification.

Any software development organization has expertise in particular tools and methods.
It also has its own standards and procedures. These are huge investments. Thus, a project
manager within an organization must usually adhere to local methods and standards.

If there is scope to choose the techniques, a next step is to establish a checklist of
requirements and criteria. These must reflect the nature of the software to be devel-
oped, the customer and the organization developing the software. How important are
such factors as cost, reliability, delivery date, ease of maintenance?

When evaluating a technique, a generic checklist of criteria that can be used includes
the following questions:

� what are its special features and strengths?

� what are its weaknesses?

� what is its philosophy/perspective?

� is it systematic?

� can the technique be used in this application area?

� what is the extent of tool support?

� what is the training time for the people who will use the method?

� what level of skill is required by the people using the method?

� does the method lead to maintainable software

� does the method ensure that the software will meet performance targets?

� what is its productivity?

� how good is the reliability of the software produced with this technique?

� is good documentation automatically produced?

� is the method enjoyable to use?

If the decision is taken to introduce a new method, training effort and time will be
needed. Training costs typically include buying training and the time that developers spend

30.4 � Selecting tools and methods

BELL_C30.QXD 1/30/05 4:28 PM Page 375

376 Chapter 30 � Project management

away from productive work. But that is not all. While a new technique is being adopted,
the organization is still learning and therefore productivity slumps – at least temporarily.

While the technical merits of development methods are important, it is often practi-
cal considerations that determine which development approach is used. Examples are:

� the computer facility only supports specific tools and languages

� the price of software tools associated with a specific method.

A project manager must create a plan for a project that specifies:

� the final deadline

� detailed tasks

� intermediate milestones

� the deliverables at each stage

� who is involved and when

� when project reviews are scheduled

� the dependencies between the stages of the project.

This plan must take account of the process model, the total predicted effort, the
tools and methods, the team organization and the expected final deadline.

The first and crucial step is to identify the major activities that are necessary. For
example, if the waterfall model is adopted, these are requirements analysis, architectur-
al design, coding, unit testing, system testing. An estimate of the person weeks for each
of these stages is made. (It should add up to the total estimate for the project.) Next,
these major stages are broken down into smaller tasks, and figures for effort assigned.
This planning is not easy and is, at best, tentative, because it makes assumptions about
the outcomes of important design decisions which have not yet been made. Finally, the
relationships and dependencies are specified. For example, coding of a module comes
before testing it.

The product of this planning is a detailed plan that shows all the activities that are
needed, the effort required for each and the dependencies between the activities.

There are a number of notations, diagrams and tools that can assist in documenting
a project plan:

� Pert (Project Evaluation and Review Technique) chart – shows activities and their
interrelationships

� Gantt chart – shows resources (people) and what they are doing

� Microsoft Project – a software package designed to assist in project planning and
monitoring

� a spreadsheet package – can be used to describe a project plan, maintaining figures
about tasks, their likely duration and their actual duration.

30.5 � The project plan

BELL_C30.QXD 1/30/05 4:28 PM Page 376

30.6 In the heat of the project 377

A Pert chart (drawn on paper, a whiteboard or using a software tool) shows the
stages of development, their interdependencies and the milestones. Each activity is
shown as a line, with time proceeding left-to-right. An individual activity, for example,
the requirements engineering stage can be shown as:

1. needing an effort of 4 person months

2. starting 1 April

3. ending 31 July.

A Pert chart shows dependencies, for example, that architectural design must be
completed before detailed design. Parallel activities, such as designing two components
at the same time, can also be shown. A Pert chart like this allows the critical path to be
identified easily. This is the path through the chart that determines the overall duration
of the project.

During the course of the development, progress of the project is monitored and
compared with the Pert diagram. Should any stage take longer or shorter than planned,
the diagram is updated to reflect the new situation.

At the outset of a project, the requirements for the system are usually vague and ill-
defined. In consequence, any planning is at best tentative. As the requirements become
clearer, more meaningful and accurate plans can be made. Replanning – reestimating
and rescheduling – is needed to adjust previous estimates as more accurate information
emerges as the project proceeds.

People will leave the project because of new jobs, maternity leave and illness. Tasks
will often overrun their schedule. Additional or changed requirements will be request-
ed. These all require adjustments to the plan.

All of the above present enormous challenges. It is not uncommon to see panic set in
as deadlines are missed and the project seems to be off course. The trick is to recognize
at the outset that these things are going to happen – and plan for them. And it is vital to
remember Brooks’s famous advice, “Adding people to a late project will make it later.”

If an initial plan is inflexible, it is difficult to adapt when something unexpected hap-
pens. Conversely, if the plan is flexible, change can be easily accommodated. This is
where cumbersome approaches reveal their limits, while agile methods are deliberately
designed to be adaptive. Incremental methods are also good at coping with risk because
development takes place in small steps.

Let us consider some likely and realistic scenarios.
First scenario: someone quits the project. If there is someone else available within the

organization (a big assumption), they can take over. They will need to learn about the
project and their particular role. So, even if things go smoothly, time is lost. But it could
be that no one is available to take the vacant position. The choice is then between aban-
doning the work, switching someone or delaying deadlines. If someone is switched,
something else gets abandoned, so the problem is merely passed around. Thus some
hard decisions have to be made.

30.6 � In the heat of the project

BELL_C30.QXD 1/30/05 4:28 PM Page 377

378 Chapter 30 � Project management

Software is created by living, breathing people. However splendid the tools and tech-
niques, software development relies on human creativity. There have been many
attempts to analyze the problems of software projects and suggest informal ways of cre-
ating a successful project team. However well organized the team, there are always
informal processes at work – both individual and group. A project manager needs an
awareness of these processes and needs to know what can be done to avoid weakening
a team and what can be done to improve a team.

One extreme school of management sees people as inherently lazy and needing to
be controlled. They need to be told clearly what to do, given frequent deadlines and
threatened with the consequences of poor performance. The opposite is the belief that
people are motivated by rewards such as respect, praise and money.

Any project faces the dilemma of control versus autonomy. Can the team members
be trusted to do a good job with the minimum of supervision? Are mechanisms required
to ensure that team members are performing? In a factory production plant, such as
a car assembly line, the task that each team member performs is rigorously specified
and timed to a fraction of a second. The degree of control is total and high levels of

30.7 � Managing people

There are approaches that can help in a situation like this. They use a process model
that involves small steps. These tasks are typically as small as an hour or a day. If some-
thing goes wrong with a small task, it can easily be rectified, but if something goes
wrong during a task that takes months, it is hard to fix.

Second scenario: a task takes longer than expected or will take longer than expected.
This is similar to the above case, but here the developer is still around. If the activity is
on the critical path, the deadline has already been missed. There is a huge temptation
either to put additional people on the project or to ask the current people to work extra
hours or to ask everyone to work faster. It is dangerous to give into any of these tactics.
The likelihood is that, later, another task will overrun, compounding the problem.

Here, again, if the tasks are small, the damage is small.
Third scenario: the client asks for changes. The scale of changes must, of course, be

assessed. However, it is unlikely that the effect is to reduce work. More likely, additional
work is needed to provide additional functionality. Worse, significant changes are need-
ed to existing design and code. Now it is natural to want to please the client, and it
may be that the new work is full of interest and challenge, but the only answer here is
to confront the client with the effects on cost and deadlines. The client can then decide
whether to pursue the change, and incur the penalties or perhaps substitute the new
request for an old.

SELF-TEST QUESTION

30.5 A meal is in preparation. It looks as if it will be late. What do you do?

BELL_C30.QXD 1/30/05 4:28 PM Page 378

30.7 Managing people 379

productivity and quality are virtually assured. By contrast, an artist who creates a painting
has complete autonomy; deadlines and quality are by no means certain. Developing soft-
ware probably fits somewhere between these extremes, with a need for some autonomy
and some control.

So, on the one hand, a heavyweight technique can be used. Processes are well-defined
and reporting is frequent and stringent. The waterfall model has these characteristics –
it consists of well-defined steps, each of which leads to a well-defined product. Here
there is minimal dependence on the individuals skill.

On the other hand, a lightweight technique can be used. Processes are ill-defined
and reporting is less frequent. An example is open source development. Here the skills
of the individuals are vital.

Another factor is the individual variability between software developers – some are
fast and effective, while some are slower and less effective. If we assume that this is cru-
cial, then the logic is to hire only good developers and fire (or avoid hiring) bad ones.
On the other hand, we could accept diversity and plan accordingly.

SELF-TEST QUESTION

30.6 You are part of a group, preparing a meal. You know that someone
works slowly. What do you do?

There are no clear answers to these dilemmas. But, if we believe that developers
must be respected, there are some things that should be avoided and some that are
worth trying.

First, some ways in which a management can weaken a team are:

� show distrust of the team

� overemphasize the paperwork, rather than creative thinking

� scatter the team members in different locations

� ask team members to work on a number of different projects (functional team),
rather than focusing on the particular project (project team)

� press for earlier delivery at the expense of reducing the quality of the software

� set unrealistic or phony deadlines

� break up an effective team.

Some management approaches for enhancing team activity are:

� emphasize the desirability of the quality of the software product

� plan for a number of successful completed stages (milestones) during the lifetime
of the project

� emphasize how good the team is

� preserve a successful team for a subsequent project

BELL_C30.QXD 1/30/05 4:28 PM Page 379

380 Chapter 30 � Project management

� reduce hierarchy in the team, promoting egalitarianism, placing the manager out-
side the team

� celebrate diversity within the team members.

Exercises

Summary

� software project management is difficult

� project management involves selecting a process model, a team organization,
tools and methods

� one approach to estimating the cost of a software system involves counting
function points

� planning involves deciding on milestones and scheduling tasks amongst people

� the informal aspects of team working during software development can be as
important as the technical aspects.

•
30.1 Suggest facilities for a software tool that supports the planning and monitoring of

software project activities.

30.2 Draw up a plan for the following software development project. Document the plan as
a Pert chart, in which each activity is shown as an arc, with a bubble at its starting
point (the event which triggers the activity) and a bubble at its completion (the event
which concludes the activity). The plan is to adopt the waterfall model. The development
must be completed in two years. The following activities are envisaged:

1. requirements analysis – 4 person months

2. architectural design – 3 person months

3. detailed design – 4 components, each at 6 person months per component.

4. coding – 2 person months for each component

5. unit testing – 6 person months for each component

6. system testing – 6 person months.

How many people will be required at each stage of the project to ensure that the
deadline is met?

30.3 Suggest features for a software tool to support software cost estimation.

30.4 You are the manager of a software development project. One of the team members
fails to meet the deadline for the coding and testing of a component. What do you do?

BELL_C30.QXD 1/30/05 4:28 PM Page 380

Further reading 381

30.5 You are the project leader for a large and complex software development. Three
months before the software is due to be delivered, the customer requests a change
that will require massive effort. What do you do?

30.6 For each of the systems in Appendix A:

� suggest a process model

� predict the development cost

� suggest a team organization

� suggest a package of tools and methods.

Answers to self-test questions

30.1 There are various satisfactory answers including reliability

30.2 Yes.

30.3 10,000/100 = 100 person weeks.

This is more than 2 person years, allowing for time spent on activities
such as vacations and training.

30.4 The number of function points is 12, which gives 12 � 1 = 12 person
months. Multiplied by the difficulty factor of 1.5, this gives 18 person
months.

30.5 Ascertain whether a reduced meal of adequate quality can be produced
in the available time. Otherwise, tell the diners that the meal will be late.

30.6 You could put them under pressure, hoping they will deliver on time. But,
perhaps better, you could accommodate their work rate in the planning.

A good collection of articles on project management is presented in: Richard H. Thayer
(Editor), Winston W. Royce and Edward Yourdon, Software Engineering Project
Management, IEEE Computer Society, 1997.

This book is a readable and practical discussion of dealing with software costs: T. Capers
Jones, Estimating Software Costs, McGraw-Hill, 1998.

The seminal book on software cost estimation is still the classic: B.W. Boehm, Software
Engineering Economics, Prentice Hall, 1981.

Further reading•

BELL_C30.QXD 1/30/05 4:28 PM Page 381

This view is updated in: B. Boehm, C. Clark, E. Horowitz, C. Westland, R. Madachy
and R. Selby, Cost models for future life cycle processes: COCOMO 2.0, Annals of
Software Engineering, 1 (1) (November 1995), pp. 57–94.

This account of the development of Windows NT reads like a thriller and has signifi-
cant lessons for software developers. It charts the trials, tribulations and the joys of
developing software: G. Pascal Zachary, Showstopper: The Breakneck Race to Create
Windows NT and the Next Generation at Microsoft, Free Press, 1994.

Life within Microsoft and the lessons that can be learned are well-presented in this
readable book: Steve Maguire, Debugging the Development Process: Practical
Strategies for Staying Focused, Hitting Ship Dates and Building Solid Teams,
Microsoft Press, 1994.

Accounts of failed projects are given in: Stephen Flowers, Software Failure: Management
Failure: Amazing Stories and Cautionary Tales, John Wiley, 1996, and in Robert
Glass, Software Runaways, Prentice Hall, 1998.

The classic book that deals at length and in a most interesting way with the informal,
social aspects of working in a team. It is a most enjoyable read: G. Weinberg, The
Psychology of Computer Programming, Van Nostrand Reinhold, l971.

This is the classic book on the problems of running a large-scale software project. It is
worth reading by anyone who is contemplating leading a project. There is a section
on chief programmer teams. This is a classic book, revisited in a celebratory second
edition with additional essays: Frederick P. Brooks, The Mythical Man-Month,
Addison-Wesley 2nd edn, 1995.

A most readable book about the informal processes that are at work in software devel-
opment and how teams can best be organized: Tom DeMarco and Timothy Lister,
Peopleware: Productive Projects and Teams, Dorset House, 1987.

There is a whole host of management books – both serious and popular – about how
to run teams and projects. Many of the ideas are applicable to software projects. This
is one example, actually about software development, with lessons learned at IBM.
It covers recruitment, motivation, power struggles and much more: Watts S.
Humphrey, Managing Technical People, Addison-Wesley, 1997.

382 Chapter 30 � Project management

BELL_C30.QXD 1/30/05 4:28 PM Page 382

PART

G REVIEW

BELL_CPARTG.QXD 1/30/05 4:31 PM Page 383

BELL_CPARTG.QXD 1/30/05 4:31 PM Page 384

We saw in Chapter 1 that there are usually a number of objectives to be met in the con-
struction of a piece of software. A major goal used to be high performance (speed and
size), but with improved hardware cost and performance, this issue has declined in
importance. Nowadays factors like software costs, reliability and ease of maintenance
are increasingly important. For any particular project, it is, of course, vital to assess care-
fully what the specific aims are. Having done this, we will usually find that some of them
are mutually contradictory, so that we have to decide upon a blend or compromise of
objectives.

This book has described a variety of techniques for software construction. All of the
techniques attempt in some way to improve the process of software development and
to meet the various goals of software development projects. The purpose of this chap-
ter is to see how we can assess methods and choose a collection of methods that are
appropriate for a particular project.

31.1 � Introduction

CHAPTER

31 Assessing methods

This chapter:
� discusses the problem of assessing tools and methods

� reviews current techniques

� examines the evidence about verification techniques

� suggests that there is no single best method

� discusses the challenges of introducing new methods.

BELL_C31.QXD 1/30/05 4:29 PM Page 385

386 Chapter 31 � Assessing methods

Is it possible to identify a collection of tools and methods that are ideal in all circumstances?
The answer is no. Software engineering is at an exciting time. There are a dozen schools
of thought competing to demonstrate their supremacy and no single package of tools and
methods seems set to succeed. Some methods seem particularly successful in specific areas,
for example, the data structure design method in information systems. Other methods, like
structured walkthroughs, seem generally useful. In the field of programming languages,
declarative languages have become important in expert systems, while highly modular
imperative languages are widely used in real-time and command and control systems.

Ideally, metrics (Chapter 29) would enable us to determine the best method or com-
bination of software development methods. Regrettably, this is virtually impossible. The
first problem is identifying the criteria for a best method. As we saw in Chapter 1 on
problems and prospects, there are usually a number of goals for any software develop-
ment project. In order to choose between methods it is necessary to establish what
blend of criteria is appropriate for the particular project. For example, the set of goals
for a particular project might be to optimize:

� development effort,

� reliability, and

� maintainability

and these are in conflict with each other. In general, the most significant conflict is
probably between development effort and reliability of the product. For example, a
safety-critical system needs to be highly reliable. However, for a one-off program for a
user to extract information from a database, the prime goal may be quick delivery.
There can be no set of factors that allow universal comparison between methods.
Equally, it is unlikely that there will ever be a single best method.

Suppose that we had narrowed down the choice to two applicable methods, called
A and B. What we would like to have is hard evidence like this: “Method A gives 25%
better productivity than method B.” Regrettably, there is no such data available today,
because of the enormous difficulty of creating it. Let us examine some of those diffi-
culties. Because of cost, it is virtually impossible to conduct any realistic experiments in
which two or more methods are compared. (The cost of developing the same piece of
software twice is usually prohibitive.) Usually the only experimental evidence is based
on scaled-down experiments. Suppose, for example, that we wanted to compare two
design methods, A and B. We could give ten people the specification of a small system
and ask them to use method A, and similarly we could ask a second group to use
method B. We could measure the average time taken to complete the designs and hence
hope to compare the productivities of the methods. We could go on to assign additional
problems and employ more people to increase our confidence in the results. Ultimately,
we might gain some confidence about the relative productivity of the two methods.

But many criticisms can be aimed at experiments like these. Are the backgrounds of
the participants equal? Is the experience of the participants typical? (Often students are
used in experiments, because they are cheap and plentifully available. But are students
typical of professional software developers?) Have sufficient number of people taken

31.2 � How to assess methods

BELL_C31.QXD 1/30/05 4:29 PM Page 386

31.3 Case study – assessing verification techniques 387

part so that the results are statistically significant? Is the problem that has been chosen
typical, or is it a small “toy” problem from which it is unreasonable to extrapolate? Is
there any difference between the motivation of the participants in the experiment and
that of practitioners in a real situation? These questions are serious challenges to the
validity of experiments and the significance of the results. The design of experiments
must be examined carefully and the results used with caution.

While the problem of measuring and comparing productivity is fearsome, the story
gets worse when we consider software quality. Again, what we desire is a statement like,
“Method A gives rise to software that is 50% more reliable than method B.”

Whereas with productivity we have a ready-made measure – person months – how do
we measure reliability? If we use the number of bugs as a measure, how can we actually
count them? Again, do we count all the bugs equally or are some worse than others? Such
questions illustrate the difficulties. Similarly, if we want to quantify how well a method cre-
ates software that is easy to maintain, then ideally we need an objective measure or metric.

There are, of course, additional criteria for assessing and comparing methods (see
Chapter 30 on project management). We might choose from amongst the following
checklist:

� training time for the people who will use the method

� level of skill required by the people using the method

� whether the software produced is easy to maintain

� whether the software will meet performance targets

� whether documentation is automatically produced

� whether the method is enjoyable to use

� whether the method can be used in the required area of application.

The outcomes of experiments that assess methods are not encouraging. For example,
it is widely accepted in the computer industry that structured programming is the best
approach. But one review of the evidence (see the references below) concluded that it
was inconclusive (because of problems with the design of experiments). Similarly, there
seems to be very limited evidence that object-oriented methods are better than older
methods.

Clearly there are many problems to be solved in assessing methods, but equally clear-
ly developers need hard evidence to use in choosing between methods. We can expect
that much attention will be given to the evaluation of tools and methods, and it is, in
fact, an active area of current research. This research centers on the design of experi-
ments and the invention of useful metrics.

We now discuss the results of one of the few small-scale experiments that have been con-
ducted to assess methods. This particular study assessed verification techniques, in par-
ticular black box testing, white box testing and walkthroughs. Black box and white box
testing techniques are explained in Chapter 19. Structured walkthroughs are explained
in Chapter 20 on groups.

31.3 � Case study – assessing verification techniques

BELL_C31.QXD 1/30/05 4:29 PM Page 387

388 Chapter 31 � Assessing methods

In the experiment, 59 people were asked to test a 63-line PL/1 program. The people
were workers in the computer industry, most of whom were programmers, with an
average of 11 years experience in computing. They were told of a suspicion that the
program was not perfect and asked to test the program until they felt that they had
found all the errors (if any). An error meant a discrepancy between the program and
the specification. The people were provided with the program specification, the pro-
gram listing, a computer to run the program on and as much time as they wanted.
Different groups used different verification methods.

While the people were experienced and the program was quite small, their perform-
ance was surprisingly bad. The mean number of bugs found was 5.7. The most errors
any individual found were 9. The least any person found was 3. The actual number of
bugs was 15. There were 4 bugs that no one found. The overwhelming conclusion
must be that people are not very effective at carrying out verification, whichever tech-
nique they use.

Additional findings from this study were that the people were not careful enough in
comparing the actual output from the program with the expected outcome. Bugs that
were actually revealed were missed in this way. Also the people spent too long on test-
ing the normal conditions that the program had to encounter, rather than testing spe-
cial cases and invalid input situations.

The evidence from this and other experiments suggests that inspections are a very
effective way of finding errors. In fact inspections are at least as good a way of identi-
fying bugs as actually running the program (doing testing). So, if you had to choose
one method for verification, it would have to be inspection. Studies show that black box
testing and white box testing are roughly equally effective.

However, evidence suggests that the different verification techniques tend to discover
different errors. Therefore the more techniques that are employed the better – provided
that there is adequate time and money. So black box testing, white box testing and inspec-
tion all have a role to play. If there is sufficient time and effort available, the best strategy
is to use all three methods.

The conclusion is that small-scale experiments can give useful insights into the effec-
tiveness of software development techniques.

Incidentally, there is another technique for carrying out verification, which has not
been assessed against the above techniques. Formal verification is very appealing because
of its potential for rigorously verifying a program’s correctness beyond all possible doubt.

However, it must be remembered that formal methods are carried out by fallible
human beings who make mistakes.

The methods, tools and approaches discussed in this book are well-established and wide-
ly used. There is a diversity of approaches to software development. This, of course,
reflects the infancy of the field. But it is also part of the joy of software engineering;
it would be boring if there was simply one process model, one design method, one

31.4 � The current state of methods

BELL_C31.QXD 1/30/05 4:29 PM Page 388

31.5 A single development method? 389

programming language, one approach to testing, and so on. Today the software devel-
oper has a rich set of tools and methods to choose from. The choice will, of course,
depend upon the nature of the project.

One of the current debates is between the heavyweight methods and lightweight
approaches. Heavyweight methods are heavily prescriptive – they specify in detail the
steps to be taken and the documents to be produced. Lightweight methods are more
pragmatic – they use methods and tools advisedly, as and when appropriate.

Do not forget, also, that there are many legacy systems, written some time ago that
were developed and documented using what are now antiquated methods and tools.
These systems need maintaining, and so the methods that were used in their develop-
ment live on.

There is a variety of methods and tools on offer. At the present time many approaches –
and many combinations of methods – are considered feasible. Is there a unique combina-
tion that will ensure success? We know that we need a package of methods to:

� establish the feasibility of the system

� elicit and record requirements

� design the user interface

� design the architectural structure

� ensure that requirements are satisfied (validation)

� test and debug

� maintain the system

� organize a team

� plan the development (a process model).

In choosing a set of methods, the individual characteristics and goals and the proj-
ect must be taken into account. It is likely that a unique combination will be selected.
There is no single best package.

It is perhaps strange that, as with designing a motor car, we do not consider using
different approaches for different parts of the system. Many software systems consist of
qualitatively different parts, for example:

� the human–computer interface

� the database

� the network software

� the business logic

and it seems reasonable that these different components are developed using different,
appropriate approaches.

31.5 � A single development method?

BELL_C31.QXD 1/30/05 4:29 PM Page 389

390 Chapter 31 � Assessing methods

Suppose that it has been decided that a new method should be introduced into an
organization or into a particular project. The first, alarming, thing to be prepared for is
that there will inevitably be a temporary drop in productivity while people spend time
becoming familiar with the method. So the initial experiences with any method will be
negative; courage and patience are needed before any benefits appear.

Perhaps the most important aspect of any new method is its effect on the people in
the organization. In most organizations, there is a hierarchy, with the senior and more
skilled, perhaps older, people in senior positions. A new method can pose a threat to
these people. First, they may fear that they will find it impossible to learn or adapt to a
new method. Second, they may see a new method as a criticism of the methods they
have used successfully in the past. Third, a new method will mean that everyone is a
novice again, so that their status may be eroded.

It is generally agreed that new methods should be introduced one at a time. If too
many new approaches are adopted at once (big-bang), it is difficult to see which of
them are being effective. In addition, too many of the existing skills are made redun-
dant, threatening morale.

31.6 � Introducing new methods

Exercises

Summary

The software engineer is faced with a bewildering number of available methods,
techniques and tools. Before choosing, the first task is carefully to identify the spe-
cific goals of the project. Little hard data is currently available to allow comparison
of methods. This is partly because of the difficulty in mounting experiments.
Software metrics hold the promise for objective comparison of methods, but at the
present time, evaluation of tools and methods is extremely difficult.

This book has presented a menu of techniques, and made some assessment of those
techniques, but it is impossible to provide completely comprehensive guidance for
selecting items from the menu. The evaluation and comparison of methods is cur-
rently the subject of research, debate and fashion.

•
31.1 List each of the goals of software engineering (see Chapter 1). List all the techniques

of software engineering. Draw up a table, with the goals as headings across the top
of the page and with the tools and techniques down the left-hand-side. Place a tick at
the places where a method contributes to a goal.

BELL_C31.QXD 1/30/05 4:29 PM Page 390

Further reading 391

31.2 Draw up a list of criteria for assessing a software development method. Use it to
evaluate:

� functional decomposition

� OOD

� data structure design

� data flow design.

31.3 Different design approaches tend to model some important aspect of the problem
domain. For each of the following design methods, identify what is modeled:

� functional decomposition

� OOD

� data structure design

� data flow design.

31.4 For each of the systems given in Appendix A draw up a list of techniques that you
would use.

Further reading•
Read all about how Microsoft do it. A most comprehensive survey of the software devel-

opment methods used by Microsoft is given in: Michael A. Cusumano and Richard
W. Selby, Microsoft Secrets, Free Press, 1995.

It is widely agreed that structured programming is a vital ingredient of software devel-
opment. For a review of the (inconclusive) evidence about the effectiveness of
structured programming, see: I. Vessey and R. Weber, Research on structured pro-
gramming: an empiricist’s evaluation, IEEE Transactions on Software Engineering,
10 (4) (1984), pp. 397–407.

For a review of the (limited) evidence on the effectiveness of other software development
methods, including object-oriented methods and formal methods, see: N.E. Fenton,
How effective are software engineering methods?, Journal of Systems and Software, 20
(1993), pp. 93–100.

An example of an experiment, mentioned in the text, comparing the effectiveness of var-
ious verification methods: G.J. Myers, A controlled experiment in program testing
and code walkthroughs/inspections, Communications of the ACM, 21 (9) (1978).

BELL_C31.QXD 1/30/05 4:29 PM Page 391

This book has described a variety of techniques for software construction. All of the
techniques attempt in some way to improve the process of software development and
to meet the various goals of software development projects. The purpose of this chap-
ter is to survey this spectrum, see how they fit together and try to look into the future.

Tools permeate the whole of software development. Software tools are relevant to every
method and every chapter in this book. Just as in production engineering, architecture,
electronic design and in design generally, computer aids are being used throughout soft-
ware development. There is an explosion in the demand for software products that aid
or automate parts, or the whole of software development. The whole process of devel-
opment is now commonly carried out entirely on a computer-based system, without any
resort to paper. Not only the development itself, but the planning, allocation of people,
monitoring of progress and, documentation are all maintained on computers.

32.2 � Software tools

32.1 � Introduction

CHAPTER

32 Conclusion

This chapter:
� assesses the role of software tools

� reviews the world of programming languages

� assesses the role of software reuse

� examines the evidence of how software engineers really work

� briefly reviews the issue of control versus skill

� briefly looks at history

� assesses the future of software engineering.

BELL_C32.QXD 1/30/05 4:29 PM Page 392

In the early twenty-first century, the major programming languages that are used for
software engineering are Ada, C++, C#, Visual Basic.Net and Java. Ada was designed
for use by the US Department of Defense for use primarily in real-time embedded sys-
tems. C++ evolved from the widely used C language, adding object-oriented features
to it. Visual Basic started out as a toy and became a widely used tool for serious
Windows-based applications. Java emerged as a secure and portable language with net-
centric features.

Any language for serious use in software engineering must now have object orient-
ed features. Ada, C++, Visual Basic.Net, C# and Java are objected-oriented languages
and this aspect of languages is discussed in Chapter 15.

Historically, programming language design goes in cycles: First, a large and complex
language (such as C++) is designed. This provokes the design of a small and concise
language (such as Java). This has happened several times: Pascal was the small reaction
to extravagant Algol 68. Unix and its companion language C were a reaction to the
sophisticated but complex Multics operating system. Finally Java has been the reaction
to complicated C++. Large languages are rich in facilities, but (because of complexity)
can be hard to learn, master and debug. By contrast, a small language can be elegant
and concise, providing the fundamental building blocks needed for the construction of
large systems.

Some people argue that the choice of programming language has only a small
influence on the success of a software project. They assert that the coding phase of
development is much less important than the design stage. They also argue that
desirable programming concepts can be implemented (with care) in any program-
ming language – even, perhaps, assembler language. Other people claim that the
features of an implementation language can have a profound effect on the success
or failure of a project. They argue that the language must match the ideas used dur-
ing design (e.g. encapsulation). They suggest that if the language embodies the
required ideas, then the compiler can carry out checks that would be otherwise
impossible. Further, when maintenance comes, the language is assisting in under-
standing the software.

Fashion plays a role in determining which languages become widely used. Mandatory
adoption by a powerful government agency (as in the case of Ada) also obviously affects
adoption. The selection of a programming language for a particular project will be influ-
enced by many factors not directly related to the programming language itself. For
example, many organizations have a substantial investment in a particular programming
language. Over a period of time, hundreds of thousands of lines of code may have been
developed and the programming staff will have built up considerable expertise with the
language. In such a situation, there is often considerable resistance to change even if a
“superior” language is available.

There are other factors which can influence programming language selection. The
software developer may be bound by a contract which actually specifies the implementa-
tion language. Decisions by the US government to support Cobol and, more recently,

32.3 � The world of programming languages

32.3 The world of programming languages 393

BELL_C32.QXD 1/30/05 4:29 PM Page 393

Ada considerably influenced the acceptance of those languages. Support from suppliers of
major software components, such as language compilers and database management sys-
tems, will influence language selection for many developers. If an apparent bug appears
in a compiler, for example, they need to know that they can pick up the telephone and
get the supplier to help them. Similarly, the availability of software tools such as lan-
guage-sensitive editors, debugging systems and project management tools may favor one
programming language over another. The provision of integrated software development
environments which combine the programming language with a set of development
tools, such as debuggers, browsers and version control tools, has an influence on lan-
guage selection.

There can be little doubt that news of the death of programming and programming
languages has been greatly exaggerated. Software will continue to be written in lan-
guages like those we know for the foreseeable future. Old languages, like Fortran and
Cobol, will not go away because of the millions of lines of legacy software written in
these languages which will continue to need maintenance. As ever, new programming
languages will continue to emerge.

This is an important approach to constructing software that has been repeatedly
addressed in this book. The argument goes like this: software developers are continual-
ly reinventing the wheel. Instead of writing software from scratch over and over again,
they should emulate people like computer hardware designers. Hardware designers
make heavy use of catalogs that describe hundreds of off-the-shelf components. All that
the designer has to do is to select components and collect them together to carry out
the required purpose.

The proponents of reuse, therefore, envisage comprehensive libraries of reliable and
well-documented software components from which developers can select. The contro-
versy starts with the choice of mechanism for representing the components in the
library. Two main contenders are on offer:

� libraries of filters like those in Unix

� libraries of classes provided in object-oriented systems, such as Smalltalk, Visual
Basic .Net, C++, C# or Java.

Components need to:

� provide a useful service

� provide a simple programming interface

� be freestanding.

Classes from a library can be used in either of two ways:

1. instantiated, to create a new object

2. inherited, to create a slightly different class.

32.4 � Software reuse

394 Chapter 32 � Conclusion

BELL_C32.QXD 1/30/05 4:29 PM Page 394

32.5 The real world of software engineering 395

In a book like this, it is expected that a number of systematic methods are presented.
But are they really used in practice? Real world practices often differ from the theory.
For example, Microsoft generally uses the following methods:

� training on the job, rather than formal study

� minimal documentation other than source code

� C rather than object-oriented C++.

and, in spite of these surprising methods, they are (at least in one sense) highly successful.
If you talk to a professional software developer, the likelihood is that they will say

that they use one of the respectable methods described in this book. Nowadays there
is tremendous pressure to use a “proper” design method. The truth is, however, dif-
ferent. Let us hypothesize that architectural design is a crucial part of software devel-
opment (or at least that design is a representative part of software development). A
number of studies have been carried out to discover how professional engineers really
carry out design. This work started back in the 1960s when people like Peter Naur
tried to observe their own thought processes as they carried out a program design.
Later studies usually proceed by observing developers as they carry out the task, or else
by getting them to speak aloud what they are thinking as they go about development.
In this section we review the results of such studies. (It should be pointed out that the
observational methods used to obtain these results are not without problems and so
some caution must be used in interpreting the results.)

The first revelation is that there is an enormous diversity amongst developers as to the
strategies they adopt. There is also an enormous diversity amongst the designs that
developers produce to solve the same problem. Different developers use different meth-
ods and construct different designs. Some designs are good and some are bad. Moreover
the evidence is that there are enormous productivity differences between individual soft-
ware developers.

The second revelation is perhaps even more surprising – developers do not use the
approved methods. However, this evidence must be qualified – it seems that professional
developers do use a method, but only when they understand all aspects of the situation
very thoroughly. If the developer has a mastery of the language, and if the problem
seems to be very simple (to them), then the developer may use an approved method.

If, as it seems, software engineers do not use a proper method, what do they do?
It appears that what they commonly do is to break the problem down into smaller
problems – but not in an approved way. They select fragments of the problem for
consideration. They do this by using a whole range of personal strategies. At the end
of the day, when they have completed their design, they then legitimize it by docu-
menting it according to one of the credible design notations. So they pretend that it
was done properly.

It seems that there are other ways that competent developers carry out design. They
reuse parts of old programs, like parts of scrap cars. They remember a program that they

32.5 � The real world of software engineering

BELL_C32.QXD 1/30/05 4:29 PM Page 395

9jabaz
Download more books at 9jabaz.ng for free!

396 Chapter 32 � Conclusion

may have written some time ago that is in some way similar to the new program. They
retrieve the listing and copy those parts that are useful. Another similar approach is to
use memories of old programs. Experienced developers build up Aladdin’s caves of
memories of the designs that they have created. The provision of catalogs of reusable
design patterns explicitly exploits this approach.

No review of approaches would be complete without a mention of hacking. As we
have seen, this term has two distinct meanings. One meaning describes the act of get-
ting admittance to a secure computer system in order to steal money or secrets or to
cause mayhem. The other meaning, used in this book, describes a style of program-
ming. Hacking means plunging into a solution to a problem without any design what-
soever. A hacker takes the program specification and immediately starts to write down
programming language instructions. Probably the hacker will not even pause to write
them down – they will immediately start to key in instructions to the computer.
Hacking makes use of intuition, creativity and individuality. It dates from the early days
of programming, when programming was regarded as an individual creative act and
when there were no well-established design methods. Nowadays hacking is often
frowned upon as being unsystematic and undisciplined. So hacking is either famous or
notorious, depending on your point of view. One of the places where hacking still has
some credibility is in open source development (Chapter 25).

LISP programmers have long championed a design strategy which lies somewhere
between hacking and the disciplined approaches described in this book. Perhaps this is
because the application areas in which LISP is used (such as artificial intelligence, AI)
demand an exploratory approach in which programs may be written in order to try to
demonstrate a theoretical premise. Thus AI tries to solve “ill-formed problems” – it is
difficult to determine when (or if) we have solved such problems, because they are only
partially understood. Moreover, LISP programmers regularly embark on the design and
construction of programs they don’t know how to write. This kind of exploratory pro-
gramming clearly requires a great deal of help from the language and its programming
environment, and a flexibility in the way in which ideas can be expressed which is not
found in such languages as Java and C.

For example, in LISP you can use variables without declaring their type, or define
functions which can take arbitrary numbers of arguments. You can define and use func-
tions which call other functions that haven’t been written yet. You can edit, test and
debug a program incrementally even while the program is running. And, very impor-
tantly, LISP blurs the distinction between program and data – which is the reason for
LISP’s much maligned bracketed syntax. It is this dynamic, rather than static, approach
to program construction which enables and supports exploratory programming. Erik
Sandewall has described this method of program development as structured growth:
“An initial program with a pure and simple structure is written, tested, and then
allowed to grow by increasing the ambition of its modules. The growth can occur both
horizontally, through the addition of more facilities, and vertically through a deepen-
ing of existing facilities”. Sandewall argues against the view that this could be con-
sidered as hacking under another name, on the grounds that “even if some kinds of
program changes are dangerous and/or bad, that does not prove that all of them are”.

BELL_C32.QXD 1/30/05 4:29 PM Page 396

32.6 Control versus skill 397

Finally, there is evidence that men and women carry out design differently. Men, it
seems, tend to regard the computer as a slave that has to be controlled, dominated and
brought under the will of the programmer. In this approach, the computer may have
to be wrestled with or struggled with in order that it does the programmer’s bidding.
In contrast, women approach the computer as a machine that has to be accommodat-
ed to, something that has quirks to come to terms with. The female designer proceeds
by trying something and, if it is not successful, trying something else. The design
emerges from the process of negotiation.

Assuming that most professional software engineers are required by the organization
that employs them to use a systematic design method, what do they do? We speculate
that a professional developer first creates a design using their own personal method.
They then legitimize it by casting it into the shape of one of the approved methods. This
involves producing the documentation that accompanies proper use of the method.

In summary there is evidence to suggest that:

� software engineers do not use the approved methods

� the productivity and quality of work differs significantly from one individual soft-
ware engineer to another.

If we believe this analysis, the best strategy for a software producer is to hire indi-
viduals who are good at it and let them get on with it.

As we have seen, software is hugely expensive, difficult to construct, often late and over
budget. Current software engineering tools and techniques are helpful, but not totally
effective. Thus software development currently requires enormous skill. It is similar to
groups of craftspeople building cars using skills that they have accumulated over years
of experience.

However, research into software engineering methods strives to devise new and
more effective methods. This research tries to analyze the processes involved in software
development and thereby suggest more systematic methods. In software development,
the data structure design method (Chapter 10) serves as a dramatic example of the reg-
imentation of the process of design. Scrutiny of the software development process also
means that certain tasks can be identified as requiring minimal skill and these can be
automated. An example is the use of a program generator that automatically creates
source code from UML diagrams. This is more like a car assembly line, where workers
perform simple routine tasks. Ultimately, some of their work is so well-defined that it
is carried out by robots.

Thus the tendencies in software engineering are:

� more systematic methods

� automation and tool support.

32.6 � Control versus skill

BELL_C32.QXD 1/30/05 4:29 PM Page 397

398 Chapter 32 � Conclusion

Some people fear that more systematic methods will reduce the scope for individual
creativity. In addition, automation tends to mean that fewer people are needed than
would otherwise be required. The introduction of new methods has always been linked
with the erosion of skills and job losses. In England, the Luddites revolted against
employers who replaced their labor by machinery, then reduced wages and the number
of jobs. Thus more effective methods often imply:

� reduced skill (deskilling)

� lower wages

� fewer jobs

and at the same time a small, highly skilled elite to carry out the difficult tasks.
The argument for using systematic approaches is that simple tasks should be made

simple – there is no point in struggling to design a software component when there is
an easy way. So a method can be empowering, creating time to spend on intrinsically
difficult tasks.

In conclusion, there is a tension between, on the one hand, the desire of an individ-
ual software engineer to exercise their individual creativity and, on the other hand, the
wish of organizations to systematize methods and exercise quality control.

Reflecting the current diversity, there are a number of suggestions for the future of
methods and tools for software development.

Software tools
Some people see software tools as the future. They see such tools as UML editors, com-
pilers, linkers, debuggers, version control software and test frameworks as a means of
assisting or automating parts of development. This would improve productivity and
software quality. This approach has as its apotheosis the complete automation of soft-
ware development along with the elimination of creativity and skill.

Amongst others, the proponents of agile methods have reacted against this
approach, arguing that tools can constrain and debilitate development. They argue that
tools should be used judiciously, as appropriate. Indeed some valuable tools, such as a
whiteboard, need not be automated at all.

Requirements engineering
Some people believe that eliciting and clarifying requirements is the single major prob-
lem of software engineering. They concentrate on devising methods and notations that
not only accurately capture users’ requirements but also ensure that the developer
meets the requirements.

The challenge here is to address the problem of communication between user and
developer. One has a knowledge of the problem domain; the other has a knowledge of
the technology. Their common ground is natural language.

32.7 � Future methods and tools

BELL_C32.QXD 1/30/05 4:29 PM Page 398

32.7 Future methods and tools 399

Formal methods
Formal (mathematical) methods are beginning to be used and may become popular, par-
ticularly for safety-critical systems. There are two related techniques – formal specifica-
tion and formal verification. These methods offer the promise of completely reliable soft-
ware – software that has been proved to meet its specification.

These approaches begin by documenting the users requirements in a formal mathe-
matically based language such as Z.

Two factors seem to have inhibited the take-up of these methods: one is the prob-
lem of communication with the user, when the specification is expressed in a specialist
language such as Z. The second problem is the training of developers in the non-trivial
methods used to transform the specification into an implementation.

Declarative programming languages
Logic programming languages, such as Prolog, are used in developing expert systems.
Functional programming languages such as LISP and Haskell, offer the promise of
directly expressing what a program should do rather than how it should do it. These
languages exist and have an excellent pedigree, but there are problems with executing
the programs at an acceptable speed. Their acceptance into mainstream software devel-
opment therefore remains speculative.

UML
After years of rivalry with competing notations, the “three amigos”, Ivar Jacobson,
Grady Booch and James Rumbaugh, came together with the single diagrammatic nota-
tion UML. It is now the prevalent notation for describing software, but it is only a doc-
umentation notation, not a method or a technique. The unified process, suggested by
the same authors, came along soon afterwards.

There can be no doubt that UML will continue to be important and, indeed, dom-
inate the scene for some time. There are, however, problems with UML. First, it is a
graphical notation and therefore there are limitations on the ease with which dia-
grams can be processed using a software tool. For example, it is desirable to convert
diagrams into code and to check for consistency between diagrams. Second, the
semantics – the real meaning – of UML has not been defined with the same thor-
oughness that the semantics of programming languages has been analyzed. This lim-
its any fundamental understanding of the meaning of UML diagrams. Third, while
UML is a large and comprehensive notation, there are some things it cannot describe.
For example, data flow diagrams are not a part of UML, and the information in a data
flow diagram cannot be described in UML. Now it may be that diagrams such as
dataflow are redundant, but alternatively it may be that they still have a useful role in
design.

Components and reuse
If only complex software could be constructed by simply taking existing components
off the shelf and combining them. This is the aim of component-based software

BELL_C32.QXD 1/30/05 4:29 PM Page 399

400 Chapter 32 � Conclusion

engineering. Such components need to be useful, easy to use and interoperable.
They also need to be reliable, fast, secure and scalable. They need to work across net-
works, the internet and with web browsers.

At the time of writing, the major players in the software industry are offering tech-
nologies that claim to meet these goals.

Let us look at some of the history of software development methods. In the early days
of computing, the hardware was the challenge and programming was considered to be
easy – an undemanding activity very similar to clerical work. The first programmers
were exclusively women because it was considered unsuitable work for men. Fairly soon
it was realized that programming demanded a logical approach and abstract thinking.
(Regrettably, sexism asserted itself and the women were replaced by men.)

As the problems of software production began to restrict the application of com-
puters, the principle of the division of labor was applied to software development. First,
the job of the analyst was separated from that of the programmer. Later, with the inven-
tion of high-level languages, operating systems and packages, the work of applications
programmers was distinguished from that of systems programmers.

Sometimes looking at the past helps us to visualize the future. Arguably there have
been a number of significant milestones in the history of software engineering. The first
was high-level languages, such as Fortran and Cobol, that allowed programmers to
express solution in problem-oriented rather than machine-oriented notations. Next was
structured programming, the idea that some constructs (such as goto) are dangerous
and that design is important. Then came object-oriented design and programming as a
way of modularizing software.

While each of these innovations was significant, none of them has dramatically solved
the problem of ensuring that software is reliable and useful. Perhaps the lesson of his-
tory is that there is no silver bullet that can be applied to these problems. Arguably this
is because software has an inherent complexity which cannot be eliminated.

The demise of applications programming has been regularly predicted for many years,
and yet the demand for programmers is ever-increasing. What methods are likely to be
used in the future? What is likely to happen to the jobs of those involved in software
development?

Today, the cost of software generally overwhelms the cost of the hardware it runs on.
Software production is labor-intensive and developers are in short supply. A major rem-
edy offered is to provide developers with more powerful tools – usually computer
based. Examples are UML editors, high-level languages and software development
environments.

32.9 � The future of software engineering

32.8 � History

BELL_C32.QXD 1/30/05 4:29 PM Page 400

Summary 401

In the short-term future, it seems likely that we will continue to see enormous effort
spent in developing tools and in ensuring that a set of tools fits together in an integrat-
ed manner. At the same time we can expect that end users will carry out their own sys-
tem development using software packages that require them to know little about the
computer. Coupled with the availability of inexpensive applications packages, the appli-
cations programmer seems (as ever) doomed.

In the long term, the nature of programming itself could be transformed by a declar-
ative style of programming in which the programmer describes a solution to a problem
rather than having to specify explicitly how that solution is to be obtained.

While the applications programmer may vanish, the role of the systems programmers
may be enhanced. Their mission will be to develop products of high quality – reliable,
powerful and easy to use. The skills involved in their development may be considerable –
not least in the requirement to create demonstrably reliable software, perhaps using for-
mal, mathematical approaches. At the other end of the spectrum, the analyst will not
become extinct. Their role will be to guide users and an organization in making best use
of the available packages.

The general trend seems to be:

� the increasing scrutiny of the software development task

� systematization of software development

� the division of labor amongst specialists

� the automation of tasks using tools

� software reuse.

Summary

Software development methods have changed dramatically in the past and look set
to do so in the future. The trend is towards the increased use of packages, program
generators and automated tools.

Long-term, traditional procedural programming languages may vanish to be
replaced by declarative languages (functional and or logic languages) – at least for
application programming.

There is sometimes a tension between the desire to exercise control during project
management and the individual programmer’s desire for autonomy.

One thing is certain: software engineering will continue to be supremely challeng-
ing, creative and enjoyable.

BELL_C32.QXD 1/30/05 4:29 PM Page 401

402 Chapter 32 � Conclusion

Further reading•
Ed Yourdon is one of the gurus of software development. In this book he gives a very

readable account of the problems with software development today. The book con-
tinues by giving a survey of the possible remedies for the problems. It’s altogether
a very readable book, free of technicalities and free with opinions. The title reflects
the author’s opinion that American programmers are under threat from competition
from programmers in Asia – who are paid less, but are better! Edward Yourdon,
Decline and Fall of the American Programmer, PTR Prentice Hall, 1993.

The sequel to Decline and Fall, which is much more optimistic about the future of the
American programmer, provided that they take the initiative and learn about new
technologies, like Java: Edward Yourdon, Rise and Resurrection of the American
Programmer, PTR Prentice Hall, 1995.

A possible future for software development is described in the following reference.
Have the predictions turned out to be correct? A.J. Wassermann, The future of pro-
gramming, Communications of the ACM, 25(3) (March 1982).

Exercises•
32.1 Compare and contrast the following two approaches to software development:

1. placing trust in individual skills

2. relying on systematic methods.

32.2 Compare and contrast the following approaches to software reuse:

� Unix filters

� object-oriented classes.

32.3 “Programming is easy.” Discuss.

32.4 “Software engineering is just programming, and programming is just hacking.”
Discuss.

32.5 “The scrutiny of software development methods, together with the imposition of stan-
dards and procedures for quality assurance has taken all the fun out of it.” Discuss.

32.6 “The tasks involved in software engineering are going to dramatically change over the
next five to ten years. In particular, conventional programming will no longer exist.”
Discuss.

32.7 Predict the future of software engineering.

BELL_C32.QXD 1/30/05 4:29 PM Page 402

Further reading 403

An extensive treatment of the issue of de-skilling is given in: P. Kraft, Programmers and
Managers: The Routinization of Computer Programmers in the United States,
Springer Verlag, 1984.

There have been several exciting accounts of the personal outlook and work methods of
programmers. They give insights into how programming is actually done. They also
contribute to the folklore of programming. The first, classic book is: G. Weinberg, The
Psychology of Computer Programming, Van Nostrand Reinhold, l971.

An example of a book on how programmers actually work. In the book, the author
reports on interviews with notable programmers: Susan Lammers, Programmers at
Work, Microsoft, 1986.

Steven Levy, Hackers: Heroes of the Computer Revolution, Anchor Books, 1994.

BELL_C32.QXD 1/30/05 4:29 PM Page 403

BELL_C32.QXD 1/30/05 4:29 PM Page 404

APPENDICES

BELL_Z01.QXD 1/30/05 4:32 PM Page 405

BELL_Z01.QXD 1/30/05 4:32 PM Page 406

Case studies are used throughout this book to illustrate the explanations. They are also
used as the basis for some of the exercises at the end of chapters. Some cases are spe-
cific to particular chapters, while others are used (in different ways) in a number of
chapters.

The cases are designed to capture the reader’s interest and to be typical of a range
of applications. They are also applications that are familiar to most readers.

The cases could also act as projects that can be carried out in parallel with studying
the book.

The cases are:

� an ATM

� a word processor

� a computer game

� a library

� a patient monitoring system.

Each application is presented as an outline requirements specification. Note that they
are not offered as model specifications. On the contrary they are presented as specifi-
cations for review and criticism, in particular as exercises for Chapter 4 on requirements
engineering.

The ATM has a screen, a card reader, a small printer, a cash dispenser and a keyboard.
The keyboard has numeric buttons, an enter key and a clear key. On both the left and
right of the screen are three buttons that allow selection of any options displayed on the
screen. The ATM is connected to the bank via a telephone line.

The ATM provides facilities to:

� dispense cash

� display the current balance.

A.1 � The ATM

APPENDIX

A Case studies

BELL_Z02.QXD 1/30/05 4:32 PM Page 407

408 Appendix A � Case studies

The user must first offer up their card to the reader. The display then asks the user
to enter their PIN, via the keyboard. If this is successful, the display presents a set of
options.

The system must be highly robust, since it is to be used by untrained bank customers
in public places.

This is an example of general-purpose software that would be used by a large number
of diverse people.

The word processor provides facilities for its user to enter text, amend text, save text,
print text and retrieve a saved document from a file.

The word processor displays a blank panel which displays text entered from the
keyboard.

The user can:

� save the document in a specified file

� retrieve a document from a specified file

� print the document.

A document consists of sentences ending in a period character. A paragraph consists
of zero or several sentences ending in a special end-of-paragraph character. A new page
break can be inserted anywhere within a document.

A section of text can be selected by clicking just before the start of some text, then
dragging the cursor with the button down. Selected text is shown highlighted.

The clip board is a temporary storage that is not visible. Commands are provided to:

� cut selected text and copy it to the clip board, replacing any text already in the clip
board

� copy selected text to the clip board, replacing any text already in the clip board

� paste text at the cursor position from the clip board.

A document can be displayed either as raw text or as formatted text suitable for
printing.

Cyberspace invaders is a variation of a game that was popular in the early days of com-
puter games. This software is appealing because it has a fun user interface. It is also easy
to see a connection between the visual appearance and the software structure. The spec-
ification is as follows.

A window displays a defender and an alien (Figure A.1). The alien moves sideways.
When it hits a wall, it reverses its direction. The alien randomly launches a bomb that
moves vertically downwards. If a bomb hits the defender, the user loses and the game

A.3 � Computer game

A.2 � The word processor

BELL_Z02.QXD 1/30/05 4:32 PM Page 408

A.4 The library 409

is over. The defender moves left or right according to mouse movements. When the
mouse is clicked, the defender launches a laser that moves upwards. If a laser hits the
alien, the user wins and the game is over.

A button is provided to start a new game.

This application is a typical information system.
Software is required to maintain information about books held in a library. The sys-

tem is intended for use by the library staff.
The software must run on standard networked PCs. There may be up to 20 PCs on

the library network.
For each book, the following information is held in the computer:

� title

� author

� ISBN

A.4 � The library

Figure A.1 Cyberspace invaders

BELL_Z02.QXD 1/30/05 4:32 PM Page 409

410 Appendix A � Case studies

� year

� borrower identification (if on loan)

� date of issue (if on loan).

The computer should be able to store information on up to 100,000 books.
The computer system should provide facilities to:

� issue a book to a borrower

� receive a book returned by a borrower

� create information about a newly acquired book

� display a list of the books on loan to a particular borrower.

The facilities should be accessible via a GUI.
The computer must respond within one second to any request.
The system should provide a search facility to find out whether the library possesses

a particular book.
With suitable security precautions, the system will initialize the library information

so that it contains zero books.
When a book becomes overdue, the system should display appropriate information.
The system should provide secure access by only the library staff.
The software must be delivered by such-and-such a date and cost no more than

$100,000. It must be fully documented and easy to maintain.

This is an example of a safety-critical system. Other similar systems include a control sys-
tem for a power station and a fly-by-wire system for an airplane.

A computer system monitors the vital signs of a patient in a hospital. Sensors
attached to a patient continually send information to the computer:

� heart rate

� temperature

� blood pressure.

Some of the readings require conversion to useful units of measurement (e.g. micro
volts into degrees centigrade). The computer displays the information on a screen. It
also logs the information in a file that can be retrieved and displayed. If any of the vital
signs exceed safe limits, the screen flashes a warning and an alarm sounds. The limits
have default values, but can also be changed by the operator. If a sensor fails, the screen
flashes a warning and the alarm sounds.

A.5 � Patient monitoring system

BELL_Z02.QXD 1/30/05 4:32 PM Page 410

Within the field of software engineering, different people use terms differently. The fol-
lowing are the meanings of terms as used in this book.

development approach – a particular collection of tools, methods and work styles that
are used in carrying out software development
development life cycle – the complete process of software development from inception
through to release and maintenance of the product
development process – specific activities that are carried out during software development
maintenance – fixing bugs, responding to changed requirements and upgrading the
software for a new platform
method – the term for a procedure, subprogram or subroutine
methodology

1. the study of methods, or

2. a collection of methods, techniques and notations used for software development

portability

1. the degree to which a piece of software runs on different platforms (machine
and/or operating system), or

2. the issue of whether software needs to run on different platforms

porting – moving a piece of software to a new platform
process model – idealized plan of software development in general, or an analysis of
the approach adopted for a particular software development project

APPENDIX

B Glossary

BELL_Z03.QXD 1/30/05 4:33 PM Page 411

The Unified Modeling Language (UML) is a graphical notation for describing object-
oriented software. It is not a method for design, but a notation that can help with
designing software or help to document software once it is complete.

This appendix gives a summary of those aspects of UML used in this book. UML is
a large and potentially complex notation and therefore we have only used a part of the
notation. Thus the diagrams described and used in this book are:

� use case diagrams

� class diagrams

� package diagrams

� activity diagrams.

These diagrams describe, in outline, the use cases associated with a system. Figure C.1
shows an example of a use case diagram for users of a bank ATM. In this example there
is a single type of user, a bank customer. A customer can ask the system to carry out
either of two functions – withdraw cash and check balance.

C.1 � Use case diagrams

APPENDIX

C UML summary

withdraw cash

check balance

Bank Customer

Figure C.1 A use case diagram

BELL_Z04.QXD 1/30/05 4:33 PM Page 412

C.2 Class diagrams 413

These describe classes and their interrelationships. Classes are shown as rectangles con-
taining the class name. The simplest relationship is where a class uses another. For
example, in Figure C.2, class Game uses classes Defender, Alien, Laser and Bomb.
This means that Game creates objects from these classes and/or calls methods in objects
created from these classes.

A class diagram can also show the inheritance relationships between classes – the sub-
classes and superclasses. As illustrated in Figure C.3, to show that a class extends another,
a line is drawn from the subclass to the superclass, with the arrowhead pointing to the
superclass. Thus Sprite is the superclass of both Alien and Bomb.

If a class is an abstract class, the name of the class is written in italics. This can be dif-
ficult to see, particularly when hand-written. So the name of an abstract class can be fol-
lowed by the text {abstract} to clarify the meaning.

An interface is described in the same way as a class – as a box. The difference is that
the text <<interface>> precedes the name. A class that implements an interface has
a dashed line with an arrow leading to the interface box (see Figure C.4).

A class can be described in more detail, as illustrated in Figure C.5. There are three
compartments in this type of class diagram. The first compartment holds the class

C.2 � Class diagrams

Defender

Alien

Laser

Bomb

Game

Figure C.2 Class diagram

Sprite

Alien Bomb

Figure C.3 Class diagram showing inheritance

BELL_Z04.QXD 1/30/05 4:33 PM Page 413

414 Appendix C � UML summary

name, the second describes variables and the third describes methods. Any class (static)
variables or methods are shown underlined. The visibility of an element can, optionally,
be described in a prefix as in Java – public, private, protected or default.

In keeping with information hiding, the diagram is often drawn with the second
compartment (the variables) omitted.

A package can be diagrammed as shown in Figure C.6. It is a rectangle with a tab at
the top that holds the package name. Optionally, the classes within a package can be
shown within the rectangle. This shows a class util that consists of classes Random,
ArrayList and Stack.

An activity diagram describes a sequence of activities. Thus an activity diagram can be
used to show the flow of control through software. An activity diagram can show:

� conditions (corresponding to if statements)

� loops (corresponding to for and while statements)

� concurrent activity (corresponding to threads).

C.4 � Activity diagrams

C.3 � Package diagrams

<<interface>>
StackInterface

Stack

Figure C.4 A class and its interface. The arrow should be hollow

panel
timer

Game

mouseMoved
mouseClicked
actionPerformed

Figure C.5 Class diagram showing the detail of a class

BELL_Z04.QXD 1/30/05 4:33 PM Page 414

C.4 Activity diagrams 415

An activity diagram can also be used to show a human activity, such as carrying out
throwaway prototyping, Figure C.7. Actions are written in boxes with curved corners.
The sequence of actions is shown by the arrows. A sequence starts with a special “blob”
symbol. A sequence ends with a different symbol, as shown.

util

Stack
Random

ArrayList

Figure C.6 A package diagram

Construct
prototype

Check with
user

Refine
prototype

Deliver the
specification

Draw up an outline
specification

[User requires change]

[User happy]

Figure C.7 Activity diagram showing throwaway prototyping

BELL_Z04.QXD 1/30/05 4:33 PM Page 415

416 Appendix C � UML summary

This diagram also uses the diamond-shaped branch symbol. Associated with each
output from the branch is a condition (termed a guard). If the condition is true, the
route is taken – just as in an if statement.

Further reading•
Two very clear and readable books on UML are:

Martin Fowler, UML Distilled, Addison-Wesley.

Perdita Stevens, and Rob Pooley, Using UML, Addison-Wesley.

BELL_Z04.QXD 1/30/05 4:33 PM Page 416

References to books and websites are given at the end of each chapter. This bibliogra-
phy presents some general sources. Dates are not given because new editions of them
are produced frequently.

Here are the major books on the subject:

Ian Sommerville, Software Engineering, Addison-Wesley.
Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli, Fundamentals of Software

Engineering, Prentice Hall.

Hans van Vliet, Software Engineering: Principles and Practice, John Wiley.

Roger S. Pressman, Software Engineering, a Practitioner’s Approach, McGraw-Hill.

The Software Engineering Institute at Carnegie Mellon University, USA, is a
prestigious organization. They publish articles on software engineering topics and
were the instigators of the capability maturity model. Their website is at:
http://www.sei.cmu.edu/

Here are two short and simple books on UML:

Martin Fowler, UML Distilled, Addison-Wesley.

Perdita Stevens and Rob Pooley, Using UML, Addison-Wesley.

UML

Software engineering

Bibliography

BELL_Z05.QXD 1/30/05 4:34 PM Page 417

418 Bibliography

There are several exciting accounts of the personal outlook and work methods of pro-
grammers. They give insights into how programming is actually done. They also con-
tribute to the folklore of programming.

An example of a book on how programmers actually work. In the book, she reports on
interviews with notable programmers: Susan Lammers, Programmers at Work,
Microsoft Press, 1986.

Another really exciting book, which charts the lives of the early programmers: Steven
Levy, Hackers: Heroes of the Computer Revolution, Anchor Books, 1994.

This is a good read if you are interested in how software projects really get done and
what life is like at Microsoft: G. Pascal Zachary, Show-Stopper: The Breakneck Race to
Create Windows NT and the Next Generation at Microsoft, Free Press, 1994.

This book describes the methods used at Microsoft: Michael A. Cusumano and Richard
W. Selby, Microsoft Secrets, Free Press, 1995.

Programmers – their lives and work

BELL_Z05.QXD 1/30/05 4:34 PM Page 418

abstraction 99, 107
acceptance test 251, 332
activity diagrams 414
Ada 177, 189, 215, 233, 254, 393
adaptive maintenance 11
adversary team 275
agile manifesto 330
agile methods 330
Algol 68 393
anti-patterns 151, 161, 162
architecture 338
array list 206
arrays 194
assertions 253
assessing methods 385, 387
ATM case study 32, 45, 62, 154, 157,

158, 300, 341, 407
audit module 241
automated testing 275
automatic garbage collection 215
automation 398

backward error recovery 244
beta testing 275
bibliography 417
big-bang development 315
black box testing 269, 387
blob anti-pattern 161
Bohm, B. 373
Booch, G. 337
bottom-up implementation 317
boundary values 269, 271, 273

bounty hunter 275
breadth-first 107
Brooks, F.P. 348, 377
bugs, estimating 361

C 176, 214, 225, 254
C++ 214, 225, 254, 393
C# 177, 189, 191, 196, 212,

223, 233
call by reference 188
call by value 188
Capability Maturity Model, see CMM
case studies 407
casting 193
chief programmer teams 351
class 201
class diagram 143, 144, 170, 209,

228, 413
class programmer 353–4
classes, finding 142
class–responsibility–collaborator cards, see

CRC cards
CMM, 366
Cobol 176, 393
COCOMO 373
cohesion 79
command line interface 54
communication 333, 347
compile-time checking 240
complexity 70, 358
component programmer 353–4
component size 70

Index

BELL_Z06.QXD 1/30/05 4:34 PM Page 419

420 Index

component types 70
components 399
composition refactoring 168
control 397
control structures 94, 179
cost 5, 6, 9, 12
cost estimation 372
cost-benefit analysis 31
coupling 77
courage 333
CRC cards 145, 332
crisis 16
Crystal 330
cyberspace invaders case study 103, 140,

154, 158, 200, 408

dangling else 180
dangling pointer 215
data flow design 111
data flow diagram 112
data hiding 74
data structure design 121
data structure diagram 122
data structures 213
data typing 190
database design 26
deadlines 10
defensive programming 241
delegation design pattern 153
Deming, W.E. 365
depth-first 107
design

data flow 111
data structure 121
functional decomposition 102
of programming language 176
OOD 139
user interface 53

design patterns 151
delegation 153
façade 156
factory method 155
immutable 157
inheritance 152
layers 159

mediator 158
model, view controller 157
observer, observable 157
Pipe and Filter 158
proxy 159
singleton 154

deskilling 92
desktop metaphor 56
Dijkstra, E.W. 278
direct manipulation 56
division of labor 349
driver 276
DSDM 330
dynamic data structures 213
dynamic typing 191

efficiency, see performance
Eiffel 212
ego-less programming 284
Encapsulate Data refactoring 166
encapsulation 74, 200
enumerations 193
equivalence partitioning 270
error 9, 13, 268, 283
evolutionary prototyping 307
exception handling 245
exceptions 93, 245
exhaustive testing 269
exploratory programming 396
Extract Class refactoring 167
extreme programming 332

façade design pattern 156
factory method 155
failure 13
fault 9, 13, 237, 283, 361, 362
fault density 278, 361
fault detection 239, 242
fault intolerance 238
fault tolerance 238
FDD 330
feasibility study 30, 373
feedback 293, 333
filter and pipe pattern 115, 260, 394
flowchart 88

BELL_Z06.QXD 1/30/05 4:34 PM Page 420

Index 421

fork 324
formal methods 276, 388, 399
Fortran 176, 177, 179, 240, 394
forward error recovery 244
Free Software Foundation 323
FSF 323
function point 373
functional decomposition 102
functional teams 351
functional testing 269
future 398, 400

game case study, see cyberspace invaders
case study

Gantt chart 376
garbage collection 215
gender 397, 400
generics 212
get access 203
global data 73, 78
glossary 411
GNU General Public License 323
GNU/HURD 322
GNU/Linux 325
goals of software engineering 17
good enough software 14
goto 87, 89, 92, 180, 185, 249
GPL 323
groups 283
GUI 55

hacking 28, 322, 396
has-a test for composition 170
Haskell 399
HCI, see user interface design
heavyweight method 379, 330, 389
help systems 63
history 400
Hoare, C.A.R. 241
human–computer interaction,

see user interface design

IBM 5, 10, 14
immutable design pattern 157
inception 371

incremental development 314
incremental testing 277
information hiding 74
inheritance 152, 168, 207
inheritance design pattern 152
inheritance refactoring 168
Inline Class refactoring 168
inspection 286
integration testing 272
interfaces 227
interoperability 229
introducing methods 390
invariant 253
investment appraisal 31
is-a test for inheritance 170
iteration 146, 301, 306, 308,

338, 341

Jacobson, I. 337
Java 176, 200, 215, 224, 254, 393
JSP, see data structure design

Layer design pattern 159, 316
library 145, 206, 394
library case study 409
lightweight method 330, 379, 389
lines of code, see LOC
LISP 396, 399
LOC 358

maintenance 11
managing people 378
McCabe complexity measure 359
mean time to failure, see MTTF
mediator design pattern 158
memory corruption 215
memory leak 215
mental model 56
menu 54
methodology 27
methods 186
metrics 357, 358, 386
Michael Jackson, see data

structure design
Microsoft 395

BELL_Z06.QXD 1/30/05 4:34 PM Page 421

422 Index

Microsoft Project 376
middle-out implementation 318
milestone 376
millennium bug 13
model, view controller design

pattern 157
modularity 67, 68
module interconnection language 227
monolithic testing 277
Move Data refactoring 167
Move Method refactoring 167
MTTF 362
multiple inheritance 212, 230
multiple interfaces 230
Murphy’s law 278
mutation testing 275
MySQL 322

nesting 181
n-version programming 252

object-oriented design, see OOD
object-oriented programming,

see OOP
observer, observable design

pattern 157
OO teams, 353
OOD 139
OOP 82, 200
open source development 322
Open Source Movement 323
open-closed principle 83
OpenOffice 322
orthogonality 177
OSM 323
overwork 334

package diagrams 414
packages 223
pair programming 286, 334
paralysis 371
parameters 188
Pascal 393
patient monitoring system case study

113, 229, 410

patterns 151
PDL 103
performance 10, 93
Perl 260, 322
person months 358, 372
Pert 376
pipe and filter design pattern 79,

133, 158
PL/1 177
planning 376
pointers 213
polymorphism 170, 209
polymorphism refactoring 170
portability 11
postcondition 253
precondition 253
primitive data types 190
process improvement 365
process model 23, 26, 27, 372

agile 330
extreme programming 332
incremental 314
open source 322
prototyping, 303
spiral, 297
unified process 337
waterfall, 291

productivity 6
profiler 275
program design language 103
program structure chart 122
programming in the large 221
programming language 175, 393
project management 345, 370
project teams 351
properties 203, 205
prototyping 60, 303

evolutionary 307
rapid 308
throwaway 305

proximity 134
proxy design pattern 159
pseudo-code 103, 125
Python 259

BELL_Z06.QXD 1/30/05 4:34 PM Page 422

Index 423

quality 18, 362
quality assurance 18, 275, 357, 364
quality factors 363

rapid prototyping 308
Raymond, E.S. 324
records 195
recovery blocks 249
recovery points 244
refactoring 165, 334

composition 168
Encapsulate Data 166
Extract Class 167
inheritance 168
Inline Class 168
Move Data 167
Move Method 167
polymorphism 170

regression testing 275
reliability 13
remedial maintenance 11
repetition 183
requirements 4, 36, 303
requirements engineering 398
return on investment 31
reuse 69, 144, 309, 394, 399
risk 297
robustness 237
Rumbaugh, J. 337
run-time checking 240

safety-critical systems 15
scheduling 376
scoping 226
scripting 259
SCRUM 330
selecting tools and methods 375
selection 180
separate compilation 232
set access 203
simplicity 176, 333
single inheritance 212
singleton design pattern 154
skill 397
SLOC, see LOC

Smalltalk 308
software engineering 17
software quality 362
software tools xxi, 331, 392,

398
specification 305
spiral model 297
spreadsheet 376
Stallman, R. 323
stepping 274
stepwise refinement 108
story 332
strong typing 191
structural testing 272
structure chart 115
structure clash 130
structured growth 396
structured programming 87, 98
structured walkthrough 284
structures 195
stub 315
syntax 178
system testing 277

tasks of software development 22
teams 347

chief programmer 351
functional 351
OO, 353
project 351

technical feasibility 31
templates 212
test bed 315
test-driven development 333
testing 24, 25, 267

black box 269
functional 269
integration 272
structural 272
system 277
unit 276
white box 272

throwaway prototyping 305
tools, see software tools
top-down implementation 316

BELL_Z06.QXD 1/30/05 4:34 PM Page 423

424 Index

Torvalds, L. 325–6
trust 379

UML 337, 399, 412
activity diagrams 414
class diagrams 413
package diagrams 414
use case diagrams 36, 412

Unified Modeling Language, see UML
unified process 337
unit testing 276
Unix 133, 259
UP, see unified process
use case 45, 142, 319, 332, 338, 373
use case diagram 46, 412
user-defined types 193
user interface design 16, 53, 57, 60
users 4

validation 5, 24, 303
verification 14, 24. 267, 387
Visual Basic 176, 254

walkthrough 387
waterfall model 291
weak typing 191, 262
Weinberg, G. 283
white box testing 272, 387
Wirth, N. 175
word processor case study 46,

159, 408

XP, see extreme programming

Z 276, 399
zero defect software 14

BELL_Z06.QXD 1/30/05 4:34 PM Page 424

