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FUNDAMENTAL CONSTANTS

Value
Constant Symbol Power of .
Units
10
Speed of light c 2.997 924 108 m s-1
58"
Elementary charge e 1.602 176 10-19 C
565
Planck's constant h 6.626 069 10-34 Js
57
PThE1.054 571 1034 Js
726
Boltzmann's constant k 1.380 6488 10-23 JK-1
Avogadro's constant Ny 6.022 141 1023 mol-1
29
Gas constant R = 8.314 4621 JK-1
N,k mol-1
Faraday's constant = 9.648 533 104 C mol-!
Nje 65
Mass
Electron m, 9.109 382 10-31 kg
91
Proton m, 1.672 621 10-27 kg
777
Neutron m,, 1.674 927 10-27 kg
351
Atomic mass constant m, 1.660 538 10-27 kg
921
Vacuum permeability Ho 4™ 10-7 Js2(C-2

m-1



Vacuum permittivity

Bohr magneton
Nuclear magneton
Proton magnetic
moment

g-Value of electron

Magnetogyric ratio
Electron

Proton
Bohr radius

Rydberg constant

Fine-structure constant

Stefan-Boltzmann
constant

Standard acceleration of
free fall

Gravitational constant
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* Exact value. For current values of the constants, see the National Institute of Standards



and Technology (NIST) website.
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The cover image symbolizes the structure of the text, as a collection of Topics that merge
into a unified whole. It also symbolizes the fact that physical chemistry provides a basis for
understanding chemical and physical change.



PREFACE

Our Physical Chemistry is continuously evolving in response to users’
comments and our own imagination. The principal change in this edition is
the addition of a new co-author to the team, and we are very pleased to
welcome James Keeler of the University of Cambridge. He is already an
experienced author and we are very happy to have him on board.

As always, we strive to make the text helpful to students and usable by
instructors. We developed the popular ‘Topic’ arrangement in the preceding
edition, but have taken the concept further in this edition and have replaced
chapters by Focuses. Although that is principally no more than a change of
name, it does signal that groups of Topics treat related groups of concepts
which might demand more than a single chapter in a conventional
arrangement. We know that many instructors welcome the flexibility that the
Topic concept provides, because it makes the material easy to rearrange or
trim.

We also know that students welcome the Topic arrangement as it makes
processing of the material they cover less daunting and more focused. With
them in mind we have developed additional help with the manipulation of
equations in the form of annotations, and The chemist’s toolkits provide
further background at the point of use. As these Toolkits are often relevant to
more than one Topic, they also appear in consolidated and enhanced form on
the website. Some of the material previously carried in the ‘Mathematical
backgrounds’ has been used in this enhancement. The web also provides a
number of sections called A deeper look. As their name suggests, these
sections take the material in the text further than we consider appropriate for
the printed version but are there for students and instructors who wish to
extend their knowledge and see the details of more advanced calculations.

Another major change is the replacement of the ‘Justifications’ that show
how an equation is derived. Our intention has been to maintain the separation
of the equation and its derivation so that review is made simple, but at the
same time to acknowledge that mathematics is an integral feature of learning.
Thus, the text now sets up a question and the How is that done? section that
immediately follows develops the relevant equation, which then flows into
the following text.



The worked Examples are a crucially important part of the learning
experience. We have enhanced their presentation by replacing the ‘Method’
by the more encouraging Collect your thoughts, where with this small change
we acknowledge that different approaches are possible but that students
welcome guidance. The Brief illustrations remain: they are intended simply
to show how an equation is implemented and give a sense of the order of
magnitude of a property.

It is inevitable that in an evolving subject, and with evolving interests and
approaches to teaching, some subjects wither and die and are replaced by new
growth. We listen carefully to trends of this kind, and adjust our treatment
accordingly. The topical approach enables us to be more accommodating of
fading fashions because a Topic can so easily be omitted by an instructor, but
we have had to remove some subjects simply to keep the bulk of the text
manageable and have used the web to maintain the comprehensive character
of the text without overburdening the presentation.

This book is a living, evolving text. As such, it depends very much on
input from users throughout the world, and we welcome your advice and
comments.

PWA
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USING THE BOOK

TO THE STUDENT

For this eleventh edition we have developed the range of learning aids
to suit your needs more closely than ever before. In addition to the
variety of features already present, we now derive key equations in a
helpful new way, through the How is that done? sections, to
emphasize how mathematics is an interesting, essential, and integral
feature of understanding physical chemistry.

Innovative structure

Short Topics are grouped into Focus sections, making the subject
more accessible. Each Topic opens with a comment on why it is
important, a statement of its key idea, and a brief summary of the
background that you need to know.
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Notes on good practice

Our ‘Notes on good practice’ will help you avoid making common
mistakes. Among other things, they encourage con-formity to the
international language of science by setting out the conventions and
procedures adopted by the International Union of Pure and Applied
Chemistry (IUPAC).

P =N
Anote on good practice An allotrope is a particular molecular
form of an element (such as O, and ©,) and may be solid, liquid,
or gas. A polimorph is one of a number of solid phases of an ele-
ment or compound.

The number of phases in a system is denoted P, A gas, or a
| gaseous mixture, is a single phase (P = 1), a crystal of a sub-

Resource section

The Resource section at the end of the book includes a table of useful
integrals, extensive tables of physical and chemical data, and
character tables. Short extracts of most of these tables appear in the
Topics themselves: they are there to give you an idea of the typical
values of the physical quantities mentioned in the text.

F ™
Contents
1 Common integrals 8l
2 Units LLE

k- 3 Drata 865 )

Checklist of concepts

A checklist of key concepts is provided at the end of each Topic, so
that you can tick off the ones you have mastered.



Checklist of concepts

0 1. The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.
0 2. Mechanical equilibrium is the condition of equality of
\ pressure on either side of a shared movable wall. y

PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-sonable
assumptions and the details of the mathematical steps involved. This
is accomplished in the text through the new ‘How is that done?’
sections, which replace the Justifications of earlier editions. Each one
leads from an issue that arises in the text, develops the necessary
mathematics, and arrives at the equation or conclusion that resolves
the issue. These sections maintain the separation of the equation and
its derivation so that you can find them easily for review, but at the
same time emphasize that mathematics is an essential feature of
physical chemistry.

5
ettt Declucing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one
component is present and then generalizing the result to an
arbitrary number of components.

Step 1 Consider the case where only one component is present
When only one phase is present (P = 1), both p and T can be
varied independently, so F = 2. Now consider the case where

two phases o and [ are in equilibrium (P = 2). If the phases
are in equilibrinm at a given pressure and temperature, their

chemical potentials must be equal:

The chemist’s toolkits



The chemist’s toolkits, which are much more numerous in this edition,
are reminders of the key mathematical, physical, and chemical
concepts that you need to understand in order to follow the text. They
appear where they are first needed. Many of these Toolkits are
relevant to more than one Topic, and a compilation of them, with
enhancements in the form of more information and brief illustrations,
appears on the web site.

www.oup.com/uk/pchem11e/

- .
The chemist's toolkit 2 Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the
values of various propertics. Among them are:

The mass. m, a measure of the quantity of matter present
(unit: kilogram. kg).

The volume, V. a measure of the quantity of space the sam-
ple occupies unit: cubic metre, m).

The amount of substance, #, a measure of the number of
specified entities (atoms, molecules, or formula units) pre-

sent (unit: mole, mol).

Annotated equations and equation labels

We have annotated many equations to help you follow how they are
developed. An annotation can take you across the equals sign: it is a
reminder of the substitution used, an approximation made, the terms
that have been assumed constant, an integral used, and so on. An
annotation can also be a reminder of the significance of an individual
term in an expression. We sometimes colour a collection of num-bers
or symbols to show how they carry from one line to the next. Many of
the equations are labelled to highlight their significance.


http://www.oup.com/uk/pchem11e/
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Checklists of equations

A handy checklist at the end of each topic summarizes the most
important equations and the conditions under which they apply. Don’t
think, however, that you have to memorize every equation in these
checklists.

r N

Checklist of equations

Properky Equation
Gibbs energy of mixng A G=nRTx,Inxy, +xInag)
Entrapy of mixing A S=-nRix Inx, +xInx)

SETTING UP AND SOLVING
PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-cept that
has just been introduced in the text. It shows you how to use data and
manipulate units correctly. It also helps you to become familiar with
the magnitudes of quantities.



>
Briaf lllustration 28.1

When the volume of any perfect gas is doubled at constant
temperature, ¥/ V, =1, and hence the change in molar entropy
of the systern is

A5 = (B345TK  'mal™) x In2 =+5.76T K™ mal”
. v

Examples

Worked Examples are more detailed illustrations of the appli-cation of
the material, and typically require you to assemble and deploy the
relevant concepts and equations.

We suggest how you should collect your thoughts (that is a new
feature) and then proceed to a solution. All the worked Examples are
accompanied by Self-tests to enable you to test your grasp of the
material after working through our solution as set out in the Example.

-
Using the perfect gas law

In an industrial process nitrogen gas is introduced into
a vessel of constant volame at a pressure of 100atm and a
temperature of 300K, The gas is then heated to S00E. What
pressure would the gas then exert, assuming that it behaved
as a perfect gas?

Collfect your thoughts The pressure is expected to be greater
on acconnt of the increase in temperature. The perfect gas -

B

Discussion questions

Discussion questions appear at the end of every Focus, and are
organised by Topic. These questions are designed to encour-age you
to reflect on the material you have just read, to review the key
concepts, and sometimes to think about its implica-tions and
limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every Focus



and organised by Topic. Exercises are designed as relatively
straightforward numerical tests; the Problems are more challenging
and typically involve constructing a more detailed answer. The
Exercises come in related pairs, with final numerical answers
available online for the ‘a’ questions. Final numerical answers to the
odd-numbered Problems are also available online.

Integrated activities

At the end of every Focus you will find questions that span several
Topics. They are designed to help you use your knowl-edge creatively
in a variety of ways.
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MATERIAL ON THE WEB

IMPACT 1 ...ON ENVIRONMENTAL SCIENCE:
The gas laws and the weather
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‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a variety
of modern contexts. They showcase physical chemistry as an evolving
subject. www.oup.com/uk/pchem11e/
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A deeper look

These online sections take some of the material in the text further and
are there if you want to extend your knowledge and see the details of
some of the more advanced derivations

www.oup.com/uk/pchem11e/

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems


http://www.oup.com/uk/pchem11e/
http://www.oup.com/uk/pchem11e/

Files containing molecular modelling problems can be downloaded,
designed for use with the Spartan Student’" software. However they
can also be completed using any modelling software that allows
Hartree—Fock, density functional, and MP2 calculations. The site can
be accessed at www.oup.com/uk/pchem11e/.

TO THE INSTRUCTOR

We have designed the text to give you maximum flexibility in the
selection and sequence of Topics, while the grouping of Topics into
Focuses helps to maintain the unity of the subject. Additional
resources are:

Figures and tables from the book

Lecturers can find the artwork and tables from the book in ready-to-
download format. These may be used for lectures without charge (but
not for commercial purposes without specific permission).

Key equations

Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of the
textbook. To register, simply visit www.oup.com/uk/pchem11e/ and
follow the appropriate links.

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar, Haydn
Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie Smith, and


http://www.oup.com/uk/pchem11e/
http://www.oup.com/uk/pchem11e/

James Keeler.
The Student’s Solutions Manual (ISBN 9780198807773) provides
full solutions to the ‘a’ Exercises and to the odd-numbered Problems.
The Instructor’s Solutions Manual provides full solutions to the ‘b’
Exercises and to the even-numbered Problems (available to download
online for registered adopters of the book only).
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CONVENTIONS

To avoid intermediate rounding errors, but to keep track of values in order to
be aware of values and to spot numerical er-rors, we display intermediate
results as n.nnn... and round the calculation only at the final step.

Blue terms are used when we want to identify a term in an equation. An
entire quotient, numerator/denominator, is col-oured blue if the annotation
refers to the entire term, not just to the numerator or denominator separately.
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PROLOGUE Energy, temperature,
and chemistry

Energy is a concept used throughout chemistry to discuss mo-lecular
structures, reactions, and many other processes. What follows is an informal
first look at the important features of energy. Its precise definition and role
will emerge throughout the course of this text.

The transformation of energy from one form to another is described by the
laws of thermodynamics They are applicable to bulk matter, which consists
of very large numbers of atoms and molecules. The ‘First Law’ of
thermodynamics is a state-ment about the quantity of energy involved in a
transforma-tion; the ‘Second Law’ is a statement about the dispersal of that
energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules that make up
samples of bulk matter it is necessary to use quantum mechanics According
to this theory, the energy as-sociated with the motion of a particle is
‘quantized’, meaning that the energy is restricted to certain values, rather than
being able to take on any value. Three different kinds of motion can occur:
translation (motion through space), rotation (change of orientation), and
vibration (the periodic stretching and bend-ing of bonds). Figure 1 depicts the
relative sizes and spacing of the energy states associated with these different
kinds of mo-tion of typical molecules and compares them with the typi-cal
energies of electrons in atoms and molecules. The allowed energies
associated with translation are so close together in normal-sized containers
that they form a continuum. In con-trast, the separation between the allowed
electronic energy states of atoms and molecules is very large.

The link between the energies of individual molecules and the energy of
bulk matter is provided by one of the most important concepts in chemistry,
the Boltzmann distribution Bulk matter consists of large numbers of
molecules, each of which is in one of its available energy states. The total
number of molecules with a particular energy due to translation, rotation,
vibration, and its electronic state is called the ‘population’ of that state. Most



mole-cules are found in the lowest energy state, and higher energy states are
occupied by progressively fewer molecules. The Boltzmann distribution
gives the population, N;, of any energy state in terms of the energy of the

state, €;, and the absolute temperature, T:

Translation Rotation Mibration Electronic

I

100

Figure 1 The relative energies of the allowed states of various kinds
of atomic and molecular motion.

N, o e™*T

In this expression, k is Boltzmann’s constant (its value is listed inside the
front cover), a universal constant (in the sense of having the same value for
all forms of matter). Figure 2 shows the Boltzmann distribution for two
temperatures: as the temperature increases higher energy states are populated
at the expense of states lower in energy. According to the Boltzmann
distribution, the temperature is the single param-eter that governs the spread
of populations over the available energy states, whatever their nature.
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Figure 2 The relative populations of states at (a) low, (b) high
temperature according to the Boltzmann distribution.

The Boltzmann distribution, as well as providing insight into the
significance of temperature, is central to understand-ing much of chemistry.
That most molecules occupy states of low energy when the temperature is
low accounts for the exist-ence of compounds and the persistence of liquids
and solids. That highly excited energy levels become accessible at high
temperatures accounts for the possibility of reaction as one substance
acquires the ability to change into another. Both features are explored in
detail throughout the text.

You should keep in mind the Boltzmann distribution (which is treated in
greater depth later in the text) whenever considering the interpretation of the
properties of bulk matter and the role of temperature. An understanding of the
flow of energy and how it is distributed according to the Boltzmann
distribution is the key to understanding thermodynamics, structure, and
change throughout chemistry.



FOCUS 1

The properties of gases

A gas is a form of matter that fills whatever container it occupies. This
Focus establishes the properties of gases that are used throughout the
text.

1A The perfect gas

This Topic is an account of an idealized version of a gas, a ‘perfect gas’,
and shows how its equation of state may be assembled from the
experimental observations summarized by Boyle’s law, Charles’s law,
and Avogadro’s principle.

1A.1 Variables of state; 1A.2 Equations of state

1B The kinetic model

A central feature of physical chemistry is its role in building models of
molecular behaviour that seek to explain observed phenomena. A prime
example of this procedure is the development of a molecular model of a
perfect gas in terms of a collection of molecules (or atoms) in ceaseless,
essentially random motion. As well as accounting for the gas laws, this
model can be used to predict the average speed at which molecules
move in a gas, and its dependence on temperature. In combination with



the Boltzmann distribution (see the text’s Prologue), the model can also
be used to predict the spread of molecular speeds and its dependence on
molecular mass and temperature.

1B.1 The model; 1B.2 Collisions

1C Real gases

The perfect gas is a starting point for the discussion of properties of all
gases, and its properties are invoked throughout thermodynamics.
However, actual gases, ‘real gases’, have properties that differ from
those of perfect gases, and it is necessary to be able to interpret these
deviations and build the effects of molecular attractions and repulsions
into the model. The discussion of real gases is another example of how
initially primitive models in physical chemistry are elaborated to take
into account more detailed observations.

1C.1 Deviations from perfect behaviour; 1C.2 The van der Waals
equation

Web resources What is an application of this
material?

The perfect gas law and the kinetic theory can be applied to the study of
phenomena confined to a reaction vessel or encompassing an entire
planet or star. In Impact 1 the gas laws are used in the discussion of
meteorological phenomena—the weather. Impact 2 examines how the
kinetic model of gases has a surprising application: to the discussion of
dense stellar media, such as the interior of the Sun.

TOPIC 1A The perfect gas



> \Why do you need to know this material?

Equations related to perfect gases provide the basis for the development of
many relations in thermodynamics. The perfect gas law is also a good first
approximation for accounting for the properties of real gases.

> What is the key idea?

The perfect gas law, which is based on a series of empirical observations, is
a limiting law that is obeyed increasingly well as the pressure of a gas tends
to zero.

> What do you need to know already?

You need to know how to handle quantities and units in calculations, as
reviewed in The chemist's toolkit 1. You also need to be aware of the
concepts of pressure, volume, amount of substance, and temperature, all
reviewed in The chemist’s toolkit 2.

The properties of gases were among the first to be established quantitatively
(largely during the seventeenth and eighteenth centuries) when the
technological requirements of travel in balloons stimulated their
investigation. These properties set the stage for the development of the
kinetic model of gases, as discussed in Topic 1B.

1A.1 Variables of state

The physical state of a sample of a substance, its physical condition, is
defined by its physical properties. Two samples of the same substance that
have the same physical properties are in the same state. The variables needed
to specify the state of a system are the amount of substance it contains, n, the
volume it occupies, V, the pressure, p, and the temperature, T.

(a) Pressure



The origin of the force exerted by a gas is the incessant battering of the
molecules on the walls of its container. The collisions are so numerous that
they exert an effectively steady force, which is experienced as a steady
pressure. The SI unit of pressure, the pascal (Pa, 1 Pa = 1 N m™), is
introduced in The chemist’s toolkit 1. Several other units are still widely used
(Table 1A.1). A pressure of 1 bar is the standard pressure for reporting
data; it is denoted ¢’

Table 1A.1 Pressure units*

Name Symbol Value

pascal Pa 1Pa=1Nm? 1kgm!s?

bar bar 1 bar = 10° Pa

atmosphere atm 1 atm = 101.325 kPa

torr Torr 1 Torr = (101 325/760) Pa =
133.32... Pa

millimetres of mmHg 1 mmHg = 133.322... Pa

mercury

pounds per square psi 1 psi = 6.894 757... kPa

inch

* Values in bold are exact.

If two gases are in separate containers that share a common movable wall
(Fig. 1A.1), the gas that has the higher pressure will tend to compress (reduce
the volume of) the gas that has lower pressure. The pressure of the high-
pressure gas will fall as it expands and that of the low-pressure gas will rise
as it is compressed. There will come a stage when the two pressures are equal
and the wall has no further tendency to move. This condition of equality of
pressure on either side of a movable wall is a state of mechanical
equilibrium between the two gases. The pressure of a gas is therefore an



indication of whether a container that contains the gas will be in mechanical
equilibrium with another gas with which it shares a movable wall.

(a) Movable
High wall Low
pressure N pressure
(b)
Equal Equal
pressures pressures
(c) :
Low High
pressure pressure

Figure 1A.1 When a region of high pressure is separated from a
region of low pressure by a movable wall, the wall will be pushed into
one region or the other, as in (a) and (c). However, if the two
pressures are identical, the wall will not move (b). The latter condition
Is one of mechanical equilibrium between the two regions.

LR E RIS R G (& Quantities and units

The result of a measurement is a physical quantity that is reported as a
numerical multiple of a unit:

physical quantity = numerical value X unit

It follows that units may be treated like algebraic quantities and may be
multiplied, divided, and cancelled. Thus, the expression (physical
quantity)/unit is the numerical value (a dimensionless quantity) of the
measurement in the specified units. For instance, the mass m of an
object could be reported as m = 2.5 kg or m/kg = 2.5. In this instance the



unit of mass is 1 kg, but it is common to refer to the unit simply as kg
(and likewise for other units). See Table A.1 in the Resource section for
a list of units.

Although it is good practice to use only SI units, there will be
occasions where accepted practice is so deeply rooted that physical
quantities are expressed using other, non-SI units. By international
convention, all physical quantities are represented by oblique (sloping)
letters (for instance, m for mass); units are given in roman (upright)
letters (for instance m for metre).

Units may be modified by a prefix that denotes a factor of a power of
10. Among the most common SI prefixes are those listed in Table A.2 in
the Resource section. Examples of the use of these prefixes are:

Inm=10"m 1ps=10""2s 1 pmol=10"°mol

Powers of units apply to the prefix as well as the unit they modify. For
example, 1 cm® = 1 (cm)?3, and (1072 m)3 = 107 m3. Note that 1 cm?
does not mean 1 c(m?). When carrying out numerical calculations, it is
usually safest to write out the numerical value of an observable in

scientific notation (as n.nnn x 10™).

There are seven SI base units, which are listed in Table A.3 in the
Resource section. All other physical quantities may be expressed as
combinations of these base units. Molar concentration (more formally,
but very rarely, amount of substance concentration) for example, which
is an amount of substance divided by the volume it occupies, can be

expressed using the derived units of mol dm™ as a combination of the
base units for amount of substance and length. A number of these
derived combinations of units have special names and symbols. For

example, force is reported in the derived unit newton, 1 N = 1 kg m s72
(see Table A.4 in the Resource section).

The pressure exerted by the atmosphere is measured with a barometer. The
original version of a barometer (which was invented by Torricelli, a student
of Galileo) was an inverted tube of mercury sealed at the upper end. When



the column of mercury is in mechanical equilibrium with the atmosphere, the
pressure at its base is equal to that exerted by the atmosphere. It follows that
the height of the mercury column is proportional to the external pressure.

The pressure of a sample of gas inside a container is measured by using a
pressure gauge, which is a device with properties that respond to the pressure.
For instance, a Bayard—-Alpert pressure gauge is based on the ionization of
the molecules present in the gas and the resulting current of ions is
interpreted in terms of the pressure. In a capacitance manometer, the
deflection of a diaphragm relative to a fixed electrode is monitored through
its effect on the capacitance of the arrangement. Certain semiconductors also
respond to pressure and are used as transducers in solid-state pressure gauges.

(b) Temperature

The concept of temperature is introduced in The chemist’s toolkit 2. In the
early days of thermometry (and still in laboratory practice today),
temperatures were related to the length of a column of liquid, and the
difference in lengths shown when the thermometer was first in contact with
melting ice and then with boiling water was divided into 100 steps called
‘degrees’, the lower point being labelled 0. This procedure led to the Celsius
scale of temperature. In this text, temperatures on the Celsius scale are
denoted 0 (theta) and expressed in degrees Celsius (°C). However, because
different liquids expand to different extents, and do not always expand
uniformly over a given range, thermometers constructed from different
materials showed different numerical values of the temperature between their
fixed points. The pressure of a gas, however, can be used to construct a
perfect-gas temperature scale that is independent of the identity of the gas.
The perfect-gas scale turns out to be identical to the thermodynamic
temperature scale (Topic 3A), so the latter term is used from now on to
avoid a proliferation of names.

On the thermodynamic temperature scale, temperatures are denoted T and
are normally reported in kelvins (K; not °K). Thermodynamic and Celsius
temperatures are related by the exact expression

T/K = 6/°C + 273.15 Celsius scale [definition] (1A.1)



This relation is the current definition of the Celsius scale in terms of the more
fundamental Kelvin scale. It implies that a difference in temperature of 1 °C
is equivalent to a difference of 1 K.

Brief illustration 1A.1

To express 25.00 °C as a temperature in kelvins, eqn 1A.1 is used to
write

T/K = (25.00 °C)/°C + 273.15 = 25.00 + 273.15 = 298.15

Note how the units (in this case, °C) are cancelled like numbers. This is
the procedure called ‘quantity calculus’ in which a physical quantity
(such as the temperature) is the product of a numerical value (25.00) and
a unit (1 °C); see The chemist’s toolkit 1. Multiplication of both sides by
K then gives T = 298.15 K.

LR CINTE R 1] (8 Properties of bulk matter

The state of a bulk sample of matter is defined by specifying the values
of various properties. Among them are:

The mass, m, a measure of the quantity of matter present (unit:
kilogram, kg).

The volume, V, a measure of the quantity of space the sample
occupies (unit: cubic metre, m3).

The amount of substance, n, a measure of the number of specified
entities (atoms, molecules, or formula units) present (unit: mole,
mol).

The amount of substance, n (colloquially, ‘the number of moles’), is a
measure of the number of specified entities present in the sample.
‘Amount of substance’ is the official name of the quantity; it is



commonly simplified to ‘chemical amount’ or simply ‘amount’. A mole
is currently defined as the number of carbon atoms in exactly 12 g of
carbon-12. (In 2011 the decision was taken to replace this definition, but
the change has not yet, in 2018, been implemented.) The number of
entities per mole is called Avogadro’s constant, N,; the currently

023

accepted value is 6.022 x 1023 mol™! (note that N, is a constant with

units, not a pure number).
The molar mass of a substance, M (units: formally kg mol™! but

commonly g mol™!) is the mass per mole of its atoms, its molecules, or
its formula units. The amount of substance of specified entities in a
sample can readily be calculated from its mass, by noting that

m Amount of substance
=
M
A note on good practice Be careful to distinguish atomic or
molecular mass (the mass of a single atom or molecule; unit: kg)
from molar mass (the mass per mole of atoms or molecules; units:

kg mol™). Relative molecular masses of atoms and molecules, M, =
m/m,, where m is the mass of the atom or molecule and m, is the

atomic mass constant (see inside front cover), are still widely called
‘atomic weights’ and ‘molecular weights’ even though they are
dimensionless quantities and not weights (‘weight’ is the
gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: pascal,
Pa; 1 Pa =1 kg m ! s72), which is defined as the force, F, it is subjected
to, divided by the area, A, to which that force is applied. Although the
pascal is the SI unit of pressure, it is also common to express pressure in

bar (1 bar = 10° Pa) or atmospheres (1 atm = 101 325 Pa exactly), both
of which correspond to typical atmospheric pressure. Because many
physical properties depend on the pressure acting on a sample, it is
appropriate to select a certain value of the pressure to report their values.
The standard pressure for reporting physical quantities is currently
defined as #" = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give its



temperature, T. The temperature is formally a property that determines
in which direction energy will flow as heat when two samples are placed
in contact through thermally conducting walls: energy flows from the
sample with the higher temperature to the sample with the lower
temperature. The symbol T is used to denote the thermodynamic
temperature which is an absolute scale with T = 0 as the lowest point.
Temperatures above T = 0 are then most commonly expressed by using
the Kelvin scale, in which the gradations of temperature are expressed
in kelvins (K). The Kelvin scale is currently defined by setting the triple
point of water (the temperature at which ice, liquid water, and water
vapour are in mutual equilibrium) at exactly 273.16 K (as for certain
other units, a decision has been taken to revise this definition, but it has
not yet, in 2018, been implemented). The freezing point of water (the
melting point of ice) at 1 atm is then found experimentally to lie 0.01 K
below the triple point, so the freezing point of water is 273.15 K.
Suppose a sample is divided into smaller samples. If a property of the
original sample has a value that is equal to the sum of its values in all
the smaller samples (as mass would), then it is said to be extensive.
Mass and volume are extensive properties. If a property retains the same
value as in the original sample for all the smaller samples (as
temperature would), then it is said to be intensive. Temperature and
pressure are intensive properties. Mass density, p = m/V, is also intensive
because it would have the same value for all the smaller samples and the
original sample. All molar properties, X, = X/n, are intensive, whereas X

and n are both extensive.

A note on good practice The zero temperature on the thermodynamic
temperature scale is written T = 0, not T = 0 K. This scale is absolute,
and the lowest temperature is 0 regardless of the size of the divisions on
the scale (just as zero pressure is denoted p = 0, regardless of the size of
the units, such as bar or pascal). However, it is appropriate to write 0 °C
because the Celsius scale is not absolute.



1A.2 Equations of state

Although in principle the state of a pure substance is specified by giving the
values of n, V, p, and T, it has been established experimentally that it is
sufficient to specify only three of these variables since doing so fixes the
value of the fourth variable. That is, it is an experimental fact that each
substance is described by an equation of state, an equation that interrelates
these four variables.

The general form of an equation of state is

p = f(T,V,n) General form of an equation of state  (1A.2)

This equation states that if the values of n, T, and V are known for a particular
substance, then the pressure has a fixed value. Each substance is described by
its own equation of state, but the explicit form of the equation is known in
only a few special cases. One very important example is the equation of state
of a ‘perfect gas’, which has the form p = nRT/V, where R is a constant
independent of the identity of the gas.

The equation of state of a perfect gas was established by combining a
series of empirical laws.

(a) The empirical basis

The following individual gas laws should be familiar:

Boyle’s law: pV = constant, at constant n, T (1A.338)
Charles’s law: V = constant x T, at constant n, p (1A.3b)
p = constant X T, at constant n, V (1A.3c)

Avogadro’s principle:
V = constant X n at constant p, T (1A.3d)

Boyle’s and Charles’s laws are examples of a limiting law, a law that is
strictly true only in a certain limit, in this case p — 0. For example, if it is



found empirically that the volume of a substance fits an expression V = aT +

bp + cp?, then in the limit of p — 0, V = aT. Many relations that are strictly
true only at p = 0 are nevertheless reasonably reliable at normal pressures (p
~ 1 bar) and are used throughout chemistry.

Figure 1A.2 depicts the variation of the pressure of a sample of gas as the
volume is changed. Each of the curves in the graph corresponds to a single
temperature and hence is called an isotherm. According to Boyle’s law, the
isotherms of gases are hyperbolas (a curve obtained by plotting y against x
with xy = constant, or y = constant/x). An alternative depiction, a plot of
pressure against 1/volume, is shown in Fig. 1A.3. The linear variation of
volume with temperature summarized by Charles’s law is illustrated in Fig.
1A.4. The lines in this illustration are examples of isobars, or lines showing
the variation of properties at constant pressure. Figure 1A.5 illustrates the
linear variation of pressure with temperature. The lines in this diagram are
isochores, or lines showing the variation of properties at constant volume.

Inereasing
temperature, T

Pressure, p

Volume, V

Figure 1A.2 The pressure—volume dependence of a fixed amount of
perfect gas at different temperatures. Each curve is a hyperbola (pV =
constant) and is called an isotherm.
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Figure 1A.3 Straight lines are obtained when the pressure of a perfect
gas is plotted against 1/V at constant temperature. These lines
extrapolate to zero pressure at 1/V = 0.

A note on good practice To test the validity of a relation between two
quantities, it is best to plot them in such a way that they should give a
straight line, because deviations from a straight line are much easier to
detect than deviations from a curve. The development of expressions
that, when plotted, give a straight line is a very important and common
procedure in physical chemistry.
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Figure 1A.4 The variation of the volume of a fixed amount of a perfect
gas with the temperature at constant pressure. Note that in each case
the isobars extrapolate to zero volume at T = O, corresponding to 6 =

-273.15 °C.
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Figure 1A.5 The pressure of a perfect gas also varies linearly with the
temperature at constant volume, and extrapolates to zeroat T =0
(-273.15 °C).

The empirical observations summarized by eqn 1A.3 can be combined into
a single expression:

pV = constant X nT

This expression is consistent with Boyle’s law (pV = constant) when n and T
are constant, with both forms of Charles’s law (p =< T, V < T) when n and
either V or p are held constant, and with Avogadro’s principle (V o< n) when
p and T are constant. The constant of proportionality, which is found
experimentally to be the same for all gases, is denoted R and called the
(molar) gas constant. The resulting expression

pV=nRT Perfect gas law  (1A.4)

is the perfect gas law (or perfect gas equation of state). It is the approximate
equation of state of any gas, and becomes increasingly exact as the pressure



of the gas approaches zero. A gas that obeys eqn 1A.4 exactly under all
conditions is called a perfect gas (or ideal gas). A real gas, an actual gas,
behaves more like a perfect gas the lower the pressure, and is described
exactly by eqn 1A.4 in the limit of p — 0. The gas constant R can be
determined by evaluating R = pV/nT for a gas in the limit of zero pressure (to
guarantee that it is behaving perfectly).

A note on good practice Despite ‘ideal gas’ being the more common
term, ‘perfect gas’ is preferable. As explained in Topic 5B, in an ‘ideal
mixture’ of A and B, the AA, BB, and AB interactions are all the same
but not necessarily zero. In a perfect gas, not only are the interactions all
the same, they are also zero.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed amount of
perfect gas against its volume and thermodynamic temperature as given by
eqn 1A.4. The surface depicts the only possible states of a perfect gas: the gas
cannot exist in states that do not correspond to points on the surface. The
graphs in Figs. 1A.2 and 1A.4 correspond to the sections through the surface
(Fig. 1A.7).

Surface
of possible
states

Pressure, p

Volume, i

Figure 1A.6 A region of the p,V,T surface of a fixed amount of perfect



gas. The points forming the surface represent the only states of the
gas that can exist.

Isotherm
Isobar

pV = constant
Isochore

Pressure, p

Vc}lume, V4

Figure 1A.7 Sections through the surface shown in Fig. 1A.6 at
constant temperature give the isotherms shown in Fig. 1A.2. Sections
at constant pressure give the isobars shown in Fig. 1A.4. Sections at
constant volume give the isochores shown in Fig. 1A.5.

Secluldm:WiUsing the perfect gas law

In an industrial process, nitrogen gas is introduced into a vessel of
constant volume at a pressure of 100 atm and a temperature of 300 K.
The gas is then heated to 500 K. What pressure would the gas then exert,
assuming that it behaved as a perfect gas?

Collect your thoughts The pressure is expected to be greater on
account of the increase in temperature. The perfect gas law in the form
pV/nT = R implies that if the conditions are changed from one set of
values to another, then because pV/nT is equal to a constant, the two sets



of values are related by the ‘combined gas law’

Pl_;,l=% Combined gas lw (1A.5)
HI 1 ”1 3

This expression is easily rearranged to give the unknown quantity (in
this case p,) in terms of the known. The known and unknown data are

summarized as follows:

n P |4 T
Initial Same 100 atm Same 300 K
Final Same ? Same 500 K

The solution Cancellation of the volumes (because V; = V,) and
amounts (because n; = n,) on each side of the combined gas law results
in

Substitution of the data then gives

_ 500K

P: = 350K ¥ (100atm) = 167 atm

Self-test 1A.1 What temperature would result in the same sample
exerting a pressure of 300 atm?

Answer: 900 K

The perfect gas law is of the greatest importance in physical chemistry



because it is used to derive a wide range of relations that are used throughout
thermodynamics. However, it is also of considerable practical utility for
calculating the properties of a gas under a variety of conditions. For instance,
the molar volume, V, = V/n, of a perfect gas under the conditions called

standard ambient temperature and pressure (SATP), which means 298.15
K and 1 bar (i.e. exactly 10° Pa), is easily calculated from V., = RT/p to be

24.789 dm> mol™!. An earlier definition, standard temperature and
pressure (STP), was 0 °C and 1 atm; at STP, the molar volume of a perfect
gas is 22.414 dm> mol 1.

The molecular explanation of Boyle’s law is that if a sample of gas is
compressed to half its volume, then twice as many molecules strike the walls
in a given period of time than before it was compressed. As a result, the
average force exerted on the walls is doubled. Hence, when the volume is
halved the pressure of the gas is doubled, and pV is a constant. Boyle’s law
applies to all gases regardless of their chemical identity (provided the
pressure is low) because at low pressures the average separation of molecules
is so great that they exert no influence on one another and hence travel
independently. The molecular explanation of Charles’s law lies in the fact
that raising the temperature of a gas increases the average speed of its
molecules. The molecules collide with the walls more frequently and with
greater impact. Therefore they exert a greater pressure on the walls of the
container. For a quantitative account of these relations, see Topic 1B.

(b) Mixtures of gases

When dealing with gaseous mixtures, it is often necessary to know the
contribution that each component makes to the total pressure of the sample.
The partial pressure, p;, of a gas J in a mixture (any gas, not just a perfect

gas), is defined as

Py =X;p Partial pressure [definition] (1A.6)

where x; is the mole fraction of the component J, the amount of J expressed
as a fraction of the total amount of molecules, n, in the sample:



1y Mele fraction

H=—- A=#, -+ [efinition] 147

When no J molecules are present, x; = 0; when only J molecules are present,
x; = 1. It follows from the definition of x; that, whatever the composition of
the mixture, x, + xg + ... = 1 and therefore that the sum of the partial
pressures is equal to the total pressure:

putppt o =lx, +xg+-dp=p (1A.8)

This relation is true for both real and perfect gases.

When all the gases are perfect, the partial pressure as defined in eqn 1A.6
is also the pressure that each gas would exert if it occupied the same
container alone at the same temperature. The latter is the original meaning of
‘partial pressure’. That identification was the basis of the original formulation
of Dalton’s law:

The pressure exerted by a mixture of gases is the sum of the pressures that
each one would exert if it occupied the container alone. Dalton’s law

This law is valid only for mixtures of perfect gases, so it is not used to define
partial pressure. Partial pressure is defined by eqn 1A.6, which is valid for all
gases.

S dmrWwY Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately
N,: 75.5; Oy 23.2; Ar: 1.3. What is the partial pressure of each

component when the total pressure is 1.20 atm?

Collect your thoughts Partial pressures are defined by eqn 1A.6. To
use the equation, first calculate the mole fractions of the components, by
using eqn 1A.7 and the fact that the amount of atoms or molecules J of
molar mass Mj in a sample of mass mjy is ny = my/Mj;. The mole fractions

are independent of the total mass of the sample, so choose the latter to
be exactly 100 g (which makes the conversion from mass percentages
very easy). Thus, the mass of N, present is 75.5 per cent of 100 g, which



is 75.5 g.

The solution The amounts of each type of atom or molecule present in
100 g of air are, in which the masses of N,, O,, and Ar are 75.5 g, 23.2

g, and 1.3 g, respectively, are

3 7558 755 B
n(N,) = 2802 gmol™  28.02 mol = 2.69mol
232¢ 23.2
n(0,) = 32.00gmol” _ 32.00 mol = 0.725mol
n(Ar) L - mol = 0.033mol

T 3995gmol  39.95

The total is 3.45 mol. The mole fractions are obtained by dividing each
of the above amounts by 3.45 mol and the partial pressures are then
obtained by multiplying the mole fraction by the total pressure (1.20
atm):

N, 0, Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.936 0.252 0.012

Self-test 1A.2 When carbon dioxide is taken into account, the mass
percentages are 75.52 (N,), 23.15 (O,), 1.28 (Ar), and 0.046 (CO,).

What are the partial pressures when the total pressure is 0.900 atm?

Answer: 0.703, 0.189, 0.0084, and 0.00027 atm
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1.

The physical state of a sample of a substance, its physical condition,
is defined by its physical properties.

. Mechanical equilibrium is the condition of equality of pressure on

either side of a shared movable wall.

. An equation of state is an equation that interrelates the variables that

define the state of a substance.

. Boyle’s and Charles’s laws are examples of a limiting law, a law that

is strictly true only in a certain limit, in this case p - O.

. An isotherm is a line in a graph that corresponds to a single

temperature.

6. An isobar is a line in a graph that corresponds to a single pressure.

. An isochore is a line in a graph that corresponds to a single volume.
. A perfect gas is a gas that obeys the perfect gas law under all

conditions.

. Dalton’s law states that the pressure exerted by a mixture of (perfect)

gases is the sum of the pressures that each one would exert if it
occupied the container alone.

Checklist of equations

Property Equation Comment Equation
number

Relation between T/K=6/°C+  273.15is exact 1A.1
temperature scales 273.15

Perfect gas law pV =nRT Valid for real gases inthe  1A.4

limitp - 0

Partial pressure Dy = Xjp Valid for all gases 1A.6
Mole fraction X;=n;/n Definition 1A.7

n=np+ng+...




TOPIC 1B The kinetic model

> \Why do you need to know this material?

This material illustrates an important skill in science: the ability to extract
quantitative information from a qualitative model. Moreover, the model is
used in the discussion of the transport properties of gases (Topic 16A),
reaction rates in gases (Topic 18A), and catalysis (Topic 19C).

> What is the key idea?

A gas consists of molecules of negligible size in ceaseless random motion
and obeying the laws of classical mechanics in their collisions.

> \What do you need to know already?

You need to be aware of Newton's second law of motion, that the
acceleration of a body is proportional to the force acting on it, and the
conservation of linear momentum (The chemist’s toolkit 3).

In the kinetic theory of gases (which is sometimes called the kinetic-
molecular theory, KMT) it is assumed that the only contribution to the energy
of the gas is from the kinetic energies of the molecules. The kinetic model is
one of the most remarkable—and arguably most beautiful—models in
physical chemistry, for from a set of very slender assumptions, powerful
quantitative conclusions can be reached.

18.1 The model

The kinetic model is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless random motion



obeying the laws of classical mechanics.

2. The size of the molecules is negligible, in the sense that their diameters

are much smaller than the average distance travelled between collisions;

they are ‘point-like’.

3. The molecules interact only through brief elastic collisions.

L X E NS R G LGN Momentum and force

The speed, v, of a body is defined as the rate of change of position. The
velocity, v, defines the direction of travel as well as the rate of motion,
and particles travelling at the same speed but in different directions have
different velocities. As shown in Sketch 1, the velocity can be depicted
as an arrow in the direction of travel, its length being the speed v and its

components Vv,, v,, and v, along three perpendicular axes. These

components have a sign: v, = +5 m s~1 for instance, indicates that a

body is moving in the positive x-direction, whereas v, = =5 m s~!

indicates that it is moving in the opposite direction. The length of the
arrow (the speed) 1s related to the components by Pythagoras’ theorem:
= u + I.f = U-

Sketch 1

The concepts of classical mechanics are commonly expressed in terms
of the linear momentum, p, which is defined as



p —myv Linear momentum [definition]

Momentum also mirrors velocity in having a sense of direction; bodies
of the same mass and moving at the same speed but in different
directions have different linear momenta.

Acceleration, q, is the rate of change of velocity. A body accelerates
if its speed changes. A body also accelerates if its speed remains
unchanged but its direction of motion changes. According to Newton’s
second law of motion, the acceleration of a body of mass m is
proportional to the force, F, acting on it:

F = ma Force

Because mv is the linear momentum and a is the rate of change of
velocity, ma is the rate of change of momentum. Therefore, an
alternative statement of Newton’s second law is that the force is equal to
the rate of change of momentum. Newton’s law indicates that the
acceleration occurs in the same direction as the force acts. If, for an
isolated system, no external force acts, then there is no acceleration. This
statement is the law of conservation of momentum: that the
momentum of a body is constant in the absence of a force acting on the
body.

An elastic collision is a collision in which the total translational kinetic
energy of the molecules is conserved.

(a) Pressure and molecular speeds

From the very economical assumptions of the kinetic model, it is possible to
derive an expression that relates the pressure and volume of a gas.

ARG EINe i MI= MY Using the kinetic model to derive an
expression for the pressure of a gas



Consider the arrangement in Fig. 1B.1, and then follow these steps.

Step 1 Set up the calculation of the change in momentum

When a particle of mass m that is travelling with a component of
velocity v, parallel to the x-axis collides with the wall on the right and is
reflected, its linear momentum changes from mv,, before the collision to
—mv,, after the collision (when it is travelling in the opposite direction).
The x-component of momentum therefore changes by 2mv, on each

collision (the y- and z-components are unchanged). Many molecules
collide with the wall in an interval At, and the total change of
momentum is the product of the change in momentum of each molecule
multiplied by the number of molecules that reach the wall during the
interval.

Step 2 Calculate the change in momentum

Because a molecule with velocity component v, travels a distance v,At

along the x-axis in an interval At, all the molecules within a distance
v, At of the wall strike it if they are travelling towards it (Fig. 1B.2). It

follows that if the wall has area A, then all the particles in a volume A %
v, At reach the wall (if they are travelling towards it). The number

density of particles is nN,/V, where n is the total amount of molecules in
the container of volume V and N, is Avogadro’s constant. It follows that
the number of molecules in the volume Av, At is (nN,/V) % Av,At.



Before
collision

X >

Figure 1B.1 The pressure of a gas arises from the impact of its
molecules on the walls. In an elastic collision of a molecule with a
wall perpendicular to the x-axis, the x-component of velocity is
reversed but the y- and z-components are unchanged.

Area, A
L

Volume = |v, Af|A

Figure 1B.2 A molecule will reach the wall on the right within an
interval of time At if it is within a distance v, At of the wall and

travelling to the right.



At any instant, half the particles are moving to the right and half are
moving to the left. Therefore, the average number of collisions with the
wall during the interval At is snN,Av,At/V. The total momentum change

in that interval is the product of this number and the change 2mv,:

nN ,Av, At
Momentum change = AZV X2my,
M
—— " .
_nmN, Av_ At nMAv At
- V B V

Step 3 Calculate the force

The rate of change of momentum, the change of momentum divided by
the interval At during which it occurs, is

m = "MAu

Rate of change of momentu =

According to Newton’s second law of motion this rate of change of
momentum is equal to the force.

Step 4 Calculate the pressure

The pressure is this force (nMAuﬁ / V') divided by the area (A) on which
the impacts occur. The areas cancel, leaving

Pressure = ”""i”l_

Not all the molecules travel with the same velocity, so the detected
pressure, p, is the average (denoted (...)) of the quantity just calculated:

M)
S
The average values of yi, yi} and p* are all the same, and because
S I L ' 2N 1 fa2
v =v,+v, +v;, it follows that (v, )=1{v").
At this stage it is useful to define the root-mean-square speed, v,



as the square root of the mean of the squares of the speeds, v, of the
molecules. Therefore

e T B T Reot-mean-square speed
Fems = A [definition] (18.7)

The mean square speed in the expression for the pressure can therefore
. 2y 1 25N _ 1.2 .
be written {yx y=1{v*)=1 v, togive

pvV =4 ”Ml"im Relation between pressure and volume [KMT] (1B.2)

This equation is one of the key results of the kinetic model. If the root-
mean-square speed of the molecules depends only on the temperature, then at
constant temperature

pV = constant

which is the content of Boyle’s law. The task now is to show that the right-
hand side of eqn 1B.2 is equal to nRT.

(b) The Maxwell-Boltzmann distribution of speeds

In a gas the speeds of individual molecules span a wide range, and the
collisions in the gas ensure that their speeds are ceaselessly changing. Before
a collision, a molecule may be travelling rapidly, but after a collision it may
be accelerated to a higher speed, only to be slowed again by the next
collision. To evaluate the root-mean-square speed it is necessary to know the
fraction of molecules that have a given speed at any instant. The fraction of
molecules that have speeds in the range v to v + dv is proportional to the
width of the range, and is written f(v)dv, where f(v) is called the distribution
of speeds. An expression for this distribution can be found by recognizing
that the energy of the molecules is entirely kinetic, and then using the
Boltzmann distribution to describe how this energy is distributed over the
molecules.



SRR N [ la [ ai= Wy Deriving the distribution of speeds

The starting point for this derivation is the Boltzmann distribution (see
the text’s Prologue).

Step 1 Write an expression for the distribution of the kinetic energy

The Boltzmann distribution implies that the fraction of molecules with
velocity components v,, v,, and v, is proportional to an exponential

—&/kT

function of their kinetic energy: f(v) = Ke ¥*', where K is a constant of

proportionality. The kinetic energy is
== {i 2 1 2 1 Z
E= YU, T Emv}_ T s v,
Therefore, use the relation a*™*% = a*@’a? to write

_ —(mu“?+1.'ru.r£+mz-'2,HEH' _ —mv22kT _—mu2i2kT _—mv? 12kT
Fl =K = K™ @ g

The distribution factorizes into three terms as f(v) = f(v,) f(v,) f(v,) and K
= KKK, with

f(vx ) — K-xe—mz*ﬁflk’r

and likewise for the other two coordinates.

Step 2 Determine the constants K,, K, and K,

To determine the constant K,, note that a molecule must have a velocity
component somewhere in the range —oo < v, < oo, so integration over the
full range of possible values of v, must give a total probability of 1:

J_fw)dv =1

(See The chemist’s toolkit 4 for the principles of integration.)
Substitution of the expression for f(v,) then gives



Integral G.1

f'm -~ = 2 kT /2
= K.{‘[ e—uri-_J-M dvx = Kl( n ]

Therefore, K, = (m/2nkT)"? and

1/2
m ] e muz 2kT (183)

f@.) (2 kT

The expressions for f(v,) and f(v,) are analogous.

Step 3 Write a preliminary expression for f(v,)f(v,)f(v,)dv,dv,dv,

The probability that a molecule has a velocity in the range v, to v, + dv,,

vytov, +dv, v, tov,+dv, is

-
32 -

f(w, )0, ) fv, o do dv, = (2;;?1] .

= e | @™ o dsdy dy,

where v* =v;+v +v;.

Step 3 Calculate the probability that a molecule has a speed in the
range v to v + dv

To evaluate the probability that a molecule has a speed in the range v to
v + dv regardless of direction, think of the three velocity components as
defining three coordinates in ‘velocity space’, with the same properties
as ordinary space except that the axes are labelled (v,, v,, v,) instead of

(X, y, z). Just as the volume element in ordinary space is dxdydz, so the
volume element in velocity space is dv,dv,dv,. The sum of all the



volume elements in ordinary space that lie at a distance r from the centre
is the volume of a spherical shell of radius r and thickness dr. That

volume is the product of the surface area of the shell, 4nr?, and its

thickness dr, and is therefore 4nr?dr. Similarly, the analogous volume in
velocity space is the volume of a shell of radius v and thickness dv,

namely 4mv2dv (Fig. 1B.3). Now, because (v )f(v))f(v,), the term in blue

in the last equation, depends only on v?, and has the same value
everywhere in a shell of radius v, the total probability of the molecules
possessing a speed in the range v to v + dv is the product of the term in
blue and the volume of the shell of radius v and thickness dv. If this
probability is written f(v)dv, it follows that

Thickness, dv

Figure 1B.3 To evaluate the probability that a molecule has a
speed in the range v to v + dv, evaluate the total probability that
the molecule will have a speed that is anywhere in a thin shell of

radius v = (vf + uﬁ + vf}"z and thickness dv.



32
. ) m ~mu? 12kT
f(v)dv=4nv dz{ kT ] e

and f(v) itself, after minor rearrangement, is

3/2
m 2 —mu*2kT

f(v)=4n kT Ve

Because R = Npk (Table 1B.1), m’k = mN,/R = M/R, it follows that

| M e 2 _—~Mv*I2RT
f(v)—ﬁm[anT) Ve

Maxwell-Boltzmann distribution [KMT] (1B.4)

The function f(v) is called the Maxwell-Boltzmann distribution of speeds.
Note that, in common with other distribution functions, f(v) acquires physical
significance only after it is multiplied by the range of speeds of interest.

Table 1B.1 The (molar) gas constant*

R

8.314 47 JK 1 mol™

8.205 74 x 1072 dm? atm K™! mol~!
8.314 47 x 1072 dm? bar K™! mol™!
8.314 47 Pa m3 K ! mol!

62.364 dm? Torr K~ mol!



1.987 21 cal K1 mol™!

* The gas constant is now defined as R = Nk, where N, is Avogadro’s constant and k is
Boltzmann’s constant.

The chemist’s toolkit 4 JIyCle[Eile]y]

Integration is concerned with the areas under curves. The integral of a
function f(x), which is denoted [ f(x)dx (the symbol [ is an elongated S
denoting a sum), between the two values x = a and x = b is defined by
imagining the x-axis as divided into strips of width éx and evaluating the
following sum:

[ fx)dx=1im ¥ f(x,)8x

Integration [definition]

As can be appreciated from Sketch 1, the integral is the area under the
curve between the limits a and b. The function to be integrated is called
the integrand. It is an astonishing mathematical fact that the integral of
a function is the inverse of the differential of that function. In other
words, if differentiation of f is followed by integration of the resulting
function, the result is the original function f (to within a constant).

The integral in the preceding equation with the limits specified is
called a definite integral. If it is written without the limits specified, it
is called an indefinite integral. If the result of carrying out an indefinite
integration is g(x) + C, where C is a constant, the following procedure is
used to evaluate the corresponding definite integral:

: b
I=[ f(x)dx={g(x)+C}| ={g(b)+C}~{g(a)+C]

7]

=g(b)—g(a)

Definite integral



Note that the constant of integration disappears. The definite and
indefinite integrals encountered in this text are listed in the Resource
section. They may also be calculated by using mathematical software.

= N
éég Tiq
dx f qﬁ
—»| €~ K
/
/Z
fix) /
/]
a 5% b
Sketch 1

The important features of the Maxwell-Boltzmann distribution are as
follows (and are shown pictorially in Fig. 1B.4):

Physical interpretation

* Equation 1B.4 includes a decaying exponential function (more
specifically, a Gaussian function). Its presence implies that the fraction of

molecules with very high speeds is very small because e becomes very
small when x is large.

« The factor M/2RT multiplying v? in the exponent is large when the molar
mass, M, is large, so the exponential factor goes most rapidly towards
zero when M is large. That is, heavy molecules are unlikely to be found



with very high speeds.

* The opposite is true when the temperature, T, is high: then the factor
M/2RT in the exponent is small, so the exponential factor falls towards
zero relatively slowly as v increases. In other words, a greater fraction of
the molecules can be expected to have high speeds at high temperatures
than at low temperatures.

« A factor v? (the term before the e) multiplies the exponential. This factor
goes to zero as v goes to zero, so the fraction of molecules with very low
speeds will also be very small whatever their mass.

 The remaining factors (the term in parentheses in eqn 1B.4 and the 4m)
simply ensure that, when the fractions are summed over the entire range
of speeds from zero to infinity, the result is 1.

(c) Mean values

With the Maxwell-Boltzmann distribution in hand, it is possible to calculate
the mean value of any power of the speed by evaluating the appropriate
integral. For instance, to evaluate the fraction, F, of molecules with speeds in
the range v, to v, evaluate the integral
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Figure 1B.4 The distribution of molecular speeds with temperature
and molar mass. Note that the most probable speed (corresponding to
the peak of the distribution) increases with temperature and with
decreasing molar mass, and simultaneously the distribution becomes
broader.

Fly,,1,)= EE f(v)dv (1B.5)

This integral is the area under the graph of f as a function of v and, except in
special cases, has to be evaluated numerically by using mathematical

software (Fig. 1B.5). The average value of v" is calculated as

(V")= J: V" f(v)dy

(1B.6)

In particular, integration with n = 2 results in the mean square speed, (v?), of
the molecules at a temperature T

W= 31?; Mean square speed [KMT] (1B.7)



It follows that the root-mean-square speed of the molecules of the gas is

3RT
M

1/2
1"'rrnm‘. — (1}2)1;2:

Root-mean-square speed [KMT] (1B.8)
which is proportional to the square

root of the temperature and inversely proportional to the square root of the
molar mass. That is, the higher the temperature, the higher the root-mean-
square speed of the molecules, and, at a given temperature, heavy molecules
travel more slowly than light molecules.

The important conclusion, however, is that when eqn 1B.8 is substituted
into eqn 1B.2, the result is pV = nRT, which is the equation of state of a
perfect gas. This conclusion confirms that the kinetic model can be regarded
as a model of a perfect gas.

Distribution function, f(v)

v, Speed, v v,

Figure 1B.5 To calculate the probability that a molecule will have a
speed in the range v, to v,, integrate the distribution between those

two limits; the integral is equal to the area under the curve between



the limits, as shown shaded here.

SN Calculating the mean speed of molecules in a
gas

Calculate v

ms and the mean speed, v

neans OFf N molecules at 25 °C.

Collect your thoughts The root-mean-square speed is calculated

from eqn 1B.8, with M = 28.02 g mol~! (that is, 0.028 02 kg mol™!) and
T =298 K. The mean speed is obtained by evaluating the integral

Vpen = 0f (0)dv

with f(v) given in eqn 1B.3. Use either mathematical software or the

integrals listed in the Resource section and note that 1 J = 1 kg m? s,

The solution The root-mean-square speed is

/2

3x(8.3145]JK ™" mol ™ )x(298K)

.. = =515ms™
e 0.028 02kgmol ™
The integral required for the calculation of v, is
Integral G.4
3/2 ¢ h \
M =3 _—Mu/2RT
Voiin = 411:( STRT L Ve dv

_4 M a2 I 2RT 2_ SRT 1/2
=AU SrT | *:A M ) T\ M

Substitution of the data then gives



8x(8.3145] K" mol™)x(298K) )~ .
v — =475ms

mean mx(0.028 02kgmol ™)

Self-test 1B.1 Confirm that eqn 1B.7 follows from eqn 1B.6.

As shown in Example 1B.1, the Maxwell-Boltzmann distribution can be used
to evaluate the mean speed, v .., of the molecules in a gas:

SRT M2 8 12 Mean speed [KMT] (1B.9)
() (4

The most probable speed, v,,,, can be identified from the location of the

peak of the distribution by differentiating f(v) with respect to v and looking
for the value of v at which the derivative is zero (other than at v=10 and v =
oo; see Problem 1B.11):

2RT e 7 L2 Most probable speed [KMT] (1B.10)
(33

mp

Figure 1B.6 summarizes these results.



v, = (2RTIM)"
Von = (BRT/M) 2

mean

v,..= (3RTIM)"

f(v)/Ar(MI2rRT)%?

17 e @2 VIRRTIM)?

Figure 1B.6 A summary of the conclusions that can be deduced from
the Maxwell distribution for molecules of molar mass M at a
temperature T: v, is the most probable speed, v, Is the mean

mean
speed, and v, is the root-mean-square speed.

The mean relative speed, v, the mean speed with which one molecule

approaches another of the same kind, can also be calculated from the
distribution:

Mean refztve spead 1B.11a)

= Lz,
Ut = 27 [KMT, Identical maleculies]

This result is much harder to derive, but the diagram in Fig. 1B.7 should help
to show that it is plausible. For the relative mean speed of two dissimilar
molecules of masses m, and mg:

(BkT s mom Mean relative
=| Ty =—23a& B
i | i | A i+ iy spead {1B.11b)

[perfact gas]
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Figure 1B.7 A simplified version of the argument to show that the
mean relative speed of molecules in a gas is related to the mean
speed. When the molecules are moving in the same direction, the
mean relative speed is zero; it is 2v when the molecules are
approaching each other. A typical mean direction of approach is from
the side, and the mean speed of approach is then 2*?v. The last
direction of approach is the most characteristic, so the mean speed of
approach can be expected to be about 2¥?v. This value is confirmed
by more detailed calculation.

Brief illustration 1B.1

As already seen (in Example 1B.1), the mean speed of N, molecules at

25 °C is 475 m s L. It follows from eqn 1B.11a that their relative mean
speed is

Vo = 2?%x(475ms ™) = 671ms !

rel —




1B.2 Collisions

The kinetic model can be used to develop the qualitative picture of a perfect
gas, as a collection of ceaselessly moving, colliding molecules, into a
quantitative, testable expression. In particular, it provides a way to calculate
the average frequency with which molecular collisions occur and the average
distance a molecule travels between collisions.

(a) The collision frequency

Although the kinetic model assumes that the molecules are point-like, a ‘hit’
can be counted as occurring whenever the centres of two molecules come
within a distance d of each other, where d, the collision diameter, is of the
order of the actual diameters of the molecules (for impenetrable hard spheres
d is the diameter). The kinetic model can be used to deduce the collision
frequency, z, the number of collisions made by one molecule divided by the
time interval during which the collisions are counted.

SlOACR N [o1a SN IEY Using the kinetic model to derive an
expression for the collision frequency

Consider the positions of all the molecules except one to be frozen. Then
note what happens as this one mobile molecule travels through the gas
with a mean relative speed v, for a time At. In doing so it sweeps out a
‘collision tube’ of cross-sectional area o = md?, length v, At and
therefore of volume ov, At (Fig. 1B.8). The number of stationary

molecules with centres inside the collision tube is given by the volume V
of the tube multiplied by the number density N = N/V, where N is the
total number of molecules in the sample, and is Nov,, At. The collision

frequency z is this number divided by At. It follows that



v_At |

Q.
|
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Area, o

Figure 1B.8 The basis of the calculation of the collision frequency
in the kinetic theory of gases.

Table 1B.2 Collision cross-sections*

o/nmm?
CeHq 0.88
co, 0.52
He 0.21
N, 0.43

* More values are given in the Resource section.

Z=0VlN Collision frequency [KMT] (1B.12a)

The parameter o is called the collision cross-section of the molecules. Some



typical values are given in Table 1B.2.
An expression in terms of the pressure of the gas is obtained by using the
perfect gas equation and R = N,k to write the number density in terms of the

pressure:

N nN, nN, _pN, p

V-V " wnRT/p RT kT
Then

s UE?P Collision frequency [KMT] (1B.12b)

Equation 1B.12a shows that, at constant volume, the collision frequency
increases with increasing temperature, because most molecules are moving
faster. Equation 1B.12b shows that, at constant temperature, the collision
frequency is proportional to the pressure. The greater the pressure, the greater
the number density of molecules in the sample, and the rate at which they
encounter one another is greater even though their average speed remains the
same.

Brief illustration 1B.2

For an N, molecule in a sample at 1.00 atm (101 kPa) and 25 °C, from
Brief illustration 1B.1 v, = 671 m s~!. Therefore, from eqn 1B.12b, and

taking o = 0.45 nm? (corresponding to 0.45 x 107'® m?) from Table
1B.2,

~ (0.45x107"" m”*)x(671ms ™" )x(1.01x10° Pa)
- (1.381x1072 JK")x(298K)

Z

=74%x10°s™

so a given molecule collides about 7 x 10° times each second. The



timescale of events in gases is becoming clear.

(b) The mean free path

The mean free path, A (lambda), is the average distance a molecule travels
between collisions. If a molecule collides with a frequency z, it spends a time
1/z in free flight between collisions, and therefore travels a distance (1/z)v,q.

It follows that the mean free path is

1= Mean free path [KMT] (1B.13)
z

Substitution of the expression for z from eqn 1B.12b gives

_ kT Mean free path [perfect gas] (1B.14)

A=

Doubling the pressure shortens the mean free path by a factor of 2.

Brief illustration 1B.3

From Brief illustration 1B.1 v, = 671 m s for N, molecules at 25 °C,

and from Brief illustration 1B.2 z = 7.4x10° s™! when the pressure is
1.00 atm. Under these circumstances, the mean free path of N,

molecules is

671ms "
1274;{? —=9.1x10"m
= S

or 91 nm, about 103 molecular diameters.




Although the temperature appears in eqn 1B.14, in a sample of constant
volume, the pressure is proportional to T, so T/p remains constant when the
temperature is increased. Therefore, the mean free path is independent of the
temperature in a sample of gas provided the volume is constant. In a
container of fixed volume the distance between collisions is determined by
the number of molecules present in the given volume, not by the speed at
which they travel.

In summary, a typical gas (N, or O,) at 1 atm and 25 °C can be thought of

as a collection of molecules travelling with a mean speed of about 500 m s~ 1,

Each molecule makes a collision within about 1 ns, and between collisions it
travels about 103 molecular diameters.

Checklist of concepts

[ ] 1. The kinetic model of a gas considers only the contribution to the
energy from the kinetic energies of the molecules.

[ ] 2. Important results from the model include expressions for the pressure
and the root-mean-square speed.

[ ] 3. The Maxwell-Boltzmann distribution of speeds gives the fraction
of molecules that have speeds in a specified range.

[ ] 4. The collision frequency is the average number of collisions made by
a molecule in an interval divided by the length of the interval.

[ ] 5. The mean free path is the average distance a molecule travels
between collisions.

Checklist of equations

Property Equation Comment Equation
number

2 Kinetic model 1B.2
e of a perfect
gas

Pressure of a perfect gas from
the kinetic model

pV=+nMv

Maxwell-Boltzmann f(v) = 4n(M/2nRT)>?v?e 1B.4



distribution of speeds ~M2/2RT

Root-mean-square speed Vims = (BRT/M)? 1B.8

Mean speed Vinean = (8RT/nM) 1B.9

Most probable speed Vinp = QRT/M)'? 1B.10

Mean relative speed Voo = (8KT/mp) Y2 1B.11b
p = mpmg/(my + mp)

The collision frequency z= 0V, p/kT, 0 = 1d? 1B.12b

Mean free path A=v/z 1B.13

TOPIC 1C Real gases

> \Why do you need to know this material?

The properties of actual gases, so-called ‘real gases’, are different from those
of a perfect gas. Moreover, the deviations from perfect behaviour give insight
into the nature of the interactions between molecules.

> What is the key idea?

Attractions and repulsions between gas molecules account for modifications
to the isotherms of a gas and account for critical behaviour.

> \What do you need to know already?

This Topic builds on and extends the discussion of perfect gases in Topic 1A.
The principal mathematical technique employed is the use of differentiation to
identify a point of inflexion of a curve (The chemist’s toolkit 5).



Real gases do not obey the perfect gas law exactly except in the limit of p —
0. Deviations from the law are particularly important at high pressures and
low temperatures, especially when a gas is on the point of condensing to
liquid.

1c.1 Deviations from perfect behaviour

Real gases show deviations from the perfect gas law because molecules
interact with one another. A point to keep in mind is that repulsive forces
between molecules assist expansion and attractive forces assist compression.

Repulsive forces are significant only when molecules are almost in contact:
they are short-range interactions, even on a scale measured in molecular
diameters (Fig. 1C.1). Because they are short-range interactions, repulsions
can be expected to be important only when the average separation of the
molecules is small. This is the case at high pressure, when many molecules
occupy a small volume. On the other hand, attractive intermolecular forces
have a relatively long range and are effective over several molecular
diameters. They are important when the molecules are fairly close together
but not necessarily touching (at the intermediate separations in Fig. 1C.1).
Attractive forces are ineffective when the molecules are far apart (well to the
right in Fig. 1C.1). Intermolecular forces are also important when the
temperature is so low that the molecules travel with such low mean speeds
that they can be captured by one another.



P

Potential energy, E

o

Attraction dominant

0 Internuclear separation

Figure 1C.1 The dependence of the potential energy of two molecules
on their internuclear separation. High positive potential energy (at very
small separations) indicates that the interactions between them are
strongly repulsive at these distances. At intermediate separations,
attractive interactions dominate. At large separations (far to the right)
the potential energy is zero and there is no interaction between the
molecules.

The consequences of these interactions are shown by shapes of
experimental isotherms (Fig. 1C.2). At low pressures, when the sample
occupies a large volume, the molecules are so far apart for most of the time
that the intermolecular forces play no significant role, and the gas behaves
virtually perfectly. At moderate pressures, when the average separation of the
molecules is only a few molecular diameters, the attractive forces dominate
the repulsive forces. In this case, the gas can be expected to be more
compressible than a perfect gas because the forces help to draw the molecules
together. At high pressures, when the average separation of the molecules is
small, the repulsive forces dominate and the gas can be expected to be less
compressible because now the forces help to drive the molecules apart.

Consider what happens when a sample of gas initially in the state marked



A in Fig. 1C.2b is compressed (its volume is reduced) at constant temperature
by pushing in a piston. Near A, the pressure of the gas rises in approximate
agreement with Boyle’s law. Serious deviations from that law begin to appear
when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon dioxide), all similarity
to perfect behaviour is lost, for suddenly the piston slides in without any
further rise in pressure: this stage is represented by the horizontal line CDE.
Examination of the contents of the vessel shows that just to the left of C a
liquid appears, and there are two phases separated by a sharply defined
surface. As the volume is decreased from C through D to E, the amount of
liquid increases. There is no additional resistance to the piston because the
gas can respond by condensing. The pressure corresponding to the line CDE,
when both liquid and vapour are present in equilibrium, is called the vapour
pressure of the liquid at the temperature of the experiment.



I

(a)
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Figure 1C.2 (a) Experimental isotherms of carbon dioxide at several
temperatures. The ‘critical isotherm’, the isotherm at the critical
temperature, is at 31.04 °C (in blue). The critical point is marked with a
star. (b) As explained in the text, the gas can condense only at and



below the critical temperature as it is compressed along a horizontal
line (such as CDE). The dotted black curve consists of points like C
and E for all isotherms below the critical temperature.

At E, the sample is entirely liquid and the piston rests on its surface. Any
further reduction of volume requires the exertion of considerable pressure, as
is indicated by the sharply rising line to the left of E. Even a small reduction
of volume from E to F requires a great increase in pressure.

(a) The compression factor

As a first step in understanding these observations it is useful to introduce the
compression factor, Z, the ratio of the measured molar volume of a gas, V,

= V/n, to the molar volume of a perfect gas, V,°, at the same pressure and
temperature:

Compression factor, Z

0 200 400 600 800
platm

Figure 1C.3 The variation of the compression factor, Z, with pressure



for several gases at 0 °C. A perfect gas has Z =1 at all pressures.
Notice that, although the curves approach 1 as p - 0, they do so with
different slopes.

Vin Compression factor [definition] (1C.1)
L,?'D

m

e

Because the molar volume of a perfect gas is equal to RT/p, an equivalent
expression is Z = pV_/RT, which can be written as

oV =RTZ (1C.2)

Because for a perfect gas Z = 1 under all conditions, deviation of Z from 1 is
a measure of departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1C.3. At very low
pressures, all the gases shown have Z ~ 1 and behave nearly perfectly. At
high pressures, all the gases have Z > 1, signifying that they have a larger
molar volume than a perfect gas. Repulsive forces are now dominant. At
intermediate pressures, most gases have Z < 1, indicating that the attractive
forces are reducing the molar volume relative to that of a perfect gas.

Brief illustration 1C.1

The molar volume of a perfect gas at 500 K and 100 bar is V¢ = 0.416

dm3 mol™l. The molar volume of carbon dioxide under the same
conditions is V,;, = 0.366 dm3 mol~!. It follows that at 500 K

~ 0.366 dm’ mol™
~ 0.416dm’ mol™

The fact that Z < 1 indicates that attractive forces dominate repulsive
forces under these conditions.

=0.880




(b) Virial coefficients

At large molar volumes and high temperatures the real-gas isotherms do not
differ greatly from perfect-gas isotherms. The small differences suggest that
the perfect gas law pV_, = RT is in fact the first term in an expression of the

form

Table 1C.1 Second virial coefficients, B/(cm?® mol™1)*

Temperature

273 K 600 K
Ar —21.7 11.9
CO, —149.7 -12.4
N, -10.5 21.7
Xe —153.7 -19.6

* More values are given in the Resource section.
pV, =RT(1+EBp+Cp'+ ) (1C.3a)

This expression is an example of a common procedure in physical chemistry,
in which a simple law that is known to be a good first approximation (in this
case pV,, = RT) is treated as the first term in a series in powers of a variable

(in this case p). A more convenient expansion for many applications is

Pﬂ,:RT(HVEJf%*““'

m m

] Virial equation of state  (1C.3b)

These two expressions are two versions of the virial equation of state.! By
comparing the expression with eqn 1C.2 it is seen that the term in parentheses



in eqn 1C.3b is just the compression factor, Z.

The coefficients B, C, ..., which depend on the temperature, are the
second, third, ... virial coefficients (Table 1C.1); the first virial coefficient is
1. The third virial coefficient, C, is usually less important than the second
coefficient, B, in the sense that at typical molar volumes C/V’ << B/V, . The

values of the virial coefficients of a gas are determined from measurements of

its compression factor.

Brief illustration 1C.2

To use eqn 1C.3b (up to the B term) to calculate the pressure exerted at
100 K by 0.104 mol Ox(g) in a vessel of volume 0.225 dm?3, begin by
calculating the molar volume:

V- V  0.225dm’
™ 1, 0.104 mol

=2.16dm’ mol' =2.16x10"" m’ mol™

Then, by using the value of B found in Table 1C.1 of the Resource
section,

RT B
P=V_ 1+V_

_ (83145]mol ' K™)x(100K) (|, _ 1.975x10"* m* mol”
B 2.16x%107 m” mol™ 2.16%107 m” mol™

=3.50%10" Pa, or 350kPa

where 1 Pa = 1 J m™3. The perfect gas equation of state would give the
calculated pressure as 385 kPa, or 10 per cent higher than the value
calculated by using the virial equation of state. The difference is
significant because under these conditions B/V,, ~ 0.1 which is not

negligible relative to 1.




An important point is that although the equation of state of a real gas may
coincide with the perfect gas law as p — 0, not all its properties necessarily
coincide with those of a perfect gas in that limit. Consider, for example, the
value of dZ/dp, the slope of the graph of compression factor against pressure
(see The chemist’s toolkit 5 for a review of derivatives and differentiation).
For a perfect gas dZ/dp = 0 (because Z = 1 at all pressures), but for a real gas
from eqn 1C.3a

1C.4
%:B’+2pc’+---%8’ as p—0 (1e4e)

However, B' is not necessarily zero, so the slope of Z with respect to p does
not necessarily approach 0 (the perfect gas value), as can be seen in Fig.
1C.4. By a similar argument (see The chemist’s toolkit 5 for evaluating
derivatives of this kind),

(1C.4b)
4z —>BasV_—oo
d(1/v,,)

Because the virial coefficients depend on the temperature, there may be a
temperature at which Z — 1 with zero slope at low pressure or high molar
volume (as in Fig. 1C.4). At this temperature, which is called the Boyle
temperature, Ty, the properties of the real gas do coincide with those of a
perfect gas as p — 0. According to eqn 1C.4a, Z has zero slope as p — 0 if B’
= 0, so at the Boyle temperature B’ = 0. It then follows from egqn 1C.3a that
pV, = RTg over a more extended range of pressures than at other
temperatures because the first term after 1 (i.e. B'p) in the virial equation is
zero and C'p? and higher terms are negligibly small. For helium Ty = 22.64

K; for air Ty = 346.8 K; more values are given in Table 1C.2.
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Figure 1C.4 The compression factor, Z, approaches 1 at low
pressures, but does so with different slopes. For a perfect gas, the
slope is zero, but real gases may have either positive or negative
slopes, and the slope may vary with temperature. At the Boyle
temperature, the slope is zero at p = 0 and the gas behaves perfectly
over a wider range of conditions than at other temperatures.

L X E RS R 601 (| #-8 Differentiation

Differentiation is concerned with the slopes of functions, such as the rate
of change of a variable with time. The formal definition of the
derivative, df/dx, of a function f(x) is

df ..  flx+8x)-f(x) First derivative [definition]
——=lim
dx &0 Ox

As shown in Sketch 1, the derivative can be interpreted as the slope of
the tangent to the graph of f(x) at a given value of x. A positive first
derivative indicates that the function slopes upwards (as x increases),



and a negative first derivative indicates the opposite. It is sometimes
convenient to denote the first derivative as f'(x). The second derivative,

d’f/dx?, of a function is the derivative of the first derivative (here
denoted f'):

g ’ g Second derivative [definition]
d—‘%=lin1f (x+0x) = f'(x)
dx B0 0x

It is sometimes convenient to denote the second derivative f'. As shown
in Sketch 2, the second derivative of a function can be interpreted as an
indication of the sharpness of the curvature of the function. A positive
second derivative indicates that the function is U shaped, and a negative
second derivative indicates that it is N shaped. The second derivative is
zero at a point of inflection, where the first derivative changes sign.

The derivatives of some common functions are as follows:

d 1! n-1
e X =nx

il cmmpant's
El_x_‘e =de

dyfd){' =0
dy/dx <0
Ndyldx>0
X



Sketch 1

d?y/dx* < 0 d2y/dx? = 0

i

y
 dyidxe>0
X
Sketch 2
a sinax = acosax d COSdx =—asinax
dx B dx B
d 1
ah‘l ax = E

It follows from the definition of the derivative that a variety of
combinations of functions can be differentiated by using the following
rules:



d (4+v) = du & dv
dx dx  dx
d ’ dv . du
—w— UUV=U
dx dx ~dx
du 1du u dv
dx v vdx v’ dx
It is sometimes convenient to differentiate with respect to a function of
x, rather than x itself. For instance, suppose that

b ¢
f(.?é‘):il+;+?

where a, b, and c are constants and you need to evaluate df/d(1/x), rather
than df/dx. To begin, let y = 1/x. Then f(y) = a + by + cy? and

df
af}=b+2cy

Because y = 1/x, it follows that

df . 2
qE s E

(c) Critical constants

There is a temperature, called the critical temperature, T, which separates

two regions of behaviour and plays a special role in the theory of the states of
matter. An isotherm slightly below T, behaves as already described: at a



certain pressure, a liquid condenses from the gas and is distinguishable from
it by the presence of a visible surface. If, however, the compression takes
place at T, itself, then a surface separating two phases does not appear and

the volumes at each end of the horizontal part of the isotherm have merged to
a single point, the critical point of the gas. The pressure and molar volume at
the critical point are called the critical pressure, p.,, and critical molar

volume, V_, of the substance. Collectively, p., V., and T, are the critical
constants of a substance (Table 1C.2).

Table 1C.2 Critical constants of gases*

pJ/atm Vc/(Cm3 mol 1) T/K Z, Tg/K
Ar 48.0 75.3 150.7 0.292 411.5
CcoO, 72.9 94.0 304.2 0.274 714.8
He 2.26 57.8 5.2 0.305 22.64
0, 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.

At and above T, the sample has a single phase which occupies the entire

volume of the container. Such a phase is, by definition, a gas. Hence, the
liquid phase of a substance does not form above the critical temperature. The
single phase that fills the entire volume when T > T, may be much denser
than considered typical for gases, and the name supercritical fluid is
preferred.

Brief illustration 1C.3

The critical temperature of oxygen, 155 K, signifies that it is impossible
to produce liquid oxygen by compression alone if its temperature is




greater than 155 K. To liquefy oxygen the temperature must first be
lowered to below 155 K, and then the gas compressed isothermally.

1c.2 The van der Waals equation

Conclusions may be drawn from the virial equations of state only by inserting
specific values of the coefficients. It is often useful to have a broader, if less
precise, view of all gases, such as that provided by an approximate equation
of state.

(a) Formulation of the equation

The equation introduced by J.D. van der Waals in 1873 is an excellent
example of an expression that can be obtained by thinking scientifically about
a mathematically complicated but physically simple problem; that is, it is a
good example of ‘model building’.

ORI EINe [ola SO Deriving the van der Waals equation of

state

The repulsive interaction between molecules is taken into account by
supposing that it causes the molecules to behave as small but
impenetrable spheres, so instead of moving in a volume V they are
restricted to a smaller volume V — nb, where nb is approximately the
total volume taken up by the molecules themselves. This argument
suggests that the perfect gas law p = nRT/V should be replaced by
_ nRT
V—nb

when repulsions are significant. To calculate the excluded volume, note
that the closest distance of approach of two hard-sphere molecules of

radius r (and volume V_ jeccule = %nr3) is 2r, so the volume excluded is



%T{(Zr):“, or 8V olecule- The volume excluded per molecule is one-half
this volume, or 4V 1ecutes SO b ® 4V o1ecutelV a-

The pressure depends on both the frequency of collisions with the
walls and the force of each collision. Both the frequency of the
collisions and their force are reduced by the attractive interaction, which
acts with a strength proportional to the number of interacting molecules
and therefore to the molar concentration, n/V, of molecules in the
sample. Because both the frequency and the force of the collisions are
reduced by the attractive interactions, the pressure is reduced in
proportion to the square of this concentration. If the reduction of

pressure is written as a(n/V)?, where a is a positive constant
characteristic of each gas, the combined effect of the repulsive and
attractive forces is the van der Waals equation:

aRT n’ van der Waals equation of state (1C.5a)
= —d
P=V=up 4y

The constants a and b are called the van der Waals coefficients, with a
representing the strength of attractive interactions and b that of the repulsive
interactions between the molecules. They are characteristic of each gas and
taken to be independent of the temperature (Table 1C.3). Although a and b
are not precisely defined molecular properties, they correlate with physical
properties that reflect the strength of intermolecular interactions, such as

critical temperature, vapour pressure, and enthalpy of vaporization.

Table 1C.3 van der Waals coefficients*

a/(atm dm® mol?) b/(10~2 dm3 mol ™)

Ar 1.337 3.20



CO, 3.610 4.29

He 0.0341 2.38
Xe 4.137 5.16

* More values are given in the Resource section.

Brief illustration 1C.4

For benzene a = 18.57 atm dm® mol™2 (1.882 Pa m® mol ™) and b =

0.1193 dm? mol™! (1.193 x 10™* m3 mol ™ 1); its normal boiling point is
353 K. Treated as a perfect gas at T = 400 K and p = 1.0 atm, benzene

vapour has a molar volume of V,, = RT/p = 33 dm® mol™}, so the
criterion V, >> b for perfect gas behaviour is satisfied. It follows that

a/V: ~ 0.017 atm, which is 1.7 per cent of 1.0 atm. Therefore, benzene
vapour is expected to deviate only slightly from perfect gas behaviour at
this temperature and pressure.

Equation 1C.5a is often written in terms of the molar volume V, = V/n as

_RT _a (1C.5Db)
_Vl'll_b Vl'lzl

p

Seluld-mel Using the van der Waals equation to estimate
a molar volume

Estimate the molar volume of CO, at 500 K and 100 atm by treating it
as a van der Waals gas.

Collect your thoughts You need to find an expression for the molar



volume by solving the van der Waals equation, eqn 1C.5b. To rearrange
the equation into a suitable form, multiply both sides by (V- b)V?, to

m?
obtain

( m o b)lfzp = RTL‘:]‘: o (1{:1] o b)a

m

Then, after division by p, collect powers of V, to obtain

[b+£]vj [ ]V + %o
P P p

Although closed expressions for the roots of a cubic equation can be
given, they are very complicated. Unless analytical solutions are
essential, it is usually best to solve such equations with mathematical
software; graphing calculators can also be used to help identify the
acceptable root.

The solution According to Table 1C.3, a = 3.592 dm® atm mol 2 and b
= 4.267 x 1072 dm? mol™!. Under the stated conditions, RT/p = 0.410
dm? mol 1. The coefficients in the equation for V., are therefore

b + RT/p = 0.453 dm? mol !
a/p = 3.61 x 1072 (dm> mol 1)?
ab/p = 1.55 x 1073 (dm? mol )3
Therefore, on writing x = V_/(dm> mol™1), the equation to solve is

x3 —0.453x% + (3.61 x 107%)x — (1.55 x 1073) = 0
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Figure 1C.5 The graphical solution of the cubic equation for V in
Example 1C.1.

The acceptable root is x = 0.366 (Fig. 1C.5), which implies that V, =
0.366 dm® mol™!. The molar volume of a perfect gas under these
conditions is 0.410 dm? mol ™.

Self-test 1C.1 Calculate the molar volume of argon at 100 °C and 100
atm on the assumption that it is a van der Waals gas.

Answer: 0.298 dm?> mol !

(b) The features of the equation

To what extent does the van der Waals equation predict the behaviour of real
gases? It is too optimistic to expect a single, simple expression to be the true
equation of state of all substances, and accurate work on gases must resort to
the virial equation, use tabulated values of the coefficients at various
temperatures, and analyse the system numerically. The advantage of the van



der Waals equation, however, is that it is analytical (that is, expressed
symbolically) and allows some general conclusions about real gases to be
drawn. When the equation fails another equation of state must be used (some
are listed in Table 1C.4), yet another must be invented, or the virial equation
is used.

The reliability of the equation can be judged by comparing the isotherms it
predicts with the experimental isotherms in Fig. 1C.2. Some calculated
isotherms are shown in Figs. 1C.6 and 1C.7. Apart from the oscillations
below the critical temperature, they do resemble experimental isotherms quite
well. The oscillations, the van der Waals loops, are unrealistic because they
suggest that under some conditions an increase of pressure results in an
increase of volume. Therefore they are replaced by horizontal lines drawn so
the loops define equal areas above and below the lines: this procedure is
called the Maxwell construction (1). The van der Waals coefficients, such as
those in Table 1C.3, are found by fitting the calculated curves to the
experimental curves.

Equal areas

Table 1C.4 Selected equations of state

Critical constants

Equation Reduced form* Pc Ve T,

Perfect _nRT
gas P="v



van der nRT na _ 8 3 ¢ 3b

_ aRT  n'a 8T, 3 e 3b
Berthelot  P=v— 5~ 77 T R ITE
_haf RTV HI-UT N, ) a a
o _ nRTe _Te = 20
Dieterici P Venb 7 4e’b

Virial p= ”f,T {1 » . f) + H"ig) +}

* Reduced variables are defined as X, = X/X_ with X = p, V_, and T. Equations of state are
sometimes expressed in terms of the molar volume, V, = V/n.

Pressure, p

Volume, i

Figure 1C.6 The surface of possible states allowed by the van der
Waals equation. The curves drawn on the surface are isotherms,
labelled with the value of T/T,, and correspond to the isotherms in Fig.

1C.7.
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pressure, p/p.
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)
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Reduced volume, V_/V.

Figure 1C.7 Van der Waals isotherms at several values of T/T,. The

van der Waals loops are normally replaced by horizontal straight lines.
The critical isotherm is the isotherm for T/T_ = 1, and is shown in blue.

The principal features of the van der Waals equation can be summarized as
follows.

1. Perfect gas isotherms are obtained at high temperatures and large molar
volumes.

When the temperature is high, RT may be so large that the first term in eqn
1C.5b greatly exceeds the second. Furthermore, if the molar volume is large
in the sense V_, >> b, then the denominator V, — b ®# V. Under these

conditions, the equation reduces to p = RT/V,,, the perfect gas equation.

2. Liquids and gases coexist when the attractive and repulsive effects are in
balance.

The van der Waals loops occur when both terms in eqn 1C.5b have similar



magnitudes. The first term arises from the kinetic energy of the molecules
and their repulsive interactions; the second represents the effect of the
attractive interactions.

3. The critical constants are related to the van der Waals coefficients.

For T < T,, the calculated isotherms oscillate, and each one passes through a
minimum followed by a maximum. These extrema converge as T — T, and
coincide at T = T_; at the critical point the curve has a flat inflexion (2). From

the properties of curves, an inflexion of this type occurs when both the first
and second derivatives are zero. Hence, the critical constants can be found by
calculating these derivatives and setting them equal to zero at the critical
point:

dp __ RT 22
d irm I: i._..m_ b::ll i_.r!n

m

dp _ 2RT _6a_,

=2 [Ir:-m_lg:l:l3 _ﬁ_

The solutions of these two equations (and using eqn 1C.5b to calculate p,
from V_and T; see Problem 1C.12) are

a 3a (1C.6)
Ve=3b p=2r  L=737R

These relations provide an alternative route to the determination of a and b
from the values of the critical constants. They can be tested by noting that the
critical compression factor, Z, is predicted to be



p.V. (1C.7)
RT

Z =

for all gases that are described by the van der Waals equation near the critical
point. Table 1C.2 shows that although Z_. < & = 0.375, it is approximately

3
constant (at 0.3) and the discrepancy is reasonably small.

(c) The principle of corresponding states

An important general technique in science for comparing the properties of
objects is to choose a related fundamental property of the same kind and to
set up a relative scale on that basis. The critical constants are characteristic
properties of gases, so it may be that a scale can be set up by using them as
yardsticks and to introduce the dimensionless reduced variables of a gas by
dividing the actual variable by the corresponding critical constant:

¥ P T Reduced variables [definition] (1C.8)
Vi=y b= r L=+

If the reduced pressure of a gas is given, its actual pressure is calculated by
using p = p,p., and likewise for the volume and temperature. Van der Waals,

who first tried this procedure, hoped that gases confined to the same reduced
volume, V,, at the same reduced temperature, T,, would exert the same

reduced pressure, p. The hope was largely fulfilled (Fig. 1C.8). The

illustration shows the dependence of the compression factor on the reduced
pressure for a variety of gases at various reduced temperatures. The success
of the procedure is strikingly clear: compare this graph with Fig. 1C.3, where
similar data are plotted without using reduced variables.

The observation that real gases at the same reduced volume and reduced
temperature exert the same reduced pressure is called the principle of
corresponding states. The principle is only an approximation. It works best
for gases composed of spherical molecules; it fails, sometimes badly, when
the molecules are non-spherical or polar.
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Figure 1C.8 The compression factors of four of the gases shown in
Fig. 1C.3 plotted using reduced variables. The curves are labelled with
the reduced temperature T, = T/T,. The use of reduced variables

organizes the data on to single curves.

Brief illustration 1C.5

The critical constants of argon and carbon dioxide are given in Table
1C.2. Suppose argon is at 23 atm and 200 K, its reduced pressure and
temperature are then

23 atm 200K

Pr=280atm -0 T =157k

For carbon dioxide to be in a corresponding state, its pressure and
temperature would need to be

=1.33

p =0.48x%(72.9 atm) = 35atm T = 1.33x304.2K = 405K



The van der Waals equation sheds some light on the principle. When eqn
1C.5b is expressed in terms of the reduced variables it becomes

_RIT.  a
PPy —b VIV

Now express the critical constants in terms of a and b by using eqn 1C.6:

ap. _8al,/27b _ a
27b*  3bV.-b 9V

and, after multiplying both sides by 27b%/a, reorganize it into

8T 3 (1C.9)

I

=3y 17 v

This equation has the same form as the original, but the coefficients a and b,
which differ from gas to gas, have disappeared. It follows that if the
isotherms are plotted in terms of the reduced variables (as done in fact in Fig.
1C.7 without drawing attention to the fact), then the same curves are obtained
whatever the gas. This is precisely the content of the principle of
corresponding states, so the van der Waals equation is compatible with it.

Looking for too much significance in this apparent triumph is mistaken,
because other equations of state also accommodate the principle. In fact, any
equation of state (such as those in Table 1C.4) with two parameters playing
the roles of a and b can be manipulated into a reduced form. The observation
that real gases obey the principle approximately amounts to saying that the
effects of the attractive and repulsive interactions can each be approximated
in terms of a single parameter. The importance of the principle is then not so
much its theoretical interpretation but the way that it enables the properties of
a range of gases to be coordinated on to a single diagram (e.g. Fig. 1C.8
instead of Fig. 1C.3).



Checklist of concepts

[ ] 1. The extent of deviations from perfect behaviour is summarized by
introducing the compression factor.

[] 2. The virial equation is an empirical extension of the perfect gas
equation that summarizes the behaviour of real gases over a range of
conditions.

[ ] 3. The isotherms of a real gas introduce the concept of critical
behaviour.

[ ] 4. A gas can be liquefied by pressure alone only if its temperature is at or
below its critical temperature.

[ ] 5. The van der Waals equation is a model equation of state for a real
gas expressed in terms of two parameters, one (a) representing
molecular attractions and the other (b) representing molecular
repulsions.

[] 6. The van der Waals equation captures the general features of the
behaviour of real gases, including their critical behaviour.

[ ] 7. The properties of real gases are coordinated by expressing their
equations of state in terms of reduced variables.

Checklist of equations

. Equation
Property Equation Comment number
Compression Z= Vm/‘.,a’“? Definition 1C.1
factor
Virial equation of "=l B, C depend on temperature 1C.3b
state
van der Waals p =nRT/(V—nb)— a parameterizes attractions, b 1C.5a
equation of state  g(n/V)? parameterizes repulsions
Reduced X, =X/X, X=p,Vy,orT 1C.8

variables




FOCUS 1 The properties of gases

TOPIC 1A The perfect gas

Discussion questions

D1A.1 Explain how the perfect gas equation of state arises by combination of Boyle’s law,
Charles’s law, and Avogadro’s principle.

D1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a limiting law.

Exercises

E1A.1(a) Express (i) 108 kPa in torr and (ii) 0.975 bar in atmospheres.
E1A.1(b) Express (i) 22.5 kPa in atmospheres and (ii) 770 Torr in pascals.

E1A.2(a) Could 131 g of xenon gas in a vessel of volume 1.0 dm?® exert a pressure of 20
atm at 25 °C if it behaved as a perfect gas? If not, what pressure would it exert?

E1A.2(b) Could 25 g of argon gas in a vessel of volume 1.5 dm? exert a pressure of 2.0 bar
at 30 °C if it behaved as a perfect gas? If not, what pressure would it exert?

E1A.3(a) A perfect gas undergoes isothermal compression, which reduces its volume by
2.20 dm?. The final pressure and volume of the gas are 5.04 bar

and 4.65 dm?, respectively. Calculate the original pressure of the gas in (i) bar,

(ii) atm.

E1A.3(b) A perfect gas undergoes isothermal compression, which reduces its volume by
1.80 dm?>. The final pressure and volume of the gas are 1.97 bar

and 2.14 dm?3, respectively. Calculate the original pressure of the gas in (i) bar,
(ii) torr.

E1A.4(a) A car tyre (an automobile tire) was inflated to a pressure of 24 Ib in™2 (1.00 atm
= 14.7 1b in"?) on a winter’s day when the temperature was —5 °C. What pressure will be
found, assuming no leaks have occurred and that the volume is constant, on a subsequent
summer’s day when the temperature is 35 °C? What complications should be taken into
account in practice?

E1A.4(b) A sample of hydrogen gas was found to have a pressure of 125 kPa when the



temperature was 23 °C. What can its pressure be expected to be when the temperature is 11
°C?

E1A.5(a) A sample of 255 mg of neon occupies 3.00 dm? at 122 K. Use the perfect gas
law to calculate the pressure of the gas.

E1A.5(b) A homeowner uses 4.00 x 103 m? of natural gas in a year to heat a home.
Assume that natural gas is all methane, CH,, and that methane is a perfect gas for the

conditions of this problem, which are 1.00 atm and 20 °C. What is the mass of gas used?

E1A.6(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg m~3. What
is the molecular formula of sulfur under these conditions?

E1A.6(b) At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 0.6388 kg m
~3. What is the molecular formula of phosphorus under these conditions?

E1A.7(a) Calculate the mass of water vapour present in a room of volume 400 m? that
contains air at 27 °C on a day when the relative humidity is 60 per cent. Hint: Relative
humidity is the prevailing partial pressure of water vapour expressed as a percentage of the
vapour pressure of water vapour at the same temperature (in this case, 35.6 mbar).

E1A.7(b) Calculate the mass of water vapour present in a room of volume 250 m? that
contains air at 23 °C on a day when the relative humidity is 53 per cent (in this case, 28.1
mbar).

E1A.8(a) Given that the mass density of air at 0.987 bar and 27 °C is 1.146 kg m™3,
calculate the mole fraction and partial pressure of nitrogen and oxygen assuming that (i) air
consists only of these two gases, (ii) air also contains 1.0 mole per cent Ar.

E1A.8(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and 225 mg of
neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate
(i) the volume and (ii) the total pressure of the mixture.

E1A.9(a) The mass density of a gaseous compound was found to be 1.23 kg m™2 at 330 K
and 20 kPa. What is the molar mass of the compound?

E1A.9(b) In an experiment to measure the molar mass of a gas, 250 cm? of the gas was
confined in a glass vessel. The pressure was 152 Torr at 298 K, and after correcting for
buoyancy effects, the mass of the gas was 33.5 mg. What is the molar mass of the gas?

E1A.10(a) The densities of air at =85 °C, 0 °C, and 100 °C are 1.877 g dm™3, 1.294 g dm
3, and 0.946 g dm 3, respectively. From these data, and assuming that air obeys Charles’
law, determine a value for the absolute zero of temperature in degrees Celsius.

E1A.10(b) A certain sample of a gas has a volume of 20.00 dm? at 0 °C and 1.000 atm. A
plot of the experimental data of its volume against the Celsius temperature, 6, at constant p,
gives a straight line of slope 0.0741 dm3 °C™!. From these data alone (without making use



of the perfect gas law), determine the absolute zero of temperature in degrees Celsius.

E1A.11(a) A vessel of volume 22.4 dm? contains 2.0 mol H,(g) and 1.0 mol Ny(g) at

273.15 K. Calculate (i) the mole fractions of each component, (ii) their partial pressures,
and (iii) their total pressure.

E1A.11(b) A vessel of volume 22.4 dm> contains 1.5 mol H,(g) and 2.5 mol Ny(g) at
273.15 K. Calculate (i) the mole fractions of each component, (ii) their partial pressures,
and (iii) their total pressure.

Problems

P1A.1 A manometer consists of a U-shaped tube containing a liquid. One side is
connected to the apparatus and the other is open to the atmosphere. The pressure p inside
the apparatus is given p = p,, + pgh, where p., is the external pressure, p is the mass

density of the liquid in the tube, g = 9.806 m s 2 is the acceleration of free fall, and h is the
difference in heights of the liquid in the two sides of the tube. (The quantity pgh is the
hydrostatic pressure exerted by a column of liquid.) (i) Suppose the liquid in a manometer
is mercury, the external pressure is 760 Torr, and the open side is 10.0 cm higher than the
side connected to the apparatus. What is the pressure in the apparatus? The mass density of
mercury at 25 °C is 13.55 g cm ™3, (ii) In an attempt to determine an accurate value of the
gas constant, R, a student heated a container of volume 20.000 dm? filled with 0.251 32 g
of helium gas to 500 °C and measured the pressure as 206.402 cm in a manometer filled
with water at 25 °C. Calculate the value of R from these data. The mass density of water at

25 °C is 0.997 07 g cm ™3,

P1A.2 Recent communication with the inhabitants of Neptune have revealed that they
have a Celsius-type temperature scale, but based on the melting point (0 °N) and boiling
point (100 °N) of their most common substance, hydrogen. Further communications have
revealed that the Neptunians know about perfect gas behaviour and they find that in the
limit of zero pressure, the value of pV is 28 dm? atm at 0 °N and 40 dm?® atm at 100 °N.
What is the value of the absolute zero of temperature on their temperature scale?

P1A.3 The following data have been obtained for oxygen gas at 273.15K. From the data,
calculate the best value of the gas constant R.

p/atm 0.750 000 0.500 000 0.250 000
V,./(dm> mol ™) 29.8649 44.8090 89.6384

P1A.4 Charles’s law is sometimes expressed in the form V = V(1 + af), where 0 is the



Celsius temperature, « is a constant, and V|, is the volume of the sample at 0 °C. The
following values for have been reported for nitrogen at 0 °C:

p/Torr 749.7 599.6 333.1 98.6
103a/°C ! 3.6717 3.6697 3.6665 3.6643

For these data estimate the absolute zero of temperature on the Celsius scale.

P1A.5 Deduce the relation between the pressure and mass density, p, of a perfect gas of
molar mass M. Confirm graphically, using the following data on methoxymethane
(dimethyl ether) at 25 °C, that perfect behaviour is reached at low pressures and find the
molar mass of the gas.

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3
p/(kg ms™>) 0.225 0.456 0.664 1.062 1.468 1.734

P1A.6 The molar mass of a newly synthesized fluorocarbon was measured in a gas
microbalance. This device consists of a glass bulb forming one end of a beam, the whole
surrounded by a closed container. The beam is pivoted, and the balance point is attained by
raising the pressure of gas in the container, so increasing the buoyancy of the enclosed
bulb. In one experiment, the balance point was reached when the fluorocarbon pressure
was 327.10 Torr; for the same setting of the pivot, a balance was reached when CHF; (M =

70.014 g mol ') was introduced at 423.22 Torr. A repeat of the experiment with a different
setting of the pivot required a pressure of 293.22 Torr of the fluorocarbon and 427.22 Torr
of the CHF;. What is the molar mass of the fluorocarbon? Suggest a molecular formula.

P1A.7 A constant-volume perfect gas thermometer indicates a pressure of 6.69 kPa at the
triple point temperature of water (273.16 K). (a) What change of pressure indicates a
change of 1.00 K at this temperature? (b) What pressure indicates a temperature of 100.00
°C? (c) What change of pressure indicates a change of 1.00 K at the latter temperature?

P1A.8 A vessel of volume 22.4 dm? contains 2.0 mol H,(g) and 1.0 mol N,(g) at 273.15 K
initially. All the H, then reacts with sufficient N, to form NH;. Calculate the partial
pressures of the gases in the final mixture and the total pressure.

P1A.9 Atmospheric pollution is a problem that has received much attention. Not all
pollution, however, is from industrial sources. Volcanic eruptions can be a significant
source of air pollution. The Kilauea volcano in Hawaii emits 200-300 t (1 t = 103 kg) of
SO, each day. If this gas is emitted at 800 °C and 1.0 atm, what volume of gas is emitted?

P1A.10 Ozone is a trace atmospheric gas which plays an important role in screening the



Earth from harmful ultraviolet radiation, and the abundance of ozone is commonly reported
in Dobson units. Imagine a column passing up through the atmosphere. The total amount of
O; in the column divided by its cross-sectional area is reported in Dobson units with 1 Du
= 0.4462 mmol m~2 What amount of O5 (in moles) is found in a column of atmosphere

with a cross-sectional area of 1.00 dm? if the abundance is 250 Dobson units (a typical
midlatitude value)? In the seasonal Antarctic ozone hole, the column abundance drops
below 100 Dobson units; how many moles of O5 are found in such a column of air above a

1.00 dm? area? Most atmospheric ozone is found between 10 and 50 km above the surface
of the Earth. If that ozone is spread uniformly through this portion of the atmosphere, what
is the average molar concentration corresponding to (a) 250 Dobson units, (b) 100 Dobson
units?

P1A.11* In a commonly used model of the atmosphere, the atmospheric pressure varies
with altitude, h, according to the barometric formula:

p =poe ™

where p, is the pressure at sea level and H is a constant approximately equal

to 8 km. More specifically, H = RT/Mg, where M is the average molar mass
of air and T is the temperature at the altitude h. This formula represents the
outcome of the competition between the potential energy of the molecules in
the gravitational field of the Earth and the stirring effects of thermal motion.
Derive this relation by showing that the change in pressure dp for an
infinitesimal change in altitude dh where the mass density is p is dp = —pgdh.
Remember that p depends on the pressure. Evaluate (a) the pressure
difference between the top and bottom of a laboratory vessel of height 15 cm,
and (b) the external atmospheric pressure at a typical cruising altitude of an
aircraft (11 km) when the pressure at ground level is 1.0 atm.

P1A.12* Balloons are still used to deploy sensors that monitor meteorological phenomena
and the chemistry of the atmosphere. It is possible to investigate some of the technicalities
of ballooning by using the perfect gas law. Suppose your balloon has a radius of 3.0 m and
that it is spherical. (a) What amount of H, (in moles) is needed to inflate it to 1.0 atm in an
ambient temperature of 25 °C at sea level? (b) What mass can the balloon lift (the payload)
at sea level, where the mass density of air is 1.22 kg m~3? (c) What would be the payload if
He were used instead of H,?

P1A.13* Chlorofluorocarbons such as CCI’F and CCL,F, have been linked to ozone
depletion in Antarctica. In 1994, these gases were found in quantities of 261 and 509 parts
per trillion by volume (World Resources Institute, World resources 1996-97). Compute the



molar concentration of these gases under conditions typical of (a) the mid-latitude
troposphere (10 °C and 1.0 atm) and (b) the Antarctic stratosphere (200 K and 0.050 atm).
Hint: The composition of a mixture of gases can be described by imagining that the gases
are separated from one another in such a way that each exerts the same pressure. If one gas
is present at very low levels it is common to express its concentration as, for example, ‘x
parts per trillion by volume’. Then the volume of the separated gas at a certain pressure is x

x 10712 of the original volume of the gas mixture at the same pressure. For a mixture of
perfect gases, the volume of each separated gas is proportional to its partial pressure in the
mixture and hence to the amount in moles of the gas molecules present in the mixture.

P1A.14 At sea level the composition of the atmosphere is approximately 80 per cent
nitrogen and 20 per cent oxygen by mass. At what height above the surface of the Earth
would the atmosphere become 90 per cent nitrogen and 10 per cent oxygen by mass?
Assume that the temperature of the atmosphere is constant at 25 °C. What is the pressure of
the atmosphere at that height? Hint: Use a barometric formula, see Problem P1A.11, for
each partial pressure.

TOPIC 1B The kinetic model

Discussion questions

D1B.1 Specify and analyse critically the assumptions that underlie the kinetic model of
gases.

D1B.2 Provide molecular interpretations for the dependencies of the mean free path on the
temperature, pressure, and size of gas molecules.

D1B.3 Use the kinetic model of gases to explain why light gases, such as He, are rare in
the Earth’s atmosphere but heavier gases, such as O,, CO,, and N,, once formed remain

abundant.

Exercises

E1B.1(a) Determine the ratios of (i) the mean speeds, (ii) the mean translational kinetic
energies of H, molecules and Hg atoms at 20 °C.

E1B.1(b) Determine the ratios of (i) the mean speeds, (ii) the mean translational kinetic
energies of He atoms and Hg atoms at 25 °C.



E1B.2(a) Calculate the root-mean-square speeds of H, and O, molecules at 20 °C.
E1B.2(b) Calculate the root-mean-square speeds of CO, molecules and He atoms at 20 °C.

E1B.3(a) Use the Maxwell-Boltzmann distribution of speeds to estimate the fraction of N,

molecules at 400 K that have speeds in the range 200-210 m s™!. Hint: The fraction of

molecules with speeds in the range v to v + dv is equal to f(v)dv, where f(v) is given by eqn
1B.4.

E1B.3(b) Use the Maxwell-Boltzmann distribution of speeds to estimate the fraction of
CO, molecules at 400 K that have speeds in the range 400-405 m s™!. See the hint in
Exercise E1B.3(a).

E1B.4(a) What is the relative mean speed of N, and H, molecules in a gas at 25 °C?
E1B.4(b) What is the relative mean speed of O, and N, molecules in a gas at 25 °C?

E1B.5(a) Calculate the most probable speed, the mean speed, and the mean relative speed
of CO, molecules at 20 °C.

E1B.5(b) Calculate the most probable speed, the mean speed, and the mean relative speed
of H, molecules at 20 °C.

E1B.6(a) Evaluate the collision frequency of H, molecules in a gas at 1.00 atm and 25 °C.
E1B.6(b) Evaluate the collision frequency of O, molecules in a gas at 1.00 atm and 25 °C.

E1B.7(a) Assume that air consists of N, molecules with a collision diameter of 395 pm.
Calculate (i) the mean speed of the molecules, (ii) the mean free path, (iii) the collision
frequency in air at 1.0 atm and 25 °C.

E1B.7(b) The best laboratory vacuum pump can generate a vacuum of about 1 nTorr. At
25 °C and assuming that air consists of N, molecules with a collision diameter of 395 pm,

calculate at this pressure (i) the mean speed of the molecules, (ii) the mean free path, (iii)
the collision frequency in the gas.

E1B.8(a) At what pressure does the mean free path of argon at 20 °C become comparable
to the diameter of a 100 cm? vessel that contains it? Take o = 0.36 nm?.

E1B.8(b) At what pressure does the mean free path of argon at 20 °C become comparable
to 10 times the diameters of the atoms themselves? Take o = 0.36 nm?.

E1B.9(a) At an altitude of 20 km the temperature is 217 K and the pressure is 0.050 atm.
What is the mean free path of N, molecules? (¢ = 0.43 nm?).

E1B.9(b) At an altitude of 15 km the temperature is 217 K and the pressure is 12.1 kPa.
What is the mean free path of N, molecules? (¢ = 0.43 nm?).



Problems

P1B.1 A rotating slotted-disc apparatus consists of five coaxial 5.0 cm diameter discs
separated by 1.0 cm, the radial slots being displaced by 2.0° between neighbours. The
relative intensities, I, of the detected beam of Kr atoms for two different temperatures and
at a series of rotation rates were as follows:

v/Hz 20 40 80 100 120
I (40 K) 0.846 0.513 0.069 0.015 0.002
I1(100 K) 0.592 0.485 0.217 0.119 0.057

Find the distributions of molecular velocities, f(v,), at these temperatures, and

check that they conform to the theoretical prediction for a one-dimensional
system for this low-pressure, collision-free system.

P1B.2 Consider molecules that are confined to move in a plane (a two-dimensional gas).
Calculate the distribution of speeds and determine the mean speed of the molecules at a
temperature T.

P1B.3 A specially constructed velocity-selector accepts a beam of molecules from an oven
at a temperature T but blocks the passage of molecules with a speed greater than the mean.
What is the mean speed of the emerging beam, relative to the initial value? Treat the
system as one-dimensional.

P1B.4 What, according to the Maxwell-Boltzmann distribution, is the proportion of gas
molecules having (i) more than, (ii) less than the root mean square speed? (iii) What are the
proportions having speeds greater and smaller than the mean speed? Hint: Use
mathematical software to evaluate the integrals.

P1B.5 Calculate the fractions of molecules in a gas that have a speed in a range Av at the
speed nvy,, relative to those in the same range at vy, itself. This calculation can be used to
estimate the fraction of very energetic molecules (which is important for reactions).
Evaluate the ratio forn =3 and n = 4.

P1B.6 Derive an expression for ("} from the Maxwell-Boltzmann distribution of
speeds. Hint: You will need the integrals given in the Resource section, or use
mathematical software.

P1B.7 Calculate the escape velocity (the minimum initial velocity that will take an object
to infinity) from the surface of a planet of radius R. What is the value for (i) the Earth, R =

6.37 x 105 m, g = 9.81 m s72, (ii) Mars, R = 3.38 x 10° m, my;,/Mga = 0.108. At what



temperatures do H,, He, and O, molecules have mean speeds equal to their escape speeds?
What proportion of the molecules have enough speed to escape when the temperature is (i)
240 K, (ii) 1500 K? Calculations of this kind are very important in considering the
composition of planetary atmospheres.

P1B.8 Plot different Maxwell-Boltzmann speed distributions by keeping the molar mass

constant at 100 g mol™! and varying the temperature of the sample between 200 K and
2000 K.

P1B.9 Evaluate numerically the fraction of O, molecules with speeds in the range 100 m s
“1t0 200 m s~ in a gas at 300 K and 1000 K.

P1B.10 The maximum in the Maxwell-Boltzmann distribution occurs when df(v)/dv = 0.
Find, by differentiation, an expression for the most probable speed of molecules of molar
mass M at a temperature T.

P1B.11 A methane, CH,, molecule may be considered as spherical, with a radius of 0.38
nm. How many collisions does a single methane molecule make if 0.10 mol CH,(g) is held
at 25 °C in a vessel of volume 1.0 dm3?

TOPIC 1C Real gases

Discussion questions

D1C.1 Explain how the compression factor varies with pressure and temperature and
describe how it reveals information about intermolecular interactions in real gases.

D1C.2 What is the significance of the critical constants?

D1C.3 Describe the formulation of the van der Waals equation and suggest a rationale for
one other equation of state in Table 1C.4.

D1C.4 Explain how the van der Waals equation accounts for critical behaviour.

Exercises

E1C.1(a) Calculate the pressure exerted by 1.0 mol C,Hg behaving as a van der Waals gas
when it is confined under the following conditions: (i) at 273.15 K in 22.414 dm3, (ii) at



1000 K in 100 cm®. Use the data in Table 1C.3 of the Resource section.
E1C.1(b) Calculate the pressure exerted by 1.0 mol H,S behaving as a van der Waals gas

when it is confined under the following conditions: (i) at 273.15 K in 22.414 dm3, (ii) at
500 K in 150 cm?. Use the data in Table 1C.3 of the Resource section.

E1C.2(a) Express the van der Waals parameters a = 0.751 atm dm® mol 2 and b = 0.0226
dm? mol ! in SI base units (kg, m, s, and mol).

E1C.2(b) Express the van der Waals parameters a = 1.32 atm dm® mol™ and b = 0.0436
dm?> mol ! in SI base units (kg, m, s, and mol).

E1C.3(a) A gas at 250 K and 15 atm has a molar volume 12 per cent smaller than that
calculated from the perfect gas law. Calculate (i) the compression factor under these
conditions and (ii) the molar volume of the gas. Which are dominating in the sample, the
attractive or the repulsive forces?

E1C.3(b) A gas at 350 K and 12 atm has a molar volume 12 per cent larger than that
calculated from the perfect gas law. Calculate (i) the compression factor under these
conditions and (ii) the molar volume of the gas. Which are dominating in the sample, the
attractive or the repulsive forces?

E1C.4(a) In an industrial process, nitrogen is heated to 500 K at a constant volume of
1.000 m3. The mass of the gas is 92.4 kg. Use the van der Waals equation to determine the
approximate pressure of the gas at its working temperature of 500 K. For nitrogen, a =
1.352 dm® atm mol ™2, b = 0.0387 dm? mol L.

E1C.4(b) Cylinders of compressed gas are typically filled to a pressure of 200 bar. For
oxygen, what would be the molar volume at this pressure and 25 °C based on (i) the perfect
gas equation, (ii) the van der Waals equation? For oxygen, a = 1.364 dm® atm mol ™, b =
3.19 x 102 dm? mol .

E1C.5(a) Suppose that 10.0 mol C,Hg(g) is confined to 4.860 dm? at 27 °C. Predict the
pressure exerted by the ethane from (i) the perfect gas and (ii) the van der Waals equations
of state. Calculate the compression factor based on these calculations. For ethane, a = 5.507

dm® atm mol™2, b = 0.0651 dm? mol ..
E1C.5(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate (i) the

volume occupied by 8.2 mmol of the gas molecules under these conditions and (ii) an
approximate value of the second virial coefficient B at 300 K.

E1C.6(a) The critical constants of methane are p. = 45.6 atm, V. = 98.7 cm® mol ™}, and T,

= 190.6 K. Calculate the van der Waals parameters of the gas and estimate the radius of the
molecules.

E1C.6(b) The critical constants of ethane are p. = 48.20 atm, V, = 148 cm® mol ™!, and T, =



305.4 K. Calculate the van der Waals parameters of the gas and estimate the radius of the
molecules.

E1C.7(a) Use the van der Waals parameters for chlorine in Table 1C.3 of the Resource
section to calculate approximate values of (i) the Boyle temperature of chlorine from Ty =

a/Rb and (ii) the radius of a Cl, molecule regarded as a sphere.

E1C.7(b) Use the van der Waals parameters for hydrogen sulfide in Table 1C.3 of the
Resource section to calculate approximate values of (i) the Boyle temperature of the gas
from Ty = a/Rb and (ii) the radius of an H,S molecule regarded as a sphere.

E1C.8(a) Suggest the pressure and temperature at which 1.0 mol of (i) NH;, (ii) Xe, (iii)
He will be in states that correspond to 1.0 mol H, at 1.0 atm and 25 °C.

E1C.8(b) Suggest the pressure and temperature at which 1.0 mol of (i) H,O (ii) CO,, (iii)
Ar will be in states that correspond to 1.0 mol N, at 1.0 atm and 25 °C.

E1C.9(a) A certain gas obeys the van der Waals equation with a = 0.50 m® Pa mol 2. Its
molar volume is found to be 5.00 x 10™* m? mol™! at 273 K and 3.0 MPa. From this
information calculate the van der Waals constant b. What is the compression factor for this
gas at the prevailing temperature and pressure?

E1C.9(b) A certain gas obeys the van der Waals equation with a = 0.76 m® Pa mol 2. Its
molar volume is found to be 4.00 x 10™* m? mol™! at 288 K and 4.0 MPa. From this
information calculate the van der Waals constant b. What is the compression factor for this
gas at the prevailing temperature and pressure?

Problems

P1C.1 What pressure would 4.56 g of nitrogen gas in a vessel of volume 2.25 dm? exert at
273 K if it obeyed the virial equation of state up to and including the first two terms?

P1C.2 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using (a) the
perfect gas law and (b) the van der Waals equation. Use the answer to (a) to calculate a first
approximation to the correction term for attraction and then use successive approximations
to obtain a numerical answer for part (b).

P1C.3 At 273 K measurements on argon gave B = —21.7 cm® mol ! and C = 1200 cm® mol
2. where B and C are the second and third virial coefficients in the expansion of Z in
powers of 1/V_. Assuming that the perfect gas law holds sufficiently well for the
estimation of the molar volume, calculate the compression factor of argon at 100 atm and
273 K. From your result, estimate the molar volume of argon under these conditions.



P1C.4 Calculate the volume occupied by 1.00 mol N, using the van der Waals equation

expanded into the form of a virial expansion at (a) its critical temperature, (b) its Boyle
temperature. Assume that the pressure is 10 atm throughout. At what temperature is the
behaviour of the gas closest to that of a perfect gas? Use the following data: T, = 126.3 K,

Tg = 327.2 K, a = 1.390 dm® atm mol 2, b = 0.0391 dm? mol .

P1C.5* The second virial coefficient of methane can be approximated by the empirical

equation B(T) = a + e‘C/TZ, where a = —0.1993 bar !, b = 0.2002 bar™!, and ¢ = 1131 K?
with 300 K < T < 600 K. What is the Boyle temperature of methane?

P1C.6 How well does argon gas at 400 K and 3 atm approximate a perfect gas? Assess the
approximation by reporting the difference between the molar volumes as a percentage of
the perfect gas molar volume.

P1C.7 The mass density of water vapour at 327.6 atm and 776.4 K is 133.2 kg m™3. Given
that for water a = 5.464 dm® atm mol 2, b = 0.03049 dm?® mol ™!, and M = 18.02 g mol ™,
calculate (a) the molar volume. Then calculate the compression factor (b) from the data,
and (c) from the virial expansion of the van der Waals equation.

P1C.8 The critical volume and critical pressure of a certain gas are 160 cm® mol™! and 40
atm, respectively. Estimate the critical temperature by assuming that the gas obeys the
Berthelot equation of state. Estimate the radii of the gas molecules on the assumption that
they are spheres.

P1C.9 Estimate the coefficients a and b in the Dieterici equation of state from the critical
constants of xenon. Calculate the pressure exerted by 1.0 mol Xe when it is confined to 1.0
dm? at 25 °C.

P1C.10 For a van der Waals gas with given values of a and b, identify the conditions for
whichZ<1and Z > 1.

P1C.11 Express the van der Waals equation of state as a virial expansion in powers of
1/V,, and obtain expressions for B and C in terms of the parameters a and b. The expansion
you will need is (1 = x)™' =1 + x + x> + ... . Measurements on argon gave B = —21.7 cm?
mol ! and C = 1200 cm® mol for the virial coefficients at 273 K. What are the values of a
and b in the corresponding van der Waals equation of state?

P1C.12 The critical constants of a van der Waals gas can be found by setting the following
derivatives equal to zero at the critical point:
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Solve this system of equations and then use eqn 1C.5b to show that p., V,,
and T, are given by eqn 1C.6.

P1C.13 A scientist proposed the following equation of state:

_RT B C
PEV. VIV

Show that the equation leads to critical behaviour. Find the critical constants
of the gas in terms of B and C and an expression for the critical compression
factor.

P1C.14 Equations 1C.3a and 1C.3b are expansions in p and 1/V, respectively. Find the
relation between B, C and B/, C'.

P1C.15 The second virial coefficient B' can be obtained from measurements of the mass
density p of a gas at a series of pressures. Show that the graph of p/p against p should be a
straight line with slope proportional to B'. Use the data on methoxymethane in Problem
P1A.5 to find the values of B' and B at 25 °C.

P1C.16 The equation of state of a certain gas is given by p = RT/V,, + (a + bT)/ V*, where
a and b are constants. Find (0V,,/0T),,.

P1C.17 Under what conditions can liquid nitrogen be formed by the application of
pressure alone?

P1C.18 The following equations of state are occasionally used for approximate
calculations on gases: (gas A) pV,, = RT(1 + b/V,), (gas B) p(V,, — b) = RT. Assuming that
there were gases that actually obeyed these equations of state, would it be possible to
liquefy either gas A or B? Would they have a critical temperature? Explain your answer.

P1C.19 Derive an expression for the compression factor of a gas that obeys the equation
of state p(V — nb) = nRT, where b and R are constants. If the pressure and temperature are
such that V, = 10b, what is the numerical value of the compression factor?



P1C.20 What would be the corresponding state of ammonia, for the conditions described
for argon in Brief illustration 1C.5?

P1C.21* Stewart and Jacobsen have published a review of thermodynamic properties of
argon (R.B. Stewart and R.T. Jacobsen, J. Phys. Chem. Ref. Data 18, 639 (1989)) which
included the following 300 K isotherm.

p/MPa 0.4000 0.5000 0.6000 0.8000 1.000
V,,/(dm3 mol ™) 6.2208 4.9736 4.1423 3.1031 2.4795
p/MPa 1.500 2.000 2.500 3.000 4.000
V,./(dm? mol ™) 1.6483 1.2328 0.98 357 0.81 746 0.60 998

(a) Compute the second virial coefficient, B, at this temperature. (b) Use non-
linear curve-fitting software to compute the third virial coefficient, C, at this
temperature.

P1C.22 Use the van der Waals equation of state and mathematical software or a
spreadsheet to plot the pressure of 1.5 mol CO,(g) against volume as it is compressed from

30 dm? to 15 dm? at (a) 273 K, (b) 373 K. (c) Redraw the graphs as plots of p against 1/V.

P1C.23 Calculate the molar volume of chlorine on the basis of the van der Waals equation
of state at 250 K and 150 kPa and calculate the percentage difference from the value
predicted by the perfect gas equation.

P1C.24 Is there a set of conditions at which the compression factor of a van der Waals gas
passes through a minimum? If so, how does the location and value of the minimum value
of Z depend on the coefficients a and b?

FOCUS 1 The properties of gases

Integrated activities

11.1 Start from the Maxwell-Boltzmann distribution and derive an expression for the most
probable speed of a gas of molecules at a temperature T. Go on to demonstrate the validity
of the equipartition conclusion that the average translational kinetic energy of molecules
free to move in three dimensions is $kT.

11.2 The principal components of the atmosphere of the Earth are diatomic molecules,



which can rotate as well as translate. Given that the translational kinetic energy density of
the atmosphere is 0.15 J cm 3, what is the total kinetic energy density, including rotation?

I11.3 Methane molecules, CH,, may be considered as spherical, with a collision cross-

section of o = 0.46 nm?. Estimate the value of the van der Waals parameter b by calculating
the molar volume excluded by methane molecules.

1 The name comes from the Latin word for force. The coefficients are
sometimes denoted B,, B, ....

* These problems were supplied by Charles Trapp and Carmen Giunta.



FOCUS 2

The First Law

The release of energy can be used to provide heat when a fuel burns in a
furnace, to produce mechanical work when a fuel burns in an engine,
and to generate electrical work when a chemical reaction pumps
electrons through a circuit. Chemical reactions can be harnessed to
provide heat and work, liberate energy that is unused but which gives
desired products, and drive the processes of life. Thermodynamics, the
study of the transformations of energy, enables the discussion of all
these matters quantitatively, allowing for useful predictions.

2A Internal energy

This Topic examines the ways in which a system can exchange energy
with its surroundings in terms of the work it may do or have done on it,
or the heat that it may produce or absorb. These considerations lead to
the definition of the ‘internal energy’, the total energy of a system, and
the formulation of the ‘First Law’ of thermodynamics, which states that
the internal energy of an isolated system is constant.

2A.1 Work, heat, and energy; 2A.2 The definition of internal energy; 2A.3
Expansion work; 2A.4 Heat transactions

2B Enthalpy



The second major concept of the Focus is ‘enthalpy’, which is a very
useful book-keeping property for keeping track of the heat output (or
requirements) of physical processes and chemical reactions that take
place at constant pressure. Experimentally, changes in internal energy or
enthalpy may be measured by techniques known collectively as
‘calorimetry’.

2B.1 The definition of enthalpy; 2B.2 The variation of enthalpy with
temperature

2C Thermochemistry

‘Thermochemistry’ is the study of heat transactions during chemical
reactions. This Topic describes methods for the determination of
enthalpy changes associated with both physical and chemical changes.
2C.1 Standard enthalpy changes; 2C.2 Standard enthalpies of

formation; 2C.3 The temperature dependence of reaction enthalpies;
2C.4 Experimental techniques

2D State functions and exact differentials

The power of thermodynamics becomes apparent by establishing
relations between different properties of a system. One very useful
aspect of thermodynamics is that a property can be measured indirectly
by measuring others and then combining their values. The relations
derived in this Topic also apply to the discussion of the liquefaction of
gases and to the relation between the heat capacities of a substance
under different conditions.

2D.1 Exact and inexact differentials; 2D.2 Changes in internal energy;
2D.3 Changes in enthalpy; 2D.4 The Joule-Thomson effect

2E Adiabatic changes

‘Adiabatic’ processes occur without transfer of energy as heat. This
Topic describes reversible adiabatic changes involving perfect gases



because they figure prominently in the presentation of thermodynamics.
2E.1 The change in temperature; 2E.2 The change in pressure

Web resource What is an application of this
material?

A major application of thermodynamics is to the assessment of fuels and
their equivalent for organisms, food. Some thermochemical aspects of
fuels and foods are described in Impact 3 on the website of this text.

TOPIC 2A Internal energy

> \Why do you need to know this material?

The First Law of thermodynamics is the foundation of the discussion of the
role of energy in chemistry. Wherever the generation or use of energy in
physical transformations or chemical reactions is of interest, lying in the
background are the concepts introduced by the First Law.

> What is the key idea?

The total energy of an isolated system is constant.

> \What do you need to know already?

This Topic makes use of the discussion of the properties of gases (Topic 1A),
particularly the perfect gas law. It builds on the definition of work given in The
chemist’s toolkit 6.



For the purposes of thermodynamics, the universe is divided into two parts,
the system and its surroundings. The system is the part of the world of
interest. It may be a reaction vessel, an engine, an electrochemical cell, a
biological cell, and so on. The surroundings comprise the region outside the
system and are where measurements are made. The type of system depends
on the characteristics of the boundary that divides it from the surroundings
(Fig. 2A.1). If matter can be transferred through the boundary between the
system and its surroundings the system is classified as open. If matter cannot
pass through the boundary the system is classified as closed. Both open and
closed systems can exchange energy with their surroundings. For example, a
closed system can expand and thereby raise a weight in the surroundings; a
closed system may also transfer energy to the surroundings if they are at a
lower temperature. An isolated system is a closed system that has neither
mechanical nor thermal contact with its surroundings.

Cpan Closad Isolatad

{al b =]

Figure 2A.1 (a) An open system can exchange matter and energy
with its surroundings. (b) A closed system can exchange energy with
its surroundings, but it cannot exchange matter. (c) An isolated system
can exchange neither energy nor matter with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk systems, it is
immeasurably enriched by understanding the molecular origins of these
observations.

(a) Operational definitions



The fundamental physical property in thermodynamics is work: work is done
to achieve motion against an opposing force (The chemist’s toolkit 6). A
simple example is the process of raising a weight against the pull of gravity.
A process does work if in principle it can be harnessed to raise a weight
somewhere in the surroundings. An example of doing work is the expansion
of a gas that pushes out a piston: the motion of the piston can in principle be
used to raise a weight. Another example is a chemical reaction in a cell,
which leads to an electric current that can drive a motor and be used to raise a
weight.

The energy of a system is its capacity to do work (see The chemist’s
toolkit 6 for more detail). When work is done on an otherwise isolated system
(for instance, by compressing a gas or winding a spring), the capacity of the
system to do work is increased; in other words, the energy of the system is
increased. When the system does work (when the piston moves out or the
spring unwinds), the energy of the system is reduced and it can do less work
than before.

Experiments have shown that the energy of a system may be changed by
means other than work itself. When the energy of a system changes as a
result of a temperature difference between the system and its surroundings
the energy is said to be transferred as heat. When a heater is immersed in a
beaker of water (the system), the capacity of the system to do work increases
because hot water can be used to do more work than the same amount of cold
water. Not all boundaries permit the transfer of energy even though there is a
temperature difference between the system and its surroundings. Boundaries
that do permit the transfer of energy as heat are called diathermic; those that
do not are called adiabatic.

L XA CINTE R G LGN Work and energy

Work, w, is done when a body is moved against an opposing force. For
an infinitesimal displacement through ds (a vector), the work done on
the body is

Work done on body

dWyog = —Fds [definition]

where F-ds is the ‘scalar product’ of the vectors F and ds:



Scalar product
[definition]

Fds = F.dx+ F,dy+ F.dz
The energy lost as work by the system, dw, is the negative of the work
done on the body, so

Work done on systam
dw = Fds [definition]

For motion in one dimension, dw = F,dx, with F, <0 (so F, = —|F,|) if it
opposed the motion. The total work done along a path is the integral of
this expression, allowing for the possibility that F changes in direction
and magnitude at each point of the path. With force in newtons (IN) and
distance in metres, the units of work are joules (J), with

1J=1Nm=1kgm’s™

Energy is the capacity to do work. The SI unit of energy is the same as
that of work, namely the joule. The rate of supply of energy is called the
power (P), and is expressed in watts (W):

1W=1]s"

A particle may possess two kinds of energy, kinetic energy and potential
energy. The kinetic energy, E,, of a body is the energy the body

possesses as a result of its motion. For a body of mass m travelling at a
speed v,

Kinetk energy
2o e | -
E, =4muv [Hefinition]

Because p = mv (The chemist’s toolkit 3 of Topic 1B), where p is the
magnitude of the linear momentum, it follows that

? Kinetkc energy

E= m [definition]

The potential energy, E, (and commonly V, but do not confuse that

with the volume!) of a body is the energy it possesses as a result of its
position. In the absence of losses, the potential energy of a stationary
particle is equal to the work that had to be done on the body to bring it to
its current location. Because dwy,oq, = —F,dx, it follows that dE, = —F,dx



and therefore

'iEp Potential enengy
o= ra [relation to force]
If E_ increases as x increases, then F, is negative (directed towards
P X

negative x, Sketch 1). Thus, the steeper the gradient (the more strongly
the potential energy depends on position), the greater is the force.
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No universal expression for the potential energy can be given because
it depends on the type of force the body experiences. For a particle of
mass m at an altitude h close to the surface of the Earth, the gravitational
potential energy is

Er (hi= Epwj + migh Gravitational potential emerngy

where g is the acceleration of free fall (g depends on location, but its
‘standard value’ is close to 9.81 m s~2). The zero of potential energy is
arbitrary. For a particle close to the surface of the Earth, it is common to
set E;(0) = 0.

The Coulomb potential energy of two electric charges, Q; and Q,,
separated by a distance r is

Q.Q,

EP= e Coulomb potential energy

The quantity € (epsilon) is the permittivity; its value depends upon the
nature of the medium between the charges. If the charges are separated
by a vacuum, then the constant is known as the vacuum permittivity, ¢,

(epsilon zero), or the electric constant, which has the value 8.854 x



10712 J71 G°> m™L. The permittivity is greater for other media, such as air,
water, or oil. It is commonly expressed as a multiple of the vacuum
permittivity:

— Permittivity
E=EE
e [definitin]

with &, the dimensionless relative permittivity (formerly, the dielectric

constant).

The total energy of a particle is the sum of its kinetic and potential
energies:

E=E+E, [Tgnfaﬁln?trlﬁlzg]w

Provided no external forces are acting on the body, its total energy is
constant. This central statement of physics is known as the law of the
conservation of energy. Potential and kinetic energy may be freely
interchanged, but their sum remains constant in the absence of external
influences.

An exothermic process is a process that releases energy as heat. For
example, combustions are chemical reactions in which substances react with
oxygen, normally with a flame. The combustion of methane gas, CH,(g), is

written as:

CH,ig) +20.(g) = CO(g)+ 2H.0(1)

All combustions are exothermic. Although the temperature rises in the course
of the combustion, given enough time, a system in a diathermic vessel returns
to the temperature of its surroundings, so it is possible to speak of a
combustion ‘at 25 °C’, for instance. If the combustion takes place in an
adiabatic container, the energy released as heat remains inside the container
and results in a permanent rise in temperature.

An endothermic process is a process in which energy is acquired as heat.
An example of an endothermic process is the vaporization of water. To avoid
a lot of awkward language, it is common to say that in an exothermic process



energy is transferred ‘as heat’ to the surroundings and in an endothermic
process energy is transferred ‘as heat’ from the surroundings into the system.
However, it must never be forgotten that heat is a process (the transfer of
energy as a result of a temperature difference), not an entity. An endothermic
process in a diathermic container results in energy flowing into the system as
heat to restore the temperature to that of the surroundings. An exothermic
process in a similar diathermic container results in a release of energy as heat
into the surroundings. When an endothermic process takes place in an
adiabatic container, it results in a lowering of temperature of the system; an
exothermic process results in a rise of temperature. These features are
summarized in Fig. 2A.2.

0 ’
Endothermi Exothermic Endothermic Exotharmic
process Process process | process
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Figure 2A.2 (a) When an endothermic process occurs in an adiabatic
system, the temperature falls; (b) if the process is exothermic, then the
temperature rises. (c) When an endothermic process occurs in a
diathermic container, energy enters as heat from the surroundings
(which remain at the same temperature), and the system remains at
the same temperature. (d) If the process is exothermic, then energy
leaves as heat, and the process is isothermal.

(b) The molecular interpretation of heat and work

In molecular terms, heating is the transfer of energy that makes use of
disorderly, apparently random, molecular motion in the surroundings. The
disorderly motion of molecules is called thermal motion. The thermal
motion of the molecules in the hot surroundings stimulates the molecules in



the cooler system to move more vigorously and, as a result, the energy of the
cooler system is increased. When a system heats its surroundings, molecules
of the system stimulate the thermal motion of the molecules in the
surroundings (Fig. 2A.3).

In contrast, work is the transfer of energy that makes use of organized
motion in the surroundings (Fig. 2A.4). When a weight is raised or lowered,
its atoms move in an organized way (up or down). The atoms in a spring
move in an orderly way when it is wound; the electrons in an electric current
move in the same direction. When a system does work it causes atoms or
electrons in its surroundings to move in an organized way. Likewise, when
work is done on a system, molecules in the surroundings are used to transfer
energy to it in an organized way, as the atoms in a weight are lowered or a
current of electrons is passed.

Surroundings

Systam

Figure 2A.3 When energy is transferred to the surroundings as heat,
the transfer stimulates random motion of the atoms in the
surroundings. Transfer of energy from the surroundings to the system
makes use of random motion (thermal motion) in the surroundings.




Figure 2A.4 When a system does work, it stimulates orderly motion in
the surroundings. For instance, the atoms shown here may be part of
a weight that is being raised. The ordered motion of the atoms in a
falling weight does work on the system.

The distinction between work and heat is made in the surroundings. The
fact that a falling weight may stimulate thermal motion in the system is
irrelevant to the distinction between heat and work: work is identified as
energy transfer making use of the organized motion of atoms in the
surroundings, and heat is identified as energy transfer making use of thermal
motion in the surroundings. In the compression of a gas in an adiabatic
enclosure, for instance, work is done on the system as the atoms of the
compressing weight descend in an orderly way, but the effect of the incoming
piston is to accelerate the gas molecules to higher average speeds. Because
collisions between molecules quickly randomize their directions, the orderly
motion of the atoms of the weight is in effect stimulating thermal motion in
the gas. The weight is observed to fall, leading to the orderly descent of its
atoms, and work is done even though it is stimulating thermal motion.

2A.2 The definition of internal energy

In thermodynamics, the total energy of a system is called its internal energy,
U. The internal energy is the total kinetic and potential energy of the
constituents (the atoms, ions, or molecules) of the system. It does not include
the kinetic energy arising from the motion of the system as a whole, such as
its kinetic energy as it accompanies the Earth on its orbit round the Sun. That
is, the internal energy is the energy ‘internal’ to the system. The change in
internal energy is denoted by AU when a system changes from an initial state
i with internal energy U; to a final state f of internal energy Us:

AU=U—T], (2A0)

A convention used throughout thermodynamics is that AX = X; — X;, where
X is a property (a ‘state function’) of the system.

The internal energy is a state function, a property with a value that
depends only on the current state of the system and is independent of how



that state has been prepared. In other words, internal energy is a function of
the variables that determine the current state of the system. Changing any one
of the state variables, such as the pressure, may result in a change in internal
energy. That the internal energy is a state function has consequences of the
greatest importance (Topic 2D).

The internal energy is an extensive property of a system (a property that
depends on the amount of substance present; see The chemist’s toolkit 2 in

Topic 1A) and is measured in joules (1 J = 1 kg m? s2). The molar internal
energy, U, is the internal energy divided by the amount of substance in a

system, U, = U/n; it is an intensive property (a property independent of the
amount of substance) and is commonly reported in kilojoules per mole (kJ
mol ™ 1).

(a) Molecular interpretation of internal energy

A molecule has a certain number of motional degrees of freedom, such as the
ability to move through space (this motion is called ‘translation’), rotate, or
vibrate. Many physical and chemical properties depend on the energy
associated with each of these modes of motion. For example, a chemical
bond might break if a lot of energy becomes concentrated in it, for instance as
vigorous vibration. The internal energy of a sample increases as the
temperature is raised and states of higher energy become more highly
populated.

The ‘equipartition theorem’ of classical mechanics, introduced in The
chemist’s toolkit 7, can be used to predict the contributions of each mode of
motion of a molecule to the total energy of a collection of non-interacting
molecules (that is, of a perfect gas, and providing quantum effects can be
ignored).

I R EINTE RG] Gl The equipartition theorem

The Boltzmann distribution (see the Prologue) can be used to calculate
the average energy associated with each mode of motion of an atom or
molecule in a sample at a given temperature. However, when the



temperature is so high that many energy levels are occupied, there is a
much simpler way to find the average energy, through the equipartition
theorem:

For a sample at thermal equilibrium the average value of each
quadratic contribution to the energy is +kT.

A ‘quadratic contribution’ is a term that is proportional to the square
of the momentum (as in the expression for the kinetic energy, E, =

p?/2m; The chemist’s toolkit 6) or the displacement from an equilibrium
position (as for the potential energy of a harmonic oscillator, E = k. The
theorem is a conclusion from classical mechanics and for quantized
systems is applicable only when the separation between the energy
levels is so small compared to kT that many states are populated. Under
normal conditions the equipartition theorem gives good estimates for the
average energies associated with translation and rotation. However, the
separation between vibrational and electronic states is typically much
greater than for rotation or translation, and for these types of motion the
equipartition theorem is unlikely to apply.

Brief illustration 2A.1

An atom in a gas can move in three dimensions, so its translational
kinetic energy is the sum of three quadratic contributions:

Z I 1
E =T+t + T

The equipartition theorem predicts that the average energy for each of
these quadratic contributions is +7. Thus, the average kinetic energy is
E..=3<%T=%T" The molar translational energy is therefore
Epanem = KT % Ny = RT. At 25°C, RT = 248kImol™, S0 the contribution of translation to

the molar internal energy of a perfect gas is 3.72 kJ mol ™.




The contribution to the internal energy of a collection of perfect gas
molecules is independent of the volume occupied by the molecules: there are
no intermolecular interactions in a perfect gas, so the distance between the
molecules has no effect on the energy. That is,

The internal energy of a perfect gas is independent of the volume it
occupies.

The internal energy of interacting molecules in condensed phases also has a
contribution from the potential energy of their interaction, but no simple
expressions can be written down in general. Nevertheless, it remains true that
as the temperature of a system is raised, the internal energy increases as the
various modes of motion become more highly excited.

(b) The formulation of the First Law

It has been found experimentally that the internal energy of a system may be
changed either by doing work on the system or by heating it. Whereas it
might be known how the energy transfer has occurred (if a weight has been
raised or lowered in the surroundings, indicating transfer of energy by doing
work, or if ice has melted in the surroundings, indicating transfer of energy as
heat), the system is blind to the mode employed. That is,

Heat and work are equivalent ways of changing the internal energy of a
system.

A system is like a bank: it accepts deposits in either currency (work or heat),
but stores its reserves as internal energy. It is also found experimentally that
if a system is isolated from its surroundings, meaning that it can exchange
neither matter nor energy with its surroundings, then no change in internal
energy takes place. This summary of observations is now known as the First
Law of thermodynamics and is expressed as follows:

The internal energy of an isclated svstem iz constant.
First Law of themnodymamics

It is not possible to use a system to do work, leave it isolated, and then come
back expecting to find it restored to its original state with the same capacity



for doing work. The experimental evidence for this observation is that no
‘perpetual motion machine’, a machine that does work without consuming
fuel or using some other source of energy, has ever been built.

These remarks may be expressed symbolically as follows. If w is the work
done on a system, q is the energy transferred as heat to a system, and AU is
the resulting change in internal energy, then

All=g+ w Mathematical statemnent of the First Law [2A.2)

Equation 2A.2 summarizes the equivalence of heat and work for bringing
about changes in the internal energy and the fact that the internal energy is
constant in an isolated system (for which g = 0 and w = 0). It states that the
change in internal energy of a closed system is equal to the energy that passes
through its boundary as heat or work. Equation 2A.2 employs the ‘acquisitive
convention’, in which w and g are positive if energy is transferred to the

system as work or heat and are negative if energy is lost from the system.! In
other words, the flow of energy as work or heat is viewed from the system’s
perspective.

Brief illustration 2A.2

If an electric motor produces 15 kJ of energy each second as mechanical
work and loses 2 kJ as heat to the surroundings, then the change in the
internal energy of the motor each second is AU = -2kJ — 15kJ = —-17 kJ.

Suppose that, when a spring is wound, 100 J of work is done on it but 15
J escapes to the surroundings as heat. The change in internal energy of

the spring is AU = 100J — 15J = +85J.

A note on good practice Always include the sign of AU (and of AX in
general), even if it is positive.

2A.3 Expansion work



The way is opened to powerful methods of calculation by switching attention
to infinitesimal changes in the variables that describe the state of the system
(such as infinitesimal change in temperature) and infinitesimal changes in the
internal energy dU. Then, if the work done on a system is dw and the energy
supplied to it as heat is dg, in place of eqn 2A.2, it follows that

dUi=dg+dw (2A.3)

The ability to use this expression depends on being able to relate dg and dw
to events taking place in the surroundings.

A good starting point is a discussion of expansion work, the work arising
from a change in volume. This type of work includes the work done by a gas
as it expands and drives back the atmosphere. Many chemical reactions result
in the generation of gases (for instance, the thermal decomposition of calcium
carbonate or the combustion of hydrocarbons), and the thermodynamic
characteristics of the reaction depend on the work that must be done to make
room for the gas it has produced. The term ‘expansion work’ also includes
work associated with negative changes of volume, that is, compression.

(a) The general expression for work

The calculation of expansion work starts from the definition in The chemist’s
toolkit 6 with the sign of the opposing force written explicitly:

dw=—|F|dz ekt PAA
The negative sign implies that the internal energy of the system doing the
work decreases when the system moves an object against an opposing force
of magnitude |F|, and there are no other changes. That is, if dz is positive
(motion to positive z), dw is negative, and the internal energy decreases (dU
in eqn 2A.3 is negative provided that dg = 0).

Now consider the arrangement shown in Fig. 2A.5, in which one wall of a

system is a massless, frictionless, rigid, perfectly fitting piston of area A. If
the external pressure is p,,, the magnitude of the force acting on the outer

face of the piston is |F| = p.,A. The work done when the system expands
through a distance dz against an external pressure p,,, is dw = —p,,Adz. The



quantity Adz is the change in volume, dV, in the course of the expansion.
Therefore, the work done when the system expands by dV against a pressure

pex 1S

dw= —p dV Expanzion work  (2A.53)

Extarnal
pressure, o, =

e N« b
36, Ay 197 av=Adz
@& it

Pressura, o

Figure 2A.5 When a piston of area A moves out through a distance
dz, it sweeps out a volume dV = Adz. The external pressure p,, is

equivalent to a weight pressing on the piston, and the magnitude of
the force opposing expansion is p,A.

Table 2A.1 Varieties of work*

Type of work dw Comments Units’
Expansion —PexdV Py 1S the external pressure Pa

dV is the change in volume m?3
Surface expansion  ydo y is the surface tension Nm!

do is the change in area m?
Extension fdl f is the tension N

dl is the change in length m
Electrical ¢ dQ ¢ is the electric potential Vv

dQ is the change in charge C



Qd¢ do¢ is the potential difference 'V
Q is the charge transferred C

* In general, the work done on a system can be expressed in the form dw = —|F|dz, where
|F| is the magnitude of a ‘generalized force’ and dz is a ‘generalized displacement’.

T For work in joules (J). Notethat INm=1Jand1VC=11.

To obtain the total work done when the volume changes from an initial value
Vi to a final value V; it is necessary to integrate this expression between the

initial and final volumes:

w==|_ p.dv (2A.5b)

The force acting on the piston, p,,A, is equivalent to the force arising from a

weight that is raised as the system expands. If the system is compressed
instead, then the same weight is lowered in the surroundings and eqn 2A.5b
can still be used, but now V; < V.. It is important to note that it is still the

external pressure that determines the magnitude of the work. This somewhat
perplexing conclusion seems to be inconsistent with the fact that the gas
inside the container is opposing the compression. However, when a gas is
compressed, the ability of the surroundings to do work is diminished to an
extent determined by the weight that is lowered, and it is this energy that is
transferred into the system.

Other types of work (e.g. electrical work), which are called either non-
expansion work or additional work, have analogous expressions, with each
one the product of an intensive factor (the pressure, for instance) and an
extensive factor (such as a change in volume). Some are collected in Table
2A.1. The present discussion focuses on how the work associated with
changing the volume, the expansion work, can be extracted from eqn 2A.5b.

(b) Expansion against constant pressure

Suppose that the external pressure is constant throughout the expansion. For



example, the piston might be pressed on by the atmosphere, which exerts the
same pressure throughout the expansion. A chemical example of this
condition is the expansion of a gas formed in a chemical reaction in a
container that can expand. Equation 2A.5b is then evaluated by taking the
constant p,, outside the integral:

H

Area=p_AV

Pressure. 0 ™

T
V Volume, ¥

Figure 2A.6 The work done by a gas when it expands against a
constant external pressure, p,,, IS equal to the shaded area in this

example of an indicator diagram.

w=—po [ dV=—p (V= V)

Therefore, if the change in volume is written as AV =V; -V,

W==p, AV E:Tﬁg?ﬁpe?gr:alpressure] (2A8)
This result is illustrated graphically in Fig. 2A.6, which makes use of the fact
that the magnitude of an integral can be interpreted as an area. The magnitude
of w, denoted |w/|, is equal to the area beneath the horizontal line at p = p,,
lying between the initial and final volumes. A p,V-graph used to illustrate
expansion work is called an indicator diagram; James Watt first used one to
indicate aspects of the operation of his steam engine.

Free expansion is expansion against zero opposing force. It occurs when
Pex = 0. According to eqn 2A.6, in this case

w=1 Work of free expansion. (2A.7)

That is, no work is done when a system expands freely. Expansion of this



kind occurs when a gas expands into a vacuum.

el J Wl Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydrochloric acid
to produce FeCl,(aq) and hydrogen in (a) a closed vessel of fixed

volume, (b) an open beaker at 25 °C.

Collect your thoughts You need to judge the magnitude of the
volume change and then to decide how the process occurs. If there is no
change in volume, there is no expansion work however the process takes
place. If the system expands against a constant external pressure, the
work can be calculated from eqn 2A.6. A general feature of processes in
which a condensed phase changes into a gas is that you can usually
neglect the volume of a condensed phase relative to the volume of the
gas it forms.

The solution In (a) the volume cannot change, so no expansion work
is done and w = 0. In (b) the gas drives back the atmosphere and
therefore w = —p,, AV. The initial volume can be neglected because the

final volume (after the production of gas) is so much larger and AV = V;
-V, = V; = nRT/p,,, where n is the amount of H, produced. Therefore,

nRT
P

w=—p AV=—p_ =« =—nRT

Because the reaction is Fe(s) + 2 HCl(aq) - FeCl,(aq) + H,(g), 1 mol
H, is generated when 1 mol Fe is consumed, and n can be taken as the
amount of Fe atoms that react. Because the molar mass of Fe is 55.85 g
mol 1, it follows that

50 §
w=— £ —(8.3145 1K  mol™ jx{ 298 K)
55.85gmol

=—2.2%]

The system (the reaction mixture) does 2.2 kJ of work driving back the
atmosphere.



Comment. The magnitude of the external pressure does not affect the
final result: the lower the pressure, the larger is the volume occupied by
the gas, so the effects cancel.

Self-test 2A.1 Calculate the expansion work done when 50 g of water
is electrolysed under constant pressure at 25 °C.

Answer: -10kJ

(c) Reversible expansion

A reversible change in thermodynamics is a change that can be reversed by
an infinitesimal modification of a variable. The key word ‘infinitesimal’
sharpens the everyday meaning of the word ‘reversible’ as something that can
change direction. One example of reversibility is the thermal equilibrium of
two systems with the same temperature. The transfer of energy as heat
between the two is reversible because, if the temperature of either system is
lowered infinitesimally, then energy flows into the system with the lower
temperature. If the temperature of either system at thermal equilibrium is
raised infinitesimally, then energy flows out of the hotter system. There is
obviously a very close relationship between reversibility and equilibrium:
systems at equilibrium are poised to undergo reversible change.

Suppose a gas is confined by a piston and that the external pressure, p,,, is

set equal to the pressure, p, of the confined gas. Such a system is in
mechanical equilibrium with its surroundings because an infinitesimal
change in the external pressure in either direction causes changes in volume
in opposite directions. If the external pressure is reduced infinitesimally, the
gas expands slightly. If the external pressure is increased infinitesimally, the
gas contracts slightly. In either case the change is reversible in the
thermodynamic sense. If, on the other hand, the external pressure is
measurably greater than the internal pressure, then decreasing p.,

infinitesimally will not decrease it below the pressure of the gas, so will not
change the direction of the process. Such a system is not in mechanical
equilibrium with its surroundings and the compression is thermodynamically



irreversible.
To achieve reversible expansion p,, is set equal to p at each stage of the

expansion. In practice, this equalization could be achieved by gradually
removing weights from the piston so that the downward force due to the
weights always matches the changing upward force due to the pressure of the
gas or by gradually adjusting the external pressure to match the pressure of
the expanding gas. When p,, = p, eqn 2A.5a becomes

dw=—p_dV=—pdV Revarsible expansion work (24 8a)

Although the pressure inside the system appears in this expression for the
work, it does so only because p,, has been arranged to be equal to p to ensure

reversibility. The total work of reversible expansion from an initial volume V;
to a final volume V; is therefore

o |1 pdV (24.8b)

The integral can be evaluated once it is known how the pressure of the
confined gas depends on its volume. Equation 2A.8b is the link with the
material covered in FOCUS 1 because, if the equation of state of the gas is
known, p can be expressed in terms of V and the integral can be evaluated.

(d) Isothermal reversible expansion of a perfect
gas

Consider the isothermal reversible expansion of a perfect gas. The expansion
is made isothermal by keeping the system in thermal contact with its
unchanging surroundings (which may be a constant-temperature bath).
Because the equation of state is pV = nRT, at each stage p = nRT/V, with V
the volume at that stage of the expansion. The temperature T is constant in an
isothermal expansion, so (together with n and R) it may be taken outside the
integral. It follows that the work of isothermal reversible expansion of a
perfect gas from V; to V; at a temperature T is

Integral A2
F: v, Work of Isothermal

=1 ¥ .
Ww=—nRT J Yo nRETIn== revanible expansion (2489
¥ 1 [perfact gas]



Brief lllustration 2A.3

When a sample of 1.00 mol Ar, regarded here as a perfect gas,
undergoes an isothermal reversible expansion at 20.0 °C from 10.0 dm?
to 30.0 dm?3 the work done is

30.0dm?
10.0dm?*

w=—(1.00mol)= (8.3145TK " mol™ )x(293.2K)1ln

=—2.68k]

When the final volume is greater than the initial volume, as in an
expansion, the logarithm in eqn 2A.9 is positive and hence w < 0. In this case,
the system has done work on the surroundings and there is a corresponding
negative contribution to its internal energy. (Note the cautious language: as
seen later, there is a compensating influx of energy as heat, so overall the
internal energy is constant for the isothermal expansion of a perfect gas.) The
equations also show that more work is done for a given change of volume
when the temperature is increased: at a higher temperature the greater
pressure of the confined gas needs a higher opposing pressure to ensure
reversibility and the work done is correspondingly greater.

The result of the calculation can be illustrated by an indicator diagram in
which the magnitude of the work done is equal to the area under the isotherm
p = nRT/V (Fig. 2A.7). Superimposed on the diagram is the rectangular area
obtained for irreversible expansion against constant external pressure fixed at
the same final value as that reached in the reversible expansion. More work is
obtained when the expansion is reversible (the area is greater) because
matching the external pressure to the internal pressure at each stage of the
process ensures that none of the pushing power of the system is wasted. It is
not possible to obtain more work than that for the reversible process because
increasing the external pressure even infinitesimally at any stage results in
compression. It can be inferred from this discussion that, because some
pushing power is wasted when p > p,,, the maximum work available from a

system operating between specified initial and final states is obtained when
the change takes place reversibly.
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Figure 2A.7 The work done by a perfect gas when it expands
reversibly and isothermally is equal to the area under the isotherm p =
nRT/V. The work done during the irreversible expansion against the
same final pressure is equal to the rectangular area shown slightly
darker. Note that the reversible work done is greater than the
irreversible work done.

2A.4 Heat transactions

In general, the change in internal energy of a system is

dU=dg+dw +dw,y (2410

where dw,,,4 is work in addition (‘add’ for additional) to the expansion work,

dw,y,,. For instance, dw,qq might be the electrical work of driving a current of
electrons through a circuit. A system kept at constant volume can do no

expansion work, so in that case dw,,, = 0. If the system is also incapable of

doing any other kind of work (if it is not, for instance, an electrochemical cell
connected to an electric motor), then dw,gq = 0 too. Under these

circumstances:

Heat transfamed at
constant volume

dif=dg (2A11a)

This relation can also be expressed as dU = dqy, where the subscript implies

the constraint of constant volume. For a measurable change between states i
and f along a path at constant volume,
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which is summarized as

AU =g, (ZA11h)

Note that the integral over dq is not written as Aq because g, unlike U, is not
a state function. It follows from eqn 2A.11b that measuring the energy
supplied as heat to a system at constant volume is equivalent to measuring the
change in internal energy of the system.

(a) Calorimetry

Calorimetry is the study of the transfer of energy as heat during a physical
or chemical process. A calorimeter is a device for measuring energy
transferred as heat. The most common device for measuring qy, (and therefore

AU) is an adiabatic bomb calorimeter (Fig. 2A.8). The process to be
studied—which may be a chemical reaction—is initiated inside a constant-
volume container, the ‘bomb’. The bomb is immersed in a stirred water bath,
and the whole device is the calorimeter. The calorimeter is also immersed in
an outer water bath. The water in the calorimeter and of the outer bath are
both monitored and adjusted to the same temperature. This arrangement
ensures that there is no net loss of heat from the calorimeter to the
surroundings (the bath) and hence that the calorimeter is adiabatic.

Cnoygen input -
Bomb -
Sample |

Csoygan
undar pressure &

Watear

0

Figure 2A.8 A constant-volume bomb calorimeter. The ‘bomb’ is the
central vessel, which is strong enough to withstand high pressures.
The calorimeter is the entire assembly shown here. To ensure



adiabaticity, the calorimeter is immersed in a water bath with a
temperature continuously readjusted to that of the calorimeter at each
stage of the combustion.

The change in temperature, AT, of the calorimeter is proportional to the
energy that the reaction releases or absorbs as heat. Therefore, gy, and hence

AU can be determined by measuring AT. The conversion of AT to gy is best

achieved by calibrating the calorimeter using a process of known output and
determining the calorimeter constant, the constant C in the relation

g=CAT (2A2)

The calorimeter constant may be measured electrically by passing a constant
current, I, from a source of known potential difference, A¢, through a heater
for a known period of time, t, for then (The chemist’s toolkit 8)

q=ItAp (2413

Brief illustration 2A.4

If a current of 10.0 A from a 12 V supply is passed for 300 s, then from
egn 2A.13 the energy supplied as heat is

g=(10.0A) % (300s) % (12V)=3.6 % 10°A Vs = 36k]

The result in joules is obtained by using 1 AVs=1(Cs ) Vs=1CV
= 1 J. If the observed rise in temperature is 5.5 K, then the calorimeter

constant is C = (36 kJ)/(5.5 K) = 6.5 k] K™1.

Alternatively, C may be determined by burning a known mass of substance
(benzoic acid is often used) that has a known heat output. With C known, it is
simple to interpret an observed temperature rise as a release of energy as heat.

L GRS E RIS RG] ((&: 8 Electrical charge, current, power, and



energy

Electrical charge, Q, is measured in coulombs, C. The fundamental
charge, e, the magnitude of charge carried by a single electron or proton,
is approximately 1.6 x 10712 C. The motion of charge gives rise to an
electric current, I, measured in coulombs per second, or amperes, A,
where 1 A =1 C s™L. If the electric charge is that of electrons (as it is for
the current in a metal), then a current of 1 A represents the flow of 6 X
10'8 electrons (10 pmol e”) per second.

When a current I flows through a potential difference A¢ (measured in
volts, V, with 1 V = 1J A1), the power, P, is

P=1IA¢

It follows that if a constant current flows for a period t the energy
supplied is

E = Pt = ItA$

Because 1 AVs=1(Cs 1) Vs=1CV=1], the energy is obtained in
joules with the current in amperes, the potential difference in volts, and
the time in seconds. That energy may be supplied as either work (to
drive a motor) or as heat (through a ‘heater’). In the latter case

q = ItA¢

(b) Heat capacity

The internal energy of a system increases when its temperature is raised. This
increase depends on the conditions under which the heating takes place.
Suppose the system has a constant volume. If the internal energy is plotted
against temperature, then a curve like that in Fig. 2A.9 may be obtained. The
slope of the tangent to the curve at any temperature is called the heat



capacity of the system at that temperature. The heat capacity at constant
volume is denoted Cy, and is defined formally as

dll ) € 3 ant
Cv=[ f Heat capacity at corstant velume (2A.14)

| T [cafinitian]

(Partial derivatives and the notation used here are reviewed in The chemist’s
toolkit 9.) The internal energy varies with the temperature and the volume of
the sample, but here only its variation with the temperature is important,
because the volume is held constant (Fig. 2A.10), as signified by the
subscript V.

Internal enargy, U
L

Temperatura, T

Figure 2A.9 The internal energy of a system increases as the
temperature is raised; this graph shows its variation as the system is
heated at constant volume. The slope of the tangent to the curve at
any temperature is the heat capacity at constant volume at that
temperature. Note that, for the system illustrated, the heat capacity is
greater at B than at A.

Brief illustration 2A.5

In Brief illustration 2A.1 it is shown that the translational contribution to
the molar internal energy of a perfect monatomic gas is $RT. Because
this is the only contribution to the internal energy, U, (T)=4RT. It follows
from eqn 2A.14 that




The numerical value is 12.47 J K1 mol™L.

Heat capacities are extensive properties: 100 g of water, for instance, has
100 times the heat capacity of 1 g of water (and therefore requires 100 times
the energy as heat to bring about the same rise in temperature). The molar
heat capacity at constant volume, Cy ., = Cy/n, is the heat capacity per

mole of substance, and is an intensive property (all molar quantities are
intensive). For certain applications it is useful to know the specific heat
capacity (more informally, the ‘specific heat’) of a substance, which is the

heat capacity of the sample divided by its mass, usually in grams: Cy ¢ =
Cy/m. The specific heat capacity of water at room temperature is close to 4.2

J K ' g71. In general, heat capacities depend on the temperature and decrease
at low temperatures. However, over small ranges of temperature at and above
room temperature, the variation is quite small and for approximate
calculations heat capacities can be treated as almost independent of
temperature.

Ternperatura variation

of U glope of Uversus T/

at constant =

. Intamal anargy, U

=3y ]:‘-———_______Temperzture,'."
Volume, ¥/ — ————— —

Figure 2A.10 The internal energy of a system varies with volume and
temperature, perhaps as shown here by the surface. The variation of
the internal energy with temperature at one particular constant volume
Is illustrated by the curve drawn parallel to the temperature axis. The
slope of this curve at any point is the partial derivative (0U/dT),,.



L R E NS RG] KN Partial derivatives

A partial derivative of a function of more than one variable, such as
f(x,y), is the slope of the function with respect to one of the variables, all
the other variables being held constant (Sketch 1). Although a partial
derivative shows how a function changes when one variable changes, it
may be used to determine how the function changes when more than one
variable changes by an infinitesimal amount. Thus, if fis a function of x
and y, then when x and y change by dx and dy, respectively, f changes by

o= () =+{55) o

where the symbol 0 (‘curly d’) is used (instead of d) to denote a partial
derivative and the subscript on the parentheses indicates which variable
is being held constant.

fixyl

i

Sketch 1

The quantity df is also called the differential of f. Successive partial
derivatives may be taken in any order:

%)) -(2F)

For example, suppose that f(x,y) = ax’y + by? (the function plotted in
Sketch 1) then

) s ()



Then, when x and y undergo infinitesimal changes, f changes by
df = 3ax?y dx + (ax® + 2by) dy

To verify that the order of taking the second partial derivative is
irrelevant, form

33 {52 e

AX

(33 () e

&

o =1

L I

Ay Ly

Now suppose that z is a variable on which x and y depend (for example,
X, ¥, and z might correspond to p, V, and T). The following relations then

apply:
Relation 1. When x is changed at constant z:

) (3 (F 3
Relation 2

Relation 3
(9= __(9x) (9
oy .- [az],[ay J
Combining Relations 2 and 3 results in the Euler chain relation:

|/ dy ] ['le ] |/ dz ] i Euler chain ralation
\_F, 2 E ¥ \.ﬁz x

The heat capacity is used to relate a change in internal energy to a change



in temperature of a constant-volume system. It follows from eqn 2A.14 that

Int2rmal enengy
dir= CrdT change on heating  (24.15a)
[constant volume]

That is, at constant volume, an infinitesimal change in temperature brings
about an infinitesimal change in internal energy, and the constant of
proportionality is Cy. If the heat capacity is independent of temperature over

the range of temperatures of interest, then

AT

I I pr—ins—y
AU= [€,dT=C, [ dT=C, (T~ T))

A measurable change of temperature, AT, brings about a measurable change
in internal energy, AU, with

- Internal eneray
AU=C AT change on heating  (2A.15b)

[constant valume]

Because a change in internal energy can be identified with the heat supplied
at constant volume (eqn 2A.11b), the last equation can also be written as

gy=C, AT (2A.16)

This relation provides a simple way of measuring the heat capacity of a
sample: a measured quantity of energy is transferred as heat to the sample (by
electrical heating, for example) under constant volume conditions and the
resulting increase in temperature is monitored. The ratio of the energy
transferred as heat to the temperature rise it causes (q,/AT) is the constant-

volume heat capacity of the sample. A large heat capacity implies that, for a
given quantity of energy transferred as heat, there will be only a small
increase in temperature (the sample has a large capacity for heat).

Brief illustration 2A.6

Suppose a 55 W electric heater immersed in a gas in a constant-volume
adiabatic container was on for 120 s and it was found that the
temperature of the gas rose by 5.0 °C (an increase equivalent to 5.0 K).



The heat supplied is (55 W) x (120 s) = 6.6 kJ (with 1 J =1 W s), so the
heat capacity of the sample is

€5

6.6k !
ﬁ— L3LJET

Checklist of concepts

]

O O O
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[]
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[]10.

L] 11.
112,

[113.

[114.

. Work is the process of achieving motion against an opposing force.
. Energy is the capacity to do work.

. An exothermic process is a process that releases energy as heat.

. An endothermic process is a process in which energy is acquired as

heat.

. Heat is the process of transferring energy as a result of a temperature

difference.

. In molecular terms, work is the transfer of energy that makes use of

organized motion of atoms in the surroundings and heat is the transfer
of energy that makes use of their disorderly motion.

. Internal energy, the total energy of a system, is a state function.
8. The internal energy increases as the temperature is raised.
. The equipartition theorem can be used to estimate the contribution to

the internal energy of each classically behaving mode of motion.

The First Law states that the internal energy of an isolated system is
constant.

Free expansion (expansion against zero pressure) does no work.

A reversible change is a change that can be reversed by an
infinitesimal change in a variable.

To achieve reversible expansion, the external pressure is matched at
every stage to the pressure of the system.

The energy transferred as heat at constant volume is equal to the
change in internal energy of the system.



] 15. Calorimetry is the measurement of heat transactions.

Checklist of equations

Property Equation Comment Equation
number

First Law of thermodynamics AU=q+  Convention 2A.2
w

Work of expansion dw = 2A.5a
_pexdv

Work of expansion against a w= Dex = 0 for free 2A.6

constant external pressure —PexAV expansion

Reversible work of expansion of =~ w=-nRT  Isothermal, perfect gas 2A.9

a gas In(V¢/Vy)

Internal energy change AU = qy Constant volume, no 2A.11b

other forms of work

Electrical heating q = ItA¢ 2A.13

Heat capacity at constant volume Cy, = (0U/ Definition 2A.14
oT)y

TOPIC 2B Enthalpy

> \Why do you need to know this material?

The concept of enthalpy is central to many thermodynamic discussions about
processes, such as physical transformations and chemical reactions taking
place under conditions of constant pressure.



> \What is the key idea?

A change in enthalpy is equal to the energy transferred as heat at constant
pressure.

> What do you need to know already?

This Topic makes use of the discussion of internal energy (Topic 2A) and
draws on some aspects of perfect gases (Topic 1A).

The change in internal energy is not equal to the energy transferred as heat
when the system is free to change its volume, such as when it is able to
expand or contract under conditions of constant pressure. Under these
circumstances some of the energy supplied as heat to the system is returned
to the surroundings as expansion work (Fig. 2B.1), so dU is less than dq. In
this case the energy supplied as heat at constant pressure is equal to the
change in another thermodynamic property of the system, the ‘enthalpy’.



A

Energy as work

A < g

Energy
as heat

T |

Figure 2B.1 When a system is subjected to constant pressure and is
free to change its volume, some of the energy supplied as heat may
escape back into the surroundings as work. In such a case, the
change in internal energy is smaller than the energy supplied as heat.

2B.1 The definition of enthalpy
The enthalpy, H, is defined as
H=U+pV Enthalpy [definition] (2B.1)

where p is the pressure of the system and V is its volume. Because U, p, and
V are all state functions, the enthalpy is a state function too. As is true of any



state function, the change in enthalpy, AH, between any pair of initial and
final states is independent of the path between them.

(a) Enthalpy change and heat transfer

An important consequence of the definition of enthalpy in eqn 2B.1 is that it
can be shown that the change in enthalpy is equal to the energy supplied as
heat under conditions of constant pressure.

lOALR 1N [o]s[SYaA= Y Deriving the relation between enthalpy
change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common way to
proceed is to introduce successive definitions of the quantities of interest
and then apply the appropriate constraints.

Step 1 Write an expression for H + dH in terms of the definition of H

For a general infinitesimal change in the state of the system, U changes
to U + dU, p changes to p + dp, and V changes to V + dV, so from the
definition in eqn 2B.1, H changes by dH to

H+dH=(U+dU) + (p+dp)(V+dV)
=U+dU+ pV+pdV + Vdp + dpdV

The last term is the product of two infinitesimally small quantities and
can be neglected. Now recognize that U + pV = H on the right (in blue),
ol

H+dH=H+dU + pdV + Vdp
and hence
dH =dU + pdV + Vdp

Step 2 Introduce the definition of dU



Because dU = dq + dw this expression becomes
dH =dq + dw + pdV + Vdp

Step 3 Apply the appropriate constraints

If the system is in mechanical equilibrium with its surroundings at a
pressure p and does only expansion work, then dw = —pdV, which
cancels the other pdV term, leaving

dH =dq + Vdp
At constant pressure, dp = 0, so
dH = dqg (at constant pressure, no additional work)

The constraint of constant pressure is denoted by a p, so this equation
can be written

dH = dq,
Heat transferred at constant pressure [infinitesimal change] (2B.2a)
This
equation states that, provided there is no additional (non-expansion)
work done, the change in enthalpy is equal to the energy supplied as
heat at constant pressure.

Step 4 Evaluate AH by integration

For a measurable change between states i and f along a path at constant
pressure, the preceding expression is integrated as follows

G

jdH jdq

Note that the integral over dq is not written as Aq because g, unlike H, is
not a state function and g; — g; is meaningless. The final result is



) i2B.2k)
AH Gp 1 Heat transferred at
constant prassure
[measurable change)

Brief illustration 2B.1

Water is heated to boiling under a pressure of 1.0 atm. When an electric
current of 0.50 A from a 12 V supply is passed for 300 s through a
resistance in thermal contact with the water, it is found that 0.798 g of
water is vaporized. The enthalpy change is

AH = q, = ItA¢ = (0.50 A) x (300 s) x (12 V)
=0.50 x 300 J x 12
where 1 A V s =1 J. Because 0.798 g of water is (0.798 g)/(18.02 g mol
~1) = (0.798/18.02) mol H,0, the enthalpy of vaporization per mole of
H,O is

~0.50x12x300] .
AH,, = 10798718.02)mol — + 41kJmol

(b) Calorimetry

An enthalpy change can be measured calorimetrically by monitoring the
temperature change that accompanies a physical or chemical change at
constant pressure. A calorimeter for studying processes at constant pressure is
called an isobaric calorimeter. A simple example is a thermally insulated
vessel open to the atmosphere: the energy released as heat in the reaction is
monitored by measuring the change in temperature of the contents. For a
combustion reaction an adiabatic flame calorimeter may be used to



measure AT when a given amount of substance burns in a supply of oxygen
(Fig. 2B.2). The most sophisticated way to measure enthalpy changes,
however, is to use a differential scanning calorimeter (DSC), as explained in
Topic 2C. Changes in enthalpy and internal energy may also be measured by
non-calorimetric methods (Topic 6C).

ﬁ _Gas, vapour
..--"‘"'#/f
f » _Oxygen

)
)

Figure 2B.2 A constant-pressure flame calorimeter consists of this
component immersed in a stirred water bath. Combustion occurs as a
known amount of reactant is passed through to fuel the flame, and the
rise of temperature is monitored.

T——fProducts

@

One route to AH is to measure the internal energy change by using a bomb
calorimeter (Topic 2A), and then to convert AU to AH. Because solids and
liquids have small molar volumes, for them pV_, is so small that the molar

enthalpy and molar internal energy are almost identical (H, = U, + pV ®



U,,)- Consequently, if a process involves only solids or liquids, the values of

AH and AU are almost identical. Physically, such processes are accompanied
by a very small change in volume; the system does negligible work on the
surroundings when the process occurs, so the energy supplied as heat stays
entirely within the system.

SelnlJ Wiz MY Relating AH and AU

The change in molar internal energy when CaCO;(s) as calcite converts

to its polymorph aragonite, is +0.21 kJ mol !. Calculate the difference
between the molar enthalpy and internal energy changes when the
pressure is 1.0 bar. The mass densities of the polymorphs are 2.71 g cm

3 (calcite) and 2.93 g cm 3 (aragonite).

Collect your thoughts The starting point for the calculation is the
relation between the enthalpy of a substance and its internal energy (eqn
2B.1). You need to express the difference between the two quantities in
terms of the pressure and the difference of their molar volumes. The
latter can be calculated from their molar masses, M, and their mass
densities, p, by using p = M/V/,.

The solution The change in enthalpy when the transition occurs is
AH_, = H_(aragonite) — H_(calcite)
=1Un(a) + pV(a)} — {Uy(c) + pVp(c)}
=AUp, + p{Vi(@) = Vi(0)}

where a denotes aragonite and c calcite. It follows by substituting V, =
M/p that

11
p(a) p(c)

Substitution of the data, using M = 100.09 g mol !, gives

AH,~AU, = pM



AH_ — AU, =(1.0x10"Pa)x(100.09gmol ")

1 1
X i =3
2.93gcm 2.71gem
=2 8%10°Pacm’mol™ =—=0.28Pam’ mol™

Hence (because 1 Pa m® = 1J), AH,, — AU, = -0.28 J mol™!, which is
only 0.1 per cent of the value of AU,.

Comment. It is usually justifiable to ignore the difference between the
molar enthalpy and internal energy of condensed phases except at very
high pressures when pAV_, is no longer negligible.

Self-test 2B.1 Calculate the difference between AH and AU when 1.0
mol Sn(s, grey) of density 5.75 g cm > changes to Sn(s, white) of
density 7.31 g cm™ at 10.0 bar.

Answer: AH — AU =-4.4])

In contrast to processes involving condensed phases, the values of the
changes in internal energy and enthalpy might differ significantly for
processes involving gases. The enthalpy of a perfect gas is related to its
internal energy by using pV = nRT in the definition of H:

H=U+pV=U+nRT (2B.3)

This relation implies that the change of enthalpy in a reaction that produces
or consumes gas under isothermal conditions is

AH = AU + AngRT

Relation between AH and AU [isothermal process, perfect gas] (2B.4)
where

An, is the change in the amount of gas molecules in the reaction. For molar



quantities, replace Ang by Av,.

Brief illustration 2B.2

In the reaction 2 H,(g) + Oy(g) — 2 H,0(l), 3 mol of gas-phase
molecules are replaced by 2 mol of liquid-phase molecules, so Ang = -3
mol and Avg = —3. Therefore, at 298 K, when RT = 2.5 kJ mol™}, the

enthalpy and internal energy changes taking place in the system are
related by

AH_, - AU, = (-3) x RT~ 7.5 kJ mol !

Note that the difference is expressed in kilojoules, not joules as in
Example 2B.1. The enthalpy change is smaller than the change in
internal energy because, although energy escapes from the system as
heat when the reaction occurs, the system contracts as the liquid is
formed, so energy is restored to it as work from the surroundings.

2B.2 The variation of enthalpy with temperature

The enthalpy of a substance increases as its temperature is raised. The reason
is the same as for the internal energy: molecules are excited to states of
higher energy so their total energy increases. The relation between the
increase in enthalpy and the increase in temperature depends on the
conditions (e.g. whether the pressure or the volume is constant).

(a) Heat capacity at constant pressure

The most frequently encountered condition in chemistry is constant pressure.
The slope of the tangent to a plot of enthalpy against temperature at constant
pressure is called the heat capacity at constant pressure (or isobaric heat



capacity), C,, at a given temperature (Fig. 2B.3). More formally:

C = ( oH ] Heat capacity at constant pressure [definition] (2B.5)
P\ oT
P

Internal
energy, U

Enthalpy, H

Temperature, T

Figure 2B.3 The constant-pressure heat capacity at a particular
temperature is the slope of the tangent to a curve of the enthalpy of a
system plotted against temperature (at constant pressure). For gases,
at a given temperature the slope of enthalpy versus temperature is
steeper than that of internal energy versus temperature, and C, ., is

larger than C,, ...

The heat capacity at constant pressure is the analogue of the heat capacity at
constant volume (Topic 2A) and is an extensive property. The molar heat
capacity at constant pressure, C, ., is the heat capacity per mole of
substance; it is an intensive property.

The heat capacity at constant pressure relates the change in enthalpy to a
change in temperature. For infinitesimal changes of temperature, eqn 2B.5

implies that



dH = C,dT (at constant pressure) (2B.6a)

If the heat capacity is constant over the range of temperatures of interest, then
for a measurable increase in temperature

n r S
AH=['C,dT=C,[ 'dT=C,(T,~T)

which can be summarized as

AH = C,AT (at constant pressure) (2B.6b)

Because a change in enthalpy can be equated to the energy supplied as heat at
constant pressure, the practical form of this equation is

q, = C,AT (2B.7)

This expression shows how to measure the constant-pressure heat capacity of
a sample: a measured quantity of energy is supplied as heat under conditions
of constant pressure (as in a sample exposed to the atmosphere and free to
expand), and the temperature rise is monitored.

The variation of heat capacity with temperature can sometimes be ignored
if the temperature range is small; this is an excellent approximation for a
monatomic perfect gas (for instance, one of the noble gases at low pressure).
However, when it is necessary to take the variation into account for other
substances, a convenient approximate empirical expression is

C (2B.8)
Cp,m =4+ bT+ F

The empirical parameters a, b, and c are independent of temperature (Table
2B.1) and are found by fitting this expression to experimental data.



Table 2B.1 Temperature variation of molar heat capacities, C, ,/(J K2molt)=a
+bT +cIT*

a b/(103 K™ c/(10° K?)
C(s, graphite) 16.86 4.77 —8.54
CO,(g) 44.22 8.79 -8.62
H,0(1) 75.29 0 0
N,(8) 28.58 3.77 -0.50

* More values are given in the Resource section.

Sl Wi WY Evaluating an increase in enthalpy with

temperature

What is the change in molar enthalpy of N, when it is heated from 25 °C
to 100 °C? Use the heat capacity information in Table 2B.1.

Collect your thoughts The heat capacity of N, changes with

temperature significantly in this range, so you cannot use eqn 2B.6b
(which assumes that the heat capacity of the substance is constant).
Therefore, use eqn 2B.6a, substitute eqn 2B.8 for the temperature
dependence of the heat capacity, and integrate the resulting expression
from 25 °C (298 K) to 100 °C (373 K).

The solution For convenience, denote the two temperatures T; (298 K)
and T, (373 K). The required relation is

Hp, (T;) T C
j dH, =] | a+bT+ 5 |dT

H,, (T;) L



By using Integral A.1 in the Resource section for each term, it follows
that

Hm{'r: } = H

m

(T,)=a(T,~T,)+ 5-5{’!23—3’?23“{ Tl’ ) ilF J

Substitution of the numerical data results in

H_(373 K) = H(298 K) + 2.20 kJ mol ™!

Comment. If a constant heat capacity of 29.14 J] K™! mol™! (the value
given by eqn 2B.8 for T = 298 K) had been assumed, then the difference
between the two enthalpies would have been calculated as 2.19 kJ mol

~1 only slightly different from the more accurate value.

Self-test 2B.2 At very low temperatures the heat capacity of a solid is
proportional to T 3, and Cpm = aT 3, What is the change in enthalpy of
such a substance when it is heated from O to a temperature T (with T
close to 0)?

Answer: AH =Lar

(b) The relation between heat capacities

Most systems expand when heated at constant pressure. Such systems do
work on the surroundings and therefore some of the energy supplied to them
as heat escapes back to the surroundings as work. As a result, the temperature
of the system rises less than when the heating occurs at constant volume. A
smaller increase in temperature implies a larger heat capacity, so in most
cases the heat capacity at constant pressure of a system is larger than its heat
capacity at constant volume. As shown in Topic 2D, there is a simple relation

between the two heat capacities of a perfect gas:



C,~Cy=nR Relation between heat capacities [perfect gas] (2B.9)

It follows that the molar heat capacity of a perfect gas is about 8 J K1 mol™*
larger at constant pressure than at constant volume. Because the molar
constant-volume heat capacity of a monatomic gas is about

%R — 12 ] K_l mol_l (Topic 2A), the difference is highly

significant and must be taken into account. The two heat capacities are
typically very similar for condensed phases, and for them the difference can
normally be ignored.

Checklist of concepts

] 1. Energy transferred as heat at constant pressure is equal to the change
in enthalpy of a system.

| 2. Enthalpy changes can be measured in a constant-pressure calorimeter.

| 3. The heat capacity at constant pressure is equal to the slope of
enthalpy with temperature.

Checklist of equations

Property Equation Comment Equation
number

Enthalpy H=U+  Definition 2B.1

pvV
Heat transfer at constant dH = dqp, No additional work 2B.2
pressure AH = q,
Relation between AH and AH =AU Molar volumes of the participating 2B.4
AU at a temperature T +An,RT  condensed phases are negligible
Heat capacity at constant  C, = (0H/ Definition 2B.5
pressure o7),

Relation between heat C, - Cy= Perfect gas 2B.9



capacities nR

TOPIC 2C Thermochemistry

> \Why do you need to know this material?

Thermochemistry is one of the principal applications of thermodynamics in
chemistry. Thermochemical data provide a way of assessing the heat output
of chemical reactions, including those involved with the combustion of fuels
and the consumption of foods. The data are also used widely in other
chemical applications of thermodynamics.

> What is the key idea?

Reaction enthalpies can be combined to provide data on other reactions of
interest.

> \What do you need to know already?

You need to be aware of the definition of enthalpy and its status as a state
function (Topic 2B). The material on temperature dependence of reaction
enthalpies makes use of information about heat capacities (Topic 2B).

The study of the energy transferred as heat during the course of chemical
reactions is called thermochemistry. Thermochemistry is a branch of
thermodynamics because a reaction vessel and its contents form a system,
and chemical reactions result in the exchange of energy between the system
and the surroundings. Thus calorimetry can be used to measure the energy
supplied or discarded as heat by a reaction, with g identified with a change in
internal energy if the reaction occurs at constant volume (Topic 2A) or with a
change in enthalpy if the reaction occurs at constant pressure (Topic 2B).



Conversely, if AU or AH for a reaction is known, it is possible to predict the
heat the reaction can produce.

As pointed out in Topic 2A, a process that releases energy as heat is
classified as exothermic, and one that absorbs energy as heat is classified as
endothermic. Because the release of heat into the surroundings at constant
pressure signifies a decrease in the enthalpy of a system, it follows that an
exothermic process is one for which AH < 0; such a process is exenthalpic.
Conversely, because the absorption of heat from the surroundings results in
an increase in enthalpy, an endothermic process has AH > 0; such a process is
endenthalpic:

exothermic (exenthalpic) process: AH <0
endothermic (endenthalpic) process: AH > 0

2c.1 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking place under a
set of standard conditions. The standard enthalpy change, 1#*, is the change
in enthalpy for a process in which the initial and final substances are in their
standard states:

The standard state of a substance at a specified temperature is its pure
form at 1 bar.

Specification of standard state

For example, the standard state of liquid ethanol at 298 K is pure liquid
ethanol at 298 K and 1 bar; the standard state of solid iron at 500 K is pure
iron at 500 K and 1 bar. The definition of standard state is more sophisticated
for solutions (Topic 5E). The standard enthalpy change for a reaction or a
physical process is the difference in enthalpy between the products in their
standard states and the reactants in their standard states, all at the same
specified temperature.

An example of a standard enthalpy change is the standard enthalpy of
vaporization, A5, which is the enthalpy change per mole of molecules when
a pure liquid at 1 bar vaporizes to a gas at 1 bar, as in



H,0() = H,0(g) A H (373K) = +40.66 k] mol™

As implied by the examples, standard enthalpies may be reported for any
temperature. However, the conventional temperature for reporting
thermodynamic data is 298.15 K. Unless otherwise mentioned or indicated by
attaching the temperature to 44 all thermodynamic data in this text are for
this conventional temperature.

A note on good practice The attachment of the name of the transition
to the symbol A, as in AyopH, 18 the current convention. However, the

older convention, AH,,,, is still widely used. The current convention is

more logical because the subscript identifies the type of change, not the
physical observable related to the change.

(a) Enthalpies of physical change

The standard molar enthalpy change that accompanies a change of physical
state is called the standard enthalpy of transition and is denoted 4.5 (Table
2C.1). The standard enthalpy of vaporization, =% is one example.
Another is the standard enthalpy of fusion, 2." the standard molar
enthalpy change accompanying the conversion of a solid to a liquid, as in

H,O(s) = HON) A H(273K) =+6.01 k] mol™

Table 2C.1 Standard enthalpies of fusion and vaporization at the transition
temperature*

T¢/K Fusion T/K Vaporization

Ar 83.81  1.188  87.29 6.506
CeHg 27861 1059 3532  30.8

H,0 273.15 6.008 373.15 40.656 (44.016 at 298 K)
He 3.5 0.021 4.22 0.084




* More values are given in the Resource section.

As in this case, it is sometimes convenient to know the standard molar
enthalpy change at the transition temperature as well as at the conventional
temperature of 298 K. The different types of enthalpy changes encountered in
thermochemistry are summarized in Table 2C.2.

Because enthalpy is a state function, a change in enthalpy is independent of
the path between the two states. This feature is of great importance in
thermochemistry, because it implies that the same value of 2#®, will be
obtained however the change is brought about between specified initial and
final states. For example, the conversion of a solid to a vapour can be
pictured either as occurring by sublimation (the direct conversion from solid

to vapour),

H,0() — Hy0(8)  AgpH

Table 2C.2 Enthalpies of reaction and transition

Transition Process Symbol*
Transition Phase a — phase f3 A H
Fusion s — 1 ApsH
Vaporization 1 - g AyapH
Sublimation s - g AgpH
Mixing Pure - mixture AnixH
Solution Solute — solution Aol H
Hydration X*(g) » X*(aq) ApyaH
Atomization  Species(s, 1, g) — atoms(g) AH
Ionization X(g) - X(g) +e™(g) A H

1010



Electron X(g) + e (g) -» X (g) AegH
gain

Reaction Reactants — products AH

Combustion ~ Compound(s, I, g) + O,(g) — CO,(g) + AH
H,0(l, g)

Formation Elements — compound AH

Activation Reactants — activated complex AYH

* JTUPAC recommendations. In common usage, the process subscript is often attached to
AH, as in AH,,; and AH;. All are molar quantities.

IS

or as occurring in two steps, first fusion (melting) and then vaporization of
the resulting liquid:

H,0(s) — H,0(l) AgH
H,0(l) - H,0(8) Ay,H
Overall: H,O(s) — HyO(g) ApH — + Ay H

vap

Because the overall result of the indirect path is the same as that of the direct
path, the overall enthalpy change is the same in each case (1), and (for
processes occurring at the same temperature)

AgpH — =BgH 4 A H (2C.1)



Enthalpy, H

|

S

It follows that, because all enthalpies of fusion are positive, the enthalpy of
sublimation of a substance is greater than its enthalpy of vaporization (at a

given temperature).

Another consequence of H being a state function is that the standard
enthalpy change of a forward process is the negative of its reverse (2):

AH (A -B)=-AH (A < B)

>

(2C.2)

AH®(A—B)

N
Enthalpy, H

AH®(A«B)

vy A

For instance, because the enthalpy of vaporization of water is +44 kJ mol ! at
298 K, the enthalpy of condensation of water vapour at that temperature is



—44 kJ mol L.

(b) Enthalpies of chemical change

There are two ways of reporting the change in enthalpy that accompanies a
chemical reaction. One is to write the thermochemical equation, a
combination of a chemical equation and the corresponding change in
standard enthalpy:

CH,4(g) + 2 Ox(g) - CO,(g) + 2 H,O(g) AH =-890 kJ

AH is the change in enthalpy when reactants in their standard states
change to products in their standard states:

Pure, separate reactants in their standard states — pure, separate products
in their standard states

Except in the case of ionic reactions in solution, the enthalpy changes
accompanying mixing and separation are insignificant in comparison with the
contribution from the reaction itself. For the combustion of methane, the
standard value refers to the reaction in which 1 mol CH, in the form of pure

methane gas at 1 bar reacts completely with 2 mol O, in the form of pure
oxygen gas to produce 1 mol CO, as pure carbon dioxide at 1 bar and 2 mol
H,O as pure liquid water at 1 bar; the numerical value quoted is for the
reaction at 298.15 K.

Alternatively, the chemical equation is written and the standard reaction
enthalpy, A H (or ‘standard enthalpy of reaction’) reported. Thus, for
the combustion of methane at 298 K, write

CH/(g) + 2 O5(g) —» COx(g) +2 H,0(1) A.H =—-890 kJ mol !

For a reaction of the form 2 A + B - 3 C + D the standard reaction enthalpy
would be

AH"={3H (C)+H.(D)}-{2H

1

=

(A) + H,(B)}

I 111



where H _(]) is the standard molar enthalpy of species J at the temperature of

interest. Note how the ‘per mole’ of A.H comes directly from the fact
that molar enthalpies appear in this expression. The ‘per mole’ is interpreted
by noting the stoichiometric coefficients in the chemical equation. In this
case, ‘per mole’ in A.H means ‘per 2 mol A’, ‘per mol B’, ‘per 3 mol
C’, or ‘per mol D’. In general,

AH° =) VvH, - ) VH.
Products Reactants

Standard reaction enthalpy [definition] (2C.3)

where in each case the molar enthalpies of the species are multiplied by their
(dimensionless and positive) stoichiometric coefficients, v. This formal
definition is of little practical value, however, because the absolute values of
the standard molar enthalpies are unknown; this problem is overcome by
following the techniques of Section 2C.2a.

Some standard reaction enthalpies have special names and significance.
For instance, the standard enthalpy of combustion, A H , is the

standard reaction enthalpy for the complete oxidation of an organic
compound to CO, gas and liquid H,O if the compound contains C, H, and O,

and to N, gas if N is also present.

Brief illustration 2C.1

The combustion of glucose is
CeH1506(s) + 6 O5(8) — 6 CO,(g) + 6 HyO(l)
AH = —2808 kJ mol !

The value quoted shows that 2808 kJ of heat is released when 1 mol
CgH,0g burns under standard conditions (at 298 K). More values are




given in Table 2C.3.

Table 2C.3 Standard enthalpies of formation and combustion of organic
compounds at 298 K*

AH /(kJmol™!) AH /(kJ mol™1)

Benzene, CgHg(1) +49.0 —-3268
Ethane, C,Hg(g) -84.7 ~1560
Glucose, CgH,0q4(s)  —1274 —2808
Methane, CH,(g) ~74.8 -890
Methanol, CH;OH(I) —-238.7 -721

* More values are given in the Resource section.

(c) Hess’s law

Standard reaction enthalpies can be combined to obtain the value for another
reaction. This application of the First Law is called Hess’s law:

The standard reaction enthalpy is the sum of the values for the individual
reactions into which the overall reaction may be divided.

Hess’s law

The individual steps need not be realizable in practice: they may be
‘hypothetical’ reactions, the only requirement being that their chemical
equations should balance. The thermodynamic basis of the law is the path-



independence of the value of A\H . The importance of Hess’s law is that

information about a reaction of interest, which may be difficult to determine
directly, can be assembled from information on other reactions.

Sl d-wiel Using Hess’s law

The standard reaction enthalpy for the hydrogenation of propene,

CH,=CHCH;(g) + Hy(g) —~ CH3CH,CH;(g)

is =124 kJ mol~!. The standard reaction enthalpy for the combustion of
propane,

CH,CH,CH,(g) + 5 05(g) — 3 CO,(g) + 4 H,0())

is =2220 kJ mol~!. The standard reaction enthalpy for the formation of
water,

Hy(g) + 3 Ox(g) ~ H0()

is —286 kJ mol~!. Calculate the standard enthalpy of combustion of
propene.

Collect your thoughts The skill you need to develop is the ability to
assemble a given thermochemical equation from others. Add or subtract
the reactions given, together with any others needed, so as to reproduce
the reaction required. Then add or subtract the reaction enthalpies in the
same way.

The solution The combustion reaction is

C,Hq(g) + % O,(g) — 3CO,(g) + 3H,0(])

This reaction can be recreated from the following sum:




AH  /(kJ mol

-1
)
C3Hg(g) + Hy(g) — C3Hg(g) ~124
C3Hg(g) + 5 0,(g) - 3 COy(g) + 4 ~2220
H,O(1)
H,0(l) — Hy(g) + + Oy(g) +286
C3Hg(g) + 30,(8) - 3CO,(g) +3 -2058
H,0(1)

Self-test 2C.1 Calculate the standard enthalpy of hydrogenation of
liquid benzene from its standard enthalpy of combustion (—3268 kJ mol

1) and the standard enthalpy of combustion of liquid cyclohexane
(-3920 kJ mol ™).

Answer: —206 kJ mol™!

2c.2 Standard enthalpies of formation

The standard enthalpy of formation, AH , of a substance is the

standard reaction enthalpy for the formation of the compound from its
elements in their reference states:

The reference state of an element is its most stable state at the specified
temperature and 1 bar.

Specification of reference state

For example, at 298 K the reference state of nitrogen is a gas of N,

molecules, that of mercury is liquid mercury, that of carbon is graphite, and
that of tin is the white (metallic) form. There is one exception to this general



prescription of reference states: the reference state of phosphorus is taken to
be white phosphorus despite this allotrope not being the most stable form but
simply the most reproducible form of the element. Standard enthalpies of
formation are expressed as enthalpies per mole of molecules or (for ionic
substances) formula units of the compound. The standard enthalpy of
formation of liquid benzene at 298 K, for example, refers to the reaction

6 C(s,graphite) + 3 H,(g) —» CgHg(1)

and is +49.0 kJ mol~!. The standard enthalpies of formation of elements in
their reference states are zero at all temperatures because they are the
enthalpies of such ‘null’ reactions as N,(g) — N,(g). Some enthalpies of
formation are listed in Tables 2C.4 and 2C.5 and a much longer list will be
found in the Resource section.

The standard enthalpy of formation of ions in solution poses a special
problem because it is not possible to prepare a solution of either cations or
anions alone. This problem is overcome by defining one ion, conventionally
the hydrogen ion, to have zero standard enthalpy of formation at all
temperatures:

AH (H",aq) =0 lons in solution [convention] (2C.4)

Brief illustration 2C.2

If the enthalpy of formation of HBr(aq) is found to be —122 kJ mol !,
then the whole of that value is ascribed to the formation of Br~(aq), and

AH (Br-,aq) = —122 kJ mol~!. That value may then be combined
with, for instance, the enthalpy of formation of AgBr(aq) to determine

the value of AH (Ag",aq), and so on. In essence, this definition
adjusts the actual values of the enthalpies of formation of ions by a fixed

value, which is chosen so that the standard value for one of them, H*
(aq), is zero.




Conceptually, a reaction can be regarded as proceeding by decomposing
the reactants into their elements in their reference states and then forming

those elements into the products. The value of AH for the overall

reaction is the sum of these ‘unforming’ and forming enthalpies. Because
‘unforming’ is the reverse of forming, the enthalpy of an unforming step is
the negative of the enthalpy of formation (3). Hence, in the enthalpies of
formation of substances, there is enough information to calculate the enthalpy
of any reaction by using

Table 2C.4 Standard enthalpies of formation of inorganic compounds at 298 K*

AH /(kJ mol™1)

H,O0() —-285.83
H,0(g) —-241.82
NH;(g) -46.11
N,H,(1) +50.63
NO,(g) +33.18
N,O,(g8) +9.16
NaCl(s) -411.15
KClI(s) —-436.75

* More values are given in the Resource section.

Table 2C.5 Standard enthalpies of formation of organic compounds at 298 K*

AH /(kJ mol™1)



CHy(g) ~74.81

CeHe() +49.0
CeH (D) 156
CH,0H()) ~238.66
CH,CH,OH(l) ~277.69

* More values are given in the Resource section.

AH® =Y VvAH®

Products
L=
Reactants
Standard reaction enthalpy [practical implementation] (2C.5a)
A = Elements

Reactants

Enthalpy, H

A H®
IProdu*::.’[s y

where in each case the enthalpies of formation of the species that occur are
multiplied by their stoichiometric coefficients. This procedure is the practical
implementation of the formal definition in eqn 2C.3. A more sophisticated




way of expressing the same result is to introduce the stoichiometric
numbers v; (as distinct from the stoichiometric coefficients) which are

positive for products and negative for reactants. Then

ArHe - zv]AfHa(D (2C.5b)
J

Stoichiometric numbers, which have a sign, are denoted v; or v(J).

Stoichiometric coefficients, which are all positive, are denoted simply v (with
no subscript).

Brief illustration 2C.3

According to eqn 2C.5a, the standard enthalpy of the reaction 2 HN;(1) +
2 NO(g) — H,0,(1) + 4 N,(g) is calculated as follows:

AH = {AH - (H0,1) + 40H  (Np,8)} — {2AH
(HN3,) +2AH  (NO,g)}

= {-187.78 + 4(0)} kJ mol ™! - {2(264.0) + 2(90.25)} kJ mol !

= -896.3 kJ mol !

To use eqn 2C.5b, identify v(HN;) = -2, v(NO) = -2, v(H,0,) = +1, and
v(N,) = +4, and then write

AH  =AH  (H,0,) +4AH  (Npg) - 2AH  (HNa,))
~20H  (NO,g)

which gives the same result.




2C.3 The temperature dependence of reaction
enthalpies

Many standard reaction enthalpies have been measured at different
temperatures. However, in the absence of this information, standard reaction
enthalpies at different temperatures can be calculated from heat capacities
and the reaction enthalpy at some other temperature (Fig. 2C.1). In many
cases heat capacity data are more accurate than reaction enthalpies.
Therefore, providing the information is available, the procedure about to be
described is more accurate than the direct measurement of a reaction enthalpy
at an elevated temperature.

It follows from eqn 2B.6a (dH = C,dT) that, when a substance is heated

from T, to T,, its enthalpy changes from H(T,) to

(2C.6)

I
H(T,)=H(T,)+ | 'C,dT

(It has been assumed that no phase transition takes place in the temperature
range of interest.) Because this equation applies to each substance in the

reaction, the standard reaction enthalpy changes from A .H (Ty) to

T 2
AH(T,) = AH(T)+| 'AC,dT

Kirchhoff's law (2C.7a)

where A,C;© is the difference of the molar heat capacities of products and

reactants under standard conditions weighted by the stoichiometric
coefficients that appear in the chemical equation:



o o o (2C.7b)
A= Z vC, . Z vC,

Products Reactants
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T Prﬂductﬁ,_x* A HA(T,)
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Figure 2C.1 When the temperature is increased, the enthalpy of the
products and the reactants both increase, but may do so to different
extents. In each case, the change in enthalpy depends on the heat
capacities of the substances. The change in reaction enthalpy reflects
the difference in the changes of the enthalpies of the products and
reactants.

or, in the notation of eqn 2C.5b,
e =2 (2C.7¢)
AFCP o zvlcp,m (J)
J

Equation 2C.7a is known as Kirchhoff’s law. It is normally a good
approximation to assume that 4¢; is independent of the temperature, at least



over reasonably limited ranges. Although the individual heat capacities might
vary, their difference varies less significantly. In some cases the temperature
dependence of heat capacities is taken into account by using eqn 2C.7a. If ac;
is largely independent of temperature in the range T, to T,, the integral in eqn

2C.7a evaluates to (T, — T;)A<; and that equation becomes

AH"(T,)=AH (T))+AC,(T,—-T)

Integrated form of Kirchhoff's law (2C.7d)

Sl d-wiewy Using Kirchhoff's law

The standard enthalpy of formation of H,O(g) at 298 K is —241.82 kJ

mol~!. Estimate its value at 100 °C given the following values of the
molar heat capacities at constant pressure: H,0(g): 33.58 J K™! mol!;

H,(g): 28.84 J K! mol™!; Oy(g): 29.37 J K! mol™!. Assume that the
heat capacities are independent of temperature.

Collect your thoughts When a¢; is independent of temperature in the
range T; to T,, you can use the integrated form of the Kirchhoff

equation, eqn 2C.7d. To proceed, write the chemical equation, identify
the stoichiometric coefficients, and calculate 4.c; from the data.

The solution The reaction is H,(g) + +0,(g) — H,0(g), so

ACS = Cs.(H,0,8) - {C,.(H,,8) + 1 C .(0,.2)}

pom Fm pm

=—-9.94]JK " 'mol”
It then follows that

AH (373 K)=-241.82 kI mol™! + (75 K) x (-9.94 J K! mol™!)
= —242.6 kJ mol !



Self-test 2C.2 Estimate the standard enthalpy of formation of
cyclohexane, CcH,(1), at 400 K from the data in Table 2C.5 and heat

capacity data given in the Resource section.

Answer: —163 kJ mol™!

2C.4 Experimental techniques

The classic tool of thermochemistry is the calorimeter (Topics 2A and 2B).
However, technological advances have been made that allow measurements
to be made on samples with mass as little as a few milligrams.

(a) Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy transferred
as heat to or from a sample at constant pressure during a physical or chemical
change. The term ‘differential’ refers to the fact that measurements on a
sample are compared to those on a reference material that does not undergo a
physical or chemical change during the analysis. The term ‘scanning’ refers
to the fact that the temperatures of the sample and reference material are
increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated electrically at a
constant rate. The temperature, T, at time ¢ during a linear scan is T = T, + at,
where T, is the initial temperature and « is the scan rate. A computer controls
the electrical power supply that maintains the same temperature in the sample
and reference compartments throughout the analysis (Fig. 2C.2).

If no physical or chemical change occurs in the sample at temperature T,
the heat transferred to the sample is written as q, = C,AT, where AT =T - T
and C,, is assumed to be independent of temperature. Because T = T, + at, it

follows that AT = at. If a chemical or physical process takes place, the energy
required to be transferred as heat to attain the same change in temperature of
the sample as the control is g, + g, ox-



The quantity g, ., is interpreted in terms of an apparent change in the heat
capacity at constant pressure, from C, to C, + C, ., of the sample during the
temperature scan:

qﬂ.ﬂ

G cdm e E

LS T Fﬂ [2C.8)
where P, = g/t is the excess electrical power necessary to equalize the

temperature of the sample and reference compartments. A DSC trace, also
called a thermogram, consists of a plot of C, ., against T (Fig. 2C.3). The

enthalpy change associated with the process is

Thermocouples

Reference

Heaters

Figure 2C.2 A differential scanning calorimeter. The sample and a
reference material are heated in separate but identical metal heat
sinks. The output is the difference in power needed to maintain the
heat sinks at equal temperatures as the temperature rises.
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Figure 2C.3 A thermogram for the protein ubiquitin at pH = 2.45. The
protein retains its native structure up to about 45 °C and then
undergoes an endothermic conformational change. (Adapted from B.
Chowdhry and S. LeHarne, J. Chem. Educ. 74, 236 (1997).)

(2C.9)

AH=[C, . dT

where T; and T, are, respectively, the temperatures at which the process

begins and ends. This relation shows that the enthalpy change is equal to the
area under the plot of C, ., against T.

(b) Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) is also a ‘differential’ technique in



which the thermal behaviour of a sample is compared with that of a reference.
The apparatus is shown in Fig. 2C.4. One of the thermally conducting
vessels, which have a volume of a few cubic centimetres, contains the
reference (water for instance) and a heater rated at a few milliwatts. The
second vessel contains one of the reagents, such as a solution of a
macromolecule with binding sites; it also contains a heater. At the start of the
experiment, both heaters are activated, and then precisely determined
amounts (of volume of about a cubic millimetre) of the second reagent are
added to the reaction cell. The power required to maintain the same
temperature differential with the reference cell is monitored. If the reaction is
exothermic, less power is needed; if it is endothermic, then more power must
be supplied.

Injector

Reference Sample
cell cell

Heater Heater

—

Temperature comparison

Figure 2C.4 A schematic diagram of the apparatus used for



isothermal titration calorimetry.
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Figure 2C.5 (a) The record of the power applied as each injection is
made, and (b) the sum of successive enthalpy changes in the course
of the titration.

A typical result is shown in Fig. 2C.5, which shows the power needed to
maintain the temperature differential: from the power and the length of time,
At, for which it is supplied, the heat supplied, g;, for the injection i can be

calculated from q; = P;At. If the volume of solution is V and the molar
concentration of unreacted reagent A is c; at the time of the ith injection, then
the change in its concentration at that injection is Ac; and the heat generated
(or absorbed) by the reaction is VA.HAc; = q;. The sum of all such quantities,
given that the sum of Ac; is the known initial concentration of the reactant,
can then be interpreted as the value of A H for the reaction.



Checklist of concepts

] 1.

The standard enthalpy of transition is equal to the energy
transferred as heat at constant pressure in the transition under standard
conditions.

. The standard state of a substance at a specified temperature is its

pure form at 1 bar.

. A thermochemical equation is a chemical equation and its associated

change in enthalpy.

. Hess’s law states that the standard reaction enthalpy is the sum of the

values for the individual reactions into which the overall reaction may
be divided.

. Standard enthalpies of formation are defined in terms of the

reference states of elements.

. The reference state of an element is its most stable state at the

specified temperature and 1 bar.

. The standard reaction enthalpy is expressed as the difference of the

standard enthalpies of formation of products and reactants.

. The temperature dependence of a reaction enthalpy is expressed by

Kirchhoff’s law.

Checklist of equations

Property Equation Comment Equation

number

The standard A " = Z vaA H™ - E vA I~ v:stoichiometric ~ 2C.5

reaction Prodducts Ririctants coefficients;

enthalpy v;: (signed)
stoichiometric
numbers

AH® =Y v,AH ()
|



Kirchhoff’s Al 1% jl_::l =4 q'."l._.ll'f-_[ T )+ J g A r{_‘ dT 2C.7a
law 1 J
= . = 2C.7c
‘&I‘CP o Z Vicp,m (J)
J

AHNT)=AHT)+(T,-T)ac, If &,_C;f 2C.7d
independent of
temperature

TOPIC 2D State functions and exact
differentials

> \Why do you need to know this material?

Thermodynamics has the power to provide relations between a variety of
properties. This Topic introduces its key procedure, the manipulation of
equations involving state functions.

> What is the key idea?

The fact that internal energy and enthalpy are state functions leads to
relations between thermodynamic properties.

> \What do you need to know already?

You need to be aware that the internal energy and enthalpy are state
functions (Topics 2B and 2C) and be familiar with the concept of heat
capacity. You need to be able to make use of several simple relations
involving partial derivatives (The chemist’s toolkit 9 in Topic 2A).



A state function is a property that depends only on the current state of a
system and is independent of its history. The internal energy and enthalpy are
two examples. Physical quantities with values that do depend on the path
between two states are called path functions. Examples of path functions are
the work and the heating that are done when preparing a state. It is not
appropriate to speak of a system in a particular state as possessing work or
heat. In each case, the energy transferred as work or heat relates to the path
being taken between states, not the current state itself.

A part of the richness of thermodynamics is that it uses the mathematical
properties of state functions to draw far-reaching conclusions about the
relations between physical properties and thereby establish connections that
may be completely unexpected. The practical importance of this ability is the
possibility of combining measurements of different properties to obtain the
value of a desired property.

2D.1 Exact and inexact differentials

Consider a system undergoing the changes depicted in Fig. 2D.1. The initial
state of the system is i and in this state the internal energy is U;. Work is done

by the system as it expands adiabatically to a state f. In this state the system
has an internal energy U; and the work done on the system as it changes

along Path 1 from i to f is w. Notice the use of language: U is a property of
the state; w is a property of the path. Now consider another process, Path 2, in
which the initial and final states are the same as those in Path 1 but in which
the expansion is not adiabatic. The internal energy of both the initial and the
final states are the same as before (because U is a state function). However, in
the second path an energy g’ enters the system as heat and the work w' is not
the same as w. The work and the heat are path functions.
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Figure 2D.1 As the volume and temperature of a system are changed,
the internal energy changes. An adiabatic and a non-adiabatic path
are shown as Path 1 and Path 2, respectively: they correspond to
different values of g and w but to the same value of AU.

If a system is taken along a path (e.g. by heating it), U changes from U; to
Ui, and the overall change is the sum (integral) of all the infinitesimal
changes along the path:

f}.U=J.rdU (2D.1)

The value of AU depends on the initial and final states of the system but is
independent of the path between them. This path-independence of the integral
is expressed by saying that dU is an ‘exact differential’. In general, an exact
differential is an infinitesimal quantity that, when integrated, gives a result
that is independent of the path between the initial and final states.

When a system is heated, the total energy transferred as heat is the sum of



all individual contributions at each point of the path:

f 2D.2

q=)  dq (20-2)
i,path

Notice the differences between this equation and eqn 2D.1. First, the result of

integration is g and not Aqg, because g is not a state function and the energy

supplied as heat cannot be expressed as q; — q;. Secondly, the path of

integration must be specified because q depends on the path selected (e.g. an
adiabatic path has g = 0, whereas a non-adiabatic path between the same two
states would have g # 0). This path dependence is expressed by saying that dq
is an ‘inexact differential’. In general, an inexact differential is an
infinitesimal quantity that, when integrated, gives a result that depends on the
path between the initial and final states. Often dq is written dq to emphasize
that it is inexact and requires the specification of a path.

The work done on a system to change it from one state to another depends
on the path taken between the two specified states. For example, in general
the work is different if the change takes place adiabatically and non-
adiabatically. It follows that dw is an inexact differential. It is often written
dw.

Sl ikl Calculating work, heat, and change in internal
energy

Consider a perfect gas inside a cylinder fitted with a piston. Let the
initial state be T,V; and the final state be T,V;. The change of state can be

brought about in many ways, of which the two simplest are the
following:

* Path 1, in which there is free expansion against zero external
pressure;

* Path 2, in which there is reversible, isothermal expansion.
Calculate w, g, and AU for each process.

Collect your thoughts To find a starting point for a calculation in
thermodynamics, it is often a good idea to go back to first principles and



to look for a way of expressing the quantity to be calculated in terms of
other quantities that are easier to calculate. It is argued in Topic 2B that
the internal energy of a perfect gas depends only on the temperature and
is independent of the volume those molecules occupy, so for any
isothermal change, AU = 0. Also, AU = q + w in general. To solve the
problem you need to combine the two expressions, selecting the
appropriate expression for the work done from the discussion in Topic
2A.

The solution Because AU = 0 for both paths and AU = g + w, in each
case g = —w. The work of free expansion is zero (eqn 2A.7 of Topic 2A,
w = 0); so in Path 1, w = 0 and therefore g = 0 too. For Path 2, the work
is given by eqn 2A.9 of Topic 2A (w = —nRT In(V{/V;)) and consequently

q = nRT In(V¢V).

Self-test 2D.1 Calculate the values of g, w, and AU for an irreversible
isothermal expansion of a perfect gas against a constant non-zero
external pressure.

Answer: q = p.,AV,w=-p, AV, AU=0

2D.2 Changes in internal energy

Consider a closed system of constant composition (the only type of system
considered in the rest of this Topic). The internal energy U can be regarded as
a function of V, T, and p, but, because there is an equation of state that relates
these quantities (Topic 1A), choosing the values of two of the variables fixes
the value of the third. Therefore, it is possible to write U in terms of just two
independent variables: V and T, p and T, or p and V. Expressing U as a
function of volume and temperature turns out to result in the simplest

expressions.

(a) General considerations



Because the internal energy is a function of the volume and the temperature,
when these two quantities change, the internal energy changes by

oU U
dU = NV TdVJr 5T dT

General expression for a change in U with Tand vV (2D.3)

The interpretation of this equation is that, in a closed system of constant
composition, any infinitesimal change in the internal energy is proportional to
the infinitesimal changes of volume and temperature, the coefficients of
proportionality being the two partial derivatives (Fig. 2D.2).

Internal energy, U

dU

U+
dV |+

dV+ [ ) dT
dT

Temperature, T

Figure 2D.2 An overall change in U, which is denoted dU, arises



when both V and T are allowed to change. If second-order
infinitesimals are ignored, the overall change is the sum of changes
for each variable separately.
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Figure 2D.3 The internal pressure, 11, is the slope of U with respect
to V with the temperature T held constant.

In many cases partial derivatives have a straightforward physical
interpretation, and thermodynamics gets shapeless and difficult only when
that interpretation is not kept in sight. The term (0U/0T)y, occurs in Topic 2A,

as the constant-volume heat capacity, Cy. The other coefficient, (0U/0V)r ,
denoted 7y, plays a major role in thermodynamics because it is a measure of

the variation of the internal energy of a substance as its volume is changed at
constant temperature (Fig. 2D.3). Because n; has the same dimensions as

pressure but arises from the interactions between the molecules within the



sample, it is called the internal pressure:

=

U Internal pressure [definition] (2D.4)
oV "

In terms of the notation Cy, and nry, eqn 2D.3 can now be written
dU = ndV + C\dT (2D.5)

It is shown in Topic 3D that the statement ri = O (i.e. the internal energy is

independent of the volume occupied by the sample) can be taken to be the
definition of a perfect gas, because it implies the equation of state pV o< T. In
molecular terms, when there are no interactions between the molecules, the
internal energy is independent of their separation and hence independent of
the volume of the sample and ni = 0. If the gas is described by the van der

Waals equation with a, the parameter corresponding to attractive interactions,
dominant, then an increase in volume increases the average separation of the
molecules and therefore raises the internal energy. In this case, it is expected
that > 0 (Fig. 2D.4). This expectation is confirmed in Topic 3D, where it is

shown that ;= na/V?2.
James Joule thought that he could measure 71 by observing the change in

temperature of a gas when it is allowed to expand into a vacuum. He used
two metal vessels immersed in a water bath (Fig. 2D.5). One was filled with
air at about 22 atm and the other was evacuated. He then tried to measure the
change in temperature of the water of the bath when a stopcock was opened
and the air expanded into a vacuum. He observed no change in temperature.
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Volume, V

Figure 2D.4 For a perfect gas, the internal energy is independent of
the volume (at constant temperature). If attractions are dominant in a
real gas, the internal energy increases with volume because the
molecules become farther apart on average. If repulsions are
dominant, the internal energy decreases as the gas expands.

The thermodynamic implications of the experiment are as follows. No
work was done in the expansion into a vacuum, so w = 0. No energy entered
or left the system (the gas) as heat because the temperature of the bath did not
change, so g = 0. Consequently, within the accuracy of the experiment, AU =
0. Joule concluded that U does not change when a gas expands isothermally
and therefore that m; = 0. His experiment, however, was crude. The heat

capacity of the apparatus was so large that the temperature change, which
would in fact occur for a real gas, is simply too small to measure. Joule had
extracted an essential limiting property of a gas, a property of a perfect gas,
without detecting the small deviations characteristic of real gases.



High pressure
gas

Figure 2D.5 A schematic diagram of the apparatus used by Joule in
an attempt to measure the change in internal energy when a gas
expands isothermally. The heat absorbed by the gas is proportional to
the change in temperature of the bath.

(b) Changes in internal energy at constant
pressure

Partial derivatives have many useful properties and some are reviewed in The
chemist’s toolkit 9 of Topic 2A. Skilful use of them can often turn some
unfamiliar quantity into a quantity that can be recognized, interpreted, or
measured.

As an example, to find how the internal energy varies with temperature
when the pressure rather than the volume of the system is kept constant,
begin by dividing both sides of eqn 2D.5 by dT. Then impose the condition of
constant pressure on the resulting differentials, so that dU/dT on the left



becomes (0U/OT)),. At this stage the equation becomes

oU oV
ﬁ =TT W <} CV

P p

As already emphasized, it is usually sensible in thermodynamics to inspect
the output of a manipulation to see if it contains any recognizable physical
quantity. The partial derivative on the right in this expression is the slope of
the plot of volume against temperature (at constant pressure). This property is
normally tabulated as the expansion coefficient, a, of a substance, which is
defined as

_ 1oV Expansion coefficient [definition] (2D.6)

=v| T

F

and physically is the fractional change in volume that accompanies a rise in
temperature. A large value of a means that the volume of the sample
responds strongly to changes in temperature. Table 2D.1 lists some

experimental values of a. For future reference, it also lists the isothermal
compressibility, k7 (kappa), which is defined as

1(dV
Vi{adp 3

Isothermal compressibility [definition] (2D.7)
The isothermal compressibility is
a measure of the fractional change in volume when the pressure is increased;
the negative sign in the definition ensures that the compressibility is a
positive quantity, because an increase of pressure, implying a positive dp,
brings about a reduction of volume, a negative dV.

KT=_



Table 2D.1 Expansion coefficients (a) and isothermal compressibilities (k;) at
298 K*

a/(1074 K™ k/(107° bar™)
Liquids:
Benzene 124 90.9
Water 2.1 49.0
Solids:
Diamond 0.030 0.185
Lead 0.861 2.18

* More values are given in the Resource section.

Sl -y Calculating the expansion coefficient of a gas
Derive an expression for the expansion coefficient of a perfect gas.

Collect your thoughts The expansion coefficient is defined in eqn
2D.6. To use this expression, you need to substitute the expression for V
in terms of T obtained from the equation of state for the gas. As implied
by the subscript in eqn 2D.6, the pressure, p, is treated as a constant.

The solution Because pV = nRT, write

=

(ov=nAT) (v
pV¥=nRT | pV=nRk
LS i LY 4

_1{aV ) Y 1(d(nRT/p) _IHHR_HRI nR 1
=T\ ) "V B i R . e
(5 P

The physical interpretation of this result is that the higher the



temperature, the less responsive is the volume of a perfect gas to a
change in temperature.

Self-test 2D.2 Derive an expression for the isothermal compressibility
of a perfect gas.

Answer: kr=1/p

Introduction of the definition of a into the equation for (0U/0T), gives

(2D.8)
3—[,; =on,.V+C,

p

This equation is entirely general (provided the system is closed and its
composition is constant). It expresses the dependence of the internal energy
on the temperature at constant pressure in terms of Cy, which can be

measured in one experiment, in terms of «, which can be measured in
another, and in terms of the internal pressure r;. For a perfect gas, iy = 0, so

then

U\ (2D.9)
#)-

That is, although the constant-volume heat capacity of a perfect gas is defined
as the slope of a plot of internal energy against temperature at constant
volume, for a perfect gas Cy, is also the slope of a plot of internal energy
against temperature at constant pressure.

Equation 2D.9 provides an easy way to derive the relation between C, and
Cy for a perfect gas (they differ, as explained in Topic 2B, because some of

the energy supplied as heat escapes back into the surroundings as work of
expansion when the volume is not constant). First, write



Definition
of C; eqn2D.9
0H U
oT oT
p p

Then introduce H = U + pV = U + nRT into the first term and obtain

C—C d(U+nRT) oU
p TV oT oT
p P
(2D.10)
The general result for any substance (the proof makes use of the

Second Law, which is introduced in FOCUS 3) is

TV (2D.11)
K

i I

C,—C, =

=nR

C,—C, =

This relation reduces to eqn 2D.10 for a perfect gas when o = 1/T and Ky
=1/p. Because expansion coefficients a of liquids and solids are small, it is
tempting to deduce from eqn 2D.11 that for them C, ~ Cy. But this is not
always so, because the compressibility k; might also be small, so a®/k might

be large. That is, although only a little work need be done to push back the
atmosphere, a great deal of work may have to be done to pull atoms apart
from one another as the solid expands.

Brief illustration 2D.1

The expansion coefficient and isothermal compressibility of water at 25




°C are given in Table 2D.1 as 2.1 x 107 K™! and 49.0 x 107® bar!
(4.90 x 10719 Pa™1), respectively. The molar volume of water at that
temperature, V., = M/p (where p is the mass density), is 18.1 cm? mol !

(1.81 x 107> m3 mol™1). Therefore, from eqn 2D.11, the difference in
molar heat capacities (which is given by using V, in place of V) is

C —C (21107 K™ ) x(298K)%(1.81%10° m” mol ')
pam Y.m o~ 49“3’{1{.}”} Pa-J

=0.485Pam’K ' mol™” =0.485]K ' mol™’

For water, C,, , = 75.3J K™' mol ™}, so Cy, = 74.8 J K™' mol ™. In some
cases, the two heat capacities differ by as much as 30 per cent.

2D.3 Changes in enthalpy

A similar set of operations can be carried out on the enthalpy, H= U + pV.
The quantities U, p, and V are all state functions; therefore H is also a state
function and dH is an exact differential. It turns out that H is a useful
thermodynamic function when the pressure can be controlled: a sign of that is
the relation AH = q,, (eqn 2B.2b). Therefore, H can be regarded as a function

of p and T, and the argument in Section 2D.2 for the variation of U can be
adapted to find an expression for the variation of H with temperature at

constant volume.

AR (IR [e]s [P Deriving an expression for the variation
of enthalpy with pressure and temperature

Consider a closed system of constant composition. Because H is a
function of p and T, when these two quantities change by an
infinitesimal amount, the enthalpy changes by



oH oH
dH = W po+ W pdT

The second partial derivative is C,. The task at hand is to express (OH/

op)r in terms of recognizable quantities. If the enthalpy is constant, then
dH =0 and

H
a5 dp=-C,dT atconstant H

apT

Division of both sides by dp then gives

0H dT
Jp T:_CP dp H:_Cpiu

where the Joule-Thomson coefficient, 1 (mu), is defined as

oT Joule-Thomson coefficient [definition] (2D.12)
<ol s v
p H
It follows that

dH = -uC,dp + C,dT
The variation of enthalpy with temperature and pressure (2D.13)

Brief illustration 2D.2




The Joule-Thomson coefficient for nitrogen at 298 K and 1 atm (Table

2D.2) is +0.27 K bar~!. (Note that y is an intensive property.) It follows
that the change in temperature the gas undergoes when its pressure
changes by —10 bar under isenthalpic conditions is

AT =~ puAp = +(0.27 K bar 1)x(-10 bar)= -2.7K

Table 2D.2 Inversion temperatures (T,), normal freezing (T¢) and boiling (T})
points, and Joule—Thomson coefficients (u) at 1 atm and 298 K*

T/K T/K T, /K /(K atm™)
Ar 723 83.8 87.3
co, 1500 194.7 +1.10 +1.11 at 300 K
He 40 4.2 4.22 ~0.062
N, 621 63.3 77.4 +0.27

* More values are given in the Resource section.

2D.4 The Joule-Thomson effect

The analysis of the Joule-Thomson coefficient is central to the technological
problems associated with the liquefaction of gases. To determine the
coefficient, it is necessary to measure the ratio of the temperature change to
the change of pressure, AT/Ap, in a process at constant enthalpy. The cunning
required to impose the constraint of constant enthalpy, so that the expansion
is isenthalpic, was supplied by James Joule and William Thomson (later
Lord Kelvin). They let a gas expand through a porous barrier from one



constant pressure to another and monitored the difference of temperature that
arose from the expansion (Fig. 2D.6). The change of temperature that they
observed as a result of isenthalpic expansion is called the Joule-Thomson
effect.

The ‘Linde refrigerator’ makes use of the Joule—-Thomson effect to liquefy
gases (Fig. 2D.7). The gas at high pressure is allowed to expand through a
throttle; it cools and is circulated past the incoming gas. That gas is cooled,
and its subsequent expansion cools it still further. There comes a stage when
the circulating gas becomes so cold that it condenses to a liquid.

(a) The observation of the Joule-Thomson effect

The apparatus Joule and Thomson used was insulated so that the process was
adiabatic. By considering the work done at each stage it is possible to show
that the expansion is isenthalpic.

Gas at
low
pressure

Thermocouples

Porous
barrier

Gas at
high pressure

Figure 2D.6 The apparatus used for measuring the Joule—-Thomson
effect. The gas expands through the porous barrier, which acts as a



throttle, and the whole apparatus is thermally insulated. As explained
in the text, this arrangement corresponds to an isenthalpic expansion
(expansion at constant enthalpy). Whether the expansion results in a
heating or a cooling of the gas depends on the conditions.

Cold gas

Heat E
exchanger =
= Throttle
= Liquid
Compressor

Figure 2D.7 The principle of the Linde refrigerator is shown in this
diagram. The gas is recirculated, and so long as it is beneath its
inversion temperature it cools on expansion through the throttle. The
cooled gas cools the high-pressure gas, which cools still further as it
expands. Eventually liquefied gas drips from the throttle.



[OALRIs 1N [o]s [ AD 2l EStablishing that the expansion is
isenthalpic

Because all changes to the gas occur adiabatically, g = 0 and,
consequently, AU = w.

Step 1 Calculate the total work

Consider the work done as the gas passes through the barrier by
focusing on the passage of a fixed amount of gas from the high pressure
side, where the pressure is p;, the temperature T, and the gas occupies a

volume V; (Fig. 2D.8). The gas emerges on the low pressure side, where
the same amount of gas has a pressure p, a temperature T}, and occupies
a volume V.. The gas on the left is compressed isothermally by the
upstream gas acting as a piston. The relevant pressure is p; and the
volume changes from V; to 0; therefore, the work done on the gas is

= . nﬂlé

Downstream
. pressure

Upstream !
pressure

Figure 2D.8 The thermodynamic basis of Joule—-Thomson
expansion. The pistons represent the upstream and downstream
gases, which maintain constant pressures either side of the



throttle. The transition from the top diagram to the bottom
diagram, which represents the passage of a given amount of gas
through the throttle, occurs without change of enthalpy.

wy =-pi(0 = V) = p;V;

The gas expands isothermally on the right of the barrier (but possibly at
a different constant temperature) against the pressure p; provided by the

downstream gas acting as a piston to be driven out. The volume changes
from 0 to V4, so the work done on the gas in this stage is

wy = —p(Vi = 0) = —pV;
The total work done on the gas is the sum of these two quantities, or
w=wy + wy =p;V; — peVy

Step 2 Calculate the change in internal energy

It follows that the change of internal energy of the gas as it moves
adiabatically from one side of the barrier to the other is

Ug— Ui =w=p;V; — psVy

Step 3 Calculate the initial and final enthalpies

Reorganization of the preceding expression, and noting that H=U + pV,
gives

Ut + psVy = U; + p;V; or Hy = H;

Therefore, the expansion occurs without change of enthalpy.

For a perfect gas, p = 0; hence, the temperature of a perfect gas is
unchanged by Joule-Thomson expansion. This characteristic points clearly to
the involvement of intermolecular forces in determining the size of the effect.



Real gases have non-zero Joule—Thomson coefficients. Depending on the
identity of the gas, the pressure, the relative magnitudes of the attractive and
repulsive intermolecular forces, and the temperature, the sign of the
coefficient may be either positive or negative (Fig. 2D.9). A positive sign
implies that dT is negative when dp is negative, in which case the gas cools
on expansion. However, the Joule—Thomson coefficient of a real gas does not
necessarily approach zero as the pressure is reduced even though the equation
of state of the gas approaches that of a perfect gas. The coefficient behaves
like the properties discussed in Topic 1C in the sense that it depends on
derivatives and not on p, V, and T themselves.

Gases that show a heating effect (u < 0) at one temperature show a cooling
effect (u > 0) when the temperature is below their upper inversion
temperature, T} (Table 2D.2, Fig. 2D.10). As indicated in Fig. 2D.10, a gas

typically has two inversion temperatures.

Temperature, T

Pressure, p

Figure 2D.9 The sign of the Joule—Thomson coefficient, u, depends
on the conditions. Inside the boundary, the blue area, it is positive and
outside it is negative. The temperature corresponding to the boundary
at a given pressure is the ‘inversion temperature’ of the gas at that



pressure. Reduction of pressure under adiabatic conditions moves the
system along one of the isenthalps, or curves of constant enthalpy
(the blue lines). The inversion temperature curve runs through the
points of the isenthalps where their slope changes from negative to
positive.
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Figure 2D.10 The inversion temperatures for three real gases,
nitrogen, hydrogen, and helium.

(b) The molecular interpretation of the Joule-
Thomson effect

The kinetic model of gases (Topic 1B) and the equipartition theorem (The
chemist’s toolkit 7 of Topic 2A) jointly imply that the mean kinetic energy of
molecules in a gas is proportional to the temperature. It follows that reducing
the average speed of the molecules is equivalent to cooling the gas. If the
speed of the molecules can be reduced to the point that neighbours can
capture each other by their intermolecular attractions, then the cooled gas will



condense to a liquid.

Slowing gas molecules makes use of an effect similar to that seen when a
ball is thrown up into the air: as it rises it slows in response to the
gravitational attraction of the Earth and its kinetic energy is converted into
potential energy. As seen in Topic 1C, molecules in a real gas attract each
other (the attraction is not gravitational, but the effect is the same). It follows
that, if the molecules move apart from each other, like a ball rising from a
planet, then they should slow. It is very easy to move molecules apart from
each other by simply allowing the gas to expand, which increases the average
separation of the molecules. To cool a gas, therefore, expansion must occur
without allowing any energy to enter from outside as heat. As the gas
expands, the molecules move apart to fill the available volume, struggling as
they do so against the attraction of their neighbours. Because some kinetic
energy must be converted into potential energy to reach greater separations,
the molecules travel more slowly as their separation increases, and the
temperature drops. The cooling effect, which corresponds to p > 0, is
observed in real gases under conditions when attractive interactions are
dominant (Z < 1, where Z is the compression factor defined in eqn 1C.1,
z=v,v3, because the molecules have to climb apart against the attractive
force in order for them to travel more slowly. For molecules under conditions
when repulsions are dominant (Z > 1), the Joule-Thomson effect results in
the gas becoming warmer, or p < 0.

Checklist of concepts

] 1. The quantity dU is an exact differential, dw and dg are not.

| 2. The change in internal energy may be expressed in terms of changes in
temperature and volume.

] 3. The internal pressure is the variation of internal energy with volume
at constant temperature.

| 4. Joule’s experiment showed that the internal pressure of a perfect gas
Is zero.

] 5. The change in internal energy with pressure and temperature is
expressed in terms of the internal pressure and the heat capacity and



leads to a general expression for the relation between heat capacities.

| 6. The Joule-Thomson effect is the change in temperature of a gas
when it undergoes isenthalpic expansion.

Checklist of equations

Property Equation Comment Equation
number
Change in U(V,T) dU = (0U/0V); dV + Constant composition 2D.3
(oU/0T),, dT
Internal pressure nip = (0U/0V) Definition; for a perfect 2D.4
gas, ;=0
Change in U(V,T) dU = ndV + C,dT Constant composition 2D.5
Expansion coefficient o= (1/V)(0V/0T), Definition 2D.6
Isothermal Ky = —(1/V)(0V/op) Definition 2D.7
compressibility
Relation between heat C, - Cy =nR Perfect gas 2D.10
capacities
C, - Cy=a*TV/ky 2D.11
Joule-Thomson p = (0T/0p)y For a perfect gas, y =0 2D.12
coefficient
Change in H(p,T) dH = -uC,dp + C,dT  Constant composition 2D.13

TOPIC 2E Adiabatic changes

> \Why do you need to know this material?



Adiabatic processes complement isothermal processes, and are used in the
discussion of the Second Law of thermodynamics.

> \What is the key idea?

The temperature of a perfect gas falls when it does work in an adiabatic
expansion.

> What do you need to know already?

This Topic makes use of the discussion of the properties of gases (Topic 1A),
particularly the perfect gas law. It also uses the definition of heat capacity at
constant volume (Topic 2A) and constant pressure (Topic 2B) and the
relation between them (Topic 2D).

The temperature falls when a gas expands adiabatically (in a thermally
insulated container). Work is done, but as no heat enters the system, the
internal energy falls, and therefore the temperature of the working gas also
falls. In molecular terms, the kinetic energy of the molecules falls as work is
done, so their average speed decreases, and hence the temperature falls too.

2.1 The change in temperature

The change in internal energy of a perfect gas when the temperature is
changed from T; to T; and the volume is changed from V; to V; can be

expressed as the sum of two steps (Fig. 2E.1). In the first step, only the
volume changes and the temperature is held constant at its initial value.
However, because the internal energy of a perfect gas is independent of the
volume it occupies (Topic 2A), the overall change in internal energy arises
solely from the second step, the change in temperature at constant volume.
Provided the heat capacity is independent of temperature, the change in the
internal energy is

AU = (Tf - TI)CV = CvAT



Because the expansion is adiabatic, g = 0; then because AU = g + w, it
follows that AU = w,4. The subscript ‘ad’ denotes an adiabatic process.

Therefore, by equating the two expressions for AU,

g

Temperature, T

L/ Volume, V vi

Figure 2E.1 To achieve a change of state from one temperature and
volume to another temperature and volume, treat the overall change
as composed of two steps. In the first step, the system expands at
constant temperature; there is no change in internal energy if the
system consists of a perfect gas. In the second step, the temperature
of the system is reduced at constant volume. The overall change in
internal energy is the sum of the changes for the two steps.

wyq = CGYAT Work of adiabatic change [perfect gas] (2E.1)

That is, the work done during an adiabatic expansion of a perfect gas is
proportional to the temperature difference between the initial and final states.
That is exactly what is expected on molecular grounds, because the mean
kinetic energy is proportional to T, so a change in internal energy arising
from temperature alone is also expected to be proportional to AT. From these



considerations it is possible to calculate the temperature change of a perfect
gas that undergoes reversible adiabatic expansion (reversible expansion in a
thermally insulated container).

[OALRI N [o]a[SYAA=M Y Deriving an expression for the
temperature change in a reversible adiabatic expansion

Consider a stage in a reversible adiabatic expansion of a perfect gas
when the pressure inside and out is p. When considering reversible
processes, it is usually appropriate to consider infinitesimal changes in
the conditions, because pressures and temperatures typically change
during the process. Then follow these steps.

Step 1 Write an expression relating temperature and volume changes

The work done when the gas expands reversibly by dV is dw = —pdV.
This expression applies to any reversible change, including an adiabatic
change, so specifically dw,4 = —pdV. Therefore, because dq = 0 for an

adiabatic change, dU = dw,q (the infinitesimal version of AU = w_y).
For a perfect gas, dU = CydT (the infinitesimal version of AU = Cy,
AT). Equating these expressions for dU gives

CydT = —pdV

Because the gas is perfect, p can be replaced by nRT/V to give CydT = -
(nRT/V)dV and therefore

C,dT _ nRAV
T~V

Step 2 Integrate the expression to find the overall change

To integrate this expression, ensure that the limits of integration match
on each side of the equation. Note that T is equal to T; when V is equal to

V., and is equal to T; when V is equal to V; at the end of the expansion.
Therefore,



C J‘Tr dT _—?’IRIVF dV

where Cy is taken to be independent of temperature. Use Integral A.2 in
each case, and obtain

Iy _ Vi
Gy lnT——nR IHV

1 1

Step 3 Simplify the expression
Because In(x/y) = —In(y/x), the preceding expression rearranges to

Cor T 1 Vi
R“T ”Vf

Next, note that Cy/nR = Cy, /R = ¢ and use In x? = a In x to obtain

Y _ ..V
In vl —lnvf

1

This relation implies that (T¢/T,) = (Vi/V;) and, upon rearrangement,

1/c
=T 3| c=C../R
f

Temperature change [reversible adiabatic expansion, perfect gas] (2E.2a)




By raising each side of this expression to the power ¢ and reorganizing it
slightly, an equivalent expression is

VL' =V/Ty ¢=C,,/R

Temperature change [reversible adiabatic expansion, perfect gas] (2E.2b)

This result is often summarized in the form VT¢ = constant.

Brief illustration 2E.1

Consider the adiabatic, reversible expansion of 0.020 mol Ar, initially at
25 °C, from 0.50 dm? to 1.00 dm3. The molar heat capacity of argon at

constant volume is 12.47 J K™ mol™!, so ¢ = 1.501. Therefore, from eqn
2E.2a,

5 3 V1ED]
ﬂ:(EQSKjx[D'de
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It follows that AT = —110 K, and therefore, from eqn 2E.1, that
waq = {(0.020 mol) x (12.47 J K1 mol 1)} x (-110 K) = -27]

Note that temperature change is independent of the amount of gas but
the work is not.

2.2 The change in pressure

Equation 2E.2a may be used to calculate the pressure of a perfect gas that
undergoes reversible adiabatic expansion.

[ALR 1N [o]s A=W Deriving the relation between pressure
and volume for a reversible adiabatic expansion



The initial and final states of a perfect gas satisfy the perfect gas law
regardless of how the change of state takes place, so pV = nRT can be
used to write

However, T;/T; = (V{/V;)/¢ (eqn 2E.2a). Therefore,

pVi (V)" o PV,
peV; Vi)’ pe\ Vi

For a perfect gas C,, ,, = Cy,, = R (Topic 2B). It follows that

1 1+C R+ CV m Cp,m
—+ ]_ — — 2 — e ’}/
C C CV,m CV,m

and therefore that

Pi "/1' ?_1
pe\ Vs

which rearranges to

pfvf}{ = iniy

Pressure change [reversible adiabatic expansion, perfect gas] (2E.3)




This result is commonly summarized in the form pV¥ = constant.

Isotherm, p=< 1/V
Adiabat, p o< 1/V

Pressure, p

[

Pressure,

Figure 2E.2 An adiabat depicts the variation of pressure with volume
when a gas expands adiabatically and, in this case, reversibly. Note
that the pressure declines more steeply for an adiabat than it does for
an isotherm because in an adiabatic change the temperature falls.

For a monatomic perfect gas, C.. = & (Topic 2A), and =% (from C, ,, = Cy
= R), so r=% For a gas of nonlinear polyatomic molecules (which can rotate as
well as translate; vibrations make little contribution at normal temperatures),
Cym = 3R and C, , = 4R, so v=+ The curves of pressure versus volume for

adiabatic change are known as adiabats, and one for a reversible path is
illustrated in Fig. 2E.2. Because y > 1, an adiabat falls more steeply (p << 1/V

Y) than the corresponding isotherm (p ©< 1/V). The physical reason for the



difference is that, in an isothermal expansion, energy flows into the system as
heat and maintains the temperature; as a result, the pressure does not fall as
much as in an adiabatic expansion.

Brief illustration 2E.2

When a sample of argon (for which y=%) at 100 kPa expands reversibly
and adiabatically to twice its initial volume the final pressure will be

7 A 1
P = 7; p=|3 X (100kPa)=31kPa

5/3

For an isothermal expansion in which the volume doubles the final
pressure would be 50 kPa.

Checklist of concepts

| 1. The temperature of a gas falls when it undergoes an adiabatic
expansion in which work is done.

] 2. An adiabat is a curve showing how pressure varies with volume in an
adiabatic process.

Checklist of equations

Property Equation Comment Equation

number
Work of adiabatic w,q = CyAT  Perfect gas 2E.1
expansion

Final temperature T;=T, Perfect gas, reversible adiabatic ~ 2E.2a



Vi'Ve) 1)e expansion

¢ = Cy /R
K= OE.2b
Adiabats PVE=AYL E.3
v=
Cy/Cym

FOCUS 2 The First Law

Assume all gases are perfect unless stated otherwise. Unless otherwise
stated, thermochemical data are for 298.15 K.

TOPIC 2A Internal energy

Discussion questions

D2A.1 Describe and distinguish the various uses of the words ‘system’ and ‘state’ in
physical chemistry.

D2A.2 Describe the distinction between heat and work in thermodynamic terms and, by
referring to populations and energy levels, in molecular terms.

D2A.3 Identify varieties of additional work.
D2A.4 Distinguish between reversible and irreversible expansion.

D2A.5 How may the isothermal expansion of a gas be achieved?

Exercises

E2A.1(a) Use the equipartition theorem to estimate the molar internal energy of (i) I,, (ii)
CH,, (iii) CzHg in the gas phase at 25 °C.



E2A.1(b) Use the equipartition theorem to estimate the molar internal energy of (i) O,, (ii)
C,Hg, (iii) SO, in the gas phase at 25 °C.

E2A.2(a) Which of (i) pressure, (ii) temperature, (iii) work, (iv) enthalpy are state
functions?
E2A.2(b) Which of (i) volume, (ii) heat, (iii) internal energy, (iv) density are state
functions?

E2A.3(a) A chemical reaction takes place in a container fitted with a piston of cross-
sectional area 50 cm?. As a result of the reaction, the piston is pushed out through 15 cm
against an external pressure of 1.0 atm. Calculate the work done by the system.

E2A.3(b) A chemical reaction takes place in a container fitted with a piston of cross-

sectional area 75.0 cm?. As a result of the reaction, the piston is pushed out through 25.0
cm against an external pressure of 150 kPa. Calculate the work done by the system.

E2A.4(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 20 °C from 10.0
dm? to 30.0 dm? (i) reversibly, (ii) against a constant external pressure equal to the final
pressure of the gas, and (iii) freely (against zero external pressure). For the three processes
calculate g, w, and AU.

E2A.4(b) A sample consisting of 2.00 mol He is expanded isothermally at 0 °C from 5.0
dm? to 20.0 dm? (i) reversibly, (ii) against a constant external pressure equal to the final
pressure of the gas, and (iii) freely (against zero external pressure). For the three processes
calculate g, w, and AU.

E2A.5(a) A sample consisting of 1.00 mol of perfect gas atoms, for which Cy = 3R,
initially at p; = 1.00 atm and T; = 300 K, is heated reversibly to 400 K at constant volume.
Calculate the final pressure, AU, g, and w.

E2A.5(b) A sample consisting of 2.00 mol of perfect gas molecules, for which Cy,, = 3R,
initially at p; = 111 kPa and T; = 277 K, is heated reversibly to 356 K at constant volume.

Calculate the final pressure, AU, g, and w.

E2A.6(a) A sample of 4.50 g of methane occupies 12.7 dm? at 310 K. (i) Calculate the work
done when the gas expands isothermally against a constant external pressure of 200 Torr
until its volume has increased by 3.3 dm?. (ii) Calculate the work that would be done if the
same expansion occurred reversibly.

E2A.6(b) A sample of argon of mass 6.56 g occupies 18.5 dm? at 305 K. (i) Calculate the
work done when the gas expands isothermally against a constant external pressure of 7.7

kPa until its volume has increased by 2.5 dm?. (ii) Calculate the work that would be done if
the same expansion occurred reversibly.



Problems

P2A.1 Calculate the molar internal energy of carbon dioxide at 25 °C, taking into account
its translational and rotational degrees of freedom.

P2A.2 A generator does work on an electric heater by forcing an electric current through it.
Suppose 1 kJ of work is done on the heater and in turn 1 kJ of energy as heat is transferred
to its surroundings. What is the change in internal energy of the heater?

P2A.3 An elastomer is a polymer that can stretch and contract. In a perfect elastomer the
force opposing extension is proportional to the displacement x from the resting state of the

elastomer, so |F| = kgx, where k; is a constant. But suppose that the restoring force weakens

as the elastomer is stretched, and k¢(x) = a — bx'/?

polymer from x = 0 to a final displacement x = 1.

. Evaluate the work done on extending the

P2A.4 An approximate model of a DNA molecule is the ‘one-dimensional freely jointed
chain’, in which a rigid unit of length I can make an angle of only 0° or 180° with an
adjacent unit. In this case, the restoring force of a chain extended by x = nl is given by

kKT . (1+v n
f=miiw, YN

where k is Boltzmann’s constant, N is the total number of units, and I = 45 nm for DNA. (a)
What is the magnitude of the force that must be applied to extend a DNA molecule with N
= 200 by 90 nm? (b) Plot the restoring force against v, noting that v can be either positive
or negative. How is the variation of the restoring force with end-to-end distance different
from that predicted by Hooke’s law? (c) Keeping in mind that the difference in end-to-end
distance from an equilibrium value is x = nl and, consequently, dx = Idn = NIdv, write an
expression for the work of extending a DNA molecule. Hint: You must integrate the
expression for w. The task can be accomplished best with mathematical software.

P2A.5 As a continuation of Problem P2A.4, (a) show that for small extensions of the chain,
when v << 1, the restoring force is given by

VKT  nkT
| NI

(b) Is the variation of the restoring force with extension of the chain given in part (a)
different from that predicted by Hooke’s law? Explain your answer.

F =




P2A.6 Suppose that attractions are the dominant interactions between gas molecules, and
the equation of state is p = nRT/V — n®a/V?. Derive an expression for the work of reversible,
isothermal expansion of such a gas. Compared with a perfect gas, is more or less work
done on the surroundings when it expands?

P2A.7 Calculate the work done during the isothermal reversible expansion of a van der
Waals gas (Topic 1C). Plot on the same graph the indicator diagrams (graphs of pressure
against volume) for the isothermal reversible expansion of (a) a perfect gas, (b) a van der
Waals gas in which a = 0 and b = 5.11 x 1072 dm? mol ™}, and (c) a = 4.2 dm® atm mol 2
and b = 0. The values selected exaggerate the imperfections but give rise to significant
effects on the indicator diagrams. Take V; = 1.0 dm3, V; = 2.0 dm3, n = 1.0 mol, and T =
298 K.

P2A.8 A sample consisting of 1.0 mol CaCOs(s) was heated to 800 °C, at which
temperature the solid decomposed to CaO and CO,. The heating was carried out in a
container fitted with a piston that was initially resting on the solid. Calculate the work done
during complete decomposition at 1.0 atm. What work would be done if instead of having a
piston the container was open to the atmosphere?

P2A.9 Calculate the work done during the isothermal reversible expansion of a gas that
satisfies the virial equation of state (eqn 1C.3b) written with the first three terms. Evaluate
(a) the work for 1.0 mol Ar at 273 K (for data, see Table 1C.1) and (b) the same amount of

a perfect gas. Let the expansion be from 500 cm?® to 1000 cm? in each case.

P2A.10 Express the work of an isothermal reversible expansion of a van der Waals gas in
reduced variables (Topic 1C) and find a definition of reduced work that makes the overall
expression independent of the identity of the gas. Calculate the work of isothermal
reversible expansion along the critical isotherm from V. to xV._.

Topic 2B Enthalpy

Discussion questions

D2B.1 Explain the difference between the change in internal energy and the change in
enthalpy accompanying a process.

D2B.2 Why is the heat capacity at constant pressure of a substance normally greater than its
heat capacity at constant volume?



Exercises

E2B.1(a) When 229 J of energy is supplied as heat at constant pressure to 3.0 mol Ar(g) the
temperature of the sample increases by 2.55 K. Calculate the molar heat capacities at
constant volume and constant pressure of the gas.

E2B.1(b) When 178 J of energy is supplied as heat at constant pressure to 1.9 mol of gas
molecules, the temperature of the sample increases by 1.78 K. Calculate the molar heat
capacities at constant volume and constant pressure of the gas.

E2B.2(a) Calculate the value of AH,, — AU, for the reaction N,(g) + 3 H,(g) — 2 NH;(g)
at 298 K.

E2B.2(b) Calculate the value of AH,, — AU,, for the reaction CqH;,04(s) + 6 O,(g) - 6
CO,(g) + 6 H,0O(l) at 298 K.

E2B.3(a) The constant-pressure heat capacity of a sample of a perfect gas was found to
vary with temperature according to the expression C,/(J K™ = 20.17 + 0.3665(T/K).
Calculate g, w, AU, and AH when the temperature is raised from 25 °C to 100 °C (i) at
constant pressure, (ii) at constant volume.

E2B.3(b) The constant-pressure heat capacity of a sample of a perfect gas was found to
vary with temperature according to the expression C,/(J K™ = 20.17 + 0.4001(T/K).
Calculate g, w, AU, and AH when the temperature is raised from 25 °C to 100 °C (i) at
constant pressure, (ii) at constant volume.

E2B.4(a) When 3.0 mol O, is heated at a constant pressure of 3.25 atm, its temperature
increases from 260 K to 285 K. Given that the molar heat capacity of O, at constant
pressure is 29.4 J K™ mol™!, calculate g, AH, and AU.

E2B.4(b) When 2.0 mol CO, is heated at a constant pressure of 1.25 atm, its temperature
increases from 250 K to 277 K. Given that the molar heat capacity of CO, at constant
pressure is 37.11 J K™! mol™!, calculate g, AH, and AU.

Problems

P2B.1 Benzene is heated to boiling under a pressure of 1.0 atm with a 12 V source
operating at an electric current of 0.50 A. For how long would a current need to be supplied
in order to vaporize 10 g of benzene? The molar enthalpy of vaporization of benzene at its

boiling point (353.25 K) is 30.8 kJ mol .

P2B.2 The heat capacity of air is much smaller than that of liquid water, and relatively
modest amounts of heat are therefore needed to change the temperature of air. This is one



of the reasons why desert regions, though very hot during the day, are bitterly cold at night.

The molar heat capacity of air at 298 K and 1.00 atm is approximately 21 J K™! mol ™.
Estimate how much energy is required to raise the temperature of the air in a room of
dimensions 5.5 m X 6.5 m % 3.0 m by 10 °C. If losses are neglected, how long will it take a

heater rated at 1.5 kW to achieve that increase, given that 1 W =1J s71?

P2B.3 The following data show how the standard molar constant-pressure heat capacity of
sulfur dioxide varies with temperature:

T/K 300 500 700 900 1100 1300 1500
Gl ) 39909 46.490 50.829 53.407 54.993 56.033  56.759

By how much does the standard molar enthalpy of SO,(g) increase when the temperature is
raised from 298.15 K to 1500 K? Hint: Fit the data to an expression of the form of
c:.T=a+bT+ T, NOte the values of the coefficients, then use the approach in Example 2B.2
to calculate the change in standard molar enthalpy.

P2B.4 The following data show how the standard molar constant-pressure heat capacity of
ammonia depends on the temperature. Use mathematical software to fit an expression of
the form of eqn 2B.8 to the data and determine the values of a, b, and c. Explore whether it

would be better to express the data as C,,, = a + ST + yT?, and determine the values of
these coefficients.

T/K 300 400 500 600 700 800 900 1000
Ch/"mel™) 35 678 38.674 41.994 45.229 48269 51.112 53.769 56.244

P2B.5 A sample consisting of 2.0 mol CO, occupies a fixed volume of 15.0 dm? at 300 K.

When it is supplied with 2.35 kJ of energy as heat its temperature increases to 341 K.
Assuming that CO, is described by the van der Waals equation of state (Topic 1C),

calculate w, AU, and AH.

TOPIC 2C Thermochemistry

Discussion questions

D2C.1 A simple air-conditioning unit for use in places where electrical power is not
available can be made by hanging up strips of fabric soaked in water. Explain why this
strategy is effective.



D2C.2 Describe two calorimetric methods for the determination of enthalpy changes that
accompany chemical processes.

D2C.3 Distinguish between ‘standard state’ and ‘reference state’, and indicate their
applications.

D2C.4 The expressions ‘heat of combustion’ and ‘heat of wvaporization’ are used
commonly, especially in the earlier literature. Why are the expressions ‘enthalpy of
combustion’ and ‘enthalpy of vaporization’ more appropriate?

Exercises

E2C.1(a) For tetrachloromethane, A, , H = 30.0 kJ mol L. Calculate g, w, AH, and AU

vap

when 0.75 mol CCl,(1) is vaporized at 250 K and 1 bar.

E2C.1(b) For ethanol, AypH = 43.5 kJ mol!. Calculate g, w, AH, and AU when 1.75
mol C,H;OH(l) is vaporized at 260 K and 1 bar.

E2C.2(a) The standard enthalpy of formation of ethylbenzene is —12.5 kJ mol~!. Calculate
its standard enthalpy of combustion.

E2C.2(b) The standard enthalpy of formation of phenol is —=165.0 kJ mol !. Calculate its
standard enthalpy of combustion.

E2C.3(a) Given that the standard enthalpy of formation of HCl(aq) is —167 kJ mol ™!, what
is the value of A{H (Cl7, ag)?

E2C.3(b) Given that the standard enthalpy of formation of HI(aq) is =55 kJ mol ™!, what is
the value of AH (I, aqg)?

E2C.4(a) When 120 mg of naphthalene, C,,Hg(s), was burned in a bomb calorimeter the

temperature rose by 3.05 K. Calculate the calorimeter constant. By how much will the
temperature rise when 150 mg of phenol, C;H;OH(s), is burned in the calorimeter under

the same conditions? (A.H—(C;oHg,s) = =5157 kJ mol 1)

E2C.4(b) When 2.25 mg of anthracene, C,,H;,(s), was burned in a bomb calorimeter the

temperature rose by 1.75 K. Calculate the calorimeter constant. By how much will the
temperature rise when 125 mg of phenol, C;H;OH(s), is burned in the calorimeter under

the same conditions? (AH— (C4H;,,8) = =7061 kJ mol™1.)



E2C.5(a) Given the reactions (1) and (2) below, determine (i) AH and AU for
reaction (3), (ii) AiH for both HCI(g) and H,O(g), all at 298 K.
(1) Hy(g) + Cly(g) - 2 HCI(g) AH = —184.62 kJ mol
-1
(2) 2 Hy(g) + O,(g8) - 2 H,0(g) AH = —483.64 kJ mol
-1
(3) 4 HCI(g) + Ox(g) - 2 Cly(g) + 2 H,0(g)
E2C.5(b) Given the reactions (1) and (2) below, determine (i) A.H and AU for

reaction (3), (ii) AiH for both HI(g) and H,0O(g), all at 298 K.

(1) Hy(g) + I,(s) — 2 HI(g) AH = +52.96 kJ mol !

(2) 2 Hy(g) + Oy(g) — 2 H,0(g) AH = —483.64 kJ mol !
(3) 4 HI(g) + Ox(g) -~ 21Ix(s) + 2 H,O(g)

E2C.6(a) For the reaction C,H;OH(l) + 3 O,(g) — 2 CO,(g) + 3 H,0(g), AU =-1373
kJ mol ™! at 298 K. Calculate A H

E2C.6(b) For the reaction 2 C;H;COOH(s) + 15 O,(g) — 14 CO,(g) + 6 H,0(g), AU
= —772.7 kJ mol ! at 298 K. Calculate A .H

E2C.7(a) From the data in Table 2C.4 of the Resource section, calculate A.H and AU

at (i) 298 K, (ii) 478 K for the reaction C(graphite) + H,O(g) —» CO(g) + H,(g).
Assume all heat capacities to be constant over the temperature range of interest.

E2C.7(b) Calculate AH and AU at 298 K and AH at 427 K for the
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy of combustion
and heat capacity data in Tables 2C.3 and 2C.4 of the Resource section. Assume the heat
capacities to be constant over the temperature range involved.

E2C.8(a) Estimate A H (500 K) for the reaction C(graphite) + O,(g) - CO,(g) from
the listed value of the standard enthalpy of formation of CO,(g) at 298 K in conjunction
with the data on the temperature-dependence of heat capacities given in Table 2B.1.



E2C.8(b) Estimate A H (750 K) for the reaction N,(g) + H,(g) — NH;(g) from the
listed value of the standard enthalpy of formation of NH;(g) at 298 K in conjunction with
the data on the temperature-dependence of heat capacities given in Table 2B.1.

Problems

P2C.1 An average human produces about 10 MJ of heat each day through metabolic
activity. If a human body were an isolated system of mass 65 kg with the heat capacity of
water, what temperature rise would the body experience? Human bodies are actually open
systems, and the main mechanism of heat loss is through the evaporation of water. What
mass of water should be evaporated each day to maintain constant temperature?

P2C.2 Predict the output of energy as heat from the combustion of 1.0 dm? of octane at 298
K and 1 bar. Its mass density is 0.703 g cm 3.

P2C.3 The standard enthalpy of combustion of cyclopropane is —2091 kJ mol™! at 25 °C.
(a) From this information and enthalpy of formation data for CO,(g) and H,O(l), calculate

the enthalpy of formation of cyclopropane.

(b) The enthalpy of formation of propene is +20.42 kJ mol!. Calculate the enthalpy of
isomerization of cyclopropane to propene.

P2C.4 From the following data, determine AH for diborane, B,Hg(g), at 298 K:

(1) BoHg(g) + 3 Ox(g) —» B,05(s) + 3 H,O(g) AH = —1941
kJ mol™!
(2) 2B(s) + § 0y(g) — B,0s(s) AH = -2368
kJ mol™!
(3) Hy(g) + £ Oy(g) — H,0(g) AH —=-2418
kJ mol™!

P2C.5 A sample of the sugar p-ribose (C;H;;,05) of mass 0.727 g was placed in a
calorimeter and then ignited in the presence of excess oxygen. The temperature rose by
0.910 K. In a separate experiment in the same calorimeter, the combustion of 0.825 g of
benzoic acid, for which the internal energy of combustion is —3251 kJ mol™!, gave a
temperature rise of 1.940 K. Calculate the enthalpy of formation of p-ribose.



P2C.6 For the reaction Cr(CgHg),(s) — Cr(s) + 2 CgHg(g), AU (583 K) = +8.0 kJ mol

“1, Find the corresponding reaction enthalpy and estimate the standard enthalpy of
formation of Cr(CgHg),(s) at 583 K.

P2C.7" Kolesov et al. reported the standard enthalpy of combustion and of formation of
crystalline Cg, based on calorimetric measurements (V.P. Kolesov et al., J. Chem.

Thermodynamics 28, 1121 (1996)). In one of their runs, they found the standard specific
internal energy of combustion to be —36.0334 kJ g! at 298.15 K. Compute A .H and

AH of Cg.

P2C.8" Silylene (SiH,) is a key intermediate in the thermal decomposition of silicon
hydrides such as silane (SiH,) and disilane (Si,Hg). H.K. Moffat et al. (J. Phys. Chem. 95,

145 (1991)) report AH (SiH,) = +274 kJ mol ™. Given that A{H (SiH,) = +34.3 kJ

mol ! and AH (Si,Hg) = +80.3 kJ mol !, calculatethe standard enthalpy changes of the
following reactions:

(a) SiHy(g) - SiH,(g) + Hy(g)
(b) SipHg(g) — SiHy(g) + SiHy(g)

P2C.9 As remarked in Problem P2B.4, it is sometimes appropriate to express the
temperature dependence of the heat capacity by the empirical expression C, ,, = o + ST +

yT?. Use this expression to estimate the standard enthalpy of combustion of methane to
carbon dioxide and water vapour at 500 K. Use the following data:

a/JKTmol™) p/(mIK?Zmol) y/(nJK3mol?)

CH,(g) 14.16 75.5 ~17.99
CO,(g)  26.86 6.97 -0.82

O,(g)  25.72 12.98 ~3.862
H,0(g)  30.36 9.61 1.184

P2C.10 Figure 2.1 shows the experimental DSC scan of hen white lysozyme (G. Privalov et
al., Anal. Biochem. 79, 232 (1995)) converted to joules (from calories). Determine the
enthalpy of unfolding of this protein by integration of the curve and the change in heat
capacity accompanying the transition.
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Figure 2.1 The experimental DSC scan of hen white lysozyme.

P2C.11 In biological cells that have a plentiful supply of oxygen, glucose is oxidized
completely to CO, and H,O by a process called aerobic oxidation. Muscle cells may be
deprived of O, during vigorous exercise and, in that case, one molecule of glucose is
converted to two molecules of lactic acid (CH;CH(OH)COOH) by a process called
anaerobic glycolysis. (a) When 0.3212 g of glucose was burned at 298 K in a bomb
calorimeter of calorimeter constant 641 J K™! the temperature rose by 7.793 K. Calculate
(i) the standard molar enthalpy of combustion, (ii) the standard internal energy of
combustion, and (iii) the standard enthalpy of formation of glucose. (b) What is the
biological advantage (in kilojoules per mole of energy released as heat) of complete
aerobic oxidation compared with anaerobic glycolysis to lactic acid?

TOPIC 2D State functions and exact differentials

Discussion questions

D2D.1 Suggest (with explanation) how the internal energy of a van der Waals gas should
vary with volume at constant temperature.



D2D.2 Explain why a perfect gas does not have an inversion temperature.

Exercises

E2D.1(a) Estimate the internal pressure of water vapour at 1.00 bar and 400 K, treating it as
a van der Waals gas, when r,=sv: You may simplify the problem by assuming that the
molar volume can be predicted from the perfect gas equation.

E2D.1(b) Estimate the internal pressure of sulfur dioxide at 1.00 bar and 298 K, treating it
as a van der Waals gas, when =+ You may simplify the problem by assuming that the
molar volume can be predicted from the perfect gas equation.

E2D.2(a) For a van der Waals gas, =.=av: Assuming that this relation applies, calculate
AU, for the isothermal expansion of nitrogen gas from an initial volume of 1.00 dm? to
20.00 dm? at 298 K. What are the values of g and w?

E2D.2(b) Repeat Exercise E2D.2(a) for argon, from an initial volume of 1.00 dm? to 30.00
dm? at 298 K.

E2D.3(a) The volume of a certain liquid varies with temperature as

V=V{0.75+ 3.9 x 1074T/K) + 1.48 x 10"%(T/K)?}

where V' is its volume at 300 K. Calculate its expansion coefficient, a, at 320 K.

E2D.3(b) The volume of a certain liquid varies with temperature as

V=V{0.77 + 3.7 x 1074T/K) + 1.52 x 10~%(T/K)?}
where V' is its volume at 298 K. Calculate its expansion coefficient, a, at 310 K.

E2D.4(a) The isothermal compressibility, k;, of water at 293 K is 4.96 x 107 atm™ ..
Calculate the pressure that must be applied in order to increase its density by 0.10 per cent.

E2D.4(b) The isothermal compressibility, kg, of lead at 293 K is 2.21 x 107 am™.
Calculate the pressure that must be applied in order to increase its density by 0.10 per cent.

E2D.5(a) Use data from the Resource section to evaluate the difference C,,, — Gy, in
molar heat capacities for liquid benzene at 298 K.

E2D.5(b) Use data from the Resource section to evaluate the difference C,,, — Cy, in
molar heat capacities for liquid ethanol at 298 K.



Problems

P2D.1* According to the Intergovernmental Panel on Climate Change (IPCC) the global
average temperature may rise by as much as 2.0 °C by 2100. Predict the average rise in sea
level due to thermal expansion of sea water based on temperature rises of 1.0 °C, 2.0 °C,
and 3.5 °C, given that the volume of the Earth’s oceans is 1.37 x 10° km? and their surface
area is 361 x 10° km?; state the approximations which go into your estimates. Hint: Recall
that the volume V of a sphere of radius r is v=4x/". If the radius changes only slightly by
8r, with 8r << r, then the change in the volume is §V ~ 4nr?8r. Because the surface area of
a sphere is A = 4nir?, it follows that §V = Aér.

P2D.2 Starting from the expression C, — Cy = T(0p/0T)(0V/dT),, use the appropriate
relations between partial derivatives (The chemist’s toolkit 9 in Topic 2A) to show that

o _o _T@vIaD);
P~ v @V /0p),

Use this expression to evaluate C, - Cy, for a perfect gas.

P2D.3 (a) Write expressions for dV and dp given that V is a function of p and T and p is a
function of V and T. (b) Deduce expressions for d In V and d In p in terms of the expansion
coefficient and the isothermal compressibility.

P2D.4 Rearrange the van der Waals equation of state, p = nRT/(V — nb) — n’a/V? (Topic
1C) to give an expression for T as a function of p and V (with n constant). Calculate (0T/
op)y and confirm that (dT/0p),, = 1/(dp/0T)y.

P2D.5 Calculate the isothermal compressibility and the expansion coefficient of a van der
Waals gas (see Problem P2D.4). Show, using Euler’s chain relation (The chemist’s toolkit 9
in Topic 2A), that kR = a(V,, — b).

P2D.6 The speed of sound, c, in a perfect gas of molar mass M is related to the ratio of
heat capacities y by ¢, = (yYRT/M)'2. Show that ¢, = (yp/p)*'?, where p is the mass density of
the gas. Calculate the speed of sound in argon at 25 °C.

P2D.7" A gas obeying the equation of state p(V — nb) = nRT is subjected to a Joule—
Thomson expansion. Will the temperature increase, decrease, or remain the same?

P2D.8 Use the fact that (g U//9 V) s=al 1.-’;1 for a van der Waals gas (Topic 1C) to show that



HC,m ® (2a/RT) — b by using the definition of y and appropriate relations between partial
derivatives. Hint: Use the approximation pV,, # RT when it is justifiable to do so.

P2D.9" Concerns over the harmful effects of chlorofluorocarbons on stratospheric ozone
have motivated a search for new refrigerants. One such alternative is 1,1,1,2-
tetrafluoroethane (refrigerant HFC-134a). A compendium of thermophysical properties of
this substance has been published (R. Tillner-Roth and H.D. Baehr, J. Phys. Chem. Ref.
Data 23, 657 (1994)) from which properties such as the Joule-Thomson coefficient p can
be computed. (a) Compute p at 0.100 MPa and 300 K from the following data (all referring
to 300 K):

p/MPa 0.080 0.100 0.12
Specific enthalpy/(kJ kg™ 426.48 426.12 425.76

(The specific constant-pressure heat capacity is 0.7649 kJ K ! kg™1.) (b) Compute p at 1.00
MPa and 350 K from the following data (all referring to 350 K):

p/MPa 0.80 1.00 1.2
Specific enthalpy/(kJ kg™) 461.93 459.12 456.15

(The specific constant-pressure heat capacity is 1.0392 kJ K™' kg™1)

TOPIC 2E Adiabatic changes

Discussion questions

D2E.1 On a p against V plot, why are adiabats steeper than isotherms?

D2E.2 Why do heat capacities play a role in the expressions for adiabatic expansion?

Exercises

E2E.1(a) Use the equipartition principle to estimate the values of y = C,/Cy, for gaseous
ammonia and methane. Do this calculation with and without the vibrational contribution to
the energy. Which is closer to the experimental value at 25 °C?

E2E.1(b) Use the equipartition principle to estimate the value of y = C,/Cy, for carbon



dioxide. Do this calculation with and without the vibrational contribution to the energy.
Which is closer to the experimental value at 25 °C?

E2E.2(a) Calculate the final temperature of a sample of argon of mass 12.0 g that is
expanded reversibly and adiabatically from 1.0 dm?® at 273.15 K to 3.0 dm?.

E2E.2(b) Calculate the final temperature of a sample of carbon dioxide of mass 16.0 g that
is expanded reversibly and adiabatically from 500 cm? at 298.15 K to 2.00 dm?.

E2E.3(a) A sample consisting of 1.0 mol of perfect gas molecules with Cy, = 20.8 J K™! is
initially at 4.25 atm and 300 K. It undergoes reversible adiabatic expansion until its
pressure reaches 2.50 atm. Calculate the final volume and temperature, and the work done.

E2E.3(b) A sample consisting of 2.5 mol of perfect gas molecules with C, ;, = 20.8 J K™

mol ! is initially at 240 kPa and 325 K. It undergoes reversible adiabatic expansion until its
pressure reaches 150 kPa. Calculate the final volume and temperature, and the work done.

E2E.4(a) A sample of carbon dioxide of mass 2.45 g at 27.0 °C is allowed to expand
reversibly and adiabatically from 500 cm? to 3.00 dm3. What is the work done by the gas?

E2E.4(b) A sample of nitrogen of mass 3.12 g at 23.0 °C is allowed to expand reversibly
and adiabatically from 400 cm? to 2.00 dm?. What is the work done by the gas?

E2E.5(a) Calculate the final pressure of a sample of carbon dioxide that expands reversibly
and adiabatically from 67.4 kPa and 0.50 dm? to a final volume of 2.00 dm?. Take y = 1.4.

E2E.5(b) Calculate the final pressure of a sample of water vapour that expands reversibly
and adiabatically from 97.3 Torr and 400 cm? to a final volume of 5.0 dm>. Take y = 1.3.

Problems

P2E.1 Calculate the final temperature, the work done, and the change of internal energy
when 1.00 mol NH;(g) at 298 K is used in a reversible adiabatic expansion from 0.50 dm?
to 2.00 dm?,

P2E.2 The constant-volume heat capacity of a gas can be measured by observing the
decrease in temperature when it expands adiabatically and reversibly. The value of y =
C,/Cy can be inferred if the decrease in pressure is also measured and the constant-pressure
heat capacity deduced by combining the two values. A fluorocarbon gas was allowed to
expand reversibly and adiabatically to twice its volume; as a result, the temperature fell
from 298.15 K to 248.44 K and its pressure fell from 202.94 kPa to 81.840 kPa. Evaluate
C

p,m*




FOCUS 2 The First Law

Integrated activities

12.1 Give examples of state functions and discuss why they play a critical role in
thermodynamics.

12.2 The thermochemical properties of hydrocarbons are commonly investigated by using

molecular modelling methods. (a) Use software to predict A.H values for the alkanes

methane through pentane. To calculate A H values, estimate the standard enthalpy of
formation of C_H,,.,(g) by performing semi-empirical calculations (e.g. AM1 or PM3
methods) and use experimental standard enthalpy of formation values for CO,(g) and

H,0(1). (b) Compare your estimated values with the experimental values of A.H
(Table 2C.3 of the Resource section) and comment on the reliability of the molecular

modelling method. (c) Test the extent to which the relation A.H = constant X {M/(g
mol 1)} holds and determine the numerical values of the constant and n.

12.3 It is often useful to be able to anticipate, without doing a detailed calculation, whether
an increase in temperature will result in a raising or a lowering of a reaction enthalpy. The
constant-pressure molar heat capacity of a gas of linear molecules is approximately <R
whereas that of a gas of nonlinear molecules is approximately 4R. Decide whether the
standard enthalpies of the following reactions will increase or decrease with increasing
temperature:

(@) 2 Hy(g) + Oy(g) —» 2 Hy,O(g)
(b) CH(g) +2 Oy(g) - COy(g) + 2 H,0O(g)

(c) Na(g) + 3 Hy(g) —~ 2 NH;(g)

12.4 The molar heat capacity of liquid water is approximately 9R. Decide whether the
standard enthalpy of the first two reactions in the preceding exercise will increase or
decrease with a rise in temperature if the water is produced as a liquid.

12.5 As shown in The chemist’s toolkit 9 in Topic 2A, it is a property of partial derivatives
that

o (0f J(of

dy| dx | dx | dy
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Use this property and eqn 2A.14 to write an expression for (0C,/0V); as a second
derivative of U and find its relation to (0U/0V);. Then show that (0C,/0V); = 0 for a perfect
gas.

12.6 The heat capacity ratio of a gas determines the speed of sound in it through the formula
¢s = (YRT/M)"?, where y = C,/Cy and M is the molar mass of the gas. Deduce an expression

for the speed of sound in a perfect gas of (a) diatomic, (b) linear triatomic, (c) nonlinear
triatomic molecules at high temperatures (with translation and rotation active). Estimate the
speed of sound in air at 25 °C.

12.7 Use mathematical software or a spreadsheet (a) to calculate the work of isothermal
reversible expansion of 1.0 mol CO,(g) at 298 K from 1.0 dm? to 3.0 dm? on the basis that
it obeys the van der Waals equation of state; (b) explore how the parameter y affects the
dependence of the pressure on the volume when the expansion is reversible and adiabatic
and the gas is perfect. Does the pressure—volume dependence become stronger or weaker
with increasing volume?

! Many engineering texts adopt a different convention for work: w > 0 if
energy is used to do work in the surroundings.



FOCUS 3

Some things happen naturally, some things don’t. Some aspect of the
world determines the spontaneous direction of change, the direction of
change that does not require work to bring it about. An important point,
though, is that throughout this text ‘spontaneous’ must be interpreted as
a natural tendency which might or might not be realized in practice.
Thermodynamics is silent on the rate at which a spontaneous change in
fact occurs, and some spontaneous processes (such as the conversion of
diamond to graphite) may be so slow that the tendency is never realized
in practice whereas others (such as the expansion of a gas into a
vacuum) are almost instantaneous.

Entropy

The direction of change is related to the distribution of energy and
matter, and spontaneous changes are always accompanied by a dispersal
of energy or matter. To quantify this concept we introduce the property
called ‘entropy’, which is central to the formulation of the ‘Second Law
of thermodynamics’. That law governs all spontaneous change.



Entropy changes accompanying specific
processes

This Topic shows how to use the definition of entropy change to
calculate its value for a number of common physical processes, such as
the expansion of a gas, a phase transition, and heating a substance.

The measurement of entropy

To make the Second Law quantitative, it is necessary to measure the
entropy of a substance. The measurement of heat capacities, and the
energy transferred as heat during physical processes, makes it possible
to determine the entropies of substances. The discussion in this Topic
also leads to the ‘Third Law of thermodynamics’, which relates to the
properties of matter at very low temperatures and is used to set up an
absolute measure of the entropy of a substance.

Concentrating on the system

One problem with dealing with the entropy is that it requires separate
calculations of the changes taking place in the system and the
surroundings. Providing certain restrictions on the system can be
accepted, that problem can be overcome by introducing the ‘Gibbs
energy’. Indeed, most thermodynamic calculations in chemistry focus on
the change in Gibbs energy rather than the entropy change itself.

Combining the First and Second Laws



In this Topic the First and Second Laws are combined, which leads to a
very powerful way of applying thermodynamics to the properties of
matter.

What are the applications of this
material?

The Second Law is at the heart of the operation of engines of all types,
including devices resembling engines that are used to cool objects. See
Impact 4 on the website of this book for an application to the technology
of refrigeration. Entropy considerations are also important in modern
electronic materials for they permit a quantitative discussion of the
concentration of impurities. See Impact 5 for a note about how
measurement of the entropy at low temperatures gives insight into the
purity of materials used as superconductors.

Entropy

Entropy is the concept on which almost all applications of thermodynamics in
chemistry are based: it explains why some physical transformations and
chemical reactions are spontaneous and others are not.

The change in entropy of a system can be calculated from the heat
transferred to it reversibly; a spontaneous process in an isolated system is



accompanied by an increase in entropy.

You need to be familiar with the First-Law concepts of work, heat, and
internal energy (Topic 2A). The Topic draws on the expression for work of
expansion of a perfect gas (Topic 2A) and on the changes in volume and
temperature that accompany the reversible adiabatic expansion of a perfect
gas (Topic 2E).

What determines the direction of spontaneous change? It is not a tendency to
achieve a lower energy, because the First Law asserts that the total energy of
the universe does not change in any process. It turns out that the direction is
determined by the manner in which energy and matter are distributed. This
concept is made precise by the Second Law of thermodynamics and made
quantitative by introducing the property known as ‘entropy’.

3A.1 The Second Law

The role of the distribution of energy and matter can be appreciated by
thinking about a ball bouncing on a floor. The ball does not rise as high after
each bounce because some of the energy associated with its motion spreads
out—is dispersed—into the thermal motion of the particles in the ball and the
floor. The direction of spontaneous change is towards a state in which the
ball is at rest with all its energy dispersed into disorderly thermal motion of
the particles in the surroundings (Fig. 3A.1).



Figure 3A.1 The direction of spontaneous change for a ball bouncing
on a floor. On each bounce some of its energy is degraded into the
thermal motion of the atoms of the floor, and that energy then
disperses. The reverse process, a ball rising from the floor as a result
of acquiring energy from the thermal motion of the atoms in the floor,
has never been observed to take place.

A ball resting on a warm floor has never been observed to start bouncing
as a result of energy transferred to the ball from the floor. For bouncing to
begin, something rather special would need to happen. In the first place, some
of the thermal motion of the atoms in the floor (the surroundings) would have
to accumulate in a single, small object, the ball (the system). This
accumulation requires a spontaneous localization of energy from the myriad
vibrations of the atoms of the floor into the much smaller number of atoms
that constitute the ball (Fig. 3A.2). Furthermore, whereas the thermal motion
is random, for the ball to move upwards its atoms must all move in the same
direction. The localization of random, disorderly motion as directed, orderly

motion is so unlikely that it can be dismissed as virtually impossible.?

The signpost of spontaneous change has been identified: look for the
direction of change that leads to the dispersal of energy. This principle
accounts for the direction of change of the bouncing ball, because its energy
is spread out as thermal motion of the atoms of the floor. The reverse process
is not spontaneous because it is highly improbable that energy will become
localized, leading to uniform motion of the ball’s atoms.



Figure 3A.2 (a) A ball resting on a warm surface; the atoms are
undergoing thermal motion (vibration, in this instance), as indicated by
the arrows. (b) For the ball to fly upwards, some of the random
vibrational motion would have to change into coordinated, directed
motion. Such a conversion is highly improbable.

Matter also has a tendency to disperse. A gas does not contract
spontaneously because to do so the random motion of its molecules would
have to take them all into the same region of the container. The opposite
change, spontaneous expansion, is a natural consequence of matter becoming
more dispersed as the gas molecules are free to occupy a larger volume.

The Second Law of thermodynamics expresses these conclusions more
precisely and without referring to the behaviour of the molecules that are
responsible for the properties of bulk matter. One statement was formulated
by Kelvin:

No process is possible in which the sole result is the absorption of heat
from a reservoir and its complete conversion into work.

Statements like this are commonly explored by thinking about an idealized
device called a heat engine (Fig. 3A.3(a)). A heat engine consists of two
reservoirs, one hot (the ‘hot source’) and one cold (the ‘cold sink’),
connected in such a way that some of the energy flowing as heat between the
two reservoirs can be converted into work. The Kelvin statement implies that
it is not possible to construct a heat engine in which all the heat drawn from



the hot source is completely converted into work (Fig. 3A.3(b)): all working
heat engines must have a cold sink. The Kelvin statement is a generalization
of the everyday observation that a ball at rest on a surface has never been
observed to leap spontaneously upwards. An upward leap of the ball would
be equivalent to the spontaneous conversion of heat from the surface into the
work of raising the ball.

Another statement of the Second Law is due to Rudolf Clausius (Fig.
3A.4):

Heat does not flow spontaneously from a cool body to a hotter body.

Hot source Hot source

Flow nf—i-l; |
energy
as heat 1‘

Cold sink

Figure 3A.3 (a) A heat engine is a device in which energy is extracted
from a hot reservoir (the hot source) as heat and then some of that
energy is converted into work and the rest discarded into a cold
reservoir (the cold sink) as heat. (b) The Kelvin statement of the
Second Law denies the possibility of the process illustrated here, in
which heat is changed completely into work, there being no other
change.

To achieve the transfer of heat to a hotter body, it is necessary to do work on
the system, as in a refrigerator. Although they appear somewhat different, it
can be shown that the Clausius statement is logically equivalent to the Kelvin
statement. One way to do so is to show that the two observations can be



summarized by a single statement.

First, the system and its surroundings are regarded as a single (and possibly
huge) isolated system sometimes referred to as ‘the universe’. Energy can be
transferred within this isolated system between the actual system and its
surroundings, but none can enter or leave it. Then the Second Law is
expressed in terms of a new state function, the entropy, S:

Hot sink

Figure 3A.4 According to the Clausius statement of the Second Law,
the process shown here, in which energy as heat migrates from a cool
source to a hot sink, does not take place spontaneously. The process
Is not in conflict with the First Law because energy is conserved.

The entropy of an isolated system increases in the course of a
spontaneous change: AS,,; > 0

where S, is the total entropy of the overall isolated system. That is, if S is the
entropy of the system of interest, and S, the entropy of the surroundings,
then S;,, = S + Sy, It is vitally important when considering applications of

the Second Law to remember that it is a statement about the total entropy of
the overall isolated system (the “universe’), not just about the entropy of the
system of interest. The following section defines entropy and interprets it as a
measure of the dispersal of energy and matter, and relates it to the empirical



observations discussed so far.

In summary, the First Law uses the internal energy to identify permissible
changes; the Second Law uses the entropy to identify which of these
permissible changes are spontaneous.

3A.2 The definition of entropy

To make progress, and to turn the Second Law into a quantitatively useful
expression, the entropy change accompanying various processes needs to be
defined and calculated. There are two approaches, one classical and one
molecular. They turn out to be equivalent, but each one enriches the other.

(a) The thermodynamic definition of entropy

The thermodynamic definition of entropy concentrates on the change in
entropy, dS, that occurs as a result of a physical or chemical change (in
general, as a result of a ‘process’). The definition is motivated by the idea that
a change in the extent to which energy is dispersed in a disorderly way
depends on how much energy is transferred as heat, not as work. As
explained in Topic 2A, heat stimulates random motion of atoms whereas
work stimulates their uniform motion and so does not change the extent of
their disorder.
The thermodynamic definition of entropy is based on the expression

_ A, Entropy chanioe
L T [definition] Bila)

where g, is the energy transferred as heat reversibly to the system at the
absolute temperature T. For a measurable change between two states i and f,

AS= _|'Ird‘1T”" (3A.1h)
That is, to calculate the difference in entropy between any two states of a
system, find a reversible path between them, and integrate the energy
supplied as heat at each stage of the path divided by the temperature at which
that heat is transferred.



According to the definition of an entropy change given in eqn 3A.1a, when
the energy transferred as heat is expressed in joules and the temperature is in

kelvins, the units of entropy are joules per kelvin (J K™1). Entropy is an
extensive property. Molar entropy, the entropy divided by the amount of

substance, S, = S/n, is expressed in joules per kelvin per mole (J K™! mol™);
molar entropy is an intensive property.

Sl x7:Wy Calculating the entropy change for the
isothermal expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when it expands
isothermally from a volume V; to a volume V;.

Collect your thoughts The definition of entropy change in eqn 3A.1b
instructs you to find the energy supplied as heat for a reversible path
between the stated initial and final states regardless of the actual manner
in which the process takes place. The process is isothermal, so T can be
treated as a constant and taken outside the integral in eqn 3A.1b.
Moreover, because the internal energy of a perfect gas is independent of
its volume (Topic 2A), AU = 0 for the expansion. Then, because AU = q

+ w, it follows that g = —w, and therefore that q.., = ~We,- The work of

reversible isothermal expansion is calculated in Topic 2A. Finally,
calculate the change in molar entropy from AS_, = AS/n.

The solution The temperature is constant, so eqn 3A.1b becomes

_ 1t = Hear
.-i‘n.S—T_L dg,.. = T

From Topic 2A the reversible work in an isothermal expansion is
We=—nRTIn(Vi/¥) hence 4.=#RTIn(V;/V). It follows, after dividing q., by T,

that

V. :
AS=nRIn <- and asm=mn%
i i

Self-test 3A.1 Calculate the change in entropy when the pressure of a
fixed amount of perfect gas is changed isothermally from p; to p;. What



is the origin of this change?

Answer: A S = nR In(py/py); the change in volume when the gas is
compressed or expands.

To see how the definition in eqn 3A.1a is used to formulate an expression

for the change in entropy of the surroundings, A S,,, consider an

infinitesimal transfer of heat dq,, from the system to the surroundings. The

surroundings consist of a reservoir of constant volume, so the energy
supplied to them by heating can be identified with the change in the internal

energy of the surroundings, dU,,.> The internal energy is a state function,
and dU,, is an exact differential. These properties imply that dUg,. is

sur sur

independent of how the change is brought about and in particular it is
independent of whether the process is reversible or irreversible. The same
remarks therefore apply to dq,, to which dU, is equal. Therefore, the

sur
definition in eqn 3A.1a can be adapted simply by deleting the constraint
‘reversible’ and writing

Js = gy, Entropy chanoe of (3A.2a)

= the surrounidings

Furthermore, because the temperature of the surroundings is constant
whatever the change, for a measurable change

A = %—: {3A.2h)

That is, regardless of how the change is brought about in the system,
reversibly or irreversibly, the change of entropy of the surroundings is
calculated simply by dividing the heat transferred by the temperature at
which the transfer takes place.

Equation 3A.2b makes it very simple to calculate the changes in entropy of
the surroundings that accompany any process. For instance, for any adiabatic
change, q.,, = 0, so

AS_ =0 Adiabatic chanpa.  (3A.3)

sur



This expression is true however the change takes place, reversibly or
irreversibly, provided no local hot spots are formed in the surroundings. That
is, it is true (as always assumed) provided the surroundings remain in internal
equilibrium. If hot spots do form, then the localized energy may subsequently
disperse spontaneously and hence generate more entropy.

Brief illustration 3A.1

To calculate the entropy change in the surroundings when 1.00 mol
H,0(l) is formed from its elements under standard conditions at 298 K,

use A¢H® = -286 kJ mol ! from Table 2C.4. The energy released as heat
from the system is supplied to the surroundings, so q., = +286 kJ.
Therefore,

] . 5
Ag o 2:86x10°]

r=1
SW—W=+95D[R

This strongly exothermic reaction results in an increase in the entropy of
the surroundings as energy is released as heat into them.

You are now in a position to see how the definition of entropy is consistent
with Kelvin’s and Clausius’s statements of the Second Law and unifies them.
In Fig. 3A.3(b) the entropy of the hot source is reduced as energy leaves it as
heat. The transfer of energy as work does not result in the production of
entropy, so the overall result is that the entropy of the (overall isolated)
system decreases. The Second Law asserts that such a process is not
spontaneous, so the arrangement shown in Fig. 3A.3(b) does not produce
work. In the Clausius version, the entropy of the cold source in Fig 3A.4
decreases when energy leaves it as heat, but when that heat enters the hot sink
the rise in entropy is not as great (because the temperature is higher). Overall
there is a decrease in entropy and so the transfer of heat from a cold source to
a hot sink is not spontaneous.

(b) The statistical definition of entropy



The molecular interpretation of the Second Law and the ‘statistical’ definition
of entropy start from the idea, introduced in the Prologue, that atoms and
molecules are distributed over the energy states available to them in accord
with the Boltzmann distribution. Then it is possible to predict that as the
temperature is increased the molecules populate higher energy states.
Boltzmann proposed that there is a link between the spread of molecules over

the available energy states and the entropy, which he expressed as>

S=kln/ Boltzrmann formula for the entropy. (3A4)

where k is Boltzmann’s constant (k = 1.381 x 10723 J K1) and w is the
number of microstates, the number of ways in which the molecules of a
system can be distributed over the energy states for a specified total energy.
When the properties of a system are measured, the outcome is an average
taken over the many microstates the system can occupy under the prevailing
conditions. The concept of the number of microstates makes quantitative the
ill-defined qualitative concepts of ‘disorder’ and ‘the dispersal of matter and
energy’ used to introduce the concept of entropy: a more disorderly
distribution of matter and a greater dispersal of energy corresponds to a
greater number of microstates associated with the same total energy. This
point is discussed in much greater detail in Topic 13E.

Equation 3A.4 is known as the Boltzmann formula and the entropy
calculated from it is called the statistical entropy. If all the molecules are in
one energy state there is only one way of achieving this distribution, so w = 1
and, because In 1 = 0, it follows that S = 0. As the molecules spread out over
the available energy states, # increases and therefore so too does the entropy.
The value of w also increases if the separation of energy states decreases,
because more states become accessible. An example is a gas confined to a
container, because its translational energy levels get closer together as the
container expands (Fig. 3A.5; this is a conclusion from quantum theory
which is verified in Topic 7D). The value of w, and hence the entropy, is
expected to increase as the gas expands, which is in accord with the
conclusion drawn from the thermodynamic definition of entropy (Example
3A.1).
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Figure 3A.5 When a container expands from (b) to (a), the
translational energy levels of gas molecules in it come closer together
and, for the same temperature, more become accessible to the
molecules. As a result the number of ways of achieving the same
energy (the value of w) increases, and so therefore does the entropy.

The molecular interpretation of entropy helps to explain why, in the
thermodynamic definition given by eqn 3A.1, the entropy change depends
inversely on the temperature. In a system at high temperature the molecules
are spread out over a large number of energy states. Increasing the energy of
the system by the transfer of heat makes more states accessible, but given that
very many states are already occupied the proportionate change in # is small
(Fig. 3A.6). In contrast, for a system at a low temperature fewer states are
occupied, and so the transfer of the same energy results in a proportionately
larger increase in the number of accessible states, and hence a larger increase
in w. This argument suggests that the change in entropy for a given transfer
of energy as heat should be greater at low temperatures than at high, as in eqn
3A.1a.

There are several final points. One is that the Boltzmann definition of
entropy makes it possible to calculate the absolute value of the entropy of a
system, whereas the thermodynamic definition leads only to values for a
change in entropy. This point is developed in FOCUS 13 where it is shown
how to relate values of S to the structural properties of atoms and molecules.
The second point is that the Boltzmann formula cannot readily be applied to
the surroundings, which are typically far too complex for # to be a
meaningful quantity.
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Figure 3A.6 The supply of energy as heat to the system results in the
molecules moving to higher energy states, so increasing the number
of microstates and hence the entropy. The increase in the entropy is
smaller for (a) a system at a high temperature than (b) one at a low
temperature because initially the number of occupied states is greater.

3A.3 The entropy as a state function

Entropy is a state function. To prove this assertion, it is necessary to show
that the integral of dS between any two states is independent of the path
between them. To do so, it is sufficient to prove that the integral of eqn 3A.1a
round an arbitrary cycle is zero, for that guarantees that the entropy is the
same at the initial and final states of the system regardless of the path taken
between them (Fig. 3A.7). That is, it is necessary to show that

fds= q:.d‘%= 0 (3A5)

where the symbol ¢ denotes integration around a closed path. There are three
steps in the argument:

1. First, to show that eqn 3A.5 is true for a special cycle (a ‘Carnot cycle’)
involving a perfect gas.

2. Then to show that the result is true whatever the working substance.

3. Finally, to show that the result is true for any cycle.

(a) The Carnot cycle



A Carnot cycle, which is named after the French engineer Sadi Carnot,
consists of four reversible stages in which a gas (the working substance) is
either expanded or compressed in various ways; in two of the stages energy
as heat is transferred to or from a hot source or a cold sink (Fig. 3A.8).
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Figure 3A.7 In a thermodynamic cycle, the overall change in a state
function (from the initial state to the final state and then back to the
Initial state again) is zero.
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Figure 3A.8 The four stages which make up the Carnot cycle. In stage
1 the gas (the working substance) is in thermal contact with the hot
reservoir, and in stage 3 contact is with the cold reservoir; both stages
are isothermal. Stages 2 and 4 are adiabatic, with the gas isolated
from both reservoirs.

Figure 3A.9 shows how the pressure and volume change in each stage:
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Figure 3A.9 The basic structure of a Carnot cycle. Stage 1 is the
isothermal reversible expansion at the temperature T,. Stage 2 is a

reversible adiabatic expansion in which the temperature falls from T,
to T,. Stage 3 is an isothermal reversible compression at T.. Stage 4 is

an adiabatic reversible compression, which restores the system to its
initial state.

1. The gas is placed in thermal contact with the hot source (which is at
temperature T},) and undergoes reversible isothermal expansion from A to

B; the entropy change is q;/T},, where gy, is the energy supplied to the
system as heat from the hot source.

2. Contact with the hot source is broken and the gas then undergoes
reversible adiabatic expansion from B to C. No energy leaves the system as

heat, so the change in entropy is zero. The expansion is carried on until the
temperature of the gas falls from Tj, to T, the temperature of the cold sink.

3. The gas is placed in contact with the cold sink and then undergoes a
reversible isothermal compression from C to D at T... Energy is released as

heat to the cold sink; the change in entropy of the system is q./T; in this
expression g, is negative.

4. Finally, contact with the cold sink is broken and the gas then undergoes
reversible adiabatic compression from D to A such that the final
temperature is T;,. No energy enters the system as heat, so the change in

entropy is zero.

The total change in entropy around the cycle is the sum of the changes in
each of these four steps:



The next task is to show that the sum of the two terms on the right of this
expression is zero for a perfect gas and so confirming, for that substance at
least, that entropy is a state function.

SOALR 1N [o]a sV AT Showing that the entropy is a state
function for a perfect gas

First, you need to note that a reversible adiabatic expansion (stage 2 in
Fig. 3A.9) takes the system from T} to T,. You can then use the

properties of such an expansion, specifically VT¢ = constant (Topic 2E),
to relate the two volumes at the start and end of the expansion. You also
need to note that energy as heat is transferred by reversible isothermal
processes (stages 1 and 3) and, as derived in Example 3A.1, for a perfect
gas

stage | stage 3
H A

gy =mRT} ln;i:_; g.=nRT, ]JI:I:TD
A L=

Step 1 Relate the volumes in the adiabatic expansions
For a reversible adiabatic process the temperature and volume are
related by VT € = constant (Topic 2E). Therefore

for the path D to A (stage 4): V,Ty= VT,

for the path B to C (stage 2 V.T.= 1T},

Multiplication of the first of these expressions by the second gives

ViVeLiI = Vel Lt

which, on cancellation of the temperatures, simplifies to

V.

&)

W=

1.8
A

Step 2 Establish the relation between the two heat transfers
You can now use this relation to write an expression for energy



discarded as heat to the cold sink in terms of V, and V

r 1F -
4. = nRT,Inp= nRT. Ini-=—nRT; Ing™
r* :

It follows that

q

w  ARLI(VV,) T,
q.

—nRT In(V,/V,) 1.

Note that gy, is negative (heat is withdrawn from the hot source) and q, is

positive (heat is deposited in the cold sink), so their ratio is negative.
This expression can be rearranged into

S
LT =0 (3A.6)

Because the total change in entropy around the cycle is a/%+a./T. it
follows immediately from eqn 3A.6 that, for a perfect gas, this entropy
change is zero.

Brief illustration 3A.2

The Carnot cycle can be regarded as a representation of the changes
taking place in a heat engine in which part of the energy extracted as
heat from the hot reservoir is converted into work. Consider an engine
running in accord with the Carnot cycle, and in which 100 J of energy is
withdrawn from the hot source (g, = —100 J) at 500 K. Some of this

energy is used to do work and the remainder is deposited in the cold sink
at 300 K. According to eqn 3A.6, the heat deposited is

T 00K

This value implies that 40 J was used to do work.




It is now necessary to show that eqn 3A.5 applies to any material, not just a
perfect gas. To do so, it is helpful to introduce the efficiency, n (eta), of a
heat engine:

- work performed 2 Jil_ Efficlency AT
"1 = Teat absorbed from hot source |"1h| [defirittion] 2

Modulus signs (]...|) have been used to avoid complications with signs: all
efficiencies are positive numbers. The definition implies that the greater the
work output for a given supply of heat from the hot source, the greater is the
efficiency of the engine. The definition can be expressed in terms of the heat
transactions alone, because (as shown in Fig. 3A.10) the energy supplied as
work by the engine is the difference between the energy supplied as heat by
the hot source and that returned to the cold sink:

,E[Hg lH aAg
h Th

It then follows from eqn 3A.6, written as |q.|/|q,| = T/T;, that

1= 1_% Carnotafficlency.  (3A.9)
h

Figure 3A.10 In a heat engine, an energy q,, (for example, |g,| = 20 kJ)
is extracted as heat from the hot source and q. is discarded into the
cold sink (for example, |g.| = 15 kJ). The work done by the engine is
equal to |g,| — |g.] (e.g9. 20 kJ — 15 kJ = 5 kJ).



Brief illustration 3A.3

A certain power station operates with superheated steam at 300 °C (T}, =
573 K) and discharges the waste heat into the environment at 20 °C (T
= 293 K). The theoretical efficiency is therefore

293K
M= l-t3g = 0489

or 48.9 per cent. In practice, there are other losses due to mechanical
friction and the fact that the turbines do not operate reversibly.

Now this conclusion can be generalized. The Second Law of
thermodynamics implies that all reversible engines have the same efficiency
regardless of their construction. To see the truth of this statement, suppose
two reversible engines are coupled together and run between the same hot
source and cold sink (Fig. 3A.11). The working substances and details of
construction of the two engines are entirely arbitrary. Initially, suppose that
engine A is more efficient than engine B, and that a setting of the controls has
been chosen that causes engine B to acquire energy as heat g, from the cold

sink and to release a certain quantity of energy as heat into the hot source.
However, because engine A is more efficient than engine B, not all the work
that A produces is needed for this process and the difference can be used to
do work. The net result is that the cold reservoir is unchanged, work has been
done, and the hot reservoir has lost a certain amount of energy. This outcome
is contrary to the Kelvin statement of the Second Law, because some heat has
been converted directly into work. Because the conclusion is contrary to
experience, the initial assumption that engines A and B can have different
efficiencies must be false. It follows that the relation between the heat
transfers and the temperatures must also be independent of the working
material, and therefore that eqn 3A.9 is true for any substance involved in a
Carnot cycle.
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Figure 3A.11 (a) The demonstration of the equivalence of the
efficiencies of all reversible engines working between the same
thermal reservoirs is based on the flow of energy represented in this
diagram. (b) The net effect of the processes is the conversion of heat
into work without there being a need for a cold sink. This is contrary to
the Kelvin statement of the Second Law.

For the final step of the argument note that any reversible cycle can be
approximated as a collection of Carnot cycles. This approximation is
illustrated in Fig. 3A.12, which shows three Carnot cycles A, B, and C fitted
together in such a way that their perimeter approximates the cycle indicated
by the purple line. The entropy change around each individual cycle is zero
(as already demonstrated), so the sum of entropy changes for all the cycles is
zero. However, in the sum, the entropy change along any individual path is
cancelled by the entropy change along the path it shares with the
neighbouring cycle (because neighbouring paths are traversed in opposite
directions). Therefore, all the entropy changes cancel except for those along
the perimeter of the overall cycle and therefore the sum q,/T around the

perimeter is zero.
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Figure 3A.12 The path indicated by the purple line can be
approximated by traversing the overall perimeter of the area created
by the three Carnot cycles A, B, and C; for each individual cycle the
overall entropy change is zero. The entropy changes along the
adiabatic segments (such as a,—a, and c,—c;) are zero, so it follows

that the entropy changes along the isothermal segments of any one
cycle (such as a;—a, and a;—a,) cancel. The entropy change resulting
from traversing the overall perimeter of the three cycles is therefore
zero.

The path shown by the purple line can be approximated more closely by
using more Carnot cycles, each of which is much smaller, and in the limit
that they are infinitesimally small their perimeter matches the purple path
exactly. Equation 3A.5 (that the integral of dq,./T round a general cycle is

zero) then follows immediately. This result implies that dS is an exact
differential and therefore that S is a state function.

(b) The thermodynamic temperature

Suppose an engine works reversibly between a hot source at a temperature T},
and a cold sink at a temperature T, then it follows from eqn 3A.9 that

T={1-mT, (3410

This expression enabled Kelvin to define the thermodynamic temperature
scale in terms of the efficiency of a heat engine: construct an engine in which
the hot source is at a known temperature and the cold sink is the object of
interest. The temperature of the latter can then be inferred from the measured
efficiency of the engine. The Kelvin scale (which is a special case of the



thermodynamic temperature scale) is currently defined by using water at its
triple point as the notional hot source and defining that temperature as 273.16

K exactly.*

(c) The Clausius inequality

To show that the definition of entropy is consistent with the Second Law,
note that more work is done when a change is reversible than when it is
irreversible. That is, |[dw,,| = |[dw|. Because dw and dw,,, are negative when

energy leaves the system as work, this expression is the same as —dw, =

rev

—dw, and hence dw — dw,,, = 0. The internal energy is a state function, so its

change is the same for irreversible and reversible paths between the same two
states, and therefore

dll=dg+dw=dg,, +dw,,

and hence dq,., — dq = dw — dw,,,. Then, because dw — dw,,, > 0, it follows

that dq,., — dq > 0 and therefore dq,., = dq. Division by T then results in
dq.e/T = dq/T. From the thermodynamic definition of the entropy (dS =
dq,/T) it then follows that

1‘152% Claustus Inequality  (3A1T)
This expression is the Clausius inequality. It proves to be of great
importance for the discussion of the spontaneity of chemical reactions (Topic
3D).

Suppose a system is isolated from its surroundings, so that dqg = 0. The
Clausius inequality implies that

ds =0 (34.12)

That is, in an isolated system the entropy cannot decrease when a
spontaneous change occurs. This statement captures the content of the
Second Law.

The Clausius inequality also implies that spontaneous processes are also
necessarily irreversible processes. To confirm this conclusion, the inequality
is introduced into the expression for the total entropy change that



accompanies d process:

2dgiT  —dg/T

ds, =ds + ds,, =0

where the inequality corresponds to an irreversible process and the equality to
a reversible process. That is, a spontaneous process (dS,, > 0) is an
irreversible process. A reversible process, for which dS,,, = 0, is spontaneous
in neither direction: it is at equilibrium.

Apart from its fundamental importance in linking the definition of entropy
to the Second Law, the Clausius inequality can also be used to show that a
familiar process, the cooling of an object to the temperature of its
surroundings, is indeed spontaneous. Consider the transfer of energy as heat
from one system—the hot source—at a temperature T}, to another system—
the cold sink—at a temperature T, (Fig. 3A.13). When |dq| leaves the hot
source (so dqy < 0), the Clausius inequality implies that dS > dq;/T},. When
|dq| enters the cold sink the Clausius inequality implies that dS > dq /T, (with

dq. > 0). Overall, therefore,

\ Hot source a,
: dS=|dg)/T,

ds = +{da'T,

Figure 3A.13 When energy leaves a hot source as heat, the entropy of
the source decreases. When the same quantity of energy enters a
cooler sink, the increase in entropy is greater. Hence, overall there is
an increase in entropy and the process is spontaneous. Relative
changes in entropy are indicated by the sizes of the arrows.

dgy,  dg
T +T

c

dsz



However, dg;, = —dq,, so

d:!c dcl: =[ TL_ TL-]de;
h

[ 5 (o s

which is positive (because dq, > 0 and T}, > T,.). Hence, cooling (the transfer
of heat from hot to cold) is spontaneous, in accord with experience.

The entropy is a signpost of spontaneous change: the entropy of the
universe increases in a spontaneous process.

A change in entropy is defined in terms of reversible heat transactions.

The Boltzmann formula defines entropy in terms of the number of
ways that the molecules can be arranged amongst the energy states,
subject to the arrangements having the same overall energy.

The Carneot cycle is used to prove that entropy is a state function.

The efficiency of a heat engine is the basis of the definition of the
thermodynamic temperature scale and one realization of such a scale,
the Kelvin scale.

The Clausius inequality is used to show that the entropy of an
isolated system increases in a spontaneous change and therefore that
the Clausius definition is consistent with the Second Law.

Spontaneous processes are irreversible processes; processes
accompanied by no change in entropy are at equilibrium.

Property Equation Comment Equation
number

Thermodynamic entropy dS = dq,.,/T Definition 3A.la

Entropy change of AS,, = 3A.2b

surroundings Qsur’ Tour



Boltzmann formula S=klnw Definition 3A.4

Carnot efficiency n=1-TJT, Reversible 3A.9
processes

Thermodynamic temperature T = (1 —-n)T} 3A.10

Clausius inequality dS > dq/T 3A.11

1 Orderly motion, but on a much smaller scale and continued only very
briefly, is observed as Brownian motion, the jittering motion of small
particles suspended in a liquid or gas.

2 Alternatively, the surroundings can be regarded as being at constant
pressure, in which case dq,, = dH

sur*

3 He actually wrote S = k log W, and it is carved on his tombstone in
Vienna.

4 The international community has agreed to replace this definition by
another that is independent of the specification of a particular substance, but
the new definition has not yet (in 2018) been implemented.

Entropy changes
accompanying specific processes

The changes in entropy accompanying a variety of basic physical processes
occur throughout the application of the Second Law to chemistry.

The change in entropy accompanying a process is calculated by identifying a
reversible path between the initial and final states.



You need to be familiar with the thermodynamic definition of entropy (Topic
3A), the First-Law concepts of work, heat, and internal energy (Topic 2A),
and heat capacity (Topic 2B). The Topic makes use of the expressions for the
work and heat transactions during the reversible, isothermal expansion of a
perfect gas (Topic 2A).

The thermodynamic definition of entropy change given in eqn 3A.1,

dq,., £, Entropy change
= rr b= == z
ds AS L

T [definition] (3B.1a)

where g, is the energy supplied reversibly as heat to the system at a

temperature T, is the basis of all calculations relating to entropy in
thermodynamics. When applied to the surroundings, this definition implies
eqn 3A.2b, which is repeated here as

q Entropy change .
ASpy =" of surraundings (38.1b)

where g, is the energy supplied as heat to the surroundings and T, is their

temperature; note that the entropy change of the surroundings is the same
whether or not the process is reversible or irreversible for the system. The
total change in entropy of an (overall) isolated system (the “universe’) is

A8, =AS+AS, Total entropy change  (3B.1c)

The entropy changes accompanying some physical changes are of particular
importance and are treated here. As explained in Topic 3A, a spontaneous
process is also irreversible (in the thermodynamic sense) and a process for
which 45,,=0is at equilibrium.

3B.1 Expansion

In Topic 3A (specifically Example 3A.1) it is established that the change in
entropy of a perfect gas when it expands isothermally from V; to V; is



V. Entropy change for the
AS=nR J'n'u_’r lsothermal expansion of  (3B.2)
i a3 perfect oas

Because S is a state function, the value of AS of the system is independent of
the path between the initial and final states, so this expression applies
whether the change of state occurs reversibly or irreversibly. The logarithmic
dependence of entropy on volume is illustrated in Fig. 3B.1.

The total change in entropy, however, does depend on how the expansion
takes place. For any process the energy lost as heat from the system is
acquired by the surroundings, so dq,,. = —dq. For the reversible isothermal

expansion of a perfect gas q.., = nRT In(V{/V)), so q.,, = —nRT In(V{/V;), and
consequently

ﬁmt:_tl%:_”ﬂhlr_;: (3B.3a)
4
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Figure 3B.1 The logarithmic increase in entropy of a perfect gas as it
expands isothermally.

This change is the negative of the change in the system, so AS,, = 0, as
expected for a reversible process. If, on the other hand, the isothermal



expansion occurs freely (if the expansion is into a vacuum) no work is done
(w = 0). Because the expansion is isothermal, AU = 0, and it follows from the
First Law, AU = q + w, that g = 0. As a result, q.,, = 0 and hence AS_ . = 0.

For this expansion doing no work the total entropy change is therefore given
by eqn 3B.1 itself:

sur

r
Ve
r

A5, =nRln 7

(3B.3b)

In this case, AS,,; > 0, as expected for an irreversible process.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant temperature,
Vi/V; = 2, and hence the change in molar entropy of the system is

AS., =(8.3145J K 'mol™) x In 2 =+5.76 ] K~! mol ™!

If the change is carried out reversibly, the change in entropy of the
surroundings is —5.76 J K™ mol™! (the ‘per mole’ meaning per mole of
gas molecules in the sample). The total change in entropy is 0. If the
expansion is free, the change in molar entropy of the gas is still +5.76 J
K1 mol™!, but that of the surroundings is 0, and the total change is
+5.76 J K1 mol™%.

3B.2 Phase transitions

When a substance freezes or boils the degree of dispersal of matter and the
associated energy changes reflect the order with which the molecules pack
together and the extent to which the energy is localized. Therefore, a
transition is expected to be accompanied by a change in entropy. For
example, when a substance vaporizes, a compact condensed phase changes
into a widely dispersed gas, and the entropy of the substance can be expected



to increase considerably. The entropy of a solid also increases when it melts
to a liquid.

Consider a system and its surroundings at the normal transition
temperature, T, ., the temperature at which two phases are in equilibrium at

1 atm. This temperature is 0 °C (273 K) for ice in equilibrium with liquid
water at 1 atm, and 100 °C (373 K) for water in equilibrium with its vapour at
1 atm. At the transition temperature, any transfer of energy as heat between
the system and its surroundings is reversible because the two phases in the
system are in equilibrium. Because at constant pressure q = A H, the change

in molar entropy of the system is!

A H Entropy of phase transiton ’
.'_\i|“5= :F;s [31 T:-.] IIEB.-‘J-.I

rs

If the phase transition is exothermic (A, H < 0, as in freezing or condensing),

then the entropy change of the system is negative. This decrease in entropy is
consistent with the increased order of a solid compared with a liquid, and
with the increased order of a liquid compared with a gas. The change in
entropy of the surroundings, however, is positive because energy is released
as heat into them. At the transition temperature the total change in entropy is
zero because the two phases are in equilibrium. If the transition is
endothermic (A, H > 0, as in melting and vaporization), then the entropy

change of the system is positive, which is consistent with dispersal of matter
in the system. The entropy of the surroundings decreases by the same
amount, and overall the total change in entropy is zero.

Table 3B.1 lists some experimental entropies of phase transitions. Table
3B.2 lists in more detail the standard entropies of vaporization of several
liquids at their normal boiling points. An interesting feature of the data is that
a wide range of liquids give approximately the same standard entropy of

vaporization (about 85 J K™! mol™): this empirical observation is called
Trouton’s rule. The explanation of Trouton’s rule is that a similar change in
volume occurs when any liquid evaporates and becomes a gas. Hence, all
liquids can be expected to have similar standard entropies of vaporization.
Liquids that show significant deviations from Trouton’s rule do so on
account of strong molecular interactions that result in a partial ordering of
their molecules. As a result, there is a greater change in disorder when the
liquid turns into a vapour than for when a fully disordered liquid vaporizes.



An example is water, where the large entropy of vaporization reflects the
presence of structure arising from hydrogen bonding in the liquid. Hydrogen
bonds tend to organize the molecules in the liquid so that they are less
random than, for example, the molecules in liquid hydrogen sulfide (in which
there is no hydrogen bonding). Methane has an unusually low entropy of
vaporization. A part of the reason is that the entropy of the gas itself is

slightly low (186 J K ! mol™! at 298 K; the entropy of N, under the same
conditions is 192 J K™! mol ™). As explained in Topic 13B, fewer

translational and rotational states are accessible at room temperature for
molecules with low mass and moments of inertia (like CH,) than for

molecules with relatively high mass and moments of inertia (like N,), so their
molar entropy is slightly lower.

Table 3B.1 Standard entropies of phase transitions, A,.S®/(J Kt mol™), at the
corresponding normal transition temperatures’”

Fusion (at Ty) Vaporization (at T})
Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)
Benzene, CgHg 38.00 (at 279 K) 87.19 (at 353 K)
Water, H,O 22.00 (at 273.15 K) 109.0 (at 373.15 K)
Helium, He 4.8 (at 8 K and 30 bar) 19.9 (at 4.22 K)

* More values are given in the Resource section.

Table 3B.2 The standard enthalpies and entropies of vaporization of liquids at
their boiling temperatures”

AvopHS/(KI mol  6,/°C A, SE&/(JK™



1 mol 1)

Benzene 30.8 80.1 87.2
Carbon 30 76.7 85.8
tetrachloride

Cyclohexane 30.1 80.7 85.1
Hydrogen sulfide  18.7 -60.4 87.9
Methane 8.18 -161.5 73.2
Water 40.7 100.0 109.1

* More values are given in the Resource section.

Brief illustration 3B.2

There is no hydrogen bonding in liquid bromine and Br, is a heavy
molecule which is unlikely to display unusual behaviour in the gas

phase, so it is safe to use Trouton’s rule. To predict the standard molar
enthalpy of vaporization of bromine given that it boils at 59.2 °C, use
Trouton’s rule in the form
AyapH® = Ty x (85 J K™ mol ™)
Substitution of the data then gives
AyapH® = (332.4 K) x (85 J K™t mol™)
= +2.8 x 10* J mol ™! = +28 kJ mol !

The experimental value is +29.45 kJ mol .




3B.3 Heating

The thermodynamic definition of entropy change in eqn 3B.la is used to
calculate the entropy of a system at a temperature T; from a knowledge of its

entropy at another temperature T; and the heat supplied to change its
temperature from one value to the other:

s

(T)=ST)+ | —F (38.5)

The most common version of this expression is for a system subjected to
constant pressure (such as from the atmosphere) during the heating, so then
dq,ey = dH. From the definition of constant-pressure heat capacity (eqn 2B.5,

C, = (0H/0T),) it follows that dH = C,dT, and hence dq., = C,dT.
Substitution into eqn 3B.5 gives

; .5 O AT Entropy varation with
S(T;)=5(T)+ | PT temperature {3B.8)
" [constant o]
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Figure 3B.2 The logarithmic increase in entropy of a substance as it is



heated at either constant volume or constant pressure. Different
curves are labelled with the corresponding value of C_/R, taken to be

constant over the temperature range. For constant volume conditions
C,, = Cyn, and at constant pressure C,, = C,, .

The same expression applies at constant volume, but with C, replaced by Cy.
When C, is independent of temperature over the temperature range of
interest, it can be taken outside the integral to give

rT dT . T
S(T)=8T)+C,| —=8T)+C,In=t 3B.7
(T)=S(T)+C, |} =S+ G, Inf B
with a similar expression for heating at constant volume. The logarithmic

dependence of entropy on temperature is illustrated in Fig. 3B.2.

Brief illustration 3B.3

The molar constant-volume heat capacity of water at 298 K is 75.3 J K1

mol~!. The change in molar entropy when it is heated from 20 °C (293
K) to 50 °C (323 K), supposing the heat capacity to be constant in that
range, is therefore

323K

AR w — (7= -1 1 -
AS, =8 (323K 5, (293K )= (75.3] K- mal ‘J><111293K

=4+ 734 TK ™" mol™

38.4 Composite processes

In many processes, more than one parameter changes. For instance, it might
be the case that both the volume and the temperature of a gas are different in
the initial and final states. Because S is a state function, the change in its
value can be calculated by considering any reversible path between the initial
and final states. For example, it might be convenient to split the path into two
steps: an isothermal expansion to the final volume, followed by heating at



constant volume to the final temperature. Then the total entropy change when
both variables change is the sum of the two contributions.

Sl MY Calculating the entropy change for a

composite process

Calculate the entropy change when argon at 25 °C and 1.00 bar in a

container of volume 0.500 dm? is allowed to expand to 1.000 dm? and is
simultaneously heated to 100 °C. (Take the molar heat capacity at
constant volume to be +R.)

Collect your thoughts As remarked in the text, you can break the overall
process down into two steps: isothermal expansion to the final volume,
followed by heating at constant volume to the final temperature. The
entropy change in the first step is given by eqn 3B.2 and that of the
second step, provided Cy, is independent of temperature, by eqn 3B.7

(with Cy in place of C). In each case you need to know n, the amount of

gas molecules, which can be calculated from the perfect gas equation
and the data for the initial state by using n = p;Vi/RT;.

The solution The amount of gas molecules is

=3 .3

_{L00x10° Pa)<{0.500107 m*)
(8.31457K " mol™ )= 298K

=1.0201...1mol

From eqn 3B.2 the entropy change in the isothermal expansion from V;
to Vi is

AS(Stepl)=nRln T

= (.0201.. molx(8.3145TK" mol™"}In

Ve

; !
1.000dm
0.500dm’

=+0.116.. JK"

From eqn 3B.6, the entropy change in the second step, heating from T; to
T; at constant volume, is



T T;
AS(Step 2)=nC,,, InsL=$nRIn=t
ep V. T T T
73
=-}><IZIII.D2D1...mol]x(S_E!-HSIK"1110]‘1]]n§'9—£
=+0.0564...JK™'

The overall entropy change of the system, the sum of these two changes,
is

AS=0116. JE!' + 00564, JE* =+0173T K

Self-test 3B.1 Calculate the entropy change when the same initial sample
is compressed to 0.0500 dm? and cooled to —25 °C.

Answer: —0.43 J K1

The entropy of a perfect gas increases when it expands isothermally.

The change in entropy of a substance accompanying a change of state
at its transition temperature is calculated from its enthalpy of
transition.

The increase in entropy when a substance is heated is calculated from
its heat capacity.

Property Equation Comment Equation
number

Entropy of AS=nR  Perfect gas 3B.2

isothermal In(Vy/Vy)

expansion

Entropy of Ay S = At the transition temperature 3B.4

transition A HI/T,

s trs



Variation of  S(Ty) = The heat capacity, C, is independent of 3B.7
entropy with  §(T;) + C  temperature and no phase transitions occur; C =
temperature  In(TyT) G, for constant pressure and Cy, for constant

volume.

! According to Topic 2C, A, H is an enthalpy change per mole of

substance, so A,S is also a molar quantity.

The measurement of
entropy

For entropy to be a quantitatively useful concept it is important to be able to
measure it: the calorimetric procedure is described here. The Third Law of
thermodynamics is used to report the measured values.

The entropy of a perfectly crystalline solid is zero at T = 0.

You need to be familiar with the expression for the temperature dependence
of entropy and how entropies of phase changes are calculated (Topic 3B).
The discussion of residual entropy draws on the Boltzmann formula for the
entropy (Topic 3A).

The entropy of a substance can be determined in two ways. One, which is the
subject of this Topic, is to make calorimetric measurements of the heat
required to raise the temperature of a sample from T = 0 to the temperature of



interest. There are then two equations to use. One is the dependence of
entropy on temperature, which is eqn 3B.7 reproduced here as

, 5, C,(T) i
ST)=S8(T)+ | T dT Entropy and temperature (3C.1a)
F o]

The second is the contribution of a phase change to the entropy, which
according to eqn 3B.4 is

A H(Ty,)
T,

ks

ASIT, )= Entropy of phase transtion (3C.0k0)
where 4.H(T;) is the enthalpy of transition at the transition temperature T..

The other method, which is described in Topic 13E, is to use calculated
parameters or spectroscopic data to calculate the entropy by using
Boltzmann’s statistical definition.

3c.1 The calorimetric measurement of entropy

According to eqn 3C.1a, the entropy of a system at a temperature T is related
to its entropy at T = 0 by measuring its heat capacity C, at different

temperatures and evaluating the integral. The entropy of transition for each
phase transition that occurs between T = 0 and the temperature of interest
must then be included in the overall sum. For example, if a substance melts at
T; and boils at Tj, then its molar entropy at a particular temperature T above

its boiling temperature is given by
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The variable of integration has been changed to T" to avoid confusion with
the temperature of interest, T. All the properties required, except S_,(0), can

be measured calorimetrically, and the integrals can be evaluated either
graphically or, as is now more usual, by fitting a polynomial to the data and
integrating the polynomial analytically. The former procedure is illustrated in
Fig. 3C.1: the area under the curve of C,,(T)/T against T is the integral

required. Provided all measurements are made at 1 bar on a pure material, the
final value is the standard entropy, S°(T); division by the amount of
substance, n, gives the standard molar entropy, S, °(T) = S°(T)/n. Because

dT/T = d In T, an alternative procedure is to evaluate the area under a plot of
Cp,m(T) against In T.

Brief illustration 3C.1

The standard molar entropy of nitrogen gas at 25 °C has been calculated
from the following data:

Contribution to S,°/(J K™!

mol 1)

Debye extrapolation 1.92
Integration, from 10 K to 35.61 25.25



K

Phase transition at 35.61 K 6.43
Integration, from 35.61 K to 23.38
63.14 K

Fusion at 63.14 K 11.42
Integration, from 63.14 K to 11.41
77.32 K

Vaporization at 77.32 K 72.13
Integration, from 77.32 K to 39.20
298.15 K

Correction for gas imperfection 0.92
Total 192.06

Therefore, S, ©(298.15 K) = S_(0) + 192.1 J K™! mol!. The Debye
extrapolation is explained in the next paragraph.

One problem with the determination of entropy is the difficulty of
measuring heat capacities near T = 0. There are good theoretical grounds for

assuming that the heat capacity of a non-metallic solid is proportional to T 3
when T is low (see Topic 7A), and this dependence is the basis of the Debye

extrapolation (or the Debye T 3 law). In this method, C, is measured down to

as low a temperature as possible and a curve of the form aT 3 is fitted to the
data. The fit determines the value of a, and the expression C, ,,(T) = aT 3 is
then assumed to be valid down to T = 0.
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Figure 3C.1 The variation of C,/T with the temperature for a sample is

used to evaluate the entropy, which is equal to the area beneath the
upper curve up to the corresponding temperature, plus the entropy of
each phase transition encountered between T = 0 and the
temperature of interest. For instance, the entropy denoted by the
yellow dot on the lower curve is given by the dark shaded area in the
upper graph.

SellJCxioy Calculating the entropy at low temperatures

The molar constant-pressure heat capacity of a certain non-metallic solid
at 42 K is 0.43 J K'! mol'!l. What is its molar entropy at that
temperature?

Collect your thoughts Because the temperature is so low, you can



assume that the heat capacity varies with temperature according to
Cpm(T) = aT 3, in which case you can use eqn 3C.la to calculate the

entropy at a temperature T in terms of the entropy at T = 0 and the
constant a. When the integration is carried out, it turns out that the result
can be expressed in terms of the heat capacity at the temperature T, so
the data can be used directly to calculate the entropy.

The solution The integration required is

Integral A.1
.3 |

SulT)=5,(0)+ I- 4l dI"=5,(00+a I-,; T+ dT

da T
=5 0)+4aT" = 5, (00 +4C, ,(T)

from which it follows that
S, (42K)=S_(0)+0.14 J K ' mol™

Self-test 3C.1 For metals, there is also a contribution to the heat capacity
from the electrons which is linearly proportional to T when the
temperature is low; that is, C,, ,(T) = bT. Evaluate its contribution to the

entropy at low temperatures.
Answer: S(T) = Sp,(0) + C,, (1)

3c.2 The Third Law

At T = 0, all energy of thermal motion has been quenched, and in a perfect
crystal all the atoms or ions are in a regular, uniform array. The localization
of matter and the absence of thermal motion suggest that such materials also
have zero entropy. This conclusion is consistent with the molecular
interpretation of entropy (Topic 3A) because there is only one way of
arranging the molecules when they are all in the ground state, which is the
case at T =0. Thus, at T=0, w =1 and from S = k In w it follows that S = 0.



(a) The Nernst heat theorem

The Nernst heat theorem summarizes a series of experimental observations
that turn out to be consistent with the view that the entropy of a regular array
of molecules is zero at T = 0:

The entropy change accompanying any physical or chemical transformation
approaches zero as the temperature approaches zero: AS - 0 as T - 0
provided all the substances involved are perfectly ordered.

Nernst heat theorem

Brief illustration 3C.2

The entropy of the transition between orthorhombic sulfur, «, and
monoclinic sulfur, B, can be calculated from the transition enthalpy (402

J mol ™) at the transition temperature (369 K):

A 5(369K)=5_([,369K)—- S, (0, 369K)

_ A H  402Tmol!

et | -1
T. ~— 369K =1.09TEK~-" maol

The entropies of the a and [ allotropes can also be determined by
measuring their heat capacities from T = 0 up to T = 369 K. It is found

that S_ (2,369 K) = S, (,0) + 37 J K1 mol ™! and S,,(B,369 K) = S,.(B,0)

+ 38 J K! mol™'. These two values imply that at the transition
temperature

ALS(369 K) = {5, (B.0) + 38T K mal ™} —
{8, 000,0) + 37 TK mal™}
=5, (f.0) — 5, (0000 + 1 TE mol™

On comparing this value with the one above, it follows that S_,(8,0) —
Sp(a,0) ~ 0, in accord with the theorem.

It follows from the Nernst theorem that, if the value zero is ascribed to the



entropies of elements in their perfect crystalline form at T = 0, then all perfect
crystalline compounds also have zero entropy at T = 0 (because the change in
entropy that accompanies the formation of the compounds, like the entropy of
all transformations at that temperature, is zero). This conclusion is
summarized by the Third Law of thermodynamics:

The entropy of all perfect crystalline Third Law of
substances is zero at T=0, thermedynamics

As far as thermodynamics is concerned, choosing this common value as zero
is a matter of convenience. As noted above, the molecular interpretation of
entropy justifies the value S = 0 at T = 0 because at this temperature # = 1.

In certain cases w > 1 at T = 0 and therefore S(0) > 0. This is the case if
there is no energy advantage in adopting a particular orientation even at
absolute zero. For instance, for a diatomic molecule AB there may be almost
no energy difference between the arrangements ...AB AB AB... and ...BA
AB BA... in a solid, so w > 1 even at T = 0. If S(0) > 0 the substance is said

to have a residual entropy. Ice has a residual entropy of 3.4 J K™ mol L. It
stems from the arrangement of the hydrogen bonds between neighbouring
water molecules: a given O atom has two short O—H bonds and two long
O...H bonds to its neighbours, but there is a degree of randomness in which
two bonds are short and which two are long.

(b) Third-Law entropies

Entropies reported on the basis that S(0) = 0 are called Third-Law entropies
(and commonly just ‘entropies’). When the substance is in its standard state
at the temperature T, the standard (Third-Law) entropy is denoted S°(T). A
list of values at 298 K is given in Table 3C.1.

The standard reaction entropy, ArSe, is defined, like the standard

reaction enthalpy in Topic 2C, as the difference between the molar entropies
of the pure, separated products and the pure, separated reactants, all
substances being in their standard states at the specified temperature:

Standard reaction

;".,S'"= z 1’,’5:— z Vi antropy {3C.3a)

Froducis FReaciants [definiton]

In this expression, each term is weighted by the appropriate stoichiometric



coefficient. A more sophisticated approach is to adopt the notation introduced
in Topic 2C and to write

AS =3 v SoD) (3C.3b)
I

where the vy are signed (+ for products, — for reactants) stoichiometric

numbers. Standard reaction entropies are likely to be positive if there is a net
formation of gas in a reaction, and are likely to be negative if there is a net
consumption of gas.

Table 3C.1 Standard Third-Law entropies at 298 K*

S..°/(J K mol™)

Solids

Graphite, C(s) 5.7
Diamond, C(s) 2.4
Sucrose, C;,H»,044(s) 360.2
Iodine, I,(s) 116.1
Liquids

Benzene, CgHg(1) 173.3
Water, H,O(1) 69.9
Mercury, Hg(l) 76.0
Gases

Methane, CH,(g) 186.3
Carbon dioxide, CO,(g) 213.7
Hydrogen, H,(g) 130.7

Helium, He(g) 126.2



Ammonia, NH;(g) 192.4

* More values are given in the Resource section.

Brief illustration 3C.3

To calculate the standard reaction entropy of H,(g) + * O,(g) — H,O(l)
at 298 K, use the data in Table 2C.4 of the Resource section to write

AS® = 5,°(H,0,1) — {S,°(Hy,8) + 5,°(0,,8)}
=69.9J K ' mol™! - {130.7 + 4205.1)} J K™ mol™*

=-163.4J K 1 mol™!

The negative value is consistent with the conversion of two gases to a
compact liquid.

A note on good practice Do not make the mistake of setting the
standard molar entropies of elements equal to zero: they have non-zero
values (provided T > 0).

Just as in the discussion of enthalpies in Topic 2C, where it is
acknowledged that solutions of cations cannot be prepared in the absence of
anions, the standard molar entropies of ions in solution are reported on a

scale in which by convention the standard entropy of the H" ions in water is
taken as zero at all temperatures:

+ loms In solution
§(H aq)=0 [comvention] (3C4)

Table 2C.4 in the Resource section lists some values of standard entropies of
ions in solution using this convention.! Because the entropies of ions in water



are values relative to the hydrogen ion in water, they may be either positive
or negative. A positive entropy means that an ion has a higher molar entropy

than H" in water and a negative entropy means that the ion has a lower molar

entropy than H" in water. Ion entropies vary as expected on the basis that
they are related to the degree to which the ions order the water molecules
around them in the solution. Small, highly charged ions induce local structure
in the surrounding water, and the disorder of the solution is decreased more
than in the case of large, singly charged ions. The absolute, Third-Law
standard molar entropy of the proton in water can be estimated by proposing
a model of the structure it induces, and there is some agreement on the value

—21 J K™ mol %, The negative value indicates that the proton induces order
in the solvent.

Brief illustration 3C.4

The standard molar entropy of Cl (aq) is +57 J K™! mol™! and that of
Mg?*(aq) is —128 J K™! mol~!. That is, the molar entropy of Cl (aq) is
57 J K1 mol™! higher than that of the proton in water (presumably
because it induces less local structure in the surrounding water), whereas

that of Mg?*(aq) is 128 J K™! mol! lower (presumably because its
higher charge induces more local structure in the surrounding water).

(c) The temperature dependence of reaction entropy

The temperature dependence of entropy is given by eqn 3C.1a, which for the

molar entropy becomes

Cpm(T)
L T d

SulT)=Sa(T)+ [ T

This equation applies to each substance in the reaction, so from eqn 3C.3 the
temperature dependence of the standard reaction entropy, A S, is



. -5 ACE
AS(T,)= irﬁﬂer' }PdT {3C.5a)

where AGCe is the difference of the molar heat capacities of products and
reactants under standard conditions weighted by the stoichiometric numbers

that appear in the chemical equation:

AC=Xv,Co. D) (3C.5b)

Equation 3C.5a is analogous to Kirchhoff’s law for the temperature
dependence of A, H® (eqn 2C.7a in Topic 2C). If A,C,® is independent of
temperature in the range T; to T,, the integral in eqn 3C.5a evaluates to

A,C,®In(T,/T;) and

AS ()= AS(T)+ ACIn12 (3C.5¢)
I

Brief illustration 3C.5

The standard reaction entropy for H,(g) + + O,(g) — H,0O(g) at 298 K is

—44.42 J K" mol ™!, and the molar heat capacities at constant pressure of
the molecules are H,0O(g): 33.58 J K! mol™%; H,(g): 28.84 J K™ mol};

0,(g): 29.37 J K™ mol . It follows that

AGCe = C'ep, m(HZO’g) B Cep, m(HZ’g) N %Cep, m(OZ:g)

=-994JK 1 mol™!

This value of A,C,® is used in eqn 3C.5c to find A,S® at another
temperature, for example at 373 K

AST(373K) = —44.42] K™ mol™ + (-9.94]K™ mol) x ]1'1_;;;%

=—46.65] K mol™




Entropies are determined calorimetrically by measuring the heat
capacity of a substance from low temperatures up to the temperature
of interest and taking into account any phase transitions in that range.

The Debye extrapolation (or the Debye T 3-law) is used to estimate
heat capacities of non-metallic solids close to T = 0.

The Nernst heat theorem states that the entropy change
accompanying any physical or chemical transformation approaches
zero as the temperature approaches zero: AS — 0as T — 0 provided
all the substances involved are perfectly ordered.

The Third Law of thermodynamics states that the entropy of all
perfect crystalline substances is zero at T = 0.

The residual entropy of a solid is the entropy arising from disorder
that persists at T = 0.

Third-law entropies are entropies based on S(0) = 0.
The standard entropies of ions in solution are based on setting
S®(H",aq) = 0 at all temperatures.

The standard reaction entropy, ArSe, is the difference between the

molar entropies of the pure, separated products and the pure, separated
reactants, all substances being in their standard states.

Property Equation = Comment Equation
number
Standard molar entropy from  See eqn Sum of contributions from T 3C.2
calorimetry 3C.2 = 0 to temperature of interest
Standard reaction entropy ¥eLZM LI v (positive) stoichiometric 3C.3
AF=3v% coefficients;

v;: (signed) stoichiometric
numbers

Temperature dependence of gl Sy 3C.5a



the standard reaction entropy

A,C,° independent of 3C.5¢
temperature

! In terms of the language introduced in Topic 5A, the entropies of ions in
solution are actually partial molar entropies, for their values include the
consequences of their presence on the organization of the solvent molecules
around them.

Concentrating on the
system

Most processes of interest in chemistry occur at constant temperature and
pressure. Under these conditions, thermodynamic processes are discussed
in terms of the Gibbs energy, which is introduced in this Topic. The Gibbs
energy is the foundation of the discussion of phase equilibria, chemical
equilibrium, and bioenergetics.

The Gibbs energy is a signpost of spontaneous change at constant
temperature and pressure, and is equal to the maximum non-expansion work
that a system can do.

This Topic develops the Clausius inequality (Topic 3A) and draws on
information about standard states and reaction enthalpy introduced in Topic
2C. The derivation of the Born equation makes use of the Coulomb potential
energy between two electric charges (The chemist’s toolkit 6 in Topic 2A).



Entropy is the basic concept for discussing the direction of natural change,
but to use it the changes in both the system and its surroundings must be
analysed. In Topic 3A it is shown that it is always very simple to calculate
the entropy change in the surroundings (from AS, . = q,/T,,) and this Topic

shows that it is possible to devise a simple method for taking this contribution
into account automatically. This approach focuses attention on the system
and simplifies discussions. Moreover, it is the foundation of all the
applications of chemical thermodynamics that follow.

3D.1 The Helmholtz and Gibbs energies

Consider a system in thermal equilibrium with its surroundings at a
temperature T. When a change in the system occurs and there is a transfer of
energy as heat between the system and the surroundings, the Clausius
inequality (eqn 3A.11, dS > dq/T) reads

dS—dTrIEO {30.1)

This inequality can be developed in two ways according to the conditions (of
constant volume or constant pressure) under which the process occurs.

(a) Criteria of spontaneity

First, consider heating at constant volume. Under these conditions and in the
absence of additional (non-expansion) work dqy, = dU; consequently

ds—d%ao

The importance of the inequality in this form is that it expresses the criterion
for spontaneous change solely in terms of the state functions of the system.
The inequality is easily rearranged into

Tds=dUr (constant ¥, no additional work) (303

If the internal energy is constant, meaning that dU = 0, then it follows that
TdS > 0, but as T > 0, this relation can be written dS;;y > 0, where the



subscripts indicate the constant conditions. This expression is a criterion for
spontaneous change in terms of properties relating to the system. It states that
in a system at constant volume and constant internal energy (such as an
isolated system), the entropy increases in a spontaneous change. That
statement is essentially the content of the Second Law.

When energy is transferred as heat at constant pressure and there is no
work other than expansion work, dq, = dH. Then eqn 3D.1 becomes

TdS=dH (constant p. no additional work) 3D.3)

If the enthalpy is constant as well as the pressure, this relation becomes TdS >
0 and therefore dS > 0, which may be written dSy, > 0. That is, in a

spontaneous process the entropy of the system at constant pressure must
increase if its enthalpy remains constant (under these circumstances there can
then be no change in entropy of the surroundings).

The criteria of spontaneity at constant volume and pressure can be
expressed more simply by introducing two more thermodynamic quantities.
One is the Helmholtz energy, A, which is defined as

. Helmholtz energy |
A=U-T5 [definition] (30.4a)
The other is the Gibbs energy, G:
Glths arergy

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant temperature, the two
properties change as follows:

(a) dA=dU— Td5S (bl dG=dH - TdS i30.5)

At constant volume, TdS > dU (eqn 3D.2) which, by using (a), implies dA <
0. At constant pressure, TdS > dH (eqn 3D.3) which, by using (b), implies dG
< 0. Using the subscript notation to indicate which variables are held
constant, the criteria of spontaneous change in terms of dA and dG are

{a) dA;, =0 (b) dGr, <0 ::I'rllatirull?ajr SPONENEOUS 13y ¢y

These criteria, especially the second, are central to chemical thermodynamics.



For instance, in an endothermic reaction H increases, dH > 0, but if such a
reaction is to be spontaneous at constant temperature and pressure, G must
decrease. Because dG = dH - TdS, it is possible for dG to be negative
provided that the entropy of the system increases so much that TdS outweighs
dH. Endothermic reactions are therefore driven by the increase of entropy of
the system, which overcomes the reduction of entropy brought about in the
surroundings by the inflow of heat into the system in an endothermic process
(dS,,, = —dH/T at constant pressure). Exothermic reactions are commonly

spontaneous because dH < 0 and then dG < 0 provided TdS is not so negative
that it outweighs the decrease in enthalpy.

(b) Some remarks on the Helmholtz energy

At constant temperature and volume, a change is spontaneous if it
corresponds to a decrease in the Helmholtz energy: dAry < 0. Such systems

move spontaneously towards states of lower A if a path is available. The
criterion of equilibrium, when neither the forward nor reverse process has a
tendency to occur, is dAzy, = 0.

The expressions dA = dU — TdS and dA7y < 0 are sometimes interpreted as

follows. A negative value of dA is favoured by a negative value of dU and a
positive value of TdS. This observation suggests that the tendency of a system
to move to lower A is due to its tendency to move towards states of lower
internal energy and higher entropy. However, this interpretation is false
because the tendency to lower A is solely a tendency towards states of greater
overall entropy. Systems change spontaneously if in doing so the total
entropy of the system and its surroundings increases, not because they tend to
lower internal energy. The form of dA may give the impression that systems
favour lower energy, but that is misleading: dS is the entropy change of the
system, —dU/T is the entropy change of the surroundings (when the volume
of the system is constant), and their total tends to a maximum.

(c) Maximum work

As well as being the signpost of spontaneous change, a short argument can be
used to show that the change in the Helmholtz energy is equal to the
maximum work obtainable from a system at constant temperature.



=ALR (I [e]a[Xae|DN Y Relating the change in the Helmholtz
energy to the maximum work

To demonstrate that maximum work can be expressed in terms of the
change in Helmholtz energy, you need to combine the Clausius
inequality dS > dqg/T in the form TdS > dq with the First Law, dU = dq +
dw, and obtain

dU < TdS + dw

The term dU is smaller than the sum of the two terms on the right
because dqg has been replaced by TdS, which in general is larger than dqg.
This expression rearranges to

dw > dU - TdS

It follows that the most negative value of dw is obtained when the
equality applies, which is for a reversible process. Thus a reversible
process gives the maximum amount of energy as work, and this
maximum work is given by

dwp.x = dU — TdS
Because at constant temperature dA = dU — TdS (eqn 3D.5), it follows
that

(30.7)
= |
— A, =dA | Maxirmum work

[constant T]

In recognition of this relation, A is sometimes called the ‘maximum work

function’, or the “‘work function’.!

When a measurable isothermal change takes place in the system, eqn 3D.7
becomes w,,, = AA with AA = AU — TAS. These relations show that,

depending on the sign of TAS, not all the change in internal energy may be



available for doing work. If the change occurs with a decrease in entropy (of
the system), in which case TAS < 0, then AU — TAS is not as negative as AU
itself, and consequently the maximum work is less than AU. For the change
to be spontaneous, some of the energy must escape as heat in order to
generate enough entropy in the surroundings to overcome the reduction in
entropy in the system (Fig. 3D.1). In this case, Nature is demanding a tax on
the internal energy as it is converted into work. This interpretation is the
origin of the alternative name ‘Helmholtz free energy’ for A, because AA is
that part of the change in internal energy free to do work.

J

AU <0 |
AS <0 w<AU

AS, >0

Figure 3D.1 In a system not isolated from its surroundings, the work
done may be different from the change in internal energy. In the
process depicted here, the entropy of the system decreases, so for
the process to be spontaneous the entropy of the surroundings must
increase, so energy must pass from the system to the surroundings as



heat. Therefore, less work than AU can be obtained.

Further insight into the relation between the work that a system can do and
the Helmholtz energy is to recall that work is energy transferred to the
surroundings as the uniform motion of atoms. The expression A = U — TS can
be interpreted as showing that A is the total internal energy of the system, U,
less a contribution that is stored as energy of thermal motion (the quantity
TS). Because energy stored in random thermal motion cannot be used to
achieve uniform motion in the surroundings, only the part of U that is not
stored in that way, the quantity U — TS, is available for conversion into work.

If the change occurs with an increase of entropy of the system (in which
case TAS > 0), AU — TAS is more negative than AU. In this case, the
maximum work that can be obtained from the system is greater than AU. The
explanation of this apparent paradox is that the system is not isolated and
energy may flow in as heat as work is done. Because the entropy of the
system increases, a reduction of the entropy of the surroundings can be
afforded yet still have, overall, a spontaneous process. Therefore, some
energy (no more than the value of TAS) may leave the surroundings as heat
and contribute to the work the change is generating (Fig. 3D.2). Nature is
now providing a tax refund.



Figure 3D.2 In this process, the entropy of the system increases;
hence some reduction in the entropy of the surroundings can be
tolerated. That is, some of their energy may be lost as heat to the
system. This energy can be returned to them as work, and hence the
work done can exceed AU.

Sl Calculating the maximum available work

When 1.000 mol CgH;,0g (glucose) is oxidized completely to carbon
dioxide and water at 25 °C according to the equation CgH{,Og¢(s) + 6
0,(g) — 6 CO,(g) + 6 H,0(l), calorimetric measurements give A .U =

—2808 kJ mol™! and AS = +182.4 J K™ mol ! at 25 °C and 1 bar. How
much of this change in internal energy can be extracted as (a) heat at



constant pressure, (b) work?

Collect your thoughts You know that the heat released at constant
pressure is equal to the value of AH, so you need to relate A H to the

given value of A.U. To do so, suppose that all the gases involved are
perfect, and use eqn 2B.4 (AH = AU + AngyRT) in the form AH = AU +
AvgRT. For the maximum work available from the process use wy,, =
AA in the form w,, = A/A.

The solution (a) Because Avy = 0, AH = AU = -2808 kJ mol 1.
Therefore, at constant pressure, the energy available as heat is 2808 kJ
mol 1. (b) Because T = 298 K, the value of A A is

AA=AU-TAS =-2862 kJ mol ™!

Therefore, the complete oxidation of 1.000 mol CgH;,O¢ at constant
temperature can be used to produce up to 2862 kJ of work.

Comment. The maximum work available is greater than the change in
internal energy on account of the positive entropy of reaction (which is
partly due to there being a significant increase in the number of
molecules as the reaction proceeds). The system can therefore draw in
energy from the surroundings (so reducing their entropy) and make it
available for doing work.

Self-test 3D.1 Repeat the calculation for the combustion of 1.000 mol
CH,(g) under the same conditions, using data from Table 2C.3 and that

A,S for the reaction is =243 J K1 mol ™! at 298 K.

Answer: |q,| = 890 kJ, |w 813 kJ

max| -

(d) Some remarks on the Gibbs energy



The Gibbs energy (the ‘free energy’) is more common in chemistry than the
Helmholtz energy because, at least in laboratory chemistry, changes
occurring at constant pressure are more common than at constant volume.
The criterion dGr, < 0 carries over into chemistry as the observation that, at

constant temperature and pressure, chemical reactions are spontaneous in
the direction of decreasing Gibbs energy. Therefore, to decide whether a
reaction is spontaneous, the pressure and temperature being constant, it is
necessary to assess the change in the Gibbs energy. If G decreases as the
reaction proceeds, then the reaction has a spontaneous tendency to convert
the reactants into products. If G increases, the reverse reaction is
spontaneous. The criterion for equilibrium, when neither the forward nor
reverse process is spontaneous, under conditions of constant temperature and
pressure, is dGrp, = 0.

The existence of spontaneous endothermic reactions provides an
illustration of the role of G. In such reactions, H increases, the system rises
spontaneously to states of higher enthalpy, and dH > 0. Because the reaction
is spontaneous, dG < 0 despite dH > O; it follows that the entropy of the
system increases so much that TdS outweighs dH in dG = dH - TdS.
Endothermic reactions are therefore driven by the increase of entropy of the
system, and this entropy change overcomes the reduction of entropy brought

about in the surroundings by the inflow of heat into the system (dS,, =

—dH/T at constant pressure). Exothermic reactions are commonly
spontaneous because dH < 0 and then dG < 0 provided TdS is not so negative
that it outweighs the decrease in enthalpy.

(e) Maximum non-expansion work

The analogue of the maximum work interpretation of AA, and the origin of
the name ‘free energy’, can be found for AG. By an argument like that
relating the Helmholtz energy to maximum work, it can be shown that, at
constant temperature and pressure, the change in Gibbs energy is equal to the
maximum additional (non-expansion) work.

RlOACR 1N [o]a {2y Relating the change in Gibbs energy to

maximum non-expansion work




Because H = U + pV and dU = dq + dw, the change in enthalpy for a
general change in conditions is

dH =dq + dw + d(pV)
The corresponding change in Gibbs energy (G = H — TS) is
dG =dH - TdS — SdT =dq + dw + d(pV) — TdS — SdT

Step 1 Confine the discussion to constant temperature
When the change is isothermal dT = 0; then

dG = dq + dw + d(pV) - TdS

Step 2 Confine the change to a reversible process
When the change is reversible, dw = dw,,, and dq = dq,., = TdS, so for a
reversible, isothermal process

dg,
dG=Tds + dw,,, + d(pV)— TdS = dw,, +d(pV)

Step 3 Divide the work into different types

The work consists of expansion work, which for a reversible change is
given by —pdV, and possibly some other kind of work (for instance, the
electrical work of pushing electrons through a circuit or of raising a
column of liquid); this additional work is denoted dw,44. Therefore, with

d(pV) = pdV + Vdp,

dw,, diplfy

v & . ey =
dG=(—pdV+dw, )+ pdV+Vdp=dw, . + Vdp

Step 4 Confine the process to constant pressure

If the change occurs at constant pressure (as well as constant
temperature), dp = 0 and hence dG = dw,qgq ey Therefore, at constant

temperature and pressure, dw = dG. However, because the process

add,rev
is reversible, the work done must now have its maximum value, so it
follows that



P TAdE
— AW,44.mar = 4G | WasimLIm non-xpansion work

[constant T, o]

For a measurable change, the corresponding expression is W,qqmax = AG.

This is particularly useful for assessing the maximum electrical work that can
be produced by fuel cells and electrochemical cells (Topic 6C).

3D.2 Standard molar Gibbs energies

Standard entropies and enthalpies of reaction (which are introduced in Topics
2C and 3C) can be combined to obtain the standard Gibbs energy of

reaction (or ‘standard reaction Gibbs energy’), A.G®:

i'.TG+=f_‘I.:H+— T.AIS'} E];E:ﬁrglﬁ.lhbs energy of raction (3D.9)
The standard Gibbs energy of reaction is the difference in standard molar
Gibbs energies of the products and reactants in their standard states for the
reaction as written and at the temperature specified.

Calorimetry (for AH directly, and for S from heat capacities) is only one of
the ways of determining Gibbs energies. They may also be obtained from
equilibrium constants (Topic 6A) and electrochemical measurements (Topic
6D), and for gases they may be calculated using data from spectroscopic
observations (Topic 13E).

Sl dxinwy Calculating the maximum non-expansion work
of a reaction

How much energy is available for sustaining muscular and nervous
activity from the oxidation of 1.00 mol of glucose molecules under
standard conditions at 37 °C (blood temperature)? The standard entropy

of reaction is +182.4 J K~ mol 1.



Collect your thoughts The non-expansion work available from the
reaction at constant temperature and pressure is equal to the change in

standard Gibbs energy for the reaction, A,G®. To calculate this quantity,
you can (at least approximately) ignore the temperature dependence of
the reaction enthalpy, and obtain A,H® from Table 2C.4 (where the data
are for 25 °C, not 37 °C), and substitute the data into A.G® = A H® -

TAS®.

The solution Because the standard reaction enthalpy is —2808 kJ mol 1,
it follows that the standard reaction Gibbs energy is

AG =—2808K] mol™ —(310K)x (182.4] K™ mal ™) =—2865 kf mol™

Therefore, Wogqmax = —2865 kJ for the oxidation of 1 mol glucose
molecules, and the reaction can be used to do up to 2865 kJ of non-
expansion work.

Comment. To place this result in perspective, consider that a person of
mass 70 kg needs to do 2.1 kJ of work to climb vertically through 3.0 m;
therefore, at least 0.13 g of glucose is needed to complete the task (and
in practice significantly more).

Self-test 3D.2 How much non-expansion work can be obtained from the
combustion of 1.00 mol CH,(g) under standard conditions at 298 K?

Use AS® =-243J K ! mol™L.
Answer: 818 kJ

(a) Gibbs energies of formation

As in the case of standard reaction enthalpies (Topic 2C), it is convenient to
define the standard Gibbs energies of formation, AfGe, the standard

reaction Gibbs energy for the formation of a compound from its elements in
their reference states, as specified in Topic 2C. Standard Gibbs energies of



formation of the elements in their reference states are zero, because their
formation is a ‘null’ reaction. A selection of values for compounds is given in
Table 3D.1. The standard Gibbs energy of a reaction is then found by taking
the appropriate combination:

Table 3D.1 Standard Gibbs energies of formation at 298 K’

A¢G®/(kJ mol 1)

Diamond, C(s) +2.9
Benzene, CgHg(1) +124.3
Methane, CH,(g) —50.7
Carbon dioxide, CO,(g) -394.4
Water, H,O(1) —237.1
Ammonia, NH;(g) -16.5
Sodium chloride, NaCl(s) -384.1

* More values are given in the Resource section.

Standard Gibbs
AG =Y vAG - ¥ wAG® enemycfreation (3p o,

[practical
roadidt:
* : fleacmnis Implementaticn]

In the notation introduced in Topic 2C,
AG= v AG(]) (3D.10b)

where the v; are the (signed) stoichiometric numbers in the chemical
equation.



Brief illustration 3D.1

To calculate the standard Gibbs energy of the reaction CO(g) + + O,(g)
— CO,(g) at 25 °C, write

AG® = AG®(COy,g) — {AG®(CO,g) + #A(G°(0,,8)}
= -394.4 kJ mol™! - {(-137.2) + #0)} kJ mol !

= -257.2 kJ mol !

As explained in Topic 2C the standard enthalpy of formation of H' in
water is by convention taken to be zero; in Topic 3C, the absolute entropy of

H'(aq) is also by convention set equal to zero (at all temperatures in both
cases). These conventions are needed because it is not possible to prepare
cations without their accompanying anions. For the same reason, the standard

Gibbs energy of formation of H'(aq) is set equal to zero at all temperatures:

+ lans In solution
AG (H ag) =0 [carwenticn] (307)

This definition effectively adjusts the actual values of the Gibbs energies of
formation of ions by a fixed amount, which is chosen so that the standard

value for one of them, H"(aq), has the value zero.

Brief illustration 3D.2

For the reaction

+ Hy(g) + + Cly(g) — H*(aq) + Cl7(aq) A,G® = -131.23 kJ mol !

the value of A,G® can be written in terms of standard Gibbs energies of



formation as
AG® = AG®(H",aq) + AG®(Cl,aq)

where the A;G® of the elements on the left of the chemical equation are
zero. Because by convention A;G®(H",aq) = 0, it follows that A,.G® =
A¢G®(Cl",aq) and therefore that A,G®(Cl",aq) = —131.23 kJ mol ..

H¥lg) + Clig) + &-
_“+1Df« 349
g+ Cligi+e gl o))
[ i =IO
JRREE -
+12
3 H'ig} + Claq) |
= iAo
2
=
0 | |Hig)+LClig)
l21 By FH
i zH,ig) + 1 Clia)
:\1 H'{ag) + Cl{ag)

—1_'lrr_'7‘1|lH‘r._:|qf| +_1r-'_?+ll_",l',a.-‘|qjl

Figure 3D.3 A thermodynamic cycle for discussion of the Gibbs
energies of hydration and formation of chloride ions in aqueous
solution. The changes in Gibbs energies around the cycle sum to zero
because G is a state function.

The factors responsible for the Gibbs energy of formation of an ion in
solution can be identified by analysing its formation in terms of a
thermodynamic cycle. As an illustration, consider the standard Gibbs energy

of formation of CI™ in water. The formation reaction + H,(g) + # Cl,(g) - H"

(aq) + Cl (aq) is treated as the outcome of the sequence of steps shown in
Fig. 3D.3 (with values taken from the Resource section). The sum of the
Gibbs energies for all the steps around a closed cycle is zero, so

AG®(Cl™,aq) = 1287 kJ mol ! + A,,GZ(H") + A,,,G®(CI")



The standard Gibbs energies of formation of the gas-phase ions are unknown
and have been replaced by energies and electron affinities and the assumption
that any differences from the Gibbs energies arising from conversion to
enthalpy and the inclusion of entropies to obtain Gibbs energies in the

formation of H" are cancelled by the corresponding terms in the electron gain
of Cl. The conclusions from the cycles are therefore only approximate. An

important point to note is that the value of A;G® of CI™ is not determined by

the properties of Cl alone but includes contributions from the dissociation,
ionization, and hydration of hydrogen.

(b) The Born equation

Gibbs energies of solvation of individual ions may be estimated on the basis
of a model in which solvation is expressed as an electrostatic property.

[ALR N [o]a[SYACIDICY Developing an electrostatic model for

solvation

The model treats the interaction between the ion and the solvent using
elementary electrostatics: the ion is regarded as a charged sphere and the
solvent is treated as a continuous medium (a continuous dielectric). The
key step is to use the result from Section 3D.1(e) to identify the Gibbs
energy of solvation with the work of transferring an ion from a vacuum
into the solvent. That work is calculated by taking the difference of the
work of charging an ion when it is in the solution and the work of
charging the same ion when it is in a vacuum.

The derivation uses concepts developed in The chemist’s toolkit 6 in
Topic 2A, where it is seen that the Coulomb potential energy of two
point electric charges Q; and Q, separated by a distance r in a medium

with permittivity € is

2,

Viri=
(r) 4mer

The energy of this interaction may also be expressed in terms of the
Coulomb potential ¢ that the point charge Q, experiences at a distance



r from the point charge Q. Then V(r) = Q,¢(r), with

Q

diri=
(r) rre

With the distance r in metres and the charge Q; in coulombs (C), the

potential is obtained in J C™!. By definition, 1 J C™* = 1 V (volt), so ¢
can also be expressed in volts.

Step 1 Obtain an expression for charging a spherical ion to its final
value in a medium

The Coulomb potential, ¢, at the surface of a sphere (representing the
ion) of radius ry and charge Q is the same as the potential due to a point

charge at its centre, so

Q

firl=
(7)) dmey,

The work of bringing up a charge dQ to the sphere is ¢(r;)dQ. If the
charge number of the ion is z;, the total work of charging the sphere
from O to ze is

el
Bmer,

- ¥ 1 L F)
w=| "0(;)dQ= [, Qda=

4mer,

This electrical work of charging, when multiplied by Avogadro’s
constant, N,, is the molar Gibbs energy for charging the ions.

Step 2 Apply the result to solution and a vacuum

The work of charging an ion in a vacuum is obtained by setting &€ = &,

the vacuum permittivity. The corresponding value for charging the ion
in a medium is obtained by setting € = €&, where ¢, is the relative

permittivity of the medium.

1.1

.3:1’1
wi( medium)= —
BTEr * um) BIE £

wivacuum)=

Step 3 Identify the Gibbs energy of solvation as the work needed to
move the ion from a vacuum into the medium



It follows that the change in molar Gibbs energy that accompanies the
transfer of ions from a vacuum to a solvent is the difference of these two
expressions for the work of charging:

2.InT Y 2. InT 1,2
oo At N, zeN, =zeN, zeN,

A
Lk BMen,  BWe,y  BMEEy  STER

A minor rearrangement of the right-hand side gives the Born equation:

2N, (. 1Y) (3D.12a)
1
4{ Aale == BIE,Y l _E| | Born 2quation

Note that A;,G® < 0, and that A, ;,G® is strongly negative for small, highly

charged ions in media of high relative permittivity. For water, for which ¢, =
78.54 at 25 °C, the Born equation becomes

y - z )
ALGT= “meEBExlD“kImc-l i30.12h)

Brief illustration 3D.3

To estimate the difference in the values of A(G® for Cl~ and I” in water
at 25 °C, given their radii as 181 pm and 220 pm, respectively, write

1Y
« 6.86 = 10* kTmol™

A GOl )— ALG(T) = _|. 181 230 J

=—67kmol™

The Clausius inequality implies a number of criteria for spontaneous



change under a variety of conditions which may be expressed in terms
of the properties of the system alone; they are summarized by
introducing the Helmholtz and Gibbs energies.

A spontaneous process at constant temperature and volume is
accompanied by a decrease in the Helmholtz energy.

The change in the Helmholtz energy is equal to the maximum work
obtainable from a system at constant temperature.

A spontaneous process at constant temperature and pressure is
accompanied by a decrease in the Gibbs energy.

The change in the Gibbs energy is equal to the maximum non-
expansion work obtainable from a system at constant temperature and

pressure.

Standard Gibbs energies of formation are used to calculate the
standard Gibbs energies of reactions.

The standard Gibbs energies of formation of ions may be estimated
from a thermodynamic cycle and the Born equation.

Property Equation Comment Equation
number
Criteria of dSyy=0 Subscripts show which variables are
spontaneity held constant, here and below
dSy, 20
Helmholtz energy A=U-TS Definition 3D.4a
Gibbs energy G=H-TS Definition 3D.4b
Criteria of (@) dA7;y <0 Equality refers to equilibrium 3D.6
spontaneous (b)dGr, <0
change
Maximum work dwpax = dA, Constant temperature 3D.7
Wrnax = AA
Maximum non- dW,gqmax = dG,  Constant temperature and pressure 3D.8

expansion work

Wadd,max =AG



Standard Gibbs AG® = AH® - Definition 3D.9
energy of reaction  p g®
r

AGT=TrAG (D) Practical implementation 3D.10b
Ions in solution AG®(H*,aq)= Convention 3D.11
0

Solvent treated as a continuum and 3D.12a
the ion as a sphere

Born equation s

! Arbeit is the German word for work; hence the symbol A.

Combining the First and
Second Laws

The First and Second Laws of thermodynamics are both relevant to the
behaviour of bulk matter, and the whole force of thermodynamics can be
brought to bear on a problem by setting up a formulation that combines them.

The fact that infinitesimal changes in thermodynamic functions are exact
differentials leads to relations between a variety of properties.

You need to be aware of the definitions of the state functions U (Topic 2A), H
(Topic 2B), S (Topic 3A), and A and G (Topic 3D). The mathematical
derivations in this Topic draw frequently on the properties of partial
derivatives, which are described in The chemist’s toolkit 9 in Topic 2A.



The First Law of thermodynamics may be written dU = dg + dw. For a
reversible change in a closed system of constant composition, and in the

absence of any additional (non-expansion) work, dw,,, = —pdV and (from the

definition of entropy) dq,., = TdS, where p is the pressure of the system and T
its temperature. Therefore, for a reversible change in a closed system,

dU=Td5— pdV The fundamental equation (3E.1)

However, because dU is an exact differential, its value is independent of path.
Therefore, the same value of dU is obtained whether the change is brought
about irreversibly or reversibly. Consequently, this equation applies to any
change—reversible or irreversible—of a closed system that does no
additional (non-expansion) work. This combination of the First and Second
Laws is called the fundamental equation.

The fact that the fundamental equation applies to both reversible and
irreversible changes may be puzzling at first sight. The reason is that only in
the case of a reversible change may TdS be identified with dg and —pdV with
dw. When the change is irreversible, TdS > dq (the Clausius inequality) and
—pdV > dw. The sum of dw and dg remains equal to the sum of TdS and
—pdV, provided the composition is constant.

3E.1 Properties of the internal energy

Equation 3E.1 shows that the internal energy of a closed system changes in a
simple way when either S or V is changed (dU =< dS and dU =< dV). These
simple proportionalities suggest that U is best regarded as a function of S and
V. It could be regarded as a function of other variables, such as S and p or T
and V, because they are all interrelated; but the simplicity of the fundamental
equation suggests that U(S,V) is the best choice.

The mathematical consequence of U being a function of S and V is that an
infinitesimal change dU can be expressed in terms of changes dS and dV by

du

Wil
s v

| ds +| | dv (3E.2)
Iy s

|, oV

dir= |

The two partial derivatives (see The chemist’s toolkit 9 in Topic 2A) are the



slopes of the plots of U against S at constant V, and U against V at constant S.
When this expression is compared term-by-term to the thermodynamic
relation, eqn 3E.1, it follows that for systems of constant composition,

" aly
|l_ s | =

T Gyt GE3

The first of these two equations is a purely thermodynamic definition of
temperature as the ratio of the changes in the internal energy (a First-Law
concept) and entropy (a Second-Law concept) of a constant-volume, closed,
constant-composition system. Relations between the properties of a system
are starting to emerge.

(a) The Maxwell relations

An infinitesimal change in a function f(x, y) can be written df = gdx + hdy
where g and h may be functions of x and y. The mathematical criterion for df
being an exact differential (in the sense that its integral is independent of
path) is that

g h
S s e B4
L dy .-'-} i3E4)

?

This criterion is derived in The chemist’s toolkit 10. Because the fundamental
equation, eqn 3E.1, is an expression for an exact differential, the functions
multiplying dS and dV (namely T and —p) must pass this test. Therefore, it
must be the case that

[g_:;] [ 3;5,] A Mawwell relation (3E.5)

LG R E NS RG]0 N Exact differentials

Suppose that df can be expressed in the following way:
df = gl y)de +hix, y)dy

Is df is an exact differential? If it is exact, then it can be expressed in the
form



o))

x

Comparing these two expressions gives
E]_f B f 'U.' % _
{':':T,],.= glx,v) |.~ E‘i_}'zlj =hix,y)

It is a property of partial derivatives that successive derivatives may be
taken in any order:

ECIREEN

Taking the partial derivative with respect to x of the first equation, and
with respect to y of the second gives

[ | ]1 [ag[t”” [r]rl ]l=|:ﬂ¥:]r

By the property of partial derivatives these two successive derivatives of
f with respect to x and y must be the same, hence

»

(glx.y) ] = |" dh(x,y) 1
[ dy )\ oy

If this equality is satisfied, then df=g(x»dx+h(x )}y is an exact differential.

Conversely, if it is known from other arguments that df is exact, then

this relation between the partial derivatives follows.

A relation has been generated between quantities which, at first sight, would
not seem to be related.

Equation 3E.5 is an example of a Maxwell relation. However, apart from
being unexpected, it does not look particularly interesting. Nevertheless, it
does suggest that there might be other similar relations that are more useful.
Indeed, the fact that H, G, and A are all state functions can be used to derive
three more Maxwell relations. The argument to obtain them runs in the same
way in each case: because H, G, and A are state functions, the expressions for



dH, dG, and dA satisfy relations like eqn 3E.4. All four relations are listed in
Table 3E.1.

Table 3E.1 The Maxwell relations

State function Exact differential Maxwell relation
U dU = TdS - pdV (37) (%),

H dH = TdS + Vdp %)~ (5%

A dA = —pdV - SdT (%)~ (37 )

G dG = Vdp - SdT Gt

Sel]J RISy Using the Maxwell relations

Use the Maxwell relations in Table 3E.1 to show that the entropy of a
perfect gas is linearly dependent on In V, thatis, S=a+ bIn V.

Collect your thoughts The natural place to start, given that you are
invited to use the Maxwell relations, is to consider the relation for (0S/
0V)r, as that differential coefficient shows how the entropy varies with

volume at constant temperature. Be alert for an opportunity to use the
perfect gas equation of state.

The solution From Table 3E.1,
as) (2
()-(#),
Now use the perfect gas equation of state, pV = nRT, to write p = nRT/V:

[ | _| E](ﬂRTH} | _HR

At this point, write



and therefore, at constant temperature,
de =nR I-dTV= nRInV+ constant

The integral on the left is S + constant, which completes the
demonstration.

Self-test 3E.1 How does the entropy depend on the volume of a van der
Waals gas? Suggest a reason.

Answer: S varies as nR In(V — nb); molecules in a smaller available
volume

(b) The variation of internal energy with volume

The internal pressure, n; (introduced in Topic 2D), is defined as ny = (0U/
0V)r and represents how the internal energy changes as the volume of a

system is changed isothermally; it plays a central role in the manipulation of
the First Law. By using a Maxwell relation, ry can be expressed as a function

of pressure and temperature.

SRR IR [e]s [ =By Deriving a thermodynamic equation of
state

To construct the partial differential (0U/0V); you need to start from eqn
3E.2, divide both sides by dV, and impose the constraint of constant
temperature:

[ dD TE | l E{]ﬂf l dl

Next, introduce the two relations in eqn 3E.3 (as indicated by the



annotations) and the definition of 71 to obtain

(38"

,TJ_=TI. o JT—p

The third Maxwell relation in Table 3E.1 turns (0S/0V)t into (0p/0T)y;, to
give

2 =,|-* ar -| 5 | (3E.6a)
T dl | A thermodynamic equation of state

Equation 3E.6a is called a thermodynamic equation of state because, when
written in the form

f l_'_|| \
p=T] FJ; | -, (3E:6b)

it is an expression for pressure in terms of a variety of thermodynamic
properties of the system.

w Deriving a thermodynamic relation

Show thermodynamically that i = O for a perfect gas, and compute its
value for a van der Waals gas.

Collect your thoughts Proving a result ‘thermodynamically’ means
basing it entirely on general thermodynamic relations and equations of
state, without drawing on molecular arguments (such as the existence of
intermolecular forces). You know that for a perfect gas, p = nRT/V, so
this relation should be used in eqn 3E.6. Similarly, the van der Waals
equation is given in Table 1C.4, and for the second part of the question
it should be used in eqn 3E.6.

The solution For a perfect gas write
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Then, eqn 3E.6 becomes
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The equation of state of a van der Waals gas is

nRT - i
V—nb I"21,--'1

Because a and b are independent of temperature,

( dnRT/{V—nb) | nit

aT T V—nb
| ),

\ar ),

Therefore, from eqn 3E.6,

R S
__nRT nRT | nRT i) W

Vo PTV_ap | V—nb oy _.|= Iy

Comment. This result for r; implies that the internal energy of a van der
Waals gas increases when it expands isothermally, that is, (0U/0V) > 0,

and that the increase is related to the parameter a, which models the
attractive interactions between the particles. A larger molar volume,
corresponding to a greater average separation between molecules,
implies weaker mean intermolecular attractions, so the total energy is
greater.

Self-test 3E.2 Calculate i for a gas that obeys the virial equation of
state (Table 1C.4), retaining only the term in B.

Answer: ;= RT %(0B/0T)/V,?




3E.2 Properties of the Gibbs energy

The same arguments that were used for U can also be used for the Gibbs
energy, G = H — TS. They lead to expressions showing how G varies with
pressure and temperature and which are important for discussing phase
transitions and chemical reactions.

(a) General considerations

When the system undergoes a change of state, G may change because H, T,
and S all change:

dG =dH - d(TS) =dH — TdS — SdT
Because H=U + pV,

dH =dU + d(pV) = dU + pdV + Vdp
and therefore

dG =dU + pdV + Vdp — TdS - SdT

For a closed system doing no non-expansion work, dU can be replaced by the
fundamental equation dU = TdS — pdV to give

dG = TdS - pdV + pdV + Vdp — TdS - SAT

Four terms now cancel on the right, and so for a closed system in the absence
of non-expansion work and at constant composition

The fundamental equation of

dG = Vdp —5dT chemical thermodynamics

3ET7)

This expression, which shows that a change in G is proportional to a change
in p or T, suggests that G may be best regarded as a function of p and T. It
may be regarded as the fundamental equation of chemical
thermodynamics as it is so central to the application of thermodynamics to
chemistry. It also suggests that G is an important quantity in chemistry
because the pressure and temperature are usually the variables that can be



controlled. In other words, G carries around the combined consequences of
the First and Second Laws in a way that makes it particularly suitable for
chemical applications.

The same argument that led to eqn 3E.3, when applied to the exact
differential dG = Vdp — SdT, now gives

[' 1G "

_=_5[
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These relations show how the Gibbs energy varies with temperature and
pressure (Fig. 3E.1).

Gibbs
energy, G

Figure 3E.1 The variation of the Gibbs energy of a system with (a)
temperature at constant pressure and (b) pressure at constant
temperature. The slope of the former is equal to the negative of the



entropy of the system and that of the latter is equal to the volume.

Gibbs anargy, G

Temperature, T

Figure 3E.2 The variation of the Gibbs energy with the temperature is
determined by the entropy. Because the entropy of the gaseous phase
of a substance is greater than that of the liquid phase, and the entropy
of the solid phase is smallest, the Gibbs energy changes most steeply
for the gas phase, followed by the liquid phase, and then the solid
phase of the substance.

The first implies that:

* Because S > 0 for all substances, G always decreases when the
temperature is raised (at constant pressure and composition).

* Because (aG/aT)p becomes more negative as S increases, G decreases
most sharply with increasing temperature when the entropy of the system
is large.

Physical interpretation

Therefore, the Gibbs energy of the gaseous phase of a substance, which has a
high molar entropy, is more sensitive to temperature than its liquid and solid

phases (Fig. 3E.2).
Similarly, the second relation implies that:

* Because V > 0 for all substances, G always increases when the pressure
of the system is increased (at constant temperature and composition).

* Because (0G/0p)y increases with V, G is more sensitive to pressure when

the volume of the system is large.



Physical interpretation

Because the molar volume of the gaseous phase of a substance is greater than
that of its condensed phases, the molar Gibbs energy of a gas is more
sensitive to pressure than its liquid and solid phases (Fig. 3E.3).

Brief illustration 3E.1

The mass density of liquid water is 0.9970 g cm™ at 298 K. It follows
that when the pressure is increased by 0.1 bar (at constant temperature),
the molar Gibbs energy changes by

e I8.0gmol* "
o s —x(0.1 x10°Nm™)

2= G | A=Vt~ ot
=+0.18 mol™
(_315_-
.-"-FF-F-
o a8
= =
=<2l
5 il
2 -
-~
8| -
. i
P B ~ Liquid
Prassure, p

Figure 3E.3 The variation of the Gibbs energy with the pressure is
determined by the volume of the sample. Because the volume of the
gaseous phase of a substance is greater than that of the same
amount of liquid phase, and the volume of the solid phase is smallest
(for most substances), the Gibbs energy changes most steeply for the
gas phase, followed by the liquid phase, and then the solid phase of
the substance. Because the molar volumes of the solid and liquid
phases of a substance are similar, their molar Gibbs energies vary by



similar amounts as the pressure is changed.

(b) The variation of the Gibbs energy with temperature

Because the equilibrium composition of a system depends on the Gibbs
energy, in order to discuss the response of the composition to temperature it
is necessary to know how G varies with temperature.

The first relation in eqn 3E.8, (0G/0T), = =S, is the starting point for this

discussion. Although it expresses the variation of G in terms of the entropy, it
can be expressed in terms of the enthalpy by using the definition of G to write
S =(H — G)/T. Then

[' 4G\ G-H

57| =1 (3€9)
T,

In Topic 6A it is shown that the equilibrium constant of a reaction is related
to G/T rather than to G itself. With this application in mind, eqn 3E.9 can be
developed to show how G/T varies with temperature.

2[RRI [o]s [ aei =W Deriving an expression for the
temperature variation of G/T

First, note that
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Now replace the term (0G/0T), on the right by eqn 3E.9
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from which follows the Gibbs—Helmholtz equation



| AGIT " | _E (3E.10)
a7 T" Glbbs-Helmholtz equstion

The Gibbs—Helmholtz equation is most useful when it is applied to
changes, including changes of physical state, and chemical reactions at
constant pressure. Then, because AG = G; — G; for the change of Gibbs

energy between the final and initial states, and because the equation applies
to both G; and G;,

(HAGITY  AH .
| = .Jn=_? 3E1T)

This equation shows that if the change in enthalpy of a system that is
undergoing some kind of transformation (such as vaporization or reaction) is
known, then how the corresponding change in Gibbs energy varies with
temperature is also known. This turns out to be a crucial piece of information
in chemistry.

(c) The variation of the Gibbs energy with pressure

To find the Gibbs energy at one pressure in terms of its value at another
pressure, the temperature being constant, set dT = 0 in eqn 3E.7, which gives
dG = Vdp, and integrate:

Gip;)=Glp,)+ J': Vdp (3E.123)

For molar quantities,

Golpr)=Galp)+ I'HI-’mdp (3E.12h)
1

This expression is applicable to any phase of matter, but it is necessary to
know how the molar volume, V_,, depends on the pressure before the integral
can be evaluated.

The molar volume of a condensed phase changes only slightly as the



pressure changes, so in this case V, can be treated as constant and taken
outside the integral:

Gal )= Gl £+ Ve [ dp

That is,

: e - Mn:-_lar Gibbs energy e
Golp ) =Goip) +p—p )V, [Incomprassible 2E.13)
substanice]

Volume assumed  Actual volume

constant \\ '“"\\\

e,

Volurne, V

Ap

+ -

P Pressure, p B

Figure 3E.4 At constant temperature, the difference in Gibbs energy of
a solid or liquid between two pressures is equal to the rectangular
area shown. The variation of volume with pressure has been assumed
to be negligible.

The origin of the term (p; — p;)V,, is illustrated graphically in Fig. 3E.4.
Under normal laboratory conditions (ps — p;)V,, is very small and may be

neglected. Hence, the Gibbs energies of solids and liquids are largely
independent of pressure. However, in geophysical problems, because
pressures in the Earth’s interior are huge, their effect on the Gibbs energy
cannot be ignored. If the pressures are so great that there are substantial
volume changes over the range of integration, then the complete expression,
eqgn 3E.12, must be used.

Evaluating the pressure dependence of a
Gibbs energy of transition



Suppose that for a certain phase transition of a solid A,V = +1.0 cm?

mol ! independent of pressure. By how much does that Gibbs energy of
transition change when the pressure is increased from 1.0 bar (1.0 x 10°
Pa) to 3.0 Mbar (3.0 x 10! Pa)?

Collect your thoughts You need to start with eqn 3E.12b to obtain
expressions for the Gibbs energy of each of the phases 1 and 2 of the
solid

- Bor
Gy () =G )+ -[.l‘. Vaadp
Gru.! Ir.lrlf :|= sztpl :|+ I: 1:-ru.1 d‘P

Then, to obtain Ay G = Gy, » — Gy, ; subtract the second expression from
the first, noting that Vi, 5 = Vi 1 = Ay V-

"j"l & (PI' a|="j‘|:r:Grn|:-Pl-:l+ J:" "f"I.|'|:.I’:-":I'.|.r:I

Use the data to complete the calculation.

The solution Because AV, is independent of pressure,

constant
Al ()= AplGn(p)+ AV |:r dp=AGu(pl+ AV (p—p)
Inserting the data and using 1 Pam3 =1 J gives
AGi3Mbar) = A Gl bar) + (L0 % 107°m’ mol™)

# (3.0 % 10" Pa — 1.0 = 10°Pa)
= A, Gilbar) + 3.0 % 10°K] mol™

Self-test 3E.3 Calculate the change in G, for ice at —10 °C, with density
917 kg m ™3, when the pressure is increased from 1.0 bar to 2.0 bar.

Answer: +2.0 J mol™1




The molar volumes of gases are large, so the Gibbs energy of a gas
depends strongly on the pressure. Furthermore, because the volume also
varies markedly with the pressure, the volume cannot be treated as a constant
in the integral in eqn 3E.12b (Fig. 3E.5).

For a perfect gas, substitute V, = RT/p into the integral, note that T is

constant, and find

Int=gral 42
e e,

Golp)=G,(p )+ RT |: %dp =G, ip)+ RTln% (3B
et i

This expression shows that when the pressure is increased tenfold at room
temperature, the molar Gibbs energy increases by RT In 10 ~ 6 kJ mol ™. It
also follows from this equation that if p, = p© (the standard pressure of 1 bar),
then the molar Gibbs energy of a perfect gas at a pressure p (set p; = p) is
related to its standard value by

- el P2 Molar Glbbs enargy
Gp(p)=Gpt RTIn p“ [perfect gas, constant T) (3E.15)
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Figure 3E.5 At constant temperature, the change in Gibbs energy for a
perfect gas between two pressures is equal to the area shown below
the perfect-gas isotherm.

Brief illustration 3E.2

When the pressure is increased isothermally on water vapour (treated as
a perfect gas) from 1.0 bar to 2.0 bar at 298 K, then according to egn




3E.15

G, (2.0bar)= G5 LObar )+ (8.3145]K™" mol™)

2.0bar |

>:[298K]xln| s

=G, (1L.0bar) +1.7 kT mal™

Note that whereas the change in molar Gibbs energy for a condensed
phase is a few joules per mole, for a gas the change is of the order of
kilojoules per mole.

The logarithmic dependence of the molar Gibbs energy on the pressure
predicted by egqn 3E.15 is illustrated in Fig. 3E.6. This very important
expression applies to perfect gases (which is usually a good approximation).

!
\

Maolar Gibbs enargy, G

l s Prassura, p

Figure 3E.6 At constant temperature, the molar Gibbs energy of a
perfect gas varies as In p, and the standard state is reached at p®.
Note that, as p - 0, the molar Gibbs energy becomes negatively
infinite.

The fundamental equation, a combination of the First and Second
Laws, is an expression for the change in internal energy that
accompanies changes in the volume and entropy of a system.



Relations between thermodynamic properties are generated by
combining thermodynamic and mathematical expressions for changes

in their values.

The Maxwell relations are a series of relations between partial
derivatives of thermodynamic properties based on criteria for changes

in the properties being exact differentials.

The Maxwell relations are used to derive the thermodynamic
equation of state and to determine how the internal energy of a
substance varies with volume.

The variation of the Gibbs energy of a system suggests that it is best
regarded as a function of pressure and temperature.

The Gibbs energy of a substance decreases with temperature and
increases with pressure.

The variation of Gibbs energy with temperature is related to the
enthalpy by the Gibbs—Helmholtz equation.

The Gibbs energies of solids and liquids are almost independent of
pressure; those of gases vary linearly with the logarithm of the

pressure.
Property Equation Comment Equation
number
Fundamental equation dU = TdS — pdV No additional 3E.1
work

Fundamental equation of dG = Vdp — SdT No additional 3E.7

chemical thermodynamics work

Variation of G (0G/0p); =V and Composition 3E.8
(0G/OT), = =S constant

Gibbs—Helmholtz equation (A(G/T)/0T), = Composition 3E.10
~H/T? constant

Pressure dependence of G, Gn(pp) = G(py) + Incompressible  3E.13
V.(ps— py) substance



GL(pp) = G(py) + Perfect gas, 3E.14

RT In(p¢/p;) isothermal
G,(p) =G®,+RT Perfect gas, 3E.15
In(p/p®) isothermal

FOCUS 3

Assume that all gases are perfect and that data refer to 298.15 K unless
otherwise stated.

Entropy

The evolution of life requires the organization of a very large number of molecules
into biological cells. Does the formation of living organisms violate the Second Law of
thermodynamics? State your conclusion clearly and present detailed arguments to support
it.

Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the context of the
Second Law.

Discuss the relationships between the various formulations of the Second Law of
thermodynamics.

Consider a process in which the entropy of a system increases by 125 J K™! and
the entropy of the surroundings decreases by 125 J K™, Is the process spontaneous?

Consider a process in which the entropy of a system increases by 105 J K™! and



the entropy of the surroundings decreases by 95 J K. Is the process spontaneous?

Consider a process in which 100 kJ of energy is transferred reversibly and
isothermally as heat to a large block of copper. Calculate the change in entropy of the block
if the process takes place at (i) 0 °C, (ii) 50 °C.

Consider a process in which 250 kJ of energy is transferred reversibly and
isothermally as heat to a large block of lead. Calculate the change in entropy of the block if
the process takes place at (i) 20 °C, (ii) 100 °C.

Calculate the change in entropy of the gas when 15 g of carbon dioxide gas are
allowed to expand isothermally from 1.0 dm? to 3.0 dm? at 300 K.

Calculate the change in entropy of the gas when 4.00 g of nitrogen is allowed to
expand isothermally from 500 cm?® to 750 cm? at 300 K.

Calculate the change in the entropies of the system and the surroundings, and the
total change in entropy, when a sample of nitrogen gas of mass 14 g at 298 K doubles its
volume in (i) an isothermal reversible expansion, (ii) an isothermal irreversible expansion
against p,, = 0, and (iii) an adiabatic reversible expansion.

Calculate the change in the entropies of the system and the surroundings, and the
total change in entropy, when the volume of a sample of argon gas of mass 2.9 g at 298 K
increases from 1.20 dm® to 4.60 dm? in (i) an isothermal reversible expansion, (ii) an
isothermal irreversible expansion against p,, = 0, and (iii) an adiabatic reversible
expansion.

In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the hot source
at 273 K and 3.00 kJ of work is generated. What is the temperature of the cold sink?

In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat is withdrawn
from the hot source and 3.00 kJ of work is generated, at what temperature is the hot
source?

What is the efficiency of an ideal heat engine in which the hot source is at 100 °C
and the cold sink is at 10 °C?

An ideal heat engine has a hot source at 40 °C. At what temperature must the
cold sink be if the efficiency is to be 10 per cent?

A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is expanded
isothermally from an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two
ways: (a) reversibly, and (b) against a constant external pressure of 1.00 atm. Evaluate g, w,



AU, AH, AS, AS

A sample consisting of 0.10 mol of perfect gas molecules is held by a piston inside a
cylinder such that the volume is 1.25 dm?; the external pressure is constant at 1.00 bar and
the temperature is maintained at 300 K by a thermostat. The piston is released so that the
gas can expand. Calculate (a) the volume of the gas when the expansion is complete; (b)
the work done when the gas expands; (c) the heat absorbed by the system. Hence calculate
ASo-

surre @nd AS,, in each case.

Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas
molecules, the temperature of the hot source is 373 K, and that of the cold sink is 273 K;

the initial volume of gas is 1.00 dm?, which doubles over the course of the first isothermal

stage. For the reversible adiabatic stages it may be assumed that VT 32 = constant. (a)
Calculate the volume of the gas after Stage 1 and after Stage 2 (Fig. 3A.8). (b) Calculate
the volume of gas after Stage 3 by considering the reversible adiabatic compression from
the starting point. (c) Hence, for each of the four stages of the cycle, calculate the heat
transferred to or from the gas. (d) Explain why the work done is equal to the difference
between the heat extracted from the hot source and that deposited in the cold sink. (e)
Calculate the work done over the cycle and hence the efficiency n. (f) Confirm that your
answer agrees with the efficiency given by eqn 3A.9 and that your values for the heat
involved in the isothermal stages are in accord with eqn 3A.6.

The Carnot cycle is usually represented on a pressure—volume diagram (Fig. 3A.8),
but the four stages can equally well be represented on a temperature—entropy diagram, in
which the horizontal axis is entropy and the vertical axis is temperature; draw such a
diagram. Assume that the temperature of the hot source is T}, and that of the cold sink is T,
and that the volume of the working substance (the gas) expands from V, to Vj in the first
isothermal stage. (a) By considering the entropy change of each stage, derive an expression
for the area enclosed by the cycle in the temperature—entropy diagram. (b) Derive an
expression for the work done over the cycle. (Hint: The work done is the difference
between the heat extracted from the hot source and that deposited in the cold sink; or use
eqns 3A.7 and 3A.9.) (c) Comment on the relation between your answers to (a) and (b).

A heat engine does work as a result of extracting energy as heat from the hot source
and discarding some of it into the cold sink. Such an engine can also be used as a heat
pump in which heat is extracted from a cold source; some work is done on the engine and
thereby converted to heat which is added to that from the cold source before being
discarded into the hot sink. (a) Assuming that the engine is perfect and that the heat
transfers are reversible, use the Second Law to explain why it is not possible for heat to be
extracted from the cold source and discarded into the hot sink without some work being
done on the engine. (b) Assume that the hot sink is at temperature T;, and the cold source at
T,, and that heat of magnitude |q| is extracted from the cold source. Use the Second Law to

find the magnitude of the work |w| needed to make it possible for heat of magnitude |q| +
|w| to be discarded into the hot sink.

Heat pumps can be used as a practical way of heating buildings. The ground itself



can be used as the cold source because at a depth of a few metres the temperature is
independent of the air temperature; in temperate latitudes the ground temperature is around
13 °C at a depth of 10 m. On a cold day it is found that to keep a certain room at 18 °C a
heater rated at 5 kW is required. Assuming that an ideal heat pump is used, and that all heat
transfers are reversible, calculate the power needed to maintain the room temperature.

Recall that 1 W = 1 J s™L. Hint: See the results from Problem P3A.5.

Prove that two reversible adiabatic paths can never cross. Assume that the energy of
the system under consideration is a function of temperature only. Hint: Suppose that two
such paths can intersect, and complete a cycle with the two paths plus one isothermal path.
Consider the changes accompanying each stage of the cycle and show that they conflict
with the Kelvin statement of the Second Law.

Entropy changes accompanying specific
processes

Account for deviations from Trouton’s rule for liquids such as water, mercury, and
ethanol. Is their entropy of vaporization larger or smaller than 85 J K™ mol !? Why?

Use Trouton’s rule to predict the enthalpy of vaporization of benzene from its
normal boiling point, 80.1 °C.

Use Trouton’s rule to predict the enthalpy of vaporization of cyclohexane from
its normal boiling point, 80.7 °C.

The enthalpy of vaporization of trichloromethane (chloroform, CHCl;) is 29.4 kJ
mol ! at its normal boiling point of 334.88 K. Calculate (i) the entropy of vaporization of
trichloromethane at this temperature and (ii) the entropy change of the surroundings.

The enthalpy of vaporization of methanol is 35.27 kJ mol ™! at its normal boiling
point of 64.1 °C. Calculate (i) the entropy of vaporization of methanol at this temperature
and (ii) the entropy change of the surroundings.

Estimate the increase in the molar entropy of O,(g) when the temperature is
increased at constant pressure from 298 K to 348 K, given that the molar constant-pressure



heat capacity of O, is 29.355 J K™! mol ™! at 298 K.

Estimate the change in the molar entropy of N,(g) when the temperature is
lowered from 298 K to 273 K, given that C, ,,(N,) = 29.125 J K™ mol ™" at 298 K.

The molar entropy of a sample of neon at 298 K is 146.22 J K™! mol™!. The
sample is heated at constant volume to 500 K; assuming that the molar constant-volume

R
heat capacity of neonis R, calculate the molar entropy of the sample at 500 K.

Calculate the molar entropy of a constant-volume sample of argon at 250 K given
that it is 154.84 J K™! mol ™! at 298 K; the molar constant-volume heat capacity of argon is

=R
2

R.

Two copper blocks, each of mass 1.00 kg, one at 50 °C and the other at 0 °C, are
placed in contact in an isolated container (so no heat can escape) and allowed to come to
equilibrium. Calculate the final temperature of the two blocks, the entropy change of each,

and AS,... The specific heat capacity of copper is 0.385 J K™! g! and may be assumed
constant over the temperature range involved. Comment on the sign of AS,.

Calculate AS,,, when two iron blocks, each of mass 10.0 kg, one at 100 °C and
the other at 25 °C, are placed in contact in an isolated container and allowed to come to

equilibrium. The specific heat capacity of iron is 0.449 J K! g”! and may be assumed
constant over the temperature range involved. Comment on the sign of AS,,.

Calculate AS (for the system) when the state of 3.00 mol of gas molecules, for

i

which C, ,, = : R, is changed from 25 °C and 1.00 atm to 125 °C and 5.00 atm.

Calculate AS (for the system) when the state of 2.00 mol of gas molecules, for

which C, ,, = : R, is changed from 25 °C and 1.50 atm to 135 °C and 7.00 atm.

Calculate the change in entropy of the system when 10.0 g of ice at —10.0 °C is
converted into water vapour at 115.0 °C and at a constant pressure of 1 bar. The molar

constant-pressure heat capacities are: C, ,,(H,O(s)) = 37.6 J K™ mol™}; C, m(H,0() = 75.3
J Kt mol™!; and C,, ,,(H,O(g)) = 33.6 J K™ mol™. The standard enthalpy of vaporization
of H,0(1) is 40.7 kJ mol ™!, and the standard enthalpy of fusion of H,0(1) is 6.01 kJ mol?,
both at the relevant transition temperatures.

Calculate the change in entropy of the system when 15.0 g of ice at —12.0 °C is



converted to water vapour at 105.0 °C at a constant pressure of 1 bar. For data, see the
preceding exercise.

Consider a process in which 1.00 mol H,O(l) at —5.0 °C solidifies to ice at the same
temperature. Calculate the change in the entropy of the sample, of the surroundings and the
total change in the entropy. Is the process spontaneous? Repeat the calculation for a
process in which 1.00 mol H,O(1) vaporizes at 95.0 °C and 1.00 atm. The data required are

given in Exercise E3B.7(a).

Show that a process in which liquid water at 5.0 °C solidifies to ice at the same
temperature is not spontaneous (Hint: calculate the total change in the entropy). The data
required are given in Exercise E3B.7(a).

The molar heat capacity of trichloromethane (chloroform, CHCI,) in the range 240
K to 330 K is given by C, ,,/(J K™' mol™!) = 91.47 + 7.5 x 107*(T/K). Calculate the change
in molar entropy when CHCl; is heated from 273 K to 300 K.

The molar heat capacity of N,(g) in the range 200 K to 400 K is given by C,, ,,/(J K™
mol ) = 28.58 + 3.77 x 1073(T/K). Given that the standard molar entropy of N,(g) at 298 K
is 191.6 J K™! mol™!, calculate the value at 373 K. Repeat the calculation but this time
assuming that C, , is independent of temperature and takes the value 29.13 J K™ mol™%.
Comment on the difference between the results of the two calculations.

Find an expression for the change in entropy when two blocks of the same substance
and of equal mass, one at the temperature T, and the other at T, are brought into thermal

contact and allowed to reach equilibrium. Evaluate the change in entropy for two blocks of
copper, each of mass 500 g, with C, ,, = 24.4 J K™* mol ™!, taking T}, = 500 K and T = 250
K.

According to Newton’s law of cooling, the rate of change of temperature is
proportional to the temperature difference between the system and its surroundings:

ddI—T=—-:rr_r—T_, )

where T,

sur 1S the temperature of the surroundings and « is a constant.

(a) Integrate this equation with the initial condition that T = T; at t = 0.
(b) Given that the entropy varies with temperature according to S(T) — S(T;) = C In(T/T),



where T, is the initial temperature and C the heat capacity, deduce an expression entropy of
the system at time t.

A block of copper of mass 500 g and initially at 293 K is in thermal contact with an
electric heater of resistance 1.00 kQ and negligible mass. A current of 1.00 A is passed for
15.0 s. Calculate the change in entropy of the copper, taking C,,, = 24.4 J K™ mol™". The
experiment is then repeated with the copper immersed in a stream of water that maintains
the temperature of the copper block at 293 K. Calculate the change in entropy of the copper
and the water in this case.

A block of copper (C,,, = 24.44 J K! mol™") of mass 2.00 kg and at 0 °C is
introduced into an insulated container in which there is 1.00 mol H,0O(g) at 100 °C and
1.00 atm. Assuming that all the vapour is condensed to liquid water, determine: (a) the final
temperature of the system; (b) the heat transferred to the copper block; and (c) the entropy

change of the water, the copper block, and the total system. The data needed are given in
Exercise E3B.7a.

The protein lysozyme unfolds at a transition temperature of 75.5 °C and the standard
enthalpy of transition is 509 kJ mol!. Calculate the entropy of unfolding of lysozyme at
25.0 °C, given that the difference in the molar constant-pressure heat capacities upon
unfolding is 6.28 kJ K™! mol™! and can be assumed to be independent of temperature.
(Hint: Imagine that the transition at 25.0 °C occurs in three steps: (i) heating of the folded
protein from 25.0 °C to the transition temperature, (ii) unfolding at the transition
temperature, and (iii) cooling of the unfolded protein to 25.0 °C. Because the entropy is a
state function, the entropy change at 25.0 °C is equal to the sum of the entropy changes of
the steps.)

The cycle involved in the operation of an internal combustion engine is called the
Otto cycle (Fig. 3.1). The cycle consists of the following steps: (1) Reversible adiabatic
compression from A to B, (2) reversible constant-volume pressure increase from B to C
due to the combustion of a small amount of fuel, (3) reversible adiabatic expansion from C
to D, and (4) reversible constant-volume pressure decrease back to state A. Assume that the
pressure, temperature, and volume at point A are p,, T, and V,, and likewise for B-D;

further assume that the working substance is 1 mol of perfect gas diatomic molecules with

i

Cym= " R. Recall that for a reversible adiabatic expansion (such as step 1) V,T,¢ = VRT3,
where ¢ = Cy,,/R, and that for a perfect gas the internal energy is only a function of the
temperature.

(a) Evaluate the work and the heat involved in each of the four steps, expressing your
results in terms of Cy,, and the temperatures Ty—Tp,
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Figure 3.1 The Otto cycle.

(b) The efficiency n is defined as the modulus of the work over the whole cycle divided by
the modulus of the heat supplied in step 2. Derive an expression for n in terms of the
temperatures Ty—T1r,.

(c) Use the relation between V and T for the reversible adiabatic processes to show that

n=l-(V /v
your expression for the efficiency can be written (Hint: recall that V- = V and

Vb =Va.)
(d) Derive expressions, in terms of Cy, ,, and the temperatures, for the change in entropy (of
the system and of the surroundings) for each step of the cycle.

(e) Assuming that V,, = 4.00 dm3, p, = 1.00 atm, T, = 300 K, and that V,, = 10V and
Pc/pg = 5, evaluate the efficiency of the cycle and the entropy changes for each step. (Hint:
for the last part you will need to find Ty and Tp,, which can be done by using the relation
between V and T for the reversible adiabatic process; you will also need to find T- which
can be done by considering the temperature rise in the constant volume process.)

When a heat engine is used as a refrigerator to lower the temperature of an object,
the colder the object the more work that is needed to cool it further to the same extent.

(a) Suppose that the refrigerator is an ideal heat engine and that it extracts a quantity of
heat |dqg| from the cold source (the object being cooled) at temperature T,.. The work done

on the engine is |dw| and as a result heat (|dg| + |dw|) is discarded into the hot sink at
temperature T},. Explain how the Second law requires that, for the process to be allowed,

the following relation must apply:
Jﬂl__ El+ -:lh'l
L5 &

(b) Suppose that the heat capacity of the object being cooled is C (which can be assumed to
be independent of temperature) so that the heat transfer for a change in temperature dT, is
dg = CdT,.. Substitute this relation into the expression derived in (a) and then integrate



between T, = T, and T, = T; to give the following expression for the work needed to cool
the object from T, to T; as

w=CT,

In—{'-
4

- (-1

(c) Use this result to calculate the work needed to lower the temperature of 250 g of water
from 293 K to 273 K, assuming that the hot reservoir is at 293 K (C, ,,(H,0(1)) = 75.3 J K
“Imol™). (d) When the temperature of liquid water reaches 273 K it will freeze to ice, an
exothermic process. Calculate the work needed to transfer the associated heat to the hot
sink, assuming that the water remains at 273 K (the standard enthalpy of fusion of H,O is
6.01 kJ mol™! at the normal freezing point). (e) Hence calculate the total work needed to

freeze the 250 g of liquid water to ice at 273 K. How long will this take if the refrigerator
operates at 100 W?

The standard molar entropy of NH,(g) is 192.45 J K ! mol™! at 298 K, and its heat
capacity is given by eqn 2B.8 with the coefficients given in Table 2B.1. Calculate the
standard molar entropy at (a) 100 °C and (b) 500 °C.

The measurement of entropy

Explain why the standard entropies of ions in solution may be positive, negative, or
zero.

At 4.2 K the heat capacity of Ag(s) is 0.0145 J K™ mol™!. Assuming that the
Debye law applies, determine S_,(4.2 K) — S,(0) for silver.

At low temperatures the heat capacity of Ag(s) is found to obey the Debye law

Cym=aT 3, with a=1.956 x 10™*J K™ mol . Determine S,(10 K) — S,(0) for silver.

Use data from Tables 2C.3 and 2C.4 to calculate the standard reaction entropy at
298 K of

(i) 2 CH3CHO(g) + O,(g) - 2 CH;COOH(])
(ii) 2 AgCl(s) + Br,(I) - 2 AgBr(s) + Cl,(g)



(iii) Hg(1) + Cl,(g) — HgCl,(s)
Use data from Tables 2C.3 and 2C.4 to calculate the standard reaction entropy at
298 K of

(i) Zn(s) + Cu?**(aq) — Zn?**(aq) + Cu(s)
(ii) sucrose [C;,H5,041(s)] + 12 Oy(g) — 12 CO,(g) + 11 H,0(1)

Calculate the standard reaction entropy at 298 K when 1 mol NH;(g) is formed
from its elements in their reference states.

Calculate the standard reaction entropy at 298 K when 1 mol N,O(g) is formed
from its elements in their reference states.

At 10 K C, ,(Hg(s)) = 4.64 J K™! mol™". Between 10 K and the melting point of
Hg(s), 234.3 K, heat capacity measurements indicate that the entropy increases by 57.74 J
K™ mol™!. The standard enthalpy of fusion of Hg(s) is 2322 J mol™! at 234.3 K. Between
the melting point and 298.0 K, heat capacity measurements indicate that the entropy

increases by 6.85 J K™! mol™!. Determine the Third-Law standard molar entropy of Hg(1) at
298 K.

The measurements described in Problem P3C.1 were extended to 343.9 K, the
normal boiling point of Hg(l). Between the melting point and the boiling point, heat
capacity measurements indicate that the entropy increases by 10.83 J K™! mol™!. The
standard enthalpy of vaporization of Hg(l) is 60.50 kJ mol™ at 343.9 K. Determine the
Third-Law standard molar entropy of Hg(g) at 343.9 K (you will need some of the data
from Problem P3C.1).

The molar heat capacity of lead varies with temperature as follows:

T/K 10 15 20 25 30 50

C,,m/(J K1 mol™h 2.8 7.0 108 141 165 214
T/K 70 100 150 200 250 298
C,,m/(J K1 mol™h 233 245 253 258 262 26.6

(a) Use the Debye T 3-law and the value of the heat capacity at 10 K to determine the
change in entropy between 0 and 10 K. (b) To determine the change in entropy between 10
K and 298 K you will need to measure the area under a plot of C, /T against T. This



measurement can either be done by counting squares or by using mathematical software to
fit the data to a simple function (for example, a polynomial) and then integrating that
function over the range 10 K to 298 K. Use either of these methods to determine the change
in entropy between 10 K and 298 K. (c) Hence determine the standard Third-Law entropy
of lead at 298 K, and also at 273 K.

The molar heat capacity of anhydrous potassium hexacyanoferrate(Il) varies with
temperature as follows:

T/K 10 20 30 40 50 60
Cp,m/(JK_l mol ™1 2.09 14.43 36.44 6255 87.03 111.0

T/K 70 80 90 100 110 150
Cp,m/(JK‘lmol‘l) 131.4 1494 1653 179.6 1928 237.6

T/K 160 170 180 190 200
Cp,m/(JK_l mol ™1 247.3 256.5 265.1 273.0 280.3

Determine the Third-Law molar entropy at 200 K and at 100 K.

Use values of standard enthalpies of formation, standard entropies, and standard heat
capacities available from tables in the Resource section to calculate the standard enthalpy
and entropy changes at 298 K and 398 K for the reaction CO,(g) + H,(g) — CO(g) +

H,0(g). Assume that the heat capacities are constant over the temperature range involved.

Use values of enthalpies of formation, standard entropies, and standard heat
capacities available from tables in the Resource section to calculate the standard enthalpy
and entropy of reaction at 298 K and 500 K for 1/2 N,(g) + 3/2 H,(g) — NH;(g). Assume

that the heat capacities are constant over the temperature range involved.

The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate in the
conversion of hexachlorobenzene to hexafluorobenzene, and its thermodynamic properties
have been examined by measuring its heat capacity over a wide temperature range (R.L.
Andon and J.F. Martin, J. Chem. Soc. Faraday Trans. I 871 (1973)). Some of the data are
as follows:

T/K 14.14 16.33 20.03 31.15 44.08 64.81
C,m/(J K1lmol 9492 1270 18.18 32.54 46.86 66.36
_1)

T/K 100.90 140.86 183.59 225.10 262.99 298.06



C,,m/(J K1 mol 95.05 121.3 1444 163.7 180.2 1964
_1)

Determine the Third-Law molar entropy of the compound at 100 K, 200 K, and 300 K.

* Given that S©,, = 29.79 J K! mol™ for bismuth at 100 K and the following

tabulated heat capacity data (D.G. Archer, J. Chem. Eng. Data 40, 1015 (1995)), determine
the standard molar entropy of bismuth at 200 K.

T/K 100 120 140 150 160 180 200
Cpm/(JK_lmol 23.00 23.74 24.25 2444 2461 24.89 25.11

_1)

Compare the value to the value that would be obtained by taking the heat capacity to be
constant at 24.44 J K™! mol ™! over this range.

At low temperatures there are two contributions to the heat capacity of a metal, one

associated with lattice vibrations, which is well-approximated by the Debye T 3-law, and
one due to the valence electrons. The latter is linear in the temperature. Overall, the heat
capacity can be written

Cebye elechonic
g

——
Con(T)=aT*+bT

The molar heat capacity of potassium metal has been measured at very low temperatures to
give the following data

T/K 020 025 030 035 040 045 050 0.55

Cp’m/(JK 0.437 0560 0.693 0.838 0996 1.170 1.361 1.572
“ITmol™)

(a) Assuming that the expression given above for the heat capacity applies, explain why a
plot of C, (T)/T against T 2 is expected to be a straight line with slope a and intercept b.
(b) Use such a plot to determine the values of the constants a and b. (c) Derive an
expression for the molar entropy at temperature T. (Hint: you will need to integrate
C,m(T)/T.) (d) Hence determine the molar entropy of potassium at 2.0 K.

At low temperatures the heat capacity of a metal is the sum of a contribution due to
lattice vibrations (the Debye term) and a term due to the valence electrons, as given in the
preceding problem. For sodium metal a = 0.507 x 103 J K ¥ mol ' and b=1.38 x 103 J K
2 mol~!. Determine the temperature at which the Debye contribution and the electronic
contribution to the entropy of sodium are equal. At higher temperatures, which contribution



becomes dominant?
* These problems were provided by Charles Trapp and Carmen Giunta.

Concentrating on the system

The following expressions establish criteria for spontaneous change: dAr, < 0 and
dGr), <0. Discuss the origin, significance, and applicability of each criterion.

Under what circumstances, and why, can the spontaneity of a process be discussed
in terms of the properties of the system alone?

Calculate values for the standard reaction enthalpies at 298 K for the reactions in
Exercise E3C.2(a) by using values of the standard enthalpies of formation from the tables
in the Resource section. Combine your results with the standard reaction entropies already
calculated in that Exercise to determine the standard reaction Gibbs energy at 298 K for
each.

Calculate values for the standard reaction enthalpies at 298 K for the reactions in
Exercise E3C.2(b) by using values of the standard enthalpies of formation from the tables
in the Resource section. Combine your results with the standard reaction entropies already
calculated in that Exercise to determine the standard reaction Gibbs energy at 298 K for
each.

Calculate the standard Gibbs energy of reaction for 4 HI(g) + O,(g) — 2 I,(s) + 2
H,0(1) at 298 K, using the values of standard entropies and enthalpies of formation given
in the Resource section.

Calculate the standard Gibbs energy of the reaction CO(g) + CH;CH,OH(l) -
CH;CH,COOH(l) at 298 K, using the values of standard entropies and enthalpies of
formation given in the Resource section. The data for CH;CH,COOH(l) are A;H® = -510
kJmol™}, $©,, =191 J K mol ! at 298 K.

Calculate the maximum non-expansion work per mole of CH, that may be
obtained from a fuel cell in which the chemical reaction is the combustion of methane
under standard conditions at 298 K.



Calculate the maximum non-expansion work per mole of C;Hg that may be

obtained from a fuel cell in which the chemical reaction is the combustion of propane
under standard conditions at 298 K.

Use values of the relevant standard Gibbs energies of formation from the
Resource section to calculate the standard Gibbs energies of reaction at 298 K of

(i) 2 CH3CHO(g) + O,(g) - 2 CH;COOH(])
(ii) 2 AgCl(s) + Br,(1) - 2 AgBr(s) + Cl,(g)

(iii) Hg(l) + Cl,(g) — HgCl,(s)
Use values of the relevant standard Gibbs energies of formation from the
Resource section to calculate the standard Gibbs energies of reaction at 298 K of

(i) Zn(s) + Cu?**(aq) — Zn**(aq) + Cu(s)
(ii) sucrose [C;,H5,041(s)] + 12 Oy(g) — 12 CO,(g) + 11 H,0(1)

The standard enthalpy of combustion of liquid ethyl ethanoate (ethyl acetate,
CH5COOC,H:) is —2231 kJ mol ™! at 298 K and its standard molar entropy is 259.4 J K™
mol~!. Calculate the standard Gibbs energy of formation of the compound at 298 K.

The standard enthalpy of combustion of the solid glycine (the amino acid,
NH,CH,COOH) is —969 kJ mol ! at 298 K and its standard molar entropy is 103.5 J K™!

mol!. Calculate the standard Gibbs energy of formation of glycine at 298 K. Note that the
nitrogen-containing species produced on combustion is taken to be N,(g).

A perfect gas is contained in a cylinder of fixed volume and which is separated into
two sections A and B by a frictionless piston; no heat can pass through the piston. Section
B is maintained at a constant temperature of 300 K; that is, all changes in section B are
isothermal. There are 2.00 mol of gas molecules in each section and the constant-volume

heat capacity of the gas is Cy, ,, = 20 J K™ mol™!, which can be assumed to be constant.

Initially T, = Tz = 300 K, V, = V5 = 2.00 dm>. Energy is then supplied as heat to Section
A so that the gas in A expands, pushing the piston out and thereby compressing the gas in
section B. The expansion takes place reversibly and the final volume in section B is 1.00
dm?>. Because the piston is free to move, the pressures in sections A and B are always
equal; recall, too, that for a perfect gas the internal energy is a function of only the
temperature.

(a) Calculate the final pressure of the gas and hence the temperature of the gas in section A.
(b) Calculate the change in entropy of the gas in section A (Hint: you can think of the
process as occurring in a constant volume step and then a constant temperature step).



(c) Calculate the entropy change of the gas in section B. (d) Calculate the change in
internal energy for each section. (e) Use the values of AS and AU that you have already
calculated to calculate AA for section B; explain why it is not possible to do the same for
section A. (f) Given that the process is reversible, what does this imply about the total AA
for the process (the sum of AA for section A and B)?

In biological cells, the energy released by the oxidation of foods is stored in
adenosine triphosphate (ATP or ATP#").The essence of ATP’s action is its ability to lose its
terminal phosphate group by hydrolysis and to form adenosine diphosphate (ADP or
ADP?):

ATP*(aq) + H,0(l) -~ ADP3 (aq) + HPO,? (aq) + H;0*(aq)

At pH = 7.0 and 37 °C (310 K, blood temperature) the enthalpy and Gibbs energy of
hydrolysis are AH = -20 kJ mol™! and A,G = -31 kJ mol™, respectively. Under these
conditions, the hydrolysis of 1 mol ATP* (aq) results in the extraction of up to 31 kJ of
energy that can be used to do non-expansion work, such as the synthesis of proteins from
amino acids, muscular contraction, and the activation of neuronal circuits in our brains. (a)
Calculate and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and 310

K. (b) Suppose that the radius of a typical biological cell is 10 pm and that inside it 1 x 10°
ATP molecules are hydrolysed each second. What is the power density of the cell in watts
per cubic metre (1 W = 1 J s™1)? A computer battery delivers about 15 W and has a volume
of 100 cm3. Which has the greater power density, the cell or the battery? (c) The formation

of glutamine from glutamate and ammonium ions requires 14.2 kJ mol™! of energy input. It
is driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine synthetase.
How many moles of ATP must be hydrolysed to form 1 mol glutamine?

Construct a cycle similar to that in Fig. 3D.3 to analyse the reaction 1 H,(g) + 1 L,(s)

— H"(aq) + I"(aq) and use it to find the value of the standard Gibbs energy of formation of
I"(ag). You should refer to the tables in the Resource section for relevant values of the
Gibbs energies of formation. As in the text, the standard Gibbs energy for the process H(g)

— H'(g) + e—(g) should be approximated by the ionization energy, and that for I(g) + e—(g)
- I"(g) by the electron affinity. The standard Gibbs energy of solvation of H" can be taken
as —1090 kJ mol ! and of I" as —247 kJ mol 1.

The solubility of an ionic solid such as NaCl can be explored by calculating the
standard Gibbs energy change for the process NaCl(s) — Na(aq) + Cl (aq). Consider this
process in two steps: (1) NaCl(s) — Na'(g) + Cl(g) and then (2) Na*(g) + Cl(g) » Na*
(aq) + Cl (aq). Estimate A,G® for the first step given that A H® = 787 kJ mol! and the
following values of the absolute entropy: S©(Na*(g)) = 148 J K™! mol™!, S&_(Cl(g)) =
154 J K ' mol™!, S©_(NaCl(s)) = 72.1 ] K™ mol! (all data at 298 K). The value of A.G®
for the second step can be found by using the Born equation to estimate the standard Gibbs



energies of solvation. For these estimates, use r(Na*) = 170 pm and r(Cl") = 211 pm.
Hence find A,G® for the overall process and comment on the value you find.

Repeat the calculation in Problem P3D.4 for LiF, for which A, H® = 1037 kJ mol ™!
in step 1 and with the following values of the absolute entropy: S©,(Li*) = 133 J K™! mol
1 S©_ (F) =145 J K ! mol™}, S©_(LiF(s)) = 35.6 J K™! mol! (all data at 298 K). Use
r(Li*) =127 pm and r(F") = 163 pm.

From the Born equation derive an expression for A

S® and A, ,H® (Hint:

solv solv:

(@G /ary,=-s)- Comment on your answer in the light of the assumptions made in the Born

model.

Combining the First and Second Laws

Suggest a physical interpretation of the dependence of the Gibbs energy on the
temperature.

Suggest a physical interpretation of the dependence of the Gibbs energy on the
pressure.

Suppose that 2.5 mmol of perfect gas molecules initially occupies 42 cm?® at 300
K and then expands isothermally to 600 cm?. Calculate AG for the process.

Suppose that 6.0 mmol of perfect gas molecules initially occupies 52 cm?® at 298
K and then expands isothermally to 122 cm3. Calculate AG for the process.

The change in the Gibbs energy of a certain constant-pressure process is found to
fit the expression AG/J = —85.40 + 36.5(T/K). Calculate the value of AS for the process.

The change in the Gibbs energy of a certain constant-pressure process is found to
fit the expression AG/J = =73.1 + 42.8(T/K). Calculate the value of AS for the process.

The change in the Gibbs energy of a certain constant-pressure process is found to
fit the expression AG/J = —85.40 + 36.5(T/K). Use the Gibbs—Helmholtz equation to



calculate the value of AH for the process.

The change in the Gibbs energy of a certain constant-pressure process is found to
fit the expression AG/J = -73.1 + 42.8(T/K). Use the Gibbs—Helmholtz equation to
calculate the value of AH for the process.

Estimate the change in the Gibbs energy of 1.0 dm? of liquid octane when the
pressure acting on it is increased from 1.0 atm to 100 atm. Given that the mass density of
octane is 0.703 g cm 3, determine the change in the molar Gibbs energy.

Estimate the change in the Gibbs energy of 100 cm? of water when the pressure
acting on it is increased from 100 kPa to 500 kPa. Given that the mass density of water is

0.997 g cm 3, determine the change in the molar Gibbs energy.

The change in the molar volume accompanying fusion of solid CO, is —1.6 cm?
mol !. Determine the change in the molar Gibbs energy of fusion when the pressure is
increased from 1 bar to 1000 bar.

The change in the molar volume accompanying fusion of solid benzene is 0.5

cm? mol~!. Determine the change in Gibbs energy of fusion when the pressure is increased
from 1 bar to 5000 bar.

Calculate the change in the molar Gibbs energy of a perfect gas when its pressure
is increased isothermally from 1.0 atm to 100.0 atm at 298 K.

Calculate the change in the molar Gibbs energy of a perfect gas when its pressure
is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

(a) By integrating the Gibbs—Helmholtz equation between temperature T; and T,,
and with the assumption that AH is independent of temperature, show that

AGIT.)  AGIT)) 1
R +._‘|.1’{|t T,

1
_jrll

)

where AG(T) is the change in Gibbs energy at temperature T. (b) Using values of the
standard Gibbs energies and enthalpies of formation from the Resource section, determine

A.G® and A H® at 298 K for the reaction 2 CO(g) + O,(g) — 2 CO,(g). (c) Hence estimate
A.G® at 375 K.

Calculate A,G® and A H® at 298 K for N,(g) + 3 H,(g) — 2 NH;(g). Then, using the
result from Problem P3E.1 (a), estimate A.G® at 500 K and at 1000 K.

At 298 K the standard enthalpy of combustion of sucrose is 5797 kJ mol ! and the



standard Gibbs energy of the reaction is —6333 kJ mol !. Estimate the additional non-
expansion work that may be obtained by raising the temperature to blood temperature, 37
°C. (Hint: use the result from Problem P3E.1 to determine A,G® at the higher temperature.)

Consider gases described by the following three equations of state:

(a) perfect: p=§;
e

K1 i
(b} van der Waals: p= v _é,‘?r;

1) Dieterici: p:%
Use the Maxwell relation (0S/0V); = (0p/0T)y, to derive an expression for (0S/0V); for each
equation of state. For an isothermal expansion, compare the change in entropy expected for
a perfect gas and for a gas obeying the van der Waals equation of state: which has the

greatest change in entropy and how can this conclusion be rationalized?

Only one of the four Maxwell relations is derived in the text. Derive the remaining
three to give the complete set listed in Table 3E.1. Start with the definition of H (H = U +
pV), form the exact differential (dH = dU + pdV + Vdp), and then substitute dU = TdS -
pdV. The resulting expression gives rise to a Maxwell relation in a way analogous to how
eqn 3E.5 arises from eqn 3E.1. Repeat the process, starting with the definitions of A and
then G, to give the remaining two Maxwell relations.

Suppose that S is regarded as a function of p and T so that

S
.-|]' d:p +|‘.F.—'|F dT

Use (0S/0T), = C,/T and an appropriate Maxwell relation to show that TdS = C,dT -
aTVdp, where the expansion coefficient, a, is defined as a = (1/V)(0V/0T),. Hence, show

that the energy transferred as heat, q, when the pressure on an incompressible liquid or
solid is increased by Ap in a reversible isothermal process is given by q = —aTVAp.

Evaluate g when the pressure acting on 100 cm® of mercury at 0 °C is increased by 1.0
kbar. (a = 1.82 x 1074 K1)
The pressure dependence of the molar Gibbs energy is given by (0G,,/0p); = Vi,

This problem involves exploring this dependence for a gas described by the van der Waals
equation of state

RT )
B=

M= 'r"m—b_ 1r':

(a) Consider first the case where only the repulsive term is significant; that it, a = 0, b # 0.
Rearrange the equation of state into an expression for V,,, substitute it into (0G,,/0p); = V.,

and then integrate so as to obtain an expression for the pressure dependence of G,
Compare your result with that for a perfect gas. (b) Now consider the case where only the



attractive terms are included; that is, b = 0, a # 0. The equation of state then becomes a
quadratic equation in V_,. Find this equation and solve it for V_,. Approximate the solution

by assuming that pa/R>T ?> << 1 and using the expansion R which is valid for x <<
1. Hence find an expression for the pressure dependence of G,,, and interpret the result. (c)
For CO, a = 3.610 atm dm® mol 2, b = 4.29 x 10~2 dm> mol !. Use mathematical software
to plot G, as a function of pressure at 298 K for a perfect gas and the two cases analysed
above. (Use R = 8.2057 x 1072 dm? atm K™ mol 1)

T Nitric acid hydrates have received much attention as possible catalysts for
heterogeneous reactions that bring about the Antarctic ozone hole. Worsnop et al. (Science
259, 71 (1993)) investigated the thermodynamic stability of these hydrates under
conditions typical of the polar winter stratosphere. They report thermodynamic data for the
sublimation of mono-, di-, and trihydrates to nitric acid and water vapours, HNO5-nH,O(s)

— HNO4(g) + nH,0(g), for n = 1, 2, and 3. Given A,G® and A H® for these reactions at
220 K, use the Gibbs—Helmholtz equation to compute A, G® for each at 190 K.

n 1 2 3
A.G®/(kJ mol™1) 46.2 69.4 93.2
AH®/(kJ mol ™) 127 188 237

The Second and Third Laws

A sample consisting of 1.00 mol gas molecules is described by the equation of state
pV, = RT(1 + Bp). Initially at 373 K, it undergoes Joule-Thomson expansion (Topic 2D)

from 100 atm to 1.00 atm. Given that C, ,, = . R, p = 0.21 K atm™!, B = —0.525(K/T) atm !,

and that these are constant over the temperature range involved, calculate AT and AS for
the gas.

Discuss the relation between the thermodynamic and statistical definitions of entropy.

Use mathematical software or an electronic spreadsheet to:

(a) Evaluate the change in entropy of 1.00 mol CO,(g) on expansion from 0.001 m? to



0.010 m? at 298 K, treated as a van der Waals gas.

(b) Plot the change in entropy of a perfect gas of (i) atoms, (ii) linear rotors, (iii) nonlinear
rotors as the sample is heated over the same range under conditions of constant volume and
then constant pressure.

(c) Allow for the temperature dependence of the heat capacity by writing C = a + bT + ¢/T
2, and plot the change in entropy for different values of the three coefficients (including
negative values of c).

(d) Show how the first derivative of G, (0G/0dp);, varies with pressure, and plot the
resulting expression over a pressure range. What is the physical significance of (0G/dp);?

(e) Evaluate the fugacity coefficient (see A deeper look 2 on the website for this book) as a
function of the reduced volume of a van der Waals gas and plot the outcome for a selection
of reduced temperatures over the range 0.8 <V, < 3.



FOCUS 4

Physical transformations of pure
substances

Vaporization, melting (fusion), and the conversion of graphite to
diamond are all examples of changes of phase without change of
chemical composition. The discussion of the phase transitions of pure
substances is among the simplest applications of thermodynamics to
chemistry, and is guided by the principle that, at constant temperature
and pressure, the tendency of systems is to minimize their Gibbs energy.

4A Phase diagrams of pure substances

One type of phase diagram is a map of the pressures and temperatures at
which each phase of a substance is the most stable. The thermodynamic
criterion for phase stability leads to a very general result, the ‘phase
rule’, which summarizes the constraints on the equilibria between
phases. In preparation for later chapters, this rule is expressed in a
general way that can be applied to systems of more than one component.
This Topic also introduces the ‘chemical potential’, a property that is at
the centre of discussions of mixtures and chemical reactions. The Topic
then describes the interpretation of the phase diagrams of a
representative selection of substances.

4A.1 The stabilities of phases; 4A.2 Phase boundaries; 4A.3 Three



representative phase diagrams

4B Thermodynamic aspects of phase transitions

This Topic considers the factors that determine the positions and shapes
of the phase boundaries. The expressions derived show how the vapour
pressure of a substance varies with temperature and how the melting
point varies with pressure.

4B.1 The dependence of stability on the conditions; 4B.2 The location of
phase boundaries

Web resource What is an application of this
material?

The properties of carbon dioxide in its supercritical fluid phase can form
the basis for novel and useful chemical separation methods, and have
considerable promise for the synthetic procedures adopted in ‘green’
chemistry. Its properties and applications are discussed in Impact 6 on
the website of this book.

TOPIC 4A Phase diagrams of pure
substances

> Why do you need to know this material?

Phase diagrams summarize the behaviour of substances under different



conditions, and identify which phase or phases are the most stable at a
particular temperature and pressure. Such diagrams are important tools for
understanding the behaviour of both pure substances and mixtures.

> What is the key idea?

A pure substance tends to adopt the phase with the lowest chemical
potential.

> \What do you need to know already?

This Topic builds on the fact that the Gibbs energy is a signpost of
spontaneous change under conditions of constant temperature and pressure
(Topic 3D).

One of the most succinct ways of presenting the physical changes of state that
a substance can undergo is in terms of its ‘phase diagram’. This material is
also the basis of the discussion of mixtures in Focus 5.

4A.1 The stabilities of phases

Thermodynamics provides a powerful framework for describing and
understanding the stabilities and transformations of phases, but the
terminology must be used carefully. In particular, it is necessary to
understand the terms ‘phase’, ‘component’, and ‘degree of freedom’.

(a) The number of phases

A phase is a form of matter that is uniform throughout in chemical
composition and physical state. Thus, there are the solid, liquid, and gas
phases of a substance, as well as various solid phases, such as the white and
black allotropes of phosphorus, or the aragonite and calcite polymorphs of
calcium carbonate.

A note on good practice An allotrope is a particular molecular form



of an element (such as O, and O3) and may be solid, liquid, or gas. A

polymorph is one of a number of solid phases of an element or
compound.

The number of phases in a system is denoted P. A gas, or a gaseous
mixture, is a single phase (P = 1), a crystal of a substance is a single phase,
and two fully mixed liquids form a single phase.

Brief illustration 4A.1

A solution of sodium chloride in water is a single phase (P = 1). Ice is a
single phase even though it might be chipped into small fragments. A
slurry of ice and water is a two-phase system (P = 2) even though it is
difficult to map the physical boundaries between the phases. A system in
which calcium carbonate undergoes the thermal decomposition
CaCO;(s) — CaO(s) + CO,(g) consists of two solid phases (one

consisting of calcium carbonate and the other of calcium oxide) and one
gaseous phase (consisting of carbon dioxide), so P = 3.

Two metals form a two-phase system (P = 2) if they are immiscible, but a
single-phase system (P = 1), an alloy, if they are miscible (and actually
mixed). A solution of solid B in solid A—a homogeneous mixture of the two
miscible substances—is uniform on a molecular scale. In a solution, atoms of
A are surrounded by atoms of A and B, and any sample cut from the sample,
even microscopically small, is representative of the composition of the
whole. It is therefore a single phase.

A dispersion is uniform on a macroscopic scale but not on a microscopic
scale, because it consists of grains or droplets of one substance in a matrix of
the other (Fig. 4A.1). A small sample could come entirely from one of the
minute grains of pure A and would not be representative of the whole. A
dispersion therefore consists of two phases.




(b) Phase transitions

A phase transition, the spontaneous conversion of one phase into another
phase, occurs at a characteristic transition temperature, T, for a given
pressure. At the transition temperature the two phases are in equilibrium and
the Gibbs energy of the system is a minimum at the prevailing pressure.

(a) (b)

Figure 4A.1 The difference between (a) a single-phase solution, in
which the composition is uniform on a molecular scale, and (b) a
dispersion, in which microscopic regions of one component are
embedded in a matrix of a second component.

Brief illustration 4A.2

At 1 atm, ice is the stable phase of water below 0 °C, but above 0 °C
liquid water is more stable. This difference indicates that below 0 °C the
Gibbs energy decreases as liquid water changes into ice, but that above 0
°C the Gibbs energy decreases as ice changes into liquid water. The
numerical values of the Gibbs energies are considered in the next Brief
illustration.




The detection of a phase transition is not always straightforward as there
may be nothing to see, especially if the two phases are both solids. Thermal
analysis, which takes advantage of the heat that is evolved or absorbed
during a transition, can be used. Thus, if the phase transition is exothermic
and the temperature of a sample is monitored as it cools, the presence of the
transition can be recognized by a pause in the otherwise steady fall of the
temperature (Fig. 4A.2). Similarly, if a sample is heated steadily and the
transition is endothermic, there will be a pause in the temperature rise at the
transition temperature. Differential scanning calorimetry (Topic 2C) is also
used to detect phase transitions, and X-ray diffraction (Topic 15B) is useful
for detecting phase transitions in a solid, because the two phases will have
different structures.
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Figure 4A.2 A cooling curve at constant pressure. The flat section
corresponds to the pause in the fall of temperature while an
exothermic transition (freezing) occurs. This pause enables T; to be

located even if the transition cannot be observed visually.

As always, it is important to distinguish between the thermodynamic
description of a process and the rate at which the process occurs. A phase



transition that is predicted by thermodynamics to be spontaneous might occur
too slowly to be significant in practice. For instance, at normal temperatures
and pressures the molar Gibbs energy of graphite is lower than that of
diamond, so there is a thermodynamic tendency for diamond to change into
graphite. However, for this transition to take place, the C atoms must change
their locations, which, except at high temperatures, is an immeasurably slow
process in a solid. The discussion of the rate of attainment of equilibrium is a
kinetic problem and is outside the range of thermodynamics. In gases and
liquids the mobilities of the molecules allow phase transitions to occur
rapidly, but in solids thermodynamic instability may be frozen in.
Thermodynamically unstable phases that persist because the transition is
kinetically hindered are called metastable phases. Diamond is a metastable
but persistent phase of carbon under normal conditions.

(c) Thermodynamic criteria of phase stability

All the following considerations are based on the Gibbs energy of a
substance, and in particular on its molar Gibbs energy, G,. In fact, this

quantity plays such an important role in this Focus and elsewhere in the text
that it is given a special name and symbol, the chemical potential, i (mu).
For a system that consists of a single substance, the ‘molar Gibbs energy’ and
the ‘chemical potential’ are exactly the same: y = G_. In Topic 5A the

chemical potential is given a broader significance and a more general
definition. The name ‘chemical potential’ is also instructive: as the concept is
developed it will become clear that y is a measure of the potential that a
substance has for undergoing change. In this Focus, and in FOCUS 5, it
reflects the potential of a substance to undergo physical change. In FOCUS 6,
p is the potential of a substance to undergo chemical change.

The discussion in this Topic is based on the following consequence of the
Second Law (Fig. 4A.3):

At equilibrium, the chemical potential of a substance is the same in and
throughout every phase present in the system.

Criterion for phase equilibrium



To see the validity of this remark, consider a system in which the chemical
potential of a substance is p; at one location and p, at another location. The

locations may be in the same or in different phases. When an infinitesimal
amount dn of the substance is transferred from one location to the other, the
Gibbs energy of the system changes by —pdn (i.e. dG = —G, ;dn) when

material is removed from location 1. It changes by +,dn (i.e. dG = Gy, ,dn)

when that material is added to location 2. The overall change is therefore dG
= (4p — py)dn. If the chemical potential at location 1 is higher than that at

location 2, the transfer is accompanied by a decrease in G, and so has a
spontaneous tendency to occur. Only if y; = p, is there no change in G, and

only then is the system at equilibrium.

Same chemical
potential



Figure 4A.3 When two or more phases are in equilibrium, the
chemical potential of a substance (and, in a mixture, a component) is
the same in each phase, and is the same at all points in each phase.

Brief illustration 4A.3

The standard molar Gibbs energy of formation of water vapour at 298 K
(25 °C) is —229 kJ mol!, and that of liquid water at the same
temperature is —237 kJ mol ! It follows that there is a decrease in Gibbs
energy when water vapour condenses to the liquid at 298 K, so
condensation is spontaneous at that temperature (and 1 bar).

4A.2 Phase boundaries

The phase diagram of a pure substance shows the regions of pressure and
temperature at which its various phases are thermodynamically stable (Fig.
4A.4). In fact, any two intensive variables may be used (such as temperature
and magnetic field; in Topic 5A mole fraction is another variable), but this
Topic focuses on pressure and temperature. The lines separating the regions,
which are called phase boundaries (or coexistence curves), show the values
of p and T at which two phases coexist in equilibrium and their chemical
potentials are equal. A single phase is represented by an area on a phase
diagram.

(a) Characteristic properties related to phase
transitions

Consider a liquid sample of a pure substance in a closed vessel. The pressure
of a vapour in equilibrium with the liquid is its vapour pressure (the property
introduced in Topic 1C; Fig. 4A.5). Therefore, the liquid—vapour phase
boundary in a phase diagram shows how the vapour pressure of the liquid
varies with temperature. Similarly, the solid—vapour phase boundary shows



the temperature variation of the sublimation vapour pressure, the vapour
pressure of the solid phase. The vapour pressure of a substance increases with
temperature because at higher temperatures more molecules have sufficient
energy to escape from their neighbours.
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Figure 4A.4 The general regions of pressure and temperature where
solid, liquid, or gas is stable (that is, has minimum molar Gibbs
energy) are shown on this phase diagram. For example, the solid
phase is the most stable phase at low temperatures and high
pressures.

When a liquid is in an open vessel and subject to an external pressure, it is
possible for the liquid to vaporize from its surface. However, only when the
temperature is such that the vapour pressure is equal to the external pressure
will it be possible for vaporization to occur throughout the bulk of the liquid
and for the vapour to expand freely into the surroundings. This condition of
free vaporization throughout the liquid is called boiling. The temperature at
which the vapour pressure of a liquid is equal to the external pressure is
called the boiling temperature at that pressure. For the special case of an



external pressure of 1 atm, the boiling temperature is called the normal
boiling point, T,. With the replacement of 1 atm by 1 bar as standard

pressure, there is some advantage in using the standard boiling point
instead: this is the temperature at which the vapour pressure reaches 1 bar.
Because 1 bar is slightly less than 1 atm (1.00 bar = 0.987 atm), the standard
boiling point of a liquid is slightly lower than its normal boiling point. For
example, the normal boiling point of water is 100.0 °C, but its standard
boiling point is 99.6 °C.

Vapour
pressure,

Vapour p

Liquid
or solid

Figure 4A.5 The vapour pressure of a liquid or solid is the pressure
exerted by the vapour in equilibrium with the condensed phase.



Boiling does not occur when a liquid is heated in a rigid, closed vessel.
Instead, the vapour pressure, and hence the density of the vapour, rises as the
temperature is raised (Fig. 4A.6). At the same time, the density of the liquid
decreases slightly as a result of its expansion. There comes a stage when the
density of the vapour is equal to that of the remaining liquid and the surface
between the two phases disappears. The temperature at which the surface
disappears is the critical temperature, T, of the substance. The vapour

pressure at the critical temperature is called the critical pressure, p.. At and

above the critical temperature, a single uniform phase called a supercritical
fluid fills the container and an interface no longer exists. That is, above the
critical temperature, the liquid phase of the substance does not exist.

The temperature at which, under a specified pressure, the liquid and solid
phases of a substance coexist in equilibrium is called the melting
temperature. Because a substance melts at exactly the same temperature as it
freezes, the melting temperature of a substance is the same as its freezing
temperature. The freezing temperature when the pressure is 1 atm is called
the normal freezing point, T}, and its freezing point when the pressure is 1

bar is called the standard freezing point. The normal and standard freezing
points are negligibly different for most purposes. The normal freezing point
is also called the normal melting point.



(- (

(a) (b) (c)

Figure 4A.6 (a) A liquid in equilibrium with its vapour. (b) When a
liquid is heated in a sealed container, the density of the vapour phase
increases and the density of the liquid decreases slightly. There
comes a stage, (c), at which the two densities are equal and the
interface between the fluids disappears. This disappearance occurs at
the critical temperature.

There is a set of conditions under which three different phases of a
substance (typically solid, liquid, and vapour) all simultaneously coexist in
equilibrium. These conditions are represented by the triple point, a point at
which the three phase boundaries meet. The temperature at the triple point is
denoted T5. The triple point of a pure substance cannot be changed: it occurs

at a single definite pressure and temperature characteristic of the substance.

As can be seen from Fig. 4A.4, the triple point marks the lowest pressure at
which a liquid phase of a substance can exist. If (as is common) the slope of
the solid—liquid phase boundary is as shown in the diagram, then the triple
point also marks the lowest temperature at which the liquid can exist.



Brief illustration 4A.4

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar, 4.58
Torr), and the three phases of water (ice, liquid water, and water vapour)
coexist in equilibrium at no other combination of pressure and
temperature. This invariance of the triple point was the basis of its use in

the now superseded definition of the Kelvin scale of temperature (Topic
3A).

(b) The phase rule

In one of the most elegant arguments in the whole of chemical
thermodynamics, J.W. Gibbs deduced the phase rule, which gives the
number of parameters that can be varied independently (at least to a small
extent) while the number of phases in equilibrium is preserved. The phase
rule is a general relation between the variance, F, the number of components,
C, and the number of phases at equilibrium, P, for a system of any
composition. Each of these quantities has a precisely defined meaning:

» The variance (or number of degrees of freedom), F, of a system is the
number of intensive variables that can be changed independently without
disturbing the number of phases in equilibrium.

* A constituent of a system is any chemical species that is present.
* A component is a chemically independent constituent of a system.

» The number of components, C, in a system is the minimum number of
types of independent species (ions or molecules) necessary to define the
composition of all the phases present in the system.

Brief illustration 4A.5

A mixture of ethanol and water has two constituents. A solution of
sodium chloride has three constituents: water, Na* ions, and Cl~ ions,




but only two components because the numbers of Na™ and Cl™ ions are
constrained to be equal by the requirement of charge neutrality.

The relation between these quantities, which is called the phase rule, is
established by considering the conditions for equilibrium to exist between the
phases in terms of the chemical potentials of all the constituents.

2 [OVALR 1N [o]a ¥RV \WY Deducing the phase rule

The argument that leads to the phase rule is most easily appreciated by
first thinking about the simpler case when only one component is
present and then generalizing the result to an arbitrary number of
components.

Step 1 Consider the case where only one component is present

When only one phase is present (P = 1), both p and T can be varied
independently, so F = 2. Now consider the case where two phases o and
B are in equilibrium (P = 2). If the phases are in equilibrium at a given
pressure and temperature, their chemical potentials must be equal:

p(o; p,T) = p(B; p,T)

This equation relates p and T: when the pressure changes, the changes in
the chemical potentials are different in general, so in order to keep them
equal, the temperature must change too. To keep the two phases in
equilibrium only one variable can be changed arbitrarily, so F = 1.

If three phases of a one-component system are in mutual equilibrium,
the chemical potentials of all three phases (o, 3, and y) must be equal:

p(o; p,T) = p(B; p,T) = p(y; p,T)

This relation is actually two equations p(o; p,T) = u(B; p,T) and u(B; p,T)
= u(y; p,T), in which there are two variables: pressure and temperature.
With two equations for two unknowns, there is a single solution (just as



the pair of algebraic equations x + y = xy and 3x — y = xy have the single,
fixed solutions x = 2 and y = 2). There is therefore only one single,
unchangeable value of the pressure and temperature as a solution. The
conclusion is that there is no freedom to choose these variables, so F =
0.

Four phases cannot be in mutual equilibrium in a one-component
system because the three equalities

p(o; p,T) = u(B; p,T), u(B; p,T) = u(y; p,T),
and p(y; p,T) = p(8; p,T)

are three equations with only two unknowns (p and T), which are not
consistent because no values of p and T satisfy all three equations (just
as the three equations x + y = xy, 3x — y = xy, and 4x — y = 2xy? have no
solution).

In summary, for a one-component system (C = 1) it has been shown
that: F=2when P=1; F=1when P =2; and F = 0 when P = 3. The
general result is that for C=1, F =3 - P.

Step 2 Consider the general case of any number of components, C

Begin by counting the total number of intensive variables. The pressure,
p, and temperature, T, count as 2. The composition of a phase is
specified by giving the mole fractions of the C components, but as the
sum of the mole fractions must be 1, only C — 1 mole fractions are
independent. Because there are P phases, the total number of
composition variables is P(C — 1). At this stage, the total number of
intensive variables is P(C — 1) + 2.

At equilibrium, the chemical potential of a component J is the same in
every phase:

py(o; p,T) = py(B; p,T) = ... for P phases

There are P — 1 equations of this kind to be satisfied for each component
J. As there are C components, the total number of equations is C(P — 1).
Each equation reduces the freedom to vary one of the P(C — 1) + 2
intensive variables. It follows that the total number of degrees of
freedom is



F=P(C-1)+2-C(P-1)

The right-hand side simplifies to give the phase rule in the form derived
by Gibbs:

F=C-P+2 The phase rule  (4A.1)

The implications of the phase rule for a one-component system, when
F=3-P The phase rule [C = 1] (4A.2)

are summarized in Fig. 4A.7. When only one phase is present in a one-
component system, F = 2 and both p and T can be varied independently (at
least over a small range) without changing the number of phases. The system
is said to be bivariant, meaning having two degrees of freedom. In other
words, a single phase is represented by an area on a phase diagram.

When two phases are in equilibrium F = 1, which implies that pressure is
not freely variable if the temperature is set; indeed, at a given temperature, a
liquid has a characteristic vapour pressure. It follows that the equilibrium of
two phases is represented by a line in the phase diagram. Instead of selecting
the temperature, the pressure could be selected, but having done so the two
phases would be in equilibrium only at a single definite temperature.
Therefore, freezing (or any other phase transition) occurs at a definite
temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system is invariant,
meaning that it has no degrees of freedom. This special condition can be
established only at a definite temperature and pressure that is characteristic of
the substance and cannot be changed. The equilibrium of three phases is
therefore represented by a point, the triple point, on a phase diagram. Four
phases cannot be in equilibrium in a one-component system because F cannot
be negative.
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Figure 4A.7 The typical regions of a one-component phase diagram.
The lines represent conditions under which the two adjoining phases
are in equilibrium. A point represents the unique set of conditions

under which three phases coexist in equilibrium. Four phases cannot
mutually coexist in equilibrium when only one component is present.

4A.3 Three representative phase diagrams

Carbon dioxide, water, and helium illustrate the significance of the various
features of a phase diagram.

(a) Carbon dioxide

Figure 4A.8 shows the phase diagram for carbon dioxide. The features to
notice include the positive slope (up from left to right) of the solid—liquid
phase boundary; the direction of this line is characteristic of most substances.
This slope indicates that the melting temperature of solid carbon dioxide rises
as the pressure is increased. Notice also that, as the triple point lies above 1



atm, the liquid cannot exist at normal atmospheric pressures whatever the
temperature. As a result, the solid sublimes when left in the open (hence the
name ‘dry ice’). To obtain the liquid, it is necessary to exert a pressure of at
least 5.11 atm. Cylinders of carbon dioxide generally contain the liquid or
compressed gas; at 25 °C that implies a vapour pressure of 67 atm if both gas
and liquid are present in equilibrium. When the gas is released through a tap
(which acts as a throttle) the gas cools by the Joule-Thomson effect, so when
it emerges into a region where the pressure is only 1 atm, it condenses into a
finely divided snow-like solid. That carbon dioxide gas cannot be liquefied
except by applying high pressure reflects the weakness of the intermolecular
forces between the nonpolar carbon dioxide molecules (Topic 14B).
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Figure 4A.8 The experimental phase diagram for carbon dioxide; note
the break in the vertical scale. As the triple point lies at pressures well
above atmospheric, liquid carbon dioxide does not exist under normal
conditions; a pressure of at least 5.11 atm must be applied for liquid to
be formed. The path ABCD is discussed in Brief illustration 4A.6.

Brief illustration 4A.6




Consider the path ABCD in Fig. 4A.8. At A the carbon dioxide is a gas.
When the temperature and pressure are adjusted to B, the vapour
condenses directly to a solid. Increasing the pressure and temperature to
C results in the formation of the liquid phase, which evaporates to the
vapour when the conditions are changed to D.

(b) Water

Figure 4A.9 shows the phase diagram for water. The liquid—vapour boundary
in the phase diagram summarizes how the vapour pressure of liquid water
varies with temperature. It also summarizes how the boiling temperature
varies with pressure: simply read off the temperature at which the vapour
pressure is equal to the prevailing atmospheric pressure. The solid (ice I)-
liquid boundary shows how the melting temperature varies with the pressure.
Its very steep slope indicates that enormous pressures are needed to bring
about significant changes. Notice that the line has a negative slope (down
from left to right) up to 2 kbar, which means that the melting temperature
falls as the pressure is raised.

The reason for this almost unique behaviour can be traced to the decrease
in volume that occurs on melting: it is more favourable for the solid to
transform into the liquid as the pressure is raised. The decrease in volume is a
result of the very open structure of ice: as shown in Fig. 4A.10, the water
molecules are held apart, as well as together, by the hydrogen bonds between
them, but the hydrogen-bonded structure partially collapses on melting and
the liquid is denser than the solid. Other consequences of its extensive
hydrogen bonding are the anomalously high boiling point of water for a
molecule of its molar mass and its high critical temperature and pressure.
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Figure 4A.9 The phase diagram for water showing the different solid
phases, which are indicated with Roman numerals 1, Il, ...; solid phase
| (ice I) is ordinary ice. The path ABCD is discussed in Brief illustration
4A.7.

The diagram shows that water has one liquid phase but many different
solid phases other than ordinary ice (‘ice I’). Some of these phases melt at
high temperatures. Ice VII, for instance, melts at 100 °C but exists only above
25 kbar. Two further phases, Ice XIII and XIV, were identified in 2006 at
—160 °C but have not yet been allocated regions in the phase diagram. Note
that five more triple points occur in the diagram other than the one where
vapour, liquid, and ice I coexist. Each one occurs at a definite pressure and
temperature that cannot be changed. The solid phases of ice differ in the
arrangement of the water molecules: under the influence of very high
pressures, hydrogen bonds buckle and the H,O molecules adopt different

arrangements. These polymorphs of ice may contribute to the advance of
glaciers, for ice at the bottom of glaciers experiences very high pressures
where it rests on jagged rocks.



Figure 4A.10 A fragment of the structure of ice I. Each O atom is
linked by two covalent bonds to H atoms and by two hydrogen bonds
to a neighbouring O atom, in a tetrahedral array.

Brief illustration 4A.7

Consider the path ABCD in Fig. 4A.9. Water is present at A as ice V.
Increasing the pressure to B at the same temperature results in the
formation of ice VIII. Heating to C leads to the formation of ice VII, and
reduction in pressure to D results in the solid melting to liquid.

(c) Helium

The two isotopes of helium,>He and “He, behave differently at low
temperatures because “He is a boson whereas *He is a fermion, and are



treated differently by the Pauli principle (Topic 8B). Figure 4A.11 shows the
phase diagram of helium-4. Helium behaves unusually at low temperatures
because the mass of its atoms is so low and there are only very weak
interactions between neighbours. At 1 atm, the solid and gas phases of helium
are never in equilibrium however low the temperature: the atoms are so light
that they vibrate with a large-amplitude motion even at very low temperatures
and the solid simply shakes itself apart. Solid helium can be obtained, but
only by holding the atoms together by applying pressure.

Pure helium-4 has two liquid phases. The phase marked He-I in the
diagram behaves like a normal liquid; the other phase, He-II, is a superfluid.

It is so called because it flows without viscosity.! The liquid—liquid phase
boundary is called the A-line (lambda line) for reasons related to the shape of
a plot of the heat capacity of helium-4 against temperature at the transition
temperature (Fig. 4A.12).
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Figure 4A.11 The phase diagram for helium (*He). The A-line marks
the conditions under which the two liquid phases are in equilibrium;
He-Il is the superfluid phase. Note that a pressure of over 20 bar must
be exerted before solid helium can be obtained. The labels hcp and



bcc denote different solid phases in which the atoms pack together
differently: hcp denotes hexagonal closed packing and bcc denotes
body-centred cubic (Topic 15A). The path ABCD is discussed in Brief
illustration 4A.8.
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Figure 4A.12 The heat capacity of superfluid He-Il increases with
temperature and rises steeply as the transition temperature to He-l is
approached. The appearance of the plot has led the transition to be
described as a A-transition and the line on the phase diagram to be
called a A-line.

Helium-3 also has a superfluid phase. Helium-3 is unusual in that melting
is exothermic (A, H < 0) and therefore (from Ay, S = Ag,;H/T}) at the melting

point the entropy of the liquid is lower than that of the solid.

Brief illustration 4A.8

Consider the path ABCD in Fig. 4A.11. At A, helium is present as a
vapour. On cooling to B it condenses to helium-I, and further cooling to




C results in the formation of helium-II. Adjustment of the pressure and
temperature to D results in a system in which three phases, helium-I,
helium-II, and vapour are in mutual equilibrium.

Checklist of concepts

[]

[

1. A phase is a form of matter that is uniform throughout in chemical
composition and physical state.

2. A phase transition is the spontaneous conversion of one phase into
another.

3. The thermodynamic analysis of phases is based on the fact that at
equilibrium, the chemical potential of a substance is the same
throughout a sample.

4. A phase diagram indicates the values of the pressure and temperature
at which a particular phase is most stable, or is in equilibrium with
other phases.

5. The phase rule relates the number of variables that may be changed
while the phases of a system remain in mutual equilibrium.

Checklist of equations

Property Equation Comment Equation
number
Chemical =Gy For a single substance
potential
Phase rule F=C-P Fisthe variance, C the 4A.1
+2 number of

components, and P the
number of phases




TOPIC 4B Thermodynamic aspects
of phase transitions

> Why do you need to know this material?

Thermodynamic arguments explain the appearance of phase diagrams and
can be used to make predictions about the effect of pressure on phase
transitions. They provide insight into the properties that account for the

behaviour of matter under different conditions.

> What is the key idea?

The effect of temperature and pressure on the chemical potential of a
substance in each phase depends on its molar entropy and molar volume,

respectively.

> What do you need to know already?

You need to be aware that phases are in equilibrium when their chemical
potentials are equal (Topic 4A) and that the variation of the molar Gibbs
energy of a substance depends on its molar volume and entropy (Topic 3E).
The Topic makes use of expressions for the entropy of transition (Topic 3B)

and of the perfect gas law (Topic 1A).

As explained in Topic 4A, the thermodynamic criterion for phase equilibrium
is the equality of the chemical potentials of each substance in each phase. For
a one-component system, the chemical potential is the same as the molar
Gibbs energy (1 = G). In Topic 3E it is explained how the Gibbs energy

varies with temperature and pressure:

dG = —SdT at constant pressure;
dG = Vdp at constant temperature



These expressions also apply to the molar Gibbs energy, and therefore to the
chemical potential. By using the notation of partial derivatives (The chemist’s
toolkit 9 in Topic 2A) they can be expressed as

(5‘._1-! ] - Variation of chemical potential with T [constant p] (4B.1a)
d1 .
(E},uj —v Variation of chemical potential with p [constant T] (4B.1Db)
l:]p - m
1

By combining the equality of chemical potentials of a substance in each
phase with these expressions for the variation of y with temperature and
pressure it is possible to deduce how phase equilibria respond to changes in
the conditions.

48.1 The dependence of stability on the conditions

At sufficiently low temperatures the solid phase of a substance commonly has
the lowest chemical potential and is therefore the most stable phase.
However, the chemical potentials of different phases depend on temperature
to different extents (because the molar entropy of each phase is different),
and above a certain temperature the chemical potential of another phase
(perhaps another solid phase, a liquid, or a gas) might turn out to be lower.
Then a transition to the second phase becomes spontaneous and occurs if it is
kinetically feasible.

(a) The temperature dependence of phase stability

Because S, > 0 for all substances above T = 0, eqn 4B.1a shows that the

chemical potential of a pure substance decreases as the temperature is raised.
That is, a plot of chemical potential against temperature slopes down from
left to right. It also implies that because S_,(g) > S.,(1), the slope is steeper for

gases than for liquids. Because it is almost always the case that S (1) > S_(s),
the slope is also steeper for a liquid than the corresponding solid. These



features are illustrated in Fig. 4B.1. The steeper slope of p(l) compared with
that of p(s) results in p(l) falling below p(s) when the temperature is high
enough; then the liquid becomes the stable phase, and melting is spontaneous.
The chemical potential of the gas phase plunges steeply downwards as the
temperature is raised (because the molar entropy of the vapour is so high),
and there comes a temperature at which it lies below that of the liquid. Then
the gas is the stable phase and vaporization is spontaneous.
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Figure 4B.1 The schematic temperature dependence of the chemical
potential of the solid, liquid, and gas phases of a substance (in
practice, the lines are curved). The phase with the lowest chemical
potential at a specified temperature is the most stable one at that
temperature. The transition temperatures, the freezing (melting) and
boiling temperatures (T; and T,, respectively), are the temperatures at

which the chemical potentials of the two phases are equal.

Brief illustration 4B.1

The standard molar entropy of liquid water at 100 °C is 86.8 J K~ mol !
and that of water vapour at the same temperature is 195.98 J K™ mol .



It follows that when the temperature is raised by 1.0 K the changes in
chemical potential are

Au(l) ~ =S_()AT = -87 J mol ™!
Ap(g) ~ =S (2)AT = —196 J mol ™*

At 100 °C the two phases are in equilibrium with equal chemical
potentials. At 101 °C the chemical potential of both vapour and liquid
are lower than at 100 °C, but the chemical potential of the vapour has
decreased by a greater amount. It follows that the vapour is the stable
phase at the higher temperature, so vaporization will be spontaneous.

(b) The response of melting to applied pressure

Equation 4B.1b shows that because V_, > 0, an increase in pressure raises the
chemical potential of any pure substance. In most cases, V(1) > V_(s), so an

increase in pressure increases the chemical potential of the liquid phase of a
substance more than that of its solid phase. As shown in Fig. 4B.2(a), the
effect of pressure in such a case is to raise the freezing temperature slightly.
For water, however, V(1) < V_(s), and an increase in pressure increases the

chemical potential of the solid more than that of the liquid. In this case, the
freezing temperature is lowered slightly (Fig. 4B.2(b)).
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Figure 4B.2 The pressure dependence of the chemical potential of a
substance depends on the molar volume of the phase. The lines show
schematically the effect of increasing pressure on the chemical
potential of the solid and liquid phases (in practice, the lines are
curved), and the corresponding effects on the freezing temperatures.
(a) In this case the molar volume of the solid is smaller than that of the
liquid and u(s) increases less than u(l). As a result, the freezing
temperature rises. (b) Here the molar volume is greater for the solid
than the liquid (as for water), u(s) increases more strongly than u(l),
and the freezing temperature is lowered.

SN MY Assessing the effect of pressure on the
chemical potential

Calculate the effect on the chemical potentials of ice and water of
increasing the pressure from 1.00 bar to 2.00 bar at 0 °C. The mass

density of ice is 0.917 g cm™ and that of liquid water is 0.999 g cm™3
under these conditions.



Collect your thoughts From dp = V_dp, you can infer that the

change in chemical potential of an incompressible substance when the
pressure is changed by Ap is Ay = V_Ap. Therefore, you need to know

the molar volumes of the two phases of water. These values are obtained
from the mass density, p, and the molar mass, M, by using V_, = M/p.

Then Au = MAp/p. To keep the units straight, you will need to express
the mass densities in kilograms per cubic metre (kg m~>) and the molar
mass in kilograms per mole (kg mol™!), and use 1 Pam?3 = 1.

The solution The molar mass of water is 18.02 g mol™! (i.e. 1.802 x

1072 kg mol™1); therefore, when the pressure is increased by 1.00 bar
(1.00 x 10° Pa)

(1.802x10 " kgmol ')x(1.00x10° Pa)

: =+1.97 Jmol ™
917kgm™ Z)

Aulice) =

_ (1.802x 10~ kgmol ' }x(1.00x10° Pa)
At{water) = 999kgm g

=+1.80] mol™’

Comment. The chemical potential of ice rises by more than that of
water, so if they are initially in equilibrium at 1 bar, then there is a
tendency for the ice to melt at 2 bar.

Self-test 4B.1 Calculate the effect of an increase in pressure of 1.00
bar on the liquid and solid phases of carbon dioxide (molar mass 44.0 g

mol 1) in equilibrium with mass densities 2.35 g cm™ and 2.50 g cm™3,
respectively.

Answer: Ap(l) = +1.87 Jmol™ 1, Anu(s) = +1.76 J mol ™ !; solid tends to
form.

(c) The vapour pressure of a liquid subjected to



pressure

Pressure can be exerted on the condensed phase mechanically or by
subjecting it to the applied pressure of an inert gas (Fig. 4B.3). In the latter
case, the partial vapour pressure is the partial pressure of the vapour in
equilibrium with the condensed phase. When pressure is applied to a
condensed phase, its vapour pressure rises: in effect, molecules are squeezed
out of the phase and escape as a gas. The effect can be explored
thermodynamically and a relation established between the applied pressure P
and the vapour pressure p.

[OALRGEINe [ i[RI Deriving an expression for the vapour
pressure of a pressurized liquid

At equilibrium the chemical potentials of the liquid and its vapour are
equal: u(l) = p(g). It follows that, for any change that preserves
equilibrium, the resulting change in u(1) must be equal to the change in

p(g); therefore, du(g) = du(l).

Step 1 Express changes in the chemical potentials that arise from
changes in pressure

When the pressure P on the liquid is increased by dP, the chemical
potential of the liquid changes by du(l) = V,(1)dP.
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Figure 4B.3 Pressure may be applied to a condensed phase
either (a) by compressing it or (b) by subjecting it to an inert
pressurizing gas. When pressure is applied, the vapour pressure
of the condensed phase increases.

The chemical potential of the vapour changes by du(g) = V(g)dp,

where dp is the change in the vapour pressure. If the vapour is treated as
a perfect gas, the molar volume can be replaced by V,(g) = RT/p, to give

du(g) = (RT/p)dp.

Step 2 Equate the changes in chemical potentials of the vapour and the
liquid

Equate du(l) = V,_()dP and du(g) = (RT/p)dp:

RTdp
P

Be careful to distinguish between P, the total pressure, and p, the partial
vapour pressure.

=V, (DdP



Step 3 Set up the integration of this expression by identifying the
appropriate limits

When there is no additional pressure acting on the liquid, P (the pressure
experienced by the liquid) is equal to the normal vapour pressure p*, so
when P = p*, p = p* too. When there is an additional pressure AP on the
liquid, so P = p + AP, the vapour pressure is p (the value required).
Provided the effect of pressure on the vapour pressure is small (as will
turn out to be the case) a good approximation is to replace the p in

p + AP by p* itself, and to set the upper limit of the integral to

p* + AP. The integrations required are therefore as follows:

RT|! ’ dp j Y ydp

(In the first integral, the variable of integration has been changed from p
to p' to avoid confusion with the p at the upper limit.)

Step 4 Carry out the integrations

Divide both sides by RT and assume that the molar volume of the liquid
is the same throughout the small range of pressures involved:

Integral A.2 Inmg*a! Al
-—""“—1.

d
=zl

Both integrations are straightforward, and lead to

.

. +5p D) ppear
" |1'| 1)[1P— m( )_[F

p_Vall)

111F= T AP

which (by using e!" X = x) rearranges to

larR {4B.2)
= e =
b=# | Effact of applied pressure AP on partial
WAPOUT prassure o



One complication that has been ignored is that, if the condensed phase is a
liquid, then the pressurizing gas might dissolve and change its properties.
Another complication is that the gas-phase molecules might attract molecules
out of the liquid by the process of gas solvation, the attachment of molecules
to gas-phase species.

Brief illustration 4B.2

For water, which has mass density 0.997 g cm™3 at 25 °C and therefore
molar volume 18.1 cm> mol ™!, when the applied pressure is increased by
10 bar (i.e. AP = 1.0 x 10° Pa)

p_ V(AP  (1.81x107 m mol™)x(1.0x10° Pa)
p*  RT — (83145]K 'mol™)x(298K)
=0.0073...

In

where 1 J = 1 Pa m3. It follows that p = 1.0073p*, an increase of only
0.73 per cent.

4B.2 The location of phase boundaries

The precise locations of the phase boundaries—the pressures and
temperatures at which two phases can coexist—can be found by making use
once again of the fact that, when two phases are in equilibrium, their
chemical potentials must be equal. Therefore, when the phases « and {3 are in
equilibrium,

p(o; p,T) = p(B; p,T)  (4B.3)

Solution of this equation for p in terms of T gives an equation for the phase
boundary (the coexistence curve).



@ The slopes of the phase boundaries

Imagine that at some particular pressure and temperature the two phases are
in equilibrium: their chemical potentials are then equal. Now p and T are
changed infinitesimally, but in such a way that the phases remain in
equilibrium: after these changes, the chemical potentials of the two phases
change but remain equal (Fig. 4B.4). It follows that the change in the
chemical potential of phase o must be the same as the change in chemical
potential of phase 3, so du(a) = du(p).

Pressure, p

dT

Temperature, T

Figure 4B.4 When pressure is applied to a system in which two
phases are in equilibrium (at a), the equilibrium is disturbed. It can be
restored by changing the temperature, so moving the state of the
system to b. It follows that there is a relation between dp and dT that
ensures that the system remains in equilibrium as either variable is
changed.

Equation 3E.7 (dG = Vdp — SdT) gives the variation of G with p and T, so
with p = G, it follows that du = Vdp — S, dT for each phase. Therefore the

relation du(a) = du() can be written



V.(odp—S,(odT =V, (B)dp—S,.(B)dT

where S_(a) and S,(B) are the molar entropies of the two phases, and V()
and V_(B) are their molar volumes. Hence

{S,.(B) =S, (o}dT={V_(B) - V, (c0)}dp

The change in (molar) entropy accompanying the phase transition, AS, is
the difference in the molar entropies A, S = S,(B) — S(a), and likewise for
the change in (molar) volume, AV = V_,(B) — V(). Therefore,

A, SAdT=A_Vdp

This relation turns into the Clapeyron equation:

dp _ AS Clapeyron equation (4B.4a)

The Clapeyron equation is an exact expression for the slope of the tangent to
the phase boundary at any point and applies to any phase equilibrium of any
pure substance. It implies that thermodynamic data can be used to predict the
appearance of phase diagrams and to understand their form. A more practical
application is to the prediction of the response of freezing and boiling points
to the application of pressure, when it can be used in the form obtained by
inverting both sides:

dT AV
dp ~ AS

Irs

Brief illustration 4B.3

For water at 0 °C, the standard volume of transition of ice to liquid is
—1.6 cm® mol ™!, and the corresponding standard entropy of transition is
+22 J K™! mol™L. The slope of the solid—liquid phase boundary at that

(4B.4b)




temperature is therefore

dT  —1.6x10"m’mol™ e K
dp 22]K™" mol™ ' Jm™

= —-73x10°KPa™

which corresponds to —7.3 mK bar !. An increase of 100 bar therefore
results in a lowering of the freezing point of water by 0.73 K.

® The solid—liquid boundary

Melting (fusion) is accompanied by a molar enthalpy change A H, and if it
occurs at a temperature T the molar entropy of melting is Ay H/T (Topic 3B);

all points on the phase boundary correspond to equilibrium, so T is in fact a
transition temperature, T,.. The Clapeyron equation for this phase transition

then becomes

dp _ A H Slope of solid-liquid boundary ~ (4B.5)
T

dT = TAYV

rLI‘-

where AV is the change in molar volume that accompanies melting. The

enthalpy of melting is positive (the only exception is helium-3); the change in
molar volume is usually positive and always small. Consequently, the slope
dp/dT is steep and usually positive (Fig. 4B.5).

The equation for the phase boundary is found by integrating dp/dT and
assuming that Ay, H and A,V change so little with temperature and pressure

that they can be treated as constant. If the melting temperature is T* when the
pressure is p*, and T when the pressure is p, the integration required is



Integral A.2
e Sy
A H prdT

Jodp=av T

Therefore, the approximate equation of the solid—liquid boundary is

+ Afuf;I_Il l AB.G
PEp i yoinE o0

This equation was originally obtained by yet another Thomson—James, the

brother of William, Lord Kelvin.
When T is close to T*, the logarithm can be approximated by using the

expansion In(1 + x) = x —+ x?> + ... (see The chemist’s toolkit 12 in Topic 5B)
and neglecting all but the leading term:

Solid

Pressure, p

Liquid

Temperature, T

Figure 4B.5 A typical solid—liquid phase boundary slopes steeply
upwards. This slope implies that, as the pressure is raised, the melting



temperature rises. Most substances behave in this way, water being
the notable exception.

T I'=L%% 11"
lnF:ln I+ —— | =~

Therefore

X Aﬁ]SH *) @4B.7
p”P + T*Afusv (T_T )( 7)

This expression is the equation of a steep straight line when p is plotted
against T (as in Fig. 4B.5).

Brief illustration 4B.4

The enthalpy of fusion of ice at 0 °C (273 K) and 1 bar is 6.008 kJ mol !

and the volume of fusion is —1.6 cm3 mol™L. It follows that the solid—
liquid phase boundary is given by the equation

6.008x10° Jmol
(273K)x(=1.6x10"m  mol ")

p=1.0x10°Pa+ (T=T%)

=1.0%10° Pa—1.4x10" PaK (T-T*)
That is,

p/bar=1-140(T-T*)/K

with T* = 273 K. This expression is plotted in Fig. 4B.6.
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Figure 4B.6 The solid-liquid phase boundary (the melting point
curve) for water as calculated in Brief illustration 4B.4. For
comparison, the boundary for benzene is included.

(c) The liguid—vapour boundary

The entropy of vaporization at a temperature T is equal to A,,,H/T (as before,

all points on the phase boundary correspond to equilibrium, so T is a
transition temperature, T,.), so the Clapeyron equation for the liquid—vapour

boundary can therefore be written

dp _ A, H Slope of liquid-vapour boundary (4B.8)
dT ~ TAV

'iI]"

The enthalpy of vaporization is positive and A,,,V is large and positive, so

dp/dT is positive, but much smaller than for the solid—liquid boundary.
Consequently dT/dp is large, and the boiling temperature is more responsive



to pressure than the freezing temperature.

Sel] R WY Estimating the effect of pressure on the
boiling temperature

Estimate the typical size of the effect of increasing pressure on the
boiling point of a liquid.

Collect your thoughts To use eqn 4B.8 you need to estimate the
right-hand side. At the boiling point, the term A, H/T is Trouton’s

constant (Topic 3B). Because the molar volume of a gas is so much
greater than the molar volume of a liquid, you can write
A=V, (g-V,(1=V,(g and take for V| (g) the molar volume of a perfect gas

(at low pressures, at least). You will need to use 1 J = 1 Pa m?.

The solution Trouton’s constant has the value 85 J K1 mol™!. The

molar volume of a perfect gas is about 25 dm> mol ™! at 1 atm and near
but above room temperature. Therefore,

dp  85JK ' mol™
dT  2.5x10”m’mol™

This value corresponds to 0.034 atm K™ ! and hence to dT/dp = 29 K atm

L. Therefore, a change of pressure of +0.1 atm can be expected to
change a boiling temperature by about +3 K.

=3.4x10°PaK™

Self-test 4B.2 Estimate dT/dp for water at its normal boiling point
using the information in Table 3B.2 and V_(g) = RT/p.

Answer: 28 K atm-1

Because the molar volume of a gas is so much greater than the molar volume



of a liquid, A,,V ® Vi,(g) (as in Example 4B.2). Moreover, if the gas behaves
perfectly, V_(g) = RT/p. These two approximations turn the exact Clapeyron
equation into

dp — A‘%’HPH . p AvapH

dT T(RT/p)  RT?

By using dx/x = d In x, this expression can be rearranged into the Clausius—
Clapeyron equation for the variation of vapour pressure with temperature:

di"P _AH Clausius-Clapeyron equation  (4B.9)
dT RT*

Pressure, p

Temperature, T

Figure 4B.7 A typical liquid—vapour phase boundary. The boundary
can be interpreted as a plot of the vapour pressure against the
temperature. This phase boundary terminates at the critical point (not
shown).

Like the Clapeyron equation (which is exact), the Clausius—Clapeyron
equation (which is an approximation) is important for understanding the



appearance of phase diagrams, particularly the location and shape of the
liquid—vapour and solid—vapour phase boundaries. It can be used to predict
how the vapour pressure varies with temperature and how the boiling
temperature varies with pressure. For instance, if it is also assumed that the
enthalpy of vaporization is independent of temperature, eqn 4B.9 can be
integrated as follows:

Integral A.1,
withx=Inp Integral A.1

”jlnp " ALH rdT
|

hence

where p* is the vapour pressure when the temperature is T*, and p the vapour
pressure when the temperature is T. It follows that

A _H/(1 1
— kX . vap .
p_pe Z_ R T T>+

(4B.10)

Equation 4B.10 is plotted as the liquid—vapour boundary in Fig. 4B.7. The
line does not extend beyond the critical temperature, T,, because above this

temperature the liquid does not exist.



Brief illustration 4B.5

Equation 4B.10 can be used to estimate the vapour pressure of a liquid
at any temperature from knowledge of its normal boiling point, the
temperature at which the vapour pressure is 1.00 atm (101 kPa). The
normal boiling point of benzene is 80 °C (353 K) and (from Table 3B.2)

AyapH =30.8 kJ mol L.

Therefore, to calculate the vapour pressure at 20 °C (293 K), write

_ 3.08x10'Jmol™ (1 1
%_8.3145]K‘1n'101'l 293K 353K

=2.14...

and substitute this value into eqn 4B.10 with p* = 101 kPa. The result is
12 kPa. The experimental value is 10 kPa.

A note on good practice Because exponential functions are so sensitive,
it is good practice to carry out numerical calculations like this without

evaluating the intermediate steps and using rounded values.

(d) The solid—vapour boundary

The only difference between the solid—vapour and the liquid—vapour
boundary is the replacement of the enthalpy of vaporization by the enthalpy
of sublimation, Ay,;,H. Because the enthalpy of sublimation is greater than the

enthalpy of vaporization (recall that Ag,H = ApH + Ay, H), at similar

temperatures the equation predicts a steeper slope for the sublimation curve
than for the vaporization curve. These two boundaries meet at the triple point

(Fig. 4B.8).



Brief illustration 4B.6

The enthalpy of fusion of ice at the triple point of water (6.1 mbar, 273
K) is negligibly different from its standard enthalpy of fusion at its

freezing point, which is 6.008 kJ mol~!. The enthalpy of vaporization at
that temperature is 45.0 kJ mol™! (once again, ignoring differences due
to the pressure not being 1 bar). The enthalpy of sublimation is therefore
51.0 kJ mol 1. Therefore, the equations for the slopes of (a) the liquid—
vapour and (b) the solid—vapour phase boundaries at the triple point are

dlnp _ 45, U'K]D Jmol™ 3
— - =(.0726K"
74T = (83145] K~ mol ) (273K)"
dlnp 51.0x%10" Jmol ™ r
= 5 — u, 2 K
(b) dT  (8.3145] K 'mol ")x(273K)’ G082

The slope of In p plotted against T is greater for the solid—vapour
boundary than for the liquid—vapour boundary at the triple point.




Pressure, p

Temperature, T

Figure 4B.8 At temperatures close to the triple point the solid—vapour
boundary is steeper than the liquid—vapour boundary because the
enthalpy of sublimation is greater than the enthalpy of vaporization.

Checklist of concepts

]

[]

1. The chemical potential of a substance decreases with increasing
temperature in proportion to its molar entropy.

2. The chemical potential of a substance increases with increasing
pressure in proportion to its molar volume.

3. The vapour pressure of a condensed phase increases when pressure is
applied.

4. The Clapeyron equation is an exact expression for the slope of a
phase boundary.

5. The Clausius—Clapeyron equation is an approximate expression for
the boundary between a condensed phase and its vapour.

Checklist of equations



Property Equation Comment Equation

number
Variation of u with (Ou/dT), = p=Gy 4B.1a
temperature =S
Variation of u with (Ou/op)r = 4B.1b
pressure V.
Vapour pressure in p=p AP =P —p* 4B.2
the presence of oVm(DAP/RT
applied pressure
Clapeyron equation dp/dT = 4B.4a

AtrsS/AtrsV

Clausius—Clapeyron  dInp/dT  Assumes V_(g) >> V(1) 4B.9
equation = or V(s), and vapour is a
AyapH/ RT? perfect gas

FOCUS 4 Physical transformations of
pure substances

TOPIC 4A Phase diagrams of pure substances

Discussion questions

D4A.1 Describe how the concept of chemical potential unifies the discussion of phase
equilibria.

D4A.2 Why does the chemical potential change with pressure even if the system is
incompressible (i.e. remains at the same volume when pressure is applied)?



D4A.3 Explain why four phases cannot be in equilibrium in a one-component system.

D4A.4 Discuss what would be observed as a sample of water is taken along a path that
encircles and is close to its critical point.

Exercises

E4A.1(a) How many phases are present at each of the points a—d indicated in Fig. 4.1a?
E4A.1(b) How many phases are present at each of the points a—d indicated in Fig. 4.1b?

E4A.2(a) The difference in chemical potential of a particular substance between two

regions of a system is +7.1 kJ mol !. By how much does the Gibbs energy change when
0.10 mmol of that substance is transferred from one region to the other?

E4A.2(b) The difference in chemical potential of a particular substance between two

regions of a system is —8.3 kJ mol !. By how much does the Gibbs energy change when
0.15 mmol of that substance is transferred from one region to the other?

E4A.3(a) What is the maximum number of phases that can be in mutual equilibrium in a
two-component system?

E4A.3(b) What is the maximum number of phases that can be in mutual equilibrium in a
four-component system?

E4A.4(a) In a one-component system, is the condition P = 1 represented on a phase
diagram by an area, a line or a point? How do you interpret this value of P?

E4A.4(b) In a one-component system, is the condition P = 2 represented on a phase
diagram by an area, a line or a point? How do you interpret this value of P?

~
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Figure 4.1 The phase diagrams referred to in (a) Exercise 4A.1(a) and
(b) Exercise 4A.1(b).



E4A.5(a) Refer to Fig. 4A.8. Which phase or phases would you expect to be present for a
sample of CO, at: (i) 200 K and 2.5 atm; (ii) 300 K and 4 atm;
(iii) 310 K and 50 atm?

E4A.5(b) Refer to Fig. 4A.9. Which phase or phases would you expect to be present for a
sample of H,O at: (i) 100 K and 1 atm; (ii) 300 K and 10 atm;
(iii) 273.16 K and 611 Pa?

Problems

P4A.1 Refer to Fig. 4A.8. Describe the phase or phases present as a sample of CO, is
heated steadily from 100 K: (a) at a constant pressure of 1 atm; (b) at a constant pressure of
70 atm.

P4A.2 Refer to Fig. 4A.8. Describe the phase or phases present as the pressure on a sample
of CO, is steadily increased from 0.1 atm: (a) at a constant temperature of 200 K; (b) at a
constant temperature of 310 K; (c) at a constant temperature of 216.8 K.

P4A.3 For a one-component system draw a schematic labelled phase diagram given that at
low T and low p, only phase y is present; at low T and high p, only phase [ is present; at
high T and low p, only phase a is present; at high T and high p, only phase § is present;
phases y and 6 are never in equilibrium. Comment on any special features of your diagram.

P4A.4 For a one-component system draw a schematic labelled phase diagram given that at
low T and low p, phases a and [} are in equilibrium; as the temperature and pressure rise
there comes a point at which phases «, 3, and y are all in equilibrium; at high T and high p,
only phase y is present; at low T and high p, only phase a is present. Comment on any
special features of your diagram.

TOPIC 4B Thermodynamic aspects of phase
transitions

Discussion questions

D4B.1 What is the physical reason for the decrease of the chemical potential of a pure
substance as the temperatures is raised?

D4B.2 What is the physical reason for the increase of the chemical potential of a pure



substance as the pressure is raised?

D4B.3 How may differential scanning calorimetry (DSC) be used to identify phase
transitions?

Exercises

E4B.1(a) The standard molar entropy of liquid water at 273.15 K is 65 J K™ mol™!, and
that of ice at the same temperature is 43 J K™! mol™!. Calculate the change in chemical
potential of liquid water and of ice when the temperature is increased by 1 K from the
normal melting point. Giving your reasons, explain which phase is thermodynamically the
more stable at the new temperature.

E4B.1(b) Repeat the calculation in Exercise E4B.1(a) but for a decrease in temperature by
1.5 K. Giving your reasons, explain which phase is thermodynamically the more stable at
the new temperature.

E4B.2(a) Water is heated from 25 °C to 35 °C. By how much does its chemical potential
change? The standard molar entropy of liquid water at 298 K is 69.9 J K™! mol ..

E4B.2(b) Iron is heated from 100 °C to 150 °C. By how much does its chemical potential

change? Take S_, =53 J K™ mol ™ for the entire range.

E4B.3(a) By how much does the chemical potential of copper change when the pressure
exerted on a sample is increased from 100 kPa to 10 MPa? Take the mass density of copper

to be 8960 kg m 3.

E4B.3(b) By how much does the chemical potential of benzene change when the pressure
exerted on a sample is increased from 100 kPa to 10 MPa? Take the mass density of

benzene to be 0.8765 g cm 3.

E4B.4(a) Pressure was exerted with a piston on water at 20 °C. The vapour pressure of
water when the applied pressure is 1.0 bar is 2.34 kPa. What is its vapour pressure when
the pressure on the liquid is 20 MPa? The molar volume of water is 18.1 cm® mol™! at 20
(e]

C.

E4B.4(b) Pressure was exerted with a piston on molten naphthalene at 95 °C. The vapour
pressure of naphthalene when the applied pressure is 1.0 bar is 2.0 kPa. What is its vapour
pressure when the pressure on the liquid is 15 MPa? The mass density of naphthalene at

this temperature is 1.16 g cm 3.



E4B.5(a) The molar volume of a certain solid is 161.0 cm® mol™' at 1.00 atm and 350.75
K, its melting temperature. The molar volume of the liquid at this temperature and pressure
is 163.3 cm® mol !, At 100 atm the melting temperature changes to 351.26 K. Calculate the
enthalpy and entropy of fusion of the solid.

E4B.5(b) The molar volume of a certain solid is 142.0 cm® mol™! at 1.00 atm and 427.15
K, its melting temperature. The molar volume of the liquid at this temperature and pressure

is 152.6 cm® mol™!. At 1.2 MPa the melting temperature changes to 429.26 K. Calculate the
enthalpy and entropy of fusion of the solid.

E4B.6(a) The vapour pressure of dichloromethane at 24.1 °C is 53.3 kPa and its enthalpy

of vaporization is 28.7 kJ mol !. Estimate the temperature at which its vapour pressure is
70.0 kPa.

E4B.6(b) The vapour pressure of a substance at 20.0 °C is 58.0 kPa and its enthalpy of

vaporization is 32.7 kJ mol !. Estimate the temperature at which its vapour pressure is 66.0
kPa.

E4B.7(a) The vapour pressure of a liquid in the temperature range 200-260 K was found
to fit the expression In(p/Torr) = 16.255 — (2501.8 K)/T. What is the enthalpy of
vaporization of the liquid?

E4B.7(b) The vapour pressure of a liquid in the temperature range 200-260 K was found
to fit the expression In(p/Torr) = 18.361 - (3036.8 K)/T. What is the enthalpy of
vaporization of the liquid?

E4B.8(a) The vapour pressure of benzene between 10 °C and 30 °C fits the expression
log(p/Torr) = 7.960 — (1780 K)/T. Calculate (i) the enthalpy of vaporization and (ii) the
normal boiling point of benzene.

E4B.8(b) The vapour pressure of a liquid between 15 °C and 35 °C fits the expression
log(p/Torr) = 8.750 — (1625 K)/T. Calculate (i) the enthalpy of vaporization and (ii) the
normal boiling point of the liquid.

E4B.9(a) When benzene freezes at 1 atm and at 5.5 °C its mass density changes from
0.879 g cm™3 to 0.891 g cm 3. The enthalpy of fusion is 10.59 kJ mol !. Estimate the
freezing point of benzene at 1000 atm.

E4B.9(b) When a certain liquid (with M = 46.1 g mol™!) freezes at 1 bar and at —3.65 °C
its mass density changes from 0.789 g cm™ to 0.801 g cm™3. Its enthalpy of fusion is 8.68
kJ mol~!. Estimate the freezing point of the liquid at 100 MPa.

E4B.10(a) Estimate the difference between the normal and standard melting points of ice.



At the normal melting point, the enthalpy of fusion of water is 6.008 kJ mol™!, and the
change in molar volume on fusion is —1.6 cm® mol .

E4B.10(b) Estimate the difference between the normal and standard boiling points of
water. At the normal boiling point the enthalpy of vaporization of water is 40.7 kJ mol ",

E4B.11(a) In July in Los Angeles, the incident sunlight at ground level has a power

density of 1.2 kW m™2 at noon. A swimming pool of area 50 m? is directly exposed to the
Sun. What is the maximum rate of loss of water? Assume that all the radiant energy is

absorbed; take the enthalpy of vaporization of water to be 44 kJ mol .

E4B.11(b) Suppose the incident sunlight at ground level has a power density of 0.87 kW
m~2 at noon. What is the maximum rate of loss of water from a lake of area 1.0 ha? (1 ha =
10* m?.) Assume that all the radiant energy is absorbed; take the enthalpy of vaporization
of water to be 44 kJ mol ™.

E4B.12(a) An open vessel containing water stands in a laboratory measuring 5.0 m x 5.0
m x 3.0 m at 25 °C; the vapour pressure of water at this temperature is 3.2 kPa. When the
system has come to equilibrium, what mass of water will be found in the air if there is no
ventilation? Repeat the calculation for open vessels containing benzene (vapour pressure
13.1 kPa) and mercury (vapour pressure 0.23 Pa).

E4B.12(b) On a cold, dry morning after a frost, the temperature was —5 °C and the partial
pressure of water in the atmosphere fell to 0.30 kPa. Will the frost sublime? The enthalpy

of sublimation of water is 51 kJ mol™!. (Hint: Use eqn 4B.10 to calculate the vapour
pressure expected for ice at this temperature; for p* and T* use the values for the triple
point of 611 Pa and 273.16 K.)

E4B.13(a) Naphthalene, C;,Hg, melts at 80.2 °C. If the vapour pressure of the liquid is 1.3
kPa at 85.8 °C and 5.3 kPa at 119.3 °C, use the Clausius—Clapeyron equation to calculate
(i) the enthalpy of vaporization, (ii) the normal boiling point, and (iii) the entropy of
vaporization at the boiling point.

E4B.13(b) The normal boiling point of hexane is 69.0 °C. Estimate (i) its enthalpy of
vaporization and (ii) its vapour pressure at 25 °C and at 60 °C. (Hint: You will need to use
Trouton’s rule.)

E4B.14(a) Estimate the melting point of ice under a pressure of 50 bar. Assume that the
mass density of ice under these conditions is approximately 0.92 g cm™ and that of liquid
water is 1.00 g cm 3. The enthalpy of fusion of water is 6.008 kJ mol™! at the normal
melting point.

E4B.14(b) Estimate the melting point of ice under a pressure of 10 MPa. Assume that the



mass density of ice under these conditions is approximately 0.915 g cm > and that of liquid

water is 0.998 g cm™3. The enthalpy of fusion of water is 6.008 kJ mol™! at the normal
melting point.

Problems

P4B.1 Imagine the vaporization of 1 mol H,O(l) at the normal boiling point and against 1
atm external pressure. Calculate the work done by the water vapour and hence what
fraction of the enthalpy of vaporization is spent on expanding the vapour. The enthalpy of
vaporization of water is 40.7 kJ mol™! at the normal boiling point.

P4B.2 The temperature dependence of the vapour pressure of solid sulfur dioxide can be
approximately represented by the relation log(p/Torr) = 10.5916 — (1871.2 K)/T and that of
liquid sulfur dioxide by log(p/Torr) = 8.3186 — (1425.7 K)/T. Estimate the temperature and
pressure of the triple point of sulfur dioxide.

P4B.3 Prior to the discovery that freon-12 (CF,Cl,) is harmful to the Earth’s ozone layer it
was frequently used as the dispersing agent in spray cans for hair spray etc. Estimate the
pressure that a can of hair spray using freon-12 has to withstand at 40 °C, the temperature
of a can that has been standing in sunlight. The enthalpy of vaporization of freon-12 at its
normal boiling point of —29.2 °C is 20.25 kJ mol™!; assume that this value remains constant
over the temperature range of interest.

P4B.4 The enthalpy of vaporization of a certain liquid is found to be 14.4 kJ mol™! at 180
K, its normal boiling point. The molar volumes of the liquid and the vapour at the boiling
point are 115 cm® mol ! and 14.5 dm® mol ™, respectively. (a) Use the Clapeyron equation
to estimate dp/dT at the normal boiling point. (b) If the Clausius—Clapeyron equation is
used instead to estimate dp/dT, what is the percentage error in the resulting value of dp/dT?

P4B.5 Calculate the difference in slope of the chemical potential against temperature on
either side of (a) the normal freezing point of water and (b) the normal boiling point of
water. The molar entropy change accompanying fusion is 22.0 J K™! mol™! and that
accompanying evaporation is 109.9 J K™ mol!. (c) By how much does the chemical
potential of water supercooled to —5.0 °C exceed that of ice at that temperature?

P4B.6 Calculate the difference in slope of the chemical potential against pressure on either
side of (a) the normal freezing point of water and (b) the normal boiling point of water. The
mass densities of ice and water at 0 °C are 0.917 g cm > and 1.000 g cm 3, and those of
water and water vapour at 100 °C are 0.958 g cm ™ and 0.598 g dm™3, respectively. (c) By
how much does the chemical potential of water vapour exceed that of liquid water at 1.2
atm and 100 °C?



P4B.7 The enthalpy of fusion of mercury is 2.292 kJ mol ™! at its normal freezing point of
234.3 K; the change in molar volume on melting is +0.517 cm?® mol ™. At what temperature

will the bottom of a column of mercury (mass density 13.6 g cm3) of height 10.0 m be
expected to freeze? The pressure at a depth
d in a fluid with mass density p is pgd, where g is the acceleration of free fall, 9.81 m s™.

P4B.8 Suppose 50.0 dm? of dry air at 25 °C was slowly bubbled through a thermally
insulated beaker containing 250 g of water initially at 25 °C. Calculate the final
temperature of the liquid. The vapour pressure of water is approximately constant at 3.17

kPa throughout, and the heat capacity of the liquid is 75.5 J K™! mol!. Assume that the exit
gas remains at 25 °C and that water vapour is a perfect gas. The standard enthalpy of
vaporization of water at 25 °C is 44.0 kJ mol™!. (Hint: Start by calculating the amount in
moles of H,O in the 50.0 dm? of air after it has bubbled through the liquid.)

P4B.9 The vapour pressure, p, of nitric acid varies with temperature as follows:

6/°C 0 20 40 50 70 80 90 100
p/kPa 192 638 17.7 27.7 623 893 1249 1709

Determine (a) the normal boiling point and (b) the enthalpy of vaporization
of nitric acid.

P4B.10 The vapour pressure of carvone (M = 150.2 g mol™'), a component of oil of
spearmint, is as follows:

6/°C 57.4 100.4 133.0 157.3 203.5 227.5
p/Torr 1.00 10.0 40.0 100 400 760

Determine (a) the normal boiling point and (b) the enthalpy of vaporization of carvone.

P4B.11%(a) Starting from the Clapeyron equation, derive an expression, analogous to the
Clausius—Clapeyron equation, for the temperature variation of the vapour pressure of a
solid. Assume that the vapour is a perfect gas and that the molar volume of the solid is
negligible in comparison to that of the gas. (b) In a study of the vapour pressure of
chloromethane, A. Bah and N. Dupont-Pavlovsky (J. Chem. Eng. Data 40, 869 (1995))
presented data for the vapour pressure over solid chloromethane at low temperatures. Some
of that data is as follows:

T/K 145.94 147.96 149.93 151.94 153.97 154.94
p/Pa  13.07 18.49 25.99 36.76 50.86 59.56



Estimate the standard enthalpy of sublimation of chloromethane at 150 K.

P4B.12 The change in enthalpy dH resulting from a change in pressure dp and temperature
dT is given by dH = C,dT + Vdp. The Clapeyron equation relates dp and dT at equilibrium,
and so in combination the two equations can be used to find how the enthalpy changes
along a phase boundary as the temperature changes and the two phases remain in
equilibrium. (a) Show that along such a boundary d.5=4.cdr+(a,H/TdT. where 4.7 is the
enthalpy of transition and 4-<, the difference of molar heat capacity accompanying the
transition. (b) Show that this expression can also be written d(A./T=4.CcdnT. (Hint: The last
part is most easily approached by starting with the second expression and showing that it
can be rewritten as the first.)

P4B.13 In the ‘gas saturation method’ for the measurement of vapour pressure, a volume
V of gas at temperature T and pressure P, is bubbled slowly through the liquid that is
maintained at the same temperature T. The mass m lost from the liquid is measured and this
can be related to the vapour pressure in the following way. (a) If the molar mass of the
liquid is M, derive an expression for the mole fraction of the liquid vapour. (Hint: If it is
assumed to be a perfect gas, the amount in moles of the input gas can be found from its
pressure, temperature and volume.) (b) Hence derive an expression for the partial pressure
of the liquid vapour, assuming that the gas remains at the total pressure P after it has passed
through the liquid. (c¢) Then show that the vapour pressure p is given by p = AmP/(1 + Am),
where A = RT/MPV. (d) The gas saturation method was used to measure the vapour
pressure of geraniol (M = 154.2 g mol™!) at 110 °C. It was found that, when 5.00 dm? of
nitrogen at 760 Torr was passed slowly through the heated liquid, the loss of mass was 0.32
g. Calculate the vapour pressure of geraniol.

P4B.14 The vapour pressure of a liquid in a gravitational field varies with the depth below
the surface on account of the hydrostatic pressure exerted by the overlying liquid. The
pressure at a depth d in a fluid with mass density p is pgd, where g is the acceleration of
free fall (9.81 m s 2). Use this relation to adapt eqn 4B.2 to predict how the vapour pressure
of a liquid of molar mass M varies with depth. Estimate the effect on the vapour pressure of
water at 25 °C in a column 10 m high.

P4B.15 The ‘barometric formula’, p = poe"a’H, where H = 8 km, gives the dependence of
the pressure p on the altitude, a; p, is the pressure at sea level, assumed to be 1 atm. Use
this expression together with the Clausius—Clapeyron equation to derive an expression for
how the boiling temperature of a liquid depends on the altitude (Hint: The boiling point is
when the vapour pressure is equal to the external pressure.) Use your result to predict the
boiling temperature of water at 3000 m. The normal boiling point of water is 373.15 K and

you may take that the standard enthalpy of vaporization as 40.7 kJ mol .

P4B.16 Figure 4B.1 gives a schematic representation of how the chemical potentials of the
solid, liquid, and gaseous phases of a substance vary with temperature. All have a negative



slope, but it is unlikely that they are straight lines as indicated in the illustration. Derive an
expression for the curvatures, that is, the second derivative of the chemical potential with
respect to temperature, of these lines. Is there any restriction on the value this curvature can
take? For water, compare the curvature of the liquid line with that for the gas in the region
of the normal boiling point. The molar heat capacities at constant pressure of the liquid and
gas are 75.3 J K'! mol™! and 33.6 J K™! mol ™}, respectively.

FOCUS 4 Physical transformations of
pure substances

Integrated activities

14.1 Construct the phase diagram for benzene near its triple point at 36 Torr and 5.50 °C
from the following data: Ag,H = 10.6 kJ mol ™!, A, H = 30.8 kJ mol ', p(s) = 0.891 g cm™?,

p(1) =0.879 g cm 3.

14.2* In an investigation of thermophysical properties of methylbenzene R.D. Goodwin (J.
Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for two phase boundaries.
The solid—liquid boundary is given by

p/bar = ps/bar + 1000(5.60 + 11.727x)x

where x = T/T; — 1 and the triple point pressure and temperature are p; = 0.4362 pbar and
T, =178.15 K. The liquid—vapour curve is given by

In(p/bar) = —10.418/y +21.157-15.996y + 14.015y’~5.0120y3 + 4.7334(1—y)"-7

where y = T/T, = T/(593.95 K). (a) Plot the solid-liquid and liquid—vapour phase
boundaries. (b) Estimate the standard melting point of methylbenzene. (c) Estimate the
standard boiling point of methylbenzene. (The equation you will need to solve to find this
quantity cannot be solved by hand, so you should use a numerical approach, e.g. by using
mathematical software.) (d) Calculate the standard enthalpy of vaporization of
methylbenzene at the standard boiling point, given that the molar volumes of the liquid and
vapour at the standard boiling point are 0.12 dm? mol ! and 30.3 dm3 mol !, respectively.

14.3 Proteins are polymers of amino acids that can exist in ordered structures stabilized by



a variety of molecular interactions. However, when certain conditions are changed, the
compact structure of a polypeptide chain may collapse into a random coil. This structural
change may be regarded as a phase transition occurring at a characteristic transition
temperature, the melting temperature, T,,, which increases with the strength and number of
intermolecular interactions in the chain. A thermodynamic treatment allows predictions to
be made of the temperature T, for the unfolding of a helical polypeptide held together by
hydrogen bonds into a random coil. If a polypeptide has N amino acid residues, N — 4
hydrogen bonds are formed to form an a-helix, the most common type of helix in naturally
occurring proteins (see Topic 14D). Because the first and last residues in the chain are free
to move, N — 2 residues form the compact helix and have restricted motion. Based on these
ideas, the molar Gibbs energy of unfolding of a polypeptide with N > 5 may be written as

AuntoldG = (N — H)ApH = (N = 2)TA,S

where A H and Ay,S are, respectively, the molar enthalpy and entropy of dissociation of
hydrogen bonds in the polypeptide. (a) Justify the form of the equation for the Gibbs
energy of unfolding. That is, why are the enthalpy and entropy terms written as (N —
4)AH and (N — 2)A,.S, respectively? (b) Show that T,,, may be written as

_AN-hAH
=T N-2AES

(c) Plot T,./(AppH/ASy) for 5 < N < 20. At what value of N does T, change by less than
1 per cent when N increases by 1?

14.4% A substance as well-known as methane still receives research attention because it is
an important component of natural gas, a commonly used fossil fuel. Friend et al. have
published a review of thermophysical properties of methane (D.G. Friend, J.F. Ely, and H.
Ingham, J. Phys. Chem. Ref. Data 18, 583 (1989)), which included the following vapour
pressure data describing the liquid—vapour phase boundary.

T/K 100 108 110 112 114 120 130 140 15
p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.

(a) Plot the liquid—vapour phase boundary. (b) Estimate the standard boiling

point of methane. (c) Compute the standard enthalpy of vaporization of methane (at the
standard boiling point), given that the molar volumes of the liquid and vapour at the
standard boiling point are 3.80 x 1072 dm3 mol ! and 8.89 dm? mol ™!, respectively.

14.5*Diamond is the hardest substance and the best conductor of heat yet characterized. For
these reasons, it is used widely in industrial applications that require a strong abrasive.
Unfortunately, it is difficult to synthesize



diamond from the more readily available allotropes of carbon, such as graphite. To
illustrate this point, the following approach can be used to estimate the pressure required to
convert graphite into diamond at 25 °C (i.e. the pressure at which the conversion becomes
spontaneous). The aim is to find an expression for A,G for the process graphite — diamond
as a function of the applied pressure, and then to determine the pressure at which the Gibbs
energy change becomes negative. (a) Derive the following expression for the pressure
variation of A.G at constant temperature

/
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where V,, .. is the molar volume of graphite and V,, 4 that of diamond. (b) The difficulty
with dealing with the previous expression is that the V_, depend on the pressure. This
dependence is handled as follows. Consider A,G to be a function of pressure and form a

Taylor expansion about p = p
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where the derivatives are evaluated at p = p and the series is truncated after the

second-order term. Term A can be found from the expression in part (a) by using the molar
volumes at #. Term B can be found by using a knowledge of the isothermal

compressibility of the solids, ¥-=-/Viavidei. Use this definition to show that at constant
temperature
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where ®:. and *:., are the isothermal compressibilities of diamond and graphite,
respectively. (c) Substitute the results from (a) and (b) into the expression for &) in (b)
and hence obtain an expression for A G(p) in terms of the isothermal compressibilities and
molar volumes under standard conditions. (d) At 1 bar and 298 K the value of A.G for the

transition graphite — diamond is +2.8678 kJ mol !. Use the following data to estimate the
pressure at which this transformation becomes spontaneous. Assume that k is independent
of pressure.

Graphite Diamond
V/(cm3g 1) at 1 bar 0.444 0.284

3.04 x 1078 0.187 x 1078



k/kPa™!

* These problems were supplied by Charles Trapp and Carmen Giunta.



FOCUS 5

Simple mixtures

Mixtures are an essential part of chemistry, either in their own right or
as starting materials for chemical reactions. This group of Topics deals
with the rich physical properties of mixtures and shows how to express
them in terms of thermodynamic quantities.

5A The thermodynamic description of mixtures

The first Topic in this Focus develops the concept of chemical potential
as an example of a partial molar quantity and explores how to use the
chemical potential of a substance to describe the physical properties of
mixtures. The underlying principle to keep in mind is that at equilibrium
the chemical potential of a species is the same in every phase. By
making use of the experimental observations known as Raoult’s and
Henry’s laws, it is possible to express the chemical potential of a
substance in terms of its mole fraction in a mixture.

5A.1 Partial molar quantities; 5A.2 The thermodynamics of mixing; 5A.3
The chemical potentials of liquids

5B The properties of solutions

In this Topic, the concept of chemical potential is applied to the



discussion of the effect of a solute on certain thermodynamic properties
of a solution. These properties include the lowering of vapour pressure
of the solvent, the elevation of its boiling point, the depression of its
freezing point, and the origin of osmotic pressure. It is possible to
construct a model of a certain class of real solutions called ‘regular
solutions’, which have properties that diverge from those of ideal
solutions.

5B.1 Liquid mixtures; 5B.2 Colligative properties

5C Phase diagrams of binary systems: liquids

One widely employed device used to summarize the equilibrium
properties of mixtures is the phase diagram. The Topic describes phase
diagrams of systems of liquids with gradually increasing complexity. In
each case the phase diagram for the system summarizes empirical
observations on the conditions under which the liquid and vapour phases
of the system are stable.

5C.1 Vapour pressure diagrams; 5C.2 Temperature-composition
diagrams; 5C.3 Distillation; 5C.4 Liquid-liquid phase diagrams

5D Phase diagrams of binary systems: solids

In this Topic it is seen how the phase diagrams of solid mixtures
summarize experimental results on the conditions under which the liquid
and solid phases of the system are stable.

5D.1 Eutectics; 5D.2 Reacting systems; 5D.3 Incongruent melting

5E Phase diagrams of ternary systems

Many modern materials (and ancient ones too) have more than two
components. This Topic shows how phase diagrams are extended to the
description of systems of three components and how to interpret
triangular phase diagrams.



5E.1 Triangular phase diagrams; 5E.2 Ternary systems

5F Activities

The extension of the concept of chemical potential to real solutions
involves introducing an effective concentration called an ‘activity’. In
certain cases, the activity may be interpreted in terms of intermolecular
interactions. An important example is an electrolyte solution. Such
solutions often deviate considerably from ideal behaviour on account of
the strong, long-range interactions between ions. This Topic shows how
a model can be used to estimate the deviations from ideal behaviour
when the solution is very dilute, and how to extend the resulting
expressions to more concentrated solutions.

5F.1 The solvent activity; 5F.2 The solute activity; 5F.3 The activities of
regular solutions; 5F.4 The activities of ions

Web resources What is an application of this
material?

Two applications of this material are discussed, one from biology and
the other from materials science, from among the huge number that
could be chosen for this centrally important field. Impact 7 shows how
the phenomenon of osmosis contributes to the ability of biological cells
to maintain their shapes. In Impact 8, phase diagrams of the
technologically important liquid crystals are discussed.

TOPIC 5A The thermodynamic
description of mixtures



> \Why do you need to know this material?

Chemistry deals with a wide variety of mixtures, including mixtures of
substances that can react together. Therefore, it is important to generalize
the concepts introduced in FOCUS 4 to deal with substances that are
mingled together.

> \What is the key idea?

The chemical potential of a substance in a mixture is a logarithmic function of
its concentration.

> \What do you need to know already?

This Topic extends the concept of chemical potential to substances in
mixtures by building on the concept introduced in the context of pure
substances (Topic 4A). It makes use of the relation between the temperature
dependence of the Gibbs energy and entropy (Topic 3E), and the concept of
partial pressure (Topic 1A). Throughout this and related Topics various
measures of concentration of a solute in a solution are used: they are
summarized in The chemist’s toolkit 11.

The consideration of mixtures of substances that do not react together is a
first step towards dealing with chemical reactions (which are treated in Topic
6A). At this stage the discussion centres on binary mixtures, which are
mixtures of two components, A and B. In Topic 1A it is shown how the
partial pressure, which is the contribution of one component to the total
pressure, is used to discuss the properties of mixtures of gases. For a more
general description of the thermodynamics of mixtures other analogous
‘partial’ properties need to be introduced.

5A.1 Partial molar quantities

The easiest partial molar property to visualize is the ‘partial molar volume’,
the contribution that a component of a mixture makes to the total volume of a



sample.

(a) Partial molar volume

Imagine a huge volume of pure water at 25 C. When a further 1 mol H,O is

added, the volume increases by 18 cm? and it follows that the molar volume
of pure water is 18 cm® mol-'. However, upon adding 1 mol H,O to a huge

volume of pure ethanol, the volume is found to increase by only 14 cm?3. The
reason for the different increase in volume is that the volume occupied by a
given number of water molecules depends on the identity of the molecules
that surround them. In the latter case there is so much ethanol present that
each H,O molecule is surrounded by ethanol molecules. The network of

hydrogen bonds that normally hold H,O molecules at certain distances from
each other in pure water does not form; as a result the H,O molecules are

packed more tightly and so increase the volume by only 14 cm3. The quantity

14 cm?® mol-! is the ‘partial molar volume’ of water in pure ethanol. In
general, the partial molar volume of a substance A in a mixture is the
change in volume per mole of A added to a large volume of the mixture.

The partial molar volumes of the components of a mixture vary with
composition because the environment of each type of molecule changes as
the composition changes from pure A to pure B. This changing molecular
environment, and the consequential modification of the forces acting between
molecules, results in the variation of the thermodynamic properties of a
mixture as its composition is changed. The partial molar volumes of water

and ethanol across the full composition range at 25 "C are shown in Fig.
S5A.1.
The partial molar volume, Vj, of a substance J at some general composition

is defined formally as follows:

G _[ EH-’] Partial molar volume [definition] (5A.1)
P

a ::}nl.

where the subscript n' signifies that the amounts of all other substances
present are constant. The partial molar volume is the slope of the plot of the



total volume as the amount of J is changed, the pressure, temperature, and
amount of the other components being constant (Fig. 5A.2). Its value depends
on the composition, as seen for water and ethanol.
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Figure 5A.1 The partial molar volumes of water and ethanol at 25 "C.
Note the different scales (water on the left, ethanol on the right).
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Figure 5A.2 The partial molar volume of a substance is the slope of
the variation of the total volume of the sample plotted against the
amount of that substance. In general, partial molar quantities vary with
the composition, as shown by the different slopes at a and b. Note that
the partial molar volume at b is negative: the overall volume of the
sample decreases as A is added.

A note on good practice The IUPAC recommendation is to denote a
partial molar quantity by x but only when there is the possibility of
confusion with the quantity X. For instance, to avoid confusion, the
partial molar volume of NaCl in water could be written v (NaCl,aq) to
distinguish it from the total volume of the solution, V.

The definition in eqn 5A.1 implies that when the composition of a binary
mixture is changed by the addition of dn, of A and dng of B, then the total

volume of the mixture changes by



vV aV
dn,+| =— dn
on A\ on B
4 p.T .ny B p.Tny
=V.dn, +V,dn,
This equation can be integrated with respect to n, and ng provided

that the amounts of A and B are both increased in such a way as to keep their
ratio constant. This linkage ensures that the partial molar volumes V, and Vy

dV

(5A.2)

are constant and so can be taken outside the integrals:

V=["Vydn,+ [ Vydny =V, [“dn,+V, [ “dn,  (5A3

0
_\
=V n, +Vyn,

Although the two integrations are linked (in order to preserve constant
relative composition), because V is a state function the final result in eqn
5A.3 is valid however the solution is in fact prepadblue.

Partial molar volumes can be measudblue in several ways. One method is
to measure the dependence of the volume on the composition and to fit the
observed volume to a function of the amount of the substance. Once the
function has been found, its slope can be determined at any composition of
interest by differentiation.

SN R7:WE Determining a partial molar volume

A polynomial fit to measurements of the total volume of a water/ethanol
mixture at 25 “C that contains 1.000 kg of water is

v =1002.93 + 54.6664z — 0.363 94z2 + 0.028 2562°

where v = V/cm?3, z = ng/mol, and ng is the amount of CH,CH,OH



present. Determine the partial molar volume of ethanol.

Collect your thoughts Apply the definition in eqn 5A.1, taking care
to convert the derivative with respect to n to a derivative with respect to
z and keeping the units intact.

The solution The partial molar volume of ethanol, Vg, is

L J AV fem®) | cm’
E = e — f—+ | s 1 - . | e
| oty et ol i fmel) oz mol
o )
P E' cm’ mel™

LY LT 0

Then, because

dv . 3
T 54.6664— 2(0.36394) 2+ 3(0.028 256)z”

it follows that

Vf(em*mol™) = 546664 —0.727 882 + 0.0847687

Figure 5A.3 shows a graph of this function.
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Figure 5A.3 The partial molar volume of ethanol as expressed by
the polynomial in Example 5A.1.

Self-test 10.5A At 25°C, the mass density of a 50 per cent by mass
ethanol/water solution is 0.914 g cm 3. Given that the partial molar

volume of water in the solution is 17.4 cm® mol™!, what is the partial
molar volume of the ethanol?

Answer: 56.4 cm3 mol-1 by using eqn 5A.3; 54.6 cm3 mol-1 by the
formula above

Molar volumes are always positive, but partial molar quantities need not
be. For example, the limiting partial molar volume of MgSO, in water (its

partial molar volume in the limit of zero concentration) is —1.4 cm® mol ™,
which means that the addition of 1 mol MgSO, to a large volume of water

results in a decrease in volume of 1.4 cm3. The mixture contracts because the

salt breaks up the open structure of water as the Mg?* and soi” ions become
hydrated, so the structure collapses slightly.

(b) Partial molar Gibbs energies

The concept of a partial molar quantity can be broadened to any extensive
state function. For a substance in a mixture, the chemical potential is defined
as the partial molar Gibbs energy:

[ aG ) Chemical potential 2
L _| | [definition] Al

| oy Vg
where n' is used to denote that the amounts of all other components of the
mixture are held constant. That is, the chemical potential is the slope of a plot
of Gibbs energy against the amount of the component J, with the pressure,
temperature, and the amounts of the other substances held constant (Fig.
5A.4). For a pure substance G = njGy p,,, and from eqn 5A.4 it follows that p;

= Gy ¢ in this case, the chemical potential is simply the molar Gibbs energy



of the substance, as is used in Topic 4A.

Gibbs energy, G

a b

Amount of J, n,

Figure 5A.4 The chemical potential of a substance is the slope of the
total Gibbs energy of a mixture with respect to the amount of
substance of interest. In general, the chemical potential varies with
composition, as shown for the two values at a and b. In this case, both
chemical potentials are positive.

By the same argument that led to eqn 5A.3, it follows that the total Gibbs
energy of a binary mixture is

G=m,l, +ngliy (5A.5)

where p, and pp are the chemical potentials at the composition of the

mixture. That is, the chemical potential of a substance, multiplied by the
amount of that substance present in the mixture, is its contribution to the total
Gibbs energy of the mixture. Because the chemical potentials depend on
composition (and the pressure and temperature), the Gibbs energy of a
mixture may change when these variables change, and for a system of
components A, B, ..., eqn 3E.7 (dG = Vdp — SdT) for a general change in G



becomes

dG: Vdp_SdT+ ]lAdnA+llenB+ N

Fundamental equation of chemical thermodynamics (5A.6)
This expression is

the fundamental equation of chemical thermodynamics. Its implications
and consequences are explodblue and developed in this and the next Focus.
At constant pressure and temperature, eqn 5A.6 simplifies to

dG = ppdny + pgdng + ... (5A.7)

As established in Topic 3E, under the same conditions dG = dw
Therefore, at constant temperature and pressure,

add,max-

dWadd,rnax = pAdnA + PBdnB t.. (5A8)

That is, additional (non-expansion) work can arise from the changing
composition of a system. For instance, in an electrochemical cell the
chemical reaction is arranged to take place in two distinct sites (at the two
electrodes) and the electrical work the cell performs can be traced to its
changing composition as products are formed from reactants.

(c) The wider significance of the chemical
potential

The chemical potential does more than show how G varies with composition.
Because G = U + pV — TS, and therefore U = -pV + TS + G, the general form
of an infinitesimal change in U for a system of variable composition is

dU = —pdV - Vdp + SAT + TdS + dG
= —pdV - Vdp + SAT + TdS
+ (Vdp - SdT+ ]JAdnA + ],lenB + ...)

= _pdV+ TdS + ],lAdnA + IJBdnB + ...



This expression is the generalization of eqn 3E.1 (that dU = TdS - pdV) to
systems in which the composition may change. It follows that at constant
volume and entropy,

dU = ppdny + pgdng + ... (5A.9)

and hence that

A
Lind (5A.10)
| Oy |

E¥an

[ =

Therefore, not only does the chemical potential show how G changes when
the composition changes, it also shows how the internal energy changes too
(but under a different set of conditions). In the same way it is possible to
deduce that

fH dA

(a) .1e1=[ —| ib) .u|=|; :

P A
| on A i i i '
£ 5.pm LTV

Thus, p; shows how all the extensive thermodynamic properties U, H, A, and

G depend on the composition. This is why the chemical potential is so central
to chemistry.

(d) The Gibbs-Duhem equation

Because the total Gibbs energy of a binary mixture is given by eqn 5A.5 (G =
nata + ngp), and the chemical potentials depend on the composition, when

the compositions are changed infinitesimally the Gibbs energy of a binary
system is expected to change by

dG = ppdny + ppdng + naduy + npdup

However, at constant pressure and temperature the change in Gibbs energy is
given by eqn 5A.7. Because G is a state function, these two expressions for
dG must be equal, which implies that at constant temperature and pressure

mpdu, +updig =0 (5h.12a)



This equation is a special case of the Gibbs—Duhem equation:

> nduy =0 Gibbs-Duhem equation  (5A.12h)
I

The significance of the Gibbs—Duhem equation is that the chemical
potential of one component of a mixture cannot change independently of the
chemical potentials of the other components. In a binary mixture, if one
chemical potential increases, then the other must decrease, with the two
changes related by eqn 5A.12a and therefore

dity=— :—:d_u & (5A13) (5A. 13)

Brief illustration 5A.1

If the composition of a mixture is such that n, = 2ng, and a small change
in composition results in u, changing by Ay, = +1 J mol™!, pg will
change by

Apg = —2x(1Jmol 1) = —2Jmol !

The same line of reasoning applies to all partial molar quantities. For
instance, changes in the partial molar volumes of the species in a mixture are
related by

> mdV, =0 (SA14a)
I

For a binary mixture,

dVy= _E_Advk (54.140)
B

As seen in Fig. 5A.1, where the partial molar volume of water increases, the
partial molar volume of ethanol decreases. Moreover, as eqn 5A.14b implies,



and as seen from Fig. 5A.1, a small change in the partial molar volume of A
corresponds to a large change in the partial molar volume of B if ny/ng is

large, but the opposite is true when this ratio is small. In practice, the Gibbs—
Duhem equation is used to determine the partial molar volume of one
component of a binary mixture from measurements of the partial molar
volume of the second component.

S I7:WY Using the Gibbs-Duhem equation

The experimental values of the partial molar volume of K,SO,(aq) at
298 K are found to fit the expression

vy, = 32.280+18.216z!2

where v, =V, fem’mor™) and z is the numerical value of the molality of

K,S0, (z = b/b ; see The chemist’s toolkit 11). Use the Gibbs—
Duhem equation to derive an equation for the molar volume of water in
the solution. The molar volume of pure water at 298 K is 18.079 cm?
mol 1.

Collect your thoughts Let A denote H,O, the solvent, and B denote
K,S0,, the solute. Because the Gibbs—Duhem equation for the partial
molar volumes of two components implies that dvy = —(ng/na)dvg, va
can be found by integration:

where ;= Viem’mol™) is the numerical value of the molar volume of pure
A. The first step is to change the variable of integration from vy to z =

b/b®; then integrate the right-hand side between z = 0 (pure A) and the
molality of interest.

The solution It follows from the information in the question that, with
B = K,SO,, dvg/dz = 9.108z'2. Therefore, the integration requidblue is



B n laiy
vo=vi-9.108[ 2z “dz
e n,

The amount of A (H,0) is ny = (1 kg)/M,, where M, is the molar mass
of water, and ng/(1 kg), which then occurs in the ratio ng/n,, will be
recognized as the molality b of B:

r.u:.ug._-f.u | f{ n k=6 |
Mg My %

I= (1kg)iM, = 1 kg =bM,=zb"M,

Hence

vo=vi—8108M,E [ 2%dz

WF®
Jo

=01—2(9.108M, b7 ) (b/ b° ™

It then follows, by substituting the data (including M, = 1.802 * 1072 kg

mol !, the molar mass of water), that
Va/(cm® mol™1) = 18.079 — 0.1094(b/b®)3?

The partial molar volumes are plotted in Fig. 5A.5.
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Figure 5A.5 The partial molar volumes of the components of an
aqueous solution of potassium sulfate.

Self-test 5A.2 Repeat the calculation for a salt B for which Vg/(cm3
mol 1) = 6.218 + 5.146z — 7.147z% with z = b/b®.

Answer: VA/(cm? mol1) = 18.079 - 0.0464z° + 0.0859z3

5A.2 The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its composition is given
by eqn 5A.5, and, as established in Topic 3E, at constant temperature and
pressure systems tend towards lower Gibbs energy. This is the link needed in
order to apply thermodynamics to the discussion of spontaneous changes of
composition, as in the mixing of two substances. One simple example of a
spontaneous mixing process is that of two gases introduced into the same
container. The mixing is spontaneous, so it must correspond to a decrease in



G.

(a) The Gibbs energy of mixing of perfect gases

Let the amounts of two perfect gases in the two containers before mixing be
n, and ng; both are at a temperature T and a pressure p (Fig. 5A.6). At this
stage, the chemical potentials of the two gases have their ‘pure’ values, which

are obtained by applying the definition p = G, to eqn 3E.15
(G.lp) = G5, + RT In(p/p™)):

= r arlatlon of chamical
u=u"+RTln— potential with prassare (5A.153)
p [perfact gas]

where 1® is the standard chemical potential, the chemical potential of the
pure gas at 1 bar.

The notation is simplified by replacing p/p® by p itself, for eqn 5A.15a
then becomes

U=u"+RTInp {5A.15h)
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Figure 5A.6 The arrangement for calculating the thermodynamic
functions of mixing of two perfect gases.

LR E NS SR GG EE Measures of concentration

Let A be the solvent and B the solute. The molar concentration
(informally: ‘molarity’), cg or [B], is the amount of solute molecules (in

moles) divided by the volume, V, of the solution:




o

It is commonly reported in moles per cubic decimetre (mol dm™) or,
equivalently, in moles per litre (mol L™1). It is convenient to define its
‘standard’ value as ¢ = 1 mol dm™3.

The molality, by, of a solute is the amount of solute species (in moles)
in a solution divided by the total mass of the solvent (in kilograms), m:

Both the molality and mole fraction are independent of temperature; in
contrast, the molar concentration is not. It is convenient to define the

‘standard’ value of the molality as b€ = 1 molkg™!.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount n of
molecules. If the mole fraction of the solute is xg, the amount of solute

molecules is ng = xgn. The mole fraction of solvent molecules is x, = 1
— Xxp, S0 the amount of solvent molecules is ny = xan = (1 — xg)n. The
mass of solvent, of molar mass M,, present is my = naM, = (1 —
xg)nM 5. The molality of the solute is therefore

g xh X,

L St e e e

The inverse of this relation, the mole fraction in terms of the molality, is

L My
T THBM,

2. The relation between molality and molar concentration

The total mass of a volume V of solution (not solvent) of mass density p
is m = pV. The amount of solute molecules in this volume is ng = cgV.

The mass of solute present is mg = ngMp = cgVMpg. The mass of solvent
present is therefore my = m — mg = pV — cgVMp = (p — cgMg)V. The
molality is therefore



Hy ¥ i

b=, " P,V P

The inverse of this relation, the molar concentration in terms of the
molality, is

b

%= Trp, M,

3. The relation between molar concentration and mole fraction

By inserting the expression for by in terms of xg into the expression for
cp, the molar concentration of B in terms of its mole fraction is

= xp 0
=, M, +x,M,

with x5, = 1 — xp. For a dilute solution in the sense that xpMp < X, M4,
A B BB AVIA

2 2 :
ﬁB_(”AML J""ﬂ

If, moreover, x5 < 1, s0 x5 = 1, then

Hl

In practice, the replacement of p/p© by p means using the numerical value of
p in bars. The total Gibbs energy of the separated gases is then given by eqn
5A.5 as

G, =ty + nglty = n, (15 + RTInp) + ny(uz + RTIng)
(54.16a)

After mixing, the partial pressures of the gases are p, and pg, with py + pg =
p. The total Gibbs energy changes to

Gy=n,(u; +RTInp,) + nylug + RTIlnp,) {5A.16k)



The difference G; — G,, the Gibbs energy of mixing,A ;. G, is therefore
Aol nkRTln*ﬁ?*+ nERTln% (5A.16¢)

At this point ny can be replaced by x;n, where n is the total amount of A and
B, and the relation between partial pressure and mole fraction (Topic 1A, p; =
x;p) can be used to write py/p = x; for each component. The result is

A _«G = NRT(x, In x5 + xg In xp)
Gibbs energy of mixing [perfect gas] (5A.17)
Because mole fractions are
never greater than 1, the logarithms in this equation are negative, and A_,;, G

< 0 (Fig. 5A.7). The conclusion that A_;,G is negative for all compositions
confirms that perfect gases mix spontaneously in all proportions.
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Figure 5A.7 The Gibbs energy of mixing of two perfect gases at
constant temperature and pressure, and (as discussed later) of two
liquids that form an ideal solution. The Gibbs energy of mixing is
negative for all compositions, so perfect gases mix spontaneously in



all proportions.

el JEES Gl JERT.WY Calculating a Gibbs energy of mixing

A container is divided into two equal compartments (Fig. 5A.8). One
contains 3.0 mol H,(g) at 25 °C; the other contains 1.0 mol N,(g) at 25

°C. Calculate the Gibbs energy of mixing when the partition is removed.
Assume that the gases are perfect.

< —

3.0 mol H2

-2 1.0 mol N2
=

<l

1.0 mol N,

Final




Figure 5A.8 The initial and final states considedblue in the
calculation of the Gibbs energy of mixing of gases at different
initial pressures.

Collect your thoughts Equation 5A.17 cannot be used directly
because the two gases are initially at different pressures, so proceed by
calculating the initial Gibbs energy from the chemical potentials. To do
so, calculate the pressure of each gas: write the pressure of nitrogen as p,
then the pressure of hydrogen as a multiple of p can be found from the
gas laws. Next, calculate the Gibbs energy for the system when the
partition is removed. The volume occupied by each gas doubles, so its
final partial pressure is half its initial pressure.

The solution Given that the pressure of nitrogen is p, the pressure of
hydrogen is 3p. Therefore, the initial Gibbs energy is

G; = (3.0 mol){p®(H,) + RT In 3p}
+ (1.0 mo){y®(N,) + RT In p}

When the partition is removed and each gas occupies twice the original
volume, the final total pressure is 2p. The partial pressure of nitrogen
falls to 4p and that of hydrogen falls to +p. Therefore, the Gibbs energy
changes to

G,= (3.0mol){u"(H,) + RTIn3p}
+ (1.0 mol){ue(Nz) + RTIn1p}

The Gibbs energy of mixing is the difference of these two quantities:



rﬁ|:|E.

4

@ 1
G=(3.0mol)RT In ,;f; +(1.0mol)RT In 3;

=—(3.0mol)RTIn2—(1.0mol)RT In2
=—(4.0mol)RTIn2=-6.9K]

Comment. In this example, the value of A ;G is the sum of two

contributions: the mixing itself, and the changes in pressure of the two
gases to their final total pressure, 2p. Do not be misled into interpreting
this negative change in Gibbs energy as a sign of spontaneity: in this
case, the pressure changes, and AG < 0 is a signpost of spontaneous
change only at constant temperature and pressure. When 3.0 mol H,

mixes with 1.0 mol N, at the same pressure, with the volumes of the

vessels adjusted accordingly, the change of Gibbs energy is —5.6 kJ.
Because this value is for a change at constant pressure and temperature,
the fact that it is negative does imply spontaneity.

Self-test 10.5A Suppose that 2.0 mol H, at 2.0 atm and 25°C and 4.0

mol N, at 3.0 atm and 25°C are mixed by removing the partition
between them. Calculate A_;,G.

Answer: -97 kJ

(b) Other thermodynamic mixing functions

In Topic 3E it is shown that (0G/0T), = —S. It follows immediately from eqn
5A.17 that, for a mixture of perfect gases initially at the same pressure, the

entropy of mixing, A ;. S, is
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Entropy af mixing
[perfect gases, constant Tand B (5A.18)

Because In x < 0, it follows that A_;, S > 0 for all compositions (Fig. 5A.9).
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Figure 5A.9 The entropy of mixing of two perfect gases at constant
temperature and pressure, and (as discussed later) of two liquids that
form an ideal solution. The entropy increases for all compositions, and
because there is no transfer of heat to the surroundings when perfect
gases mix, the entropy of the surroundings is unchanged. Hence, the
graph also shows the total entropy of the system plus the
surroundings; because the total entropy of mixing is positive at all
compositions, perfect gases mix spontaneously in all proportions.

Brief illustration 5A.2

For equal amounts of perfect gas molecules that are mixed at the same



pressure, set x.=x,=+ and obtain

A S=-nR {J:"].l'.l }+J_,~111J:-I- =nRlnz

with n the total amount of gas molecules. For 1 mol of each species, so n
=2 mol,

ApixS = (2 mol) x RIn2 = +11.5J K™!

An increase in entropy is expected when one gas disperses into the other
and the disorder increases.

Under conditions of constant pressure and temperature, the enthalpy of
mixing, A H, the enthalpy change accompanying mixing, of two perfect
gases can be calculated from AG = AH — TAS. It follows from eqns 5A.17
and 5A.18 that

A H=0 Enthalpy of mixing [perfect gases, constant T and p] (5A.19)

mix
The enthalpy of mixing is zero, as expected for a system in which there are
no interactions between the molecules forming the gaseous mixture. It
follows that, because the entropy of the surroundings is unchanged, the whole
of the driving force for mixing comes from the increase in entropy of the
system.

5A.3 The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures it is necessary to
know how the Gibbs energy of a liquid varies with composition. The
calculation of this dependence uses the fact that, as established in Topic 4A,
at equilibrium the chemical potential of a substance present as a vapour must
be equal to its chemical potential in the liquid.



(a) Ideal solutions

Quantities relating to pure substances are denoted by a superscript *, so the
chemical potential of pure A is written u: and as ¢;() when it is necessary to
emphasize that A is a liquid. Because the vapour pressure of the pure liquid is
gz it follows from eqn 5A.15b that the chemical potential of A in the vapour

(treated as a perfect gas) is u:+r7inp, (With p, to be interpreted as p,/p®).
These two chemical potentials are equal at equilibrium (Fig. 5A.10), so

Ui VAPOUT
et

1 ()= 1 (g)+ RTIn p}

If another substance, a solute, is also present in the liquid, the chemical
potential of A in the liquid is changed to p, and its vapour pressure is

changed to p,. The vapour and solvent are still in equilibrium, so

W, (=p"(g)+RETInp, (5A.20h)

Alg) +Bim ;
u, g, ol

i
digll)

All) +B{l)

k

Figure 5A.10 At equilibrium, the chemical potential of the gaseous
form of a substance A is equal to the chemical potential of its
condensed phase. The equality is preserved if a solute is also present.
Because the chemical potential of A in the vapour depends on its
partial vapour pressure, it follows that the chemical potential of liquid A
can be related to its partial vapour pressure.

W, (M=u"(g)+RTInp, (5A.20k)

The next step is the combination of these two equations to eliminate the



standard chemical potential of the gas, uiiz. To do so, write eqn 5A.20a as
uilg =u3(1)-RTIn p; and substitute this expression into eqn 5A.20b to obtain

B
R i o

()= s (1)=RTInp; +RTln p; =,u:(1‘.n+RT1n§,;L (58.21)

The final step draws on additional experimental information about the
relation between the ratio of vapour pressures and the composition of the
liquid. In a series of experiments on mixtures of closely related liquids (such
as benzene and methylbenzene), Francois Raoult found that the ratio of the
partial vapour pressure of each component to its vapour pressure when
present as the pure liquid, r./r;, is approximately equal to the mole fraction of
A in the liquid mixture. That is, he established what is now called Raoult’s
law:

———
Pa=5aPs

Raoult’s law [ideal solution] (5A.22)

This law is illustrated in Fig. 5A.11. Some mixtures obey Raoult’s law very
well, especially when the components are structurally similar (Fig. 5A.12).
Mixtures that obey the law throughout the composition range from pure A to
pure B are called ideal solutions.

Brief illustration 5A.3

The vapour pressure of pure benzene at 20°C is 75 Torr and that of pure
methylbenzene is 25 Torr at the same temperature. In an equimolar
MiX{UIe Xpenzene = Xmethylbenzene — * SO the partial vapour pressure of each

one in the mixture is
Pranzane =+ ¢ B0 Torr = 40 Torr

Prostttbenzene = T % 23 Torr = 12.5 Torr

The total vapour pressure of the mixture is 48 Torr. Given the two
partial vapour pressures, it follows from the definition of partial pressure
(Topic 1A) that the mole fractions in the vapour are

Xyap,benzene — (40 Torr)/(48 Torr) = 0.83



and

Xyap,methylbenzene — (12.5 Torr)/(48 Torr) = 0.26

The vapour is richer in the more volatile component (benzene).

Ps Total pressure
Ve
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% pressure of B ¥
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of A e il
o

Mole fraction of A, x,

Figure 5A.11 The partial vapour pressures of the two components of
an ideal binary mixture are proportional to the mole fractions of the
components, in accord with Raoult’s law. The total pressure is also
linear in the mole fraction of either component.
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Figure 5A.12 Two similar liquids, in this case benzene and
methylbenzene (toluene), behave almost ideally, and the variation of
their vapour pressures with composition resembles that for an ideal
solution.

For an ideal solution, it follows from egns 5A.21 and 5A.22 that

()= (1)+ RTlnx, 'ﬂg{';{;}tﬁg‘r'ﬁ”T'al {5A.23)

This important equation can be used as the definition of an ideal solution (so
that it implies Raoult’s law rather than stemming from it). It is in fact a better
definition than eqn 5A.22 because it does not assume that the vapour is a
perfect gas.

The molecular origin of Raoult’s law is the effect of the solute on the
entropy of the solution. In the pure solvent, the molecules have a certain
disorder and a corresponding entropy; the vapour pressure then represents the
tendency of the system and its surroundings to reach a higher entropy. When
a solute is present, the solution has a greater disorder than the pure solvent
because a molecule chosen at random might or might not be a solvent
molecule. Because the entropy of the solution is higher than that of the pure



solvent, the solution has a lower tendency to acquire an even higher entropy
by the solvent vaporizing. In other words, the vapour pressure of the solvent
in the solution is lower than that of the pure solvent.
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Figure 5A.13 Strong deviations from ideality are shown by dissimilar
liquids (in this case carbon disulfide and acetone (propanone)). The
dotted lines show the values expected from Raoult’s law.

Some solutions depart significantly from Raoult’s law (Fig. 5A.13).
Nevertheless, even in these cases the law is obeyed increasingly closely for
the component in excess (the solvent) as it approaches purity. The law is
another example of a limiting law (in this case, achieving reliability as x, —

1) and is a good approximation for the properties of the solvent if the solution
is dilute.

(b) Ideal-dilute solutions

In ideal solutions the solute, as well as the solvent, obeys Raoult’s law.
However, William Henry found experimentally that, for real solutions at low



concentrations, although the vapour pressure of the solute is proportional to
its mole fraction, the constant of proportionality is not the vapour pressure of
the pure substance (Fig. 5A.14). Henry’s law is:

pg = XgKp Henry’s law [ideal—dilute solution] (5A.24)

In this expression xg is the mole fraction of the solute and Ky is an empirical

constant (with the dimensions of pressure) chosen so that the plot of the
vapour pressure of B against its mole fraction is tangent to the experimental
curve at xg = 0. Henry’s law is therefore also a limiting law, achieving
reliability as x5 — 0.

Mixtures for which the solute B obeys Henry’s law and the solvent A
obeys Raoult’s law are called ideal-dilute solutions. The difference in
behaviour of the solute and solvent at low concentrations (as expressed by
Henry’s and Raoult’s laws, respectively) arises from the fact that in a dilute
solution the solvent molecules are in an environment very much like the one
they have in the pure liquid (Fig. 5A.15). In contrast, the solute molecules are
surrounded by solvent molecules, which is entirely different from their
environment when it is in its pure form. Thus, the solvent behaves like a
slightly modified pure liquid, but the solute behaves entirely differently from
its pure state unless the solvent and solute molecules happen to be very
similar. In the latter case, the solute also obeys Raoult’s law.
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Figure 5A.14 When a component (the solvent) is nearly pure, it has a
vapour pressure that is proportional to the mole fraction with a slope »:
(Raoult’s law). When it is the minor component (the solute) its vapour
pressure is still proportional to the mole fraction, but the constant of
proportionality is now Kg (Henry’s law).



Figure 5A.15 In a dilute solution, the solvent molecules (the dblue
spheres) are in an environment that differs only slightly from that of
the pure solvent. The solute particles (the dblue spheres), however,
are in an environment totally unlike that of the pure solute.

SN IERTAW:Y Investigating the validity of Raoult’s and
Henry’s laws

The vapour pressures of each component in a mixture of propanone
(acetone, A) and trichloromethane (chloroform, C) were measudblue at

35°C with the following results:

Xc 0 0.20 0.40 0.60 0.80 1



p/kPa 0 4.7 11 18.9 26.7 36.4
pa’kPa 46.3 33.3 23.3 12.3 4.9 0

Confirm that the mixture conforms to Raoult’s law for the component in

large excess and to Henry’s law for the minor component. Find the
Henry’s law constants.

Collect your thoughts Both Raoult’s and Henry’s laws are
statements about the form of the graph of partial vapour pressure against
mole fraction. Therefore, plot the partial vapour pressures against mole
fraction. Raoult’s law is tested by comparing the data with the straight
line p,=xp; for each component in the region in which it is in excess (and
acting as the solvent). Henry’s law is tested by finding a straight line p;
= x;K; that is tangent to each partial vapour pressure curve at low x,

where the component can be treated as the solute.

The solution The data are plotted in Fig. 5A.16 together with the
Raoult’s law lines. Henry’s law requires K, = 24.5 kPa for acetone and

K = 23.5 kPa for chloroform.

50 .
(L)r p*(acetone|

40 \\
< p*{chloroform =0
x ED 4 - i
2 Raoult’s law w/
g —— Klacetope) g di, .-
S B
= e A == Kichloroform)

S ' e
el T Henry's law 0\/
t] G —acill ol

0 Maole fraction of chloroform, x{CHCI,) 1



Figure 5A.16 The experimental partial vapour pressures of a
mixture of chloroform (trichnloromethane) and acetone
(propanone) based on the data in Example 5A.4. The values of K
are obtained by extrapolating the dilute solution vapour
pressures, as explained in the Example.

Comment. Notice how the system deviates from both Raoult’s and
Henry’s laws even for quite small departures from x = 1 and x = 0,
respectively. These deviations are discussed in Topic 5E.

Self-test 10.5A The vapour pressure of chloromethane at various mole
fractions in a mixture at 25 C was found to be as follows:

X 0.005 0.009 0.019 0.024
p/kPa 27.3 48.4 101 126

Estimate the Henry’s law constant for chloromethane.
Answer: 5 MP,

For practical applications, Henry’s law is expressed in terms of the
molality, b, of the solute, pg = bgKg. Some Henry’s law data for this

convention are listed in Table 5A.1. As well as providing a link between the
mole fraction of the solute and its partial pressure, the data in the table may
also be used to calculate gas solubilities. Knowledge of Henry’s law
constants for gases in blood and fats is important for the discussion of
respiration, especially when the partial pressure of oxygen is abnormal, as in
diving and mountaineering, and for the discussion of the action of gaseous

anaesthetics.

Table 5A.1 Henry’s law constants for gases in water at 298 K*




K/(kPa kg mol 1)

CO, 3.01 x 103
H, 1.28 x 10°
N, 1.56 x 10°
0, 7.92 x 104

* More values are given in the Resource section.

Brief illustration 5A.4

To estimate the molar solubility of oxygen in water at 25°C and a partial
pressure of 21 kPa, its partial pressure in the atmosphere at sea level,
write

21kPa
7.9%10" kPakgmol™

b01=%2—= 295107 mol kg™

The molality of the saturated solution is therefore 0.29 mmol kg™ !. To
convert this quantity to a molar concentration, assume that the mass

density of this dilute solution is essentially that of pure water at 25°C, or
p =0.997 kg dm™3. It follows that the molar concentration of oxygen is

[0,]= by, = (2.9 107 mol kg™ (0,997 kg dm™)
=0.29mmoldm™

Checklist of concepts

[ ] 1. The partial molar volume of a substance is the contribution to the
volume that a substance makes when it is part of a mixture.



[ ] 2. The chemical potential is the partial molar Gibbs energy and is the
contribution to the total Gibbs energy that a substance makes when it
is part of a mixture.

[ ] 3. The chemical potential also expresses how, under a variety of
different conditions, the thermodynamic functions vary with
composition.

(] 4. The Gibbs—Duhem equation shows how the changes in chemical
potentials (and, by extension, of other partial molar quantities) of the
components of a mixture are related.

] 5. The Gibbs energy of mixing is negative for perfect gases at the same
pressure and temperature.

[ ] 6. The entropy of mixing of perfect gases initially at the same pressure
is positive and the enthalpy of mixing is zero.

(] 7. Raoult’s law provides a relation between the vapour pressure of a
substance and its mole fraction in a mixture.

[ ] 8. An ideal solution is a solution that obeys Raoult’s law over its entire
range of compositions; for real solutions it is a limiting law valid as
the mole fraction of the species approaches 1.

[ ] 9. Henry’s law provides a relation between the vapour pressure of a
solute and its mole fraction in a mixture; it is the basis of the definition
of an ideal—dilute solution.

[ ] 10. An ideal—dilute solution is a solution that obeys Henry’s law at low
concentrations of the solute, and for which the solvent obeys Raoult’s
law.

Checklist of equations

Property Equation Comment Equation
number
Partial molar Vy=(V/ Definition 5A.1

volume



Chemical potential

Total Gibbs energy

Fundamental
equation of
chemical
thermodynamics

Gibbs—Duhem
equation

Chemical potential
of a gas

Gibbs energy of
mixing

Entropy of mixing

Enthalpy of mixing

Raoult’s law

Chemical potential
of component

Henry’s law

anJ)p,T,n'

Uy = (0G/ Definition

anJ)p,T,n'

G =npp + Binary mixture

NpHp

dG = Vdp -

SAT + ppdnp

+ pgdng + ...

Zynydpy = 0

=" +RTn(pl §7) Perfect gas

ALixG = Perfect gases and

NRT(x, In x, ideal solutions

+ xg In xp)

ApixS = Perfect gases and

—nR(x, In x5 ideal solutions

+ xp In xp)

AnixH=0 Perfect gases and
ideal solutions

Pume True for ideal
solutions; limiting
lawas xy — 1

=i ares - 1deal solution

pp = XpgKp True for ideal-

dilute solutions;
limiting law as xp
-0

bA.4

5A.5

5A.6

5A.12b

5A.15a

5A.17

5A.18

5A.19

5A.22

5A.23

5A.24




TOPIC 5B The properties of solutions

> \Why do you need to know this material?

Mixtures and solutions play a central role in chemistry, and so it is important
to understand how their compositions affect their thermodynamic properties,
such as their boiling and freezing points. One very important physical
property of a solution is its osmotic pressure, which is used, for example, to
determine the molar masses of macromolecules.

> \What is the key idea?

The chemical potential of a substance in a mixture is the same in every
phase in which it occurs.

> \What do you need to know already?

This Topic is based on the expression derived from Raoult’s law (Topic 5A) in
which chemical potential is related to mole fraction. The derivations make use
of the Gibbs—Helmholtz equation (Topic 3E) and the effect of pressure on
chemical potential (Topic 5A). Some of the derivations are the same as those
used in the discussion of the mixing of perfect gases (Topic 5A).

Thermodynamics can provide insight into the properties of liquid mixtures,
and a few simple ideas can unify the whole field of study.

58.1 Liquid mixtures



The development here is based on the relation derived in Topic 5A between
the chemical potential of a component (which here is called J, with J = A or B
in a binary mixture) in an ideal mixture or solution, yj, its value when pure,

u7, and its mole fraction in the mixture, x;:

Chemical potential (5B.1)

*
dy=1t; +RTlnx, [ideal solutian]

(a) Ideal solutions

The Gibbs energy of mixing of two liquids to form an ideal solution is
calculated in exactly the same way as for two gases (Topic 5A). The total
Gibbs energy before the liquids are mixed is

=ty U3 + npglly (5EB.24)

where the * denotes the pure liquid. When they are mixed, the individual

chemical potentials are given by eqn 5B.1 and the total Gibbs energy is
Ge=n,(u3 + AT nx,) +nglus + RTln ) {5B.2h)

Consequently, the Gibbs energy of mixing, the difference of these two

quantities, is

A G=nRT(x, Inx, + xylnxg) .
Glbbs enargy of mixking

[ideal solution] (5B.3)

where n = ny + ng. As for gases, it follows that the ideal entropy of mixing of
two liquids is

AmixS = —nR(x5 In x5 + xg In xg)  Entropy of mixing [ideal solution] (5B.4)

Then from A_;;G = A
mixing is zero, A

mixH — TAL;S it follows that the ideal enthalpy of
= 0. The ideal volume of mixing, the change in volume
on mixing, is also zero. To see why, consider that, because (0G/0p)r = V (eqn
3E.8), A,V = (0AixG/Op)t- But A_;,G in eqn 5B.3 is independent of

pressure, so the derivative with respect to pressure is zero, and therefore
A V=0.

mix

mix

mix

mix



Equations 5B.3 and 5B.4 are the same as those for the mixing of two
perfect gases and all the conclusions drawn there are valid here: because the
enthalpy of mixing is zero there is no change in the entropy of the
surroundings so the driving force for mixing is the increasing entropy of the
system as the molecules mingle. It should be noted, however, that solution
ideality means something different from gas perfection. In a perfect gas there
are no interactions between the molecules. In ideal solutions there are
interactions, but the average energy of A—B interactions in the mixture is the
same as the average energy of A—A and B-B interactions in the pure liquids.
The variation of the Gibbs energy and entropy of mixing with composition is
the same as that for gases (Figs. 5A.7 and 5A.9); both graphs are repeated
here (as Figs. 5B.1 and 5B.2).
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Figure 5B.1 The Gibbs energy of mixing of two liquids that form an
ideal solution.
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Figure 5B.2 The entropy of mixing of two liquids that form an ideal
solution.

A note on good practice It is on the basis of this distinction that the
term ‘perfect gas’ is preferable to the more common ‘ideal gas’. In an
ideal solution there are interactions, but they are effectively the same
between the various species. In a perfect gas, not only are the
interactions the same, but they are also zero. Few people, however,
trouble to make this valuable distinction.

Brief illustration 5B.1

Consider a mixture of benzene and methylbenzene, which form an
approximately ideal solution, and suppose 1.0 mol C;H(1) is mixed

with 2.0 mol C,H,CH,(l). For the mixture, Xx,,,... = 0.33 and

Xmethylbenzene = 0-67. The Gibbs energy and entropy of mixing at
25°C, when RT = 2.48 kJ mol ™!, are

A, .G/n = (2.48 kJ mol ™) x (0.33 In 0.33 + 0.67 In 0.67) = 1.6



kJ mol™!

A S/n =—(8.3145 J K" mol™) x (0.33 In 0.33 + 0.67 In 0.67) =

mix

+5.3J K ' mol™!

The enthalpy of mixing is zero (presuming that the solution is
ideal).

Real solutions are composed of molecules for which the A-A, A-B,
and B-B interactions are all different. Not only may there be enthalpy
and volume changes when such liquids mix, but there may also be an
additional contribution to the entropy arising from the way in which the
molecules of one type might cluster together instead of mingling freely
with the others. If the enthalpy change is large and positive, or if the
entropy change is negative (because of a reorganization of the molecules
that results in an orderly mixture), the Gibbs energy of mixing might be
positive. In that case, separation is spontaneous and the liquids are
immiscible. Alternatively, the liquids might be partially miscible,
which means that they are miscible only over a certain range of
compositions.

(b) Excess functions and regular solutions

The thermodynamic properties of real solutions are expressed in terms
of the excess functions, X*, the difference between the observed
thermodynamic function of mixing and the function for an ideal
solution:

XE=A_ X—-A, X Celsius scale [definition] (5B.5)

The excess entropy, St, for example, is calculated by using the value of
A5 given by eqn 5B.4. The excess enthalpy and volume are both
equal to the observed enthalpy and volume of mixing, because the ideal



values are zero in each case.

Figure 5B.3 shows two examples of the composition dependence of
excess functions. Figure 5B.3(a) shows data for a benzene/cyclohexane
mixture: the positive values of HF, which implies that A_ H > 0,

indicate that the A—B interactions in the mixture are less attractive than
the A—A and B-B interactions in the pure liquids. The symmetrical
shape of the curve reflects the similar strengths of the A—A and B-B
interactions. Figure 5B.3(b) shows the composition dependence of the
excess volume, VE, of a mixture of tetrachloroethene and cyclopentane.
At high mole fractions of cyclopentane, the solution contracts as
tetrachloroethene is added because the ring structure of cyclopentane
results in inefficient packing of the molecules, but as tetrachloroethene
is added, the molecules in the mixture pack together more tightly.
Similarly, at high mole fractions of tetrachloroethene, the solution
expands as cyclopentane is added because tetrachloroethene molecules
are nearly flat and pack efficiently in the pure liquid, but become
disrupted as the bulky ring cyclopentane is added.
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Figure 5B.3 Experimental excess functions at 25°C. (a) HE for
benzene/cyclohexane; this graph shows that the mixing is endothermic
(because A, H = 0 for an ideal solution). (b) The excess volume, V&, for
tetrachloroethene/cyclopentane; this graph shows that there is a contraction



at low tetrachloroethene mole fractions, but an expansion at high mole
fractions (because A,V = 0 for an ideal mixture).

Deviations of the excess enthalpy from zero indicate the extent to
which the solutions are non-ideal. In this connection a useful model
system is the regular solution, a solution for which HE* 0 but S = 0. A
regular solution can be thought of as one in which the two kinds of
molecules are distributed randomly (as in an ideal solution) but have
different energies of interaction with each other. To express this concept
more quantitatively, suppose that the excess enthalpy depends on
composition as

HE = néRTx xy (5B.6)

where & (xi) is a dimensionless parameter that is a measure of the energy
of A-B interactions relative to that of the A—A and B-B interactions.
(For H® expressed as a molar quantity, discard the n.) The function
given by egn 5B.6 is plotted in Fig. 5B.4; it resembles the experimental
curve in Fig. 5B.3a. If £ < 0, then mixing is exothermic and the A-B
interactions are more favourable than the A—A and B-B interactions. If &
> 0, then the mixing is endothermic. Because the entropy of mixing has
its ideal value for a regular solution, the Gibbs energy of mixing is
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Figure 5B.4 The excess enthalpy according to a model in which it is
proportional to éx,xg, for different values of the parameter ¢.
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Figure 5B.5 The Gibbs energy of mixing for different values of the parameter
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ALG= ;ﬁRTrkrB— Tl—nR(x, Inx, +x,Inx,)] (SB.7)
=nRT(x, Inx, +xylna+ 5, x,)

Figure 5B.5 shows how A_. G varies with composition for different

values of &. The important feature is that for £ > 2 the graph shows two
minima separated by a maximum. The implication of this observation is
that, provided ¢ > 2, the system will separate spontaneously into two
phases with compositions corresponding to the two minima, because
such a separation corresponds to a dblueuction in Gibbs energy. This
point is developed in Topic 5C.

Identifying the parameter for a regular
solution

Identify the value of the parameter ¢ that would be appropriate to
model a mixture of benzene and cyclohexane at 25°C, and estimate
the Gibbs energy of mixing for an equimolar mixture.

Collect your thoughts Refer to Fig. 5B.3a and identify the value
of the maximum in the curve; then relate it to eqn 5B.6 written as a
molar quantity (H* = ERTx,xg). For the second part, assume that the

solution is regular and that the Gibbs energy of mixing is given by
eqn 5B.7.

The solution In the experimental data the maximum occurs close
to x,=x,=+ and its value is close to 701 J mol ™. It follows that

L 701 ] mol™
ST RTx,%;  (8.31457K " mol " )x[ 298K Jx+x &

=113

The total Gibbs energy of mixing to achieve the stated composition
(provided the solution is regular) is therefore



Ao Gin=1RTInt + LATInd + 701 T mol™
=—RTIn2 + 701] mol™
=—1.72 kJmol™ + 0,701 kT mol™ = —1.02 k] mol™

Self-test 5B.1 The graph in Fig. 5B.3a suggests the following
values:

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HE/(J 150 350 550 680 700 690 600 500 280
mol 1)

Use a curve-fitting procedure to fit these data to an expression of
the form in eqn 5B.6 written as H%/n = Ax(1 — x).

Answer: The best fit is with A = 690 J mol!

s8.2 Colligative properties

A colligative property is a physical property that depends on the
relative number of solute particles present but not their chemical identity
(‘colligative’ denotes ‘depending on the collection’). They include the
lowering of vapour pressure, the elevation of boiling point, the
depression of freezing point, and the osmotic pressure arising from the
presence of a solute. In dilute solutions these properties depend only on
the number of solute particles present, not their identity.

In this development, the solvent is denoted by A and the solute by B.
There are two assumptions. First, the solute is not volatile, so it does not
contribute to the vapour. Second, the solute does not dissolve in the
solid solvent: that is, the pure solid solvent separates when the solution
is frozen. The latter assumption is quite drastic, although it is true of
many mixtures; it can be avoided at the expense of more algebra, but
that introduces no new principles.

(a) The common features of colligative



properties

All the colligative properties stem from the dblueuction of the chemical
potential of the liquid solvent as a result of the presence of solute. For an
ideal solution (one that obeys Raoult’s law, Topic 5A; p.==x.ri). the
reduction is from u; for the pure solvent to u, =u; + kTlnx, when a solute is
present (In x, is negative because x, < 1). There is no direct influence of

the solute on the chemical potential of the solvent vapour and the solid
solvent because the solute appears in neither the vapour nor the solid. As
can be seen from Fig. 5B.6, the dblueuction in chemical potential of the
solvent implies that the liquid—vapour equilibrium occurs at a higher
temperature (the boiling point is raised) and the solid—liquid equilibrium
occurs at a lower temperature (the freezing point is lowedblue).
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Figure 5B.6 The chemical potential of the liquid solvent in a solution is lower
than that of the pure liquid. As a result, the temperature at which the chemical
potential of the solvent is equal to that of the solid solvent (the freezing point)
is lowedblue, and the temperature at which it is equal to the vapour (the
boiling point) is raised. The lowering of the liquid’s chemical potential has a
greater effect on the freezing point than on the boiling point because of the
angles at which the lines intersect.



The molecular origin of the lowering of the chemical potential is not
the energy of interaction of the solute and solvent particles, because the
lowering occurs even in an ideal solution (for which the enthalpy of
mixing is zero). If it is not an enthalpy effect, it must be an entropy
effect.! When a solute is present, there is an additional contribution to
the entropy of the solvent which results is a weaker tendency to form the
vapour (Fig. 5B.7). This weakening of the tendency to form a vapour
lowers the vapour pressure and hence raises the boiling point. Similarly,
the enhanced molecular randomness of the solution opposes the
tendency to freeze. Consequently, a lower temperature must be reached
before equilibrium between solid and solution is achieved. Hence, the
freezing point is lowedblue.

The strategy for the quantitative discussion of the elevation of boiling
point and the depression of freezing point is to look for the temperature
at which, at 1 atm, one phase (the pure solvent vapour or the pure solid
solvent) has the same chemical potential as the solvent in the solution.
This is the new equilibrium temperature for the phase transition at 1 atm,
and hence corresponds to the new boiling point or the new freezing
point of the solvent.



(a) > (b)

Figure 5B.7 The vapour pressure of a pure liquid represents a balance
between the increase in disorder arising from vaporization and the decrease
in disorder of the surroundings. (a) Here the structure of the liquid is
represented highly schematically by the grid of squares. (b) When solute (the
dark green squares) is present, the disorder of the condensed phase is
higher than that of the pure liquid, and there is a decreased tendency to
acquire the disorder characteristic of the vapour.

(b) The elevation of boiling point

The equilibrium of interest when considering boiling is between the
solvent vapour and the solvent in solution at 1 atm (Fig. 5B.8). The



equilibrium is established at a temperature for which

wy(g)=1(D+RTInwx, (58.8)

where wu;(g) is the chemical potential of the pure vapour; the pressure of 1
atm is the same throughout, and will not be written explicitly. It can be
shown that a consequence of this relation is that the normal boiling point
of the solvent is raised and that in a dilute solution the increase is
proportional to the mole fraction of solute.

A(g)

Ux(g,p)

()

All) + B

Figure 5B.8 The equilibrium involved in the calculation of the elevation of
boiling point is between A present as pure vapour and A in the mixture, A
being the solvent and B a non-volatile solute.

AR EIR YR Deriving an expression for the elevation
of the boiling point



The starting point for the calculation is the equality of the chemical
potentials of the solvent in the liquid and vapour phases, eqn 5B.8.
The strategy then involves examining how the temperature must be
changed to maintain that equality when solute is added. You need
to follow these steps.

Step 1 Relate In x, to the Gibbs energy of vaporization

Equation 5B.8 can be rearranged into

uilg)- i) _ A
Inx, = = T = ﬁ'—

where A . G is the (molar) Gibbs energy of vaporization of the pure

vap

solvent (A).

Step 2 Write an expression for the variation of In x, with
temperature

Differentiating both sides of the expression from Step 1 with
respect to temperature and using the Gibbs—Helmholtz equation
(Topic 3E, (d(G/T)/0T), = —H/T %) to rewrite the term on the right

gives

dinx, 1diaGIT) AH

dT R dT T RT?

The change in temperature dT needed to maintain equilibrium when
solute is added and the change in In x, by d In x, are therefore

related by

A__H
d].EI.'('J.l= —ﬁl—dT

Step 3 Find the relation between the measurable changes in In x,
and T by integration

To integrate the preceding expression, integrate from x, = 1,
corresponding to In x, = 0 (and when T = T*, the boiling point of
pure A) to x, (when the boiling point is T). As usual, to avoid



confusing the variables of integration with the final value they
reach, replace In x, by In »; and T by T':
T A

= Inx; ’ 1 .
.||;\- dln.rl=—ﬁt|:,%dT

The left-hand side integrates to In x,, which is equal to In(1 — xp).

The right-hand side can be integrated if the enthalpy of
vaporization is assumed to be constant over the small range of
temperatures involved, so can be taken outside the integral:

Iribegral A1
with n=-2
A H T 1
Ini—xy )=-—F—[ =T’

Therefore
s

Step 4 Approximate the expression for dilute solutions

Suppose that the amount of solute present is so small that x5 << 1;

the approximation In(1 — x) ® —x (The chemist’s toolkit 12) can then
be used. It follows that

e

A

Finally, because the increase in the boiling point is small, T ~ T*, it
also follows that

1 1 T-T* T-T* AT,
T T T == 1+

with AT, = T — T*. The previous equation then becomes

AT,

g = {5B.9a)

which confirms that the elevation of boiling point and the mole
fraction of solute are proportional to each other.



Step 5 Rearrange the expression

The calculation has shown that the presence of a solute at a mole
fraction x5 causes an increase in normal boiling point from T* to T*

+ AT, and after minor rearrangement of eqn 5B.9a the relation is

: {5B.2h)
4< AT =kx, Kk=RTT |
b B A H | Elevation of bolling point

[Ideal solution]

Because eqn 5B.9b makes no reference to the identity of the solute, only
to its mole fraction, it follows that the elevation of boiling point is a
colligative property. The value of AT does depend on the properties of
the solvent, and the biggest changes occur for solvents with high boiling
points. By Trouton’s rule (Topic 3B), A, ,H/T* is a constant; therefore
eqn 5B.9b has the form AT < T* and is independent of A, H itself. If
xg << 1 it follows that the mole fraction of B is proportional to its

molality, b (see The chemist’s toolkit 11 in Topic 5A). equation 5B.9b
can therefore be written as

Bollimg polnt alevation

AT,=K,b [empirical relation] (5B.5¢)

where K, is the empirical boiling-point constant of the solvent (Table
5B.1).

Table 5B.1 Freezing-point (K;) and boiling-point (K,) constants*

K¢/(K kg mol ™) K,/(K kg mol 1)
Benzene 5.12 2.53
Camphor 40

Phenol 7.27 3.04



Water 1.86 0.51

% . . .
More values are given in the Resource section.

LS ERGL (&P Series expansions

A function f(x) can be expressed in terms of its value in the vicinity
of x = a by using the Taylor series

f{x]=f[ﬂj+[%J {x—u]+%r[%{-\| (x—a) 4
_w 1(df -
= Em[ﬁl (x~a) Taylor saries

where the notation (...), means that the derivative is evaluated at x
= a and n! denotes a factorial defined as

n'=nn-1)mn-2)...1, 0'=1 Factorial

The Maclaurin series for a function is a special case of the Taylor
series in which a = 0. The following Maclaurin series are used at
various stages in the text:

(I+xy'=l-x+x’—--.= if—l)"x"
Lo

- A
X T R, Tk ]
e =l+x+vx + E;'r

M=}

In1 +x‘,|=x—+x1++x’—n-=i;(—l}“"%

Series expansions are used to simplify calculations, because
when |x| << 1 it is possible, to a good approximation, to terminate
the series after one or two terms. Thus, provided |x| << 1,

A+x)1~1-x

e*~r 1 +x



In(1 +x) = x

A series is said to converge if the sum approaches a finite,
definite value as n approaches infinity. If it does not, the series is
said to diverge. Thus, the series expansion of (1+x)™! converges for
Ix| < 1 and diverges for |x| > 1. Tests for convergence are explained
in mathematical texts.

Brief illustration 5B.2

The boiling-point constant of water is 0.51 K kg mol™, so a solute
present at a molality of 0.10 mol kg™ would result in an elevation
of boiling point of only 0.051 K. The boiling-point constant of
benzene is significantly larger, at 2.53 K kg mol ™!, so the elevation
would be 0.25 K.

(c) The depression of freezing point

The equilibrium now of interest is between pure solid solvent A and the
solution with solute present at a mole fraction x5 (Fig. 5B.9). At the

freezing point, the chemical potentials of A in the two phases are equal:

urlsi=uzli+ RTlnx, {5B.10)

where u3ts) is the chemical potential of pure solid A. The only difference
between this calculation and the last is the appearance of the chemical
potential of the solid in place of that of the vapour. Therefore the result
can be written directly from eqn 5B.9b:

RT*
"""fusH

AT=K%, K'= Freozng point depression (5B.11)

where T* is the freezing point of the pure liquid, AT; is the freezing



point depression, T* — T, and A H is the enthalpy of fusion of the

solvent. Larger depressions are observed in solvents with low enthalpies
of fusion and high melting points. When the solution is dilute, the mole
fraction is proportional to the molality of the solute, b, and it is common
to write the last equation as

AT = Kb Freezing point depression [empirical relation] (5B.12)

where K; is the empirical freezing-point constant (Table 5B.1).

(1)
|
px(s)

Figure 5B.9 The equilibrium involved in the calculation of the lowering of
freezing point is between A present as pure solid and A in the mixture, A
being the solvent and B a solute that is insoluble in solid A.

Brief illustration 5B.3




The freezing-point constant of water is 1.86 K kg mol™, so a solute
present at a molality of 0.10 mol kg™ would result in a depression
of freezing point of only 0.19 K. The freezing-point constant of
camphor is significantly larger, at 40 K kg mol ™, so the depression
would be 4.0 K.

(d) Solubility

Although solubility is not a colligative property (because solubility
varies with the identity of the solute), it may be estimated in a similar
way. When a solid solute is left in contact with a solvent, it dissolves
until the solution is saturated. Saturation is a state of equilibrium, with
the undissolved solute in equilibrium with the dissolved solute.
Therefore, in a saturated solution the chemical potential of the pure solid
solute, i), and the chemical potential of B in solution, pg, are equal
(Fig. 5B.10). Because the latter is related to the mole fraction in the
solution by wu=p;(l) + kTl it follows that

sl =pzli+ ATl {5B.13)

This expression is the same as the starting equation of the last section,
except that the quantities refer to the solute B, not the solvent A. It can
be used in a similar way to derive the relation between the solubility and
the temperature.

Deriving a relation between the solubility
and the temperature

In the present case, the goal is to find the mole fraction of B in
solution at equilibrium when the temperature is T. Therefore, start
by rearranging eqn 5B.13 into

_Hgisi—ugl)  AG
n%==""gr - RT



As in the derivation of eqn 5B.9, differentiate both side of this
equation with respect to T to relate the change in composition to the
change in temperature, and use the Gibbs—Helmholtz equation.
Then integrate the resulting expression from the melting
temperature of B (when x; = 1 and In x5 = 0) to the temperature of

interest (when xg has a value between 0 and 1):

B
dissolved in
A

Ug(solution)

B(s)

uz(s)

Figure 5B.10 The equilibrium involved in the calculation of the solubility
is between pure solid B and B in the mixture.

J':’“dlnxfiﬂj;*?—r“f{dr*
where Ay H is the enthalpy of fusion of the solute and T; is its
melting point.

In the final step, suppose that the enthalpy of fusion of B is
constant over the range of temperatures of interest, and take it



outside the integral. The result of the calculation is then

OO0 Wy | | (5B.14)
S TR | Ideal solubility

This equation is plotted in Fig. 5B.11. It shows that the solubility of B
decreases as the temperature is lowedblue from its melting point. The
illustration also shows that solutes with high melting points and large
enthalpies of melting have low solubilities at normal temperatures.
However, the detailed content of eqn 5B.14 should not be treated too
seriously because it is based on highly questionable approximations,
such as the ideality of the solution. One aspect of its approximate
character is that it fails to pdblueict that solutes will have different
solubilities in different solvents, for no solvent properties appear in the
expression.

1

Mole fraction of B, x,

0 0.5 1
T

Figure 5B.11 The variation of solubility, the mole fraction of solute in a
saturated solution, with temperature; T* is the freezing temperature of the



solute. Individual curves are labelled with the value of Aq H/RT*.

Brief illustration 5B.4

The ideal solubility of naphthalene in benzene is calculated from
eqn 5B.14 by noting that the enthalpy of fusion of naphthalene is
18.80 kJ mol ™! and its melting point is 354 K. Then, at 20°C,

_ 1880x10* fmal™ (1 1 "|_
wptiialios = g 3145]K-"mol ' | 354K~ 293K |7

Inx —-1.32....

and therefore x,,, ;. pajene = 0-26. This mole fraction corresponds to a

molality of 4.5 mol kg™t (580 g of naphthalene in 1 kg of benzene).

(e) Osmosis

The phenomenon of osmeosis (from the Greek word for ‘push’) is the
spontaneous passage of a pure solvent into a solution separated from it
by a semipermeable membrane, a membrane permeable to the solvent
but not to the solute (Fig. 5B.12). The osmotic pressure, IT (uppercase
pi), is the pressure that must be applied to the solution to stop the influx
of solvent. Important examples of osmosis include transport of fluids
through cell membranes, dialysis, and osmometry, the determination of
molar mass by the measurement of osmotic pressure. Osmometry is
widely used to determine the molar masses of macromolecules.

In the simple arrangement shown in Fig. 5B.13, the opposing pressure
arises from the column of solution that the osmosis itself produces.
equilibrium is reached when the pressure due to that column matches the
osmotic pressure. The complicating feature of this arrangement is that
the entry of solvent into the solution results in its dilution, and so it is
more difficult to treat than the arrangement in Fig. 5B.12, in which there
is no flow and the concentrations remain unchanged.



p+11

p

Pure solvent Solution

ux(p) p,(p + 1)

\ /

\ 7
Equal at equilibrium

Figure 5B.12 The equilibrium involved in the calculation of osmotic pressure,
I1, is between pure solvent A at a pressure p on one side of the
semipermeable membrane and A as a component of the mixture on the other
side of the membrane, where the pressure is p + 1.




A

Solution Height proportional
! to osmotic pressure
; ", Semipermeable
Solvent / membrane
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Figure 5B.13 In a simple version of the osmotic pressure experiment, A is at
equilibrium on each side of the membrane when enough has passed into the
solution to cause a hydrostatic pressure difference.

The thermodynamic treatment of osmosis depends on noting that, at
equilibrium, the chemical potential of the solvent must be the same on
each side of the membrane. The chemical potential of the solvent is
lowedblue by the solute, but is restodblue to its ‘pure’ value by the
application of pressure. The challenge in this instance is to show that,
provided the solution is dilute, the extra pressure to be exerted is
proportional to the molar concentration of the solute in the solution.

AR EIR Y=Y Deriving a relation between the osmotic
pressure and the molar concentration of solute

On the pure solvent side the chemical potential of the solvent,
which is at a pressure uieh On the solution side, the chemical
potential is lowedblue by the presence of the solute, which
dblueuces the mole fraction of the solvent from 1 to x,. However,



the chemical potential of A is raised on account of the greater
pressure, p + I1, that the solution experiences. Now follow these
steps, and be prepadblue to make a number of approximations by
supposing that the solution is dilute (xz << 1).

Step 1 Write an expression for the chemical potential of the solvent
in the solution

At equilibrium the chemical potential of A is the same in both
compartments:

wXpy= 1, (x,, p+1T)

The presence of solute is taken into account in the normal way by
using eqn 5B.1:

fplx, p+ 1T = lgip+1T)+ RTInx,

By combining these two expressions it follows that
i =utp+IT+ RTnx,

and therefore
wip+ T =ui(p)— RTlnx,

Step 2 Evaluate the effect of pressure on the chemical potential of
the solvent

The effect of pressure is taken into account by using eqn 3E.12b,
Il-—"'-Ll:u I:-Pf J= Gru [Pl J+_I‘:r ]':-ru d'.P
written as

% _— gt
.ukt_p+ﬂj=,uﬂipjl+_|F V_odp

where V_ is the molar volume of the pure solvent A. On

substituting u;ip+ T =p;ip) - RTInx, into this expression and cancelling
the uii). it follows that



dp (5B.15)

o P
—RTlnx,=[""V,

Step 3 Evaluate the integral

Suppose that the pressure range in the integration is so small that
the molar volume of the solvent is a constant. Then the right-hand
side of eqn 5B.15 simplifies to

[ Vadp=Va [ ap=v,11

which implies that

~RTInx,=V,II

On the left-hand side of this expression, In x, may be replaced by
In(1 - xg), and if it is assumed that the solution is dilute In(1 — x;) ~
—xg (The chemist’s toolkit 12), then

—RTnx,=—RTIn{1—x, )= RTx,
The equation then becomes

RTx, =11V,

m

Step 4 Simplify the expression for the osmotic pressure for dilute
solutions

When the solution is dilute, x5 ~ ng/n,, and therefore RTng =~
n 1V, . Moreover, n,V, =V, the total volume of the solvent, so
RTng ~ ITV. At this stage ng/V can be recognized as the molar

concentration [B] of the solute B. It follows that for dilute solutions
the osmotic pressure is given by

(5B.18)

ok T |
— IT=[BIRT | van 't Hoff equation




This relation, which is called the van ’t Hoff equation, is valid only for
ideal solutions. However, one of the most common applications of
osmometry is to the measurement of molar masses of macromolecules,
such as proteins and synthetic polymers. As these huge molecules
dissolve to produce solutions that are far from ideal, it is assumed that
the van ’t Hoff equation is only the first term of a virial-like expansion,
much like the extension of the perfect gas equation to real gases (in
Topic 1C) to take into account molecular interactions:

IT=[JIRT{1 + B[J] +...} Osmotic virial expansion (5B.17)

(The solute is denoted as J to avoid too many different Bs in this
expression.) The additional terms take the non-ideality into account; the
empirical constant B is called the osmotic virial coefficient. When it is
possible to ignore corrections beyond the term depending on B, the
osmotic pressure is written as

IT=[JIRT{1+ B[J]} or II/[J]=RT+ BRT[J] (5B.18)

It follows that the osmotic virial coefficient may be calculated from the
slope, BRT, of a plot of I1/[J] against [J], as shown in Fig. 5B.14a.

Slope: BRT

Slope: BRTIMF

mass..J

[/1J]

Il/c

%interce;::t: AT = | .
<—|ntercept: RAT/M

il
|:El:| D ["-” ﬂbjﬂ mass,J

-
o



Figure 5B.14 The plot and extrapolation made to analyse the results of an
osmometry experiment using (a) the molar concentration and (b) the mass
concentration.

eI %) Using osmometry to determine the molar
mass of a macromolecule

The osmotic pressures of solutions of a polymer, denoted J, in
water at 298 K are given below. Determine the molar mass of the
polymer.

Cinass /(8 dm™3) 1.00 2.00 4.00 7.00 9.00
I1/Pa 27 70 197 500 785

Collect your thoughts This example is an application of eqn
5B.18, but as the data are in terms of the mass concentration, that
equation must first be converted. To do so, note that the molar
concentration [J] and the mass concentration ¢, ; are related by
[J] = Cpass/M, where M is the molar mass of J. Then identify the

appropriate plot and the quantity (it will turn out to be the intercept
on the vertical axis at ¢ = 0) that gives you the value of M.

mass,J

The solution To express eqn 5B.18 in terms of the mass

concentration, substitute [J] = c... /M and obtain
i BTl

TR BOT:

Acliedly | ey, _EE

M

Division through by M gives

¥ =intercept +slops
o Ty L awfien ] F [y _'_\'_ A
1 RT | BRI | —
= + C,
M?

M s

I,

Y muss )

It follows that, by plotting IT/c,, ; against ¢ ;, the results should

fall on a straight line with intercept RT/M on the vertical axis at
C = 0. The following values of Il/c .. ; can be calculated from

mass,J mass,



the data:

Cmass j/(8 dm™>) 1.00 2.00 4.00 7.00 9.00
(IT/Pa)/(Cppags /g dm ™3 27 35 49.2 71.4 87.2

The intercept with the vertical axis at ¢, ; = 0 (which is best
found by using linear regression and mathematical software) is at

P
flgdm™)

':ma:s]

198

which rearranges into

Il/c,_...,=19.8 Pag! dm?

mass,J

Therefore, because this intercept is equal to RT/M,

v RT_ _ RT
T 198Pagtdm’ 1.98¢107 Pag ' m’

It follows that

-

l—.IJ=IF'am::

8.3145 K~ mol™' (298 K
- mol™ )i :'=l_2_:.xmsgmnl"

M 198107 Pag~ m’

The molar mass of the polymer is therefore 125 kg mol ™.

Comment. Note that once M is known, the coefficient B can be
determined from the slope of the graph, which is equal to BRT/M?,
as shown in Fig. 5B.14b.

Self-test 5B.2 The osmotic pressures of solutions of poly(vinyl
chloride), PVC, in dioxane at 25°C were as follows:

Crnass 1/ (8 dm ™) 0.50 1.00 1.50 2.00 2.50
I1/Pa 33.6 35.2 36.8 38.4 40.0

Determine the molar mass of the polymer.

Answer: 77 kg mol™!



Checklist of concepts

[

[

[

1. The Gibbs energy of mixing of two liquids to form an ideal
solution is calculated in the same way as for two perfect gases.

2. The enthalpy of mixing for an ideal solution is zero and the
Gibbs energy is due entirely to the entropy of mixing.

3. A regular solution is one in which the entropy of mixing is the
same as for an ideal solution but the enthalpy of mixing is non-
zZero.

4. A colligative property depends only on the number of solute
particles present, not their identity.

5. All the colligative properties stem from the dblueuction of the
chemical potential of the liquid solvent as a result of the presence
of solute.

6. The elevation of boiling point is proportional to the molality of
the solute.

7. The depression of freezing point is also proportional to the
molality of the solute.

8. The osmotic pressure is the pressure that when applied to a
solution prevents the influx of solvent through a semipermeable
membrane.

9. The relation of the osmotic pressure to the molar concentration of
the solute is given by the van ’t Hoff equation and is a sensitive
way of determining molar mass.

Checklist of equations




Property Equation Comment Equation
number

Gibbs energy A,;xG = Ideal solutions 5B.3
of mixing NRT(xp In x4 +

xg In xp)
Entropy of AnixS = —nR(x,  Ideal solutions 5B.4
mixing Inx, + xg In

Xp)
Enthalpy of A H=0 Ideal solutions
mixing
Excess XE = A X — Definition 5B.5
function i

Amixxldeal
Regular HF = néRTx, x5 Model; S¥ =0 5B.6
solution
Elevation of AT, = Kpb Empirical, non- 5B.9c
boiling point volatile solute
Depression AT~ Kb Empirical, solute 5B.12
of freezing insoluble in solid
point solvent
Ideal Inxp = Ideal solution 5B.14
solubility (A H/R)(1/T;

- 1/T)
van 't Hoff IT=[B]RT Valid as [B] - 0 5B.16
equation
Osmotic IT=[J]RT{1 + Empirical 5B.17
virial B[J] + ...}
expansion

1 More precisely, if it is not an enthalpy effect (that is, an effect arising from changes in the
entropy of the surroundings due to the transfer of energy as heat into or from them), then it
must be an effect arising from the entropy of the system.



TOPIC 5C Phase diagrams of binary
systems: liquids

> Why do you need to know this material?

The separation of complex mixtures is a common task in the chemical
industry. The information needed to formulate efficient separation
methods is contained in phase diagrams, so it is important to be able to
interpret them.

> \What is the key idea?

The phase diagram of a liquid mixture can be understood in terms of the
variation with temperature and pressure of the composition of the liquid
and vapour in mutual equilibrium.

> \What do you need to know already?

It would be helpful to review the interpretation of one-component phase
diagrams and the phase rule (Topic 4A). This Topic also draws on
Raoult’s law (Topic 5A) and the concept of partial pressure (Topic 1A).

One-component phase diagrams are described in Topic 4A. The phase
equilibria of binary systems are more complex because composition is
an additional variable. However, they provide very useful summaries of
phase equilibria for both ideal and empirically established real systems.
This Topic focuses on binary mixtures of liquids. The phase diagrams of

liquid—solid mixtures are discussed in Topic 5D.



sc.1 Vapour pressure diagrams

The partial vapour pressures of the components of an ideal solution of
two volatile liquids are related to the composition of the liquid mixture
by Raoult’s law (Topic 5A):

By=x.py Pp=2gPp {5C.1)

where ¢}, with J = A, B, is the vapour pressure of pure J and x, is the

mole fraction of J in the liquid. The total vapour pressure p of the
mixture is therefore

Prassura, p
\

Puro A

e [ Vapour
(]
2
=
(=
1]

Maole fraction of A, x, 1

Figure 5C.1 The variation of the total vapour pressure of a binary mixture
with the mole fraction of A in the liquid when Raoult’s law is obeyed.

.-.:|—'f

“ |

p=pa+pa=xa05 + 5Py =p3 + (3 —PE)xy
Total vapour prassure. (SC.2)

This expression shows that the total vapour pressure (at some fixed
temperature) changes linearly with the composition from pg* to p,* as
x, changes from 0 to 1 (Fig. 5C.1).

The compositions of the liquid and vapour that are in mutual
equilibrium are not necessarily the same. Common sense suggests that
the vapour should be richer in the more volatile component. This
expectation can be confirmed as follows. If the mole fractions of the
components in the vapour are y, with J = A and B, then their partial

pressures are p; =y, p, with p the total pressure. Therefore



P b
yi= r 5 (5C.3)
Provided the mixture is ideal, the partial pressures and the total
pressure may be expressed in terms of the mole fractions in the liquid
by using eqn 5C.1 for p; and eqn 5C.2 for the total vapour pressure p.

The result of combining these relations is

: *
Gy

SATE e e Ya=1-y
PeHpa—pe )%, ! *

¥y

Composition of vapour (5C.4)
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Figure 5C.2 The mole fraction of A in the vapour of a binary ideal solution
expressed in terms of its mole fraction in the liquid, calculated using eqgn 5C.4
for various values of p,*/pg*. For A more volatile than B (p,*/pg* > 1), the
vapour is richer in A compadblue with the liquid..

Figure 5C.2 shows the composition of the vapour plotted against the
composition of the liquid for various values of p,*/pg* > 1. Provided

that p,*/pg* > 1, then y, > x,: the vapour is richer than the liquid in the
more volatile component. Note that if B is not volatile, so py* = 0 at the
temperature of interest, then it makes no contribution to the vapour (y; =



0).

Brief illustration 5C.1

The vapour pressures of pure benzene and methylbenzene at 20°C
are 75 Torr and 21 Torr, respectively. The composition of the
vapour in equilibrium with an equimolar liquid mixture (Xy.ene =

= 1) i
Xmethylbenzene 1) IS

. _ L 75 Tour) _
Fhonzane =30 +i{75—21Torr =+

0.78
Y muthylbenzene = 1-0.78=0.22
The partial vapour pressure of each component is

Pronzane =+ * (75 Torr) = 37.5 Torr

szr}rr'l.bmnm = J:' X (2-1 Tﬂff:' =10.5 Torr

and the total vapour pressure is the sum of these two values, 48
Torr.

Equations 5C.2 and 5C.4 can be combined to express the total vapour
pressure in terms of the composition of the vapour.

FASRGETR YRy Deriving an expression for the total

vapour pressure of a binary mixture in terms of the
composition of the vapour

equation 5C.4 can be rearranged as follows to express x, in terms
of y,. First, multiply both sides by p;+(p;-p;1x, to obtain

BeVat PP Ya= X, P

Then collect terms in x,,:



peya=ApiHps—pilvala,
which rearranges to

s Pr¥a

e T e
A PP P,

From eqn 5C.2 and the expression for x,,

VIR RTINS | /. 8), ¢ /80
p=pyHips—pg e, pB+P,;+fPﬂ_P;j}'A
Finally, after some algebra,

Yl e O LY et 2 R N
PIHE =Pl IYa

P

which simplifies to

pirz | St
F= L+ —piy, | Total vapaur prassure

This expression is plotted in Fig. 5C.3.
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Figure 5C.3 The dependence of the vapour pressure of the same system as
in Fig. 5C.2, but expressed in terms of the mole fraction of A in the vapour by
using eqn 5C.5. Individual curves are labelled with the value of p,*/pg*.

5C.2 Temperature—composition diagrams

A temperature—composition diagram is a phase diagram in which the
boundaries show the composition of the phases that are in equilibrium at
various temperatures (and a given pressure, typically 1 atm). An
example is shown in Fig. 5C.4. Note that the liquid phase lies in the
lower part of the diagram. Temperature—composition diagrams are
central to the discussion of distillation. In the following discussion, it
will be best to keep in mind a system consisting of a liquid and its
vapour confined inside a cylinder fitted with a movable piston that
exerts a constant pressure, which in most cases is 1 atm. In this
arrangement, the liquid and its vapour are in equilibrium at the normal
boiling point of the mixture.



(a) The construction of the diagrams

Although in principle a temperature—composition diagram could be
constructed from vapour-pressure diagrams by examining the
temperature dependence of the vapour pressures of the components and
identifying the temperature at which the total vapour pressure becomes
equal to 1 atm (or whatever ambient pressure is of interest), they are
normally constructed from empirical data on the composition of the
phases in equilibrium at each temperature.

Provided the ambient pressure is 1 atm, the points representing
liquid/vapour equilibrium for each of the pure liquid components are
their normal boiling points. The line labelled ‘Liquid’ displays the
boiling temperature (the temperature at which the total vapour pressure
is 1 atm) of the mixture across the range of compositions. The line
labelled “Vapour’ is the composition of the vapour in equilibrium with
the liquid at each temperature. As remarked in the preceding discussion,
for ideal solutions the vapour is richer in the more volatile component,
so the curve is necessarily displaced towards the pure component that
has the higher vapour pressure and therefore the lower boiling
temperature.
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Figure 5C.4 The temperature—composition diagram corresponding to an
ideal mixture with the component A more volatile than component B. As
described in Section 5C.2, successive boilings and condensations of a liquid
originally of composition a, lead to a condensate that is pure A.

el X{ek) Constructing a temperature—composition
diagram

The following temperature/composition data were obtained for a
mixture of octane (O) and methylbenzene (M) at 1.00 atm, where
X, 1s the mole fraction of M in the liquid and y,, the mole fraction

in the vapour at equilibrium.
6/°C 110.9 112.0 114.0 115.8 117.3 119.0

X 0.908 0.795 0.615 0.527 0.408 0.300
Ym 0.923 0.836 0.698 0.624 0.527 0.410

The boiling points are 110.6°C and 125.6°C for M and O,
respectively. Plot the temperature/composition diagram for the
mixture.

Collect your thoughts Plot the composition of each phase (on
the horizontal axis) against the temperature (on the vertical axis).
The two boiling points give two further points corresponding to x,,

= 1 and x,; = 0, respectively. Use a spreadsheet or mathematical
software to draw the phase boundaries.

The solution The points are plotted in Fig. 5C.5. The two sets of
points are fitted to the polynomials a + bz + cz* + dz* with z = x,
for the liquid line and z = y,, for the vapour line.

For the liquid line: 6/°C = 125.422 — 22.9494x,, + 6.64602x,,, +
1.32623x, 5

For the vapour line: 6/°C = 125.485 - 11.9387y,, — 12.5626y,,, +



9.36542y, 5
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Figure 5C.5 The plot of data and the fitted curves for a mixture of octane
(O) and methylbenzene (M) in Example 5C.1.

Self-test 10.5C Repeat the analysis for the following data on
hexane and heptane:

8/°C 65 66 70 77 85 100
Xoeane O 020 040 060 080 1
Viewne O 002 008 020 048 1

Answer: Fig. 5C.6
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Figure 5C.6 The plot of data and the fitted curves for a mixture of
hexane (Hx) and heptane in Self-test 5C.1.

(b) The interpretation of the diagrams

The horizontal axis of the diagram denotes the value of the mole fraction
x, when interpreting the ‘Liquid’ line and the mole fraction y, when
interpreting the ‘“Vapour’ line, as illustrated in Example 5C.1. That is, a
vertical line at x, intersects the ‘Liquid’ line at the boiling point of the
mixture as it was prepadblue. The horizontal line at that temperature,
which is called a tie line, intersects the ‘Vapour’ line at a composition
that represents the mole fraction y, of A in the vapour phase in
equilibrium with the boiling liquid. When appropriate, the horizontal
axis will be labelled z, and interpreted as x, or y, according to which
line, ‘Liquid’ or ‘Vapour’ respectively, is of interest.

A point in the diagram below the ‘Liquid’ line at a given temperature



corresponds to the mixture being at a temperature below its boiling
point. If the ambient pressure is 1 atm, which is greater than the vapour
pressure at that temperature, the entire sample is liquid and x, is its

composition. Similarly, if a point is above the ‘Vapour’ line at a given
temperature, then that temperature is above the boiling point of the
mixture, its vapour pressure is greater than 1 atm, and the entire sample
is a vapour with a composition that is the same as that of the original
mixture (because it has become entirely vapour). If the temperature is
such that the point lies on the ‘Liquid’ curve, then the liquid and its
vapour are in equilibrium and the composition of the vapour is
represented by noting where the tie line meets the ‘Vapour’ curve. Note
that the phase boundary (the ‘coexistence curve’) representing the
frontier between the regions where either the liquid or the vapour is the
more stable phase is the ‘Liquid’ line: the “Vapour’ line simply provides
additional information.
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Figure 5C.7 The points of the temperature—composition diagram discussed
in the text. The vertical line through a is an isopleth, a line of constant
composition of the entire system.

Points that lie between the two lines do provide additional
information if the horizontal axis denotes the overall composition of the



mixture in equilibrium at a given temperature rather than the liquid or
vapour composition separately. Thus, consider what happens when a
mixture in which the mole fraction of A is z, is heated. The overall
composition does not change regardless of how much liquid vaporizes,
so the system moves up the vertical line at a in Fig. 5C.7. Such a vertical
line is called an isopleth (from the Greek words for ‘equal abundance’).
At a, the liquid boils and initially is in equilibrium with its vapour of

composition a,’, as given by the tie line. This vapour is richer in the

more volatile component (B), so the liquid is depleted in B. Being richer
in A, the boiling point of the remaining liquid moves to a, and the

composition of the vapour in equilibrium with that liquid changes to a,'.

Further heating migrates the composition of the liquid further towards
pure A, the boiling point rises and the composition of the vapour
changes accordingly to a;'. At a,’ the composition of the vapour is the

same as the overall composition of the mixture, which implies that all
the liquid has vaporized. Above that temperature, only vapour is present
and has the initial overall composition.

It is also possible to pdblueict the abundances of liquid and vapour at
any stage of heating when the temperature and overall composition
correspond to a point between the ‘Liquid’ and ‘Vapour’ lines, where a
liquid of one composition is in equilibrium with a vapour of another
composition.

FOARRGER Iy loW) Establishing the lever rule

If the amount of A molecules in the vapour is n, ,, and the amount
in the liquid phase is n, ;, the total amount of A molecules is n, =
nyy +n,y and likewise for B molecules. The overall mole fraction
of Alis zy, = (ny; + nyy)/(n, + ng). The total amount of molecules
in the liquid (both A and B) is n; = n,; + ng;, and the total amount
of molecules in the vapour is likewise ny = n,y + ngy. These

relations can be written in terms of the mole fractions in the vapour
(v,) and liquid (x,) phases. Thus, the amount of A in the liquid

phase is n;x,. Similarly, the amount of A in the vapour phase is



nyy,. The total amount of A is therefore

Ny = NpXp T NyYp
The total amount of A molecules is also
Ny =NZy =N Z, + NyZy

By equating these two expressions it follows that n;x, + nyy, =
n,z, + nyz,, and therefore

iy

_A'— ——
Az —x, )=m0r,—2,)

As shown in Fig. 5C.8, with z, — x, defined as the ‘length’ [;, and
Ya — Z, defined as the ‘length’ [, this relation can be expressed as
the lever rule:

(5C.6)
s
— mh=mdy | Lever nle

The lever rule applies to any phase diagram, not only to liquid—vapour
equilibria.
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Figure 5C.8 The lever rule. The distances /, and /, are used to find the

proportions of the amounts of the vapour and liquid present at equilibrium.
The lever rule is so called because a similar rule relates the masses at two
ends of a lever to their distances from a pivot (in that case m\/\, = m/, for

balance).

Brief illustration 5C.2

In the case illustrated in Fig. 5C.7, because [, ~ 2, at the tie line at
a,, the amount of molecules in the liquid phase is about twice the
amount of molecules in the vapour phase. At a, in Fig. 5C.7, the
ratio [/I; is almost infinite for this tie line, so n;/ny is also almost

infinite, and there is only a trace of vapour present. When the
temperature is raised to a,, the value of I,/I; is about 6.9, so n,/n,,
0.15 and the amount of molecules present in the liquid is about 0.15
times the amount in the vapour. When the temperature has
increased to a, and I/l ~ 0 there is only a trace of liquid present.




sc.3 Distillation

Consider what happens when a liquid of composition a, in Fig. 5C.4 is
heated. It boils when the temperature reaches T,. Then the liquid has
composition a, (the same as a,) and the vapour (which is present only as
a trace) has composition a,’. The vapour is richer in the more volatile

component A (the component with the lower boiling point). The
composition of the vapour at the boiling point follows from the location
of a,, and from the location of the tie line joining a, and a,’ it is possible

to read off the boiling temperature (T,) of the original liquid mixture.

@) Simple and fractional distillation

In a simple distillation, the vapour is withdrawn and condensed. This
technique is used to separate a volatile liquid from a non-volatile solute
or solid. In fractional distillation, the boiling and condensation cycle is
repeated successively. This technique is used to separate volatile liquids.

Consider what happens if the vapour at a,’ in Fig. 5C.4 is condensed,

and then this condensate (of composition a;) is reheated. The phase
diagram shows that this mixture boils at T, and yields a vapour of
composition a,’, which is even richer in the more volatile component.

That vapour is drawn off, and the first drop condenses to a liquid of
composition a,. The cycle can then be repeated until in due course

almost pure A is obtained in the vapour and pure B remains in the liquid.

The efficiency of a fractionating column is expressed in terms of the
number of theoretical plates, the number of effective vaporization and
condensation steps that are requidblue to achieve a condensate of given
composition from a given distillate.

Brief illustration 5C.3

To achieve the degree of separation shown in Fig. 5C.9a, the
fractionating column must correspond to three theoretical plates. To




achieve the same separation for the system shown in Fig. 5C.9b, in
which the components have more similar normal boiling points, the
fractionating column must be designed to correspond to four
theoretical plates.

Temperature, T
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{[;:I Composition, x I[DI::} Composition, x

Figure 5C.9 The number of theoretical plates is the number of steps needed
to bring about a specified degree of separation of two components in a
mixture. The two systems shown correspond to (a) 3, (b) 4 theoretical plates.

(b) Azeotropes

Although many liquids have temperature—composition phase diagrams
resembling the ideal version shown in Fig. 5C.4, in a number of
important cases there are marked deviations. A maximum in the phase
diagram (Fig. 5C.10) may occur when the favourable interactions
between A and B molecules dblueuce the vapour pressure of the mixture
below the ideal value and so raise its boiling temperature: in effect, the
A-B interactions stabilize the liquid. In such cases the excess Gibbs



energy, G® (Topic 5B), is negative (more favourable to mixing than
ideal). Phase diagrams showing a minimum (Fig. 5C.11) indicate that
the mixture is destabilized relative to the ideal solution, the A-B
interactions then being unfavourable; in this case, the boiling
temperature is lowedblue. For such mixtures GE is positive (less
favourable to mixing than ideal), and there may be contributions from
both enthalpy and entropy effects.
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Figure 5C.10 A high-boiling azeotrope. When the liquid of composition a is
distilled, the composition of the remaining liquid changes towards b but no

further.
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Figure 5C.11 A low-boiling azeotrope. When the mixture at a is fractionally
distilled, the vapour in equilibrium in the fractionating column moves towards
b and then remains unchanged.

Deviations from ideality are not always so strong as to lead to a
maximum or minimum in the phase diagram, but when they do there are
important consequences for distillation. Consider a liquid of
composition a on the right of the maximum in Fig. 5C.10. The vapour
(at a,) of the boiling mixture (at a,) is richer in A. If that vapour is
removed (and condensed elsewhere), then the remaining liquid will
move to a composition that is richer in B, such as that represented by a,,
and the vapour in equilibrium with this mixture will have composition
a,’. As that vapour is removed, the composition of the boiling liquid
shifts to a point such as a,, and the composition of the vapour shifts to
a,. Hence, as evaporation proceeds, the composition of the remaining
liquid shifts towards B as A is drawn off. The boiling point of the liquid
rises, and the vapour becomes richer in B. When so much A has been
evaporated that the liquid has reached the composition b, the vapour has
the same composition as the liquid. Evaporation then occurs without
change of composition. The mixture is said to form an azeotrope.!
When the azeotropic composition has been reached, distillation cannot



separate the two liquids because the condensate has the same
composition as the azeotropic liquid.

The system shown in Fig. 5C.11 is also azeotropic, but shows its
azeotropy in a different way. Suppose we start with a mixture of
composition a,, and follow the changes in the composition of the vapour
that rises through a fractionating column (essentially a vertical glass
tube packed with glass rings to give a large surface area). The mixture
boils at a, to give a vapour of composition a,’. This vapour condenses in
the column to a liquid of the same composition (now marked a,). That
liquid reaches equilibrium with its vapour at a,’, which condenses higher
up the tube to give a liquid of the same composition, which we now call
a,. The fractionation therefore shifts the vapour towards the azeotropic
composition at b, but not beyond, and the azeotropic vapour emerges
from the top of the column.

Brief illustration 5C.4

Examples of the behaviour of the type shown in Fig. 5C.10 include
(a) trichloromethane/propanone and (b) nitric acid/water mixtures.
Hydrochloric acid/water is azeotropic at 80 per cent by mass of
water and boils unchanged at 108.6°C. Examples of the behaviour
of the type shown in Fig. 5C.11 include (c) dioxane/water and (d)
ethanol/water mixtures. Ethanol/water boils unchanged when the
water content is 4 per cent by mass and the temperature is 78°C.

(c) Immiscible liquids

Consider the distillation of two immiscible liquids, such as octane and
water. At equilibrium, there is a tiny amount of A dissolved in B, and
similarly a tiny amount of B dissolved in A: both liquids are saturated
with the other component (Fig. 5C.12(a)). As a result, the total vapour
pressure of the mixture is close to p = p,* + pg*. If the temperature is

raised to the value at which this total vapour pressure is equal to the



atmospheric pressure, boiling commences and the dissolved substances
are purged from their solution. However, this boiling results in a
vigorous agitation of the mixture, so each component is kept saturated in
the other component, and the purging continues as the very dilute
solutions are replenished. This intimate contact is essential: two
immiscible liquids heated in a container like that shown in Fig. 5C.12(b)
would not boil at the same temperature. The presence of the saturated
solutions means that the ‘mixture’ boils at a lower temperature than
either component would alone because boiling begins when the total
vapour pressure reaches 1 atm, not when either vapour pressure reaches
1 atm. This distinction is the basis of steam distillation, which enables
some heat-sensitive, water-insoluble organic compounds to be distilled
at a lower temperature than their normal boiling point. The only snag is
that the composition of the condensate is in proportion to the vapour
pressures of the components, so oils of low volatility distil in low
abundance.

(a) (b)

Figure 5C.12 The distillation of (a) two immiscible liquids is quite different



from (b) the joint distillation of the separated components, because in the
former, boiling occurs when the sum of the partial pressures equals the
external pressure.

sc.4 Liquid-liquid phase diagrams

Consider temperature—composition diagrams for systems that consist of
pairs of partially miscible liquids, which are liquids that do not mix in
all proportions at all temperatures. An example is hexane and
nitrobenzene. The same principles of interpretation apply as to liquid—
vapour diagrams.

(a) Phase separation

Suppose a small amount of a liquid B is added to a sample of another
liquid A at a temperature T'. Liquid B dissolves completely, and the
binary system remains a single phase. As more B is added, a stage
comes at which no more dissolves. The sample now consists of two
phases in equilibrium with each other, the most abundant one consisting
of A saturated with B, the minor one a trace of B saturated with A. In
the temperature—composition diagram drawn in Fig. 5C.13, the
composition of the former is represented by the point a' and that of the
latter by the point a’. The relative abundances of the two phases are
given by the lever rule. When more B is added the composition a moves
to the right on the diagram, A dissolves in the added B slightly, and the
compositions of the two phases in equilibrium remain a' and a’. As yet
more B is added, composition a moves further to the right and
eventually crosses the phase boundary into the one-phase region. So
much B is now present that it can dissolve all the A and the system
reverts to a single phase. The addition of more B now simply dilutes the
solution, and from then on a single phase remains.
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Figure 5C.13 The temperature—composition diagram for a mixture of A and
B. The region below the curve corresponds to the compositions and
temperatures at which the liquids are partially miscible. The upper critical
temperature, T, is the temperature above which the two liquids are miscible

in all proportions.

The composition of the two phases at equilibrium varies with the
temperature. For the system shown in Fig. 5C.13, raising the
temperature increases the miscibility of A and B. The two-phase region
therefore becomes narrower because each phase in equilibrium is richer
in its minor component: the A-rich phase is richer in B and the B-rich
phase is richer in A. The entire phase diagram can be constructed by
repeating the observations at different temperatures and drawing the
envelope of the two-phase region.

Interpreting a liquid-liquid phase diagram

The phase diagram for the system nitrobenzene/hexane at 1 atm is
shown in Fig. 5C.14. A mixture of 50 g of hexane (0.59 mol C;H,,)

and 50 g of nitrobenzene (0.41 mol C;H.NO,) was prepadblue at



290 K. What are the compositions of the phases, and in what
proportions do they occur? To what temperature must the sample
be heated in order to obtain a single phase?
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Figure 5C.14 The temperature—composition diagram for hexane and
nitrobenzene at 1 atm, with the points and lengths discussed in the text.

Collect your thoughts The compositions of phases in
equilibrium are given by the points where the tie line at the relevant
temper